
Quantum Information Processing (2022) 21:379
https://doi.org/10.1007/s11128-022-03649-9

Development of a multi-technology, template-based
quantum circuits compilation toolchain

Manfredi Avitabile1 · Giovanni Amedeo Cirillo1 ·Mario Simoni1 ·
Giovanna Turvani1 ·Mariagrazia Graziano2

Received: 28 October 2021 / Accepted: 2 August 2022
© The Author(s) 2022

Abstract
With noisy intermediate scale quantum computers (NISQ) becoming larger in scale
and more reliable, quantum circuits are growing in size and complexity. In order
to face the challenge of achieving optimal circuits, design automation approaches
for improving and mapping quantum circuits on different architectures have been
proposed, each one characterized by a specific optimization strategy. In this article,
the use of a template-based approach for quantum circuits optimization purposes is
explored, and the proposal of a modular compilation toolchain, which supports three
quantum technologies (nuclear magnetic resonance, trapped ions and superconducting
qubits), is presented. The toolchain tackles the task of implementing logic synthesis for
single-qubit and multi-qubit gates in the compilation process and it is structured with
multiple steps andmodular libraries. The toolchainwas tested through a benchmarking
procedure, and the results for a subset of complex quantum circuits as inputs are here
reported, alongside a comparison with those provided by the compilers of IBM’s
Qiskit and Cambridge Quantum Computing’s t|ket〉. The current toolchain prototype
was crafted to be an easily expandable and reliable core for future developments,

B Giovanni Amedeo Cirillo
giovanni_cirillo@polito.it

B Giovanna Turvani
giovanna.turvani@polito.it

Manfredi Avitabile
manfredi.avitabile@studenti.polito.it

Mario Simoni
mario.simoni@polito.it

Mariagrazia Graziano
mariagrazia.graziano@polito.it

1 Department of Electronics and Telecommunications, Politecnico di Torino, Corso Castelfidardo,
39, Torino 10129, Italy

2 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi,
24, Torino 10129, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-022-03649-9&domain=pdf
http://orcid.org/0000-0002-5563-8277
http://orcid.org/0000-0002-5702-2505
http://orcid.org/0000-0002-8520-906X
http://orcid.org/0000-0002-8721-9990

 379 Page 2 of 44 M. Avitabile et al.

which could lead it to support even more quantum technologies and a fully fledged
layout synthesis. Nonetheless, the obtained results are quite encouraging, and they
prove that in certain conditions the Toolchain can be competitive in quantum circuits
optimization, especially when dealing with single-qubit gates.

Keywords Noisy intermediate scale quantum (NISQ) · Quantum computing ·
Quantum circuits · Compilation toolchain · Template-based approach

1 Introduction

In an application scenariowhere quantumcomputing is going to be employed for facing
concrete problems, in domains as Machine Learning, optimization, image processing
or chemical simulations, manual quantum circuit design has become unpractical. To
address the problem, the industry took inspiration from the design automation tools,
vastly employed for the synthesis of digital circuits in classical computing, to pro-
duce refined, reliable quantum circuits to be adapted on the target devices. The goal is
producing an optimized quantum circuit, equivalent to that of a certain quantum algo-
rithm. The entity of the applied improvements and their focus may vary, depending on
the desired performance, the target device and other degrees of freedom. These opti-
mizations are usually performed by compilers [1], which take as input the high-level,
abstract description of a certain application of a quantum algorithm or of a quantum
circuit and automatically “translate” and adapt it, according to the given specifications.
The resulting output is a quantum circuit built to work smoothly with the target device,
tailored to properly optimize specific performance parameters.

Different figures of merit have been proposed for evaluating quantum circuit design
and compilation. Among these, it is important to remind:

• The circuit depth [2, 3], which is the length of the longest sequence of quan-
tum gates from qubit initialization to measurement. It can be seen as a quantum
equivalent of the critical path of digital circuits.

• The total gate count, which is given by the total number of quantum gates belong-
ing to a circuit. In some contexts, the gate count is done by distinguishing between
single and two-qubit (usually CX) gates [4] or considering some application-
specific critical gates, such as T and T † in the context of fault-tolerant quantum
computation [5, 6].

The quantum circuit shown in Fig. 1 has a circuit depth equal to 5 (or 6, depending if
measurement is counted or not), associated with all the gates involving the lowest and
the intermediate qubits, while the total gate count is equal to 5—when no distinction
between single and two-qubit gates is done—otherwise is equal to the pair (2, 3), where
the two values are equal to the occurrences of single and two-qubit gates, respectively.
These metrics permit to estimate the complexity of a quantum circuit in a very simple
way, but in some circumstances they could be quite limiting, since they do not assign
differentweights to different quantumgates, as it would be expected by considering the
features of current quantum computing hardware. For example, the evaluation of the
effects of quantum gates duration on the circuit latency, i.e., the total time required for

123

Development of a multi-technology, template-based quantum... Page 3 of 44 379

Fig. 1 Example of circuit
latency calculation

Fig. 2 Correspondence between
duration of the field pulse
applied to manipulate the spin
and the achieved rotation.
Assuming the initial state is the
up-orientation, a longer pulse
leads to a larger rotation angle θ

(θ0 > θ1)

executing all the gates of a quantum circuit (Fig. 1 shows an example of circuit latency
calculation, assuming that all quantum gates are executed in a strictly sequential way),
is fundamental for estimating the circuit execution reliability on a quantumcomputer. It
is important to remind that all quantum technologies, characterized by a qubit encoding
derived from a two-level/spin- 12 formalism [7, 8], are affected by dynamic non-ideality
phenomena, such as relaxation and decoherence [9], and that the duration of quantum
gates is not fixed. For example, single-qubit gates R{X ,Y }(θ) are implemented by
exciting a two-level/spin- 12 system with a resonant finite-time electromagnetic field,
whose duration is proportional to the gate rotation amount θ [9, 10], as clear from
Fig. 2. In order to keep negligible the effects of undesired phenomena, the circuit
latency should be minimized; this can be done at compilation level by finding an
equivalent circuit involving quantum gates with minimum duration.

The case of circuit latency optimization puts in evidence the necessity of exploiting
figures ofmerit in quantum compilation taking into account the features of hardware in
some way. In classical digital design and synthesis, dimensionless normalized quanti-
ties are often employed as cost functions. For example, the maximum delay of a circuit
can be evaluated from the normalized execution times of its modules [11], which are
estimated considering the logic gates constituting each module. A similar approach
could be exploited for quantum circuits; figures of merit, assigning different weights
to different gates according to their duration and implementation complexity, have
been already proposed. An example of these is the cost function of the Exercise 4
of the IBM Quantum Challenge 2020 [12], related to the construction of the optimal

123

 379 Page 4 of 44 M. Avitabile et al.

quantum circuit of a unitary matrix:

f = 10 · nCX + nU3 . (1)

Parameters nU3 and nCX are the total number of U3 (single-qubit) and CX (two-
qubit) gates, respectively, each of which has a different weight (1 and 10, respectively).
Another example is the cost function discussed in Sect. 4.3 and used in this article,
which takes into account the circuit depth and the fidelities of quantum gates, whose
definition will be cleared in that section.

Current state-of-the-art compilers adopt different approaches for building the cir-
cuit, most of which exploit heuristic methods at their core. In this work, none of
the more mainstream optimization strategies was chosen. In fact, instead of resort-
ing to algebraic manipulations or graph theory, a more straightforward method was
explored to evaluate if a simpler local optimization could favour the technology-
specific compilation: a template-based approach. This method consists in exploiting
circuit equivalences to shuffle the quantum circuit’s structure and then obtain optimiza-
tions, as represented by the example in Fig. 4 using IBM’s Quantum Experience [13].
When analyzing the quantum circuit represented in the left part of Fig. 4b, by employ-
ing the circuital equivalence described in Fig. 4a it is possible to create a redundancy
to be exploited for the optimization of the circuit as a whole. The result is represented
in the right part of Fig. 4b.

The goal of this article is twofold. Firstly, to determine whether a local compilation
strategy based on templates could achieve similar (or even better) real-world results
as those provided by a significantly more complex global compilation approach. Sec-
ondly, to provide a prototype of a core for a modular quantum circuits compilation
toolchain, to use as an easily expandable and reliable base for future, more competi-
tive developments. All the equivalences are reported in the supplementary document
Avitabile et al., Supplementary Information. The compilation strategy has been tested
on circuits to be executed on three supported quantumcomputing technologies: nuclear
magnetic resonance (NMR) [14], trapped ions [15] and superconducting qubits [16].
These technologies are placed on the same level of attention in the proposed compiler;
for this reason, the effort to equalize them can be considered a unique feature of the
toolchain, since it differentiates it from other compilers in the state of art, that—even
when they support native gates of different technologies—are mainly focused on the
more easily accessible superconductive backends (suffice to remind the fewest-qubit
freely accessible superconductive quantum computers from IBM).

After a brief overview of the state of the art in quantumDesignAutomationmethods
and a summary description of the compilers used in the testing phase in Sect. 2, the
in-depth optimization approach, structure and technology-related optimizations of the
proposed toolchain are discussed in Sect. 3. In Sect. 4 the benchmark procedures used
to test the toolchain performance, in terms of compilation time and complexity of
the final circuit, are explained and the obtained results are presented and compared
with those of two state-of-the-art compilers, in terms of different weighted and non-
weighted figures of merit. Evaluation of the toolchain competitiveness and future
perspectives are then discussed in Sect. 5.

123

Development of a multi-technology, template-based quantum... Page 5 of 44 379

Fig. 3 State-of-the-art quantum architecture and design automation toolchain. The logic synthesis step, on
which the current version of the proposed compiler is focused, is highlighted. Image arranged from [17]

2 Background

Taking inspiration from classical computing, the quantum state of the art rapidly
adopted the philosophy of the Design Automation to produce reliable architectures.
The process of definition of an optimal workflow to design and optimize a quantum
processor is still in part a matter of trial and error in development, but in the last
decade the comprehension of quantum algorithms and quantum circuits has steadily
improved in both industry and academy. Nowadays, the most crucial steps to effi-
ciently optimize a quantum circuit are known, defined and implemented in several
state-of-the-art design processes, and this gave birth to a somewhat canonical archi-
tecture design toolchain structure, such as the one described in [17] and represented in
Fig. 3. As for the design methods adopted in the workflow, as stated before, there are
many philosophies employed in the current state of the art. Some prefer to construct
optimal realizations of reversible circuital structures defined by a given number of
inputs whenever possible [18], but in more general case other strategies are commonly
devised. Some of the most common approaches are based on heuristic methods that
rely on a plethora of possible different logic mechanisms (transformations, Binary
Decision Diagrams or BDDs, unitary matrices evaluation or search algorithms, such
as the A*) [1, 18, 19] to produce reasonable solutions starting from a fixed amount
of available computational resources [20]. These methods also have the peculiarity of
being one of the few feasible ways to solve NP-hard problems in practice [21]. Other
famous optimization strategies employ more advanced meta-heuristic algorithms to
implement more unique and complex solutions. Furthermore, there is a niche of rare
or experimental approaches, such as the template-based strategy [22], which will be
discussed more in detail in Sect. 3.

Both the state-of-the-art quantum design flow and improvement strategies play a
behind the scenes role and are implemented in the innermechanisms of quantum soft-
ware platforms [23]. The purpose of these software environments is tomake available
to the user a set of manipulation tools intended for quantum programs, and they are
usually in charge of managing the compilation and optimization of quantum circuits
in technology-agnostic and technology-specific contexts alike. Several big players in
the quantum research field came up with their software platforms, using different
programming languages or quantum intermediate representation languages. As refer-
ences for the comparisons made to evaluate the proposed toolchain performance, two
particularly successful state-of-the-art compilers were chosen: IBM’s Qiskit [24–26]

123

 379 Page 6 of 44 M. Avitabile et al.

and Cambridge Quantum Computer’s t|ket〉 [27, 28]. Before introducing these
compilers, it is important to specify that, similarly to the toolchain described in this
work, they both handle quantum circuits described in OpenQASM 2.0 [29], an inter-
mediate representation language proposed by IBM in 2017 for formalizing the design
of circuits to be executed on its hardware through the Quantum Experience.

Qiskit is an open-source framework for quantum computing developed by IBM
Research and implemented in Python language. The tool set specifically used to
generate comparison circuits analyzed in Sect. 4 was the Qiskit Terra Transpiler,
which allows an optimized transpiling of quantum circuits using a user-defined set of
gates. The Transpiler supports four optimization levels, named 0, 1, 2 and 3, where
an higher level corresponds to a finer optimization. Qiskit has been widely used in the
quantum research community for years. Indeed, IBM’s policy of open-sourcing it and
of making available tools like Quantum Experience for free made it one of the most
employed quantum compilers, especially when dealing with superconducting devices,
which are IBM’s flagship quantum technology.

The second reference compiler, t|ket〉, is an architecture-agnostic quantum
software developed by Cambridge Quantum Computing, implemented in C++
language. Originally this was a closed-source software, but Cambridge Quantum
Computing decided to make it open-source recently [30]. This compiler manages
the transpiling of machine-independent quantum algorithms into optimized quantum
circuits, and it supports multiple intermediate languages (including OpenQASM 2.0).
It also allows two optimization levels: standard and maximum. t|ket〉 was closed-
source at the time of development of the work described in this article and a Python
module called pytket-qiskit was employed to access it and interface it with Qiskit for
generating the reference circuits. In the past few years, t|ket〉 proved to be an efficient
platform in the state of the art, outperforming most competitors in several published
benchmarks. It is especially renowned for its capability to smartly adapt a circuit to a
given target device and to manage multi-qubit gates.

These two state-of-the-art compilers employ different optimization strategies.
Qiskit uses a custom, internally defined sequence of algorithms and converters that
employ on DoCPLEX [31], an IBM optimization library based on decision optimiza-
tion through prescriptive analyitics [32]. t|ket〉 optimization strategy, as reported in
[33], consists in a combination of “Peephole optimizations” (based on the identifica-
tion of certain patterns in small windows inside the circuit), of algebraic Euler and
KAK [34] decompositions (which are a known compaction method used for QCs) and
of mathematical optimizations of high-level macroscopic structures. Most of these
optimization methods are on average more complex than the template-based scan
performed by the toolchain.

3 The proposed toolchain

3.1 The template-based approach

As introduced in Sect. 1, during the development of the toolchain instead of resort-
ing to a complex optimization strategy based on algebraic evaluations or branching

123

Development of a multi-technology, template-based quantum... Page 7 of 44 379

(a)

(b)

Fig. 4 Example of application of a template as described in [35] to perform a circuital optimization

diagrams, the more “circuital” template-based approach was explored. According
to this technique, the input quantum circuit is scanned, and a series of circuit equiva-
lences and identities, denoted as templates and described in the toolchain’s libraries,
are identified. Once a template is detected, the quantum gates adjacent to it are iden-
tified and, if deemed convenient, the template structure is “switched” to its equivalent
form to obtain a compaction or optimization in the circuit (as represented in Fig. 4).
This approach is similar to the “Peephole optimizations” employed by t|ket〉 [33], and
it is based on the very simple and intuitive concept of circuital equivalences that does
not require complex mathematics or algebraic evaluation tools to be implemented.
The intrinsic flaw of this philosophy is that it suffers from a limited foreseeing, since
it is based on case-by-case applications performed while scanning the circuit, and
is incapable of looking for multiple steps ahead. Moreover, since the quantum cir-
cuits are optimized by applying a remodeling based on a purely circuital evaluation,
without analyzing the exact state of given qubits after or before each operation, the
template-based approach does not consider all optimizations or equivalences based
on knowing the state of certain qubits, favouring general optimizations instead. The
only employed state-dependent optimizations involve the elimination of eventual RZ

gates at the beginning of each qubit line, which is assumed to be initialized to |0〉
(since RZ |0〉 = |0〉), or before a measurement (since it does not affect the probability
distribution of eigenstates). Also, it has to be noted that, in the purpose of applying this
core philosophy in the toolchain’s workflow, many implemented optimizations tend
to prefer RZ gates over other quantum gates. This is based on the staple principle that
RZ gates can be implemented virtually [10, 36] in an advantageous way that does
not hamper the circuit latency.

Currently, the toolchain’s libraries contain a total of 27 templates belonging to three
families (all reported in Avitabile et al., Supplementary Information). These templates
are far more numerous t|ket〉’s 7 “Peephole” identities [33], but less than Qiskit’s 71
template circuits [37]. However, it has to be noted that a direct comparison between
the toolchain’s templates and the Qiskit ones cannot be properly done.

First of all, Qiskit employs a broader definition of “template”,which is a sequence of
gates providing the identity as global evolution. This implies that the simple sequences

123

 379 Page 8 of 44 M. Avitabile et al.

of two identical gates, with U † = U (such as H, X, Y, Z, CX and CZ) are properly
treated as templates. On the other hand, templates of the presented toolchain are
equivalent sequences of quantum gates, “topologically” different from each other (in
sense that U † �= U), which can be exploited for achieving a reduction of the total
number of involved gates in a quantum circuit. This definition is a bit more strict and
does not involve the previously mentioned sequences where U † = U , which are in
any case removed in a circuit by the toolchain because of their intrinsic simplicity.

Another reason of the difficulties of a quantitative comparison between the tem-
plates of Qiskit and those in the toolchain is that the first one involves forty-seven
templates with Toffoli gates, which are currently too hard for a direct hardware imple-
mentation and for this reason they are not involved in the toolchain, operating with
gates involving at most two qubits, more suitable for experimental execution.

The described prototype classifies templates structures in three groups:

1. Simple gate equivalences (SGE), 15 templates reported in Section 2.1 of the supple-
mentary file. They involve only single-qubit gates. Figure 7b shows equivalences
belonging to this family.

2. Templates that involve single-qubit gates and One Two-Qubit gate (T1TQ), 8 tem-
plates reported in Section 2.2 of the supplementary file. Some of these templates
involve two different forms to be exploited as circuital equivalences, but for naming
and counting purposes, those templates were still considered as a single instance
instead of two different templates. In all these templates, the two-qubit gates are
CX or CZ. A template belonging to this family is represented in Fig. 4a.

3. Templates acting on clusters of multiple two-qubit gates (TCTQ), 4 templates
reported in Section 2.3 of the supplementary file. Circuits with multiple two-qubit
gates, such as the one represented in Fig. 11a, belong to this family.

There are also a few special templates that apply to the trapped ion technology’s own
two-qubit gate RXX and to NMR technology’s own two-qubit gate RZZ (reported
in Section 3.2 of Avitabile et al., Supplementary Information) that for counting and
nomenclature purposes were treated as an independent category.

The templates and identities contained in the toolchain’s libraries were extrapo-
lated and validated from [8, 38–42] or obtained through calculation and matching of
mathematical identities. These equivalences can be both technology-agnostic—i.e.,
applicable to all circuital structures and do not employ any quantum gate specific of
a given target technology—and technology-specific, i.e., focused on creating more
advantageous circuital structures for a given target technology, taking into account its
native gates. The focus on the latter kind of optimization is a peculiarity which sets
apart the toolchain from most state-of-the-art compilers. Instead of adopting an opti-
mization philosophy which revolves around a single technology (usually the simpler
superconducting one) and then performing a final translation and post-processing to
adapt the output circuit to other target technologies, the toolchain evaluates during
its run time specific optimizations based on the supported technologies’ own library
of intrinsic gates. This is the case, for example, when it smartly manages CZ gates
when optimizing the circuit for a technology that does not directly support them, or
when considering the application of Special Templates right after the translation of
CX gates into specific two-qubit gates has been performed (as described in Sect. 3.2).

123

Development of a multi-technology, template-based quantum... Page 9 of 44 379

TWO-QUBIT
GATE SYNTHESIS

SINGLE-QUBIT
GATE SYNTHESIS

STEP 1

Template-based
optimization

STEP 2
Technology

dependent gates
compaction

STEP 3
Two-qubit gates
templates and
decomposition

(Implemented in Python 3.x)

OpenQASM file
describing a QC

OpenQASM file describing a logically
equivalent but optimized technology-

adapted QC

Fig. 5 Overall workflow structure of the proposed toolchain. Each Step operates a specific subset of
manipulations, and has its own ad-hoc inner morphology in order to optimize the input circuit as much as
possible

3.2 The toolchain’s structure

The proposed quantum toolchain works by taking as input a given quantum circuit
described in OpenQASM 2.0 and producing as output an optimized circuit, decom-
posed using the set of gates of a target technology, also described in OpenQASM 2.0.
Referring to the state-of-the-art toolchain described in [17] and represented in Fig. 3,
the toolchain operates by implementing the optimizations proper of the Logic Syn-
thesis by using a sequence of three different scripts labeled as “Steps”. The overall
workflow is represented in Fig. 5.

The optimizations performed by the toolchain are applied step-by-step on an incre-
mentally specific target. In Step 1, the whole Clifford + T gate set is targeted by
technology-agnostic optimizations with a focus on single-qubit gates, while the appli-
cation of specific templates for multi-qubit gates are delegated to a later step. In Step
2, only the technology-dependent gate set is taken into account, so all single-qubit
gates are translated into their corresponding of the target technology’s native set and
then optimized accordingly; clearly, to perform these operations, Step 2 forsakes the
technology-agnosticism of Step 1 to employ a technology-specific approach, taking
in consideration only the chosen target technology and its inherent optimization pro-
cess. Finally, in Step 3 an ad-hoc set of optimizations is applied to all multi-qubit
gates through the application of appropriate templates and decomposition based on
the target technology. Some of the Steps feature some inner loops, (e.g., those asso-
ciated with the parameters IT1 and IT2 in Fig. 6) to allow a tunable grade of circuit
compaction through the reiterate application of a certain subset of templates.

3.2.1 Single-qubit gates synthesis block

As observable in Fig. 5, the single-qubit gates synthesis block involves the first two
steps of the toolchain:

123

 379 Page 10 of 44 M. Avitabile et al.

Fig. 6 Toolchain Step 1’s in-depth workflow

• Step 1: QASM template-based optimization (Fig. 6)—The aim of this step is to
apply the main bulk of the circuital equivalences and template-based substitutions
described in the toolchain’s libraries and to compact the input circuit as much as
possible, as represented in Fig. 7a. This is achieved through the reiterative appli-
cation of a series of “coarse” compactions (performed in the simple preoptimizer
and simple postoptimizer blocks in Fig. 6 and based on the templates belonging
to the SGE family) followed by specific, fine-grain remodelings (performed in the
template-based optimizer block in Fig. 6 and based on the use of the T1TQ tem-
plates, which are applied to generate as many circuital null operations as possible,
without hampering the logic of the circuit). When a straightforward elimination of
redundant gates is not feasible, this Step implements some transformations tomax-
imize the use of preferable kinds of gates, such as the virtually implementable RZ

gates (in this case, all equivalences pertaining RZ gates from the ones of the SGE
family). Step 1 is designed to be completely technology-agnostic and its optimiza-
tions are particularly efficient in reducing the number of single-qubit gates in the
circuit. It exploits templates belonging not only to the SGE family, but also to the
T1TQ one, such as the one represented in Fig. 4a, thus allowing a situational and
yet efficient set of circuital improvements. As of now, Step 1 is compatible with an
extended Clifford + T gate set, and it supports the usage of RX , RY , RZ , X, Y, Z,
S, T, S†, T†, H, CX, CZ and CCX (or Toffoli) gates in the input quantum circuit.
IBM’s gate set comprising U1(λ) = RZ (λ), U2(φ, λ) = RZ (φ)RY

(
π
2

)
RZ (λ)

and U3(θ, φ, λ) = RZ (φ)RX
(−π

2

)
RZ (θ)RX

(
π
2

)
RZ (λ) gates is also passively

supported, but no optimizations are performed on such gates until Step 2, since
it is assumed that the original input circuit only employs non technology-specific
quantum gates. Generally speaking, the output produced by this Step is an opti-
mized OpenQASM-described circuit in which all gates have been decomposed
to the RX , RY , RZ , CX, CZ subset of gates, and in which each Pauli gate is
transformed in its rotational form using floating point notation. Step 1 accepts as
input a Subcircuit parameter, which is a boolean flag that defines if the circuit is
indeed a subcircuit to be used in conjunction with other QASM-described entities
and thus if the optimization regarding RZ gates at the beginning or the end of a

123

Development of a multi-technology, template-based quantum... Page 11 of 44 379

circuit can be employed.
For what concerns the Step 1 matching order, the application of simple identities
in the circuit is always performed preliminarily to the application of more com-
plex templates. During this process, the toolchain evaluates all gates that could
be a part of a complex template and leaves them “untouched”, while compacting
the others. As for the complex templates, the matching is performed in a custom
but interchangeable order, since all templates do not overlap between themselves.
The only exception is a template concerning H gates (reported as Template H1 in
Section 2.2 of Avitabile et al., Supplementary Information) which is a particularly
convenient subcase of a more general template (reported as Template H2 in Sec-
tion 2.2 of Avitabile et al., Supplementary Information); in particular, Template
H1 is applied before Template H2 to ease the detection of the subcase structure
and to speed up its substitution. Overall, the Step 1 makes extensive use of reiter-
ated customizable loops to ensure the maximum grade of circuital compaction is
achieved, as represented in Fig. 6.

• Step 2: Technology-dependent gates compaction (Fig. 8)—The aim of this step is
to translate the output circuit of Step 1 into the proper set of gates relative to the
target technology, which could be specified as input and chosen from the nuclear
magnetic resonance (NMR), trapped ions and superconducting technologies.
The translation process, which is applied universally to single-qubit gates, does
not implement a decomposition of two-qubit gates, such as the CX gates, which
are left untouched in order to be exploited once in Step 3, where they will eventu-
ally be decomposed into their basic constituting gates. This procrastination in the
workflow is due to the fact that all the templates that involve multiple two-qubit
gates can be detected and performed much more easily with non-decomposed CX
and CZ gates. This step is designed to take as inputs the optimized circuit .qasm
files generated by Step 1 to work at maximum efficiency, but it can also be used
on custom, unoptimized .qasm files. Along with this translation, Step 2 employs
a manipulation on triplets of adjacent rotation gates of different type to achieve
a further compaction of the circuit and to increase the number of RZ gates when
possible, based on the toolchain’s assumption that they can be implemented with
a null duration and are thus advantageous to maximize.
This manipulation, named Eulercombo, is quite powerful, and it is based on coor-
dinate transformations usingEuler angles [43], as represented in Fig. 9. Basically,
it scans the circuit and identifies triplets of consecutive single-qubit gates: once a
triplet is detected, it identifies its adjacent gates and evaluates the most convenient
coordinate transformations to manipulate the triplet in a way to change its external
gates in the same type of their adjacent gates, thus allowing a compaction. When
multi-qubit gates are involved, Eulercombo tries to generate a favourable template
with them, and if this is accomplished then it manages an exploitation localized
on that circuit subsection. As showed in Fig. 8, Step 2 also features:

– A smart disposing of CZ gates for the technologies that do not support them,
featuring a rearrangement in order to exploit the symmetry property ofCZgates
in order tomaximize the null operations, followed by an ad-hoc translation into

123

 379 Page 12 of 44 M. Avitabile et al.

(a) (b)

Fig. 7 Examples of circuits compaction achievable with the available templates

Fig. 8 Toolchain Step 2’s in-depth workflow

CX gates using the equivalences reported in Figure 2 in Section 1 of Avitabile
et al., Supplementary Information.

– The optimized merging scheme for IBM’s U gates set proposed in [44], that
uses the same core philosophy of the Eulercombo to maximize the compaction
of U3 gates.

– A series of further circuital compactions based on simple translations into
preferable gates, such as the RZ gates for NMR and trapped ions technologies
and the U2 for the superconducting technology.

While Step 2’s role in the optimization process is fundamental to obtain quantum
circuits that are tailored to a specific implementation technology, its optimizations
are mostly situational, when compared to Step 1’s powerful set of circuit improve-
ments. In terms of circuit optimization, Step 2 consolidates the reduction of the
total number of single-qubit gates and it is particularly effective in dealing with
long streaks of these kind of gates uninterrumpted by two-qubit gates. As of now,
Step 2 supports the usage of RX , RY , RZ , CX and CZ gates in the input quantum
circuit and requires all single-qubit gates to be adjacent to gates of different type.
The U gates set is supported in the case of the superconducting target technology,
but not in the others, where an extra step of decomposition into RX , RY and RZ

gates (not implemented in the current toolchain) is required. This is due to the
core assumption that input circuits do not employ technology-specific gate sets,

123

Development of a multi-technology, template-based quantum... Page 13 of 44 379

Fig. 9 Example of an Eulercombo application performed in Step 2. The triplet of gates in the middle is
rearranged using Euler angles in order to allow a recombination of both gates on the sides and thus a
compaction of the circuit. The usage of a central RZ gate is preferred since none of the other two external
gates is of the same type, as explained in Sect. 3.1

just like in Step 1. All the manipulations involving Euler angles are performed
through the usage of the SciPy Python library and of theNumPy Python library.
Step 2 also accepts as inputs both the Subcircuit parameter and a parameter used
to define the target technology. The toolchain supports the usage of the following
gate sets depending on the target technology:

– NMR technology: RX , RY , RZ , CX and CZ gates.
– Trapped ions technology: RX , RY or R(θ, φ) gates, RZ , CX gates.
– Superconducting technology: U1, U2, U3 and CX gates.

3.2.2 Two-qubit gates synthesis block

• Step 3: Distribution/mirroring-based optimizations and CX gates decomposition
(Fig. 10)—The aim of this step is double: the exploitation of a certain subset of
templates that may ensure a steady reduction of the number of employed CX gates
(using the TCTQ templates, reported in Section 2.3 of Avitabile et al., Supple-
mentary Information), and the decomposition of each two-qubit gate by using
the target technology’s own native library. This step currently does not cover the
effective operations needed to the layout synthesis block described in the state-of-
the-art toolchain in [17], since it lacks a routing mechanism capable of taking into
account a given device’s connectivity and to map a circuit accordingly. For this
first prototype of toolchain, in fact, it was preferred to focus on general-purpose
optimizations and on the adaptation to theoretically fully connected technologies.
Moreover, inserting SWAP gates to match the circuit’s usage of multi-qubit gate
with a non-fully connected target device is left as a potential future evolution of
the project. This step is designed to take as inputs the optimized circuit .qasm
files generated by Step 2 to work at maximum efficiency, but it can also be used
on custom, unoptimized .qasm files. This step is technology-specific exactly like
Step 2, and the performed manipulations of the circuit differ greatly depending on
the target technology. Step 3 has the important task of handling the complex tem-
plates that involve clusters of CX gates, such as the one represented in Fig. 11a,
and is the toolchain’s primary source of multi-qubit gates optimizations. This task
is followed by another important one: a smart decomposition of two-qubit gates

123

 379 Page 14 of 44 M. Avitabile et al.

Fig. 10 Toolchain Step 3’s in-depth workflow

(referred to as Special Templates in Fig. 10) and reported in Section 3.2 ofAvitabile
et al., Supplementary Information, aimed at minimizing the resulting translated
and newly inserted single-qubit gates’ rotation angle and thus the overall circuit
latency followed by some reiterated minor optimizations (including Eulercombo
calls), all in order to fully adapt the circuit to the target technology with the least
impact on the circuits’ gates, such as represented in Fig. 11b. In the supercon-
ducting case, where CX gates are not decomposed, this task focuses on ensuring
the optimal compaction scheme proposed in [44] on all existing U gates (this is
performed in the U gates merger block in Fig. 10). Both roles performed by Step
3 are essential to complete the toolchain’s proposed compilation process. This step
requires all single-qubit gates to be adjacent to gates of different type. Step 3 also
accepts as inputs both the subcircuit parameter and a parameter used to define
the target technology. When processing an input file generated from the Step
2, it is capable of automatically recognizing the used target technology without
needing an input.

As represented in Fig. 10, the technology-specific templates are always applied
after the technology-agnostic ones, which are also applied in a reiterated manner
to achieve an higher grade of circuit compaction.

At the end of the compilation phase, circuits compiled for each examined technolo-
gies are characterized by the following gates:

• NMR technology: RX , RY , RZ and RZZ.
• Trapped ions technology: RX , RY or R(θ, φ) gates, RZ and RXX .
• Superconducting technology: U1, U2, U3 and CX gates.

While in the compilation of circuits for trapped ion andNMR technologies the effective
native unitary evolutions are employed, the circuit compilation for superconducting
qubits employs the CX, which is not native of this technology, but can be built from its
effective two-qubit unitary evolutions [45]. According to the qubits functioning, the
characteristic gate can be either the cross-resonance—substantially a RZX, exploited

123

Development of a multi-technology, template-based quantum... Page 15 of 44 379

(a)

(b)

Fig. 11 Overview of operations executed in Step [64]

by devices with fixed resonance frequency—or the Controlled-phase or the iSWAP,
typical of flux-tunable qubits.

In the proposed toolchain, the abstract gate set for IBM superconducting qubits,
available in the Qiskit transpiler at the time of development of toolchain itself, is
employed. This choice was made for two reasons: the first one is that the Qiskit
transpiler was expected to be, even before the development of the toolchain, one of
the references to be taken into account for the comparative evaluation of the presented
work. The second one is that, in the compilations for all available technologies, gates
which were fully supported by the QASM simulator available in Qiskit were chosen in
order to facilitate the functional verification of the compiled circuits, and CX belonged
to this gates set.

3.3 Implementation overview

The toolchainwas implemented using a sequence of Python 3.x scripts. The choice of
Python as the programming language used to build the current version of the prototype
is due to the necessity to interface it with existing quantum computing frameworks,
and in particular with their quantum circuits simulators, thus permitting to benchmark
and validate template-based compilation with ease. Each of the three main scripts
implements one of the three Steps and takes as input an OpenQASM 2.0-described
.qasm file. To ensure the complete application of the toolchain as intended, each step
must take as input the file produced as output by the previous step or, in Step 1’s case,
the original quantum circuit file to be optimized. It is also possible to apply the specific
optimization described into one of the three main scripts to an ad-hoc, custom file. In
fact, even though a one-step technology-specific approach might lead to slightly better
results for a single target technology, thewhole toolchainwas intentionally designed in
a completely modular way through a libraries-based implementation, which allows
the possibility of dealing with several technologies, total control on which steps are
applied to a certain circuit, high flexibility in the functions’ usage, the capability to

123

 379 Page 16 of 44 M. Avitabile et al.

set some specific parameters through the edit of specific files and the faculty to allow
future modifications and expansions, such as the integration of novel technologies for
quantumcomputers, like semiconductor quantumdots [46], defects in diamond [47], et
cetera. Following the philosophy of totalmodularity, several libraries in form of scripts
were created, each containing a subset of functions designed to tackle a certain specific
part of the optimization process. This allows the main script for each Step to remain
well-ordered and easily customizable, and it also facilitates the nested usage of the
functions in multiple occurrences, while making each library easily readable. In order
to allow the edit of certain parameters that are particularly uncomfortable to pass as
shell inputs, each step supports the reading of .cfg files to determine such parameters
and to act accordingly. These parameters include the grade of approximation of π

when dealing with rotational gates, the threshold of rotation value under which a gate
is considered a null operation, the iterative parameters used to arrange the function
loops in the workflow and other technology-related flags.

4 Benchmarks

4.1 Testingmethodology

To test the circuits generated by the toolchain’s steps, some benchmark scripts were
created in Python language. The first mandatory aim of these testing scripts was to
verify that the introduced optimizations were actually correct, and that the outcome
of each circuit was the same as the reference quantum circuit. To do so, both the
.qasm file describing the reference quantum circuit and the .qasm files generated by
the toolchain were used to create quantum circuits in IBM’s Qiskit and to simulate
them with the QASM Simulator available in the Aer Library, thus permitting the
verification of their equivalence.

QASM Simulator is the most consolidated simulator in Qiskit for simulating noisy
or large and deep quantum circuits. One of its peculiarities is that, when ameasurement
operation is called for the circuit to be simulated, it returns a measurement counts
distribution for the eigenstates, depending on the number of shots Nshots, instead of the
exact eigenstates probability distribution. In other words, QASM Simulator provides
an Nshots “finite estimation” of the probability distribution, which would be obtained
in the limit Nshots → ∞. From a practical point of view, Nshots should be higher for
non-uniform distributions with most of eigenstates having non-null probabilities of
being measured, such as in the ISING_N10 circuit, reported in Tables 2, 3 and 4,
with mean probability value slightly lower than 1 · 10−3 and maximum one equal to
42 · 10−3

By using the simulator’s standard settings, with Nshots depending on the circuit
to be simulated, and by ensuring that every qubit line in each tested circuit had a
final measurement performed, it was possible to simulate each circuit and to visualize
the corresponding eigenstates measurement counts in form of an histogram. In case
of circuits where a single output state was expected with a probability of 100%, the
relative optimized circuit was deemed as “correct” if the output matched completely
with a probability of also 100%. In case of circuits in whichmultiple output states with

123

Development of a multi-technology, template-based quantum... Page 17 of 44 379

different probabilities were expected, the Kullback–Leibler deviation [48] between
the obtained results was computed using the following formula, in which N is the total
number of output states with non-null probability, opt(i) and ref(i) are the occurence
of the i-th eigenstate in the optimized and reference circuit, respectively, and Nshots is
the total number of measurement shots associated with the employed simulator:

KLD =
N∑

i=1

opt(i)

Nshots
· log2

(
opt(i)

ref(i)

)
(2)

Nshots = 8192 was deemed as sufficient in all tests, except for ISING_N10, where
it was set equal to 500000. The obtained results were then marked as “correct” only
if the deviation did not exceed a value of 5 · 10−3. Once the optimized circuits were
verified as “correct”, the scripts’ aim became to evaluate the effective capabilities of
the toolchain. Evaluation was done in terms of estimation of the complexity of the
compilation algorithm, in terms of execution time, and of comparison of its compiled
circuits with those obtained with the compilers in state of the art, in terms of different
figures of merit. All the results are available in Sects. 4.2 and 4.3.

4.2 Estimation of complexity of the compilation algorithm

In order to estimate the complexity of the template-based compilation algorithm, a
random-tests-based evaluation of the compilation time has been performed by chang-
ing the number of involved qubits and by considering all the target technologies
currently supported by the toolchain.

First of all, for each qubits parallelism, 100 dense random unitary matrices were
generated, then the equivalent quantum circuit of each matrix—based on the extended
Clifford + T gate set discussed in Sect. 3.2.1—was obtained with Qiskit and sub-
sequently compiled on the toolchain for supeconducting, trapped ions and NMR
technologies. Repeated tests permitted to compute a mean of the compilation time
for each qubits parallelism and each target technology.

These tests were done to stress the toolchain in a worst-case scenario, in terms
of both total number of executed operations and compilation time. In fact, the choice
of exploiting random matrices is due to the necessity of verifying the eventual effi-
ciency limits of the toolchain in an unpredictable operating regime, where the presence
of template-based optimizations is not known a priori. Moreover—considering that
quantum circuits generated from random matrices have a total number of gates that
is definitively higher than the corresponding ones of application-specific quantum
circuits (such as those in Tables 2, 3 and 4)—the compilation times are expected
to be definitively longer for the same number of qubits. It has been observed that,
for each qubits parallelism, Qiskit generates quantum circuits from random unitary
matrices with the same number of gates and order of single and two-qubit gates, thus
implying that the same decomposition strategy is adopted. The number of gates for
qubits parallelism from 2 to 6 are reported in Table 1. Another option forcing a worst-
case computational scenario is the choice of Low precision, since its “looser” criteria

123

 379 Page 18 of 44 M. Avitabile et al.

Table 1 Number of gates with
(without) measurements of
quantum circuits associated with
random unitary matrices

Number of qubits Number of gates

2 77 (75)

3 216 (213)

4 1020 (1016)

5 4507 (4502)

6 18964 (18958)

Fig. 12 Execution time for completing compilation of random circuits with different parallelisms and target
technologies

brings to an higher number of allowed recombinations and, thus, to more performed
evaluations and operations and to an higher computation time.

The left part (white background) of Fig. 12 shows the obtained results for a number
of qubits between two and six. A similar exponential trend is visible in the three cases,
in particular for a number of qubits between four and six. This implies that the compiler
behaves in a coherent way for all the examined technologies, at least for what concerns
the number of operations to be done, which is reflected in the total compilation time. In
order to further investigate this similarity, fitting calculations were done, for estimating
for each technology a relationship between compilation time�t and number of qubits
N of type

�t(N) = αeβN (3)

and in particular the characteristic multiplicative coefficient of the exponential α.
Considering that log(�t) = log(α) + βN , linear fitting was executed for N ∈ [4, 6]
and the following β coefficients were obtained for the three technologies:

βS = 2.83

βI = 2.89

βM = 3.00 .

(4)

123

Development of a multi-technology, template-based quantum... Page 19 of 44 379

The obtained values can be reasonably considered a satisfactory proof of similarity
of the compilation procedure in the three cases. In fact, βM, associated with NMR
compilation, is slightly higher (6.4% and 4.1%) than βS and βI, characteristic of the
plots of superconducting and trapped ions, respectively. Moreover, βI is about 0.7%
lower than the mean value of β, that is equal to 2.91, thus further proving that the
exponential coefficient of the current implementation of the compiler is expected to
be close to 2.90. This value is in any case quite high, as it is possible to see in the right
part (red background) of the plot in Fig. 12. In fact, with β � 2.90, the compilation
timescales of seven-qubit and eight-qubit circuits are ∼ 1 × 104s and ∼ 1 × 105s,
respectively.

In order to understand the reasons for which superconducting and NMR technolo-
gies provided the best and worst compilation time results, respectively, it is important
to precise that Qiskit almost always preferred the use of CX gates for the creation
of quantum circuits from random unitary matrices. This two-qubit gate is native
for superconducting technology, so two-qubit-gate decompositions—according to the
decomposition schemes reported in Avitabile et al., Supplementary Information—is
not required. Hence, new single-qubit gates are not inserted and any additional circuit
re-arrangement is required. On the other hand, in NMR’s case, all CX gates must be
translated in CZ (refer to Figure 2 inAvitabile et al., Supplementary Information), with
the consequent insertion of extra single-qubit gates and additional circuital manipu-
lations. It is expected that NMR could provide lower compilation times with an input
circuit with more CZ gates than CX.

In conclusions, according to the obtained results, it is possible to roughly write the
total compilation time as:

�t(N) = αeβN

= αeβintrinsicN · eδtwo-qubitN · eδre-arrangeN

= αe(βintrinsic+δtwo-qubit+δre-arrange)N ,

(5)

where βintrinsic is the exponential coefficient of an “intrinsic” compilation time, asso-
ciated with all operations done before the eventual two-qubit-gate decomposition,
while δtwo-qubit and δre-arrange are the coefficients of the overhead contributions due to
two-qubit gates decomposition and final re-arrangement, respectively.

The exponential increase of the compilation time over the number of qubits casts
some doubts on the potential scalability of the present prototype of the toolchain, i.e.,
on its capabilities of handling quantum circuits with an high number of qubits. Even
though this is undoubtedly an important aspect to take into account in the development
of classical software assisting quantum computation, it must be remarked that the
optimization of the compilation time was not the leading concern of the proposed
work. In fact, the latter mainly aims to assess whether a local optimization strategy
could assist technology-specific compilation, leading to a reduction of the number of
quantum gates, which is a critical task of the current NISQ era. In fact, this makes
the difference between a circuit that can actually run on real hardware and one that
does not, because of poor resulting fidelity associated with the emergence of dynamic
non-ideality phenomena.

123

 379 Page 20 of 44 M. Avitabile et al.

In this regard, it must be also highlighted that the current implementation of the
compiler is limited, at least for what concerns the execution time, by the employed
programming language (Python, which is intrinsically slower than other compiled lan-
guages, such as C/C++ [49]) and by the strictly sequential execution of the operations.
The last one is a drawback due to an absence of effort profused in the prototype to try
to overcome an intrinsic computational limitation of template-based optimizations.
As it has been reminded, these revolve around gate-by-gate analysis and operations,
often nested in recursive procedures, to be called whenever an improvement can be
performed to maximize circuital compaction. It is clear that larger circuits require
more recursions and longer compilation times, which could not be compensated by
a strictly sequential execution. Parallelizing the compilation can represent a valuable
tool to achieve a reduction of the compilation time. This could be done by partitioning
the circuit in smaller “independent” regions through barriers—such as those in Figs. 4a
and 7a—to be optimized in parallel, e.g., by exploiting multi-threading.

4.3 Comparison with other compilers

The comparison of the results provided by the proposed compilation toolchain and the
ones generated by the other state-of-the-art compilers chosen as reference was done
in terms of different figures of merit, which are reported in the following (each one
with a label reported in parentheses):

• The total number of single-qubit gates (1Q).
• The total number of non-RZ/U1 single-qubit gates (1QNZ), which are the de
facto relevant single-qubit gates, since they have a non-null duration, in accordance
to the assumption of a virtual implementation of RZ gates.

• The total number of multi-qubit gates (MQ).
• The normalized weighted circuit latency for single-qubit gates (L), given by:

L =
∑

R∈1QNZ

|θR |
π
2

=
∑

R∈1QNZ
2
|θR |
π

, (6)

i.e., the sum of the normalized durations of single-qubit gates R different from
RZ ones, assumed to be implemented virtually. Since the latency introduced by an
R{X ,Y } gate is proportional to the rotation angle θR, a normalized duration 2 |θR|

π
was chosen, so that gates with rotation angles equal to π

2 and π provide circuit
latency contributions equal to 1 and 2, respectively. In the case of the quantum
circuit in Fig. 1, sinceH andXgates are both usually translated into one non-virtual
single gate with |θR | equal to π

2 and π , respectively, [10], L = 1 + 2 = 3. These
weights can be used not only for technologies based on R{X ,Y } gates, but also with
IBM’s U gates. In fact, considering the U-R gates relations reported in Sect. 3.2.1,
U2 and U3 gates are characterized by one and two non-virtual gates, respectively
(all with |θR | = π

2), so their corresponding circuit latency contributions are equal
to 1 and 2.

• The circuit cost C, that, according to [50], can be computed as follows:

123

Development of a multi-technology, template-based quantum... Page 21 of 44 379

C = −D log K −
∑

i

logF1q
i −

∑

j

logF2q
j , (7)

where D is the circuit depth, K is a constant that increases the cost of deep
circuits,F1q

i is the average fidelity of the i-th single-qubit gate,F2q
j is the average

fidelity of the j-th two-qubit gate and the two summation operators run over all the
quantum gates of the target quantum circuit. Defining as F1q and F2q the single
and two-qubit native fidelities of the target hardware—i.e., the average fidelities
of the native two-qubit gate and of a reference single-qubit gate (usually, the
RX (π/2) gate) customarily reported in open-source calibration data repositories
of real quantum computers—the reference article recommends to select K such
that F1q < K < F2q . Accordingly, here the value of K is computed as

K = F1q + F2q

2
. (8)

For the target technologies of the proposed toolchain, the values of F1q and F2q

are determined as discussed in the following:

– Superconductors: the fidelities are defined as

F1q � F(RX (π/2)) ∼ 1 − e1q = 0.99926

F2q � F(CX) ∼ 1 − e2q = 0.97917 ,
(9)

where e1q and e2q are the average single (π
2 -pulse) and two-qubit native

gate error rates, respectively, retrieved from the calibration data of the
mock backend FakeToronto [51] available in Qiskit Terra, which is
substantially a simplified model for classical simulations of the twenty-
seven-qubit IBMQToronto quantum computer. According to the previous
formula, fidelity is assumed to be the complement of the error rate with
respect to the unit.

– Trapped ions: the fidelities are

F1q � F(RX (π/2)) = 0.99717

F2q � F(RXX) = 0.96960 ,
(10)

whereF(RX (π/2)) andF(RXX) are the single and two-qubit native gate
fidelities, respectively, and they are retrieved from [52].

– NMR: the fidelities are

F1q � F(RX (π/2)) = 0.99895

F2q � F(RZZ) = 0.97977 ,
(11)

123

 379 Page 22 of 44 M. Avitabile et al.

where F(RX (π/2)) and F(RZZ) are the single and two-qubit native gate
fidelities, respectively, and they are computed exploiting the simulator
proposed in [9]. More in detail, the physical parameters (J-couplings, res-
onance frequencies, decoherence and relaxation time constants [53–55])
of a four-qubit fully connected quantum computer based on a crotonic acid
molecule are chosen as inputs to the compact model simulation infrastruc-
ture. Then, the fidelities resulting from the application of RX (π/2) pulses
on each qubit and of RZZ gates on each couple of qubits are computed.
Finally, the average fidelities are determined as follows:

F(RX (π/2)) = 1

4

3∑

i=0

Fi (RX (π/2))

F(RZZ) = 1

6

2∑

i=0

3∑

j=i+1

Fi, j (RZZ) .

(12)

Since the toolchain’s output file exclusively contains the native gates of the target
technology, it is reasonable to assume, as a first-order approximation, that all two-
qubit gates show the same average fidelity. Therefore,

F2q
i = F2q , ∀i . (13)

Conversely, since the execution time of single-qubit gates depends on the rotation
angle, larger angles will lead to longer gate executions and, therefore, to higher
error rates and lower fidelities. Hence, it is not acceptable to use the same single-
qubit average fidelity for all single-qubit gates. It can be shown (see Appendix A)
that there exists an approximated relation between the gate fidelity of an arbitrary
single-qubit gate (F1q(R(θ))) describing a rotation of an angle θ and the average
fidelity of a RX (π/2) pulse (F(RX (π/2))):

F1q(R(θ)) ∼ 1 − 2 |θ |
π

(1 − F(RX (π/2))) . (14)

• The elapsed computation time (T) for completing the whole compilation, in
seconds.

As for the choice of quantum circuits to be tested, it was preferred to use general,
different-sized quantum circuits. Most of them are available on two GitHub reposi-
tories:

1. QASMBench [56, 57], an existing QASM Benchmark Suite.
2. A repository of testing circuits belonging to Prof. Dr. R. Wille’s IIC Group from

the Johannes Kepler University of Linz [58]. These quantum circuits implement
classical Boolean functions, such as addition.

The OpenQASM 2.0 descriptions of SHOR and EDGE_DETECT, reported in
Tables 2, 3 and 4 and associated with Shor’s algorithm and horizontal edge detection

123

Development of a multi-technology, template-based quantum... Page 23 of 44 379

Ta
bl
e
2

Su
bs
et
of

th
e
be
nc
hm

ar
ks

re
su
lts

fo
r
th
e

N
M

R
te

ch
no

lo
gy

ca
se

w
ith

av
er

ag
e

pr
ec

is
io

n
to
ol
ch
ai
n
pa
ra
m
et
er
s
se
t

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

To
ol
ch
ai
n

A
D

D
E

R
_S

M
A

L
L

1Q
:3

6
1Q

N
Z
:3

0
1Q

:3
6

1Q
N

Z
:3

0
1Q

:3
9

1Q
N

Z
:4

1Q
:3

7
1Q

N
Z
:4

1Q
:3

3
1Q

N
Z
:1

8

(4
qu

bi
ts
,

M
Q
:1

0
L
:4

2
M

Q
:1

0
L
:4

2
M

Q
:1

0
L
:6

M
Q
:1

0
L
:6

M
Q
:1

0
L
:1

8

1Q
:

17
,

M
Q
:1

0)
D
:1

7
C
:0

.4
30

D
:1

7
C
:0

.4
30

D
:2

4
C
:0

.4
67

D
:2

2
C
:0

.4
46

D
:2

0
C
:0

.4
36

T
:0

.0
79

s
T
:0

.0
92

s
T
:0

.0
03

s
T
:0

.0
29

s
T
:0

.5
68

s

H
S4

1Q
:3

0
1Q

N
Z
:2

4
1Q

:2
4

1Q
N

Z
:1

2
1Q

:3
2

1Q
N

Z
:8

1Q
:1

6
1Q

N
Z
:4

1Q
:1

8
1Q

N
Z
:1

2

(4
qu

bi
ts
,

M
Q
:1

6
L
:2

6
M

Q
:4

L
:1

2
M

Q
:4

L
:2

0
M

Q
:2

L
:8

M
Q
:4

L
:1

2

1Q
:

24
,

M
Q
:4

)
D
:2

1
C
:0

.5
79

D
:9

C
:0

.1
91

D
:1

6
C
:0

.2
74

D
:8

C
:0

.1
35

D
:8

C
:0

.1
80

T
:0

.0
84

s
T
:0

.0
74

s
T
:0

.0
03

s
T
:0

.0
11

s
T
:0

.4
89

s

D
N

N
1Q

:7
52

1Q
N

Z
:4

40
1Q

:2
72

1Q
N

Z
:1

36
1Q

:1
17

2
1Q

N
Z
:3

12
1Q

:4
32

1Q
N

Z
:9

6
1Q

:8
40

1Q
N

Z
:4

60

(8
qu

bi
ts
,

M
Q
:1

92
L
:6

22
M

Q
:6

4
L
:1

15
M

Q
:1

92
L
:8

46
M

Q
:6

4
L
:1

40
M

Q
:1

92
L
:5

83

1Q
:
28

64
,

M
Q
:1

92
)

D
:1

55
C
:6

.2
36

D
:5

5
C
:2

.0
16

D
:2

43
C
:7

.4
14

D
:9

6
C
:2

.4
82

D
:1

62
C
:6

.2
69

T
:0

.8
05

s
T
:0

.9
79

s
T
:0

.2
00

s
T
:0

.3
41

s
T
:1

0.
25

1
s

Q
P

E
1Q

:8
0

1Q
N

Z
:6

1
1Q

:7
9

1Q
N

Z
:6

8
1Q

:1
81

1Q
N

Z
:1

9
1Q

:1
74

1Q
N

Z
:1

9
1Q

:1
37

1Q
N

Z
:5

4

(8
qu

bi
ts
,

M
Q
:4

3
L
:4

7
M

Q
:4

3
L
:4

7
M

Q
:4

3
L
:3

0
M

Q
:4

3
L
:3

0
M

Q
:4

3
L
:3

1

1Q
:

79
,

M
Q
:4

3)
D
:9

0
C
:1

.8
91

D
:7

9
C
:1

.7
73

D
:1

32
C
:2

.3
22

D
:1

31
C
:2

.3
12

D
:1

24
C
:2

.2
38

T
:0

.1
32

s
T
:0

.2
51

s
T
:0

.0
11

s
T
:0

.1
06

s
T
:1

23
6.
98

3
s

V
Q

E
_U

C
C

SD
1Q

:1
16

37
1Q

N
Z
:1

04
05

1Q
:1

08
40

1Q
N

Z
:9

30
4

1Q
:1

50
09

1Q
N

Z
:1

27
5

1Q
:1

30
71

1Q
N

Z
:1

53
8

1Q
:9

28
8

1Q
N

Z
:6

46
4

(8
qu

bi
ts
,

M
Q
:5

48
8

L
:1

47
40

M
Q
:4

80
7

L
:1

30
71

M
Q
:5

28
4

L
:5

95
8

M
Q
:4

52
1

L
:1

90
0

M
Q
:5

28
4

L
:7

57
2

1Q
:

53
20

,
M

Q
:5

48
8)

D
:1

55
97

C
:2

94
.4
91

D
:1

35
60

C
:2

57
.0
30

D
:1

32
26

C
:2

55
.7
45

D
:1

06
75

C
:2

08
.5
84

D
:1

27
74

C
:2

52
.5
91

T
:1

0.
64

4
s

T
:4

9.
28

7
s

T
:0

.7
15

s
T
:3

6.
85

9
s

T
:1

23
0.
64

3
s

123

 379 Page 24 of 44 M. Avitabile et al.

Ta
bl
e
2

co
nt
in
ue
d

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

To
ol
ch
ai
n

IS
IN

G
1Q

:2
67

1Q
N

Z
:1

44
1Q

:2
93

1Q
N

Z
:1

68
1Q

:4
00

1Q
N

Z
:5

0
1Q

:4
00

1Q
N

Z
:5

0
1Q

:3
69

1Q
N

Z
:1

45

(1
0
qu

bi
ts
,

M
Q
:9

0
L
:1

31
M

Q
:9

0
L
:1

77
M

Q
:9

0
L
:2

30
M

Q
:9

0
L
:2

30
M

Q
:9

0
L
:1

42

1Q
:3

90
,

M
Q
:9

0)
D
:5

7
C
:2

.5
86

D
:6

1
C
:2

.6
78

D
:8

0
C
:2

.9
37

D
:8

0
C
:2

.9
37

D
:8

2
C
:2

.8
65

T
:0

.2
56

s
T
:0

.9
79

s
T
:0

.0
34

s
T
:0

.2
39

s
T
:1

.2
75

s

SH
O

R
1Q

:2
53

93
1Q

N
Z
:1

77
16

1Q
:2

25
71

1Q
N

Z
:1

72
06

1Q
:5

20
00

1Q
N

Z
:4

60
6

1Q
:5

20
06

1Q
N

Z
:4

62
2

1Q
:4

79
11

1Q
N

Z
:1

66
64

(1
2
qu

bi
ts
,

M
Q
:1

48
58

L
:1

31
15

M
Q
:1

43
48

L
:1

24
78

M
Q
:1

43
48

L
:4

63
8

M
Q
:1

43
33

L
:4

66
7

M
Q
:1

43
48

L
:1

13
94

1Q
:2

07
56

,
M

Q
:1

48
58

)
D
:2

86
23

C
:6

23
.6
17

D
:2

81
07

C
:6

07
.0
05

D
:3

83
36

C
:7

08
.1
89

D
:3

83
51

C
:7

08
.0
74

D
:4

85
47

C
:8

24
.5
12

T
:2

7.
70

4
s

T
:8

8.
70

6
s

T
:7

.5
44

s
T
:4

24
09

.9
95

s
T
:1

56
39

.9
17

s

E
D

G
E

_D
E

T
E

C
T

1Q
:3

73
71

1Q
N

Z
:1

09
85

1Q
:1

77
93

1Q
N

Z
:1

09
81

1Q
:8

16
15

1Q
N

Z
:1

64
31

1Q
:5

71
74

1Q
N

Z
:1

16
68

1Q
:4

43
13

1Q
N

Z
:1

64
93

(1
2
qu

bi
ts
,

M
Q
:1

60
96

L
:8

40
M

Q
:1

08
75

L
:8

42
M

Q
:1

60
96

L
:1

89
40

M
Q
:1

13
40

L
:1

48
26

M
Q
:1

60
96

L
:1

13
3

1Q
:4

85
93

,
M

Q
:1

60
96

)
D
:5

16
66

C
:8

82
.5
14

D
:2

72
35

C
:5

14
.4
74

D
:6

44
13

C
:1

03
7.
89

4
D
:4

35
01

C
:7

12
.6
77

D
:5

79
55

C
:9

50
.0
95

T
:2

9.
19

9
s

T
:1

17
.2
92

s
T
:8

.4
69

s
T
:4

18
.4
73

s
T
:3

60
21

.9
36

s

SY
S6

1Q
:6

28
1Q

N
Z
:4

90
1Q

:2
98

1Q
N

Z
:1

83
1Q

:3
34

1Q
N

Z
:2

2
1Q

:3
16

1Q
N

Z
:2

2
1Q

:3
14

1Q
N

Z
:1

62

(1
6
qu

bi
ts
,

M
Q
:3

92
L
:5

67
M

Q
:9

8
L
:2

00
M

Q
:9

8
L
:1

36
M

Q
:9

3
L
:1

36
M

Q
:9

8
L
:1

43

1Q
:1

17
,

M
Q
:9

8)
D
:4

67
C
:1

3.
60

3
D
:1

44
C
:3

.7
53

D
:1

35
C
:3

.5
90

D
:1

31
C
:3

.4
45

D
:1

31
C
:3

.5
54

T
:0

.6
74

s
T
:1

.8
55

s
T
:0

.0
15

s
T
:0

.1
95

s
T
:1

.4
19

s

A
D

D
E

R
_L

A
R

G
E

1Q
:3

39
1Q

N
Z
:2

65
1Q

:3
93

1Q
N

Z
:2

37
1Q

:4
69

1Q
N

Z
:4

0
1Q

:4
61

1Q
N

Z
:5

7
1Q

:4
13

1Q
N

Z
:1

65

(1
8
qu

bi
ts

M
Q
:2

32
L
:2

72
M

Q
:1

30
L
:3

03
M

Q
:1

30
L
:4

8
M

Q
:1

22
L
:6

8
M

Q
:1

22
L
:1

19

1Q
:2

16
,

M
Q
:1

30
)

D
:3

03
C
:8

.2
68

D
:2

32
C
:5

.4
57

D
:2

29
C
:5

.1
57

D
:2

29
C
:5

.0
14

D
:2

43
C
:5

.2
18

T
:0

.4
03

s
T
:2

.0
72

s
T
:0

.0
21

s
T
:0

.2
45

s
T
:1

.9
76

s

123

Development of a multi-technology, template-based quantum... Page 25 of 44 379

Ta
bl
e
2

co
nt
in
ue
d

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

To
ol
ch
ai
n

U
R

F
5

1Q
:6

82
87

1Q
N

Z
:5

57
30

1Q
:6

81
96

1Q
N

Z
:5

56
71

1Q
:7

70
23

1Q
N

Z
:4

37
0

1Q
:8

03
12

1Q
N

Z
:7

17
2

1Q
:7

01
23

1Q
N

Z
:3

53
90

(1
6
qu

bi
ts
,

M
Q
:2

37
64

L
:7

22
57

M
Q
:2

37
26

L
:7

21
68

M
Q
:2

37
42

L
:2

61
40

M
Q
:2

29
19

L
:3

10
86

M
Q
:2

36
81

L
:3

15
45

1Q
:3

75
05

,
M

Q
:2

37
64

)
D
:4

76
46

C
:1

07
1.
27

6
D
:4

76
08

C
:1

06
9.
99

9
D
:4

99
82

C
:1

04
7.
42

8
D
:5

09
73

C
:1

04
6.
40

4
D
:4

57
65

C
:1

00
6.
66

6
T
:6

2.
49

3
s

T
:1

79
.6
36

s
T
:5

.4
20

s
T
:1

29
0.
52

1
s

T
:4

17
11

.9
81

s

SY
M

10
1Q

:1
80

51
2

1Q
N

Z
:1

40
39

0
1Q

:8
41

84
1Q

N
Z
:5

01
39

1Q
:9

32
52

1Q
N

Z
:4

46
9

1Q
:9

61
88

1Q
N

Z
:6

03
1

1Q
:8

88
55

1Q
N

Z
:4

44
44

(1
6
qu

bi
ts
,

M
Q
:1

12
33

6
L
:1

64
17

3
M

Q
:2

80
84

L
:5

68
00

M
Q
:2

80
84

L
:3

08
22

M
Q
:2

80
43

L
:3

36
26

M
Q
:2

80
84

L
:3

87
49

1Q
:5

22
47

,
M

Q
:2

80
84

)
D
:2

01
74

5
C
:4

62
6.
44

9
D
:5

98
06

C
:1

27
3.
39

1
D
:6

12
66

C
:1

26
1.
80

9
D
:6

22
79

C
:1

27
4.
75

3
D
:5

55
15

C
:1

20
8.
51

5
T
:2

07
.5
92

s
T
:4

55
.9
26

s
T
:7

.1
33

s
T
:1

99
7.
03

9
s

T
:5

85
67

.0
32

s

In
th
is
ta
bl
e
an
d
in
th
e
fo
llo

w
in
g
on
es
,1

Q
re
pr
es
en
ts
th
e
nu

m
be
r
of
si
ng

le
-q
ub

it
ga

te
s,

1Q
N

Z
re
pr
es
en
ts
th
e
nu

m
be
r
of
no

n-
R
Z
si
ng

le
-q
ub

it
ga

te
s,

M
Q
re
pr
es
en
ts
th
e
nu

m
be
r

of
m
ul
ti
-q
ub

it
ga

te
s,

L
re
pr
es
en
ts
th
e
w
ei
gh

te
d
la
te
nc
y
fo
r
si
ng

le
-q
ub

it
ga

te
s
an
d

T
re
pr
es
en
ts
th
e
el
ap
se
d
co
m
pi
la
ti
on

ti
m
e
in

se
co
nd
s.
T
he

nu
m
be
r
of

ga
te
s
in

th
e
or
ig
in
al

ci
rc
ui
t,
al
on
g
w
ith

its
re
la
te
d
nu
m
be
r
of

qu
bi
ts
,i
s
re
po
rt
ed

al
on
gs
id
e
th
e
re
fe
re
nc
e
ci
rc
ui
t’s

na
m
e

123

 379 Page 26 of 44 M. Avitabile et al.

Ta
bl
e
3

Su
bs
et
of

th
e
be
nc
hm

ar
ks

re
su
lts

fo
r
th
e

tr
ap

pe
d

io
ns

te
ch

no
lo

gy
ca
se

w
ith

av
er
ag
e
pr
ec
is
io
n
to
ol
ch
ai
n
pa
ra
m
et
er
s
se
t

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

To
ol
ch
ai
n

A
D

D
E

R
_S

M
A

L
L

1Q
:4

2
1Q

N
Z
:3

5
1Q

:3
8

1Q
N

Z
:3

1
1Q

:5
9

1Q
N

Z
:4

4
1Q

:5
7

1Q
N

Z
:4

4
1Q

:4
1

1Q
N

Z
:3

2

(4
qu

bi
ts
,

M
Q
:1

0
L
:3

9
M

Q
:1

0
L
:3

7
M

Q
:1

0
L
:2

26
M

Q
:1

0
L
:2

26
M

Q
:1

0
L
:3

5

1Q
:1

7,
M

Q
:1

0)
D
:2

1
C
:0

.7
70

D
:2

0
C
:0

.7
47

D
:2

9
C
:1

.4
40

D
:2

7
C
:1

.4
07

D
:2

1
C
:0

.7
58

T
:0

.0
81

s
T
:0

.1
12

s
T
:0

.0
03

s
T
:0

.0
30

s
T
:0

.5
95

s

H
S4

1Q
:1

4
1Q

N
Z
:8

1Q
:2

0
1Q

N
Z
:1

0
1Q

:4
0

1Q
N

Z
:2

4
1Q

:2
0

1Q
N

Z
:1

2
1Q

:1
6

1Q
N

Z
:1

6

(4
qu

bi
ts
,

M
Q
:4

L
:8

M
Q
:4

L
:1

4
M

Q
:4

L
:1

08
M

Q
:2

L
:5

2
M

Q
:4

L
:2

0

1Q
:2

4,
M

Q
:4

)
D
:7

C
:0

.2
63

D
:9

C
:0

.3
14

D
:1

8
C
:0

.7
33

D
:9

C
:0

.3
61

D
:8

C
:0

.3
14

T
:0

.0
86

s
T
:0

.0
67

s
T
:0

.0
03

s
T
:0

.0
12

s
T
:0

.5
38

s

D
N

N
1Q

:6
00

1Q
N

Z
:3

80
1Q

:3
07

1Q
N

Z
:1

33
1Q

:1
55

6
1Q

N
Z
:1

08
0

1Q
:5

60
1Q

N
Z
:3

52
1Q

:6
60

1Q
N

Z
:3

36

(8
qu

bi
ts
,

M
Q
:1

92
L
:4

14
M

Q
:6

4
L
:1

58
M

Q
:1

92
L
:5

07
0

M
Q
:6

4
L
:1

54
8

M
Q
:1

92
L
:3

73

1Q
:2

86
4,

M
Q
:1

92
)

D
:1

51
C
:9

.6
30

D
:5

7
C
:3

.3
78

D
:2

79
C
:2

5.
08

3
D
:1

07
C
:8

.1
90

D
:1

63
C
:9

.7
14

T
:0

.7
58

s
T
:0

.9
63

s
T
:0

.2
10

s
T
:0

.3
47

s
T
:1

2.
14

8
s

Q
P

E
1Q

:1
50

1Q
N

Z
:1

00
1Q

:1
12

1Q
N

Z
:6

2
1Q

:2
67

1Q
N

Z
:1

91
1Q

:2
60

1Q
N

Z
:1

91
1Q

:1
50

1Q
N

Z
:7

8

(8
qu

bi
ts
,

M
Q
:4

3
L
:1

06
M

Q
:4

3
L
:9

6
M

Q
:4

3
L
:9

76
M

Q
:4

3
L
:9

76
M

Q
:4

3
L
:1

00

1Q
:7

9,
M

Q
:4

3)
D
:1

15
C
:3

.5
55

D
:9

7
C
:3

.2
27

D
:1

69
C
:6

.9
47

D
:1

67
C
:6

.9
13

D
:1

29
C
:3

.7
72

T
:0

.1
67

s
T
:0

.3
67

s
T
:0

.0
11

s
T
:0

.1
05

s
T
:0

.8
19

s

V
Q

E
_U

C
C

SD
1Q

:1
71

23
1Q

N
Z
:1

52
69

1Q
:1

21
06

1Q
N

Z
:9

24
7

1Q
:2

55
77

1Q
N

Z
:2

24
11

1Q
:2

21
13

1Q
N

Z
:1

96
22

1Q
:1

18
92

1Q
N

Z
:1

00
21

(8
qu

bi
ts
,

M
Q
:5

48
8

L
:1

53
05

M
Q
:4

80
7

L
:1

28
79

M
Q
:5

28
4

L
:1

22
20

6
M

Q
:4

52
1

L
:1

01
36

2
M

Q
:5

28
4

L
:1

35
76

1Q
:5

32
0,

M
Q
:5

48
8)

D
:1

62
75

C
:4

85
.4
79

D
:1

11
66

C
:3

72
.0
11

D
:1

84
72

C
:8

21
.7
69

D
:1

53
07

C
:6

85
.6
13

D
:1

16
46

C
:3

96
.7
60

T
:1

3.
54

9
s

T
:7

6.
75

1
s

T
:0

.6
98

s
T
:3

6.
44

2
s

T
:9

18
.4
63

s

123

Development of a multi-technology, template-based quantum... Page 27 of 44 379

Ta
bl
e
3

co
nt
in
ue
d

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

To
ol
ch
ai
n

IS
IN

G
1Q

:3
46

1Q
N

Z
:1

93
1Q

:3
26

1Q
N

Z
:1

76
1Q

:5
80

1Q
N

Z
:4

10
1Q

:5
80

1Q
N

Z
:4

10
1Q

:3
15

1Q
N

Z
:1

34

(1
0
qu

bi
ts
,

M
Q
:9

0
L
:1

89
M

Q
:9

0
L
:2

08
M

Q
:9

0
L
:2

21
0

M
Q
:9

0
L
:2

21
0

M
Q
:9

0
L
:1

44

1Q
:3

90
)

D
:6

6
C
:4

.4
18

D
:6

6
C
:4

.4
74

D
:9

3
C
:1

0.
65

1
D
:9

3
C
:1

0.
65

1
D
:6

8
C
:4

.3
27

M
Q
:9

0
T
:0

.3
13

s
T
:0

.9
98

s
T
:0

.0
34

s
T
:0

.2
40

s
T
:1

.2
06

s

SH
O

R
1Q

:4
66

41
1Q

N
Z
:3

05
18

1Q
:3

66
65

1Q
N

Z
:1

97
65

1Q
:8

06
96

1Q
N

Z
:6

19
98

1Q
:8

06
72

1Q
N

Z
:6

19
54

1Q
:3

82
28

1Q
N

Z
:1

49
33

(1
2
qu

bi
ts
,

M
Q
:1

48
58

L
:2

97
55

M
Q
:1

43
48

L
:2

97
82

M
Q
:1

43
48

L
:3

20
29

4
M

Q
:1

43
33

L
:3

19
99

3
M

Q
:1

43
48

L
:1

43
45

1Q
:2

07
56

)
D
:4

11
38

C
:1

23
2

D
:3

74
51

C
:1

15
3.
04

6
D
:5

26
44

C
:2

24
0.
04

3
D
:5

26
54

C
:2

23
8.
88

6
D
:3

50
26

C
:1

07
0.
45

0

M
Q
:1

48
58

T
:3

9.
19

5
s

T
:1

12
.6
83

s
T
:7

.9
74

s
T
:4

94
22

.6
83

s
T
:9

15
2.
16

9
s

E
D

G
E

_D
E

T
:E

C
T

:
1Q

:4
96

85
1Q

N
Z
:2

83
85

1Q
:3

31
46

1Q
N

Z
:1

18
46

1Q
:1

13
80

7
1Q

N
Z
:8

08
15

1Q
:7

98
54

1Q
N

Z
:5

70
28

1Q
:3

19
71

1Q
N

Z
:1

26
87

(1
2
qu

bi
ts
,

M
Q
:1

60
96

L
:2

59
86

M
Q
:1

60
96

L
:2

44
09

M
Q
:1

60
96

L
:3

73
05

2
M

Q
:1

13
40

L
:2

64
30

6
M

Q
:1

60
96

L
:2

92
16

1Q
:4

85
93

,
M

Q
:1

60
96

)
D
:4

86
19

C
:1

38
5.
17

4
D
:4

68
74

C
:1

35
5.
18

0
D
:7

97
69

C
:2

89
8.
95

7
D
:5

41
92

C
:2

01
2.
98

5
D
:4

56
65

C
:1

34
7.
55

8
T
:4

4.
18

8
s

T
:1

18
.9
50

s
T
:9

.9
25

s
T
:5

62
.0
87

s
T
:1

90
55

.2
06

s

SY
S6

1Q
:3

78
1Q

N
Z
:2

97
1Q

:3
51

1Q
N

Z
:2

70
1Q

:5
30

1Q
N

Z
:4

14
1Q

:5
02

1Q
N

Z
:3

94
1Q

:3
50

1Q
N

Z
:2

46

(1
6
qu

bi
ts
,

M
Q
:9

8
L
:3

11
M

Q
:9

8
L
:3

11
M

Q
:9

8
L
:2

29
2

M
Q
:9

3
L
:2

18
2

M
Q
:9

8
L
:2

92

1Q
:1

17
,

M
Q
:9

8)
D
:1

60
C
:6

.5
86

D
:1

55
C
:6

.5
03

D
:1

90
C
:1

2.
75

8
D
:1

88
C
:1

2.
25

6
D
:1

38
C
:6

.1
64

T
:0

.2
92

s
T
:0

.9
89

s
T
:0

.0
16

s
T
:0

.1
95

s
T
:1

.1
49

s

A
D

D
E

R
_L

A
R

G
E

1Q
:4

40
1Q

N
Z
:3

27
1Q

:3
61

1Q
N

Z
:2

49
1Q

:7
29

1Q
N

Z
:5

60
1Q

:7
05

1Q
N

Z
:5

45
1Q

:3
40

1Q
N

Z
:2

06

(1
8
qu

bi
ts

M
Q
:1

30
L
:3

29
M

Q
:1

30
L
:3

17
M

Q
:1

30
L
:2

90
8

M
Q
:1

22
L
:2

75
2

M
Q
:1

22
L
:2

57

1Q
:2

16
,

M
Q
:1

30
)

D
:2

57
C
:9

.2
52

D
:2

36
C
:8

.8
67

D
:3

28
C
:1

7.
81

7
D
:3

27
C
:1

7.
10

7
D
:1

75
C
:7

.4
26

T
:0

.3
60

s
T
:1

.1
61

s
T
:0

.0
37

s
T
:0

.3
58

s
T
:1

.4
23

s

123

 379 Page 28 of 44 M. Avitabile et al.

Ta
bl
e
3

co
nt
in
ue
d

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

To
ol
ch
ai
n

U
R

F
5

1Q
:8

46
81

1Q
N

Z
:6

79
34

1Q
:7

45
57

1Q
N

Z
:5

78
10

1Q
:1

24
50

7
1Q

N
Z
:9

93
38

1Q
:1

26
15

0
1Q

N
Z
:9

88
48

1Q
:7

04
61

1Q
N

Z
:4

93
35

(1
6
qu

bi
ts
,

M
Q
:2

37
64

L
:7

10
17

M
Q
:2

37
42

L
:7

01
76

M
Q
:2

37
42

L
:5

48
46

4
M

Q
:2

29
19

L
:5

35
30

3.
5

M
Q
:2

36
81

L
:6

50
96

1Q
:3

75
05

,
M

Q
:2

37
64

)
D
:5

55
03

C
:1

86
4.
85

0
D
:5

23
86

C
:1

80
9.
69

0
D
:7

21
47

C
:3

50
8.
87

7
D
:7

18
30

C
:3

44
0.
43

5
D
:1

46
00

6
C
:1

68
6.
57

5
T
:6

0.
78

5
s

T
:1

95
.3
06

s
T
:5

.5
64

s
T
:1

14
9.
85

5
s

T
:2

63
00

.8
22

s

SY
M

10
1Q

:1
02

75
9

1Q
N

Z
:8

02
50

1Q
:9

31
70

1Q
N

Z
:7

06
61

1Q
:1

49
42

0
1Q

N
Z
:9

76
27

1Q
:1

52
27

4
1Q

N
Z
:1

18
20

3
1Q

:8
88

77
1Q

N
Z
:5

95
75

(1
6
qu

bi
ts
,

M
Q
:2

80
84

L
:8

45
60

M
Q
:2

80
84

L
:8

45
60

M
Q
:2

80
84

L
:6

48
67

0
M

Q
:2

80
43

L
:6

50
57

2
M

Q
:2

80
84

L
:7

79
06

1Q
:5

22
47

,
M

Q
:2

80
84

)
D
:6

72
59

C
:2

23
3.
57

3
D
:6

52
38

C
:2

19
9.
84

D
:8

89
96

C
:4

21
1.
56

4
D
:8

97
30

C
:4

22
7.
96

3
D
:5

55
13

C
:2

01
8.
12

1
T
:7

0.
98

1
s

T
:2

30
.2
74

s
T
:7

.3
98

s
T
:1

98
7.
16

6
s

T
:3

88
63

.0
62

s

123

Development of a multi-technology, template-based quantum... Page 29 of 44 379

Ta
bl
e
4

Su
bs
et
of

th
e
be
nc
hm

ar
ks

re
su
lts

fo
r
th
e

su
pe

rc
on

du
ct

in
g

te
ch

no
lo

gy
ca
se

w
ith

av
er
ag
e
pr
ec
is
io
n
to
ol
ch
ai
n
pa
ra
m
et
er
s
se
t

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

T
oo
lc
ha
in

A
D

D
E

R
_S

M
A

L
L

1Q
:1

0
1Q

N
Z
:4

1Q
:1

1
1Q

N
Z
:4

1Q
:1

1
1Q

N
Z
:4

1Q
:1

0
1Q

N
Z
:4

1Q
:9

1Q
N

Z
:4

(4
qu

bi
ts
,

M
Q
:1

0
L
:6

M
Q
:1

0
L
:6

M
Q
:1

0
L
:8

M
Q
:1

0
L
:8

M
Q
:1

0
L
:6

1Q
:1

7,
M

Q
:1

0)
D
:1

2
C
:0

.3
45

D
:1

2
C
:0

.3
45

D
:1

3
C
:0

.3
57

D
:1

2
C
:0

.3
46

D
:1

2
C
:0

.3
45

T
:0

.0
54

s
T
:0

.0
43

s
T
:0

.0
03

s
T
:0

.0
28

s
T
:0

.5
61

s

H
S4

1Q
:8

1Q
N

Z
:8

1Q
:8

1Q
N

Z
:8

1Q
:8

1Q
N

Z
:8

1Q
:4

1Q
N

Z
:4

1Q
:6

1Q
N

Z
:6

(4
qu

bi
ts
,

M
Q
:4

L
:8

M
Q
:4

L
:8

M
Q
:4

L
:1

6
M

Q
:2

L
:8

M
Q
:4

L
:8

1Q
:2

4,
M

Q
:4

)
D
:6

C
:0

.1
55

D
:6

C
:0

.1
55

D
:6

C
:0

.1
61

D
:4

C
:0

.0
91

D
:5

C
:0

.1
44

T
:0

.0
57

s
T
:0

.0
52

s
T
:0

.0
02

s
T
:0

.0
12

s
T
:0

.5
10

s

D
N

N
1Q

:3
28

1Q
N

Z
:3

12
1Q

:1
36

1Q
N

Z
:1

36
1Q

:3
60

1Q
N

Z
:3

12
1Q

:1
28

1Q
N

Z
:9

6
1Q

:3
28

1Q
N

Z
:3

28

(8
qu

bi
ts
,

M
Q
:1

92
L
:4

64
M

Q
:6

4
L
:2

68
M

Q
:1

92
L
:6

24
M

Q
:6

4
L
:1

92
M

Q
:1

92
L
:5

28

1Q
:2

86
4,

M
Q
:1

92
)

D
:9

8
C
:5

.4
44

D
:3

4
C
:1

.9
12

D
:9

8
C
:5

.5
62

D
:3

4
C
:1

.8
57

D
:9

8
C
:5

.4
91

T
:0

.7
65

s
T
:1

.0
36

s
T
:0

.2
02

s
T
:0

.3
90

s
T
:7

.7
22

s

Q
P

E
1Q

:7
1

1Q
N

Z
:1

9
1Q

:5
9

1Q
N

Z
:1

9
1Q

:5
7

1Q
N

Z
:1

9
1Q

:5
6

1Q
N

Z
:1

9
1Q

:6
8

1Q
N

Z
:1

6

(8
qu

bi
ts
,

M
Q
:4

3
L
:2

0
M

Q
:4

3
L
:2

0
M

Q
:4

3
L
:3

8
M

Q
:4

3
L
:3

8
M

Q
:4

3
L
:1

9

1Q
:7

9,
M

Q
:4

3)
D
:8

3
C
:1

.8
19

D
:7

2
C
:1

.7
00

D
:7

3
C
:1

.7
20

D
:7

2
C
:1

.7
13

D
:8

2
C
:1

.8
08

T
:0

.0
91

s
T
:0

.2
46

s
T
:0

.0
10

s
T
:0

.1
27

s
T
:0

.6
49

s

V
Q

E
_U

C
C

SD
1Q

:1
89

1
1Q

N
Z
:1

27
5

1Q
:2

97
2

1Q
N

Z
:2

37
0

1Q
:1

89
1

1Q
N

Z
:1

27
5

1Q
:2

17
7

1Q
N

Z
:1

53
8

1Q
:1

89
1

1Q
N

Z
:1

27
5

(8
qu

bi
ts
,

M
Q
:5

28
4

L
:1

32
4

M
Q
:4

80
7

L
:2

80
5

M
Q
:5

28
4

L
:2

55
0

M
Q
:4

52
1

L
:3

07
6

M
Q
:5

28
4

L
:2

53
9

1Q
:5

32
0,

M
Q
:5

48
8)

D
:6

45
2

C
:1

82
.1
28

D
:6

42
4

C
:1

72
.8
72

D
:6

45
2

C
:1

83
.0
29

D
:5

88
1

C
:1

61
.1
66

D
:6

45
2

C
:1

83
.0
2

T
:3

.2
54

s
T
:2

4.
05

3
s

T
:0

.5
42

s
T
:3

6.
65

0
s

T
:2

80
.0
67

s

123

 379 Page 30 of 44 M. Avitabile et al.

Ta
bl
e
4

co
nt
in
ue
d

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

T
oo
lc
ha
in

IS
IN

G
1Q

:1
45

1Q
N

Z
:5

0
1Q

:1
37

1Q
N

Z
:5

0
1Q

:1
20

1Q
N

Z
:5

0
1Q

:1
20

1Q
N

Z
:5

0
1Q

:1
45

1Q
N

Z
:6

0

(1
0
qu

bi
ts
,

M
Q
:9

0
L
:9

0
M

Q
:9

0
L
:9

0
M

Q
:9

0
L
:1

00
M

Q
:9

0
L
:1

00
M

Q
:9

0
L
:1

10

1Q
:3

90
,

M
Q
:9

0)
D
:4

2
C
:2

.4
16

D
:4

2
C
:2

.4
16

D
:4

2
C
:2

.4
23

D
:4

2
C
:2

.4
23

D
:4

2
C
:2

.4
30

T
:0

.1
78

s
T
:2

.4
16

s
T
:0

.0
30

s
T
:0

.2
45

s
T
:0

.7
91

s

SH
O

R
1Q

:1
84

46
1Q

N
Z
:4

60
6

1Q
:1

66
46

1Q
N

Z
:5

62
6

1Q
:1

40
92

1Q
N

Z
:4

60
6

1Q
:1

41
01

1Q
N

Z
:4

62
2

1Q
:1

84
45

1Q
N

Z
:4

60
6

(1
2
qu

bi
ts
,

M
Q
:1

43
48

L
:4

60
6

M
Q
:1

43
48

L
:6

64
6

M
Q
:1

43
48

L
:9

21
2

M
Q
:1

43
33

L
:9

24
4

M
Q
:1

43
48

L
:7

16
2

1Q
:2

07
56

,
M

Q
:1

48
58

)
D
:2

58
12

C
:5

85
.1
74

D
:2

60
67

C
:5

89
.4
36

D
:2

55
51

C
:5

85
.7
29

D
:2

55
45

C
:5

85
.3
72

D
:2

58
12

C
:5

87
.0
51

8
T
:1

0.
19

7
s

T
:6

2.
78

2
s

T
:5

85
.7
29

s
T
:4

92
74

.0
67

s
T
:1

00
8.
19

4
s

E
D

G
E

_D
E

T
:E

C
T

:
1Q

:1
65

59
1Q

N
Z
:1

64
31

1Q
:1

16
77

1Q
N

Z
:1

15
38

1Q
:1

65
63

1Q
N

Z
:1

64
31

1Q
:1

17
98

1Q
N

Z
:1

16
68

1Q
:1

64
04

1Q
N

Z
:1

03
27

(1
2
qu

bi
ts
,

M
Q
:1

60
96

L
:2

70
10

M
Q
:1

09
39

L
:2

17
66

M
Q
:1

60
96

L
:3

28
62

M
Q
:1

13
40

L
:2

33
36

M
Q
:1

60
96

L
:1

86
61

1Q
:4

85
93

,
M

Q
:1

60
96

)
D
:3

17
42

C
:7

02
.6
99

D
:2

10
40

C
:4

74
.2
97

D
:3

17
45

C
:7

07
.0
3

D
:2

16
23

C
:4

90
.2
10

D
:3

15
87

C
:6

94
.8
88

T
:2

4.
35

0
s

T
:9

7.
25

0
s

T
:8

.3
08

s
T
:5

43
.1
27

s
T
:9

38
8.
55

8
s

SY
S6

1Q
:9

4
1Q

N
Z
:2

2
1Q

:9
4

1Q
N

Z
:2

2
1Q

:9
4

1Q
N

Z
:2

2
1Q

:8
6

1Q
N

Z
:2

2
1Q

:8
8

1Q
N

Z
:2

2

(1
6
qu

bi
ts
,

M
Q
:9

8
L
:2

2
M

Q
:9

8
L
:2

2
M

Q
:9

8
L
:4

4
M

Q
:9

3
L
:4

4
M

Q
:9

8
L
:2

2

1Q
:1

17
,

M
Q
:9

8)
D
:7

3
C
:2

.8
70

D
:7

3
C
:2

.8
70

D
:7

3
C
:2

.8
86

D
:7

1
C
:2

.7
59

D
:7

2
C
:2

.8
59

T
:0

.0
93

s
T
:0

.3
97

s
T
:0

.0
12

s
T
:0

.1
81

s
T
:0

.6
08

s

A
D

D
E

R
_L

A
R

G
E

1Q
:1

36
1Q

N
Z
:4

0
1Q

:1
29

1Q
N

Z
:4

0
1Q

:1
29

1Q
N

Z
:4

0
1Q

:1
43

1Q
N

Z
:5

7
1Q

:1
34

1Q
N

Z
:3

9

(1
8
qu

bi
ts

M
Q
:1

30
L
:4

8
M

Q
:1

30
L
:4

8
M

Q
:1

30
L
:8

0
M

Q
:1

22
L
:1

14
M

Q
:1

22
L
:5

2

1Q
:2

16
,

M
Q
:1

30
)

D
:1

49
C
:4

.3
87

D
:1

49
C
:4

.3
87

D
:1

50
C
:4

.4
21

D
:1

55
C
:4

.4
42

D
:1

34
C
:4

.0
58

T
:0

.1
18

s
T
:0

.5
51

s
T
:0

.0
17

s
T
:0

.2
43

s
T
:0

.6
49

s

123

Development of a multi-technology, template-based quantum... Page 31 of 44 379

Ta
bl
e
4

co
nt
in
ue
d

C
ir
cu
it
na
m
e

Q
is
ki
tL

v.
1

Q
is
ki
tL

v.
3

t|k
et

〉
t|k

et
〉 M

ax
O
pt
.

T
oo
lc
ha
in

U
R

F
5

1Q
:2

07
70

1Q
N

Z
:4

35
1

1Q
:2

07
68

1Q
N

Z
:4

35
1

1Q
:2

07
99

1Q
N

Z
:4

37
0

1Q
:2

07
45

1Q
N

Z
:7

17
2

1Q
:2

07
58

1Q
N

Z
:4

32
9

(1
6
qu

bi
ts
,

M
Q
:2

37
42

L
:4

61
6

M
Q
:2

37
26

L
:4

61
6

M
Q
:2

37
42

L
:8

74
0

M
Q
:2

29
19

L
:1

43
44

M
Q
:2

36
81

L
:4

61
1

1Q
:3

75
05

,
M

Q
:2

37
64

)
D
:2

56
71

C
:7

81
.3
80

D
:2

56
60

C
:7

80
.9
24

D
:2

55
87

C
:7

83
.5
00

D
:1

21
6.
43

7
C
:7

68
.0
27

D
:2

56
37

C
:7

79
.7
24

T
:1

3.
09

4
s

T
:9

6.
07

4
s

T
:4

.0
69

s
T
:1

21
6.
43

s
T
:6

96
.2
11

s

SY
M

10
1Q

:2
80

86
1Q

N
Z
:4

46
2

1Q
:2

80
86

1Q
N

Z
:4

46
2

1Q
:2

81
46

1Q
N

Z
:4

46
9

1Q
:2

81
11

1Q
N

Z
:6

03
1

1Q
:2

80
85

1Q
N

Z
:4

45
5

(1
6
qu

bi
ts
,

M
Q
:2

80
84

L
:4

54
4

M
Q
:2

80
84

L
:4

54
4

M
Q
:2

80
84

L
:8

93
8

M
Q
:2

80
43

L
:1

20
62

M
Q
:2

80
84

L
:4

53
6

1Q
:5

22
47

,
M

Q
:2

80
84

)
D
:3

16
41

C
:9

37
.4
32

D
:3

16
41

C
:9

37
.4
31

D
:3

16
55

C
:9

40
.8
11

D
:3

17
83

C
:9

43
.6
30

D
:3

16
40

C
:9

37
.4
15

T
:1

6.
90

1
s

T
:1

09
.2
10

s
T
:5

.6
03

s
T
:2

06
8.
11

6
s

T
:5

12
.6
60

s

123

 379 Page 32 of 44 M. Avitabile et al.

in image processing, were obtained using the Qiskit transpiler on the original circuits
available in [41]. The set of circuits chosen for the benchmark was composed with
the idea of involving small-to-large-scaled circuits. Only the latest version of each
chosen circuit in the repositories was taken in consideration. The circuits were mostly
left untouched: the only actions performed on them were adding a measurement on
each involved qubit line at the end and, in a few circuits taken form QASMBench’s
repository, to manually decompose custom user-defined gates, which the toolchain
does not currently recognize nor support. Each circuital compilation executed by
the toolchain was performed with three different sets of parameters: low precision
(thr1 = 10−4, thr2 = 10−6), average precision (thr1 = 10−8, thr2 = 10−10) and high
precision (thr1 = 10−10, thr2 = 10−12), in which thr1 is the grade of approximation
of π and thr2 is the threshold of rotation value under which a gate is considered a null
operation. All the compilations were performed on a single-process Intel(R) Xeon(R)
Gold 6134 CPU @ 3.20GHz opta-core, Model 85 [59] with a memory of 10296102+
KiB.

4.4 Comparison with the state of the art

The benchmarks were performed using Qiskit version 0.28, with Qiskit Aer
Libraries version 0.8.2 and Qiskit Terra Libraries version 0.18.0 (the latest releases
at the time of writing). The benchmarks were performed using pytket-qiskit version
0.16.1 too. When using both compilers and the toolchain, each quantum architecture
was considered as perfectly fully connected, not taking thus into account themapping
capabilities in the benchmarks.

It is important to clarify that Qiskit compilation for NMR employed a slightly
different basis set of quantum gates. In fact, the set RX , RY , RZ , RZZ is not supported
by the employed version of this library, so the RZZ was replaced by the CZ. Reminding
that CZ = RZZ

(
π
2

) [
RZ

(−π
2

) ⊗ RZ
(−π

2

)]
[10], this compilation strategy did not

affect the calculation of the total number of two-qubit gates and of non-RZ single-qubit
gates, but it could slightly modify the circuit depth, which is generally expected a bit
lower, considering that a single CZ requires two single-qubit gates and one two-qubit
gate. In any case, this different basis set was employed to compare the NMR toolchain
capabilities with a potentially better basis set in terms of circuit depth and cost.

The general trend noted in the benchmarks is that Qiskit features a versatile man-
agement of single-qubit gates, being able to optimize them well using the sets of
gates of multiple target technologies. t|ket〉, on the other hand, proved to be more
unpredictable when dealing with single-qubit gates, because it alternates very good
optimizations to completely suboptimal handles. At the same time, t|ket〉 proved to
be the best in the reduction of two-qubit gates, as it was able to reduce their number
substantially by accepting some tradeoffs on the single-qubit gates number.

4.5 Obtained results

A subset of the obtained results is reported in Tables 2, 3, 4. It is important to precise
that in the calculation of the normalized circuit latency (L), all non-integer results were

123

Development of a multi-technology, template-based quantum... Page 33 of 44 379

rounded-up to stay in aworse-case scenario.All the toolchain-produced circuits proved
to be functionally equivalent to the reference input circuits. Among the evaluated KL
deviations, none exceeded the value of 10−5, thus proving that, even when multiple
output stateswere expected, the obtained results were remarkably similar to the ones of
the original circuits. Moreover, the toolchain proved capable of optimizing efficiently
the single-qubit gates inmost circuits. Some potentially powerful tools, like the Euler-
combo optimization, proved to be very situational, while other processes, such as the
IBM’s U gates merging scheme, proved to be competitive even when compared to
IBM’s own software platorm’s results. The toolchain also proved capable of handling
two-qubit gates quite well, introducing optimizations capable of occasionally out-
performing Qiskit and, most importantly, of competing with t|ket〉 in some cases,
whose strong point is actually the proficiency in reducing the number of multi-qubit
gates involved in the circuit. This went against the expectation of the template-based
approach being unsuited to tackle efficiently the management of clusters of CX gates,
as the templates that involve them are not numerous and as other methods, such as
the heuristic-based ones, seem theoretically more prone to detect advantageous circuit
remodelings. As expected, the number of single-qubit gates drammatically increases
all over the chart in some technologies, since each decomposition of two-qubit gates
introduces several single-qubit gates in the circuit and can bring a lot of newly inserted
gates in large-sized circuits.

The specific results obtained for each technology are commented in the following:

• NMR technology Of all the supported technologies, the generated circuits with the
NMR as target technology proved to be the ones in which the toolchain’s opti-
mization is least competitive. As shown in Table 2, when compared to Qiskit, the
toolchain performs quite well, in particular with larger circuits, since it can involve
less physical quantum gates (involving both single and two qubits). Moreover, in
most of the examined circuits, the advantage in the management of single-qubit-
gate implies a lower weighted latency. On the other hand, t|ket〉 obtains better
performance than the other compilers. In fact, considering both optimization
levels, it always finds the solution with the lowest number of two-qubit gates and
in most of the cases it achieves the best results in managing single-qubit gates,
in terms of both the total number of non-RZ gates and circuit latency. However,
for what concerns the circuit cost, t|ket〉 is sometimes beat by Qiskit and by the
toolchain, especially with medium-large circuits, because of a generally higher
circuit depth. In any case, even though the circuit depth and cost are sometimes
the lowest, the benchmarks showed that the the currently implemented toolchain
is not more performing than other state-of-the-art compilers.

• Trapped ions technology The benchmarks showed that the trapped ions technology
is the most successfully managed by the toolchain. As shown in Table 3, even
though the total number of two-qubit gates is not the lowest among all compilation
strategies, the toolchain often achieves a consistent reduction of the number of
all single-qubit gates and of those non-RZ , specially in medium-large circuits
(lower half of table). Moreover, the obtained equivalent circuits are generally
characterized by low circuit depths, which permit to obtain circuit costs which are
the lowest or competitive with those obtained with other compilation strategies.

123

 379 Page 34 of 44 M. Avitabile et al.

Qiskit is capable of holding its ground quite well, while the same cannot be
said for t|ket〉, which features a less efficient implementation, apart from small
quantum circuits; even if it manages well two-qubit gates, it is usually incapable
of severely reducing single-qubit gates. Moreover, it also employs non-RZ gates,
with a very high associated weighted latency. The results obtained by the toolchain
are particularly satisfying in the context of this technology, even more considering
that chains of trapped ions are intrinsically fully connected. This means that the
toolchain, even in this prototype form, is already capable of efficiently handling
most scenarios involving quantum circuits implemented with trapped ions.

• Superconducting technology The toolchain shows quite good performance with
this target technology. As shown in Table 4, t|ket〉 is usually able to minimize
the total number of two-qubit gates, while managing at the same time the single-
qubit U gates. Moreover, it is possible to ascertain that the maximum optimization
level does not always imply better results, since in some cases the lower optimiza-
tion level can generate an equivalent circuit with fewer two-qubit gates or circuit
latency. Qiskit handles IBM’s gate set really well in terms of single-qubit gates
number, but it is often beat by t|ket〉 in CX optimization. The toolchain achieves
in most of the cases competitive weighted latencies with respect to both the other
compilers. The same thing can be substantially said for circuit depth, thus implying
quite good costs, to the point that in two cases (ADDER_LARGE and SYM10)
this quantity is the lowest. Generally speaking, the advantages over the results of
the other compilers are not very strong, but the overall performance can be consid-
ered satisfactory, according to the current state of the presented work. However, it
has to be noted that, in this specific technology, the critical layout mapping phase
was not taken in consideration, and that the smart management of SWAP gates to
adapt circuits to target devices is one of Qiskit’s and t|ket〉’s strong point: perhaps,
with such feature implemented the toolchain would prove less ideal than Qiskit,
t|ket〉 or both.

As for the differences between the toolchain compilations using different sets of
parameters, in the NMR and superconducting technologies circuits obtained with
the high precision set proved to be slightly more optimized, although the differences
between different sets of parameters were minimal. In the trapped ions technology
case, a trade-off emerged: in most circuits, the higher precision was used for the
parameters, the stronger the optimization of single-qubit gates was, but also the
worse the weighted latency became. The computation time also proved to be a crit-
ical parameter. In the superconducting technology case, the compilation time of the
toolchain was non-negligible in the case of large-sized circuits, but not excessively
long (even lower than the corresponding one for t|ket〉with highest optimization level).
Combining the running times of all the steps, the toolchain takes usually longer than
both Qiskit and t|ket〉, but in small to medium-size circuits this difference is negligi-
ble and is still acceptable in large circuits. In the NMR and trapped ions technologies
cases, the compilation time of the toolchain was in general significant and absolutely
crippling when dealing with large-sized circuits. This is probably due to the employ-
ment of the Eulercombo mechanism in a circuit whose number of gates dramatically
increased after the decomposition of CX and CZ gates.

123

Development of a multi-technology, template-based quantum... Page 35 of 44 379

When considering the overall running time of the toolchain, it is clear that the
template-based approach can be fast enough for small to average circuits, but it is also
extremely slower than other heuristic methods when dealing with very large circuits.
This ismostly due to the issue of Gimbal Locks [60] in theEulercomboprocess,which
drastically slow the compilation, especially when using highly precise approximations
of π .

4.5.1 Summary of the toolchain’s most notable highlights

A small summary of benchmark cases in which the toolchain’s performance stood out
in terms of number of non-RZ quantum gates, weighted latency, circuit depth
and circuit cost—when compared to the other state-of-the-art compilers—is here
reported. Compilation times and scalability issueswere not considered in the following
highlights.

• In NMR technology, the toolchain achieves the lowest circuit cost in URF5 and
SYM10 cases, because of its lowest circuit depth. However, it is not possible to
say that it generally performs better than the other two compilers, especially when
compared with t|ket〉, because of its good management of quantum gates with
this technology. On the other hand, when compared solely to Qiskit, the toolchain
produced circuits with a total number of single-qubit gates and weighted latency
equal or lesser than Qiskit’s ones in all the tested cases, except for DNN, ISING
and EDGE_DETECT.

• In Trapped ions technology, the proposed toolchain yielded the overall best
results, in termsof both single-qubit latency andcost, for ISING,ADDER_LARGE,
SYM10, SHOR, SYS6 and URF5. In the first two cases, the compiled circuits
have the lowest number of non-Rz single-qubit gates, two-qubit gates and the low-
est circuit depth, so the overall performance can be considered the best. In the
other cases, the cost function is minimized thanks to lower circuit depth, number
of non-Rz single-qubit gates andweighted latency, compensating aworsemanage-
ment of two-qubit gates. ADDER_SMALL has the lowest single-qubit weighted
latency, but the circuit cost is slightly higher than the one obtained with Qiskit with
maximum optimization level, even though the total number of two-qubit gates is
equal in both cases. The reason of this behaviour can be justified by the fact that the
circuit depth is slightly higher (21 instead of 20). Finally, EDGE_DETECT has
the lowest circuit cost, given by the lowest circuit depth (45665, with the second
lowest equal to 46874), such as the total number of single-qubit gates (31971). On
the other hand, the solution provided by the toolchain has a higher non-RZ gates
count (12687, instead of 11846) and single-qubit-gate weighted latency (29216,
instead of 24409) with respect to Qiskit with maximum optimization level. In
general, the obtained result can be considered competitive with respect to those
provided by the other compilers.

• In superconducting technology, the toolchain achieved theminimum cost, among
all the considered compilation strategies, with ADDER_LARGE and SYM10 cir-
cuits, thanks to its lowest circuit depth. In theADDER_SMALL case, it performed
definitely on par with all the other compilers, especially with Qiskit. Finally, QPE,

123

 379 Page 36 of 44 M. Avitabile et al.

Fig. 13 Binary-tree reduction

LAYER 1
LAYER 2
LAYER 3

EDGE_DETECT and SYS6 can be mentioned, as they are characterized by the
best obtained performance in terms of weighted latency, but not capable of achiev-
ing the minimum cost because of the higher circuit depth and the number of
two-qubit gates equal or greater than the ones of Qiskit and t|ket〉 compilers with
maximum optimization level.

5 Conclusions and future perspectives

The obtained results show that the toolchain and its core philosophy can be considered
competitive in the state of the art for the compilation of quantum circuits targeting
specific technologies and that the designed optimization process can introduce some
fine-grain technology-dependent optimizations that allow the toolchain to compete
with well-established compilers in some cases, especially when dealing with trapped
ions. In general, the toolchain is capable of steadily reducing the number of single-
qubit gates and prioritizing an abundant use of advantageous and virtual RZ gates,
thus obtaining in some circumstances circuits with low depth and cost. However, it is
important to remind that the toolchain evantual advantages would be compensated by
compilation times usually very long. The largest circuits used in the benchmarks are
probably too large in scale for current quantum computers to be able to handle them
and actually use them for computation and use tens of thousands of gates, that once
decomposed increase dramatically. In conclusion, the obtained results show a limit
of some of the proposed optimizations, with compilations that require up to several
hours to be completed. As reported through this paper, the toolchain is, however, still
a prototype. Its structure could allow it to support even more quantum technologies,
enhancing its already good versatility.

Regarding future improvements, a first step would be to extend the currently sup-
ported selection of quantum technologies. For instance, spin-based technologies are
characterized by sets of native single and two-qubit gates similar to the ones of the
NMR technology. Therefore, the routines and functions developed to optimize the
compilation for NMR backends are expected to be easily adaptable to other spin-based
technologies, such as quantum dots in semiconductors [61].Moreover, the native gates
of technologies already available could be updated and increased. This is, in particular,
the case of superconducting qubits, where RZX , controlled phase (cu1, according to
OpenQASM 2.0 syntax) and iSWAP could be taken into account in compilation, thus
permitting on one hand to operate on a gate level closer to the physical one, and on

123

Development of a multi-technology, template-based quantum... Page 37 of 44 379

Fig. 14 Template-based optimization of a circuit with three sub-circuits

the other to employ the toolchain with backends of providers different from IBM’s
ones. It is clear that considering new native two-qubit gates for superconducting qubits
could also imply the identification of new templates, associated with these gates, to
be integrated in the toolchain.

Themost relevant part currentlymissing in the toolchain is the capability of handling
the whole layout synthesis (placement and routing) process for non-fully connected
technologies, such as the superconducting one, and optimizing the strengths of cou-
plings for fully connected technologies, such as the NMR one. This feature would
require implementing a tool capable of adapting the compilation to a given device’s
layout and logically mapping each qubit line with a smart insertion of SWAP gates. In
this regard, it shall be remarked that the compilation toolchain discussed in this article
belongs to a broader project currently under development. The latter, in fact, shall
include both a compilation part (proposed in this manuscript)—dedicated to compil-
ing the quantum input circuit by reducing the quantum gates as much as possible,
regardless of the error rate of each gate—and a placement and routing part (which at
the time of writing is still missing)—with the aim of implementing a hardware-driven
noise-and-fidelity-aware mapping of logical qubits to physical qubits, minimizing the
execution time and maximizing the fidelity.

Moreover, in order to improve the compilation, other steps could be implemented
in the toolchain, existing steps may also be modified to accommodate new features
and currently implemented functions could be moved in the workflow to improve the
overall process.

123

 379 Page 38 of 44 M. Avitabile et al.

Last but not least, an effort in optimizing the overall software development could
be done to specifically reduce compilation time. Apart from employing a more time-
efficient programming language, e.g., C or C++, parallelization can be exploited. As
already introduced in Sect. 4.2, a first approach of its can be accomplished by enacting
a mechanism of sub-circuit optimization: the input quantum circuit can be divided into
N sub-circuits, where N is chosen according to some criteria (depth of the algorithm,
number of qubits, heuristics resulting from previous results). Then, the N sub-circuits
are compiled in parallel, exploiting a reasonable number of threads and processes,
according to the available hardware platform. Eventually, the optimized sub-circuits
can be recombined together to force the toolchain to perform a last optimization of the
merged circuit, according to a tree-like organization , such as the binary one reported
in Fig. 13. A naïf example is shown in Fig. 14, where a quantum circuit is firstly
divided into three initially independent sub-circuits—on each of which a template-
based optimization can be executed in parallel—then these circuits aremerged together
and an additional optimization can be finally done, which permits to obtain a final
circuit with only a two-qubit gate. If template-based approach worked properly on the
sub-circuits, it is expected that the final circuit will show a reduced number of quantum
gates. Therefore, the last optimization shall require less time, and the overall process
can lead to a significant speed-up in terms of compilation time.

In conclusion, the proposed toolchain prototype produced some interesting results
and showed a valuable potential for improvement, especially dealing with trapped
ion technology. Even though the current status of the compiler clearly shows some
weaknesses performance-wise, its coremethodology, i.e., the technology-specific local
optimization, proved to be an interesting foundation onwhich to build on, and is hoped
to be an inspiring first step in a structured development process that could aim to
achieve truly competitive results on the stage of the state of the art and a high grade
of versatility in terms of supported technologies. With some spot-on optimizations to
build on what this core has established and a certain degree of skill synergy to polish
it up on different fields of expertise, the legacy of the toolchain is believed to evolve
well in a tool that can truly push to the limit the potential of this compilation method
in the context of quantum computation research.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11128-022-03649-9.

Funding Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.

Data availability The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://doi.org/10.1007/s11128-022-03649-9
https://doi.org/10.1007/s11128-022-03649-9
http://creativecommons.org/licenses/by/4.0/

Development of a multi-technology, template-based quantum... Page 39 of 44 379

A Derivation of single-qubit-gate fidelity equation

Equation 14 was derived starting from the time evolution of the fidelity of a single-
qubit stat—initially pure and then increasingly more mixed—under the effects of
relaxation and decoherence, two non-ideality phenomena common to all the analyzed
quantum computing technologies that usually provide quite significant contributions
to the unwanted evolution of the qubit state. The proof of the fidelity equation is
reported in the following for two particular cases.

First of all, it is important to remind that the fidelity between a pure state, described
by a state vector |ψ〉, and a mixed state, described by a density matrix ρ, can be written
as [62]:

F �
√〈ψ | ρ |ψ〉 . (15)

This is a real scalar number between 0 and 1 and its maximum value is achieved when
ρ = |ψ〉 〈ψ |. Some references [63] define fidelity without the square root:

F � 〈ψ | ρ |ψ〉 . (16)

It is clear that, independently on the notation, the product 〈ψ | ρ |ψ〉 must be always
computed. Before reporting the examples, it is important to further clarify that the
computed fidelity is between the vector associated with the initial state of qubit (t = 0)
and the densitymatrix associatedwith the qubit state after a time interval�t = t−0 =
t . In the following, only the variable t (or τ , when referring to quantum gates duration)
will be reported, but it must be interpreted as a time interval with respect to t = 0.

The first considered case is associated with the state

|ψ〉 =
[

1√
2
1√
2

]

, (17)

whose density matrix affected by relaxation and decoherence phenomena is [62]:

ρ =
[
1 − 1

2e
− t

T1 1
2e

− t
T2

1
2e

− t
T2 1

2e
− t

T1

]

, (18)

where t is the time variable and T1 and T2 are characteristic time constants of relaxation
and decoherence respectively. For t = 0, the density matrix corresponds to |ψ〉 〈ψ |
and the fidelity is equal to 1. It is possible to prove that:

ρ |ψ〉 = 1

2
√
2

[
2 − e

− t
T1 + e

− t
T2

e
− t

T1 + e
− t

T2

]

,

〈ψ | ρ |ψ〉 = 1 + e
− t

T2

2
.

(19)

123

 379 Page 40 of 44 M. Avitabile et al.

In this particular case, relaxation does not affect fidelity. Assuming to be in a low-
timescale regime,where t
 T2, the exponential canbe approximatedwith afirst-order
Maclaurin-Taylor expansion:

〈ψ | ρ |ψ〉 = 1 + e
− t

T2

2
≈ 1 + 1 − t

T2

2
= 1 − t

2T2
,

√〈ψ | ρ |ψ〉 ≈
√
1 − t

2T2
≈ 1 − t

4T2
.

(20)

Equation 20 puts in evidence that, independently on the definition,F can be described
by a descending straight line 1 − kt , with real k > 0 depending on 1

T2
.

The fidelity of a single-qubit gate was properly interpreted in terms of the evolution
of a qubit state under the previously mentioned phenomena, on a time interval �t =
t − 0 corresponding to the duration of the gate τ , assumed to be always much lower
than T1 and T2, as typical in experimental quantum computing. This approach neglects
the effect of the quantum gate itself on the qubit state, but permits to employ the
same simple low-timescale model in all the examined compilation cases, without any
arrangement depending on the technology. If the duration of a π

2 -gate is assumed to be
known and equal to τ π

2
independently on the rotation axis, the fidelity can be written

as:

F(RX (π/2)) ≈ 1 − kτ π
2

, (21)

where F(RX (π/2)) is the fidelity of a Rx
(

π
2

)
, often reported in the experimental

characterization data of a quantum computer (explicitly on implicitly, in terms of its
dual error rate). Reminding that the duration of a generic single-qubit gatewith rotation
θ is proportional to τ π

2
:

τθ = 2|θ |
π

τπ
2

, (22)

its corresponding fidelity can be written as:

F1q(R(θ)) = 1 − kτθ = 1 − k
2|θ |
π

τπ
2

= 1 − k
2|θ |
π

τπ
2

+ kτ π
2

− kτ π
2

= (1 − kτ π
2
) +

(
1 − 2|θ |

π

)
kτ π

2

= F(RX (π/2))

+
(
1 − 2|θ |

π

)
(1 − F(RX (π/2))) .

(23)

123

Development of a multi-technology, template-based quantum... Page 41 of 44 379

An analogous result can be obtained for a more general case

|ψ〉 =
[
c0
c1

]
,

ρ =
⎡

⎣
1 + (c20 − 1)e

− t
T1 c0

√
1 − c20e

− t
T2

c0
√
1 − c20e

− t
T2 (1 − c20)e

− t
T1

⎤

⎦ ,

(24)

where c0 and c1 =
√
1 − c20 are two real probability amplitudes. It is possible to

prove that:

ρ |ψ〉 =
⎡

⎣
c0

[
1 + (1 − c20)(e

− t
T2 − e

− t
T1)

]

√
1 − c20

[
c20e

− t
T2 + (1 − c20)e

− t
T1)

]

⎤

⎦ ,

〈ψ | ρ |ψ〉 = c20 + (1 + 2c40 − 3c20)e
− t

T1

+ 2c20(1 − c20)e
− t

T2 .

(25)

In the low-timescale regime (t
 T1, T2), the first-order Maclaurin-Taylor approxi-
mation can be employed, thus:

〈ψ | ρ |ψ〉 ≈ 1 −
[
1 + 2c40 − 3c20

T1
+ 2c20(1 − c20)

T2

]

t ,

√〈ψ | ρ |ψ〉 ≈ 1 − 1

2

[
1 + 2c40 − 3c20

T1
+ 2c20(1 − c20)

T2

]

t .

(26)

It is possible to prove that, for c0 = c1 = 1√
2
, the results correspond to those in

Equation 20. The linear descending function F = 1 − kt is valid also in this case,
so — apart from a generic k depending on both 1

T2
and 1

T1
and on the initial qubit

measurement probabilities c20 and
√
1 − c20—Eqs. 21, 22 and 23, obtained for the

particular case |ψ〉 = 1√
2

[
1
1

]
, can be employed straightforwardly.

In conclusion, it is important to clarify that the same trend is expected to be also
valid for the single-qubit state described by generic complex probability amplitudes.
In that case, k will depend on 1

T1
and 1

T2
(as in the already examined cases) and on

the magnitude square values of the complex probability amplitudes |c0|2 and |c1|2 =
1 − |c0|2.

References

1. Soeken, M., Häner, T., Roetteler, M.: Programming quantum computers using design automation.
(2018). arXiv:1803.01022

123

http://arxiv.org/abs/1803.01022

 379 Page 42 of 44 M. Avitabile et al.

2. Preskill, J.: Lecture notes on quantum information and computation. http://theory.caltech.edu/
~preskill/ph229/. Accessed 3-January-2022

3. Loredo, R.: Learn Quantum computing with python and IBM Quantum Experience: A hands-on
introduction to quantum computing and writing your own quantum programs with Python. Packt Pub-
lishing Ltd, 2020. https://www.packtpub.com/product/learn-quantum-computing-with-python-and-
ibm-quantum-experience/9781838981006

4. Jang, W., Terashi, K., Saito, M., Bauer, C. W., Nachman, B., Iiyama, Y., Kishimoto, T., Okubo, R.,
Sawada, R., Tanaka, J.: Quantum gate pattern recognition and circuit optimization for scientific appli-
cations. In: EPJ Web Conf., vol. 251, p. 03023, 2021. https://doi.org/10.1051/epjconf/202125103023

5. Munoz-Coreas, E.: Resource efficient design of quantum circuits for cryptanalysis and scientific com-
puting applications. PhD thesis, University of Kentucky, Electrical and Computer Engineering (2020).
https://doi.org/10.13023/etd.2020.365

6. Hietala, K., Rand, R., Hung, S.-H., Wu, X., Hicks, M.: A verified optimizer for quantum circuits. Proc.
ACM Program. Lang., vol. 5 (2021)

7. Fox, M.: Quantum Optics: An Introduction. Oxford Master Series in Atomic, Optical, and Laser
Physics. Oxford Univ. Press, Oxford (2006). https://cds.cern.ch/record/1001868

8. Cirillo, G.A., Turvani, G., Graziano, M.: A quantum computation model for molecular nanomagnets.
IEEE Trans. Nanotechnol. 18, 1027–1039 (2019). https://doi.org/10.1109/TNANO.2019.2939910

9. Simoni, M., Cirillo, G.A., Turvani, G., Graziano, M., Zamboni, M.: Towards compact modeling of
noisy quantum computers: a molecular-spin-qubit case of study. J. Emerg. Technol. Comput. Syst. 18,
1–26 (2021)

10. Cirillo, G. A., Turvani, G., Simoni, M., Graziano, M.: Advances in molecular quantum computing:
from technological modeling to circuit design. In: 2020 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pp. 132–137 (2020)

11. Parhi, K.K.: VLSI Digital Signal Processing Systems: Design and Implementation. Wiley, Hoboken
(1999)

12. “Exercise 4 IBM quantum challenge 2020. https://github.com/qiskit-community/may4_challenge_
exercises/tree/master/ex04. Accessed 3-January-2022

13. IBM Quantum Experience, quantum composer. https://quantum-computing.ibm.com/composer.
Accessed 25-October-2021

14. Vandersypen, L.M.K., Chuang, I.L.: NMR techniques for quantum control and computation. Rev.Mod.
Phys. 76, 1037–1069 (2005). https://doi.org/10.1103/RevModPhys.76.1037

15. Bruzewicz, C.D., Chiaverini, J., McConnell, R., Sage, J.M.: Trapped-ion quantum computing: progress
and challenges. Appl. Phys. Rev. 6, 021314 (2019). https://doi.org/10.1063/1.5088164

16. Huang, H.-L., Wu, D., Fan, D., Zhu, X.: Superconducting quantum computing: a review. Sci. China
Inf. Sci. (2020). https://doi.org/10.1007/s11432-020-2881-9

17. Architecture and design automation for quantum computing. https://vast.cs.ucla.edu/projects/
architecture-and-compilation-quantum-computing. Accessed 25-Oct-2021

18. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits–a survey. ACM Comput.
Surv. 45, 1–34 (2013). https://doi.org/10.1145/2431211.2431220

19. Davis, M. G., Smith, E., Tudor, A., Sen, K., Siddiqi, I., Iancu, C.: Heuristics for quantum compiling
with a continuous gate set (2019). arXiv:1912.02727

20. Sanders, Y.R., Berry, D.W., Costa, P.C., Tessler, L.W., Wiebe, N., Gidney, C., Neven, H., Babbush,
R.: Compilation of fault-tolerant quantum heuristics for combinatorial optimization. PRX Quantum 1,
020312 (2020). https://doi.org/10.1103/PRXQuantum.1.020312

21. Hogg, T.: Quantum search heuristics. Phys. Rev. A 61, 052311 (2000). https://doi.org/10.1103/
PhysRevA.61.052311

22. Biswal, L., Das, R., Bandyopadhyay, C., Chattopadhyay, A., Rahaman, H.: A template-based technique
for efficient Clifford+T-based quantum circuit implementation. Microelectron. J. 81, 58–68 (2018).
https://doi.org/10.1016/j.mejo.2018.08.011

23. LaRose, R.: Overview and comparison of gate level quantum software platforms. Quantum 3, 130
(2019)

24. ANIS, M. S., Abraham, H., Agarwal, AduOffei, R., Agliardi, G., Aharoni, M., Akhalwaya, I. Y.,
Aleksandrowicz, G., Alexander, T., Amy, M., Anagolum, S., Arbel, E., Asfaw, A., et al., Qiskit: an
open-source framework for quantum computing. (2021). https://doi.org/10.5281/zenodo.2573505

123

http://theory.caltech.edu/~preskill/ph229/
http://theory.caltech.edu/~preskill/ph229/
https://www.packtpub.com/product/learn-quantum-computing-with-python-and-ibm-quantum-experience/9781838981006
https://www.packtpub.com/product/learn-quantum-computing-with-python-and-ibm-quantum-experience/9781838981006
https://doi.org/10.1051/epjconf/202125103023
https://doi.org/10.13023/etd.2020.365
https://cds.cern.ch/record/1001868
https://doi.org/10.1109/TNANO.2019.2939910
https://github.com/qiskit-community/may4_challenge_exercises/tree/master/ex04
https://github.com/qiskit-community/may4_challenge_exercises/tree/master/ex04
https://quantum-computing.ibm.com/composer
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1063/1.5088164
https://doi.org/10.1007/s11432-020-2881-9
https://vast.cs.ucla.edu/projects/architecture-and-compilation-quantum-computing
https://vast.cs.ucla.edu/projects/architecture-and-compilation-quantum-computing
https://doi.org/10.1145/2431211.2431220
http://arxiv.org/abs/1912.02727
https://doi.org/10.1103/PRXQuantum.1.020312
https://doi.org/10.1103/PhysRevA.61.052311
https://doi.org/10.1103/PhysRevA.61.052311
https://doi.org/10.1016/j.mejo.2018.08.011
https://doi.org/10.5281/zenodo.2573505

Development of a multi-technology, template-based quantum... Page 43 of 44 379

25. Javadi-Abhari, A., Nation, P., Gambetta, J.: Qiskit - write once, target multiple architectures.
[Online] https://www.ibm.com/blogs/research/2019/11/qiskit-for-multiple-architectures/. Accessed
25-October-2021

26. Wille, R., Van Meter, R., Naveh, Y.: IBM’s Qiskit tool chain: working with and developing for real
quantum computers. 2019 Design, Automation & Test in Europe Conference and Exhibition (DATE).
2019. https://doi.org/10.23919/DATE.2019.8715261

27. “t|ket〉 - quantum software development platform.” [Online] https://cambridgequantum.com/
technology/, accessed 25-October-2021

28. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.: t|ket〉: a retargetable
compiler for NISQ devices. Quantum Sci. Technol. 6, 014003 (2020). https://doi.org/10.1088/2058-
9565/ab8e92

29. Cross, A.W., Bishop, L. S., Smolin, J. A., Gambetta, J. M.: Open quantum assembly language. (2017).
arXiv:1707.03429

30. Cambridge quantum’s tket is now open-sourced. https://cambridgequantum.com/cambridge-
quantums-tket-is-now-open-sourced/. Accessed 25-October-2021

31. Qiskit’s optimization module. https://qiskit.org/documentation/stable/0.28/apidoc/qiskit_
optimization.html. Accessed 26-June-2022

32. IBM decision optimization CPLEX modeling for python. https://ibmdecisionoptimization.github.io/
docplex-doc/. Accessed 26-June-2022

33. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.: t|ket〉 : a retargetable
compiler for NISQ devices (2020). https://doi.org/10.48550/arXiv.2003.10611

34. Tucci, R. R.: An introduction to Cartan’s KAK decomposition for QC programmers (2005)
35. Itoko, T., Raymond, R., Imamichi, T., Matsuo, A.: Optimization of quantum circuit mapping using

gate transformation and commutation. (2019). arXiv:1907.02686
36. McKay, D.C., Wood, C.J., Sheldon, S., Chow, J.M., Gambetta, J.M.: Efficient z gates for quantum

computing. Phys. Rev. A 96, 022330 (2017). https://doi.org/10.1103/PhysRevA.96.022330
37. Circuit library—template circuits. https://qiskit.org/documentation/apidoc/circuit_library.html.

Accessed 26-June-2022
38. Shende,V.V.,Markov, I.L.: On theCNOT-cost of TOFFOLI gates. Quantum Inf. Comput 9(5), 461–486

(2009). https://doi.org/10.26421/QIC9.5-6-8
39. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin,

J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).
https://doi.org/10.1103/PhysRevA.52.3457

40. Garcia-Escartin, J. C., Chamorro-Posada, P.: Equivalent quantum circuits. (2011). arXiv:1110.2998
41. Asfaw, A., Corcoles, A., Bello, L., Ben-Haim, Y., Bozzo-Rey, M., Bravyi, S., Bronn, N., Capelluto,

L., Vazquez, A. C., et al..: Learn quantum computation using qiskit. (2020). http://community.qiskit.
org/textbook

42. Rynbach, A. V., Muhammad, A., Mehta, A. C., Hussmann, J., Kim, J.: A quantum performance
simulator based on fidelity and fault-path counting (2012)

43. Ben-Ari, M.: A tutorial on Euler angles and quaternions. https://www.weizmann.ac.il/sci-tea/
benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.
pdf. Accessed 25-Oct-2021

44. Zhang, X., Xiang, H., Xiang, T., Fu, L., Sang, J.: An efficient quantum circuits optimizing scheme
compared with qiskit. (2018). arXiv:1807.01703

45. Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s
guide to superconducting qubits. Appl. Phys. Rev. 6(2), 021318 (2019). https://doi.org/10.1063/1.
5089550

46. Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A., Petta, J. R.: Semiconductor spin qubits (2021).
arXiv:2112.08863

47. Abobeih,M.H.,Wang,Y., Randall, J., Loenen, S.J.H., Bradley, C.E.,Markham,M., Twitchen,D.J., Ter-
hal, B.M., Taminiau, T.H.: Fault-tolerant operation of a logical qubit in a diamond quantum processor.
Nature 606, 884–889 (2022). https://doi.org/10.1038/s41586-022-04819-6

48. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951).
https://doi.org/10.1214/aoms/1177729694

49. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., Saraiva, J.: Energy efficiency
across programming languages: how do energy, time, and memory relate?. In: Proceedings of the 10th

123

https://www.ibm.com/blogs/research/2019/11/qiskit-for-multiple-architectures/
https://doi.org/10.23919/DATE.2019.8715261
https://cambridgequantum.com/technology/
https://cambridgequantum.com/technology/
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
http://arxiv.org/abs/1707.03429
https://cambridgequantum.com/cambridge-quantums-tket-is-now-open-sourced/
https://cambridgequantum.com/cambridge-quantums-tket-is-now-open-sourced/
https://qiskit.org/documentation/stable/0.28/apidoc/qiskit_optimization.html
https://qiskit.org/documentation/stable/0.28/apidoc/qiskit_optimization.html
https://ibmdecisionoptimization.github.io/docplex-doc/
https://ibmdecisionoptimization.github.io/docplex-doc/
https://doi.org/10.48550/arXiv.2003.10611
http://arxiv.org/abs/1907.02686
https://doi.org/10.1103/PhysRevA.96.022330
https://qiskit.org/documentation/apidoc/circuit_library.html
https://doi.org/10.26421/QIC9.5-6-8
https://doi.org/10.1103/PhysRevA.52.3457
http://arxiv.org/abs/1110.2998
http://community.qiskit.org/textbook
http://community.qiskit.org/textbook
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf
http://arxiv.org/abs/1807.01703
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
http://arxiv.org/abs/2112.08863
https://doi.org/10.1038/s41586-022-04819-6
https://doi.org/10.1214/aoms/1177729694

 379 Page 44 of 44 M. Avitabile et al.

ACM SIGPLAN International Conference on Software Language Engineering, pp. 256–267 (2017).
https://doi.org/10.1145/3136014.3136031

50. Kharkov,Y., Ivanova,A.,Mikhantiev, E., Kotelnikov,A.:Arline benchmarks: automated benchmarking
platform for quantum compilers. (2022). https://doi.org/10.48550/ARXIV.2202.14025

51. FakeToronto backend calibration data. https://github.com/Qiskit/qiskit-terra/tree/main/qiskit/
providers/fake_provider/backends/toronto. Accessed 02-July-2022

52. IonQ API Calibrations. https://quantumai.google/cirq/hardware/ionq/calibrations. Accessed 08-July-
2022

53. National Institute of Advanced Industrial Science and Technology, Spectral database for organic com-
pounds (2022). https://sdbs.db.aist.go.jp. Accessed 30-June-2022

54. Li, K., Li, Y., Han, M., Lu, S., Zhou, J., Ruan, D., Long, G., Wan, Y., Lu, D., Zeng, B., Laflamme, R.:
Quantum spacetime on a quantum simulator. Commun. Phys. 2, 122–128 (2019). https://doi.org/10.
1038/s42005-019-0218-5

55. Wen, J., Kong,X.,Wei, S.,Wang, B., Xin, T., Long,G.: Experimental realization of quantum algorithms
for a linear system inspired by adiabatic quantum computing. Phys. Rev. A 99, 012320 (2019). https://
doi.org/10.1103/PhysRevA.99.012320

56. Li, A., Stein, S., Krishnamoorthy, S., Ang, J.: QASMBench: A low-level QASM benchmark suite for
nisq evaluation and simulation. (2021). arXiv:2005.13018

57. QASMBench circuits repository. https://github.com/uuudown/QASMBench. Accessed 25-Oct-2021
58. JKU IIC circuits repository. https://github.com/iic-jku/ibm_qx_mapping/tree/master/examples.

Accessed 25-Oct-2021
59. Intel Xeon Gold 6134 processor - product specification. [Online] https://ark.intel.com/content/

www/us/en/ark/products/120493/intel-xeon-gold-6134-processor-24-75m-cache-3-20-ghz.html.
Accessed 25-October-2021

60. Brezov, D. S., Mladenova, C. D., Mladenov, I. M.: New perspective on the gimbal lock problem. In:
AIP Conference Proceedings, vol. 1570, pp. 367–374, American Institute of Physics, 2013. https://
doi.org/10.1063/1.4854778

61. Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A., Petta, J. R.: Semiconductor spin qubits (2021).
arXiv:2112.08863v1

62. Nielsen, M.A., Chuang, I.L.: QuantumComputation and Quantum Information: 10th Anniversary Edi-
tion. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667

63. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994). https://doi.org/
10.1080/09500349414552171

64. Maslov, D.: Basic circuit compilation techniques for an ion-trap quantum machine. New J. Phys. 19,
023035 (2017). https://doi.org/10.1088/1367-2630/aa5e47

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1145/3136014.3136031
https://doi.org/10.48550/ARXIV.2202.14025
https://github.com/Qiskit/qiskit-terra/tree/main/qiskit/providers/fake_provider/backends/toronto
https://github.com/Qiskit/qiskit-terra/tree/main/qiskit/providers/fake_provider/backends/toronto
https://quantumai.google/cirq/hardware/ionq/calibrations
https://sdbs.db.aist.go.jp
https://doi.org/10.1038/s42005-019-0218-5
https://doi.org/10.1038/s42005-019-0218-5
https://doi.org/10.1103/PhysRevA.99.012320
https://doi.org/10.1103/PhysRevA.99.012320
http://arxiv.org/abs/2005.13018
https://github.com/uuudown/QASMBench
https://github.com/iic-jku/ibm_qx_mapping/tree/master/examples
https://ark.intel.com/content/www/us/en/ark/products/120493/intel-xeon-gold-6134-processor-24-75m-cache-3-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120493/intel-xeon-gold-6134-processor-24-75m-cache-3-20-ghz.html
https://doi.org/10.1063/1.4854778
https://doi.org/10.1063/1.4854778
http://arxiv.org/abs/2112.08863v1
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1088/1367-2630/aa5e47

	Development of a multi-technology, template-based quantum circuits compilation toolchain
	Abstract
	1 Introduction
	2 Background
	3 The proposed toolchain
	3.1 The template-based approach
	3.2 The toolchain's structure
	3.2.1 Single-qubit gates synthesis block
	3.2.2 Two-qubit gates synthesis block

	3.3 Implementation overview

	4 Benchmarks
	4.1 Testing methodology
	4.2 Estimation of complexity of the compilation algorithm
	4.3 Comparison with other compilers
	4.4 Comparison with the state of the art
	4.5 Obtained results
	4.5.1 Summary of the toolchain's most notable highlights

	5 Conclusions and future perspectives
	A Derivation of single-qubit-gate fidelity equation
	References

