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The observational evidence for the acceleration of the universe demonstrates that canonical 
theories of cosmology and particle physics are incomplete, if not incorrect. Forthcoming high
resolution ultra-stable spectrographs will play a crucial role in the quest for new physics by 
enabling a new generation of precision consistency tests, including tests of the stability of 
nature's fundamental couplings. We discuss the improvements that can be expected with 
ESPRESSO and ELT-HIRES and quantify their impact on cosmology. 

1 Introduction and Methods 

We will drescribe how astrophysical measurements of natures dimensionless fundamental cou
pling constants can be used to study the properties of Dark Energy. (Nunes & Lidsey 2004 
2) .  Our formalism is described in Amendola et al.1 , to which we refer the reader for further 
details. Here we will simply provide a brief summary of the features that will be relevant for 
our subsequent comparison with data. 

One can divide the relevant redshift range into N bins such that in bin i the equation of 
state parameter takes the value w;. The precision on the measurement of w; can be inferred 
from the Fisher matrix of the parameters w;. If the Fisher matrix is diagonalized, it defines a 
new basis in which the new coefficients a; are uncorrelated. In this processes one also obtains 
the eigenvalues A; (ordered from largest to smallest) and the variance of the new parameters, 
a'f = 1/.A;. 

We consider models for which the variation of the fine-structure constant a is linearly pro
portional to the displacement of a scalar field, and further assume that this field is a quintessence 
type field, i.e. responsible for the current acceleration of the Universe. We take the coupling 
between the scalar field and electromagnetism to be 

.C.q,F = -�Bp(<f;)FµvFµv , (1) 

where the gauge kinetic function Bp(<f>) is linear, Bp(<f>) = 1 - (K(</> - <Po) ,  K2 = 87rG and ( is 
a constant to be marginalized over. This can be seen as the first term of a Taylor expansion, 
and should be a good approximation if the field is slowly varying at low redshift. Then, the 
evolution of a is given by 

Ci.a a - ao - = -- = (K(</> - </>o) .  a ao 
(2) 

For a flat Friedmann-Robertson-Walker Universe with a canonical scalar field, efy2 = (1 +w(z))pq,, 
hence, for a given dependence of the equation of state parameter w(z) with redshift, the scalar 
field evolves as 

I'> ( ) -1/2 v u  z Pm dz 
</>(z) - ¢0 = - { Ji +  w(z) 1 + - - . K lo P¢ 1 + Z 

(3) 
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Figure 1 - Left: SNR-Magnitude correlation. Right: Absorption redshift-Magnitude correlation. In both cases 
the circles represent the best measurements (better then lOppm accuracy) and crosses the other measurements. 

where we have chosen the positive root of the solution. 
From this one can calculate the Fisher matrix using standard techniques, as discussed in 

Amendola et al.1 . As in that work, we will consider three fiducial forms for the equation 
uf 8tate parameter: wc(z) = -0.9, w8(z) = -U.5 + 0.5 tanh (z - 1 .5), and wb(z) = -0.9 + 
l .3 exp (- (z - 1 .5)2 /0.1) . At a phenomenological level, these describe the three qualitatively 
different scenarios. In what follows we will refer to these three cases as the constant, step and 
bump fiducial models. 

In order to systematically study possible observational strategies, it's of interest to find an 
analytic expression for the behaviour of the uncertainties of the best determined PCA modes. 
We explore the range of parameters such as the number of a measurements (Na) and the 
uncertainty in each measurement (O"a) · For simplicity we will assume that this uncertainty is 
the same for each of the measurements in a given sample. We take Na between 20 and 200, 
uniformly distributed in redshift up to z = 4, and individual measurement uncertainties between 
10-5 and 10-8, and we find that the following fitting formula for the uncertainty O"n for the n-th 
best determined PCA mode O"a O"n = A 

N0_5 [1 + B(n - 1)] . 
a 

(4) 

The present expression is accurate for all values up to and including n = 6, while for a smaller 
number of measurements the number of accurately determined modes is less than 6. The coef
ficients A and B will depend on the choice of fiducial model, and also on the number of PCA 
bins assumed for the redshift range under consideration. Assuming the constant fiducial model 
and 20 bins,the coefficients will be: A = 1 . 14 and B = 0.52, further results will be presented 
elsewhere 3• 

2 Current VLT Data 

The next step is to connect these theoretical tools to observational specifications. We can assume 
a simple (idealised) observational formula, O";ample = C /T, where C is a constant, T is the time 
of observation necessary to acquire a sample of N measurements and O"sample is the uncertainty 
in fl.a/a for the whole sample. This is expected to hold for a uniform sample (ie, one in which 
one has Na identical objects, each of which produces a measurement with the same uncertainty 
O"a in a given observation time). Clearly any real-data sample will not be uniform, so there will 
be corrections to this behaviour. 

The uncertainty of the sample will be given by O";ample = 1/ L,�1 O"j2, and for the above 
simulated case with N measurements all with the same a uncertainty we simply have a;ample = 
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Figure 2 - Left: Correlation between the number of transitions used for a measurement and its uncertainty. Right: 
Values of the effective parameter C as a function of the number of systems considered. In both cases the red line 
is the best fit discussed in the text. 

O";/N. Clearly there are also other relevant observational factors that a simple formula like this 
does not take into account, anyway this formula is adequate for our present purposes, as will be 
further discussed below. 

We have used the UVES data from Julian King's PhD thesis4, complemented by observation 
time data kindly provided by Michael Murphy, to build a sample to calibrate the observational 
formula. As can be seen in Figs. 1 , this sample is far form ideal, as it does not display the 
types of correlations that one would expect from such a sample. 

We do find a strong correlation between the number of transitions used to make one mea
surement (N>.) and the uncertainty corresponding to it, as can be observed in Fig. 2 where, for 
each N>,, we plot the average uncertainty in the a measurements achieved with that number of 
transitions. We find the following approximate relation 

(5) 

One consequence of these properties of the sample is that the simple observational relation 
assumed will not strictly hold. Nevertheless, there is a simple way to correct it, which consists 
of allowing the former constant C to itself depend on the number of sources. This is easy to 
understand: in a small sample one typically will have the best available sources; by increasing 
our sample we'll be adding sources which are not as good as the previous ones, and therefore the 
overall uncertainty in the a measurement will improve more slowly than in the ideal case. Using 
standard Monte Carlo techniques we have generated several tens of thousands of sub-samples 
of the VLT sample, from which we infer the behaviour for the empirical function C(N) . The 
results of this analysis are shown in Fig. 2. We find that a good fit is provided by the linear 
relation 

C(N) = 0.31 N + 5.02 . (6) 

here the constant has been normalised such that O" sample is given in parts per million and T is 
in nights. 

3 Future observational strategies 

Putting together the observational studies from the previous sections we can combine Eq.4, the 
simple observational hypothesis and Eq.6, and get a general expression [aN + b]o.5 

O"n = A[l + B(n - 1)] -y- (7) 
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Figure 3 - Uncertainty of first mode in fuction of the observational time and the number of measurements. Left: 
A baseline scenario for ESPRESSO; Right: For ELT-HIRES. 

The way we can extrapolate this formula to ESPRESSO and ELT-HIRES will be explored in 
detail in future work 3 . In Fig. 3 we show the behaviour of the uncertainty of the first mode 
with the time of observation and the number of measurements, assuming the constant fiducial 
model. It can be seen that indeed there ii:; expected a big improvement using HIR:ES-ELT. 
Future improvements will come from a better sample selection, optimised acquisition/calibration 
methods and (in the case of the ELT-HIRES) from collecting power. 

Further improvements will come from adding additional datasets. For example, the impact of 
adding supernova surveys such those of Euclid and ELTs to the PCA analysis can be quantified. 
The E-ELT case is particularly interesting due to the potentially higher redshift coverage (up 
to z = 5). A detailed study will be reported elsewhere 3. 
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