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A shorter processing time is desirable for quantum
computation to minimize the effects of noise. We
propose a simple procedure to variationally determine
a set of parameters in the transverse-field Ising
model for quantum annealing (QA) appended with
a field along the y-axis. The method consists of
greedy optimization of the signs of coefficients of the
y-field term based on the outputs of short annealing
processes. We test the idea in the ferromagnetic system
with all-to-all couplings and spin-glass problems, and
find that the method outperforms the traditional form
of QA and simulated annealing in terms of the success
probability and the time to solution, in particular,
in the case of shorter annealing times, achieving the
goal of improved performance while avoiding noise.
The non-stoquastic σ y term can be eliminated by a
rotation in the spin space, resulting in a non-trivial
diabatic control of the coefficients in the stoquastic
transverse-field Ising model, which may be feasible
for experimental realization.
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1. Introduction
Quantum optimization algorithm is an active field of research, including quantum annealing
(QA) [1–8], adiabatic quantum computing [9] and quantum approximate optimization algorithm
(QAOA) [10]. If QA operates in the adiabatic regime, it often encounters a difficulty of exponential
computation time coming from exponential closing of the energy gap due to a first-order phase
transition, examples of which are found in [11–13]. A number of approaches have been tried
to mitigate this problem, including non-stoquastic Hamiltonians [14–17], inhomogeneous field
driving [18–23], reverse annealing and pausing [24–34] and counterdiabatic driving [35–49].

The last method of counterdiabatic driving is particularly appealing because it allows us to
reduce the computation time when compared with the adiabatic process, yet keeping the success
probability large. The reduction of computation time is important not just theoretically but also
experimentally from the viewpoint of avoiding the effects of noise in quantum devices. One of
the drawbacks of the idea of counterdiabatic driving is the excessive complexity of the additional
counterdiabatic term, see e.g. [40], which generally makes it impossible to be implemented
experimentally. An interesting development to avoid this problem is the variational approach
to optimize the coefficients of approximate counterdiabatic terms composed of manageable
operators [44–46,49–51]. In the present paper, we further simplify this strategy and propose to
determine just the signs of coefficients of counterdiabatic terms composed of y components of
the Pauli matrix. Since the determination of signs is processed in a greedy way variationally, we
call the method quantum greedy optimization (QGO). This approach is appealing because of its
simplicity and yet a significantly improved success probability in comparison with the original
QA and the classical method of simulated annealing (SA).

This paper is organized as follows. Section 2 defines the model system and explains our
strategy to solve optimization problems. The performance of the method is analysed numerically
in §3 for the mean-field, ferromagnetic and spin glass problems, and the results are compared
with SA [52] and the original QA. Also discussed are a further simplification of the algorithm and
a possible improvement based on an oracle setting. The final §4 summarizes and discusses the
results.

2. Formulation
Let us define the following time-dependent Hamiltonian:

H=A(t)Hz + B(t)Hx +
N∑

i=1

Ci(t)Hy
i , (2.1)

where Hz, Hx and Hy
i are the problem (Ising) Hamiltonian, the transverse field term (to be called

the x-field), and the y-field term, respectively,

Hz =−
∑
i<j

Jijσ
z
i σ

z
j , Hx =−

N∑
i=1

σ x
i and Hy

i =−σ
y
i . (2.2)

The symbols σ x
i , σ y

i and σ z
i denote the components of the Pauli matrix at site (qubit) i, and Jij is

for the interaction between sites i and j. The problem size is N. The term Hy
i renders the system

non-stoquastic [53] and was introduced in [45] to approximately realize counterdiabatic driving.
See also [44,48,50,54]. The time-dependent coefficients A(t), B(t) and Ci(t) should satisfy the initial
(t= 0) and final (t= τ ) conditions,

A(0)=Ci(0)= 0, B(0) �= 0, A(τ )> 0 and B(τ )=Ci(τ )= 0 (2.3)

such that the system starts with the simple transverse field term Hx and ends with the problem
Hamiltonian Hz. The y-field is applied only in the middle of annealing. We arbitrarily choose the
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following functions for these coefficients for simplicity though other (similar) functions can be
considered [45],

A(t)= at
τ

, B(t)= b
(

1− t
τ

)
and Ci(t)= ci sin2

(π t
τ

)
(2.4)

with a= 1 to set the overall energy scale. The annealing time τ can be chosen arbitrarily and we
test the cases of τ = 1 and τ = 5 in the following.

Our strategy is to optimize b and ci under a variational principle to optimize appropriate
measures. We simplify the process by fixing the amplitude of ci to a value found optimal in
the mean-field case (to be described below) and choosing only the sign of ci in a greedy way.
This facilitates the process considerably and yet will turn out to lead to significant performance
improvements.

Our variational optimization is carried out by minimization of the expectation value of the
final energy E= 〈ψ(t= τ )|Hz|ψ(t= τ )〉, where ψ(t) is the wave function at time t, as well as by
maximization of the ground state probability, or the fidelity, Pgs = | 〈ψ(t= τ )|ψgs〉 |2, where |ψgs〉
is the true ground state of the Ising Hamiltonian. Since we do not know the true ground state in a
generic problem, we refer to the latter measure as an oracle.

The additional y-field term may not be straightforward to be implemented experimentally.
Nevertheless, by a simple rotation of the spin axes [45,50],

Ug(t)= exp

(
i
2

∑
i

θi(t)σ
z
i

)
(2.5)

with θi(t)= arctan(Ci(t)/B(t)), we can transform the Hamiltonian into a transverse-field Ising
model with non-trivial time dependence of coefficients,

Heff =A(t)Hz − 1
2

∑
i

dθi(t)
dt

σ z
i −

∑
i

√
B(t)2 + Ci(t)2σ x

i , (2.6)

which may be easier to realize experimentally than the original Hamiltonian of equation (2.1). An
example of the behaviour of the coefficients in equation (2.6) is shown in appendix A.

3. Numerical results
In this section, we present numerical results for the mean-field, ferromagnetic and random (spin
glass) systems. In addition, we discuss an additional algorithm which shortcuts the process of
iterative determination of the signs of coefficients.

(a) Mean-field theory
As a preliminary to the next section of a ferromagnetic system, we first analyse the properties of
the mean-field theory with the Hamiltonian (see [44] for a related idea)

H=−t 〈σ z〉 σ z − b(1− t)σ x − c sin2(π t)σ y, (3.1)

where 〈σ z〉 is the magnetization of the system 〈ψ(t)|σ z|ψ(t)〉. We set τ = 1 in this section. The state
vector can be expressed as a qubit |ψ(t)〉 = α|0〉 + β|1〉, where |0〉 = (1, 0)T and |1〉 = (0, 1)T, and the
Schrödinger equation reads

d
dt

(
α

β

)
=
(

it 〈σ z〉 ib(1− t)+ c sin2(π t)
ib(1− t)− c sin2(π t) −it 〈σ z〉

)(
α

β

)
, (3.2)

where 〈σ z〉 is |α|2 − |β|2. As the ground state of the final Hamiltonian is doubly degenerate, we
choose the spin-up state 〈σ z〉> 0 as the desired ground state. Two measures of success as defined
in the previous section, the fidelity Pgs = (〈σ z〉 + 1)/2 and the energy E=−〈σ z〉2, can be expressed
by the magnetization 〈σ z〉 in the mean-field theory, which is not the case generally.
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Figure 1. Parameter dependence of the magnetization 〈σ z〉 for the mean-field theory. The optimal point
(bmfopt = 0.539, cmfopt = 1.565) is marked in an open asterisk. (Online version in colour.)

Figure 1 shows the dependence of magnetization 〈σ z(t= 1)〉 on b and c. In this landscape of
the parameter space, we find the optimal values to maximize 〈σ z〉 by the classical optimizer,
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [55–58], as bmf

opt = 0.539 and cmf
opt = 1.565

with 〈σ z〉 = 1.000. Notice that no greedy search is applied here since the problem is very simple
in the mean-field case. Although finding optimal values of the coefficients is sufficient for our
purpose in the following analysis, we illustrate in appendix B the time developments of the wave
function, the coefficients, and the magnetization in the mean-field context, comparing mean-field
results with the exact solution of the counterdiabatic term, for better understanding of the physics
of the mean-field theory.

(b) Ferromagnetic system
(i) Parameter dependence of the energy and fidelity

We move a step forward and analyse the ferromagnetic system with all-to-all interactions,

Hz =− J
N − 1

∑
i<j

σ z
i σ

z
j . (3.3)

The mean-field theory of the previous section is expected to give the correct solution
to this model in the thermodynamic limit [59] though finite-size effects may reveal
differences.

As the interactions are homogeneous, we drop the i dependence of ci and set all of them to c. To
break the Z2 symmetry, we choose positive values of b and c and focus our attention on the region
around the optimal value obtained in the mean-field case, b ∈ [0, 1] and c ∈ [1, 2]. Dependence
of the fidelity and energy on b and c is shown in figure 2a,b, respectively, for N= 20. We also
conducted the same analysis for the case where annealing is terminated before the designated
annealing time (τactual < τ ) or carried through beyond (τactual > τ ), and the results are displayed
in figure 2c,d. These plots indicate that the optimization is robust in b and sensitive to c and the
actual annealing time. Similarities of figure 2a,b and of figure 2c,d suggest that the two measures
of success, the fidelity and the energy, give essentially the same result, as anticipated from the
mean-field case.

System size dependence of the optimal parameter values for each N, bN
opt and cN

opt, is shown

in figure 3a,b. They show convergence beyond N≈ 12 towards the values at N= 20 (bN=20
opt =

0.539, cN=20
opt = 1.564). These values are in good agreement with the results from the mean-field

theory, bmf
opt = 0.539 and cmf

opt = 1.565, as expected. The error in magnetization 1− 〈σ z〉 decreases
with the system size, and we do not see a visible difference between the two measures in
figure 3c,d. The residual error decreases polynomially as a function of the system size N. We will
use the size-dependent parameters bN

opt and cN
opt obtained from fidelity optimization for further

analysis.
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Figure 2. Parameter (b, c) dependence of (a) the fidelity and (b) the energy in the ferromagnetic model with N= 20.
Dependence on the annealing time and the parameter c of (c) the fidelity and (d) the energy when annealing is terminated
before the designated annealing time (τactual < τ ) and is carried through beyond (τactual > τ ). Colour scales are located on
the right side of each figure. (Online version in colour.)
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Figure 3. (a) Size dependence of the parameter bNopt optimized with respect to the fidelity and energy measures in the
ferromagnetic model, (b) size dependence of the optimized parameter cNopt, (c) time development of the magnetization and
(d) size dependence of the magnetization. (Online version in colour.)

(ii) Greedy optimization of the parameters

In preparation of the random case, we next try a step-wise greedy optimization of parameters
assuming site dependence of the sign of ci as in the well-established methods like quadratic
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Figure 4. The parameter ci dependence of (a) the fidelity and (b) the energy in each iteration (from top to bottom) for the
ferromagnetic model withN= 8. Note that the site index i changes from step to step as explained in the text. See also figure 14
inwhich the same data are shown butwith different vertical scales for different iteration steps for better resolution at each step.
(Online version in colour.)

pseudo-Boolean optimization and the roof duality algorithm solutions [60–63] and a sampling-
based algorithm [64]. More precisely, we choose the optimal values of ci one by one with other
coefficients fixed at their constant values. This approach reduces the search space considerably
and also makes the energy (or fidelity) landscape simple.

The first step is to pick up an arbitrary i (e.g. i= 1) and optimize c1 by setting other cj(j �= 1) to
zero. As shown in the rows of figure 4a,b for N= 8, we choose optimal c1 by minimizing 1− Pgs

(in (a)) or E (in (b)). See also figure 14, where the scale of the vertical axis is changed step by
step for a better resolution. In practice, when we use E as the function to be minimized, this
function is symmetric with respect to the change of sign of c1 due to the double degeneracy of
states. We therefore arbitrarily set c1 to a positive value cBFGS

1 by BFGS. When we use 1− Pgs for
minimization, we choose the all-up state as the target ground state, so no problem of degeneracy
exists. We next choose another i (e.g. i= 2) and optimize c2 by fixing c1 to the already-optimized
value and other cj (j �= 1, 2) to zero. The c2 dependence of 1− Pgs and E is shown in the second
row of figure 4. This process is repeated until all parameters are fixed. It is seen in figure 4 that
1− Pgs and E become smaller as the iteration proceeds.

We have found that the optimal values cBFGS
i are always close to cN

opt: The resulting optimal

values vary from site to site, ranging from 1.507 to 1.566, while cN=8
opt is 1.563 according to the

analysis of the previous section. This means that our sequential greedy optimization strategy
finds the ground state with good precision for the ferromagnetic system with all-to-all couplings.

(c) Spin glass problem
We apply essentially the same procedure as developed above to the prototypical hard
optimization problem of spin glass.

The algorithm proceeds as follows. The value of b is set to bN
opt obtained for the ferromagnetic

case, and the absolute value of ci is fixed to cN
opt as demonstrated in the ferromagnetic case. We

only choose the sign of each ci step by step, site to site, in a greedy way. It will be seen that this
simple process leads to significant improvements in performance as compared to the traditional
QA and classical SA.
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The sign of ci is chosen by the average gradient of the optimization measure (E or 1− Pgs)
near the origin 0≤ ci ≤	= 0.1 with the values of other cj’s (j �= i) fixed. The reason is that the
optimization measure has only a single minimum, whose position can be detected near the origin,
as a function of a single ci, as will be illustrated later.

More precisely, we first choose an arbitrary i (e.g. i= 8) and fix all other cj to zero. The
optimization measure E is symmetric with respect to the inversion c8→−c8, and we therefore
look instead at the curvature of E in the asymmetric range 0≤ c8 ≤	. This process is repeated
for all i and we choose the site i with the largest absolute average curvature. If this turns out to
be i= 8 with a positive derivative, we set c8 =−cN

opt, which breaks the symmetry. We next choose
another i (e.g. i= 6) and see the sign of the average derivative of E near the origin with c8 fixed
to −cN

opt and all other ci’s to zero. We choose another i and the same process is repeated for all
i(= 1, 2, 3, 4, 5, 7) and we select the site with the largest value of the absolute average derivative
(e.g. i= 6 with a negative derivative) and assign the sign as c6 =+cN

opt. Iterating this process, all
ci’s are assigned fixed values. See algorithm 1.

Algorithm 1. Sequential QGO.

Input: QA measure f (b, c), bN
opt, cN

opt
Output: a solution of the cost function
1: b← bN

opt
2: c← (0, . . . , 0)
3: repeat

4: g←∇f (b, c)=
(

f (b,c1+	,...,cN)−f (b,c)
	

, . . . , f (b,c1,...,cN+	)−f (b,c)
	

)
5: i← arg maxj∈{j|cj=0}|gj|
6: ci←−cN

optsgn gi
7: until ci �= 0 for all i
8: return sgn c

An example of this process is illustrated in figure 5 for the all-to-all coupling Sherrington–
Kirkpatrick model of spin glass [65] with the distribution function of interaction,

P(Jij)∼
1√

2πσ 2
exp

(
−

J2
ij

2σ 2

)
, (3.4)

with σ 2 = 1/(N − 1). Red curves show E as a function of a given ci which has the largest absolute
value of the average gradient. Note that the procedure works for the top row for the initial step
as the average gradients are calculated in the asymmetric range [0,	] and resulted in all positive
even though the curve is symmetric at ci = 0. Blue dotted curves are for other sites with smaller
gradient, and light grey curves show the behaviour of E when the already-fixed ci is tentatively
changed with other ci’s fixed. One sees that the minimum value of E on red curves decreases as
the greedy optimization proceeds from the top row to the bottom row.

The final values of ci thus obtained are compared with those from direct brute-force
optimization by the BFGS algorithm,

cQGO = (1.563,−1.563,−1.563,−1.563, 1.563,−1.563, 1.563,−1.563)

and

cBFGS = (1.570,−1.564,−1.562,−1.567, 1.569,−1.561, 1.561,−1.563).

We observe that the difference is minimal, at most 0.4%, and the signs are correctly reproduced
by the greedy algorithm.
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Figure 5. Parameter dependence of the energymeasure in each iteration of sequential QGO in the randommodel (N= 8) from
thefirst step (top row) to the last step (bottom row). Each column represents a site i, 1 (leftmost column) to 8 (rightmost column).
Blue-dashed and red-bold curves are parameters for sites that are under evaluation in each iteration. In each iteration, the site
with the largest absolute average gradientmarked in red bold is selected to fix the parameter. Grey-dotted curves located under
the red curves are additional plots for the site which we do not evaluate for further iterations. See also figure 15 in which the
same data are shown with different vertical scales for different iteration steps for a better resolution. (Online version in colour.)

For a more systematic analysis, we applied the algorithm to the spin glass with various sizes
from N= 4 to 16 with 100 random instances for each N. The resulting success probability is plotted
as a function of size in figure 6a for τ = 1 and 5. QGO and QA obey the Schrödinger dynamics,
and the calculation was conducted by QuTiP [66]. Also plotted are the success probabilities by the
traditional QA and SA. The latter classical algorithm has been tested by the following schedule of
temperature decrease (inverse temperature increase)

β(t)= (t/τ )
1.1− (t/τ )

, (3.5)

where β(0)= 0 and β(τ )= 10 and by solving the classical master equation. QGO returns not a
state vector in QA or a probability distribution in SA but a specific solution of spin configuration,
which is the output from the algorithm 1. Thus the success probability of QGO refers to a
portion of instances with success. Confidence intervals are calculated by bootstrapping from
10 000 resamples. It is clear that the present algorithm QGO far outperforms the other two.

Another viewpoint is provided by the time-to-solution (TTS), a standard measure of
computation time for heuristic algorithms [67]. It is defined as

TTS= τ log(1− P)
log(1− psuccess)

, (3.6)

where psuccess is the empirical probability of success for the computation time τ , and P is the target
success probability often set to 0.99. The result is plotted in figure 6b, which apparently shows a
low computational cost of the present algorithm QGO drawn in blue. We should note, however,
that QGO carries an overhead of repeated computation of the parameter dependence of E at each
iteration.

QGO calls QA as a subroutine N(N + 3)/2 times in total to determine the gradients. This
number is derived as follows: in the n-th iteration (n= 1, . . . , N), we run QA at (c1, . . . , cN) once
and at (c1, . . . , ci +	, . . . , cN) for ith site N − (n− 1) times as we already fixed n− 1 sites. Thus,
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Figure 6. (a) Size dependence of the average success probability of QGO (blue), SA (orange), and QA (green) for τ = 1 (circle)
and 5 (square) in 100 instances of the random system. (b) Size dependence of time to solution of QGO (blue), SA (orange) and QA
(green) for τ = 1 (circle) and 5 (square). Dotted lines with open markers are plotted by taking into account the factor N(N +
3)/2multiplying the original QGO to compensate formultiple runs of QA. The shaded region represents 95%confidence intervals
for each line. (Online version in colour.)

0

0.2

0.4

0.6

QGO
QA

QGO
QA

0.8
z

z
" + x

" + x
" " + y

" " + y

1.0

0

0.2

0.4

0.6

0.8

1.0

1.000.980.750.500.250

ov
er

la
p

t/τ
1.000.980.750.500.250

t/τ

(b)(a)

Figure 7. Time dependence of overlaps of the wave function with the instantaneous ground states of three kinds of the
Hamiltonian, (blue) the final IsingmodelHz , (orange) the transverse-field Isingmodel A(s)Hz + B(s)Hx and (green) the full
Hamiltonian A(s)Hz + B(s)Hx + C(s)Hy , for (solid) QGO and (dashed) QA. The problems are (a) the ferromagnetic system,
and (b) a spin glass problem, both with eight spins. Curves in the range [0.97, 100] beyond the black vertical line are magnified
for better resolution. (Online version in colour.)

the total number is
∑N

n=1(1+N − n+ 1)=N(N + 3)/2. After we take into account this overhead,
the TTS of QGO becomes comparable with the other two as seen in figure 6b in blank blue
symbols. It is nevertheless concluded that QGO achieves much better success probability with
similar computation times.

In order to further understand how the algorithm leads to better results, we have analysed
the time dependence of overlaps of the wave function with the instantaneous ground states
of three kinds of the Hamiltonian, (i) the final Ising model Hz, (ii) the transverse-field Ising
model A(s)Hz + B(s)Hx, and (iii) the full Hamiltonian A(s)Hz + B(s)Hx + C(s)Hy, for QGO and
QA. Results are plotted in figure 7a for the ferromagnetic system and (b) for a spin glass problem.
It is observed that QGO does not directly let the system follow the instantaneous ground state of
the full Hamiltonian but it succeeds in enhancing the overlap with the final Ising Hamiltonian at
a relatively early stage of computation.
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Figure8. (a) Quantumcircuit of the y-field optimization. (b) Size dependence of the success probability of QGO (blue) forτ = 1
(circle) and 5 (square) and the y-field optimization (purple diamond). The shaded region represents 95% confidence intervals
for each line. (Online version in colour.)

(d) Further simplifications of the algorithm
To see if we can further simplify the algorithm without much compromising the performance, we
test two possibilities in this section.

(i) y-Field optimization

The first example is to drive the state only by Hy, i.e. by a rotation around the y-axis,

U(θ )= exp

(
i
2

∑
i

θi(t)σ
y
i

)
≡
∏

i

Ry(θi) (3.7)

starting from the ground state of Hx and to variationally optimize the parameters θ to minimize E
as illustrated symbolically in figure 8a. Results for 100 spin glass instances are shown in figure 8b.
It is seen that this y-field optimization performs slightly worse than QGO for τ = 1. It is also noted
by comparison with figure 6a that the y-field optimization leads to better results than QA and SA
with τ = 1. Thus the present method may be useful for some purposes due to its simplicity and
its easiness of implementation possibly on a gate-based hardware.

(ii) Single-shot QGO

Let us next study what happens if we fix the signs of coefficients of ci in a single shot without
iteration. We first fix one of the parameters, e.g. c1 = cN

opt (spin-up), to break the Z2 symmetry.
Signs of other sites are next fixed according to the gradient of the optimization function, 1− Pgs

or E, near the origin as shown in algorithm 2.

Algorithm 2. Single-shot QGO.

Input: QA measure f (b, c), bN
opt, cN

opt
Output: a solution of the cost function
1: b← bN

opt

2: c← (cN
opt, 0, . . . , 0)

3: g←∇f (b, c)=
(

f (b,c1+	,...,cN)−f (b,c)
	

, . . . , f (b,c1,...,cN+	)−f (b,c)
	

)
4: ci←−cN

optsgn gi for i≥ 2
5: return sgn c
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Figure 9. ci dependence of the single-shot QGO with (a) 1− Pgs and (b) E for optimization in an eight-spin glass problem. (c)
The sixth and seventh parameters are re-evaluated by fixing other parameters to±copt according to the results in (b). Blue-
dashed and solid curves represent that the optimal values are negative and positive, respectively. Grey-dotted curves indicate
re-evaluation of the already fixed parameters similarly to figure 5. Vertical scales are normalized for each estimation in (b,c).
(Online version in colour.)
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Figure 10. Size dependence of the success probability of the single-shot QGO with fidelity (blue circle) and energy (orange x)
measures averaged out the 100 instances of spin glass problem. The shaded region represents 95% confidence intervals for each
line. (Online version in colour.)

Figure 9a shows the ci dependence of 1− Pgs for each spin to confirm our assumption that
the optimal ci is close to ±cN

opt. Blue-dashed and solid curves represent that the optimal values
are negative and positive, respectively. Grey-dotted curves indicate re-evaluation of the fixed-
parameter, similarly to figure 5. The correct solution has been obtained by this single-shot QGO
using 1− Pgs for this instance. When the energy measure E is employed for optimization as shown
in figure 9b, two spins (the sixth and seventh) are fixed incorrectly. As illustrated in figure 9c, the
ground state is retrieved if the two spins are re-evaluated after the other six spins are fixed. This
suggests that we need iterations of the process for better results if we use E for optimization.

It is also noted that minimum values in the sixth spin in figure 9b are not around ±cN=8
opt =

±1.563 but are around 0.7 (red arrow). This implies that our assumption, optimal values are
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around ±cN
opt is not valid in this case, which would lead to the difference in the performance

between (a) and (b).
Figure 10 shows the performances of the single-shot QGO for two measures of optimization

for 100 spin glass instances. The single-shot QGO with the fidelity measure always succeeds
in identifying the ground state, while the success probability quickly dumps under the energy
measure. The fidelity measure is the overlap between the final state and the ground state and
thus includes information of the ground state, leading to better results.

4. Summary and discussion
We have formulated a variational algorithm of QGO aiming to achieve improved performance of
QA through a simple process of adjustment of signs of y-field coefficients. The result showed
notable improvements in the success probability over the original method as well as over
classical SA under comparable computational costs. Since we adjust the signs of coefficients
sequentially, the energy landscape of each step is very simple with only a single minimum at
almost the same absolute values of coefficients, the adjustment or optimization process does not
encounter the problems of barren plateau in deep variational quantum circuits [68] or highly
complicated landscapes which plague well-known variational algorithms such as VQE and
QAOA [69]. Another advantage of the present method is the simplicity of the additional term in
the Hamiltonian, the y-field, which can be rewritten in terms of the transverse-field Ising model
without y-field by a rotation in the spin space. The latter can be implemented experimentally if
the hardware can be designed to allow for the non-monotonic time dependence of coefficients of
the x field and the Ising part of the Hamiltonian. It is in principle possible to apply the same idea
to a final Hamiltonian with x- and y-components of the Pauli matrix, typically for problems of
quantum state preparation in chemistry, although it is non-trivial if the present protocol would
lead to satisfactory results in such cases. In the real settings of quantum processors, we cannot
measure the fidelity because the target state is unknown. The fidelity analysis provides the
algorithm’s upper limit, revealing that the success probability can be 100% and suggesting that
the goodness of the cost function defines the algorithm’s performance. This finding is informative
for the further development of algorithms.

Data accessibility. The code and data are provided in electronic supplementary material [70].
Authors’ contributions. T.K.: conceptualization, investigation, writing—original draft; H.N.: conceptualization,
writing—review and editing.

Both authors gave final approval for publication and agreed to be held accountable for the work performed
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Conflict of interest declaration. We declare that we have no competing interests.
Funding. No funding has been received for this article.

Appendix A. Time dependence of the coefficients in the rotated frame
An example of the behaviour of the coefficients in the rotated frame, equation (2.6), is given in
this appendix. Let us write the Hamiltonian as

Heff =A(t)Hz −
∑

i

B′i(t)σ
x
i +

∑
i

C′i(t)σ
z
i , (A 1)

where
B′i(t)=

√
B(t)2 + Ci(t)2 (A 2)

and

C′i(t)=−
bci[π (1− t/τ ) sin(2π t/τ )+ sin2(π t/τ )]

2τ [b2(1− t/τ )2 + c2
i sin4(π t/τ )]

. (A 3)

Figure 11 shows the time dependence of A(t), B′i(t) and C′i(t) for a= 1, b= 0.5, ci = 1.5 and τ = 1. It
is observed that B′(t) and C′(t) are non-monotonic, which suppresses system’s transition to excited
states in the final state.
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Figure 11. Time development of the coefficients A(t), B′i (t) and C
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Figure 12. Trajectories of the system under the mean-field theory for b= (0.0, 0.5, 1.0, 1.5, 2.0) and c= (0.1, 0.5, 1.0, 1.5, 2.0).
(Online version in colour.)

Appendix B. System behaviour of the mean-field theory
To visualize the system behaviour under the mean-field theory discussed in §3a, we plot the
trajectory of the system on the Bloch sphere in figure 12 for a number of parameter values with
b= 0.5 (green) and c= 1.5 (long dashed) being closest to the optima. The system starts along the
x-axis and is supposed to end ideally at the north pole |0〉. The optimal parameter values are
observed to approximately follow a straightforward path connecting these points.

Figure 13 compares the exact counterdiabatic driving function for the mean-field theory [40]
and our approximate result. The parametrized Ising Hamiltonian is

Hz =−g 〈σ z〉 σ z − hσ z. (B 1)
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Figure 14. The same plot as in figure 4 with different vertical scales. (Online version in colour.)

Although QGO tested in the main text is g= 1 and h= 0, the parameter h should be non-zero
in the exact calculation to avoid the double degeneracy of states. Exact solutions are obtained
for (g, h)= (0, 1), (1, 0.01), (1, 0.1), (1, 0.3) and (1, 1). The system follows the instantaneous ground
state under these exact solutions whereas it does not under our approximate scheme, to which
(g, h)= (1, 0.3) shows the closest behaviour.

Appendix C. Enhanced scales of performance measure
For better resolution of the vertical axes of figures 4 and 5, we show in figures 14 and 15 the same
data with enhanced scales of vertical axes.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 J

an
ua

ry
 2

02
3 



15

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20210416

...............................................................

0.0
–0.5

en
er

gy

–2

–2.5

–2

–2 0 2 –2 0 2
c

i

–2

–0.3
–0.4

–1

–2.5

–2
–4

0

0.0

0 2 –2 0 2
–4

0

0.0

–2 0 2 –2 0 2 –2 0 2 –2 0 2
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Appendix D. y-Field optimization
The simple y-field optimization algorithm can be executed the circuit model in figure 8a, and
described as follows:

Algorithm 3. Simple Y-field optimization.

Input: energy measure f (θ )
Output: a solution of the cost function
1: θ← (0, . . . , 0)
2: repeat

3: g←∇f (θ )=
(

f (θ1+	,...,θN)−f (θ )
	

, . . . , f (θ1,...,θN+	)−f (θ)
	

)
4: i← arg maxj∈{j|θj=0}|gj|
5: θi←−π2 sgn gi
6: until θi �= 0 for all i
7: return sgn θ
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