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“Let us confine ourselves, therefore, to the purification of our opinions and value judgements, and
to the creation of our own original standards of goodness — but let us no longer brood over the
‘moral worth of our actions’! Yes, my friends! The time has come for us to turn away in disgust
from all this nonsense of some standing in moral judgement over others! The whole thing is in

such bad taste! Let us leave this nonsense and this bad taste to those who have nothing better to
do than to keep the past alive a little bit longer and who never live in the here and now — let us

leave them to the many, to the great majority! We, however, want to become who we are —
something new, unique, incomparable, self-legislating and self-creating! And to that end, we must
become the best students and discoverers of all the laws and necessities in the world. We must be
physicists in order to be creators in that sense — whereas hitherto all value judgements and ideals
have been based on an ignorance of physics, or in contradiction with it. And so I say, hurrah for
physics! And an even louder hurrah for that which impels us to it — our honesty.”

-Friederich Nietzsche, The Joyous Science.
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Double beam-recoil observable C; vs. cos 002;1 binned in energy, with a range of
1.15 < By < 3.05 GeV. Red dots represent the extracted C, observable via a linear fit
to the asymmetry in (4.43), while the blue dots represent the acceptance corrections
performed on C; (5.14). The acceptance A, gox+ for C; appears to have an effect
across most of the lower energy bins, over their backward and forward angular regions,
with some minor effects in the high energy bins. The given uncertainties for the red-
dots are statistical with the Q—value uncertainties added in quadrature, while the
blue dots uncertainties are statistical in nature. . . . . . . .. ... ... L0

Ratio of the histograms with and without the implemented acceptance corrections (see
Figure 5.1) A,,_, os+, for the beam-recoil polarization observable C,. The histogram
is approximately Gaussian and roughly centered around 1.0, with a lower left-most
tail. Consequently, the acceptance corrections play a greater, however slight, role
for the C, observable, than for the other observables considered in this analysis; see
Figures 5.4 and 5.6 . . . . . . . . .

Double beam-recoil observable C, vs. cos GCZ;; binned in energy, with a range of
1.15 < B, < 3.05 GeV. Red dots represent the extracted C, observable via a linear fit
to (4.43), while the blue dots represent the acceptance corrections performed on C,
(5.14). Similar to Figure (5.1), the acceptance A,,_, xox+ for C, appears to play a role
across most of the lower energy bins, over their backward/forward angular regions,
with some minor effects for the higher energy bins. The given uncertainties for the
red-dots are statistical with the (Q—value uncertainties added in quadrature, while the
blue dots uncertainties are statistical in nature. . . . . . . . ... ..o

Ratio of the histograms with and without the implemented acceptance corrections
(see Figure 5.1) A, , gox+ for the beam-recoil polarization observable C,. The his-
togram is approximately Gaussian and centered around 1.0, thus indicating that the
acceptance corrections have little influence on the C, observable. . . . . . . .. .. ..

Single hyperon-recoil observable P vs. cos HCE:; binned in energy, with a range of
1.15 < E, < 3.05 GeV. Red dots represent the extracted P observable via a the use
of the counting asymmetry in (4.52), while the blue dots denote the acceptance cor-
rections performed on P (5.14). We find good agreement between both measurements
before and after acceptance corrections were applied, across most of energy bins. Some
minor discrepancies (i.e. shifts between the extracted P observable values) are found
in the higher energy bins, which could be attributed to the underlying statistics of the
data. As such, the acceptance corrections do not play a considerable role for the P
observable. The given uncertainties for the red-dots are statistical with the QQ—value
uncertainties added in quadrature, while the blue dots uncertainties are statistical in
nature. . . . . .. e e e e e e e e e s e

Ratio of the histograms with and without implemented acceptance corrections (see
Figure 5.1) A,,_, gox+ for the hyperon-recoil polarization observable P. The histogram
is roughly centered around 1.0, thus indicating that the acceptance corrections have
little influence on the P observable. . . . . . . .. ... ... ... ...........
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Beam-recoil polarization observable C, for the reaction vp — K°%*, using CLAS
g12 data, with a set of 100-MeV-wide energy bins and an incident photon energy
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Beam-recoil polarization observable C, for the reaction yp — K°Y*, using CLAS
g12 data, with a set of 100-MeV-wide energy bins and an incident photon energy of
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to the asymmetry (4.43), while the blue dots denote the same observable as obtained
via the Maximum Likelihood fit method. . . . . . . . .. .. ... ... ... .....

Ratio histogram of C, observable values obtained via the ML and linear fit methods.
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Hyperon-recoil polarization observable P for the reaction vp — K%%T, using CLAS
g12 data, with a set of 100-MeV-wide energy bins and an incident photon energy of
1.15 < E, < 3.05 GeV. The red dots denote the P observable as extracted using
the asymmetry in (4.52), while the blue dots denote P as obtained via the Maxi-
mum Likelihood fit method, and the magenta dots show previous CBELSA/TAPS
Collaboration measurements [56]. The given uncertainties for the g12 (red) data are
statistical with the (Q—values added in quadrature, while the Maximum Likelihood
(blue) uncertainties are statistical. . . . . . ... Lo o Lo
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ABSTRACT

The realm of hadronic spectroscopy offers a window into the inner workings of quark-gluon inter-
actions within hadrons, while providing new insights into the existence of excited hadrons. The
knowledge gained from the further study of baryon resonances are manifold, as they proffer a deeper
understanding of strong interactions hitherto unknown and glimpsed only through the properties of
the ensuing excited baryon states. Moreover, the study of these excited states is a well-established
tool implemented to further understand the non-perturbative (low-energy) regime of Quantum
Chromodynamics (QCD).

Nonetheless, even after decades of intense theoretical and experimental investigations, most of
the predicted excited resonance states proposed by different theoretical programs, including Lattice
QCD and Constituent Quark Models (CQM), have yet to be experimentally confirmed. Current
theoretical calculations predict a greater number of baryon resonances than what has actually been
observed. This disagreement between models and experimental studies in hadronic physics is known
as the missing baryon problem.

The missing resonances are excited state particles that decay quickly, and might be responsible
for filling in the intermediate steps in processes such as YN — N* — Y Z. Excited nucleon states are
typically found in broadly overlapping (across a wide range of masses and spin-parity combinations
Jr ) resonances, such as N* states (these have the potential to decay into a plethora of final-states
Y Z composed of baryons and mesons), which can account for the intermediate particle involved in
the reaction. Consequently, these states are difficult to isolate via the use of cross-sectional data
alone. Therefore, it becomes necessary to introduce a set of polarization observables, as they are an
instrumental tool in the disentanglement process of contributing single resonant and non-resonant
amplitudes, leading to the identification of the missing baryons. It is theorized that Nucleon (N*)
resonances can decay into final-state pairs like the AK or K'Y channels.

The data employed in this thesis was recorded at the Thomas Jefferson National Accelerator
Facility (JLab) under the CLAS ¢12 experiment as part of their N* spectroscopy program, via the
use of the CEBAF Large Acceptance Spectrometer (CLAS) detector. This experiment recorded
photoproduction data from the application of a circularly-polarized photon beam incident on an

unpolarized liquid Hydrogen (IHsz) target, using a photon energy range of 1.1 < E,, < 5.4 GeV.

p.q%



In this work we determined the beam-recoil polarization transfer observables C, and C,, as well
as the hyperon-recoil polarization observable P, for the photoproduction reaction vp — K°L+,
within the energy range 1.15 < E, < 3.0 GeV. Each of the aforementioned observables {C;, P, C.}
were extracted individually via the use of a linear fit, and simultaneously via the implementation
of a Maximum Likelihood fit.

The main motivation behind studying the photoproduction reaction vp — K3+ stems from the
fact that it is relatively understudied amongst the other isospin-related K3 channels. Furthermore,
the K9%% final-state has no published measurements of its double-polarization observables, thus
the work herein presented will be the first of its kind in providing results for the observables C,

and C}, which will in turn aid in the determination of contributing baryon resonances.
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CHAPTER 1

INTRODUCTION

Humans are an inquisitive species. Not easily satisfied with meek and superficial explanations
about the workings of our enveloping existence, we have, since time immemorial, sought to expand
our horizons of reality, peeling away the layers of uncertainty from the veils obscuring our senses
to an objective existence. And after generations of unrelentingly questioning and proving nature,
humanity’s greatest intellectual achievement gave birth to the Standard Model of particle physics.

Armed with this magnificent theoretical framework, physicists have catalogued and separated
the building blocks of our Universe into three distinct families of particles: two families of matter
particles, quarks and leptons, and one family of force carrier mediator particles (also known as gauge
bosons). There are a total of six leptons (e, ve, ft, vy, T, V), and six anti-leptons, which naturally
fall into three distinct generations classified in accordance to their charge, electron number, muon
number, and tau number. Similarly, there are a total of six quarks (u, d, ¢, s, t, b), and anti-
quarks, which come in six distinct flavors and are classified according to their charge, strangeness,
charmness, bottomness, topness, upness, and downess. These quarks also fall into three distinct
generations as well and come in three distinct colors (red, blue, green) each (here, color does not
have the more traditional meaning of wisible color but rather serves as an analogue of the electric
charge). Naturally, each color has an anti-color counterpart as well.

The interactions between particles are mediated by the exchange of bosons. Bosons posses inte-
ger spin in units of i, and adhere to Bose-Finstein statistics, while fermions (i.e. quarks, baryons
and leptons) possess half-integer spin in units of /2 and are governed by Fermi-Dirac statistics. In
contemporary particle physics, each force is mathematically described by a renormalizable gauge-
invariant Quantum Field Theory (QFT), with the exception of gravity as we still lack a theory of
quantum gravity. The spin-1 photon is the mediator for the electromagnetic force, while the charged
W bosons, along with the electrically neutral Z boson, mediate the weak force. As for the strong
force, its mediating particle is the gluon which, like the photon, is massless. The QFT utilized to

describe quark-gluon interactions is given the name of Quantum Chromodynamics (QCD). Due to



the nature of QCD interactions, quarks cannot be observed as free particles (since all naturally
occurring particles are colorless), but instead are always found confined in bound states known
as hadrons. Hadrons can be categorized into two distinct families based on their intrinsic spin:
baryons (bound states consisting of three quarks with half-integer spin, i.e. fermions) and mesons
(bound states consisting of a quark/anti-quark pair and integer spin).

However as things currently stand, QCD does not have an analytic solution within its low energy
(also known as non-perturbative) regime. As a consequence, physicists have developed techniques
in order to study Nucleons within this non-perturbative regime. Baryon Spectroscopy is one of said
tools, and it is employed to study excited Nucleons in an attempt to gain further insights into how
the dynamics of quarks and gluons give rise to the rich spectrum of hadrons, and the inner-workings
of the strong interaction.

In this thesis, we shall make use of Baryon Spectroscopy in order to extract a set of polariza-
tion observables, which are of crucial importance for isolating single-resonance contributions from

interfering excited baryon states.

1.1 Quantum Chromodynamics

The Universe as we know it is governed by four distinct forces of nature (listed in order of
decreasing strength): strong, electroweak, electromagnetic and gravitational. Each of these funda-
mental forces (excluding gravity) is described in terms of a Quantum Field Theory. For the strong
force there is Quantum Chromodynamics (QCD), a gauge field theory with an underlying SU(3)
symmetry, used to describe the interactions between colored quarks and gluons. The quarks have
the distinction of being the irreducible fundamental representations of the SU(3) color group alge-
bra (one can think of color as a label for the three distinct orthogonal states that inhabit the SU(3),
color space). The corresponding Lagrangian density for Quantum Chromodynamics is given by,

Locp = Y a.a (i7" Oubdab — gyt 7 — Mga) g — iFlf‘VFA . (1.1)

q
where we use the convention of summing over repeated indices, v* denotes the Dirac ~y-matrices,
thq.q are quark-field spinors representing a quark with flavor ¢, mass my and color-index a (running
from 1 to N. = 3, since there’s three colors for quarks), and safuc represents the gluon fields

(with C spanning 1 to N2 — 1 = 8, since there are eight different kinds of gluons). Furthermore,



the tac;) correspond to the generators of the SU(3) group, which are represented by eight 3 x 3
matrices (known as the Gell-Mann matrices; they are to SU(3) what the Pauli spin matrices are
to SU(2)), and serve to indicate the fact that a gluon interacting with a quark can rotate the
quark’s color within SU(3) space. Of great importance is also the quantity gs, known as the
coupling constant, which dictates the strength of the interaction among particles subject to QCD.
The coupling constant g, along with the mass of the quarks m,, are the fundamental parameters

of QCD. Lastly, the field strength tensor F/ﬁ, is defined via,
F;ﬁ/ - 8#*5271/14 - anMA - gszBConuBﬂ/,,C, (1.2)

where fapc are the structure constants of the SU(3) symmetry group and are defined via the

commutator relation of the Gell-Mann matrices,
(t4, 18] = ifapct. (1.3)

While the intrinsic theory of QCD seems to have similar foundations to those of QED (the QFT
responsible for the electromagnetic force binding the constituent amounts of an atom, electrons and
nucleons), the nature of QCD is intrinsically richer as it replaces the single charge of QED by three
distinct colored charges. Furthermore, while for QED charged particles interact amongst each
other via the exchange of photons, they cannot interact amongst themselves, since photons are
neutrally-charged particles; on the other hand, the gluons responsible for mediating the strong
interactions between quarks can in fact interact with each other since they are not color-neutral.
This is a direct consequence of the non-commuting nature of the SU(3) algebra, due to the presence
of the additional term (gsfapct®) in the field strength tensor F ;3, (1.2), which is responsible for
giving rise not only to quark and anti-quark interactions, but also to the aforementioned gluon
self-interactions. As such QCD is said to be a mnon-Abelian gauge theory. It is this theoretical
framework that describes the strong interaction amongst hadrons (composed of a concoction of
quarks and gluons).

By its very nature the strong force exerts a short-range influence with the particular property
of varying rapidly as a function of distance. A profound consequence of gluon self-interactions is
color confinement, defined as the constraining of colored objects to color singlet states (baryons
and mesons) so that no objects with non-zero color charge can freely propagate. This peculiarity

of QCD is hardwired within the underlying structure of its strong coupling constant, ag.



It is a known fact from QED that the strength of the electromagnetic force is encoded within
the ubiquitous and dimensionless fine-structure constant,
e? 1

4W%ﬁ'

(1.4)

Due to the low-value of this coupling constant «, one can bring the powers of perturbation
theory to bear on QED calculations. The story is a bit more complicated in the case of QCD, since
the value of its coupling constant depends on the energy scale of the interaction under consideration,
making ag an energy-dependent parameter (since ag depends on the momentum transfer ¢2). As
such, this behavior effectively divides QCD into two distinct energy regimes as the momentum
transfer ¢ becomes large or small. At sufficiently high-energies, ag takes on a small enough value
so as to render perturbation theory a viable tool to use. Phrased differently, the strong coupling
constant vanishes asymptotically at short distances, such that the attraction between quarks grows
weaker as one approaches the other. This particular property of QCD is known as asymptotic
freedom, a behavior proposed by David Gross and Frank Wilczek, and also independently by David
Politzer, in 1973. Their magnificent accomplishment was awarded the 2004 Nobel Prize in Physics.

On the other hand, at low-energies, ag takes on large values exponentially, such that at long
distances color confinement becomes an emergent property. It is within this energy-regime that
the large value of ag prevents the separation of a hadron into its constituent quarks. Thus, the
philosophy of confinement lies in the idea that the strong force binding the quarks together does not
decrease as a function of distance. Currently there exists no analytic proof for color confinement
as this occurs in the non-perturbative regime of QCD.

Lastly, using perturbation theory in the high-energy regime of QCD, the energetic evolution of

the strong coupling constant aig is given by [26],

2\ aS(M2)
(0 ) = T s /12 (11n — 27) (1 21/12)" (15)

where |¢?| > p?, n represents the number of colors, and f is the number of flavors. For any

theory in which 11n > 2f, an antiscreening effect (since gluons can interact amongst themselves)
dominates such that the strong coupling constant decreases as the momentum transfer |¢?| increases,
which renders the so-called strong force weak at short distances. This is the basis for asymptotic
freedom. Figure 1.1 is a summary of ag as a function of momentum transfer extracted from various

high-energy experiments.
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Figure 1.1: Measurements of the strong coupling constant ag as a function of the momentum
transfer @), from different experiments. The curves represent QCD predictions from world-average
values of avg. The open (closed) circles represent next-leading-order (next-next-leading-order) QCD
calculations used in the extraction of ag. These results prove a direct confirmation of the theoret-
ically expected behavior of QCD at high-energies (large momentum-transfers), i.e. the predicted
decrease in ag as (@ increases is observed. Image source: [6]. Licensed under CC BY-NC-ND 4.0.

1.2 Hadron Properties and Nomenclature

Hadrons are particles subject to the strong force, which is mathematically described by QCD.
The building blocks of this field theory constitute the quarks and the gluons (the force carriers).
Hadrons are divided into two categories: baryons and mesons. The nomenclature for hadrons is
structured in accordance to their mass and a set of quantum numbers: isospin (I), total spin (.5),
total orbital angular momentum (L), total angular momentum (J), parity (P), flavor and charge
conjugation (C). These quantum numbers can be used to build baryon and meson states.

Introduced by Heisenberg in 1932, isospin tells us the number of distinct charged states of the
same particle that exist within nature. For a given isospin I, there are a total (2/+1) particles in a

hadronic multiplet state. The total angular momentum J can be determined by the vector addition
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of the total spin S and total orbital angular momentum L. As such, J can only take on values
constrained within the range |L — S| < J < |L + S|. In the early days of hadronic spectroscopy,
physicists used the particular values of S, L and J, to name hadronic states based on the atomic
spectroscopy notation, 2*1L; (as an example, one uses s for [ = 0 and p for [ = 1).

The parity operator P is an example of a discrete symmetry transformation, corresponding to
the spatial inversion of a set of coordinates through their origin. Applying the parity operator twice
takes a discrete transformation back to its starting point (P? = 1). Hence, the eigenvalues of P
are +1. Scalars and pseudovectors have an eigenvalue of +1, while pseudoscalars and vectors have
eigenvalue —1. Furthermore, the parity operator P serves as a good quantum number for hadrons.
As for the mesons, and due to the fact that they are composed of a fermion/anti-fermion pair, their

L+1 Baryons have a

intrinsic parities are opposite, resulting in them having a parity of P = (—1)
parity of P = (—1)%; it thus follows that the ground state baryons (L = 0) have positive parity.
Next we have the flavor quantum number, which simply refers to quark content. The six known
quarks can be further split up into two different classes, the light quarks, (u, d, s), and the heavy
quarks (c, b, t). Furthermore, since gluons are flavor neutral, it follows that, while the strong force
is flavor independent, it is color dependent. Next is the charge conjugation operator C, which has
the peculiar property of turning a particle into its own antiparticle. Similar to the parity operator
P, a double application of C brings one back to the original state, since C? = 1; consequently, it has
eigenvalues of £1. However, only those particles which are their own antiparticles can be eigenstates
of C'. For hadrons, the neutral mesons fit this prescription, thus making C' a good quantum number
for said particles; their charge conjugation is C = (—1)E+9. Lastly, the applicability of C' can be
extended to the charged (non strange, non baryonic) states as well, by defining the G -parity operator
(a 180° rotation about I in isospin space, followed by the application of C) as G = Ce'™'2,
Therefore, the nomenclature for hadrons is the following: for baryons, their quark content and
isospin I are sufficient labels to give them an unambiguous symbol. As an example, consider a delta
baryon A, with three u and/or d quarks, and isospin I = 3/2. All delta states are represented as
A(mass)JP, with the A ground state being A(1232)3/2%, where 1232 is the A mass (in MeV /c?).
For mesons, mass (in MeV/c?), quark content and quantum numbers I, J¢ are enough to specify

their symbol. Consider for instance the pion mesons (of relevance to this body of work) 7. Their

nomenclature would have them denoted as J”¢ = 0=, with a given mass of roughly 140 MeV /c?.



1.3 Baryon Spectroscopy

The realm of hadronic physics belongs to an extensive field of research which concerns itself with
the study of matter at a fundamental level. In some sense, it sits at the boundary of high-energy
particle and nuclear physics, as it adopts the reductionist approach of the former, while adopting
an interest in the underlying structure of composite particles from the latter.

The intrinsic energy dependence of QCD renders it immune to a regular perturbative theory
approach in the low-energy regime. As such, one cannot predict the spectra of baryons using
perturbation theory alone. In order to circumvent said issue, physicists developed techniques
to study QCD in the form of baryon spectroscopy. This consists of mapping and studying the
spectrum of all excited states (known as resonances). It is also a superb tool for studying the
dynamics responsible for color confinement. Similar in spirit to atomic spectroscopy (where one
studies atoms by observing their decay spectrum), baryon spectroscopy comprises of exciting the
ground state of a Nucleon via the use of a high-energy particle beam (using electrons, photons, or
pions), thus resulting in radiation in the form of 4’s, K’s, ¥’s, ©’s, among other particles.

The overarching goals of baryon spectroscopy are concerned with achieving an understanding
of all relevant degrees of freedom within a baryon, and unraveling the mystery of how the strong
quark-gluon interactions give rise to the excited hadron states observed in nature. Therefore, by
analyzing the properties of the emerging excited baryon states, physicists can construct hypothetical
models in order to account for their observations. Generally speaking, the full wavefunction of a

baryon state, accounting for all its degrees of freedom, may be written as [64],
v = \Ijﬂavor\llspinq]color\ljspacea (16)

where each wavefunction component describes, respectively, the flavor, spin, color and spatial prop-
erties of the baryon in question. Since quarks are fermions, the overall wavefunction of a baryon is
required to be antisymmetric under the exchange of any two of its constituent quarks. Furthermore,
since all observed hadrons are color singlets, then the baryon color wavefunction (Wco1or) must be
totally antisymmetric. Hence, the remaining portion of the wavefunction, ¥gayor Wspin Wspace, must
be symmetric under the exchange of any pair of identical quarks. Two important models used
to explain and describe the underlying dynamics within hadrons, and their spectra, include the

Constituent Quark Model (CQM) and Lattice QCD, which we now briefly recount.



Figure 1.2: A baryon as described by the Constituent Quark Model (CQM). Here, a baryon consists
of three quarks bounded by two independent harmonic oscillators p and A. Image source: [27].
Courtesy of Dr. Charles Hanretty (Jefferson Lab).

Constituent Quark Model (CQM). This model assumes that quarks move in a harmonic

oscillator potential. This potential is chosen due to its simplicity in allowing to separate the center
of mass motion by a choice of suitable coordinates describing two harmonic oscillators p and A
(see Figure 1.2). Thus, a baryon is treated as a system with three constituent quarks acting as its
degrees of freedom; its spatial wavefunction (Wgpace) is described by the Jacobi-coordinates of the
oscillators p and A. The sum of the constituent quark masses (with the appropriate binding energy

corrections) is enough to account for the baryon mass. The energy of this 3-quark system is,
E = (N + 3)hw, (1.7)

where the total quantum numbers N of an excited baryon are N = 2(n, + ny) + 1, + 5, I, and
[\ denote the orbital angular momentum of the oscillators p and A, while n, and n) denote the
radial excitation and w = \/% The light-flavor quarks (u, d, s) can be dealt with using an
approximate SU (3)gayor group symmetry framework. This symmetry is approximate since the mass
of the strange quark is different from the masses of the up and down quarks; nonetheless, the mass
difference between mgs and m,,q is relatively small (on the order of 100 MeV) compared to typical
binding energies of baryons (on the order of 1 GeV) [64]. Furthermore, the flavor and spin groups
(SU(3)favors SU(2)spin) can be combined into an approximate spin-flavor group SU(6)gavorxspins

such that the resulting multiplet states stemming from combining the light-flavor quarks are,

6©6%6=>56g® 70y @70y @20y, (1.8)



where S, M and A denote symmetric, mized and antisymmetric wavefunctions. The SU(6)gavorxspin

spin-flavor group can be decomposed into SU(3) flavor decuplet and octet multiplet states,

56 = 110 ® %8 (1.9a)
70=2100'8228® 21 (1.9b)
20 =281, (1.9¢)

where the superscript (254 1) denotes the total spin-projections for each SU(3) multiplet. Ground
state baryons (N = 0) (proton, neutron, A) belong to the 56plet, where the angular momentum

between any constituent quarks is zero. These ground states are further decomposed as follows:
+

1.
2

protons/neutrons have 8 members with two spin-1/2 projections (28) and spin/parity J = 17
3+
2

the A baryons have 10 members with four spin-3/2 projections (*10) and spin/parity J& =
(see Figure 1.3). Baryons can thus be cataloged into different excitation bands based on the quanta
of excitation N. Each supermultiplet is specified by (D, L%), where D is the dimensionality
of the representation (56, 70, 20), L is the total angular momentum and P is the parity. The
spectra of Nucleon (N*) and Delta (A*) resonances can be constructed by applying the symmet-
ric/antisymmetric properties of the spatial and SU(6) multiplet wavefunctions. Thus, for the CQM

the hadronic spectrum stems from the harmonic oscillator potential and the angular momentum.
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Figure 1.3: Ground state baryons (N = 0). (Left): Baryon octet (?8) for spin-1/2 ground state
baryons. (Right): Baryon decuplet (*10) for spin-3/2 ground state baryons. () represents the
electric charge, S is strangeness, and I3 is the third component of isospin. Image source: Wikipedia.
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Lattice QCD. Currently, the only ab initio approach to the non-perturbative regime of QCD
relies on lattice simulations [17]. This approach discretizes QCD within its non-perturbative regime
on a space-time lattice, allowing for the extraction of an approximate solution to QCD via numerical
methods. The regular path-integral approach from QFT over infinitely many Minkowski space-time
points is relaxed and approximated by a finite number of points over a Euclidean space lattice, by
using the appropriate periodic boundary conditions. The Minkowski metric can be transformed
into the Fuclidean metric by a Wick rotation, which extends the degree of analytic continuation of
the time variable ¢ into the realms of a complex space (C), into an imaginary time it.

In this framework, the quark fields are defined at the lattice sites, while the gluon fields are
defined on the links between the lattices as 3 x 3 unitary matrices so as to conserve gauge invari-
ance. Any result stemming from this lattice approach is extrapolated to the continuous (physical)
limit of infinite box size and zero lattice spacing. Taking these limits however is problematic as
they vastly increase the computational time of a lattice simulation; the finite lattice spacing pro-
duces an wltraviolet cut-off, while the finite-box size introduces an infrared cut-off. Regardless
of the aforementioned limitations, recent advances in computing capabilities have allowed Lattice
QCD to make significant progress in the prediction of the light baryon spectrum (see Figure 1.4),

demonstrating consistency with the predictions extracted from the Constituent Quark Model.
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Figure 1.4: Light baryon spectrum of Nucleons (N*) and Deltas (A*) obtained via Lattice calcu-
lations from lattices at m, = 396 MeV, spacing ~ 0.123 fm and box-size =~ 2 fm. Reprinted figure
with permission from reference [52]. Copyright 2011 by the American Physical Society.
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1.3.1 Experimental Challenges in Baryon Spectroscopy

Unlike atomic spectroscopy, whose execution in the task of finding atomic states can be achieved
in a classroom, baryon spectroscopy offers more complexity and challenges in its application to find
the excited states of a baryon, since it requires a particle accelerator, along with avant-garde
machinery and detector systems. The crux of the matter lies in the fact that baryon resonances are

0724

far more unstable than their atomic counterparts, with a typical lifetime in the order of 1 s for

a strongly decaying resonance. Additionally, in accordance to Heisenberg’s uncertainty principle,
AEAt > h, (1.10)

the width of the resonance is inversely proportional to its lifetime. The energy width is on the
order of 100 MeV, which in many cases is larger than the average separation between the baryon
resonances. Consequently the ensuing baryon states overlap, leading to the complexity behind iden-
tifying baryon resonances. Figure 1.5 shows the contrast between atomic and baryon spectroscopy.

While atomic resonances are sharp and simple to identify within the atomic spectrum, the
overlapping nature of the baryon states makes it a difficult task to tell different baryon resonance
peaks apart. For instance, Figure 1.5 shows a broad peak within the center-of-mass energy range
of W € [1.4,1.6] GeV (known as the second resonance region) for the 7~p — X cross section,
which is actually comprised of three overlapping baryon states. To complicate matters further, the
interaction of photons with protons leads to the production of a host of different particles, including
pions, photons, electrons, etc, whereas for atomic spectroscopy the final-state consists of photons
alone. Furthermore at higher energies, the peaks shown in Figure 1.5 are washed out due to the
highly overlapped baryon states. Due to these issues, knowledge of the unpolarized cross sections
is insufficient to extract resonant contributions of a reaction under consideration, since that only
grants information on the magnitude of the amplitudes. Therefore, to disentangle these overlapped
states one needs the phase information from the scattering amplitudes, as well as their magnitudes.
The introduction of polarization observables becomes an essential tool to untangle the overlapping
baryon states, as these observables are highly sensitive to the presence of a resonance, providing
knowledge of the phase of the interfering scattering amplitudes from the different baryon states.
This can lead to unambiguous results for the resonant contributions to a reaction.

Additionally, since the proton can be excited with the use of different beam probes (m, v, etc.),

the resonances will couple differently depending on the probe. Thus, to disentangle a Nucleon (N*,
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Figure 1.5: (Top): Atomic spectrum, with visible resonance peaks. Image source: [42]. (Bottom):
Cross sections of 71 and 7~ scattering off a proton. Arrows show Nucleon resonances with a 4-star
rating from the PDG [62]. The z-axis is the center-of-mass energy W (GeV). Resonances are labeled
using the notation Loros(M), where I is the isospin, L is the orbital angular momentum of the pm
system, .J is the spin, and M is the resonance mass (in MeV/c?). Image shows baryon resonances
are indeed broad and overlapping. Image source: [65]. Courtesy of Dr. Michael Williams (MIT).

I =1/2) from a Delta (A*, I = 3/2) state, an isospin filter channel, such as KA (I = 1/2), which
couples to N* but not A* states, is needed. Table 1.1 summarizes the known N* resonances from
various decay channels, including an overall and individual channel rating, highlighting the KX
channel of interest. While most baryon states with masses < 1800 MeV have ratings of **** to ***,
the more massive states > 1800 MeV have ratings of * or **. It has been proposed that many of

the higher mass states might have significant branching ratios into KA or K3 channels [10].
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Table 1.1: Status of Nucleon excited states at distinct decays channels. Two salient features from
this table suggest that vector-meson photoproduction needs further exploration, and Kaon-Hyperon
(KY') photoproduction channels hold promise for further analysis. Reprinted table with permission
from reference [61]. Copyright 2018 by the American Physical Society.

Status as seen in

Particle JP overal Ny Nr Ar No Nn AK |XK| Np Nw N7/

N 1/2+ *okokok
N(1440) 1/2+ ook sk fokskk  okskkok ksokk okok
N(1520) 3/27 sokskok soksksk  skskskok kskokk sk sokskok
N(1535) 1/2— sfokok sk sokksk  kskskk skekok * sfokok sk
N(1650) 1/2— ok skok sokskk  okskskok kekok * fokkk ok
N(1675) 5/27 sokskok soksksk  skskskok kskokk sokk sk * *
N(1680) 5/2+ Fokokok sokkk  kskskk skekokk skokk ok * *
N(1700) 3/27  *** *k $okok Kok * * «
N(1710) 1/2+ Hokokok fokkk okkkok ok Kokok Kk * * *
N(1720) 3/2+ Hokokok sokkk  kkskk skekok * * fokkk | ok * *
N(1860) 5/2F ** * ok x ok
N(1875) 3/2  ox R % * « |+«
N(1880) 1/2F **x ok * ok * * ok Kok sk
N(1895) 1/2— ok skok fokskk ok * * fokskk kok %ok * * sokokok
N(1900) 3/2—1— Fokokok sokkk  kk %ok * * Kk %ok * Kk
N(1990) 7/2F ok kx * % *
N(2000) 5/2F ** ok * ok * * %
N(2040) 3/2F * *
N(2060) 5/27  *k* Rk ok * * * * * X «
N(ZlOO) 1/2+ ok *k *koksk X%k *k * * * * s,k
N(2120) 3/2— Fokok Fokok %ok %ok *k Kk * * *
N(2190) 7/27 sokskok soksksk  skskskok kskokk ok * *k * * *
N(2220) 9/2+ Fokskok *k ok skok * * *
N(2250) 9/2— ok skok *k skokskok * * *
N(2300) 1/2Jr *ok Hok
N(2570) 5/2= ** *k
N(2600) 11/2= #** Kk
N(2700) 13/2+ ** ok
ootk Existence is certain.
ok Existence is very likely.
%ok

Evidence of existence is fair.
* Evidence of existence is poor.
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1.4 Hyperon Photoproduction

A hyperon is a baryon which contains at least a single strange (s)-flavor quark, excluding the
presence of charm (c¢), bottom (b) and top (¢) quarks. The photoproduction of strangeness off the
proton, leading to a K3 state, is part of the field of elementary pseudoscalar meson production.
Hyperon photoproduction is described fully by 2 x 2 x 2 = 8 complex amplitudes [5]. However,
due to constraints imposed by parity invariance, these amplitudes are reduced to only 4, which
define a total of 16 experimental observables [13]. The 16 observables for Kaon (pseudoscalar)
photoproduction are divided into groups based on what is polarized for a reaction: beam, target

and hyperon-recoil polarization. The set of 4 transversity amplitudes b; are defined by [1, 5],

i

bl — _7(.71 _ fze—iec.m.)eiec.m4/2 (1113)
V2
b2 — 7(f1 _ ‘7_‘2629(:4111‘)6_740(:4111‘/2 (]_1]_b)
V2
sin 6 m. i ;
b3 _ _bl _ - (}‘3 + }‘48 Zecan,)ele(:‘m‘/2 (1110)
V2
in 6. . , .
by = —by — S1n G, (]:-3 + _F4€Z€C'm')€_wc‘m'/2, (111(1)

V2
where 0. . denotes the center-of-mass angle in the reaction plane, and F; — Fy are the Chew, Gold-
berger, Low and Nambu (CGLN) amplitudes [12]. The amplitudes (1.11a)—(1.11d) give a complete
description of the photoproduction process. Furthermore, armed with their bilinear combinations,
16 polarization observables can be derived. Of these 16 observables, besides the unpolarized differ-
ential cross section (do/dQ2), there are 3 single, and 12 double-polarization observables [50].

The first group of observables consists of the unpolarized differential cross section (do/dfY), the
hyperon-recoil polarization P, the linearly polarized photon beam asymmetry ¥, and the trans-
versely polarized target beam asymmetry 7. On the other hand, the double-polarization group of
observables characterize combinations where two of the reaction participants are polarized, such
as beam and target, beam and hyperon or target and hyperon. Furthermore, in order to fully
resolve any underlying ambiguities and uniquely determine the complex amplitudes, it is enough to
measure the unpolarized cross section, the three single polarization observables, and at least four
double-polarization observables [50]. Table 1.2 summarizes the aforementioned sets of observables.

The analysis presented within this thesis aims to measure the double beam-recoil (BR) polar-

ization observables C, and C,, along with the single hyperon-recoil (S) polarization observable P,
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for yp — K°%+. When the photon beam is unpolarized, conservation of parity in electromagnetic
interactions allows for an induced polarization P of the hyperon to arise exclusively along an axis
perpendicular to the reaction plane (see Section 4.1) [50]. However, in the event that the incoming
photon beam is circularly polarized, where the photons are spin polarized parallel or antiparallel
to the beam direction (i.e. giving the beam a net helicity, defined as the normalized component of
a particle’s spin along its direction of flight), this polarization may be fully or partially transferred
to the spin orientation of the ensuing hyperon in the reaction plane [50]. The C, and C, observ-
ables characterize the transfer of circular polarization from a circularly polarized photon beam to

a recoiling X7 hyperon along orthogonal axes defined by the scattering plane [50].

Table 1.2: The 16 spin-observables for pseudoscalar meson photoproduction, for yp — K°%+,
reported in their transversity representation; here & and & denote the real and imaginary parts of
the amplitudes b;. Photon polarization is denoted [ for a linearly polarized beam and ¢ for circular
polarization. S refers to single polarization observables, BT to Beam-Target observables, BR to
Beam-Recoil observables, and TR to Target-Recoil observables. Axis conventions for the scattering
plane (2/, 3/, 2’) are given in Section 4.1. Table reprinted from [5], with permission from Elsevier.

Polarization

Observable Beam Target Hyperon Transverse Representation Set

(33 - - - [b1[2 + [b2|? + [b3|* + [ba?

by l - - 01?4 [bof* = |03 — [ba* S
T - y - [b1]* = [baf* — [bs]* + [ba?

P — - Y [ba|* + [b4|* = [b1]* — b3

E ¢ 2 - —OR(byb + bob)

F c z - 23 (b1 b5 — bob) BT
e l 2 - 93 (by b5 + bob)

H z - - —OR(byb% — bb?)

0, I - 2! —2R(byb — bob})

0, l - o 9% (by b + bob3) BR
C, c - & 23 (b1 b — bab?)

. c - o —2R(by b, + bb3)

Ty — T x 2R (b1b5 — bsb)

T, - - Y 23 (byb — bsb?) TR
L, - 2 2! 23 (by b + bsb)

L. - 2 o OR(byb} + bsb)
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1.4.1 Photoproduction of K°%*

From conservation of strangeness, present in strong and electromagnetic interactions, the pho-
toproduction of Kaons (strangeness = +1) must always be accompanied by the production of
hyperons (strangeness = —1). The production of strange quarks in a particle generates an extra
degree of freedom, providing new information absent from nucleon-nucleon scattering processes.
For this analysis, the hyperon production channel of interest is the ¥ baryon, which is photopro-
duced off the proton and is accompanied by the production of a K° meson. The photoproduction
of neutral Kaons offers a distinct advantage over the production of charged Kaons (K¥), given
that photons cannot directly couple to the (vanishing) charge of the pseudoscalar K° meson. This
property of neutral Kaons, coupled with the lack of K°%F photoproduction data, lends motivation
for the study and analysis of the reaction yp — K3*. In addition, since the reactions yp — K+X°
and yp — KOXT are isospin related channels, one requires data from both channels in order to

disentangle any contributions stemming from the N* and A* resonances.

Table 1.3: Spectroscopic notation, and quark content, for the vp — K°S+ — prt7~ 70 reaction,

adhering to the nomenclature from Section 1.2. Table compiled via use of the 2018 PDG [61].

Particle(q content) ‘ v p(uud) KO°(ds) Yt(uus) 7F(ud/du) 7°((ua— dd)/v?2)
IG(JPC) 1—(0—+)
1(JP9) 0,1(177)

1(7) 3G 300 167
19(J7) 17(07)

Exploiting the fact that the X°(uds) and X+ (uus) hyperons are members of an isotriplet, any
coupling constant occurring in the photoproduction amplitude for the K*%° process may be readily
converted into the corresponding parameter for the K9%T reaction. This is due to the fact that

their strong coupling constants are linked by the following SU(2) Clebsch-Gordan coefficient [16],
Iros+p = V20xc+350p- (1.12)

However, developing a representation for isospin-related channels could lead to complications,
as subtle interference effects could cause a set of certain contributions in one channel to be masked,
while enhancing those contributions in another channel. This may be mitigated by counterbalancing

the strength in the K°YT channel via destructive interferences from other contributions [16].
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CHAPTER 2

CLAS AT THE JEFFERSON LAB AND THE g12
EXPERIMENT

The data set used for the extraction of the set of observables {C,, P, C.}, for the yp — K%+
reaction, was recorded at the Thomas Jefferson National Accelerator Facility (commonly known
as the Jefferson Lab, or simply JLab) as part of the g12 run, using a continuous electron beam
provided by the Continuous Electron Beam Accelerator Facility (CEBAF). Located in Newport
News, Virginia, the Jefferson Lab (shown in Figure 2.1) is one of the 17 national laboratories
funded by the United States Department of Energy (DOE).

The g12 experiment generated events using a circularly polarized photon beam incident upon an
unpolarized liquid Hydrogen (IH3) target, with an incident photon-energy range of 1.1 < £, < 5.4
GeV. The bremsstrahlung tagging technique, hosted by the broad-range photon tagging facility at
Hall B, was capable of tagging photon energies with a range of 20% to 95% of the incident electron
beam energy. Within 44 days of beam time between April 1st and June 9th, 2008, over 126 TB
of data was collected for the g12 experiment. The “¢g” in “g12” stands for gamma (as it is a
photoproduction experiment), while the number “12” is indicative of the fact that it is the twelfth
such experiment approved and carried out at the Jefferson Lab.

In order to detect the outgoing charged particles created by the interaction between the photon
beam and the target, the CEBAF Large Acceptance Spectrometer (CLAS) detector, located in Hall
B of JLab, was employed. CLAS was a nearly-47 spectrometer specifically built and optimized for
hadronic spectroscopy, and the detection of multi-particle charged final-states.

At the time of the experiment, the Jefferson Lab hosted three halls, Hall A, B and C, for which
the CEBAF Accelerator was capable of delivering beam energies of only up to 6 GeV. However, since
then JLab has added a Hall D; consequently, the CEBAF Accelerator has also been upgraded in
order to support continuous electron beams with energies of up to 12 GeV, and the CLAS detector
has been replaced by the upgraded CLAS12 detector. Therefore this thesis will, in the following

Sections, describe the experimental facility as it was when the g12 experiment was conducted.
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Figure 2.1: An aerial view of the DOE’s Thomas Jefferson National Accelerator Facility, located
in Newport News, VA. Image source: [32]. Licensed under CC BY-NC-SA 2.0.

2.1 Continuous Electron Beam Accelerator Facility (CEBAF)

The Continuous Electron Beam Accelerator Facility (CEBAF) is an electron beam accelerator
based on Superconducting Radiofrequency (SRF) technology. Built in the 1980’s, the purpose
behind CEBAF was to explore the confinement regime of QCD. CEBAF delivers high-luminosity
electron beams to the three experimental Halls (A, B and C) at the Jefferson Lab, with an energy
of up to 6 GeV, and has a racetrack geometry with a circumference roughly ~ 7/8 of a mile. The
continuous delivery of electrons allows for the quick acquisition of data sets with high statistics, even
at low currents. The CEBAF electrons are obtained by illuminating a Gallium Arsenide (GaAs)
photocathode with pulsed lasers at a frequency of 499 MHz (roughly a third of the accelerator’s
frequency), thus resulting in 2 ns bunches of electrons. Three synchronized laser pulses are then
temporarily fixed in order to simultaneously supply each Hall with an electron beam.

After being ejected from the photocathode, two of the first SRF cavities boosted the beam
energy to 5 MeV, and then two accelerating modules, each containing 8 SRF cavities, boosted the

energy of the electrons in the beam to a final energy with a range of 23 — 68 MeV. Subsequently,
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Figure 2.2: Schematic of CEBAF and its major components. Reprinted figure with permission
from reference [37]. Copyright 2016 by the American Physical Society. Licensed under CC BY 4.0.

the injector system employed an optical chopper to separate the 2 ns bunches prior to sending
them to the CEBAF’s recirculating linear accelerators (LINACs), located along the straightaways
of CEBAF’s racetrack course. The two LINACs (shown in Figure 2.2) accelerated the electrons by
approximately ~ 600 MeV per pass. Connected by nine recirculating arcs, the LINACs allowed the
electron beam to make up to five passes, achieving a maximum energy of 6 GeV.

Each recirculating LINAC consists of 21 cryomodules, and each module was equipped with 8
Niobium RF cavities, making for a total of 168 cavities per each LINAC. In order to sustain their
superconductivity, each cavity was submerged in a liquid Helium bath, maintained at a temperature
of 2 K. The acceleration gradient for the electron beam was induced by setting up standing radio-
frequency waves within the cavities. Keeping the standing waves in phase with the ensuing electron
bunches resulted on a continuous positive electric force on each bunch as they passed through a
cavity (Figure 2.3). After passing through a single LINAC, the electron beam was bent using a series
of dipole magnets in the recirculation arcs and directed to the other LINAC, further accelerating
the electrons. The resulting beam was further divided into five sub-beams according to energy,
so that electrons of different energies could be sent through a different recirculation arc before
re-accessing the LINACs. Once the beam had passed through the accelerator a desired number of
times, it could then be sent to one of the three appointed Halls using RF separator cavities with a

120° phase separation. The electron beam energy current for the g12 experiment was set to 65 nA.
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Figure 2.3: Diagram illustrating the acceleration gradient across a cryomodule. Image source: [21].

2.2 Photon Tagger

A photoproduction experiment such as g12 requires the use of a real photon beam. To that
end, Hall B employed a tagging (“tagger”) system (see Figure 2.4) to convert the incoming electron
beam into a photon beam by means of bremsstrahlung radiation. When the electron beam comes
into contact with a very thin radiator sheet, the radiator’s electromagnetic field slows the electrons
down, leading to the emission of photons due to energy-momentum conservation. Using a thin
radiator sheet ensures that a single electron is correlated to a single photon. The ¢g12 experiment
employed a gold (Au) foil radiator since the high atomic number of gold aids in reducing any photon
contamination produced by electron-electron scattering. Having passed through the radiator, the
beam was composed of a mixture of non-interacting electrons, photons and recoil electrons.

A tagger magnetic spectrometer, producing a uniform magnetic field of 1.75 T, was used to sweep
the full-energy non-interacting electrons downwards and outside of the beamline into a beam dump.
The magnetic field redirected the recoil electrons towards two hodoscope planes, each composed
of overlapping arrays of scintillators, to tag the energy and time of the photons produced via
bremsstrahlung. Since the mass of a gold atom is much higher than that of an electron, most of the
ensuing momentum is transferred into the recoil electron, while a negligible amount is transferred

to the nucleus. Hence the bremsstrahlung reaction obeys the following energy conservation relation,
E, = Ey - E, (2.1)

where Fy is the energy of the electron incident on the radiator, E, is the energy of the outgoing
scattered electron, and FE., is the energy of the emitted bremsstrahlung photon. Since Ey can be

uniquely determined from the accelerator, a measurement of the outgoing recoil electron energy E.
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Figure 2.4: Schematic diagram of the photon tagger spectrometer. The electron beam enters from
the left and goes through a radiator, where a few electrons generate photons via bremsstrahlung
radiation. The black-dashed lines represent the trajectories taken by the recoil electrons at different
fractional energies, guided by the dipole magnet to a set of scintillator counter planes, the E- and
the T-counters. These are properly depicted in the diagram, in accordance to their geometry, and
with the correct segmentation. Image reprinted from [45], with permission from Elsevier.

by a magnetic tagger spectrometer can furnish a measurement of the photon energy E,. In order
to determine said energy, a scintillator plane (known as an E-counter) was used to determine the
momentum of the recoiling electrons. Therefore, since the radius of curvature of the electron’s tra-
jectory due to a magnetic field is proportional to the electron’s momentum, knowing the electron’s
exact position along a plane provides sufficient information to determine its energy and momentum.

The E-counter consisted of 384 plastic scintillators, each 20 cm long, 4 mm thick, and 6 — 18 mm
wide. The scintillators were arranged in an overlapping manner, resulting in 767 distinct channels
to determine a scattered electron’s position, energy and momentum. Thus, the spectrometer could
tag photons ranging from 20% —95% of the incident electron beam energy, with a resolution of 0.1%.
The second scintillator plane (the T-counter) was used to obtain accurate timing measurements
of recoiling electrons and the associated photon time. Positioned parallel to and 20 ¢m behind of
the E-counter, it was composed of 61 overlapping scintillators, each 2 cm thick with varying length
from 20 cm at high electron momentum to 9 cm at low electron momentum, with 121 distinct

channels. The added thickness to the scintillators gave a timing resolution of ~ 110 ps.
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2.3 The ¢g12 Cryotarget

Target cells of a variety of shapes and sizes have been employed under different experiments
using the CLAS detector. Built at the Jefferson Lab, and originally commissioned for a different
CLAS run experiment (glla), the cylindrical g12 liquid Hydrogen (IH3) target cell had a length of
40 cm with a radius of 2 cm (see Figure 2.5). On the other hand the incoming photon beam had a
radius of approximately 1.5 cm as it excited the target. The target cell’s walls and substructure were
composed of aluminum, while the target cell’s window was composed of Kapton. The particular
choice of Kapton was due to its advantageous performance under high levels of radiation and
temperature. For the ¢g12 experiment the target cell was moved 90 cm upstream of the CLAS
detector center in order to achieve a geometric acceptance starting at roughly 6° from the beamline,
in order to avoid any loss of high momentum tracks in the forward direction (which is where the
beam passed through), thus increasing the forward geometric acceptance of the detector. Once
every hour, the target’s pressure and temperature were measured to calculate the density of [Ho

in the cell. This measurement is needed for the extraction of cross section measurements.

7
]

Figure 2.5: Diagram of the g12 cryotarget, filled with liquid Hydrogen. Image source: [14].

2.4 The CLAS Detector

The CEBAF Large Acceptance Spectrometer (CLAS) was the primary physics detector housed
within Hall B of JLab. At roughly 10 m in diameter, the main purpose of CLAS was to detect
charged and multi-charged final particle states produced by the interaction of a circularly-polarized
photon beam with a cryotarget. Its design was based on a non-homogeneous toroidal magnetic

field, generated by a set of six superconducting coils arranged around the beamline, which created
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Figure 2.6: A 3D-schematic cutaway of CLAS showing its major components. Image reprinted from
[51], with permission from Elsevier. Image adapted from [33]. Licensed under CC BY-NC-ND 2.0.
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a field pointing primarily along the ¢-direction. The purpose of this field was to bend any negatively
charged particles towards the beamline and any positively charged particles away from the beamline.

The CLAS detector was structured in multi-layered arrangements of different particle detectors
symmetrically about the beam axis. Consequently, the CLAS detection system had a six-fold
symmetry about the beam axis (see Figure 2.6), and an almost 47 solid angle coverage (spoiled
only by the forward beam hole, beamline, support structure for the magnet, etc.). Therefore,
the CLAS detector was azimuthally divided into six independent ¢ segments called sectors; each
consisted of the following detectors: a Start Counter (ST), used to detect charged particles traveling
from the target region, three layers of Drift Chambers (DCs), used to determine the trajectories of
charged particles, a gas Cherenkov counter (CC), for electron identification, a series of Scintillation
Counters, to measure the Time-of-Flight (TOF), and an Electromagnetic Calorimeter (EC), to
detect showering particles (photons and electrons) and neutrons. Due to the fact that neither the
CCs nor the ECs were employed for the g12 experiment (these are only used in experiments with

electron beams), these subsystems shall not be discussed with any detail in any further Sections.
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2.4.1 The Start Counter (ST)

Figure 2.7: Picture of the Start Counter (ST), outside of the CLAS detector, displaying the tapered
“nose” formed by the scintillator paddles on the forward end, attached to an acrylic guide and a
photomultiplier tube (PMT) on the back end. Image source: [31].

The first detector component that a charged particle encountered in CLAS, after traveling
through the target, was the multi-segmented Start Counter (ST) directly surrounding the target cell.
This CLAS detector component provided initial raw timing information on the charged particles
as they proceeded from the target; the timing resolution of the ST was ~ 350 ps. As such, the ST
provided accurate measurements of the start and end times of all trigger events recorded by CLAS.

Similar to the CLAS detector, the ST was divided into six segments, each consisting of four
502 mm long scintillator paddles coupled to an acrylic light guide. The upstream ends of the SC
were attached to Photomultiplier Tubes (PMTs), while the downstream ends were inwardly bent,
converging into a hexagonal cone (known as the “nose”) and granting coverage for smaller angles
of 6. Hence, incoming charged particles traveling from the target and traversing the scintillator
paddle produced light within the scintillator, which then traveled to the light guide attached to
the PMT. Once at the PMT, the photon signal was collected, then converted and amplified into an

electric signal stored for future analysis. See Figure 2.7 for a picture of the ST outside of CLAS.
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2.4.2 Torus Magnet
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Figure 2.8: (Left): Strength contours of the constant absolute magnetic field generated by the
CLAS torus magnet in the midplane between the two coils. For the g12 run the magnets were
operated at half their capacity current (1930 A). Image reprinted from [43], with permission from
Elsevier. (Right): The CLAS torus magnet during its installation in Hall B. Image source: [30].

At the heart of the CLAS detector lied a superconducting toroidal magnet. The magnetic field
employed for bending charged particles was generated via the use of six kidney-shaped supercon-
ducting coils arranged in a toroidal geometry about the beamline axis and separated by 60° angles
in the azimuthal direction; see Figure 2.8 (Right). This resulted in a magnetic field whose main
component was along the ¢-direction; see Figure 2.8 (Left). This field lead to charged particles trav-
eling along non-linear paths through the drift-chambers (DC). This tracking system (Sub-section
2.4.3) was used to determine the trajectory followed by each charged particle. Consequently, the
force supplied by this field acting on the charged particles left their azimuthal angles unchanged,
while bending the particles towards or away from the beamline. For a positive (negative) current,
the magnetic field bent negatively-charged particles towards (away from) the beamline.

Having knowledge on the strength and direction of the magnetic field, the particle’s trajectory
was then used to determine its momentum. However the magnetic field generated by the toroidal
magnet was not completely uniform, as it had significant deviations from a pure ¢-field close to the
coils. This effect on the particle trajectories was minimized by the inner circular shape of the coil.

At approximately 5 m in diameter and 5 m in length, each of the six superconducting coils of

the torus magnet had four layers of 54 turns of aluminum-stabilized niobium-titanium NbTi/Cu
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conductors. The coils were cooled down to a temperature of 4.5 K by forcing super-critical Helium
through cooling tubes placed at the edge of the windings. The torus magnet was capable of
generating a maximum current of 3860 A, resulting in a maximum magnetic field strength of 3.5
T. At this current the magnetic field reached 2.5 T in the forward direction, dropping down to 0.6

T in the perpendicular direction (with a scattering angle of 90°).

2.4.3 Drift Chambers (DCs)
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Figure 2.9: Cross sectional diagram of the CLAS detector, displaying the relative positions of its
subsystems, and the DCs regions. The kidney-shaped dashed lines denote a projection of the torus
coils along the sector mid-plane. Also shown are the curved trajectories of two charged particles
traversing the DC along opposite sectors. Image reprinted from [48], with permission from Elsevier.

The task of tracking charged particles as they traveled through the magnetic field generated
by the toroidal magnet (sub-Section 2.4.2) was carried out by drift chambers (DCs), a CLAS sub-
detector system. The DCs determined the momenta of the charged particles from their curved
trajectories. The geometry of the torus magnet was such that it divided the DCs into six inde-
pendent tracking areas (known as sectors), each of which were further divided into three distinct
regions located at different radial positions from the target, based on the magnetic field strength.

The Region 1 (R1) chambers surrounded the target in an area of low magnetic field, and were
used to determine the initial trajectory of the incoming charged particles. The Region 2 (R2)

chambers were located between the magnetic coils, near the point of maximum track sagitta, and
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Figure 2.10: A schematic showing the superlayers of Region 3 of the DCs. The hexagonal perimeters
are for illustrative purposes. The trajectory of a charged particle is shown as recorded by the shaded
region of the drift cells that have fired. Image reprinted from [48], with permission from Elsevier.

as such occupied the region where the magnetic field was the strongest, and were used to determine
a particle’s track curvature, and hence its momentum. Lastly the Region 3 (R3) chambers were
outside of the magnetic torus coils, where the magnetic field was again weak, and were used to
determine the final position of the particle’s trajectory, before reaching the time-of-flight (TOF)
system. The DC system arrangement provided an angular coverage of 8 — 142° in the polar angle,
and an 80% coverage of the azimuthal angle ¢. A cross sectional diagram showing the arrangements
of these Regions is shown by Figure 2.9. The wire layers in each of the DC regions were divided
into two superlayers, with each superlayer composed of six wire layers (see Figure 2.10).

Within each DC, all drift cells had a 20 pm gold-plated tungsten sense wire located at the
center of a quasi-hexagonal arrangement of six 140 um gold-plated aluminum alloy field wires. The
sense wires had an intrinsically positive potential, whereas the field wires were kept at a negative
high voltage; the number of sense wires in the DC system was 35,418. The DC chambers occupied
a considerable portion of the CLAS volume and were filled with a gas mixture of 90% Argon and
10% carbon-dioxide (CO2), due to its ionization properties and non-flammability. This gas mixture
ionized charged particles via electromagnetic interactions or collisions. The ensuing ionized particles
were then collected by wires kept at a potential difference, and the flow of current in those wires

relayed the particle’s position and trajectory, from which its momentum was determined.
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2.4.4 Time-of-Flight (TOF) Scintillators

The Time-of-Flight (TOF) detectors were an essential CLAS subsystem for particle identifica-
tion. Adhering to CLAS geometry, the TOF had six identical and independent panel sections, one
per CLAS sector, located roughly 4 m away from the cryotarget, each containing 57 scintillator
paddle bars made of Bicron BC-408, with varying lengths and widths (see Figure 2.11). Attached
at the end of each scintillator was a photomultiplier tube (PMT). To provide a large signal for

traversing minimum-ionizing particles, each scintillator had a uniform thickness of 5.08 cm.

g,

Figure 2.11: Diagram of the (TOF) scintillator counters from one CLAS sector. Each scintillator
was positioned perpendicularly to the average particle trajectory. Image reprinted from [47], with
permission from Elsevier.

The purpose of the TOF subsystem was to measure the time at which charged particles inter-
acted with the TOF scintillators after traveling through the DCs. This measured time, used in
conjunction with the starting hadronic interaction time of the event at the target (measured by the
SC), provided the “time-of-flight” of charged particle tracks as they traversed the system’s magnetic
field. Moreover, with the trajectory and track length measurements provided by the DCs (along
with the particle’s momentum p) and the TOF, the velocity § of the particles was established.

Thus, determining the particle’s mass and identity (proton, K, 7, etc.) was achieved via,

_pV/1-p

= (2.2)
p

The photon signals created by the TOF scintillators, generated by particle interactions and

m

recorded by the PMTSs, were subsequently transformed and amplified into an electric signal. The
timing resolution of the scintillators was 80 — 160 ps and depended on the length of the paddle bar;

the longer paddle bars provided a worse resolution.
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CHAPTER 3

EVENT SELECTION & DATA CALIBRATION

The data set recorded by the g12 experiment consisted of over 126 TB of raw data, containing a set
of 26 billion recorded events. However, before any kind of analysis began, the raw data underwent
a process of reconstruction (colloquially known as cooking), meaning that all raw electrical signals
and information arriving from the various detector subsystems of the experiment were transformed
into a form suitable for physical analysis, such as: physical 4-momentum vectors for all charged
tracks recorded for every event, particle IDs, positions, energies and angles. During the cooking
process of the raw data, each of the CLAS subsystems underwent extensive individual calibration.

For a data set of this size, the yp — K°Y* reaction made but a small portion of the data,
due to its low cross-section. As such, the recorded data was dominated by other far more likely
reactions. Therefore, a careful extraction was performed to keep the number of background events
low, while enhancing those events of interest to the analysis.

The first step in the cooking process consisted of choosing events that fit a desired description
(Section 3.1). Missing particles were reconstructed via the use of the missing mass technique, based
on energy-momentum conservation (Section 3.2). Afterwards, a series of corrections were performed
to account for any loss of energy and momentum that a particle might have experienced as it
interacted with any detector subsystems. This was followed by a kinematic fit, which enhanced the
kinematics of the particles using a set of constraints to their energies and momenta via conservation
of energy and momentum (Section 3.3). Cooking of the data culminated with a series of cuts aimed
at removing background underneath signal peaks, yielding clean event samples (Section 3.4).

The cooking of the g12 data set used for this analysis was performed by Dr. Zulkaida Akbar,
and it is documented in a CLAS-approved ¢g12 analysis note [55]. The purpose of this chapter is
to briefly and succinctly highlight the cooking phase of the data before our data analysis efforts,
described in Chapters 4 and 5, began. A more throughout and complete treatment of the cooking

process, cuts and corrections applied for the data reconstruction can be found in Reference [3].
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3.1 The CLAS-gl12 Data Set

Equipped with an array of unique experimental devices, the g12 experiment was housed within
Hall B at JLab, and employed a circularly-polarized photon beam in conjunction with an unpolar-
ized liquid Hydrogen (IH2) target. The incident photon beam energy provided for the experiment
covered a range of 1.1 < E, < 5.4 GeV. The resulting data was divided into a set of 10 distinct
run groups (CLAS Collaboration Institutions), each in accordance to a particular trigger condition.
The initial information contained within the g12 raw data, obtained from the CLAS subsystems,
was composed of QDC (Charge to Digital Convertor) and TDC (Time to Digital Converter) chan-
nel IDs and values. This information underwent several layers of careful reconstruction, converting
the raw data into useful information for our analysis. For a summary of these cuts see Section 3.4.

For the purpose of this analysis (and other analyses at FSU) only Period 2 data was used, since
the addition of Period 1 (suffering from low statistics) would not have improved the uncertainties
of the ensuing results. Periods 3 — 8 used a lepton trigger or an EC (Electromagnetic Calorimeter)
photon trigger, which were avoided for this analysis. Triggering conditions for this data set required
either three charged tracks with no restriction on the beam energy, or only two tracks with the
restriction of having at least a single photon with an energy of E, > 3.6 GeV. Table 3.1 displays

the set of trigger configurations used for the g12 experiment.

Table 3.1: The set of trigger configurations employed for the g12 experiment. Only the events
falling within Period 2 were employed for the purpose of FSU analyses. Table compiled from the
912 wiki and Reference [54]. Courtesy of Dr. Zulkaida Akbar (University of Virginia).

Period ‘ Runs Trigger Configuration

1 56519 and earlier not prescaled, trigger change at 4.4 GeV
2 56520 - 56594, 56608 - 56646 | not prescaled, trigger change at 3.6 GeV
3 56601 - 56604, 56648 - 56660 prescaled

4 56665 - 56667 prescaled

) 56605, 56607, 56647 prescaled

6 56668 - 56670 prescaled

7 56897 and later prescaled

8 57094 and later prescaled

9 56585, 56619, 56637 single-sector, not prescaled

10 56663 and later single-sector, not prescaled
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3.2 Reaction Channel and Event Selection

The principal reaction for the purposes of this analysis was yp — pr 7~ (7"), where the missing
mass of the 7 was found through the use of the missing-mass technique (relativistic kinematics).
To that end, the Lorentz four-vector of the incoming photon beam and the proton target were
employed. The missing four-momentum of the 7° was thus determined via the use of the measured

three-momenta and energies of the observed particles involved in the reaction, resulting in,

2.3
a:“:k“—l—P“—pr, (3.1)
=1

where k* denotes the four-momenta of the incoming photon beam, P* is the four-momenta of the
proton target, while the sum over pf represents the four-momenta of the two or three final-state

particles detected in the reaction. Additionally, the missing mass mx can be determined via,
m% = a2tz (3.2)

The resulting four-momentum vector z* from expression (3.1) served to complete the set of
four-momentum vectors for all particles for the reaction under study. For the cooking process, any
events whose particle identification numbers (PIDs) failed to meet the constraint of having one
proton, one 7 and a m~ as part of their final-state, were altogether removed from the analysis.

In order to calculate the masses of any detected particles, two quantities were necessary: the
particle’s momentum p, along with their velocity expressed as a fraction of the speed of light (53).
This velocity 3 was reconstructed by using the particle’s time of flight ¢y = t7or —tsr, along with
its track (or path) length df = ¢ror — fs7, from the vertex position up to the TOF scintillator
paddles where the particle had interacted. This yielded the following expression,

= Cth _ (tror — EST)7 (3.3)
¢ (tror —tst)
where the measured velocity 8 of a detected final-state particle had an uncertainty of up to 5%,
and was determined via a combination of the Time-of-Flight (TOF) subsystem (which measured
the time at which particles interacted with the TOF scintillators), the Start Counter (ST) detector
(which furnished the starting time of interaction of an event at the target) and the Drift Chambers

(DCs) subsystem (which provided a particle’s trajectory as it traveled through CLAS, along with

its momentum p, with an uncertainty of < 1%); more information about the detector subsystems
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can be found in Section 2.4. Consequently, the detected particle’s rest mass was computed via use

of its momentum p as follows,

p*(1— %)

p
E = YMparticle X = B = m}%article x = T7 (34)

where ~ is a Lorentz factor (where we made use of natural units, i.e. ¢ = 1); this result was
previously stated by equation (2.2). The resulting invariant particle mass was then compared to
those of a set of known particles. If the masses were a match (within a certain resolution), then
the associated PID (particle ID) of said mass could be bestowed upon the final-state particle.

For the purposes of this analysis, all physical properties of any final-state particles (such as
their four-vectors, vertex information, etc.) were obtained from the PART CLAS data bank, a
repository containing information about the detected final-state particles of interest. Photon and
final-state particle selection saw further improvement via the implementation of a set of cuts and
corrections applied to the data, briefly detailed in Section 3.4. Furthermore, kinematic fitting was
used (Section 3.3) as a means of fine-tuning initial and final-state momenta by imposing energy-
momentum conservation constraints. Lastly, in order to separate signal events from background

events, an event-based method, known as the QQ—factor method, was employed; see Section 3.6.

3.3 Kinematic Fitting

Any set of measured four-vectors from the detected final particle states, carried out in CLAS,
had an associated inherent resolution. This resolution resulted from a series of convolutions from
various errors and uncertainty procedures carried out during the reconstruction process. Once a
given track had been properly associated with a particle, then every measured component of its
raw Lorentz 4-vector (the magnitude of the momentum p, and the two angles used to describe the
detector’s geometry, A and ¢), along with the initial photon beam energy, were modified until each
event satisfied energy-momentum conservation, with the energy and momentum of each particle
matching their real masses (as stated in the PDG). Known as kinematic fitting, this process uses
the least squares method to determine the value of a series of unknown quantities from a model by
minimizing the sum of the squares of its residuals, via the application of Lagrange multipliers.

Accurately determining the covariance matriz lead to a correct estimation on the fit uncertain-
ties. Kinematically fitted events had a set of quantities used to inspect the quality of the fits: a

pull value for every measured quantity, and a x? value (turned into a confidence level).
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3.3.1 Confidence Level and Pull Distributions

The main measure of the goodness of fit (the agreement between the hypothesis fit and the

measured data) employed for the least squares method is known as the confidence level (CL),
oo
CL = / f(z;n)dz, (3.5)
X2

where f(z;n) denotes the x? probability density function for n degrees of freedom. The CL value
is effectively a measure of the probability distribution that a y? from a theoretical distribution is
greater than the x? originating from the fit. Ideally, a data set for which all events satisfy the fit
hypothesis with normally distributed errors would result in a flat confidence level distribution on the
(0,1] range. However, the real data contained background events (events which did not satisfy the
enforced energy-momentum conservation constraints) with a confidence level distribution centered
near zero. A cut on events with a low confidence level provides an effective way of eliminating the
majority of background events, without jeopardizing a fair amount of well-behaved data.

In order to properly apply the confidence level cut to the background, it is necessary to have a
firm grasp on each of the fit quantity’s errors. To examine the quality of the error estimation, a pull
distribution (also known as a stretch function), which quantifies the extent to which the kinematic
fitter needs to alter a measured parameter so as to impose energy-momentum conservation on an

event, becomes a necessary tool. The pull value of the i*" fit parameter was defined as,

€

o(ei)’

where €; = 1; — y; represents the residual (7; is the fitted value, while y; is the measured value),

(3.6)

Zi =

with a standard deviation of o(¢;). The pull values z;’s should be normally distribution about zero

with a standard deviation of o = 1. Alternatively, the i*" distribution can be rewritten as,

Vo (m) — 02(%)'
3.4 A Summary of All Applied Cuts & Kinematic Corrections

This Section contains a brief detailed summary on all cuts and kinematic corrections applied to
the raw data recorded by the ¢g12 experiment. A more throughout treatment of the ensuing cuts

and corrections for this analysis can be found in Reference [3].

33



3.4.1 Fiducial Volume Cuts

Geometrical fiducial cuts, in accordance to a nominal scenario (outlined in Reference [54]), were
applied to remove events from the analysis which were found in regions of the detector subsystems
where the acceptance was either not well understood or modeled (or both). Hence, all regions for
which the detector acceptance was well and reliably modeled by the simulations were designated
as the upper and lower limits of the azimuthal difference between the center of a particular sector
and a particle track. Consequently due to the inherent hyperbolic geometry of the CLAS detector,
coupled with the presence of a toroidal magnetic field, the fiducial boundaries on the upper and
lower ¢ were described as functions dependent on the momentum p, charge and polar angle 6 of

each individual particle track.

3.4.2 Particle ID and Timing Cuts

In order to find the correct initial photon involved in an event, a coincidence time AtTgip
was defined per each photon as the difference between the Tagger and Start Counter times at
an interaction point, fevent — ty. As such, a timing cut of |Atrpp| < 1 ns was applied in the
analysis. Furthermore, in order to correctly identify the final-state particles, proton (p), 7 and
7w, information on the calculated and measured values of 8 for each particle were employed.
Using a CLAS-measured particle momentum from the TBID bank, a theoretical velocity for the
particle (i.e. ;) was calculated and compared to the CLAS-measured empirical /3, value. Particle
identification then proceeded by selecting the (. value with greatest proximity to the measured

value of By,. As such, the difference in g for theoretical/empirical measurements Aj was given by,

2
AB = o= =\[+7 7~ O (3.8)

The ensuing cut values applied to the data were determined by fitting a Gaussian around the

main peak distribution A = 0, resulting in a A = |S. — fm| < 30 particle ID cut.

3.4.3 Vertex Cut

The liquid Hydrogen target utilized for the g12 experiment was 40 cm long, with a radius of
2 cm (see Figure 2.5). For the purpose of the ¢g12 experiment the target cell was moved away

from the center of the CLAS detector and placed 90 cm upstream from the detector in an effort
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to achieve a higher angular resolution for heavy-meson photoproduction in the forward direction.
Henceforth, due to the geometry of the target’s placement, a z-vertex cut with a range given by

—110.0 < z < —=70.0 cm was applied. Figure 3.1 displays the entirety of the z-vertex distribution.

Counts
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z Vertex[cm ]

Figure 3.1: The z-vertex distribution (this is the axis along the beamline direction) of all re-
constructed particles used in FSU analyses, delineating the geometry of the cylindrical [Hy g12-
cryotarget. The slight kink centered around z = —63 c¢m stems from the vacuum chamber’s exit
region. Image source: [3]. Courtesy of Dr. Zulkaida Akbar (University of Virginia).

3.4.4 Confidence Level (CL) Cut

In order to fix the events of interest to a set of imposed constraints by the kinematic fit, a
confidence level cut of CL > 0.001 was applied for the yp — prT7~(7°) reaction. Cutting events

with a low CL eliminates most background events while sacrificing only a small set of good data.

3.4.5 Tagger-Sag Corrections

Based on observations from previous experiments, a physical sagging of the structure supporting
the E-counter scintillator bars could in fact be ascribed to the effect of gravitational forces [53].
Consequently, this time-dependent sagging led to a minuscule shift of the energy of the scattered

electrons [19]. This was subsequently corrected and accounted for in the offline reconstruction code.
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3.4.6 Energy-Loss (ELoss) Corrections

The 4-momentum vectors of the charged particles of interest, namely the proton (p), 7 and
7w~ , were individually corrected for any energy loss they suffered while traveling through different
materials of the CLAS detector subsystems. When charged particles travel through matter, with
the exception of electrons, they lose energy due to a series of processes, including inelastic scattering,
atomic excitations or ionization as they interact with the target material ({Hz) and its walls, beam
pipe, the Start Counter, and the air gap situated between the ST and the Region 1 Drift Chambers.

Consequently, the ensuing reconstructed momentum from the drift chambers was smaller than
that of a particle at the production vertex. To account for this discrepancy, the 4-vectors of all
final-state particles were corrected, event-by-event, via the implementation of the “ELoss” software
package, developed for CLAS analyses [36], which determined the lost momentum of each particle
after interacting with different detector materials. The individual particle 4-vectors were corrected
by multiplying an ELoss correction factor nparicle (this modified a particle’s momentum by a few

MeV) for each particle to the magnitude of their measured raw CLAS momentum P,aticle (CLAS)>

Pparticle (ELoss) = Tlparticle * Pparticle (CLAS)» (3'9)

where P, (gross) Tepresents the momentum of a particle z (either a proton p, 7t or ) after the

application of energy-loss corrections.

3.4.7 Momentum Corrections

The set of reconstructed momenta required small corrections of up to a few MeV for the final-
state particles’ momenta on account of two reasons: first, due to the fact that the torus magnetic
field map was based on several approximations, whose calculations for a single sector worked under
the assumption that all coils and material within the field were symmetric with respect to the
six-fold geometry of the CLAS detector, while neglecting to take into account any of the field’s
variations. Secondly, due to any present ambiguities and inefficiencies in the drift chamber align-
ments, this resulted in small momentum shifts. Therefore each of the measured track momenta, as
measured by the DCs, displayed a systematic shift within each individual sector, with an azimuthal
dependence of ¢ on one of the tracks. In the reconstruction analysis, CLAS-approved correction

procedures were implemented, as defined in Reference [54].
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3.5 Circularly-Polarized Photon Beam

The electron beam employed for the g12 experiment was longitudinally polarized. This beam
produced circularly-polarized photons via the bremsstrahlung process of longitudinally-polarized
electrons emanating from an amorphous radiator (Section 2.2). The energy-dependent degree of

circular polarization Py (E,) of the photons was given by the Maximon-Olson formula [35],

Ay — 22

Po(E,) = Paee - —2 T
o(Er) elec " 4 Az + 322

(3.10)

where © = E, /E¢jec is the fraction of photon energy E., to initial electron beam energy Fejec, while
Pejec denotes the polarization of the electron beam. For the purposes of the g12 experiment, the
electron beam (CEBAF) energy used for all of the runs in the analysis was Feec = 5.715 GeV.
The electron beam polarization was regularly measured via the use of the Mgller polarimeter, a
device which measured the electron polarization by making use of the underlying helicity-dependent
nature of Mgller scattering [46]. The results stemming from the Mgller measurements of the electron
beam polarization P, are summarized in Table 3.2. For the duration of the g12 experiment, Hall
B did not have beam priority, and consequently the beam polarization was delivered as a byproduct
from the requirements of the other Halls. In spite of polarization fluctuations, most of the g12 runs

had a beam polarization close to 70%, and a total uncertainty of roughly 5%.

Table 3.2: Mgller measurements of the electron beam polarization Pe. for the g12 experiment.
Only the Mgller measurements within the run range 56476 — 56643 were used in the analysis. Table
compiled in Reference [3]. Courtesy of Dr. Zulkaida Akbar (University of Virginia).

Run Range ‘ Electron Beam Polarization, Py (Mgller Readout)

56355 - 56475 (81.221 + 1.48)%
56476 - 56643 (67.166 + 1.21)%
56644 - 56732 (59.294 + 1.47)%
56733 - 56743 (62.071 + 1.46)%
56744 - 56849 (62.780 + 1.25)%
56850 - 56929 (46.490 + 1.47)%
56930 - 57028 (45.450 + 1.45)%
57029 - 57177 (68.741 + 1.38)%
57178 - 57249 (70.504 + 1.46)%
57250 - 57282 (75.691 + 1.46)%
57283 - 57316 (68.535 + 1.44)%
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3.6 Signal-Background Separation: The ()—Factor Method

The Quality Factor (Q—wvalue) method is an event-based technique for which a set of coordinates
describing the multi-dimensional phase space of a reaction are categorized in accordance to two
distinct types of classes: reference (&) and non-reference (§) coordinates [66]. For the reference
coordinates (this normally being the mass), the signal and background distributions must be known
a priori in order to cleanly separate the background from the desired event signal. On the other
hand, in the case of the non-reference coordinates, this information is unnecessary.

For each event, one seeks to find the set of N, nearest neighbors within the phase space of
the non-reference coordinates. To that end, an appropriate metric must be defined for the space
spanned by the non-reference coordinates £ (excluding &,.). According to this metric, the minimum
distance between any set of two events d;; is given by,

i ¢J72
d?]:Z[f’“ ﬂ, (3.11)

g
k#r k

where o}, represents the range of the k" variable within the appropriate phase-space distribution,
and the sum is performed over all coordinates with the exception of the set &.. This metric is
known as the normalized Euclidean distance [66]. For each event then, the closest distance to all
other events may be computed while retaining the N, nearest neighbor events in accordance to
expression (3.11). The ensuing mass distribution of the N, events (including the candidate event)

within the reference coordinate was fitted via the use of the total function defined by,

f&) =N-[fs-S(€)+ (1 —fs)- B, (3.12)

where S(§) and B(§) represent the signal and background probability density functions, respectively,
N denotes a normalization constant, and fs; describes a signal fraction with a value constrained

within the range [0.0,1.0]. The @Q—factor for each event was then given by the following,

G
C= @ (3.13)

where s(§) = fs - S(€) and b(§) = (1 — fs) - B(§). The Q—factor, which has a range constrained
within the bound [0.0, 1.0], assigns a probability to each event that is part of the signal, and can be

used as an event-weight to determine the contribution of the signal to a given physical distribution.
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3.6.1 The Q—Factor Method for the Reaction of Interest vp — K2%", Using
the g12 Data Sets
For the reconstruction of the final-state KgE*, the strange Kg state was reconstructed from
its decay to the 77~ system, while the remaining 7° stemmed from the baryon weak decay. Since
the Kg — 7t~ and ¥t — pn0 systems are strongly correlated (via their associated strangeness
production), one can use either invariant mass of the 77~ or pr¥ system as a reference quantity.
Table 3.3 displays the non-reference variables applied for the background subtraction of the reaction

at hand. For a more throughout discussion on what follows, see Reference [3].

Table 3.3: Set of non-reference coordinates (5:) used for background subtraction in the reaction
vp — K°%F. The quantities in parenthesis denote the set of non-reference coordinates employed
for the Q—values, and based on the (pn”) invariant mass. Table compiled in Reference [3]. Courtesy
of Dr. Zulkaida Akbar (University of Virginia).

f_;- ‘ Non-Reference Coordinate ‘ Maximum Range A;
5_6 ‘ Incident-photon energy E, ‘ 50 MeV
& & & ‘ cos O+ (cosby) & drr (¢r0) in the 7Fw~ (pr¥) rest-frame ‘ 2& 2w
f_:o, ‘ cos ©Xs in the center-of-mass frame ‘ 2
& | o | 2
s |

&5 ‘ cos(opening angle Z (p, 7)) 2

Given the fact that the cross section of the yp — K%+ reaction is relatively small, the observed
statistics were low. Consequently, the invariant mass 777~ was engulfed by background within
the Kg mass region (Figure 3.2, Top Left). Hence, a set of two different mass cuts were considered

before applying the background subtraction )Q—factor method (see Figure 3.2):

1. Conservation of strangeness is a feature of strong and electromagnetic interactions, which is
the reason why a K2 meson is produced accompanied by a X* baryon (within our analysis).
Since the lifetime of the ¥+ (7 = (0.801840.0026) x 10719 s) is considerably long (as it decays
weakly), a narrow cut of 20 MeV was applied around the X mass of 1189.37 MeV [59].

2. The dominant reaction which contributes to the prtn 7" final-state is the w production. This
can be seen in the Bottom-Left histogram shown by Figure 3.2. The w band is clearly promi-
nent, displaying a maximum intensity within the neighborhood of the Kg in its projection
onto the 777~ plane. Therefore, a mass cut was applied in order to remove any contributions

stemming from w production, namely: m +,-r0 < 752 MeV and m +,-0 > 812 MeV.

39



Lastly, to subtract the background for the KX+ final-state, the g12 data was divided into 50
MeV-wide and 100 MeV-wide incident photon energy bins for cross-sectional and induced polariza-
tion measurements, respectively. A set of 1000 nearest-neighbor events were chosen for each signal
candidate in the phase space spanned by the non-reference coordinates. Since the T recoil polar-
ization was obtained via the asymmetry of the proton count rate above and below the reaction’s
scattering plane (Sub-section 4.3.2), the invariant pr® mass was used as the reference coordinate

for determining the Q—values used for the final cross sections and observables {C,, P, C.}.
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Figure 3.2: (Top row): Invariant raw 7+ 7~ mass distribution of all g12 77~ 70 events contained in

Period 2 (Table 3.1) (Left); same invariant mass 77~ distribution after X mass cut was applied,
resulting in clear visibility of the K peak (Right). This reduced the background appreciably, while
only marginally affecting the K2X T statistics. (Bottom row): Invariant 777~ 7° mass vs. nta~
mass from all g12 777~ 70 events in Period 2 (Left); same invariant mass 77~ distribution (shown
in Top-Right figure) after the w and 3" mass cuts have been applied (Right). The peak around 400
MeV is the n — 777~ 70 reflection (cut off at the phase-space boundary), while the enhancement
at 550 MeV is most likely due to the n decay into a 77~ final-state. Comparing the Top and
Bottom Right hand-side images, a marginal portion of Kg2+ statistics were lost from the w mass
cut. Image source: [3]. Courtesy of Dr. Zulkaida Akbar (University of Virginia).
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CHAPTER 4

GENERAL PHYSICS ANALYSIS

Once the application and calibration of the cuts and corrections was performed on the selected g12
data (Section 3.4), along with the appropriate implementation of the signal-background subtraction
Q—factor method (Section 3.6), we then proceed to extract the set of polarization observables of
interest to this analysis from the carefully selected KYST events, namely: the single {P} and
double-polarization {C,, C,} observables from the K°%* channel. To that end, we employed a
1-Dimensional (linear) fit to extract each double-polarization observable individually, followed by
the implementation of a Maximum Likelihood fit, which allowed for the simultaneous extraction of

every polarization observable we sought after.

4.1 Kinematics and Observables of vp — K+

The underlying kinematic variables describing the reaction,

v(k) + p(pp) = K°(pro) + ST (ps+), (4.1)

given that their set of four-momenta, within the overall center-of-mass frame, are,

k= (Ey, k), pgo=(Eko,pko)

Pp = (Ep7 _k)a b+ = (EZ‘+7 _ﬁKO)a

(4.2)

where E; = y/m? + |p;|? is the relativistic energy (Vi € {p, K, ¥7}) and E, = k|, can be fully
specified by a set of two variables: the incident photon-beam energy E. and the cosine of the polar
angle of the K° meson within the center-of-mass frame of the reaction (i.e. cos Gfﬁl.), with the 2-
axis defined along the direction of the incident photon beam (i.e., the helicity axis of the incoming
photons); see Figure ??. This choice of kinematic variables follows from the proceeding argument.

Consider then the energy-conservation relation,

By + \Jmi + B = \fmio + ol + \/md. + [pico . (43)
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It can be seen from the previous expression that the K momentum, namely |gxo|, is defined
as a function of the incoming photon beam energy FE.. As such, it follows that the dynamics of
the reaction are governed only by two kinematic variables: the cosine of the center-of-mass K°
scattering angle (cos 95121') and the photon beam energy E,. In addition, the set of center-of-mass

momenta expressions can be used to build the following set of Mandelstam variables,

s = (pp + k)> = (pro + pu+)’? (4.4a)
t = (pro —k)* = (px+ —pp)° (4.4b)
u=(pg+ — k)* = (po _pp)Qv (4.4¢)

which, for photoproduction processes, fulfill the following well-known relation,
2 2 2
s+t+u=m,+mgo+ms;. (4.5)

The final-state of the KX T channel consists of a meson (M = K) and a baryon (B = X7).
The coordinate system employed in this analysis to study the aforementioned reaction is known
as the Adair frame, where the Z-axis is chosen to be in the same direction as the incoming initial
photon beam in the overall center-of-mass frame. As such, the axes of the scattering plane are
defined in terms of the wector components of the four-vectors of the incoming photon and the
outgoing ¥*. The direction normal to the production plane is taken as the §-axis, the direction
along the momentum vector of the incoming photon as the Z-axis, while the Z-axis is chosen so as

to make the Adair-frame a right-handed coordinate system. The reaction is parameterized by,

E —
= Dot (4.6a)
[k x P+ |
k
P (4.6b)
F=gx 2 (4.6¢)

The choice for the Adair frame set of coordinates plays a role in the measurement of the set of
polarization observables {C,, P, C,}, which depend on the axes defined by the scattering plane.
Furthermore within the known literature there are two common conventions used to discuss the
beam-recoil polarization observable P. The hyperon polarization within the production plane can

be described with respect to a Z-axis along the direction of the incoming beam (4.6b), or along
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Figure 4.1: Schematic representation of the kinematics of the reaction yp — K9ST. The blue
plane represents the center-of-mass production plane for the reaction, spanned by the incoming
initial photon and the recoiling hyperon X7 three-vector components. Here, 6., denotes the angle
between the initial proton (p) and the K" meson within the overall center-of-mass frame. The
choice of coordinate system employed for this analysis is known as the Adair frame, for which the
Z-axis is chosen to be pointing along the direction of the incoming photon beam in the center-of-
mass-frame. The g-axis of this coordinate frame is perpendicular to the scattering plane, while the
Z-axis lies within the production plane, making this frame a right-handed coordinate system.

the momentum axis of the produced K° meson. However, due to the fact that the polarization
vector transforms according to the vector rules in three-dimensional space (R?), this choice makes
no fundamental difference [50]. Ultimately, the induced polarization P of the recoiling hyperon
T, within the center-of-mass rest-frame, is measured by determining the y-component of the X+
polarization within the rest-frame of the hyperon. This is accomplished by first Lorentz boosting
the proton four-momentum from the Laboratory frame into the center-of-mass frame, and then
directly to the X" rest-frame. By subsequently defining the T rest-frame’s y-component as the

direction cosine of the outgoing proton with respect to the scattering plane (Figure 4.1), we find,
st S N
cost,’s = ps+ - ¥, (4.7)

where ps;+ represents the incoming proton vector-component in the X7 rest-frame and 4 is given
by (4.6a). Similarly, the double beam-recoil observables C, and C, are measured by determining
the x and z components of the X+ polarization, defined by the # and 2 components of the outgoing
proton’s direction cosines in the ¥ rest-frame, comparable to expression (4.7). This will be

discussed further in Section 4.3.
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4.1.1 Production, Formalism and Binning of the yvp — K°~* Reaction

Within the theoretical edifice of QCD, the potential between any two charged particles is depen-
dent on the given distance between them. This distance can be interpreted as a momentum transfer
(q), which is itself inversely proportional to the aforementioned distance. Unlike the coupling con-
stant for QED, the QCD coupling constant cvg grows larger for smaller momentum transfer (g). As

such, the QCD coupling constant satisfies the following renormalization group equation,

do
qZE;g — ﬁ(as) = —(boa% =+ bla% + bQOé, 4+ .. )7 (48)

where b; represent the loop correction S-function coefficients, given for the coupling of an effective
theory in which they depend on the number of quark flavors f, with considerably light masses
(mg < ¢). Constraining our attention to an energy regime where the number of flavors is constant,
one can arrive at an exact solution for the renormalization equation (see Section 1.1, equation 1.5).

The minus sign in equation (4.8) is indicative of the presence of asymptotic freedom (discussed
in Section 1.1), a behavior which renders the strong coupling constant weak at processes involving
large momentum transfers (“hard processes”), where ag ~ 0.1 for momentum transfers in the 100
GeV—1 TeV energy range. It is within this high energy regime that quarks behave as though they
were free particles, therefore turning perturbation theory into a viable tool for the purposes of QCD
calculations. On the other hand (see Section 1.1), at an energy scale of around 1 GeV the resulting
interactions become strong enough to render perturbation theory powerless.

The diverging nature of ag within this energetic regime is regularly taken as a sign of con-
finement, which takes place in the momentum transfer scale of ¢ ~ Agcp ~100—300 MeV [25],
where Aqcp corresponds to the energy scale where QCD is non-perturbative. Therefore, this long
range-physics is effectively described by hadrons. For short-range physics, ¢ > 1 GeV, quarks and
gluons take a more direct role in the interactions. Additionally, the confinement domain is probed
by reactions taking place at energy scales around the Aqcp cut-off value. Furthermore, due to
the fact that the production scale of the strange quarks is governed by their mass, mg ~ 95 MeV
(which itself is within the range of the aforementioned Aqcp cut-off value), an important conclusion
thus ensues: hyperon production in reactions mediated by strong interactions furnish an unequivocal
pathway for the study of the confinement regime of Quantum Chromodynamics [4].

Hyperons can naturally decay either via strong or electromagnetic interactions so long as there

exists a system of daughter particles that shares the same flavor quantum numbers, with a combined
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total mass lighter than the hyperon. If such decay modes are indeed possible, then they are the
dominant ones. Electromagnetic interactions conserve strangeness and parity. Otherwise, if such
decay modes are impossible, the hyperon will then decay via a weak interaction, thus wviolating
conservation of strangeness and parity. On the other hand, decays which conserve strangeness

require a Kaon and a Nucleon (due to baryon number conservation) to be part of their final-states.

>t
\A\ O
T
Figure 4.2: Feynman diagram illustrating the yp — K g2+ reaction. The bubble diagram denotes a
series of intermediate steps, represented by an infinite series of Feynman diagrams involved before
arriving at the K g2+ final-state. One of the main motivations for the extraction of the observables
{C,, P, C.} from yp — KoXT stems from the fact that their determination enables the study of
the non-perturbative confinement regime of QCD, and hence the intermediate steps involved in the
reaction. The quark content of K is (d5), while the quark content of XV is (uus); strangeness is
conserved in this reaction. Lastly, the quark content of the final-states are: K9 — 't (ud)+n~(du)

and X7 — p(uud) + WO(W%;J). Strangeness is not conserved in either decay, thus both particles
decay weakly. Image source: [15]. Courtesy of Louise Clark (University of Glasgow).

There is no denying of the overwhelming success of the Constituent Quark Model (CQM) in
describing all observed baryon states. Nevertheless, there exist a number of baryon resonance
states whose predicted existence either has yet to be observed, or have little supporting evidence
[9]. Known as the missing resonance problem, current predictions claim that some of these states
may decay mainly into Hyperon-Kaon (Y K) final-states. It is also predicted that missing Nucleon

(N*) and Delta (A*) resonances will decay into final-states of strange particles (AK or K¥), and
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other non-strange final-states. Among the reactions studied by CLAS at JLab is yp — K%t (see
Figure 4.2). Neither the K" nor the ¥+ are directly measured by the CLAS detector, as they decay
shortly after production. Therefore, both must be reconstructed from their detected final-states.
For this reaction, hyperons are polarized normal to the scattering plane (Figure 4.1). An exper-
imental investigation of the hyperon polarization provides a window into the different amplitudes
contributing to hyperon production, since the hyperon polarization results from the interfering na-
ture between the spin-dependent and spin-independent parts of the scattering amplitude [44]. The
final-state K meson is a mixture of the short and long lived Kaon CP eigenstates K3 and K¢ [22],
1
V2

Since the Kg is a short-lived meson, it quickly decays into a 777~ pair, with a branching ratio

|K°) = —=(1KS) + |KL)). (4.9)

(decay probability) of 69.204+0.05% [60] via the CP conserving weak decay. On the other hand, the
long-lived K9 meson decays beyond the range of the CLAS detector, with a mean travel distance
of 15.34 m [60]; consequently, only the Kg mesons were considered in our analysis, as they have
a mean travel distance of 2.6844 cm [60], thus decaying well within the range of CLAS. The X+
hyperon decays into a proton and a 7%, with a branching ratio of 51 + 0.3% [60] via a weak decay.
Therefore the detected final-states of the reaction are composed of a proton (p), 7 and 7. The
7Y is reconstructed from the missing mass of the proton and the Kg, while the X7 is reconstructed

from the missing mass of the Kg by requiring the missing mass of the proton and Kg to be 7.

Therefore, the reaction can be fully stated as,
Y+p = K2+ 5T »at a7 4 p+a. (4.10)

For the purposes of this analysis, we extracted the induced hyperon polarization P of ¥, along
with the double-polarization observables C, and C,, using an incident-photon beam with an energy
range of 1.15 < E, < 3.05 GeV. To perform the extraction of the observables, the g12 data was
binned into a single layer containing two independent kinematic variables describing the reaction,
(Ey, cos 02 ): a set of 19 bins with a 100-MeV-wide photon-energy E, width, and 10 angular bins
of cos 9?;, each 0.1-wide, with an angular coverage of [—1.0,1.0]. To extract the observables, the

cos 6% ,, . angular distributions of the proton in the =7 rest-frame, along with the weight (Q—value)

for each event, were fed into a probability density function (PDF) to use the Unbinned Maximum
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Likelihood fit technique. Both the Maximum Likelihood and Linear fitting methods are discussed
further in Sub-sections 4.3.1 and 4.3.3.

4.2 The Formalism of Hyperon Polarization

The driving goal behind this thesis was to extract the set of observables {Cy, P, C,} via the
application of data sets collected at the Jefferson Lab under the g12 experiment.

The photoproduction of a X1 hyperon is generated via an electromagnetic, or a strong, inter-
action from an N* state, and as such it is parity conserving. The parity conservation inherent to
an electromagnetic, or a strong force, production allows for the induced polarization P of the X+
hyperon to be produced exclusively along an axis perpendicular to the reaction’s production plane
(defined by 4.6a; see Figure 4.1). That being said, the ¥ decays into a proton and a 7° via the
weak force, which in turn is parity violating.

A direct consequence of this parity violation is that one can measure the polarization of the ¥
from the angular distribution of the decay products in the ¥ T rest-frame, since the decay products
contain information about their production. If the hyperons were produced with a given degree
of polarization P in a reaction, then this polarization will make itself manifest in the angular
distribution of the resulting daughter particles. This is known as a self-analyzing decay. The
degree of parity violation involved in hyperon decay is characterized by the weak decay asymmetry
parameter «, which is also manifestly observed within the angular distribution of the daughter
particles. For the T — pn¥ decay, the angular distribution of the proton in the X% rest-frame is
given by [18],

I(cos 0) = ﬁ(l—i—aPCOS%’), (4.11)

where cos#l is the proton polar angle with respect to the g-axis in the X7 rest-frame, and «
measures the degree of parity mixing, which for our particular (X7) reaction channel is given by
a = —0.98 £ 0.016 [59]. Therefore, hyperon-recoil polarization observable P can be extracted by
performing a counting experiment of the rate of protons above and below the scattering plane of the
reaction (Figure 4.1). A convenient way used to derive the dependence of the angular distributions
on the polarization observables is via the application of the density matrix formalism, a ubiquitous
tool in the realm of Statistical and Quantum Mechanics. The proceeding Sub-sections will shortly

digress into the density matrix formalism needed to understand and derive expression (4.11).
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4.2.1 A Digression into the Density Matrix Formalism

Developed independently by John von Neumann and Lev Landau in 1927, and by Felix Bloch
in 1946, the density matriz formalism is a useful tool employed to describe the statistical states
of a system (also known as ensembles) in Quantum Mechanics [41]. Angular distributions can be
parameterized using spin (polarization) observables via the use of the density matrix. In the realm
of Quantum Mechanics, a pure ensemble is described by the same state-ket |¥), while mixed states,
populated by a fraction a;, are described by distinct state-kets |¥;). Given a pure state |¥) the

density matrix can be employed to find the expectation value of a given observable F,
(E) = (V|E|¥P). (4.12)

Using an orthonormal basis {aj} we can insert a completeness relation of the eigenkets |ay)

(> "k low){ai| = 1) on the expression above to rewrite the expectation value as follows,

(B) = <\If|(2 |ak><ak|)E|\If> = 3" (Wl EI)
k b (4.13)
S B[ (W) = 3l (21) (W) = Te(E[ 0 (),

k k
where the trace of an operator X is defined as the sum of its diagonal elements, Tr(X) = 3 / (a'|X1a’).
Defining the density matrix of a pure state |¥) to be p = |V)(V¥|, the expectation value is now
given by the trace of the product of the E observable and the density matrix p,

(E)y = Tr(Ep). (4.14)

The power of the density matrix lies in the fact that it contains all physics information pertaining
to the ensemble under consideration. On the other hand, in the case of a mixed state |¥;), the

density matrix results in the following expectation value for an observable FE,

) = Sl = 3 |<Z o) ak|)E|w )

’ (4.15)

—Zak|<EZaZ|\If \Il|>|ak ( Zal|\11 g,,>

In order to arrive at the same relation shown by equation (4.14), we need to redefine our density
matrix as p = ), a;|V;)(¥;| (this is really an operator that becomes a matrix in a given basis),

where a; = n;/N (here, n; represents the ¢ occupancy numbers of the ensemble) is the probability
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that a randomly picked system out of the ensemble will be in the mixed-state |¥;). In the case of
a pure state the condition Tr(p) = 1 holds, which can also hold for a mixed state as well, provided
that we have ), a; = 1. Additionally, the density matrix is a Hermitian operator since it behaves

as follows,

ol = (W) (w))t = (w[|9)! = [w)(w| = p. (4.16)

An essential bit of knowledge about density matrices is their transformation properties; these are
needed to describe particle reactions, such as particle decays. Let us then define a transformation
operator T', whose physical interpretation is that it transitions an initial state |¥) into the final-state

of a reaction, such that T|¥;) = t;|¥;). Therefore, the translation operator eigenvalues are,
ti =\ (V| TTT|9,), (4.17)
which guarantees that our transformed states ]\I//Z> will be normalized since,
’ / 1 T
(W;|0;) = t§<qu’T T|¥;) = 1. (4.18)
i
As such, the density matrix of the final-state is expressible in terms of the initial state [63],
prinal = TPinitiat T (4.19)
We can explicitly rewrite the above by using pinitial = > _; ;| ¥;)(¥;], to find the following,

T pmitiat T —T<Zaz\l’ \I'|>TT ZazThIf W[ TT = Zazt2|\IJ (4.20)

This expression yields back equation (4.19), so long as both a; = a;t? and pgna = 3. ay| ;) (W],
hold. Lastly, the angular distribution of the daughter particles from a final-state decay follows from

expression (4.20), upon taking its trace,
I = To(Tpinitia TT), (4.21)
where the transformation matrix 7" denotes the hyperon decay.

4.2.2 Single Hyperon Density Matrices

The density matrix formalism can be readily employed to describe the spin configuration of a

hyperon. In this instance the density matrix is known as a spin-density matriz. In order to obtain
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the spin-density matrix for a particle with an arbitrary spin j, one can expand the spin density
matrix via the use of Hermitian matrices Q%;, as follows [49, 63],

25

1 2j
=—7 4.22
P= i g ] ZQMTM, (4.22)

where .# represents the identity matrix, L is the angular momentum, M is the third component of
angular momentum, and 7"]%/[ denote a set of real polarization parameters. For the purposes of this
thesis, only the spin-1/2 £+ hyperon was considered. The Qﬁ matrices can be readily related to

the multipoles T via the following relations [63],

2L + 1
QL = 2+ T (4.23a)

/2L 11
+ TM s (4.23b)
/2L 11
QL = (— * TM (4.23¢)

where M > 0. In order to obtain an explicit expression for the spin-density matrix we can use

Wigner’s 3-j symbol to write the components of the T’ i” multipoles. In the physics literature, these
are given by the following [41, 49],
L . .
(TEY™ = /25 + 1 (T y i) = (jnLM|jm). (4.24)
In the case of a spin-1/2 hyperon, the spin-density matrix takes on a rather simple form since

the Q}, matrices are given by the Pauli spin matrices [41],

01 0 —2 1 0
U;E(l O)’ Uy<z' O)’ UZ<O _1>, (4.25)

while the 7']1\4 parameters are interpreted as the vector polarization components Pzz*? Pz;r (given
by P in our notation) and Pg+. Therefore through the use of equation (4.22) we find that the

spin-density matrix for a spin-1/2 hyperon is therefore given by [63],

P11 P1-1 1 — . 1 1+ PE+ PE+ + iPE+
1/2) = = (I +Psy 7)== oz x v, 4.26
p( / ) <p11 pll) 2( + =t U) 2 <P22- — ’LPE;— 1-— PEj ( )

The vector polarization components of our spin-density matrix are dependent upon the underly-

ing production mechanics of the hyperon. Since the strong production of the ¥ hyperon conserves

50



parity, this can be used to impose a series of symmetry constraints on the spin-density matrix ele-
ments by defining a reference frame such that the & and 2-axes span the production plane, with the
g-axis being perpendicular to the scattering plane (shown in Figure 4.1). Therefore, conservation

of parity dictates that the spin-density matrix takes on the following representation,

p(1/2)—< Pl ”1—1>. (4.27)

—pP1-1 P11

A direct comparison between equation (4.26) and equation (4.27) shows that the following set

of constraints can be placed on the spin-density matrix elements,

—pP1-1 = P-11 (428&)

P11 = P—1-1- (428b)

The implication of this result indicates that the £ and Z vector polarization components are in

fact zero, Po+ = Py = 0; therefore the spin-density matrix takes on the simple form,
p(1/2) = % (—i1132+ ZPlE? ) . (4.29)

y

This result thus states that the hyperon is exclusively polarized perpendicularly to the scattering
plane (i.e. it arises only along the g-axis). In the case of a spin-1/2 hyperon decaying into a spin-
1/2 baryon accompanied by a pseudoscalar spin-0 meson (for our analysis this is the reaction
¥+ — pr¥), described by a transformation matrix 7', the angular distribution of the outgoing
proton is furnished by employing expression (4.21). Furthermore, conservation of total spin states
that the ensuing final-state can either have an angular momentum of 0 or 1 with a parity of (—1)&+1.
However due to the fact that the hyperon decay is weak, both the parity conserving state P and
parity violating state S are equally allowed. The elements of the transformation decay matrix
T(1/2 = 1/2 0)2my,,2my,, consist of S and P amplitudes Ts and T, and the appropriate spherical

harmonics (these are functions of the decay angles 6 and ¢) and Clebsch-Gordan coefficients [63],

1

T(1/2 = 1/2 0)1y = T YL + %TPYP (4.30a)
2

T(1/2 =1/2 0)_ 11 = —\/;TleO (4.30b)

2
T(1/2 —=1/2 0);_1 = \/ngyl—l (4.30c)
1

V3

T(1/2 = 1/2 0)_1_1 = T,Yy — —=T, Y. (4.30d)
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The relations above can be economically encapsulated by recasting them into a matrix expression

(while inserting the corresponding spherical harmonic expressions) [63],

1 Ts+T,cos T),sin fei® ) 7 (4.31)

T1/2—>1/20)= VA < Tpsineew Ts —Tycost
where 6 and ¢ represent the polar and azimuthal angles in the hyperon rest-frame. In order to
simplify the derivation of the angular distribution of the hyperon decay product, one can make use of
the fact that the trace of a matrix is invariant under cyclic permutations, i.e. Tr(TpT") = Tr(pTT).

As such the calculation of the matrix A = T1T is performed as a first step in our calculation,

1 i —i¢
(1+ac059 « sin fe )’ (4.32)

A(l/2—1/2 0):5 asinfe® 1 — acosb

where we have introduced the asymmetry parameter . The asymmetry parameters are defined in

terms of the following combinations of the S and P amplitudes T and T,

a =2R(T,T,) (4.33a)
B = 2S(T T,) (4.33b)
v = T = T, (4.33¢)

These asymmetry parameters are numbers defined within the range of [—1.0,1.0], and need
to be individually measured for every specific decay. These parameters also fulfill the following
relation by construction: a? + 3% +~% = |T4|? + |T,|? = 1. Armed with this result, and using the

spin-density matrix obtained from equation (4.29), the angular distribution takes on the form,
1
1(0,9) = Tr(p(1/2)A(1/2 — 1/2 0)) = 4—(1 + aPgy sinf sin b). (4.34)
T

This angular distribution can be written in terms of Cartesian coordinates by expressing it as
a function of the opening angles between the outgoing daughter particle (namely the proton with

respect to the X hyperon) and the polarization axis. These opening angles are defined via,

k, = cos 0P = sin 6 cos ¢ (4.35a)
ky = cos 0} = sin fsin ¢ (4.35b)
k., = cos 02 = cosb. (4.35¢)
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Henceforth, the angular distribution in Cartesian coordinates is given by,

1
I(ky) = (1 + aPyrh,), (4.36)

which depends on two parameters, the decay asymmetry «, which describes the hyperon’s decay,
and the hyperon polarization PE;, which is related to the underlying production process and thus
depends on both the scattering angle of the hyperon and the center-of-mass energy of the reaction.
Consequently, the spin-observable PZ; (from this point forward, this will be denoted by P) can be
extracted from the resulting angular distribution of the hyperon’s (X7) decay products, which in
this case is the proton.

Armed with this discussion on the single polarization observable P (which represents the hy-
peron recoil polarization) and the underlying theory of density matrices, we now turn to polarization
observables characterizing reactions under a combination of beam and baryon recoil polarization,
namely C; and C',. The experiment carried out to record the g12 data sets made use of a circularly
polarized photon beam. The spin-dependent cross section for the vp — K9%F reaction can be

written in terms of the polarization observables of interest for this analysis [50],

do  do
PE 000~ dQpo

{14+ 0yP + Py (Croy + C02)}, (4.37)

unpol.

where Pg denotes the degree of the circular photon beam polarization with a range spanning
[—1.0,1.0], 044, represent the Pauli spin matrices and py+ is twice the density matrix of the

ensemble of recoiling 1 hyperons (previously stated by equation 4.26),
ps+ = (I + Pyi - 7), (4.38)

where 132+ represents the measured polarization components of the recoiling hyperons. In order to
measure the observables of interest, an appropriate coordinate system describing the reaction must
be defined (discussed in Section 4.1). A direction relationship between the X7 recoil polarization
components f’2+ and the set of polarization observables {C,, P, C.} can be obtained by taking
the expectation value of the Pauli-spin matrix operators & acting on the hyperon density matrix

psi+ via the trace relation Py = Tr(ps+&). This leads to the following identifications [50],

Pys = PoChy (4.39a)
Pyy =P (4.39b)
Py = PoC. (4.39¢)
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It is clear from the previous set of relations that while the ¢ component of the induced hyperon
polarization PE; is equivalent to the P observable, the & and Z components of the hyperon polar-
ization within the scattering plane are proportional to the double-polarization observables C, and
C,, up to a constant given by the beam polarization factor Pz. The hyperon polarization compo-
nents ]32+ are measured via the angular distribution of the decay protons of the hyperon within
its rest-frame. Extending the result obtained from the derivation leading up to expression (4.36),
the decay distribution I;(cos 67), as it relates to the hyperon polarization components (4.39a-4.39¢c)

within the hyperon rest-frame, can be stated as follows [50],
1
Ii(cos0?) = E(l + aPg+ cos 6?), (4.40)

where cos§? denotes the polar angular component of the proton with respect to a specific axis
(i € {Z,y,2} is one of the three axes) in the hyperon rest-frame and sz denotes the hyperon
polarization component of interest. Physically, the polarization observables C, and C, characterize
the amount of transferred circular polarization (helicity) originating from an incident circularly
polarized photon beam on an unpolarized target, and into the produced recoiling hyperon (for
this analysis, the XT) along the axes describing the production plane in the hyperon’s rest-frame
[50]. Further discussion into the fitting procedures implemented for the extraction of the set of

observables {Cy, P, C,} will be detailed within the following Section.

4.3 Analysis Techniques

The analysis contained within this thesis adheres to two different strategies for the extraction of
the set of single and double-polarization observables {C,, P, C,}. The first method uses the photon
beam helicity states to construct an asymmetry. The beam helicity is defined as the projection
of the normalized component of the beam polarization along its direction of momentum. If the
electron beam helicity Ps can be quickly and regularly flipped, then the most straightforward
way to find the double-polarization observables {C,, C.} is to construct the resulting asymmetry
A(cos?) as a function of the proton angular distribution by keeping a record of the number of
positive and negative helicity state events N4 of the photon-beam in each angular bin. In the case
of the ¢g12 experiment, the electron beam helicity was flipped at a rate of 30 Hz [55].

When the incoming photons are circularly polarized, so that they are spin polarized parallel or

anti-parallel with respect to the direction of the beam, their polarization may then be transferred
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fully or partially into the ensuing hyperons, thus giving rise to hyperon polarization components
within the scattering plane. The double-polarization observables C, and C, give a characterization
of this polarization transfer from a circularly polarized beam into the recoiling ¥ hyperon along
the orthogonal axes of the scattering plane.

Once the ensuing asymmetry has been built, the C; (i € {Z,2}) observables are individually
extracted by performing a 1-Dimensional fit on the asymmetries as a function of the angular
distribution of the proton. In the case of the hyperon-recoil polarization observable P, its extraction
did not require a 1-Dimensional fit but was instead found via an asymmetry consisting of the
counting rate of decay protons above and below the X1 scattering plane; as such, its extraction
will be treated separately in Sub-section 4.3.2.

A second far more sophisticated method employed in this analysis is the event-by-event based
method known as the Unbinned Maximum Likelihood fit. The Likelihood fit employs information
from every individual event and does not require binning, thus preventing any potential loss of
information in the form of asymmetry features, due to the binning of the data. This method
enables the simultaneous extraction of the observables {C,, P, C,}. The details underlying each of
the aforementioned fitting procedures, as employed by this analysis, are described in Subsections

4.3.1 and 4.3.3.
4.3.1 One-Dimensional Fit Method

The main objective of this analysis was to extract the polarization observables {C,, C,, P} via
the use of g12 CLAS data for photon energies of 1.15 < E, < 3.05 GeV, as a function of the cos 6?
scattering angles. The helicity dependent double-polarization observables C, and C, were extracted
by binning them in two kinematics variables describing the reaction vp — K°“*: 19 energy bins,
100 MeV-wide, of the incoming photon-beam E., and 10 angular bins of the ¥* hyperon in the
scattering plane within the center-of-mass frame (i.e. cosfZ, ), with a range of [—1.0,1.0].

The simplest method, commonly employed in CLAS analyses [8, 50], uses a 1-Dimensional (1D)
fit. Given a photon energy E,, the general polarized differential cross section for pseudoscalar
meson photoproduction off a proton can be readily expressed in terms of sixteen different polariza-
tion observables, along with the degrees of polarization of the photon beam and the target. The

differential cross-section for the case of a double-polarization experiment with polarized photons
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and an ensuing recoil hyperon polarization is given by [29],
{1 — PrXcos2¢

do B dl
dQde  \ dQ unpol.

+ acos 02 (—PrO, sin2¢ — P C,,)

(4.41)
— acos 95(—P + PrT cos2¢)
—acosb2(PrO,sin2¢ + P,C,)},
where (do/dQ)|unpol. denotes the unpolarized differential cross section, Pr and Py, denote the linear
and circular polarization coefficients of the photon beam, respectively, ¢ represents the azimuthal
angle between the linear photon polarization vector and the scattering plane, « is the weak decay
asymmetry, while cos 07, cos 6l and cos 6% represent the direction cosines of the three-momentum
vector components of the decay proton, as defined within the rest-frame of the ¥ hyperon. Lastly,
the set of observables {¥, P, T, O,, O, Cy, C.} represent, respectively: beam spin asymmetry,
YT induced hyperon polarization, target polarization, polarization transfer components to the X+
from linearly polarized photons, and polarization transfer components to the ¥+ stemming from
circularly polarized photons. A direct integration of the differential cross section given by (4.41)
over the azimuthal angle ¢, in the range of [0, 27|, simplifies its form since it cancels out all terms
that depend on the linear polarization, along with all the other observables not of interest to this
analysis, leading to a differential cross section expressed purely in terms of {C,, P, C.} [8],
e (4)
ds) ds2

where £ represents the helicity state of the incoming photon beam.

{1+ aPy(Crcos b + C, cos ) + aP cos 0L}, (4.42)

unpol.

The asymmetry could then be built as a function of the proton angular distribution, so as to
perform a linear fit. To that end, the number of positive and negative beam helicity state events
were recorded for each angular bin. By directly integrating expression (4.42) over its direction

cosines cos 0% ,, -, the beam-helicity asymmetry can be expressed in the following manner [8, 50],
Ny — N_
A Py = "=
(cos 65) Ny + N_
JJ - d(cos 0f)d(cos 67) — [ “55-d(cos 0)d(cos 0F) (4.43)
[ 2es-d(cos 6)d(cos 07) + [ 92-d(cos 6})d(cos 6F)
= aPyCjcosb?,

where cos6? (i € {&,2}) represents the angular distribution of the decay protons in the X7 rest-

frame, and Ny denotes the helicity-dependent hyperon yield for each event. Expression (4.43)

56



shows that the asymmetry is indeed a linear function dependent on the cosine of the proton angle,
whose slope results in the double-polarization observables C, and C,.

Figure 4.3 displays an example of proton angular distribution asymmetries for the reaction
vp — K%t for the double-polarization observables C, /2, as a function of the proton angular
distribution cos Gi = Subsequently, the asymmetries were plotted against cos 9;, and linear fits
were used to find the slopes of the angular proton distributions; the free parameters were the

product aPg cos6? (i € {z,z}), which were equated to the slopes to extract the observables C, /2
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Figure 4.3: (Left/Right): An example of the beam helicity C,,, asymmetries, as a function of

the proton angular distribution in the ¥t rest-frame (cos GE;;_), for the lowest energy bin in the
analysis (£, = 1150 MeV). The asymmetries were further binned in 10 cos 0%, angular bins, with
a range of [—1.0,1.0]. These distributions used a different set of Q—values. Performing a linear fit
(equation 4.43) to the angular distributions allowed us to extract the C; and C, observables.

While a hyperon decay allows for the measurement of asymmetries, from which we linearly ex-
tracted the observables €/, via (4.43), there’s a trade-off in the form of low cross-sections inherent
to this reaction, which led to consistently large error bars due to the low statistics. Counting statis-
tics were poorest at higher energies and forward angles, where the cross sections were the smallest.
The statistics were better behaved at lower energies and backward angles. The uncertainties placed

on the observables C, /. are a result of the fit uncertainty originating from the 1-Dimensional fit to
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the asymmetry angular proton distribution. Overall, we found that both polarization observables

C,,. were mostly flat for the energy and angle bins considered for this analysis.
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Figure 4.4: (Top/Bottom): Distribution of the bp-intercept parameter for the extraction of the C,/,
observables. It was found that a linear fit, following the prescription of (4.44), had little influence
on the extracted observables C, /., (Figure 4.3), as obtained from the asymmetry A(cos6?) (4.43).

In an effort to study if these effects were influenced by the linear fit prescribed by equation

(4.43), the data was fitted and uniformly shifted using the following first-order polynomial,

A(cos8?) = aPyCjcos Y + by, (4.44)
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where by represents a constant intercept parameter. We found no noticeable differences between
the observables C, /. extracted via the fits (4.43) and (4.44). Figure 4.4 shows the Gaussian-like
distributions of the bg-intercept parameters from (4.44), with most fits showing no effect from being
shifted by a constant by, and thereby leaving the extracted observables unaffected.

The error bars present on the performed asymmetries are purely statistical in nature. Their

errors can be analytically calculated via the standard tools of error propagation,

9A \? 9A \?
64 = \/512\,+ <8N+> + 6% (aN> , (4.45)

where 0y, represents the yield uncertainties on the number of counts for a specific helicity state.

A straightforward calculation shows that,

dA 2N+
N " NN (4.46)

We find that the total statistical uncertainty of the asymmetries, added in quadrature, is given

by the following expression,

2

m%&m +62, N2, (4.47)

04 =

Additionally, without loss of generality, expression (4.48) may be rewritten as,

2
Sa = 2 \/N+NE + N_N2, (4.48)

(Nt + N_
where we have made use of the fact that oy, = +/Ny. Thus, the uncertainties on the C, and C, ob-
servables derive from the uncertainty of the linear fit, as performed to the asymmetry distributions
given by (4.43).
4.3.2 Extraction of Hyperon Polarization Observables in yp — K%+, Using
the g12 Data Sets

The equivalence of the hyperon induced recoil polarization g-component PZ; (4.39b) to the
P observable, coupled with equation (4.40), gave a direct path for the extraction of the single
polarization observable P. The induced hyperon polarization P was binned in 19 energy bins of the
incoming photon beam E., with a range of 1.15 < E, < 3.05 GeV. The X" hyperon is produced
via the electromagnetic (or alternatively the strong) force (both being parity conserving), and

eventually decays into a proton and a 7° via the parity violating weak force. This parity violation
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in turn ensures that the polarization of the ¥ can be extracted from the angular distribution of
one of its decay products within its rest-frame (see Section 4.1). This is illustrated by Figure 4.5.
Let us then recall that the angular distribution of the outgoing proton in the T rest-frame is,

dN 1
I, (cos 0) = P = E(l + aP cos ), (4.49)

where cos 6} represents the angle between the momentum vector of the proton in the X rest-frame

and the normal direction of the scattering plane, while « is the degree of parity mixing.

y AMAAA

'T[ 0

Figure 4.5: Scattering plane of the yp — K°%+ reaction, defined by the momenta of the incoming
photon beam v and the outgoing X" hyperon in the center-of-mass frame. This arrangement
allowed us to find the number of protons above and below the scattering plane, resulting in the P
observable of X7 (4.52). Image source: [11]. Courtesy of Dr. Ralph Castelijn (Shell, Netherlands).

Expression (4.49) can be split up into two parts representing the upwards (Ny) and downwards

(Np) proton angular distribution rates with respect to the scattering plane [44],

ANy
Nu(eosty) = d cos 0}
y

1
= 4—(1 +aPcostl) for 0<costl) <1, (4.50a)
s

dNp
N; oP) =
p(cosfy) dcos 0}

1
= 4—(1 —aPcosl) for —1<cost) <0. (4.50b)
T

Adding both of the relations above, we arrive at the following expression for the P observable,

Ny(cos 6)) — Np(cos 6%)

4.51
Ny(cos6y) + Np(cosbl) |’ (451)

aP cos 95 =

where cos 0} is constrained within the range of [0.0, 1.0]. The advantage of using the rate of upwards

and downwards proton angular distributions is that it cancels acceptance corrections effects in
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the asymmetry (working under the assumption that their acceptance corrections are indeed the
same), since the detector is (approximately) ¢-symmetric. Therefore, to determine the hyperon
polarization observable, a direct integration of all events above and below the reaction plane over
cos 0%, (so that no direct angle dependence on the proton is required, i.e. no angular binning, as it
is required for the C, and C, observables) yields the following expression for the P observable [44],

2 [Nuy—Np
p_2 ' 4.52
o |:NU+ND:| ( )

Therefore, the measurement of the ¥ induced recoil polarization P is effectively reduced to
a counting experiment as it is based on the asymmetry between the proton count rate above and
below the reaction plane. As mentioned in Section 4.1 (equation 4.7), whether a proton is above

or below the reaction plane (see Figure 4.5) depends on the following condition,

Py

cosg=T — Ps+ -y > 0, for protons above the scattering plane,
Psi+ - § < 0, for protons below the scattering plane.

Here, cos 9§T represents the angle of the j-component of the outgoing proton in the ¥ T rest-frame,

7y
and py+ represents the proton momenta in the rest-frame of the ¥ . Furthermore, since the P
observable does not require the beam’s helicity data, one can think of the P observable as the “C,,”

observable, similar in nature to the double-polarization observables C'; and C..

4.3.3 The Maximum Likelihood Fit Method

The process of accurately determining the approximate value of a parameter of interest, given
a set of measured data, is known as parameter estimation. For the 1-Dimensional method, outlined
in Sub-section 4.3.1, the asymmetries of the data were fitted via the use of a least squares method,
where each asymmetry was binned in accordance to the angular distribution of the proton in the
YT rest-frame. The quality of the binning was in turn dependent on the number of events (i.e. the
amount of available statistics). Consequently, the binning of the data can potentially obscure some
important characteristics of the asymmetries [40].

In order to mitigate these issues, there exists a far more sophisticated fitting technique, known
as the Unbinned Mazimum Likelihood fit (MLF). In current analyses, a Maximum Likelihood fit is
among one of the most essential tools for parameter estimation in high energy physics, due to its

many useful features [7]. For instance in its asymptotic limit, the Maximum Likelihood method is
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normally distributed around the true parameter value, with its variance being equal to the minimum
variance bound [39]. Furthermore, the Maximum Likelihood method is an event-by-event based
method that requires no binning, hence preventing any potential loss of information inherent to
the binning, if the data suffers from low statistics [40]. Therefore, the MLF method enables the
simultaneous extraction of all polarization observables {C,, P, C,} for the vp — K%+ reaction.

In order to apply a Maximum Likelihood fit, a Likelihood function is required. Let P({Z}|{)})
denote the Probability Density Function (PDF) of finding a set of measurements {Z} for a set of
events (i.e. the data), given a series of parameters {X} that the PDF depends on. In addition, this

PDF must satisfy the following normalization condition for the set of parameters {X} [39],

/ PUZ{N))dE = 1. (4.53)

A PDF which fails to fulfill the condition above will yield either wrong or nonsensical results.
Therefore, the Likelihood function is defined as the probability that a measured data set of interest
will be obtained, provided a specific set of fit parameters is specified. Mathematically, this is
characterized by the product of a series of N measurements of the probability density functions for
each individual event,

N

L =PHZHX}) = P@il{X}) - Pl@al{X}) - P(an[{X}) = [ Pilail{X}), (4.54)

i=1
where the data set {Z} has been split into subsets (bins), and N represents the total number of
observed events for the given distribution. For the analysis at hand, the Likelihood function £
defined by (4.54) furnishes the probability of obtaining the observed proton angular distributions
from the g12 experiment, provided we have a specific set of parameters which maximizes the function
L. For this analysis, these parameters are defined as the set of single and double-polarization
observables: {X} = {C,, P, C.}.

Often times however, there is far too much data to provide an accurate calculation of the
Likelihood function. When iterated over a large number of events IV, the Likelihood function
(4.54) tends to quickly grow towards larger values. Consequently, it is computationally simpler to
deal with the negative natural logarithm of the Likelihood function, — In £, than it is to deal with
the Likelihood function £ itself. Since the natural logarithm is a monotonically-increasing function,

the minimization of —In £ is far more convenient to work with, as opposed to the maximization of L.
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This minimization can be accomplished via the use of standard ROOT packages, such as MINUIT
[28]. Therefore, the minimization of —InL is equivalent to the maximization of the Likelihood
function £. Additionally, it is a simpler task to find the derivative of a sum of terms than it is to
find the derivative of a product of terms, which is needed to find the minimum of the Likelihood

function. Thus, the negative log-Likelihood function is given by,
N
—InL ==Y InPi(xzi|{X}). (4.55)
i=1

The Maximum Likelihood Estimator (MLE) for the parameters X are those values which max-
imize the Likelihood function, or in the case of the log-Likelihood function, minimize. The MLE
for a set of continuous Np parameters {X} = {M\1,..., AN, }, provided a set of N measurements
constituting the observed data {Z} = {z1,...,zn}, may be determined by solving the following set

of simultaneous Maximum Likelihood minimization condition equations [7, 34],

8 —
a InL(z1,...,z8|{\}) . =
X (4.56)

N
Z xz\{)\})

Solutions to the set of equations above (which hold Vl =1,...,Np) could also represent the

minimum or inflection points of the Likelihood function. Minimizing the log-Likelihood function
(—In £) is what provides the set of parameters {j\'} for which the measured data set {Z} becomes
the most likely. In practice however, most Maximum Likelihood fits are far too complex to be
analytically solved. Instead, one relies on numerical packages, the most common in high energy
physics being MINUIT. Given a data set, this package minimizes a Likelihood function containing
a single or multiple parameters and returns their optimal values, along with their uncertainties [28].

For Likelihood functions that depend on a set of multiple parameters {X}, the correlations
between the parameters become important. In the absence of event-weights, these correlations are
encapsulated by an M x M covariance matriz for a set of M parameters [7]. The covariance matrix,
evaluated at the point X = by (which makes the measured data set {z;} the most likely), is defined

as the inverse matrix of second-order derivatives (known as the Hessian matriz) of the negative

) . (4.57)
A

logarithm of the Likelihood function [34],

o =Y —
Vij = —<ln£(:c1,...,$N‘{)\}> ;> = —< 8)\ oN; mP(l’zH)‘})
A

INON,
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The diagonal elements of the covariance matrix give the variance of the corresponding parame-
ters, while the off-diagonal elements correspond to their covariance. Given a series of event-weights

We=1,...,N for each measurement, the ML minimization condition takes on the following form,

N o .
Zwi@Tz InP(z;[{\}) (4.58)
=1

>

However, the weighted covariance matriz for a weighted Maximum Likelihood function,

N 82 . -1
Vlj = - (;W{WIHP(%H)\}) X) ) (4~59)

will generally fail to yield asymptotically correct confidence intervals as the errors will scale pro-

portionally to a factor of (Zfi Lw?/ Zi\i L w;) [23, 34]. Assuming constant event-weights w; = w,
the minimization will either result in an over-estimation (w > 1) or an under-estimation (w < 1)
of the sample’s statistical power and shall yield confidence intervals that will either be under- or
over-covered [34]. In the MLF analysis performed for this thesis, the event-weights w; were given
by the Q;—values (see Section 3.6) for a series of i events. These @);—values predict the probability
that the given event is indeed a K°Y* by subtracting off any background contributions to the
Likelihood function.

In order to derive the asymptotically correct uncertainties, in the presence of event-based
weights, we outline an approach that quantifies the parameter variance for a set of weights w;.
Let us then Taylor-expand the Maximum Likelihood condition (4.58), up to first-order, centered
around the set of unknown true parameter values {\o} to which {X} converges in the limit of large

N. This expansion results in the following [34],

0?
Z“’Zm In P (a;|{X}) +szz — Aoj) TN, InP(z|{X})| =0. (4.60)
)\0 =1 )\0
Re-expressing expression (4.60) via the use of explicit matrix notation, we have,
N 61P1>\ N 9% InP(xs{X N 8% In P(z; |{X
SV n (:Jcl\{ 1)) ) SN w; nag\x% {Ah) o S w af;\lg]l‘l{o 3] )
X0 X0 X0
N Aln Pz {X N 92 InP(z{X N 92 InP(z{X
SN wi%)f}) ) >N wiw BEEEEED D\ wiw i} (4.61)
Ao Ao P 0
A — )\01
X
ANp — Aonp
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Taking the inverse of matrix (4.61), we find that the deviation of the estimator parameters 5\j

from their actual values \o; is given by the following set of equations,

AL — Aot

X]Vp - )\ONP

N
diml W

N
dim W

N alnP(xi|{X
SN w (/\ {2D

S w

=1 Wi

92 In Pz |{A})
@ N2

92 InP(x:{X})
AN ON | -
Ao

[22¥1 R

AP (x| {X})
ANy

2o

ZN 92 In Pz |{A})
i=1 Wi NN, |-

N 9InPal{X})
D i1 Wi A2 .
Np o

(4.62)

Therefore the variance of the covariance matrix, in the asymptotic limit with weights wj, is [34],

1= <(5\l - Aoz) (5\]' - >\0j)> = VirCr Vi

where Vig (i)

N

(
s

=1
N

i=1

S u,
>

0 InP(z;|{\})
ONON

P InP (x| {\})
OO,

)
)

N

S u? 0% In P (x:|{X})

1=

)

OALOA, (4.63)

1

is the weighted covariance matrix (4.59) and Cp,, is the inverse of the Hessian matrix,

with squared event-weights w?. Explicitly, the correctly weighted covariance matrix (4.63) is thus,

N 92 InP(z;|{X})
D i Wit |

Vij =

N
D i Wi

N AInP(x;|{X
5 wz[ (/1)

N
D im1 Wi

N
D el Wi
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Trivially, one can verify that if the event-weights are all unity, w; = 1 (or if they all take the

form of some constant w; = w), then the corrected weighted covariance matrix (4.63) reduces to,

N . —1
Vi = <me><|m> ) | (1.65)
A

P ONOA;
which is just the covariance matrix with of no event-weights (4.57). Although this approach yields

the asymptotically correct uncertainties using event-weights w;, it might be impractical in its im-
plementation. A more expedient method than the one highlighted previously is to simply re-scale
the weights within a Likelihood function by the ratio of the sum of the weights w; over the sum of

the squared weights w?. This defines a new set of scaled-weights w; given by [34],

=L T o, (4.66)

(4.67)

Replacing all the event-weights w; in (4.59) by the event-weights w; will re-scale all weights
so that the total statistical power of the data matches that of an N-number of events. However,
generally speaking, this won’t reproduce the result shown in equation (4.64) [34]. Nonetheless, many
current analyses include this extra «,, factor to better account for the effects that the background
subtraction method has on the uncertainties obtained via the MLF method [58].

For the particular analysis at hand, the objective was to perform a simultaneous extraction
of the polarization observables {X} = {C,, P, C.} for each (cosfZ, | E,) bin that maximized the
Likelihood function £ modeling the physics of our reaction. The Unbinned Maximum Likelihood
event-based fit is an extreme case of a binned method for which each bin is reduced until it contains
either one or zero event(s) [40]. To define the Likelihood function for our reaction, a probability
density function was, naturally, required. The PDF for observing each individual event in an
experiment is defined as a function of the fit parameters of interest to an analysis. For this analysis,
these parameters included the cosines of the proton scattering angles in the X rest-frame (with

respect to the scattering-plane axes), the photon’s circular polarization Pg and the set of observables

{Cy, P, C.}. The PDF for a particular given event ¢ is thus defined by [2, 8, 24],

cos O?

- P
P:=(cos b i

7 x,10

cos 07 ;|Cy, P,C;) = 1 £ aPg(Cycos 0y ; + Cscos 0 ) + aPcosty ;,  (4.68)
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where the + denotes the helicity state of the incoming photon beam. Each event involved in this
analysis was assigned an event-weight w;, computed via the QQ—factor method (see Section 3.6).

Thus, the Likelihood function for N;ota events, along with its negative natural log, is given by,

Ntotal
c= [ (PF @l
=1
Niotal

—IL=— Y QP (w|{X}).
=1

(4.69)

However, generally speaking expression (4.69) won’t lead to a correct estimation of the un-
certainties of the most likely parameters (i.e. the polarization observables) that maximize the
Likelihood function £, in accordance to the constraint outlined by (4.56). In order to accurately
approximate the uncertainties obtained via the MLF, the addition of an the extra parameter ag

(4.67), becomes necessary to define the logarithmic-Likelihood function,

Ntotal

—InL=—aqg Y QilnPI(z|{X}), (4.70)

i=1

where o accounts for the effect of the background subtraction (from the ()—values) on the statis-
tical uncertainty of the parameters obtained via the minimization of (4.70). Lack of this ag term
would otherwise over (or alternatively, under) estimate the values of the parameters’ uncertainties.

The total number of events Niota1 in our analysis was divided into two sets of events representing
the total number of positive (N 1) and negative (N ™) helicity states stemming from the incoming
photon beam. Therefore, the total log-Likelihood function, written explicitly in terms of the full
PDF (4.68), is given by the sum of all log-Likelihood functions for every individual event i,

N+
—InL=—-ag Z Q;In(1 4+ aPs(Cy cos Qi’i + C cos 95,@') + aP cos 95,1')
=1 (4.71)

N
—ag Z QiIn(1 — aPs(Cy cos 051- + C, cos 021-) + aP cos 0572-),
=1

where @); represents the ()—value for each event i, with a fixed helicity state. Expression (4.71) saw
extensive use in our analysis as it is exclusively a function of the observables set of interest to this
analysis, namely {C,, P, C,}. Minimizing (4.71) with the CERNLIB package MINUIT, using the
minimization algorithm MIGRAD, we found the most likely observable values given the ¢g12 data
set {cos 0%, cosBl, cosfr} (i.e. a proton angular distribution in the hyperon’s (Y1) rest-frame).

These results are discussed further in Chapter 5.
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CHAPTER 5

SYSTEMATIC UNCERTAINTIES & FINAL
RESULTS

The overall uncertainties pertaining to the set of polarization observables {C,, P, C.} have two
different contributing factors: statistical and systematic uncertainties. On the one hand, statistical
uncertainties stem from any set of measurements based on the total number of counts for each
kinematic bin (see Sub-section 4.3.1). On the other hand, systematic uncertainties are inherent
to any given experiment; these uncertainties originate from multiple sources, including (but not
limited to): detector acceptances, detector resolution, background contributions, among others.
Great care must be taken in order to separate the contributing factors to the uncertainties stemming
from statistical and systematic errors.

However, due to lack of time, it became unfeasible to carry out the appropriate systematic
uncertainties pertaining to this analysis. Instead, this Section will serve as a guideline for the
systematics that could in principle be studied for the photoproduction reaction yp — K%+, and
their individual contributions to the analysis. For a more throughout study of these systematics,
see References [3, 55]. Furthermore, this Section will discuss the acceptance corrections and results
obtained from this analysis, i.e. the set of observables {C,, P, C,}, as they were extracted from

the isospin channel K°%1 via the application of the linear and Maximum Likelihood fit methods.

5.1 Systematic Uncertainties in the ¢12 Analysis
5.1.1 Systematics from the ()—Factor Method

The QQ—factor method, employed to subtract off any interfering background effects, naturally
contributed to the systematic uncertainties. The assignment of a (Q—factor to an event required a
fit of the event’s mass distributions, and those of its neighboring events, via the application of the

MLF technique [3]. Consequently, the uncertainty of the Q—value for said event is given by,

, = 0Q, 1 0Q
oQ = ; 8771 (Cn )8773‘7 (51)
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where C), denotes the covariance matrix for the set of fit parameters 77. Furthermore, the Q)—factor
method could also lead to a series of systematic “correlations” between the events and their nearest
neighbors [3]. For instance, consider the counting experiment used to find the induced hyperon

polarization observable P from the proton angular distribution of the 1 (4.53),

P = E . [NU_ND] _ %
a | Ny + Np a’
where A denotes the counting asymmetry, while Ny and Np represent the total number of events
with protons above and below the scattering plane, respectively. Any uncertainty originating from
the @Q—factor for each event exclusively affected the number of counts, and not the weak decay
parameter «. Therefore, the systematic correlation uncertainty stemming from the number of
counts within a bin, due to the Q—factor, is given by,

o3 = Zaépzjag, (5.2)

.3

where N denotes the total number of events, 0’6 represents the fit error in the (Q—value for the
it" event, and pij constitutes the correlation between the ith and j*™ events (this is equal to a
fraction of the number of common nearest neighbors to the event) [3]. Often times, it is computa-
tionally convenient to work under the assumption that all given events are 100% correlated, thus
overestimating the uncertainties and avoiding the calculation of the p;; correlations [3].

Emulating the calculation from Sub-section 4.3.1, and writing the P observable as a function

of the number of counts, P = f(Ny, Np), standard error propagation dictates that,

- af \2 af \2
e \/<8‘ZU> Tt <3ND> 7 (5.3)

_ 2 2 2 2
= St VR Nk,

However, if o, = on, = on, then we may simplify (5.3) as follows,

4on
:—-\/]\72 N2, 5.4
ap a(NU+ND)2 U+ D ( )

Consequently, it follows that we can use expression (5.2) in order to find oy, and o, which
can then be inserted into (5.3) to find the systematic uncertainty from the QQ—values on the P

observable, i.e. op [3].
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5.1.2 Systematics from the Confidence Level (CL) Cut

A further source contributing to the total systematic uncertainties stems from the confidence
level (CL) cut. To determine the uncertainty accrued by this cut, the nominal CL cut for the event
statistics of the reaction needs to be recalculated. Denoting the originally measured value for an
asymmetry with a given kinematic bin as A,, and a newly measured value based with the newly

applied CL cut as A,,, we can quantify the absolute uncertainty as follows [3],

‘An _AO‘

o (5.5)

OCL =

5.1.3 Systematic Uncertainties in the Determination of Polarization
Observables
Let us consider Taylor expanding the Likelihood function —In £(«a)) around its best parameter

estimator o = &, where & denotes the best-fit parameter that minimizes —In £(«) [3, 39],

1 2]
~InL() = ~n£(&) - 5(a - a)QddOrjf

(5.6)
a=&
From the above, it follows that we can write the log-Likelihood function —In £ as follows,

10 L ~ const - ¢ 2 {(a-ay” dzgéﬁ } ‘a:&, (5.7)

such that the statistical uncertainty (variance) placed by the Likelihood function on a measurement

A>_l. (5.8)

o=

is given by,

[0}

) <d21n£

g =
da?

Therefore, it follows that —In £ is approximately Gaussian, with o, being the statistical un-
certainty provided by MINUIT [3, 28]. Equivalently however, it is common practice [28, 58] to
multiply the log-Likelihood —In £ by a factor of two, so as to make it coincide with the method of
least squares (x>-distribution) [28, 61]. Hence, the interpretation of the ensuing deviation (uncer-
tainty) is approximately that of the sum of the squares in a least-square regression study [3, 61].

Hence, the function to be minimized is rather —21n £, with a statistical uncertainty given by,

:d> N (5.9)

Adhering to a procedure from a previous analysis, which used the same g12 data as this thesis

g,

o 1 d?*In L
@ 2\ da?

[3], the systematic uncertainties for the observables could be taken as the propagated QQ—value
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uncertainties. Thus, this applies the following variation performed on the Q—values [3]: Q —og <
Q < Q + og, where o( represent the uncertainties of (). Representing the original measured value
for a given observable by A, and the newly obtained observable values (determined by the variation
on @) by A,, we find that the uncertainty can be calculated using,

Tobs, = |A”A_OA°|. (5.10)

5.1.4 Systematics Arising from the Photon Polarization P, and Weak Decay
Asymmetry Parameter o
Let us recall that each observable from the set {C,, P, C,}, has a direct dependence on some
externally determined parameters. On one hand, the double-polarization observables C, and C,
depend on both the weak decay asymmetry parameter «, and the degree of photon polarization
Pg. On the other hand, the hyperon-recoil polarization P depends exclusively on «. Clearly, this
leads us to conclude that the systematic uncertainties for C, and C, derive from both o« and Fg),

while the uncertainty from P comes from « alone [2]. We briefly describe these systematics below.

Systematic Uncertainty from the Weak Decay a. From the asymmetry in equation (4.43),

we find that the uncertainty in the double-polarization observables C, and C,, due to the uncer-
tainty in the decay parameter o (daw = 0.016 [59]), follows from standard error propagation,

1 DA(cos0?)| o da
aPg cos 6 da I

5Q(Ci) = b« = 0.0163|C¢‘, (5.11)

resulting in a relative 1.63% error. Similarly for the P observable, expression (4.52) yields,

oo

8o (P) = ’P —| =00163P). (5.12)

Systematic Uncertainty from Photon Polarization P;. Working under the assumption

that the electron and photon energies present in expression (3.10) were accurately measured, the
uncertainty inherent to the photon polarization Pg stems solely from the electron polarization Peiec.
From Table 3.2, it can be observed that the average uncertainty on the electron beam polarization
Pylec from different runs is approximately ~ 1.4%. Employing the same error propagation methods
as before, and using an average beam polarization P, we find,

5Py

5p, (Ci) = ‘ci ol _ o050, (5.13)
Py

resulting in a relative systematic error of 5% for the double-polarization observables C, and C,.
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5.2 Results for the vp -+ K°S* Reaction

The following Sub-sections discuss acceptance corrections, and our final results found for the

set of polarization observables {C,, P, C.}, for the photoproduction reaction yp — K°%*.

5.2.1 Acceptance Corrections and Monte Carlo (MC) Simulations

An important element involved in the extraction of observables relies on a series of corrections
accounting for any detector effects on the analysis data. Consider a set of N, events that hit a
region of the detector, with only Ny, events (N, < N,) actually being measured. Consequently, it
becomes necessary to account for such discrepancies from the measured yields.

To apply these corrections, the CLAS detector needs to be modeled and fed randomly gen-
erated events to determine the appropriate acceptance correction factor. The acceptance for the
photoproduction reaction vp — K%+ was thus determined by producing evenly distributed Gen-
erated Monte Carlo events (these represent all events that can happen [20]) across their available
flat phase-space, with equally distributed kinematic properties [38]. The detector performance was
modeled using GEANT3-based Monte Carlo studies. A set of forty million vp — K°3% events were
generated via the use of the genr8 program, making no reference to CLAS properties, and were
subsequently processed through the GSIM and GPP packages to simulate detector effects [3, 38].

Afterwards, any surviving generated MC events were subsequently analyzed using the same
reconstruction and selection criteria applied to the measured data events (Section 3). This resulted
in a set of Reconstructed Monte Carlo events [57] (which represent all detected events [20]). Since
every MC event is a Kg2+ signal event (@ = 1), the @—values for each MC event need not be
determined [38]. Therefore, the detector acceptance correction for each kinematic bin was defined
as the ratio of the yield for Reconstructed to Generated MC events [57],

+
»+ o N(E'WCOS 02 ,)rec MC
A(E,, cos ec,m.),”HK02+ = N(E,, cos 9;f>ge o (5.14)
’ c.m. n

Expression (5.14) may be interpreted as the likelihood that if an event happens, it is in-

deed detected and survives through the analysis chain. Hence, while a detector only measures
+ . . + +

N(E,,cos 02, )data €vents, in actuality there were N(E,,cos02, )data/A(E~, cos Hgm.)w%KOZ+

events. The acceptance correction (5.14) accounts for events which exist, but were undetected.

Figures 5.1, 5.3 and 5.5 display the C,, C, and P observables, with and without acceptance cor-
rections, while Figures 5.2, 5.4 and 5.6 display their ratio.
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Figure 5.1: Double beam-recoil observable C, vs. cos 002; binned in energy, with a range of
1.15 < E, < 3.05 GeV. Red dots represent the extracted C, observable via a linear fit to the
asymmetry in (4.43), while the blue dots represent the acceptance corrections performed on C,
(5.14). The acceptance A,,_, gox+ for C; appears to have an effect across most of the lower energy
bins, over their backward and forward angular regions, with some minor effects in the high energy
bins. The given uncertainties for the red-dots are statistical with the ()—value uncertainties added
in quadrature, while the blue dots uncertainties are statistical in nature.
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Figure 5.2: Ratio of the histograms with and without the implemented acceptance corrections
(see Figure 5.1) A, gos+, for the beam-recoil polarization observable C,. The histogram is
approximately Gaussian and roughly centered around 1.0, with a lower left-most tail. Consequently,
the acceptance corrections play a greater, however slight, role for the C, observable, than for the
other observables considered in this analysis; see Figures 5.4 and 5.6
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Figure 5.3: Double beam-recoil observable C, vs. cos QCE;; binned in energy, with a range of
1.15 < E, < 3.05 GeV. Red dots represent the extracted C, observable via a linear fit to (4.43),
while the blue dots represent the acceptance corrections performed on C, (5.14). Similar to Figure
(5.1), the acceptance A, , gos+ for C, appears to play a role across most of the lower energy bins,
over their backward/forward angular regions, with some minor effects for the higher energy bins.
The given uncertainties for the red-dots are statistical with the ()—value uncertainties added in
quadrature, while the blue dots uncertainties are statistical in nature.
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Figure 5.4: Ratio of the histograms with and without the implemented acceptance corrections (see
Figure 5.1) A, ,gox+ for the beam-recoil polarization observable C,. The histogram is approx-
imately Gaussian and centered around 1.0, thus indicating that the acceptance corrections have
little influence on the C', observable.
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Figure 5.5: Single hyperon-recoil observable P vs. cos OCE; binned in energy, with a range of
1.15 < B, < 3.05 GeV. Red dots represent the extracted P observable via a the use of the counting
asymmetry in (4.52), while the blue dots denote the acceptance corrections performed on P (5.14).
We find good agreement between both measurements before and after acceptance corrections were
applied, across most of energy bins. Some minor discrepancies (i.e. shifts between the extracted P
observable values) are found in the higher energy bins, which could be attributed to the underlying
statistics of the data. As such, the acceptance corrections do not play a considerable role for the P
observable. The given uncertainties for the red-dots are statistical with the Q—value uncertainties
added in quadrature, while the blue dots uncertainties are statistical in nature.
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Figure 5.6: Ratio of the histograms with and without implemented acceptance corrections (see
Figure 5.1) A,,_,gox+ for the hyperon-recoil polarization observable P. The histogram is roughly
centered around 1.0, thus indicating that the acceptance corrections have little influence on the P
observable.
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5.2.2 The Double-Polarization Observables C, and C,

The photoproduction of charged Kaons, such as in the reaction yp — K%, has undergone ex-
tensive investigation in recent years at CLAS. Nonetheless, the K° channel has been mostly ignored,
with no apparent justification. The photoproduction of neutral Kaons (K°) offers a clear advantage
over the production of charged ones (K*) since photons cannot couple to the (vanishing) charge
of the K° meson. Furthermore, in order to disentangle contributions stemming from N* and A*
resonances it is necessary to have data on the isospin-related K°(ds)~+ (uus) and K+ (u8)X°(uds)
channels. The helicity dependent beam-recoil polarization observables C, and C, were extracted
using both the linear and the Maximum Likelihood fits. Figures 5.7 and 5.8 display the comparison

»+

between both methods, as applied to C, and C., as functions of cos 67, , for fixed energy E,.

L

Figure 5.7: Beam-recoil polarization observable C, for the reaction vp — K°%F, using CLAS ¢12
data, with a set of 100-MeV-wide energy bins and an incident photon energy of 1.15 < E, < 3.05
GeV. The red dots denote the C, observable extracted via a linear fit to the asymmetry (4.43),
while the blue dots denote the same observable as obtained via the Maximum Likelihood fit method.
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Figure 5.8: Beam-recoil polarization observable C, for the reaction yp — K9%T, using CLAS ¢12
data, with a set of 100-MeV-wide energy bins and an incident photon energy of 1.15 < E, < 3.05
GeV. The red dots denote the C, observable extracted via a linear fit to the asymmetry (4.43), while
the blue dots denote the same observable as obtained via the Maximum Likelihood fit method.

Figures 5.7 and 5.8 display an overall good agreement for both the C, and C observables,
across all energy bins (with some minor exceptions for some of the higher energy bins), between
the linear (red dots) and Maximum Likelihood (blue dots) fit values. The Likelihood fit error bars
are, on average, smaller than those from the linear fit. It was noticed that for both C, and C,
observables their values remained consistently near zero for the energy and angular bins considered
for this analysis. Due to their helicity dependence, both observables C, and C, were further binned
in angles for the construction of their asymmetries. The given uncertainties of the red and blue
points in Figures 5.7 and 5.8 are statistical with the (Q—value uncertainties added in quadrature,
and purely statistical, respectively. Lastly, Figures 5.9 and 5.10 display the ratio of the observable

values found via the linear and Maximum Likelihood fit methods, shown in Figures 5.7 and 5.8.
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Figure 5.9: Ratio histogram of C, observable values obtained via the ML and linear fit methods.
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Figure 5.10: Ratio histogram of C, observable values obtained via the ML and linear fit methods.
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5.2.3 The Hyperon Polarization Observable P

Unlike the beam-recoil polarization observables C, and C,, the hyperon-recoil polarization
observable P was helicity independent, binned exclusively in 19 incoming photon beam energy
E. bins, and extracted via a counting experiment (see Sub-section 4.3.2). Figure 5.11 shows the
hyperon polarization in the reaction yp — K°%+, extracted from CLAS ¢12 data, and compared
with a previous measurement carried out by the CBELSA/TAPS Collaboration [56].
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Figure 5.11: Hyperon-recoil polarization observable P for the reaction yp — K31, using CLAS
912 data, with a set of 100-MeV-wide energy bins and an incident photon energy of 1.15 < E., < 3.05
GeV. The red dots denote the P observable as extracted using the asymmetry in (4.52), while the
blue dots denote P as obtained via the Maximum Likelihood fit method, and the magenta dots show
previous CBELSA/TAPS Collaboration measurements [56]. The given uncertainties for the g12
(red) data are statistical with the @—values added in quadrature, while the Maximum Likelihood
(blue) uncertainties are statistical.

Overall, good agreement was found between the counting experiment (red dots) and Maximum

Likelihood fit (blue dots) measurements for the P observable, across all energy and angular bins.

82



Figure 5.12 shows the ratio of the observable values obtained via the 1-Dimensional and Maximum

Likelihood fit methods (Figure 5.11).
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Figure 5.12: Ratio histogram of P observable values obtained via the linear and MLF methods.

Lastly, the polarization observables for K3+ photoproduction off the proton must satisfy a set

of inequalities. In particular, for a circularly polarized beam there exists the following relation [50],
RP=P* 4+ C?2+C%< 1. (5.15)

The role of expression (5.15) is to place an upper bound on the value of R?, while not con-
straining it to a specific value. Given a 100% circularly polarized photon beam, the vector R would
thus be equivalent to ﬁ2+, given in expression (4.38). For this extreme case, the inequality in
(5.15) dictates that the magnitude of the three orthogonal polarization components may take on
any value, up to unity, with no a priori requirements on the hyperon being fully polarized, save for
the forward and backward regions, in which the orbital angular momentum of the system L plays
no role [50]. Furthermore, the value of R? serves as a systematic check for the analysis since, if the
data were to yield R? values well outside the upper bound laid out by (5.15), then that would be

indicative of a source of systematic error which would need to be subsequently eliminated.
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5.3 Summary and Outlook

Among the most challenging problems currently facing nuclear physics today is understanding
the underlying mechanism involved in allowing quark-gluon interactions to give rise to the protons
and neutrons, which comprise all visible matter. It is within this non-perturbative regime that we
find the phenomenon of confinement, responsible for holding quarks within the nucleon. And in spite
of its awesome predictive power, the Quantum Field Theory of the strong nuclear force, Quantum
Chromodynamics (QCD), cannot be analytically solved within this energy regime. In order to
circumvent this glaring issue, physicists developed alternative tools, such as baryon spectroscopy,
to attack this problem.

Similar in spirit to atomic spectroscopy, which is crucial for understanding the electromagnetic
interactions within an atom, baryon spectroscopy likewise allows one to peer deeply into the QCD
interactions within a baryon (a nucleon composed of three valence quarks). Through diligent
and careful studies of the baryon spectrum, one can not only obtain insights into the underlying
degrees of freedom within a baryon, but also gain an understanding of the baryon’s dependency on
the energy of the system.

However, unlike atomic spectroscopy, the study of baryon spectroscopy is far more complex due
to the overlapping nature of its baryon resonances. Consequently, to disentangle these resonances
it becomes crucial to carry out polarized experiments from which to extract sets of polarization
observables, in addition to the differential cross sections, in order to disentangle the resonances.

Complicating matters further, the baryon spectrum is not completely understood, as there exist
discrepancies between the predicted states and those that have been observed. This is known as
the missing baryon problem. It has been proposed that these missing resonances perhaps do not
couple strongly to the traditionally employed probes used to perform baryon spectroscopy, namely
pion beams, but are instead predicted to couple strongly to photon beams, and preferentially decay
to final-states involving heavier meson states, such as the vector mesons w, p and ¢.

The channel of interest presented in this work is the strangeness production in yp — K%+,
which has been previously understudied. The emergence of strange quarks in this reaction gives rise
to another degree of freedom, thus resulting in additional information unavailable from nucleon-
nucleon scattering alone. We have measured the induced hyperon observable P, along with the

degree of polarization transfer from a circularly polarized photon beam to an unpolarized target in
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the form of the C'; and C, observables, both of these being first-time measurements at all energies
and angles for the K’ channel in our analysis. We employed the parity-violating weak decay
a of the ©T hyperon as a means of extracting its polarization P through the ensuing angular
distribution of its decay products. A Maximum Likelihood fit technique was also implemented in
order to extract the three aforementioned observables, simultaneously.

In spite of this progress however, the measurements extracted for this thesis do not currently
offer a deeper insight into the physics of the reaction at hand, namely how to go from an initial
vp state to a KOXT final-state, let alone what happens in-between this reaction. To that end,
further analyses shall be required, in the form of a Partial Wave Analysis (PWA), in order to
understand the overall amplitudes (Feynman diagrams) that contribute to the final K°%T state;
additionally, finalizing the systematic uncertainties will also be a priority. The measurements
of these observables were carried out using a circularly polarized photon beam, incident on an
unpolarized liquid Hydrogen (IH>) target, for the CLAS ¢g12 experiment at the Jefferson Lab.

Lastly, it is hoped that our results will stimulate further research into the remaining observables
pertaining to the K% channel, and assist in expanding and bringing about a phenomenological
understanding of the photoproduction of strangeness, and the non-perturbative nature which cur-

rently shrouds the low-energy regime of Quantum Chromodynamics in awe, and mystery.
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