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We report our experiences with the generalized integration-by-parts algorithm [hep-ph/9609429] in the
context of calculations of a realistic one-loop subset of diagrams.

This project combined the experience of the
ZFITTER' team [1] with the experience of designing
algorithms for multiloop calculations” [4], [5] in order to
explore the potential of the “algebraic” scenario of loop
calculations suggested in [6].

The scenario generalizes the idea of [4], which is to
exploit the rich algebraic structure of integrands in order
to reduce them to a maximally simple form, depending
on the specific application. The original algorithm of [4]
was about reduction of massless self-energies to recur-
sively one-loop integrals easily calculable analytically;
it demonstrated that such a reduction may be an extre-
mely powerful calculational tool. The scenario of [6] is
about reduction of integrands to a form maximally
suitable for subsequent numerical integration. It is based
on a subtle algebraic fact (a generalization of the so-
called Bernstein theorem [7]) and is applicable to arbitra-
ry loop integrals (arbitrary topologies and patterns of
masses and external momenta). This is in theory.

In practice, the complexity of the problem of finding
the differential identities required by the scenario of [6]
for integrands with 2 or more loops now appears to be so
great (and the resulting identities so hugely cumbersome)
that the feasibility of the scenario of [6] beyond one loop
level is rather doubtful.

However, for one-loop integrals, all algebraic difficul-
ties reduce to an iterative application of a simple dif-
ferential identity:

! ZEITTER [1], along with TOPAZO [2], is a program which
incorporates all the available theoretical knowledge about the Z-
resonance in the process of €"e¢” annihilation [3]. They have been used
to extract Standard Model parameters from the precision data
obtained at LEP1 by the experimental collaborations at LEP.

? These algorithms are behind the flourishing industry of NNLO QCD
calculations (sum rules and moments of DIS structure functions; mass
expansions; Oio(¢ ‘¢~ - hadrons)).
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the vector of Feynman parameters,

integral can be represented as
JgdxQ(xX) V" (x). 0.2

An iterative application of 0.1 followed by integration by
parts reduces 0.2 to a sum of the form
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where the sum involves integrals over simplices with no
higher dimensionality than in the original integral 0.2.
The Laurent expansion in ¢ yields integrals of the form
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where y is the unit of mass. (In a general one loop
integral second powers of log V are possible.)

By choosing N large enough (which is achieved by
suitably many applications of the identity 0.1) one can
achieve an arbitrarily large degree of smoothness of the
integrands in 0.4, ensuring their better amenability to
numerical integrations. With N =0, one has a simple
absolute convergence (logarithmic singularities in the
integrand). With N =1, the integrand is continuous; with
N =2, it has continuous first derivatives, etc. Simple 1-
dimensional examples show that the optimal rate of
numerical convergence (with integration algorithms that
make use of continuity of derivatives) is achieved for
values of N =4.,5; by rate of convergence we understand
the number of integrand evaluations required to attain a
precision of 8-10 digits.



On the downside, the quantity A which appears in the
denominator may contain small factors near thresholds,
leading to large numerical cancellations between differ-
ent terms in the sum 0.3, which offset the benefits of
smoother integrands.3 The scenario of [6] offers no
options for that. Note, however, that a complete set of
rules for obtaining systematic asymptotic expansions of
arbitrary Feynman integrals in arbitrary asymptotic
regimes was obtained in [8], so the handling of cases
with a small A is in theory not an insurmountable
problem (although, of course, one would prefer a uniform
algorithm to treat the various cases).

Our aim was to explore the behavior of this algorithm
in a realistic case of a subset of diagrams which
contribute to the ZFITTER [1]. The subset (which we
call Z cluster; for details see [9]) is gauge invariant and
UV finite. It is shown in the following figure:
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We will consider and evaluate three standard scalar
formfactors F#VZ , #=L,0,D which are present in the Z

cluster with incoming photon y in the Z vertex. These
can be expressed in terms of the standard Passarino-
Veltman functions Cy and B, (see e.g. [3]). For instance:
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where d,= q2 —l—ml2 —ig, dy=(q —l—pl)2 +m? —ig and
dy=(q+Q)* +m3 —ic. Also Q= p,+p,. In terms
of Feynman parameters (in n =4):
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C()(pl’pz’Q ,ml,m,mg)—j; dx‘]; dny’,, 0.6
where
P, ==xp} =¥’ p3 + (Q* = p{ — p3)
—l—x(plz—l—mlz—mz)—l—y(pzz—l—m%—mz)—l—mz. 0.7

We introduce the following generalizations:
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Similarly:

* Examples of this kind were provided to us by K.Kato. Note that
maximal benefits from the algebraic transformations being described
are obtained with integration routines that make use of the increased
regularity of resulting integrands. But since the method effectively
subtracts all types of divergencies/singularities simultaneously, it may
be beneficial even with MC integrators.
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where
P.=Q’x(1l—x) + Mix+M3(1—x). 0.10
Conventional expressions for the formfactors

F#VZ , #=L,0,D are in terms of the standard C, and B.

One application of the identity 0.1 (in n == 4) together
with integration by parts yields expressions in terms of
Céo) and B((JO) . The total length of the three expressions
is one LaTeX page. Two applications yield expressions
in terms of C((Jl) and Bél) , with the total length of two
pages.

After the algebraic simplifications, numerical integra-
tion was performed using a simple Simpson integrator
which is sensitive to smoothness of integrands.

The numerical results are presented in the following
table:

k Re Im
sz 1.62989336 2.32844153
0 | <107° 1.5E-3
1 | <107° 1.9E-5
sz -0.366725194 0.808473633
0 | <107° 2.0E-4
1 | <107° 2.2E-6
ng -0.00234117123 -0.0063346893
0 | <107° 1.9E-3
1 | <107° 2.3E-5

For each formfactor, the first line lists exact results
(obtained in the usual way via dilogarithms). The second
and third lines give absolute relative errors for the results
of numerical calculation of the same quantities. The lines
k=0|1 correspond to the cases when the identity 0.1 is
used once| twice so that all resulting integrands have the

singularity 1nP|P1nP (absolute integrability with loga-
rithmic singularities [step function in the imaginary
parts] in the first case; continuous integrands in the
second case). The simplest Simpson integrator was used
which likes continuous second order derivatives. But we
felt the complexity of the formulas resulting from three
application of the differential identity was too great to
justify the effort involved in the interfacing of the
algebraic and numerical parts of this project for more
than two applications of the identity 0.1 at the current
exploratory stage of the project.



A conclusion that can be drawn from our experiment
is that the scenario based on the use of the algebraic
identity 0.1 may, at least in some one loop applications,
be a viable alternative to the standard procedures based
on the use of analytical expressions in terms of diloga-
rithms (cf. [3]). Moreover, we have observed a number of
attractive properties:

» Gauge cancellations within gauge invariant subsets of
diagrams occur prior to numerical integrations. This
means that numerical cancellations due to at least this
source are not encountered.

* Similarly cancel UV divergences.

* In our example, we have observed little (if any)
evidence of numerical instabilities. It is essential here
that a deterministic numerical integration algorithm was
used which took into account the increased smoothness
of the integrands; Monte Carlo integration algorithms are
inappropriate here.

* The method offers an interesting alternative to the
conventional Passarino-Veltman reduction to scalar inte-
grals. Note that the new reduction (i.e. the representation
in terms of the basic scalar functions 0.8, 0.9 with all x’
excluded from 0.4) was implemented in »n dimensions.

The greatest technical difficulty for implementation
of the described scenario — both in one loop and to a
very much greater extent beyond one loop — appears to
be the dominant software engineering platform in the
HEP community (conventional inefficient symbolic ma-
nipulation programs + numerical calculations with the
archaic Fortran/C or the clay-feet monster of C++, with
no easy connection between the two). Another problem is
that the computer resources needed even in simpler cases
are huge (although Moore’s Law is slowly taking care of
that; perhaps too slowly).

Since there are physical problems in which further
progress via conventional approaches seems to be all but
excluded, experimentation with the scenario for loop
calculations of [6] will continue. On a limited scale and
in some special problems one may even expect realistic
calculations to occur within a few years — provided a
sufficient high-quality software engineering effort could
be mustered. But the main problem is the inadequacy of
the dominant software engineering platform in HEP.*
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* It cannot be emphasized too strongly: C++ cannot be a foundation
on which to build future. Some related comments together with a
discussion of alternatives are collected in [10].
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