The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

3626

The Hamilton-Jacobi analysis by Peter Bergmann and Arthur Komar
of classical general relativity

D. Salisbury
Physics Department, Austin College,
Sherman, Texas 75090, USA
E-mail: dsalisbury@austincollege. edu
www. austincollege. edu

Peter Bergmann initiated in 1966 an application of Hamilton-Jacobi techniques to gen-
eral relativity. Little had been done by this time on extending this analysis to gauge
theories. He proved that when, as in the case of Einstein’s theory, the phase space gener-
ator of evolution consisted of a linear combination of constraints, the Hamilton principal
function must be independent of spacetime coordinates. Also the Hamilton Jacobi equa-
tions that determined this functional of the 3-metric retained their form under phase
space functionals that were invariant under the action of the spacetime diffeomorphism
group. Komar followed up beginning in 1967 with a series of papers in which he proved
that a complete solution of the Hamilton Jacobi equations was determined by a com-
muting set of diffeomorphism invariants. These invariants thereby labeled equivalence
classes of solutions of Einstein’s equations under the action of the full four-dimensional
diffeomorphism group. Furthermore, this set satisfied canonical commutation relations
with another invariant set. The hope and expectation was that these invariants could
be promoted to quantum operators in a quantum theory of gravity. This framework will
be contrasted with J. A. Wheeler’s geometrodynamical program in which the only un-
derlying covariance group is spatial diffeomorphisms. The full spacetime diffeomorphism
symmetry is replaced by the notion of ‘multi-fingered’ time. A related dispute concerning
the ‘sandwich conjecture’ will be discussed, relevant to the functional integral approach
to quantum gravity. T'wo three geometries cannot determine a corresponding four geom-
etry if they lie in distinct four dimensional diffeomorphism equivalence classes.
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1. Introduction

The following is a brief historical overview of work on a Hamilton-Jacobi approach
to general relativity that was undertaken by Peter Bergmann and Arthur Komar in
the 1960’s and 1970’s. A more detailed initial version, discussing both the relation of
their research to previous and concurrent approaches, and to later progress, appears
in Ref. 1. A further revision and expansion is in progress. The emphasis throughout
their investigations was on the full four-dimensional diffeomorphism covariance of
Einstein’s theory. This lead to a divergence with the geometrodynamical approach
of John Wheeler and company where only the spatial covariance is fully respected.

2. Bergmann’s initial Hamilton-Jacobi analysis of general relativity

It is not widely recognized that it was Peter Bergmann who pointed out to Peres
prior to the publication of his groundbreaking paper in Ref. 2 that his S appearing
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as an argument in the four general relativistic constraint equations should be
interpreted “as the Hamilton-Jacobi functional for the gravitational field.” Of course
the following are now identified as the Wheeler-DeWitt equations,

6S
HH (gabv 59) =0, (1)

cd

where the H,, (gaba ) are the secondary constraints in general relativity. Bergmann
proved in Ref. 3 that in a theory in which the Hamiltonian is constrained to vanish S
could not depend explicitly on the time. The argument applied equally well to spatial
dependence, as noted first in Ref. 4. Thus S = S[gqs(Z)]. Bergmann also showed that
the Hamilton-Jacobi equations were form invariant under canonical transformations
generated by diffeomorphism invariants. The fact that the numerical value of S is
altered under the action of H presented a puzzle. The question arose whether this
could this be inconsistent with the accepted notion of ‘frozen time’.

3. Komar’s isolation of solution equivalence classes

Komar observed in Ref. 4 that although there were only four Hamilton-Jacobi equa-
tions the principal function S delivered 6 x 0o expressions for the momenta,

0S
5gab( )

and therefore the p®(Z) are not uniquely determined. Two additional constraints
needed to be imposed, with A =1, 2,

p™ (&) =

(2)
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and similarly for the #,, it follows that
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In other words, the o must be diffeomorphism invariants (and they must also

=0, (4)

()

commute with each other.)

The constant values of o [gab(f), pCd(f)] identify equivalence classes under the
action of the spacetime diffeomorphism group. In Ref. 5 he showed that there existed
invariant functionals 3§ that were canonically conjugate to the aY. However, as
formulated at this stage by Komar, one cannot yet obtain solutions of Einstein’s
equations by bettlng BA(E) = M& @ One still requires a temporal coordinate - like
the ‘intrinsic’ ¢ that appears in the free particle action.

In Ref. 5 he showed that there existed invariant functionals 83" that were canon-
ically conjugate to the af. However, as formulated at this stage by Komar, one
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cannot yet obtain solutions of Einstein’s equations by setting 34 (%) = #S(f). One

still requires a temporal coordinate - like the ‘intrinsic’ ¢° that appears in the free
relativistic particle action, with increment given by

dS, = pudg”, (6)

with constraint p? + m? = 0. This can be compared to vacuum general relativity
where the non-vanishing contribution to the increment in the action takes the form

dSgr = / Az papdg?®®, (7)

with constraints H, = 0.
In the particle case one can choose the ‘intrinsic time’ t = ¢° as the evolution
parameter and also solve for py resulting in

s, = — (152 + 1712)1/2 dt + pedq®. (8)
This yields the complete Hamilton principal function
Sp(q* t;a’) = — (a2 + m2)1/2 t+ aqaq”. (9)

The analogue of the gravitational o' in this case is p?. The analogue of the canonical
conjugate 3% would be the reparameterization constant ¢* — p®q"/p°. The general
solution is obtained from

S,

= das

Bergmann and Komar, Ref. 6, had explicitly recognized this type of emergence

ﬁ(l

of intrinsic time evolution. Earlier, Komar in Ref. 7 had proposed that intrinsic
curvature-based coordinates could be constructed using Weyl curvature scalars. He
and Bergmann in Ref. 8 proved that these scalars depended only on g,;, and p°®. The
question naturally arise as to why Bergmann and Komar did not proceed with the
use of intrinsic coordinates in their Hamilton-Jacobi treatment. A Bergmann quote
in Ref. 9 from 1971 is revealing: “Although intrinsic coordinates lead, in principle,
to a complete set of observables in general relativity, their defects, of which the most
glaring is their deviation from Lorentz coordinates, render this procedure illusory. It
appears preferable to retain coordinates that are approximately, or asymptotically
Lorentzian and hence not to destroy one’s intuition.” Thus in spite of prolonged
occupation with a Hamiltonian formulation of the the underlying general covariance
of general relativity, Bergmann still seemed to have ceded undue importance to the
more familiar Poincaré symmetry of conventional field theory.

However, as shown in Ref. 10 it is in principle possible to carry out a canonical
change of variable in the non-vanishing increment dSgg to intrinsic spacetime co-
ordinates z* = X*"(gqp, p°®), analogous to the parameter choice ¢t = ¢° in the free
relativistic particle model. This is a corrected version of Refs. 11 and 12. Current
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work with Kurt Sundermeyer and Jiirgen Renn is in preparation. One makes a
canonical change of variables such that

ngr = /dgxpabdgab
0G 0G

G
_ 3 XM A _— — —dX* . (1
/ dx (md P dgat 5 = dgas + 5 dga+ 5y ) (10)

One must find a generator G[gap, X 4, gp| such that p,, = 5(;%' Then

S}, = d(Sy — 6) = [ d (mudX" 4 pdga) )

Next choose the X* as intrinsic coordinates, i.e., set z#¥ = X*. Finally, one elimi-
nates the canonical conjugates to X*, 7, by solving the constraints. Then we have
the resulting intrinsic Hamilton-Jacobi equation
65! 05!
gr 0 gr
M R x| +
0 |:gA 693 ; :| 90

= 0. (12)

From the complete solutions S;r [ga,x"; ap] one can obtain the full set of physically
distinct solutions of Einstein’s equations from

4 _ 05
501A '

(13)

4. Contrast with geometrodynamics

The contrast of this program with Wheeler’s geometrodynamics cannot be over-
stated. The multifingered time approach assumed that the full four-dimensional
diffeomorphism symmetry had been lost. States should be labeled by the 2 x co?
diffeomorphism invariants a4 (Z), and not by three-geometries.
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