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1. Introduction

Dark Matter (DM) continues to be an elusive problem in astrophysics, particle physics and
cosmology. Current cosmological models are most consistent with a universe which today is
dominated by dark energy (Λ) and cold DM (CDM) Often this is referred to as the ΛCDM model,
which fits to observations, e.g. the Cosmic Microwave Background (CMB). According to CMB
observations with the Planck satellite, DM accounts for 26.8% of the universe’s energy composition,
whereas baryonic matter accounts for 4.9% [1–3].

This work presents an indirect search for DM via the neutrino sector. Neutrinos provide a
powerful opportunity to probe regions previously inaccessible as neutrinos do not strongly interact
with baryonic matter. In this work, we present a DM search towards dwarf spheroidal galaxies
(dSphs) with the IceCube Neutrino Observatory. The selection of dSphs as the source class comes
from their high DM content with diminished neutrino background from conventional channels,
e.g. cosmic ray collisions in the dSph medium. This work focusses on dSphs in the Northern
Hemisphere.

2. The IceCube Neutrino Observatory

The IceCube Neutrino Observatory, located at the South Pole, has been operating for more than
a decade. The in-ice array consists of 86 strings which support 5160 optical modules embedded in
glacial ice at the South Pole. The IceCube detector is sensitive to elusive, high-energy neutrinos
across the entire sky. It detects these neutrinos from Cherenkov radiation emitted from secondary,
relativistic charged particles traversing the ice after a neutrino collision in the vicinity of the ice in
the detector. For the purposes of this study, we focus on muon-track data which can sample a wide
neutrino energy range from 1 GeV to 100’s PeV [4].

3. Analysis

In this study, we show that IceCube is sensitive to annihilating DM with masses above 1 TeV.
Additionally, IceCube’s sensitivity is comparable to that of gamma-ray observatories in spectral
models that produce hard neutrino features where 𝐸𝜈 ≈ 𝑚𝜒. We present a DM annihilation search
using the Northern Sky muon track dataset. The search will be towards dSphs as they have little
high energy neutrino contributions from baryonic processes. Additionally, dSphs are observed to
have large DM to baryonic matter ratios, thus are strong search targets. The extension of these
sources are smaller than the angular resolution of the detector, so the selected sources are treated
as point sources for IceCube. DM masses from 500 GeV to 100 PeV and several DM annihilation
channels are explored in this study; however only two annihilation channels are provided in these
proceedings.

The last IceCube search for DM annihilation within dwarf galaxies was performed in 2013 [5].
IceCube is estimated to have a high sensitivity to hard neutrino DM spectra [6]. Much has changed
in IceCube since this previous DM annihilation search, such as additional strings (previously 59
versus presently 86), more sophisticated analysis methods, and more accurate theoretical event
modeling.
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The expected differential neutrino flux from DM-DM annihilation to standard model particles,
𝑑Φ𝜈/𝑑𝐸𝜈 , over solid angle, Ω is described by the equation.

𝑑Φ𝜈

𝑑𝐸𝜈

=
⟨𝜎v⟩

8𝜋𝑚2
𝜒

𝑑𝑁𝜈

𝑑𝐸𝜈

∫
source

𝑑Ω

∫
𝑙.𝑜.𝑠

𝜌2
𝜒𝑑𝑙 (𝑟, 𝜃′), (1)

where 𝜌𝜒 is the dark matter density in the dSph, Here 𝑑𝑁𝜈/𝑑𝐸𝜈 is the simulated neutrino spectra for
DM annihilates into SM particles, 𝑚𝜒 is the DM mass, ⟨𝜎v⟩is the velocity-weighted cross-section
if DM annihilates into SM particles. We account for the influence of neutrino oscillations for this
analysis in Section 3.1.

3.1 Neutrino Spectra from DM Annihilation

Neutrino spectra from heavy DM annihilation were modeled using HDMSpectra [7] at neutrino
production and then using 𝜒aro𝜈 [8] for their propagation to Earth. HDMSpectra improves on
previous results by including electroweak or gluon radiative corrections and higher-order loop
corrections from the 𝑊 and 𝑍 bosons (e.g. triple gauge boson couplings like 𝑊𝑊𝑍 and 𝑊𝑊𝛾).
These corrections are especially important for accurately estimating the neutrino flux.

We use the 𝜒aro𝜈 software to propagate the neutrinos from the source to Earth. The propagation
distances are large compared to the oscillation baseline, so we take the averages of the flavor
transition probabilities [8] to estimate the incident neutrino fluxes:

𝑃(𝜈𝛼 → 𝜈𝛽) ≈

0.55 0.18 0.27
0.18 0.44 0.38
0.27 0.38 0.35

 . (2)

IceCube’s muon-track data have limited sensitivity to 𝜈𝑒 which mostly produce spherical Cherenkov-
light features, so-called cascades, instead of tracks. Therefore, the expected flavor contribution to
signal neutrinos, 𝑛𝑠 is dominated by 𝜈𝜇 and also 𝜈𝜏 [4] at the highest energies. We therefore model
the expected composite neutrino spectrum as the sum of these two flavors.

Several channels in our broader study include a ’line’ feature where there is a significant
fraction of neutrinos with 𝐸𝜈 ≈ 𝑀𝜒. The line is much narrower than IceCube’s energy uncertainty.
Therefore, before performing a fit, the estimated neutrino flux is convolved with a Gaussian kernel
of width 0.05 × 𝑀𝜒. The composite neutrino spectra after all particle physics considerations are
show in Fig. 1 for 𝜒𝜒 → 𝜏+𝜏−and 𝜈𝜇 𝜈̄𝜇.

For the calculation of the line-of-sight (l.o.s.) integral, so-called "J-Factor", we adopt the
Geringer-Sameth’s (GS) model [9] to estimate the dark matter distribution around the center of
the dSphs. These models are based on a Zhao DM density profile [10]. We treat these sources as
point-like in this analysis. A summary of the sources studied here are provided in Table 1.

4. Likelihood Methods

We use a maximum likelihood method previously used in IceCube point-source searches [11].
The likelihood function is defined as:

𝐿 (𝑛𝑠) =
𝑁∏
𝑖=1

[𝑛𝑠
𝑁
𝑆𝑖 +

(
1 − 𝑛𝑠

𝑁

)
𝐵𝑖

]
, (3)
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Figure 1: Composite neutrino spectra for 𝜒𝜒 → 𝜏+𝜏− (left) and 𝜈𝜇 𝜈̄𝜇 (right). Spectra are shown as 𝑑𝑁/𝑑𝐸
versus 𝐸𝜈 . Redder lines are spectra for lower DM mass annihilation. Bluer lines are higher mass. The
displayed neutrinos energies correspond to the energy range of IceCube’s sensitivity. The DM masses used
for the spectra range from 681 GeV to 100 PeV.

where 𝑖 is an event index, 𝑆 and 𝐵 are the signal probability distribution function (PDF) and
background PDF respectively. For a joint analysis where multiple sources likelihoods are "stacked",
the likelihood is expanded to:

𝐿 (𝑛𝑠) =
𝑁sources∏
𝑖=1

𝐿𝑖 (𝑛𝑠), (4)

where 𝐿𝑖 is the likelihood, Eq. (3), from the i-th source in the stacked analysis. The test statistic
(TS) is computed with the maximum log-likelihood ratio test,

TSmax = −2 ln
(
L0
Lmax

)
, (5)

where L0 corresponds to the background hypothesis, 𝑛𝑠 = 0.

5. Results and Conclusions

We show the 90% sensitivities defined as the minimum number of expected signal events (𝑛𝑠)
required to have TSmax larger than the median of the background simulations in 90% of cases. We
compute 𝑛𝑠 from the equation

𝑛𝑠 = 𝑇live

∫ ΔΩ

0
𝑑Ω

∫ 𝐸max

𝐸min

𝑑𝐸𝜈𝐴eff (𝑛̂, 𝐸𝜈)
𝑑Φ𝜈

𝑑Ω𝑑𝐸𝜈

(𝑛̂, 𝐸𝜈), (6)

to extract the sensitivity on the DM matter velocity-weighted annihilation cross-section, ⟨𝜎v⟩. The
quantity 𝑇live is the detector live time, 𝐴eff is the effective area of the detector, and 𝐸min (𝐸max) are
the minimum (maximum) energy of the expected neutrino spectrum.

The sensitivities are calculated for each source individually as if they were the only source and
as a stack, based on 1000 simulation trials. Fig. 2 shows the sensitivities for the DM annihilation to
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Figure 2: Per source sensitivity of ⟨𝜎𝑣⟩ versus 𝑀𝜒 for 𝜒𝜒 → 𝜏+𝜏− (top) and 𝜒𝜒 → 𝜈𝜇 𝜈̄𝜇 (bottom)
from 15 dwarf galaxies and the combined sensitivity using data from all sources. Colored, dashed lines are
sensitivities from individual dwarves. Solid white line is the combined sensitivity.
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Table 1: Table of dwarf galaxies investigated in this study, showing their heliocentric distances (column
2) and their longitude and latitude in galactic coordinates (column 3) for the dwarves. The final columns
shows the 𝐽-factors of each source measured by Geringer-Sameth and their ±1𝜎 uncertainties. The values
log10 𝐽 (GS set) [9] are the mean 𝐽-factor values for a source extension that is truncated at the outermost
observed star.

Name Distance 𝑙, 𝑏 log10 𝐽 (GS)
(kpc) (°) log10 (GeV2cm−5sr)

Boötes I 66 358.08, 69.62 18.24+0.40
−0.37

Canes Venatici I 218 74.31, 79.82 17.44+0.37
−0.28

Canes Venatici II 160 113.58, 82.70 17.65+0.45
−0.43

Coma Berenices 44 241.89, 83.61 19.02+0.37
−0.41

Draco 76 86.37, 34.72 19.05+0.22
−0.21

Hercules 132 28.73, 36.87 16.86+0.74
−0.68

Leo I 254 225.99, 49.11 17.84+0.20
−0.16

Leo II 233 220.17, 67.23 17.97+0.20
−0.18

Leo V 178 261.86, 58.54 16.37+0.94
−0.87

Leo T 417 214.85, 43.66 17.11+0.44
−0.39

Sculptor 86 287.53, −83.16 18.57+0.07
−0.05

Segue I 23 220.48, 50.43 19.36+0.32
−0.35

Segue II 35 149.43, −38.14 16.21+1.06
−0.98

Ursa Major I 97 159.43, 54.41 17.87+0.56
−0.33

Ursa Major II 32 152.46, 37.44 19.42+0.44
−0.42

Ursa Minor 76 104.97, 44.80 18.95+0.26
−0.18

𝜏 leptons and 𝜈𝜇. Figs. 3 and 4 compare the stacked sensitivities to limits from studies performed
by other observatories and past IceCube analyses, respectively.

This study expands significantly on the previous IceCube dSph DM [5] search via the follow-
ing changes. Particle physics predictions have been revised and show greater expected neutrino
contributions to the DM spectra. More dSphs have been identified and their DM density more
precisely modeled. Finally, IceCube has significantly improved its track and event reconstruction
while accumulating more than 10 years of data. These factors have greatly improved IceCube’s
sensitivity to DM annihilation from dSphs. Finally, for the first time, IceCube presents an analysis
that set limits on PeV DM annihilation from dSph.

When compared to previous IceCube publications of dSphs [5] (see Fig. 4), we see an order
of magnitude improvement in our sensitivity. When considering a more conventional channel like
𝜏 leptons (see Fig. 3), IceCube’s heavy DM sensitivity is comparable to gamma-ray observatories.

6



P
o
S
(
I
C
R
C
2
0
2
5
)
5
2
3

IceCube Heavy Dark Matter

10 2 100 102 104 106

M  (TeV)

10 25

10 23

10 21

10 19

10 17

v
 (c

m
2 s

1 )

IceCube Preliminary
+

This Work's Sensitivity
IceCube 2013 90% CL
Fermi 2015 95% CL
HESS 2020 95% CL

MAGIC 2022 95% CL
LHAASO 2024 95% CL
HAWC 2020 95% CL
VERITAS 2024 95% CL

Figure 3: IceCube sensitivity for 𝜒𝜒 → 𝜏+𝜏− from 15 dwarf spheroidal galaxies compared to other
astrophysics observatories. Solid, colored lines are limits from other observatories. The dashed black line is
this work’s sensitivity. Previous limits are shown for IceCube [5], Fermi-LAT [12], H.E.S.S. [13], LHAASO
[14], MAGIC [15], HAWC [16], and VERITAS [17].
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Figure 4: IceCube sensitivity for 𝜒𝜒 → 𝜈𝜇 𝜈̄𝜇 from 15 dwarf spheroidal galaxies compared to past IceCube
analyses from dwarves [5] and the galactic center [18]
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