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Abstract

Scattering amplitudes for several channels are calculated using lattice QCD on a
single ensemble of gauge field configurations with Nf = 2+1 dynamical quark flavors
and mπ ≈ 200 MeV and mK ≈ 487 MeV. The calculations for the πN scattering
amplitudes in the ∆(1232) regime and the coupled channel πΣ-K̄N scattering am-
plitudes in the Λ(1405) regime are detailed. In the coupled channels, two poles are
found. The πN s-wave scattering shifts for the total isospins I = 1/2 and I = 3/2,
and the p-wave including the ∆(1232) resonance are reported. The coupled channel
πΣ-K̄N s-wave scattering length is reported. Resonance masses and widths are cal-
culated for the ∆(1232), the Λ(1405), and even the elusive Λ(1380). Along with the
high-precision scattering amplitudes, methodologies for increasing confidence in our
analysis were tested.
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Chapter 1

Introduction

Although quantum chromodynamics (QCD) was born in 1973 [2], we still struggle
to make experimental predictions with it in the low to medium energy sector. In
the high-energy range there is asymptotic freedom, meaning that the strong force
coupling is small at short distances. The coupling grows stronger at lower energies,
and thus perturbation theory is no longer applicable. When using field theory to
calculate scattering observables, one should include all possible Feynman diagrams
with the input and output desired. There are infinitely many of these diagrams, but
thankfully for most theories, the simplest ones contribute the most, and the more
complicated diagrams are used as correction terms. This is not the case in low-
energy QCD. The complicated diagrams dominate, and it is impossible to calculate
the scattering observables by ordinary perturbation theory. Lattice QCD saves the
day by taking a Monte Carlo approach to the problem instead. Using the theory to
filter the random sampling, all the diagrams that contribute are included. The only
major limitation is statistics.

Most of the known hadrons are resonances. Resonances are particles that are not
stable and decay into other products, usually on the order of nanoseconds. To study
these states using lattice QCD, we calculate the finite volume energy spectrum and
then compute the scattering amplitude properties using the Lüscher method. This
approach does not make assumptions about the resonances and uses first-principles
physics, unlike effective field theory, which relies on phenomenological inputs.

Our calculations utilize the stochastic Laplacian-Heaviside method. This tech-
nique efficiently computes quark propagators [3, 4], enabling large statistics on a
large lattice volume with high-precision calculations. These algorithms have recently
been applied to meson-baryon scattering amplitudes in this thesis and in other anal-
yses [5, 6], demonstrating their valuable computational efficiency and robustness.
This powerful methodology enables us to compute higher-precision results using less
computation time and resources.

Nucleon-pion (Nπ) scattering is a crucial process in nuclear physics. Because the
pion is the lightest hadron, the pion exchange between nucleons is one of the primary
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mechanisms for the binding of atomic nuclei and nuclear scattering. Furthermore,
nucleon-pion scattering includes the narrow ∆(1232) resonance, which significantly
influences many nuclear processes, which includes lepton-nucleon and lepton-nucleus
scattering. These processes are particularly relevant for various electron-nucleus and
neutrino-nucleus scattering experiments. Lattice QCD results will provide valuable
input for models of neutrino-nucleus scattering cross sections, aiding next-generation
experiments such as DUNE [7] and Hyper-K [8], which aim to measure unknown
properties of neutrinos. One of the frontiers in these lattice QCD applications is un-
derstanding the ∆-resonance contribution to the inelastic νN structure. To achieve
this, it is essential to establish control over Nπ scattering, as it is a necessary com-
ponent of the nucleon inelastic resonant structure. The main results of the πN study
are in Figures 7.3-7.5 and Tables 7.2-7.3 using Equations 7.1-7.4.

In lattice QCD calculations, it is vital that there are sufficient hadronic operators
(Section 3.1) used to calculate the scattering observables. If a necessary operator is
omitted, then this can lead to incorrect results. Therefore, it is prudent to find ways
to check for such missing states especially in the cases where the hadronic operators
reflect exotic particles. Several new methods are outlined and tested. These methods
have some success and some setbacks in their current status.

In meson-baryon scattering, the Λ(1405) is currently recognized as a 4-star reso-
nance by the Particle Data Group (PDG) [9], which indicates the confidence of the
particle’s existence out of 4 stars. The Λ(1380), a possible nearby resonance of the
same quantum numbers, is listed in the PDG with only a 2-star status. Past phe-
nomenological models have led to conflicting conclusions about whether or not there
are one or two resonances in this energy region, and experimental efforts have also pre-
sented different tentative conclusions [9]. This controversy warrants a first-principles
calculation of the scattering amplitudes. Efforts using lattice QCD have been made
in the past [10–17], but the results presented in References [18, 19] and reviewed in
this thesis are the first calculations of the scattering amplitudes from lattice QCD
using a full set of one- and two-hadron operators. The main results of our Λ(1405)
study are in Figures 8.4b and 8.6 using Equation 8.13.

In this thesis, I will thoroughly review the extensive process of computing and
analyzing lattice QCD simulations, present new potential methodologies to verify a
vital part of our analysis chain, and review important scattering results calculated
from such simulations.
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Chapter 2

Lattice QCD

Through Lattice QCD, we can make quantitative predictions of particle interactions
directly from QCD of the Standard Model. In this work only the effects of the
strong force are considered; weak nuclear and electromagnetic effects are ignored.
The strong force is a quantum field theory based on local SU(3) gauge symmetry, a
theoretical framework where quantum field operators create and annihilate particles.
The particles in this case include quarks (fermions) and gluons (bosons), and alongside
momentum and spin, in QCD the particles gain an additional degree of freedom. To
characterize this SU(3) freedom, each quark carries one of three unique color charges,
red, green, or blue, and consequently the gluons have eight color states, which are
compositions color charge and anticharge. The theory is also a gauge theory, which
indicates the requirement of a constraint on the degrees of freedom that define the
theory. Nonperturbative calculations of QCD can be achieved by introducing a space-
time lattice, and a natural and necessary consequence of this lattice is that it will act
as a regulator of ultraviolet divergences.

In order to study this theory on a lattice, many necessary modifications will have
to be made, but these modifications will satisfy some basic requirements: when the
lattice spacing is taken to zero and the volume to infinity, the lattice QCD action
matches the continuum QCD action. Also, gauge invariance will be maintained in
the lattice QCD action when formulated on the lattice. These principles will ensure
that the simulation will represent real strong-interaction physics.

2.1 QCD in Continuum

Setting up any lattice QCD simulation begins with the continuum physics QCD La-
grangian1 which includes the free field Lagrangians for fermions and gluons and the
interaction term between them. To gain a full understanding of the theory, I will

1Any mention of ‘the Lagrangian’ in this thesis is actually the Lagrangian density L rather than
the traditional Lagrangian L.
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iterate through each of these parts as well as how observables are calculated from
them. Note that natural units are used throughout this thesis.

2.1.1 Free Fermionic Fields

Despite the fact that no quark in the Standard Model can exist as a free particle
due to the color-singlet requirement of confinement, in this section, we will ignore
gluons and the color index and study free fermionic fields for quarks. When no forces
are present, fermionic fields, ψ(x) and ψ(x), that depend on the four-dimensional
space-time variable x,2 behave according to the fermionic Lagrangian,

LF[ψ, ψ] =

Nf∑

f=1

ψ
(f)

α (iγµαβ∂µ −m(f)δαβ)ψ
(f)
β , (2.1)

where γµ are the Dirac-representation γ-matrices,m(f) is the flavor mass, α and β refer
to Dirac indices, µ and ν are the Minkowski space-time indices, and f represents the
flavor index. The color index is omitted here. Although Nf , the number of fermions,
could be any number, there has only been confirmed evidence of six flavors of quarks:
up, down, strange, charm, top, and bottom. In this work, only the up (u), down
(d), and strange (s) quarks will be considered due to their light masses compared to
the other quarks. Not only do the u, d, and s quarks make up most known matter,
when the up and down are treated as degenerate particles called light (l) quarks
with ml ≡ mu = md, the isospin symmetry SUI(2) is exact, further simplifying our
calculations. Due to computational costs, ml will not be set to the physical value of
mu or md, instead it will be set to 200 MeV or higher. This effect will shift our final
scattering results from the physical values.

Each field is a function of four-dimensional space-time. The indices representing
space-time directions use Greek letters beginning with the letter µ and can have values
0,1,2,3 for t, x1, x2, x3 for the temporal and three spatial directions. The Minkowski
space-time interval is given as dx2 = dt2 − dx21 − dx22 − dx23 in natural units where x
represents the space-time coordinate (t, x1, x2, x3). The fermionic fields are massive
Dirac spinors with Dirac indices, represented by the Greek alphabet beginning with
α, which take values α = 0, 1, 2, 3.

2.1.2 Gluon Fields

The gluon fields, Aµ(x), are the gauge fields for chromodynamics. Rather than the
U(1) symmetry in electromagnetism, the strong force features SU(3) transformation
properties, making it more complicated to calculate theoretical observables. The

2All fields and variables with space-time dependence will acknowledge the x in the initial defini-
tion, and the (x) will be implied when omitted in further equations.
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Lagrangian for gluon fields is most simply written in terms of the gluon field tensor
GA
µν(A):

LG[A] = −Tr(
1

4
GA
µνG

µν
A ). (2.2)

The gluon field tensor is defined as

GA
µν = ∂µAA

ν − ∂νAA
µ − gfABCAB

µAC
ν

where fABC are structure constants of the SU(3) group and g is the QCD coupling.
The gluon generators—represented by uppercase Latin letters A,B,C...—can have
values 1,2,...,8 for each SU(3) generator index. Each of the generators is associated
with a gluon and is often written in terms of the 3 × 3 Gell-Mann matrices, λ, and
determines each gluon’s contribution to the gluon field,

Aµab =
8∑

A=1

AA
µ

λAab
2
.

The Gell-Mann matrices carry the SU(3) transformation properties of the color
charge in the gluon field interaction and a Lie algebra according to

[λA, λB] = 2ifABCλ
C .

These SU(3) transformation properties not only give us eight gluons and determine
the transformation of the color charge, but they also cause the phenomenon unique to
the strong force: gluon self-interactions. When the free gluon Lagrangian is expanded,
not only is there a kinetic term for each gluon, but there are also three-gluon self-
interactions and four-gluon self-interactions. These gluonic self-interactions increase
the number of possible Feynman diagrams that contribute to a given interaction. In
the high-energy region of the strong force, the more complicated diagrams can be
ignored, but for our calculations of interest, we must account for them.

2.1.3 The Gluon-Fermion Interaction

Finally, we have reached the interaction term of the strong-force Lagrangian, which
dictates how gluons and fermions interact with each other. The interaction term is
defined as

Lint[ψ, ψ,G] = −g
Nf∑

f=1

ψ
(f)

aα (γ
µ
αβAµab)ψ

(f)
bβ . (2.3)

Though all terms have been defined previously in the free field, the fermions have
gained a new index for the fermionic color charge represented by lowercase Latin
letters, a, b... = 1, 2, 3. This new color dimension allows for resonances such as ∆++.
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This term can be derived naturally by working from the free fermionic Lagrangian
and requiring it to be invariant under local SUc(3) transformations properties. Con-
sider the fermionic Lagrangian (Equation 2.1) and the transformations ψ → ψ′ = Ωψ

and ψ → ψ
′
= ψΩ†, where Ω is a local SUc(3) transformation, which is a special

unitary matrix. When these transformation properties are applied to our fermionic
Lagrangian, we would hope that it would be invariant, but instead the result gains
an extra term ψΩ†(∂µΩ)ψ. Because the free fermionic Lagrangian does not have the
SUc(3) transformation property required by QCD, we must rewrite the Lagrangian
into one that does. This is easily solved by replacing the derivative with the gauge-
covariant derivative Dµ = ∂µ + iAµ(x) and the additional property Aµ → A′

µ =
ΩAµΩ

† + i(∂µΩ)Ω
†. Now, the new form behaves as expected, the gluon kinetic term

is fixed, and the interaction term was naturally retrieved. A similar strategy will be
used on the lattice.

After combining the fermionic and gluonic Lagrangians, we have arrived at the
QCD Lagrangian, the starting place for our lattice simulation. Altogether, these
terms form the QCD Lagrangian that dictates the motion of fermions and gluons in
a system,

L[ψ, ψ,G] =
Nf∑

f=1

ψ
(f)

aα (iγ
µ
αβDµab −m(f)δαβδab)ψ

(f)
bβ − Tr(

1

4
GA
µνG

µν
A ). (2.4)

This Lagrangian gives us the building blocks for QCD interactions. In terms of
Feynman diagrams, the building blocks are outlined in Figure 2.1.

Figure 2.1: Feynman diagram building blocks for lattice QCD. The blue coil lines with label ‘g’
represent the gluon lines, and the green arrowed lines labeled with ‘q’ represent quark lines. These
building blocks are a diagrammatic representation of all possible interactions of quarks and gluons
through QCD. Figure was obtained from University of Sheffield Open Educational Resources [20].

2.1.4 Observables from Continuum

The strategy for putting QCD on the lattice is achieved using the path integral
approach and in that approach, the primary mathematical tools to study quantum
mechanical systems on a lattice are vacuum expectation values (VEVs). Define Z as

Z =

∫
D[ψ, ψ,Aµ] e

iS[ψ,ψ,Aµ]/ℏ, (2.5)
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where the integration region is all possible field configurations and S is the action
S =

∫
d4xL. The formula to calculate the vacuum expectation value (VEV) for an

observable O is then given by

⟨O⟩ = 1

Z

∫
D[ψ, ψ,Aµ] e

iS/ℏO[ψ(t), ψ(t),Aµ(t)] (2.6)

where Z is the normalization factor i.e. the transition function integrated over all
space-time and O is some operator that is composed of the fermionic and gluonic
fields.

There are a few observables of particular interest when computing values that can
be compared to experiment: two-point correlation functions. Two-point correlation
functions, or correlators, are defined as

Cij(t) = ⟨T Oi(t)Oj(0)⟩. (2.7)

where T is the time-ordered operatorOi are operators that are functionals of fermionic
and gluonic fields, and spatial sites have been summed over. The two-point correlation
function gives access to the finite-volume energy spectrum (explained in detail in
Section 2.2.2), a valuable step in computing scattering observables from the lattice.

2.2 QCD in Discretized Finite Volume

The next step is to write our Lagrangian in discrete space, though we will take care
to ensure that the continuum physics can be retrieved when taking the lattice spacing
to zero and the volume to infinity. As a natural consequence of using finite volume,
the energy and momentum spectrum will be discretized on the lattice as well.

2.2.1 The Lattice and its Effects

The lattice used in this example is an isotropic tesseract grid Λ defined by a set of
vector indexes representing xµ such that xµ = anµ, where a is the lattice spacing for
both spatial and temporal dimensions, nµ is the vector index, and N = xmax/a. In
summary,

Λ ≡ {nµ = {n0, n1, n2, n3}|n0, n1, n2, n3 = 0, 1, ..., N − 1}. (2.8)

The momentum is then quantized to be

p =
2π

L
n, (2.9)

where L is the spatial extent of the Lattice. The momentum is constrained to the
range (−π/a, π/a] due to the cutoff effects of the lattice spacing.
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2.2.2 Two-point Correlation Functions

A finite-volume with open temporal boundary conditions will yield a discretized en-
ergy and momentum spectrum. With an appropriately large time extent T , by in-
serting a complete set of energy eigenstates, we may write the correlation functions
in terms of the energies En and overlaps onto the steady-state eigenvectors |n⟩,

Cij,T (t) = ⟨0|T Oi(t+ t0)Oj(t0)|0⟩

=
∞∑

n=0

⟨0|Oi(t)|n⟩⟨n|Oj(0)|0⟩ei(En−E0)t. (2.10)

As shown in this equation, the two-point correlation function can be related to the
discrete energies in a finite volume. Though the discrete energy spectrum can give
some qualitative information, the observables we are interested in are the continuum
phase shifts that can be compared to experiment. Using the Lüscher method (Chap-
ter 5), we can use the spectrum to calculate phase shifts in the continuum limit for a
given interaction.

2.2.3 Euclidean time

A key feature of lattice physics is the “Euclidean time” or “imaginary time”. This
simply means that the time coordinate is transformed to Euclidean time, τ , using
the transformation t→ −iτ . Not only does this transformation make the Minkowski
metric equivalent to the identity matrix, it makes Monte Carlo estimations of Lattice
QCD possible. To understand this, let us look at the VEV for a given operator O
again but with Euclidean spacetime,

⟨O⟩ = 1

Z

∫
D[ψ, ψ,Aµ] e

−S[ψ,ψ,Aµ]O[ψ(t), ψ(t),Aµ(t)]. (2.11)

Now, the VEV is a sum of the possible configurations, each multiplied by a weight
(e−S) rather than a phase (eiS), where S is real-valued. Because the weight is real and
positive, it can be interpreted as a probability, where the classical path is at the max-
imum, and can be used for Monte Carlo-Metropolis Hastings importance sampling,
encoding the physics into the stochastic simulation. When written as a Monte Carlo
integral and converted to Euclidean time, the transition function becomes equivalent
to the partition function of statistical mechanics.

Another incredibly important consequence of the time transformation is the spec-
tral decomposition of the correlation functions,

Cij(τ) =
∞∑

n=0

⟨0|Oi(0)|n⟩⟨n|Oj(0)|0⟩e−(En−E0)τ . (2.12)

In this new form, each correlator is not a sum of phases but now a sum of decaying
exponentials, where the energies can be retrieved more precisely.

8



2.2.4 Discretization and Gauge Links

The interaction term between fermions and gluons naturally arises from enforcing
local gauge invariance in the fermionic Lagrangian. In order to write the Lagrangian
using a space-time lattice and maintain gauge invariance, we need to rewrite our gluon
fields in terms of gauge links [21].

A standard method in computational science is to use the central difference for-
mula to evaluate the derivatives on the lattice. The free fermionic Lagrangian in
Euclidean space-time on the lattice becomes

LF[ψ, ψ] =

Nf∑

f=1

ψ
(f)

α (n)

(
4∑

µ=1

γµαβ
ψ

(f)
β (n+ µ̂)− ψ

(f)
β (n− µ̂)

2a
−m(f)ψ(f)

α (n)

)
, (2.13)

where a is the lattice spacing for all dimensions3. Just like in continuum physics,
we require that our discretized Lagrangian satisfies local gauge invariance. Our final
equation should have this quality, but in equation 2.13, when the transformations
ψ(n) → Ω(n)ψ(n) and ψ(n) → ψ(n)Ω†(n) are applied, there are leftover terms with
Ω(n+ µ̂) and Ω(n− µ̂) in the transformed Lagrangian, indicating the need for gauge
links, Uµ(n), which connect the space-time points. A graphical representation is
shown in Figure 2.2.

Uµ(x)U−µ(x)

n n+ µ̂n− µ̂

Figure 2.2: Graphical diagram of gauge links. [22]

These gauge links transform as Uµ(n) → Ω(n)Uµ(n)Ω
†(n + µ̂) and U−µ(n) →

Ω(n)U−µ(n)Ω
†(n − µ̂) under gauge transformation. By using a new discretized co-

variant derivative as,

D′

µ →
Uµ(n)ψ

(f)
β (n+ µ̂)− U−µ(n)ψ

(f)
β (n− µ̂)

2a
, (2.14)

the discretized fermionic Lagrangian now behaves as it should under the local gauge
transformation. We can relate this discretized covariant derivative to the contin-
uum covariant derivative with the relation using the gauge transporter, a continuum
object with the same gauge transformation properties, approximated as, Uµ(n) ≈
(exp{iaAµ(n)}), which recovers the correct form, Dµ = ∂µ + igAµ in the continuum
limit. Like in continuous spacetime, enforcing local gauge invariance in fermionic
fields determines the interaction between the fermions and gluons.

The discretized action can be separated into fermionic (SF ) and gluonic (SG) parts
written,

S[ψ, ψ, U ] = SF [ψ, ψ, U ] + SG[U ] = ψD[U ]ψ + SG[U ] (2.15)

3Lattice spacing can be different for spatial and temporal dimensions.
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where fermion indices are suppressed and D[U ] is known as the Dirac matrix. As will
be shown in the next chapter, calculating Monte Carlo observables requires inverting
the Dirac matrix. This matrix relates space-time coordinates, spin, and color between
the fermionic fields and can have ∼ 1016 elements. Inverting the Dirac matrix is our
most computationally expensive task.

2.2.5 Discretization and Fermions

Though we managed to account for local gauge invariance with our discretized La-
grangian, there are other consequences of discretization such as fermion doublers.
When we look at the Fourier transform of this Lagrangian, we see that there is not
just one pole in the propagator at p2 = m2 as expected, but 2d− 1 poles at the edges
of the Brillouin zone as well. These poles, the fermion doublers, are unphysical, and
their effect can be reduced by the addition of improvement terms in the Lagrangian.
These improvement terms must satisfy the requirements outlined above, and they
must vanish in the continuum limit. There are many variations of these terms, but
the one used in this study is called the Wilson term.

Despite the reduction of the doublers, a new problem arises as the Wilson term
increases chiral symmetry breaking. Although we could try to add yet another term
to address this issue, it has been shown in Ref [23] that it is impossible to correct
both problems completely on a lattice; thus, we are stuck with choosing one effect or
the other. Our choice of action must balance the need to minimize negative effects
on the observables we wish to study and the need to minimize computational times.
We chose a clover-improved action because its violations of chirality are sufficiently
small and computational times are adequately fast. The Lagrangian used to generate
our results is the tree-level improved Lüscher-Weisz gauge action [24] and a non-
perturbatively O(a)-improved Wilson fermion action [25].

2.3 Metropolis-Hastings Simulation

The Metropolis-Hastings simulation is a type of Markov-chain Monte Carlo simula-
tion. A Monte Carlo simulation is the use of pseudo-random sampling to calculate a
given result. A Markov-Chain simulation is a Monte Carlo simulation that samples
and maps a probability distribution randomly, but uses each sampling to guide the
next sampling choice. This method requires detailed balance and ergodicity to pro-
duce accurate results, but once these conditions are enforced, this method will provide
speed and efficiency in a high-dimensional simulation. A Metropolis-Hastings simula-
tion is a Markov-chain that uses an “accept/reject” strategy to achieve the required
fixed-point probability distribution of the Markov-chain.

Concepts relevant to the calculation of our results are outlined in this section.
Details pertaining to the ensemble setup used for results can be found in Section 6.1.
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2.3.1 Observables on the Lattice

As stated in a previous section, the standard method of calculating the VEV of an
operatorO in a Monte Carlo simulation is an integration i.e. a sum over all dimensions
written as

⟨O⟩T =
1

ZT

∫
D[ψ, ψ]D[U ]O[ψ, ψ, U ]e−S[ψ,ψ,U ]. (2.16)

where T indicates the finite time extent, and is normalized by the partition function,

ZT =

∫
D[ψ, ψ]D[U ]e−S[ψ,ψ,U ]. (2.17)

The integration includes a product of differentials in all flavor, spin, color, and
space-time indices in the manner:

D[ψ, ψ] ≡
∏

nϵΛ

∏

f,a,α

dψ(f)
aα (n)dψ

(f)

aα (n) and D[U ] ≡
∏

nϵΛ

4∏

µ=1

dUµ(n). (2.18)

The integration over the Grassman-valued fermionic fields cannot be estimated
using Monte Carlo. Thankfully, because they are in the form of a multi-variate
Gaussian, they can be evaluated analytically:

⟨O⟩T =

∫
D[U ]F (D−1[U ])detD[U ]e−SG[U ]

∫
D[U ]detD[U ]e−SG[U ]

, (2.19)

where O has been partially evaluated and rewritten in terms of Wick contractions into
a function F that only depends on D−1[U ]. Now, all that remains is the integration
over the gluon fields, which can be done using Monte Carlo integration. Note that
task of inverting the Dirac matrix is the most computationally intensive task of this
whole simulation and analysis chain, yet we need hundreds of these observables in
the form of correlators in order to calculate meaningful results. In the next chapter,
I will explain how we tackle this issue.

2.3.2 Variance estimation methods

With a statistically independent set of samples, there are two common methods to
estimate the variance of a given quantity on those samples, bootstrap and jackknife
resampling methods. In either method, to measure the variance, many subsets xi of
the original set x are made, that is, xi∃x. Using these sets, the variance of the mean
is estimated as

σ2
x = ⟨x2⟩ − ⟨x⟩2, (2.20)

where x indicates the mean of an individual set, and ⟨⟩ indicates an average over all
sets.
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Jackknife

To generate sets for jackknife-resampling, from the original set x of size N , generate
N copies of x, but for each new set xi, the element xi is removed. Because the
resampling sets are very similar to the original set, the variance estimation is similar
to a simple Monte Carlo estimation and can often underestimate the variance.

To measure the covariance, jackknife specific normalization must occur for accu-
rate results and is estimated as

cov(fi, fj) =
N − 1

N

N∑

i=1

(⟨f⟩i − ⟨f⟩J)(⟨f⟩j − ⟨f⟩J), (2.21)

where ⟨f⟩i is the average of the ith jackknife resampling of f and ⟨f⟩J is the average
over all jackknife samplings.

Bootstrap

For bootstrap resampling, NB new sets of size N are generated, and the elements
are chosen by randomly sampling the original set. This method tends to compute a
larger variance than the jackknife method due to the random picking. One caveat of
this method is that outlier samples can be oversampled for the random picker can
choose those samplings multiple times.

To measure the covariance, bootstrap-specific normalization must occur for accu-
rate results and is estimated as

cov(fi, fj) =
1

NB − 1

NB∑

i=1

(⟨f⟩i − ⟨f⟩B)(⟨f⟩j − ⟨f⟩B), (2.22)

where ⟨f⟩i is the average of the ith bootstrap resampling of f and ⟨f⟩B is the average
over all bootstrap samplings.

2.3.3 Generating Configurations

Because of the similarities in structure, lattice QCD simulations are equivalent to
Monte Carlo simulations of statistical mechanics, though they will not reflect the
same physics. For example, throughout this section there will be Euclidean time
and Metropolis-Hastings (MH) time. The Euclidean time represents the manipulated
physical time dimension, while the other is a simulation construct. Each unit in MH
time represents one sweep over all lattice points where each point has been updated
to generate the next sampling. If you were to study this “evolution” of the sampling
on its own, it would appear as a four-dimensional thermodynamics simulation. The
process of generating each sampling is given the by dimension MH time in units of
molecular dynamics units (MDUs) because of the coincidence. Usually, there are more
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than one MDU between each sampling measurement to prevent statistical dependence
between samplings.

We can only obtain accurate samplings after the lattice simulation has passed a
thermalization stage and achieved a detailed balance. Detailed balance is commonly
known as an equilibrium state in a thermodynamics simulation. When the simulation
reaches detailed balance, the transition from one state to the next is just as likely to
happen in reverse order. Only once the simulation reaches thermalization do we use
the samples for our results. To estimate how long it takes to reach this point, a small
amount of samplings are run twice, once with a ‘cold’ start (all values initialized to
zero) and once with a ‘hot’ start (all values initialized randomly). The thermalization
time is considered the total MH time it takes for the same observables calculated on
the two Markov chains to match in value.

The ability to set a hot and cold start for the simulation is possible because the
simulation is ergodic, meaning that all configurations are possible and reachable in
the probability distribution, no matter how unlikely. This means that we can start
using any configuration desired and that the simulation will reach the detailed balance
described above. As with continuum quantum physics, all configurations are possible,
but paths further away from the classical path are less likely.

In the Metropolis method, a new field configuration is proposed, and then it is
accepted or rejected based on the change to the action. When generating gauge con-
figurations, proposing large changes to the current configuration is preferred to reduce
computation cost and autocorrelation effects, but such proposals are often rejected
due to large changes in the action. It is therefore ideal to set up an updating proposal
probability so that the updating scheme can make large changes while keeping the
change to the action small.

In order to determine the updating proposal probability between each MC sample
in the MH chain, the Hybrid Monte Carlo [26] (HMC) and Rational Hybrid Monte
Carlo [27] (RHMC) algorithms are used, HMC for the light quarks and RHMC for the
the strange. In the MH simulation, the next sampling is computed by sweeping across
the lattice updating each point to produce a new sampling. This sampling must be
statistically independent of the last. In order to ensure that there are as few MDUs
as possible between samples while still maintaining equilibrium, the updates are de-
termined using importance sampling where a given probability distribution is used to
guide the next sample in such a way that the simulation maintains detailed balance
and ergodicity while speeding up calculations. The target probability distribution
that we want to use to achieve these properties is

p(U) =
detD[U ]e−SG[U ]

∫
D [U ′] detD [U ′] e−SG[U ′]

, (2.23)

but this can still be computationally intense to calculate the determinant of the Dirac
matrix. The probability distribution does not need to be perfect, so we can estimate
it instead. The HMC and RHMC algorithms are used in tandem to estimate this
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probability density and both use a fictitious action and the Hamiltonian equations of
motion to determine the update. The fictitious action Seff is generated by replacing
detDe−SG[U ] with an integral over e−Seff in the probability.

detDe−SG[U ] ≈
∫

Dϕ†
lDϕlDϕ†

sDϕs e−Seff[ϕl,ϕ
†
l ,ϕs,ϕ

†
s], (2.24)

where Seff[ϕl, ϕ
†
l , ϕs, ϕ

†
s] = SG + Sl[ϕl, ϕ

†
l ] + Ss[ϕs, ϕ

†
s], and where Sl contains the esti-

mated light-quark contribution to the action and Ss contains the estimated strange-
quark contribution. Both methods begin with estimating the respective quark deter-
minants from Equation 2.24,

detD = detD(u) detD(d) detD(s), (2.25)

where detD(u), detD(d), and detD(s) are the up, down, and strange quark determi-
nants.

Though the RHMC method could in principle be used to calculate all three quarks
updated at the same time, it can fail if the matrix is ill-conditioned. Dirac matrices
representing lower-mass quarks are more likely to have negative fluctuations in the
eigenvalues and thus have an ill-conditioned matrix. The HMC method is much more
robust and therefore can handle such cases, but is limited to an even number of quarks
that have the same mass.

Hybrid Monte Carlo Setup

In order to construct the fictitious Hamiltonian, first we rewrite the light-quark
fermion determinants in terms of light pseudo-fermions ϕl,

detD(u) detD(d) = det[D(l)†D(l)] =

∫
Dϕ†

lDϕl exp
[
ϕ†
l

(
D(l)†D(l)

)−1
ϕl

]
, (2.26)

where ϕl is computed by first computing a noise vector η with a Gaussian distribu-
tion with variance of 1/2 and then calculating ϕl = D†η. The normalization factors
have been absorbed by the path-integral measures. The light-quark contribution is
consequently

Sl = ϕ†
l

(
D(l)†D(l)

)−1

ϕl. (2.27)

Rational Hybrid Monte Carlo Setup

To continue constructing the fictitious Hamiltonian, we rewrite the strange quark
fermion determinant in terms of strange pseudo-fermions ϕs,

detD(s) = det[D(s)†D(s)]
1/2 =

∫
Dϕ†

sDϕs exp
[
ϕ†
s

(
D(s)†D(s)

)−1/2
ϕs

]
, (2.28)
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where ϕs is computed by first computing a noise vector η with a Gaussian distribution
with variance of 1/2 and then calculating ϕs = (D†D)1/4η. The normalization factors
have been absorbed by the path integral measures. The fourth-root can be estimated
with the rational approximation,

(
D†D

) 1
4 ≈ α01 +

∑

i

αi
D†D + βi

, (2.29)

where αi and βi are coefficients that specify the approximation and are evaluated
using a multi-shift solver [28]. The strange quark contribution is consequently

Ss = ϕ†
s

(
D(s)†D(s)

)−1/2

ϕs. (2.30)

Ensuring Ergodicity

Though we have light and strange contributions to the effective action, we still need
fictitious momentum, π. Here, we introduce a canonical conjugate momentum of
the gauge links, normalized using a Gaussian integrand, to define π. The complete
fictitious Hamiltonian is then outlined as

H =
1

2
π†π + Seff [U, ϕ, ϕ

†]. (2.31)

Then, we can evolve the gauge field by integrating Hamilton’s equations of motion.
The equations of motion for the fictitious Hamiltonian evolve in MH time rather than
Euclidean time. The motion here is does not only optimize the MH updating scheme,
but turns the lattice into the 4D-thermodynamics simulation.

To ensure ergodicity, the pseudo-fermion and momenta fields must be regenerated
each trajectory. Because new equations of motion were defined in the MH time, the
discretization effect causes error to the probability distribution. This is corrected for
by using a final accept/reject step

Paccept = min(1, e−δH), (2.32)

that determines whether the element is updated or not when performing the sweep.
The RHMC and the HMC enable the update to propose large changes to the config-
uration while keeping the change to the action small.

2.3.4 Autocorrelation

Although a lot of time is saved by using a Markov chain, there is an inherent risk of
autocorrelation affecting our results. An important feature of a Monte Carlo simu-
lation is that each sample is statistically independent. In a traditional Monte Carlo
simulation, each sample would be computed from a random initialization, but with
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a Markov chain each new configuration is calculated from a previous configuration.
This saves an immense amount of time for each sample does not need to undergo
thermalization, but if there are not enough MDU’s between each sample, we could
oversample high-probability areas of the integration curve and artificially reduce our
statistical error estimation.

In order to detect whether autocorrelation is affecting our results, we monitor the
variance on our observables. Once an observable is calculated on each configuration,
the bootstrap or jackknife method is used to determine the final estimate of the
variance. If we “rebin” the observable samples by averaging every Nbin samples to
create a new set of samples and recalculate the variance, then the value and variance
should remain the same if no autocorrelation is present. This is not something that
can be easily estimated early on in the Markov chain as the precision of the observables
also depends on the number of samples/configurations available. An example of
autocorrelation effects is shown in Figure 2.3. In this figure, we see that the variance
σ2 for a given rebinning scheme increases with larger rebin. If we do find evidence of
autocorrelation, then we rebin until the effects are negligible so that our statistical
variance is accurately determined. Although at larger rebin values, finite-volume
effects can affect our results which is indicated by a sudden jump in the χ2 of our fit.
In the case of Figure 2.3, Nbin = 10 was chosen due to its stability with Nbin = 15
and relatively small χ2. Though Nbin = 15 had smaller χ2, for similar results, less
rebinning is always favored to minimize the reduction in statistics.

1

2

3

σ
2 N

b
in
/σ

2 1

jackknife

bootstrap

1 5 10 15 20 25
Nbin

1.25

1.50

1.75

χ
2 /

d
.o

.f
.

Figure 2.3: Rebinning analysis for the D200 ensemble. Figure taken from Reference [19]. Top.
Relative variance of the pion rest mass determination for different rebinning schemes where the de-
nominator corresponds to the variance with no rebinning (Nbin = 1). Both Jackknife and Bootstrap
resampling methods were used to calculate the variance. The horizontal bar indicates the chosen
rebin value for final results. Bottom. χ2/d.o.f. of the corresponding fit results in the top figure.
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Chapter 3

Constructing Correlators

The last section covered how the quark and gluon fields are generated in the Markov-
Chain Monte Carlo method, but next, we need to construct correlation functions of
the hadrons of interest out of the quark and gluon fields. Care needs to be taken
to ensure that the necessary physics properties persist throughout our calculations.
Once the hadronic operators have been built, we can then study their time-dependent
correlation functions to compute the energy eigenvalues (spectrum) of the symmetry
channel of interest.

3.1 Operator Construction

3.1.1 Smearing

We are only interested in the lowest energy modes of any given channel, so it is
in our best interest to smear the fields in such a way that the hadronic operators
constructed create states when acting on the QCD vacuum, which have minimal
overlap with higher states while maintaining gauge covariance and other symmetries.
In our framework, we couple to the lowest-lying states by smearing the gauge links
using Stout smearing and the quark fields using LapH smearing.

Gauge Link Smearing (Stout Smearing)

Stout smearing, introduced and developed in Reference [29], can best be described
as replacing a gauge link with a weighted sum over a set of perpendicular gauge link
“staples” that connect to the same start and end points. This procedure is then
performed on all gauge links some number of iterations until it is determined that the
coupling to higher-energy states has been satisfactorily reduced. Stout smearing can
be used for both the construction of the lattice action and for correlators. In some
results, stout smearing has been used for both calculations, but in others, only the
correlators.

17



As stated above, the smearing operator must respect the correct symmetries and
physics, thus the weights for smearing are not computed randomly. When computed
randomly, the smeared gauge links are no longer analytic or SU(3) symmetric. If the
smeared links are not analytic, then when computing gauge ensembles, the HMC algo-
rithms are no longer applicable. If the smeared links are no longer SU(3) symmetric,
then they no longer represent physical gluon fields. When composing a method for
smearing gauge links, it is critical to maintain these two features, and stout smearing
accomplishes this.

To understand how stout smearing is applied, first we write down a sum of all
perpendicular staples,

Cµ(x) =
∑

ν ̸=µ

ρµν

(
Uν(x)Uµ(x+ν̂)U

†
ν(x+µ̂) + U †

ν(x−ν̂)Uµ(x−ν̂)Uν(x−ν̂+µ̂)
)
,

where µ̂, ν̂ are vectors of one lattice unit length in directions µ, ν, respectively. Notice
that weights are applied to opposing staples equally (each term in the sum is a different
staple). This is not necessary for the solution, and a different basis for the weights is
allowed. Using Lie algebra, we can build a Hermitian traceless generator of SU(N),
Qµ(x), if we apply the formula,

Qµ(x) =
i

2

(
Ω†
µ(x)−Ωµ(x)

)
− i

2N
Tr
(
Ω†
µ(x)−Ωµ(x)

)
, (3.1)

where

Ωµ(x) = Cµ(x) U
†
µ(x) (no summation over µ). (3.2)

Because Qµ(x) is Hermitian and traceless, this means that exp(iQµ(x)) is an element
of SU(N) Lie group. With this fact, an iterative and analytic smearing method can
be computed as

U (n+1)
µ (x) = exp

(
iQ(n)

µ (x)
)
U (n)
µ (x) (3.3)

where n indicates the number of iterations where this smearing method has been
applied to all links, indicating that U

(0)
µ (x) ≡ Uµ(x) and exp(iQµ(x)) is the smearing

coefficient applied each iteration. With the choice of N = 3, both exp(iQµ(x)) and

U
(n)
µ (x), enforcing that U

(n+1)
µ (x) is also within SU(3). A visualization of the first-

order expansion of exp(iQµ(x)).

With this definition, we see that the choice in weights ρµν is somewhat arbitrary.
When computing correlators we set the weights as ρ4ν = ρµ4 = 0. We do not want
smearing in the temporal direction for computing temporal correlators, as we want
to ensure that the hadronic operator only includes fields from a single time slice. The
choices for the remaining elements of ρµν are ρjk = ρ.

Further details on how exp(iQµ(x)) is approximated can be found in Reference [29].
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Figure 3.1: Diagramatic representation of the first order expansion of equation 3.3.

Quark Field Smearing (LapH Smearing)

To further reduce the coupling of our measured observables to higher-energy modes
of the system, Laplacian-Heaviside (LapH) smearing is applied to the quark fields [3,
4]. For discretized space, to compute the second derivative, the central difference
formula is used. The definition of the central difference formula is equivalent to a
weighted sum of neighbors for any set of positions x, y, i.e. a smoothing function.
For our cases, we begin with the gauge-covariant Laplacian matrix on the lattice,

∆̃ab(x, y;U) =
3∑

k=1

{
Ũab
k (x)δ(y, x+ k̂)

+Ũ ba
k (y)∗δ(y, x− k̂)− 2δ(x, y)δab

}
, (3.4)

where Ũ represents the stout-smeared gauge fields. Although we now have a method-
ology for smearing, a simple second-order derivative will not reduce the coupling to
higher modes. What the operator can do is indicate the higher modes by studying
the N∆ eigenvalues of Laplacian matrix. We diagonalize the Laplace operator so that

∆̃ = V∆ Λ∆ V †
∆. (3.5)

where Λ∆ is a matrix of the eigenvalues along the diagonal, and V∆ contains the
corresponding eigenvectors. The larger-valued eigenvalues correspond to the higher-
energy modes of the system and we can decouple from those modes by generating a
smearing matrix,

S = V∆ Θ
(
σ2
s + Λ∆

)
V †
∆, (3.6)

that applies a Heaviside function with a tunable upper threshhold σ2
s for the eigen-

values of ∆̃ and removes the contribution of higher eigenvalues from the matrix. This
matrix can then be applied to the quark fields to produce LapH-smeared quark fields,

ψ̃aα(x) = Sab(x, y) ψbα(y). (3.7)

To determine the cutoff σ2
s , an effective mass is measured at an early time for various

σ2
s and the minimum value is chosen. Not only are undesired couplings to the higher
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modes removed as shown in Reference [3], but by using eigenvalues of the gauge-
covariant Laplacian, we maintain the necessary symmetries and quantum numbers in
the smeared quark fields.

3.1.2 Relevant Quantum Numbers

Identifying the quantum numbers of any particle is equivalent to identifying its trans-
formation properties under various symmetries. On the lattice those symmetries are
reduced but still provide vital information for computing continuum-scattering re-
sults. The relevant symmetries we consider are outlined in this section.

Rotational symmetry

In continuum quantum mechanics, stationary states of a system are characterized
by angular momentum, but on the hypercubic lattice, we are confined to ninety-
degree rotations in spacetime. The SO(3) rotation group is not a symmetry group
of the lattice gauge theory, only a subset of it is. As realized by Johnson et al. in
Reference [30], the octahedral group [31] provides an adequate symmetry group for
the lattice. More often used in crystalline physics, the irreducible representations
(irreps) of the octahedral group will provide us with a new quantum number which
the continuum angular momentum can be mapped onto.

Integer values of the angular momentum can be mapped onto states of the octa-
hedral group, which contains 24 elements in five conjugacy classes. The conjugacy
classes and descriptions of their symmetries are listed in Table 3.1. The conjugacy
classes are labeled as nCm where each of the n elements is a m-th root of the identity.

The irreps we use are related to the conjugacy classes according to Table 3.2.
Vector representations of SO(3) (j = 0, 1, 2, ...) map onto these irreps.

Spin

To incorporate spin in the irreducible representation, we will instead use the double
cover of the octahedral group, 2O. 2O includes all elements of O with the addition
of all elements of O multiplied by negative identity J . Naturally, all elements and
irreps involved with O are contained within 2O as well as three new conjugacy groups
equivalent to 24 more elements. The three new conjugacy classes arise from C3 and
C4 and J . The new irreps map to the conjugacy classes according to table 3.3, and
SU(2) representations (j = 1/2, 3/2, ...) map onto the new irreps that arise out of
2O.

Parity

To incorporate parity, spatial inversions Is can be applied to both O and 2O. When
spatial inversions are included in either of these groups, it doubles their size and they
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Class Description Diagram

I identity

3C2
π rotations about 3
coordinate axes

180◦

8C3
±(2π/3) about the body

diagonals

6C4
±π/2 rotations about 3

coordinate axes
90◦

-90◦

6C2
π rotations about the face

diagonals

Table 3.1: Descriptions and example diagrams of the symmetries of the 5 conjugacy classes of the
octahedral point group. The red dotted line indicates the axis of rotation. For classes with the same
axes, the included rotations are also noted in the diagram.

I 3C2 8C3 6C4 6C2

A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 2 -1 0 0
T1 3 -1 0 -1 1
T2 3 -1 0 1 -1

j irreps j appears in
0 A1

1 T1
2 E + T2
3 A2 + T1 + T2
...

Table 3.2: Mappings of irreducible representations of the octahedral point group. Left. Coefficient
of each symmetry group for the irreducible representations. Right. Mapping of angular momentum
on irreducible representations.

are denoted by Oh and
2Oh. To indicate the spatial-inversion symmetry in the irreps,

an additional label g or u is added to the subscript of the irrep. From the German
words gerade and ungerade, g and u indicate positive and negative parity respectively.
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I J 6C4 8C3 8C6 6C8 6C
′
8 12C

′
4

G1 2 -2 0 -1 1 -
√
2

√
2 0

G2 2 -2 0 -1 1
√
2 -

√
2 0

H 4 -4 0 1 -1 0 0 0

j irreps j appears in
1/2 G1

3/2 H
5/2 G2 +H
...

Table 3.3: Mappings of irreducible representations of the double cover of the octahedral point
group. Left. Coefficient of each symmetry group for the additional irreducible representations of
2O. The rest are outlined in Table 3.2. Right. Mapping of spin on irreducible representations.

Flavor symmetry

Out of all the three smallest mass quarks, mu and md are the only quarks with similar
masses as is shown in Figure 3.2, and thus, in our simulations we set mu = md to
give us an exact SU(2) flavor symmetry. To avoid mixing between states of definite

u d s
quarks

0

25

50

75

M
eV

Figure 3.2: A comparison of the three lightest quark masses. Values were collected from the
PDG [9].

isospin, we establish a SU(2) multiplet for each of our operators with u and d as two
different states. This doublet is called isospin, I, symmetry with I3 = +1/2 for the u
flavor state and I3 = −1/2 for the d flavor state where I3 is the projection onto the
z-axis in isospin space. The isospin doublet mathematically functions the same as
spin, but does not relate to spin, physical space, or angular momentum.

The SU(2) isospin rotation can be written as

URτ = exp(−iφ · τ), (3.8)

where φ is the rotation vector, and τ is a vector of the three generators of isospin

rotations. The hadronic operators, O
(I)

I3
and O

(I)
I3
, must maintain this symmetry by

demanding the following transformation properties,

URτO
(I)

I3
U †
Rτ

=
∑

I′3

O
(I)

I′3
D

(I)

I′3,I3
(Rτ ) (3.9)
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and
URτO

(I)
I3
U †
Rτ

=
∑

I′3

O
(I)

I′3
D

(I)

I′3,I3
(Rτ )

∗, (3.10)

where D(I)(Rτ ) are the Wigner rotation matrices.

G-parity

For electrically/flavor-neutral meson states, charge conjugation is another good quan-
tum number. Charge conjugation is the behavior of the state when the quarks are
replaced with their anti-quark partners. Only some electrically/flavor-neutral meson
states (including tetraquark states) are eigenstates of their conjugation (for example,
C|π0⟩ = +|π0⟩ where C is the charge-conjugation operator). The strong force is blind
to electromagnetic charge, so differentiating states like π+, π0, π− comes down to the
isospin of the light quark to differentiate up and down. Instead of charge conjugation
alone, we can use G-parity which is a combination of the charge conjugation and a
rotation in isospin space,

UG = Ce−iπτ2 . (3.11)

Moving Frames

To generate irreps with definite momentum, the representation of 2Oh is considered
combined with a translational element. The moving irreps must maintain the rota-
tional symmetry along the line of translation. These translations are summarized in
the little group of p, where p is the lattice momentum vector. To define the new
conjugacy classes for the moving irreps, we subduce the representations of 2Oh onto
the little group p. For p = (0, 0, 0), this includes all representations of 2Oh. The
conjugacy classes and subductions for different basic lattice momenta are outlined in
Tables 3.4-3.6.

p = (0, 0, 1)
C4v classes subduced Oh representa-

tions
description

C1 {I} identity
C2 {C2z} π rotations about the z axes
C3 {C4z, C

−1
4z } ±π/2 rotations about the z axes

C4 {IsC2x, IsC2y} π rotation combined with spatial inversion
about the x and y axes

C5 {IsC2a, IsC2b} π rotation combined with spatial inversion
about the x = y and x = −y axes

Table 3.4: Subduction of conjugacy classes from 2Oh onto little group p = (0, 0, 1) with descriptions
of the symmetries.
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p = (0, 1, 1)
C2v classes subduced Oh representa-

tions
description

C1 {I} identity
C2 {C2e} π rotations about the z = y axis
C3 {IsC2f} π rotation combined with spatial inversion

about the z = −y axis
C4 {IsC2x} π rotation combined with spatial inversion

around the x axis

Table 3.5: Subduction of conjugacy classes from 2Oh onto little group p = (0, 1, 1) with descriptions
of the symmetries.

p = (1, 1, 1)
C3v classes subduced Oh representa-

tions
description

C1 {I} identity
C2 {C3δ, C

−1
3δ } ±(2π/3) about the x = y = z axis

C3 {IsC2b, IsC2d, IsC2f} π rotation combined with spatial inversion
about the x = −y, x = −z, and z = −y
axes

Table 3.6: Subduction of conjugacy classes from 2Oh onto little group p = (1, 1, 1) with descriptions
of the symmetries.

When we reference irreps later on, we will often use the notation Λ(d2) where Λ
refers to the irrep and d refers to the lattice momentum.

3.1.3 Elemental Single-Hadron Operators

Before we enforce any quantum numbers on the operators, next we will construct the
basic elemental hadronic operators out of the smeared quark and gluon fields.

Displacements

In order to include radial and orbital effects in our correlators, some of the hadron
operators must be distended in space. In order to do that, we define a gauge-covariant
displacement operator in the jth direction by,

D̃
(p)
j (x, x′) = Ũj(x)Ũj(x+ ĵ) . . . Ũj(x+ (p− 1)ĵ)δx′,x+pĵ, (3.12)

where p > 0 indicates the number of steps in that direction. For ease of writing the
hadron operators, p = 0 is included to indicate no displacement (D̃

(0)
j (x, x′) = δx′,x).
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Elemental Simple-Meson Operators

Although mesons are defined as any color singlet state with the same number of quarks
and antiquarks, in this work we will only study mesons of one or two quark-antiquark
(qq̄) pairs. To distinguish between these types of mesons, the single qq̄ particle will
be considered the simple mesons or just mesons. Particles of two qq̄ pairs are called
tetraquarks.

To begin constructing our meson operator, let us look at an operator made from
our smeared quark fields,

χ̃Aaαψ̃
B
bβ, (3.13)

where χ = ψγ4, capital Latin superscripts indicate flavor, Greek subscripts indicate
Dirac spin, and a, b, c, d indicate color. In order to create an operator that represents
a physical meson, the final operator must be color-singlet i.e. gauge-invariant. The
only way to produce this in a meson operator is a delta function between color indices,

δabχ̃
A
aαψ̃

B
bβ. (3.14)

ev e v
e

v
e v

e v��
single-site singly-displaced doubly-displaced-L triply-displaced-U triply-displaced-O

Figure 3.3: Diagrammatic depiction of meson displacements, taken from Reference [32]. All di-
agrams are planar except for triply-displaced-O, for which the diagonal line represents projection
into the third spatial dimension. The solid circles indicate the final position of the quark, the hollow
circles indicate the final position of the antiquark, and the hollow square indicates the assignment
of the meson operator location.

At this point, we have not considered the spatial component of these quark fields.
The fields may be separated from each other. Because we do not know the spatial
displacements of quarks within a meson, many displacements of the meson operators
were studied and are identified in Figure 3.3. For displacements that span multiple
dimensions, the magnitudes of displacements in the different dimensions are the same,
but varying magnitudes are studied. An operator with these displacements can be
written as

δab

(
χ̃D

(p)†
i

)A
aα

(
D

(p)
j D

(p)
k ψ̃

)B
bβ
, (3.15)

where p is the magnitude of the displacement if not zero and i, j, k represent spatial
directions. The magnitude p for each displacement is chosen to achieve the configu-
rations in Figure 3.3.

Rather than studying a meson operator with definite location, we would like to
study a meson operator with definite momentum, so we apply a discrete Fourier
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transform to our elemental meson and antimeson operators,

ΦAB
αβ;ijk(p, t) =

∑

x

e−ip(x+
1
2
(da+db))δab

(
χ̃D

(p)†
i

)A
aα

(x, t)
(
D

(p)
j D

(p)
k ψ̃

)B
bβ
(x, t), (3.16)

and

Φ
AB

αβ;ijk(p, t) =
∑

x

eip(x+
1
2
(da+db))δab

(
χ̃D

(p)†
k D

(p)†
j

)B
bβ
(x, t)

(
D

(p)
i ψ̃

)A
aα

(x, t), (3.17)

where p is the definite momentum, and da,b are the total displacements of the quark
and antiquark fields. To be able to project the correct behavior of the meson operators
under G-parity, the displacements are included in the phase factor. The annihilation
operators and their quantum numbers for the mesons used in our simulations are
outlined in Table 3.7.

Name I I3 S G Annihilation Operator
ηαβ 0 0 0 1 Φuu

α,β + Φdd
α,β

ϕαβ 0 0 0 −1 Φss
α,β

π+
αβ 1 1 0 −1 Φdu

α,β

K+
αβ 1 Φsu

α,β

K
0

αβ −1 Φds
α,β

π0
αβ 1 0 0 −1 Φdd

α,β − Φuu
α,β

π−
αβ 1 −1 0 −1 Φud

α,β

K0
αβ − −1 Φsd

α,β

K
−
αβ − 1 Φus

α,β

Table 3.7: Final meson annihilation operators after projecting onto definite G-parity. First flavor
index of the operator indicates the antiquark and second index, the quark. Particle names indicate
the flavor structure and may not reflect the real particles, which may have a more complicated flavor
composition.

Elemental Baryon Operators

The baryon operator is constructed in a similar manner as the simple meson operator
except that the baryon operator is constructed out of three quark fields. To create
a color singlet state, the Levi-Civita coupling is used in place of the delta function.
The elemental baryon and antibaryon operators are then written as

ΦABC
αβγ;ijk(p, t) =

∑

x

e−ipxεabcψ̃
A
aαi(x, t)ψ̃

B
bβj(x, t)ψ̃

C
cγk(x, t) (3.18)

and
Φ
ABC

αβγ;ijk(p, t) =
∑

x

eipxεabcχ̃
C
cγk(x, t)χ̃

B
bβj(x, t)χ̃

A
aαi(x, t), (3.19)

26



where

ψ̃Aaαi(x, t) =
(
D

(p)
i ψ̃

)A
aα

(x, t) and χ̃Aaαi(x, t) =
(
χ̃D

(p)†
i

)A
aα

(x, t). (3.20)

The displacement operators function the same as for the mesons, but the configura-
tions investigated are outlined in Figure 3.4. In this case, the displacement vectors
were not included in the phase of the momentum projection because G-parity is not
a quantum number of baryons, and thus there is no need to project onto it. The
quantum numbers and quark makeup of the relevant baryon operators are outlined
in Table 3.8.

uuu uu u uu u
single-site singly-displaced doubly-displaced-I

u
u

u
u u

u u
u

u�
��

doubly-displaced-L triply-displaced-T triply-displaced-O

Figure 3.4: Diagrammatic depiction of baryon displacements, taken from Reference [33]. Similarly
to baryon displacements, all diagrams are planar except for triply-displaced-O, for which the diagonal
line represents projection into the third spatial dimension. Solid circles indicate the final position
of the quark and the hollow square indicates the assignment of the baryon operator location.

Hadron I = I3 S G Annihilation Operators
∆++ 3

2
0 Φuuu

αβγ

Σ+ 1 −1 Φuus
αβγ

N+ 1
2

0 Φuud
αβγ − Φduu

αβγ

Λ0 0 −1 Φuds
αβγ − Φdus

αβγ

Table 3.8: Maximal-I3 baryons and their corresponding elemental annihilation operators.

Elemental Tetraquark Operators

The only way to create color singlet objects with four quarks is for there to be an equal
number of quarks and antiquarks. In this case, there are two linearly independent
ways to construct tetraquark operators: q̄aqaq̄bqb and q̄aqbq̄bqa where a, b indicate
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color, resulting in two linearly independent gauge-invariant elemental tetraquark and
anti-tetraquark operators:

ΦABCD±
αβµν;ijkl(p, t) =

∑

x

e−ipx(δabδcd ± δadδbc)χ̃
A
aαi(x, t)ψ̃

B
bβj(x, t)χ̃

C
cµk(x, t)ψ̃

D
dνl(x, t)

(3.21)
and

Φ
ABCD±
αβµν;ijkl(p, t) =

∑

x

e−ipx(δabδcd ± δadδbc)χ̃
D
dνl(x, t)ψ̃

C
cµk(x, t)χ̃

B
bβj(x, t)ψ̃

A
aαi(x, t),

(3.22)
where fields have been replaced with the displaced fields described in Equation 3.20.
The displacements studied for the tetraquark operators are outlined in Figure 3.5.

SS DDIa DDIb

QDXbQDXa

Figure 3.5: Diagrammatic depiction of tetraquark displacements, taken from Reference [33]. Solid
circles indicate the final position of the quark, hollow circles indicate the final position of the anti-
quark, and the hollow square indicates the assignment of the tetraquark operator location.

3.1.4 Single-Hadron Operators

The elemental single-hadron operators by their construction have some quantum
numbers, such as Dirac spin, definite flavor, displacements, and momentum, but
the hadrons of interest have quantum numbers associated with rotational symme-
try instead of Dirac spin. Not only that, some meson operators also have G-parity.
Therefore, we need to construct operators from the elemental single-hadron operators
that represent the quantum numbers that we want to study. For any of the elemental
operators listed in the previous section, the new operators are constructed in the form

Ol(p, t) = c
(l)
αβ...Φ

AB...
αβ...;ijk(p, t), (3.23)

and
Ol(p, t) = c

(l)∗
αβ...Φ

AB...

αβ...;ijk(p, t), (3.24)
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where c
(l)
αβ..., c

(l)∗
αβ... are the weights and l incorporates all of the relevant quantum num-

bers. Enforcing these quantum numbers is equivalent to computing an operator that
transforms according to the corresponding symmetry group. To find the correct co-
efficients, we enforce that the operators transform according to the λ row of the Λ
irreducible representation of a symmetry transformation R. In order to construct this

operator, we know that if the operators transform according to the irrep row, OΛλ

and OΛλ, they must satisfy the conditions:

UROΛλU †
R =

∑

µ

OΛµΓ
(Λ)
µλ (R)

∗ (3.25)

and
UROΛλ

U †
R =

∑

µ

OΛµ
Γ
(Λ)
µλ (R), (3.26)

where UR is the unitary quantum operator associated with R and Γ(Λ)(R) is the
matrix of the symmetry transformation R in the Λ irreducible representation. With
this condition, we can write out how the correlators should be constructed,

OΛλ =
dΛ
gG

∑

R∈G

Γ
(Λ)
λµ (R)UROU †

R (3.27)

and

OΛλ
=
dΛ
gG

∑

R∈G

Γ
(Λ)∗
λµ (R)UROU †

R (3.28)

where dΛ is the dimension of Λ, R are the elements of the group G, gG is the order of
G, and all other indices have been suppressed. The index µ is arbitrary, though only
µ = λ guarantees true projection. Because this equation does not enforce a phase
or weight, the coefficients have enough flexibility to satisfy both this condition and
produce an equivalent operator for different values of µ. Therefore, we can sum over
the irrep rows of the resulting correlators to increase statistics.

3.1.5 Multi-Hadron Operators

Constructing multi-hadron operators is fairly straightforward once the single-hadron
operators have been properly constructed. The same quantum numbers needed for
the single-hadron apply to all multi-hadron operators. To construct a two-hadron
operator, a first attempt may be a mere product of the two single-hadron operators.
Although individual operators have been designed to conform to the quantum num-
bers of interest, their product does not have this guarantee. Therefore, similarly to the
single-hadron, we make a linear combination of the operator products that adheres
to all the symmetry requirements of the previous section for the interacting channel
of interest. This is precisely what makes the tetraquark fundamentally different from
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a two-hadron operator. The q̄q product fields within the tetraquark operator are not
projected onto any symmetries.

Though multihadron operators can include any number of hadrons, only single-
and two-hadron operators are considered in this thesis. The Lüscher formalism for
retrieving the scattering information from the finite-volume spectrum as described in
this work is only valid below the three-particle threshold. The formalism for three-
particle scattering is making strides, but is outside the scope of this work.

3.2 Quark Propagator Construction

As shown earlier, the fermionic parts of the correlator can be analytically integrated
over, though it does leave a Dirac matrix inversion in the gluon field integration. This
Dirac matrix inversion is the most expensive part of the correlator computation. It
has indices of spacetime, color, and Dirac spin, so for a theory of three colors and
four Dirac indices on a 323 × 256 lattice, this amounts to a complex-valued matrix
of size ∼ 108 × 108. Storing this matrix at double precision would amount to about
160 petabytes. Thus, computing the Dirac matrix and its inverse is done on the fly,
and to speed things up, there are methods of stochastically estimating this inverse to
greatly reduce computation.

Quark Lines

Evaluating temporal correlators with hadronic operators involves an integration of a
product of quark propagators, the connecting lines between creation and annihilation
operators in Feynman diagrams. On the lattice, a quark propagator is called a quark
line. There are several basic categories of the quark lines: forward-time quark line,
backward-time quark line, and same-time quark line. The same-time quark lines
contribute to disconnected diagrams and represent sea quarks. As stated before,
these have been found to be essential to medium-energy scattering results.

To understand how quark lines are computed on the lattice, I will review Monte
Carlo integration. Recall from Chapter 2 that analytical integration over fermionic
fields gave us Equation 2.19. This means that calculating any observable requires
computing the inverse Dirac matrix. For example, the fermionic integration over a
set of meson operators results in,

∫
D[ψ, ψ]ψaψbψcψd exp

(
−ψTDψ

)
=
(
D−1
adD

−1
bc −D−1

ac D
−1
bd

)
detD, (3.29)

where D is the Dirac matrix. From this point on, for convenience, χ ≡ ψ̄γ4 and
Ω = γ4D. This will help reduce the confusion between the displacement operator and
the Dirac matrix and make it easier to construct hermitian baryon matrices.

With smearing S and displacements D, a forward-time quark line is defined as

Qjk (t, t0) = DjSΩ−1 (t, t0)SD†
k. (3.30)
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From this definition, we can easily obtain the backward-

Qjk (t, t0) = (γ5γ4Qjk (t, t0) γ4γ5)
∗ = −Qkj(t0, t) (3.31)

and same-time (Qjk(t, t)) quark lines.

Stochastic Estimation

When applying the Fourier transform to the operators to project into momentum
space, the computation time increases dramatically with more hadrons involved.
When computing single-hadron correlators, translational invariance can be used to
reduce calculations or increase statistics, but as soon as there are nonzero-momentum
multi-hadron operators or disconnected multi-hadron operators, this trick no longer
works. To improve computation time without sacrificing the accuracy of the results,
another trick has been found instead: inserting stochastic noise. Because the variance
is dominated by statistical noise, inverses do not need to be computed exactly. We
can control the uncertainty by combining the noise and the dilutions of that noise.

To understand how this works, consider an N×N complex matrixM for which we
would like to stochastically compute the inverse. First, we introduce a noise vector,
η, that satisfies expectations E(ηi) = 0 and E(ηiη

∗
j ) = δij where E is the standard

expectation function. Next, we solve the function MX = η for the vector X. With a
set of X, we can arrive at the following conclusion:

E
(
Xiη

∗
j

)
= E

(∑

k

M−1
ik ηkη

∗
j

)
=
∑

k

M−1
ik E

(
ηkη

∗
j

)
=
∑

k

M−1
ik δkj =M−1

ij . (3.32)

And thus M−1
ij can be estimated as

M−1
ij ≈ lim

NR→∞

1

NR

NR∑

r=1

X
(r)
i η

(r)∗
j , where MX(r) = η(r). (3.33)

Using this method alone is not sensible for application. In order to compute the
exact solution for the Dirac matrix inverse, one would need to sample over infinite
noise vectors. Even if one were to choose NR < N noise vectors, the variance is
too large to be useful. However, if the noise vectors are engineered in such a way
that the exact solution is achieved in the limit NR → N instead of NR → ∞, this
method is very useful. The strategy used to accomplish this is called dilution, and
it begins with the decomposition of a given noise vector into a sum of vectors where
each decomposed vector η

(r)[s]
j contains only the s-th element of the original vector

η
(r)
j and all other elements are zero.

η
(r)
j =

N∑

s=1

η
(r)[s]
j , η

(r)[s]
j = η

(r)
j δjs ( no sum over j). (3.34)
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If this decomposition is used instead, then by following the same steps as above, we
find the following equation is produced,

N∑

s=1

X
(r)[s]
i η

(r)[s]∗
j =

∑

s

M−1
is η

(r)
s η

(r)[s]∗
j

=
∑

s

M−1
is η

(r)
s η

(r)∗
j δsj

=M−1
ij η

(r)
j η

(r)∗
j , ( no sum over j),

(3.35)

where X(r)[s] is the solution of MX(r)[s] = η(r)[s]. From this equation, it is clear to
see that if the original noise vector has the property η

(r)
j η

(r)∗
j = 1, then the inverse is

calculated exactly with only N decomposed noise vectors of one unit modulus noise
vector.

Using maximal dilution does not improve the computation cost of inverting the
Dirac matrix, but if not all decomposed noise vectors are used, a low-variance, accu-
rate Dirac matrix can be achieved, which is shown in Reference [4]. Maximal dilution
ensures that many of the elements are exact zeros rather than statistical zeros, and
that all of the diagonal elements are exact. For later convenience, we can introduce
a new entity, dilution projection matrices, that convert the noise vector to a diluted
noise vector

η[a] = P (a)η. (3.36)

Quark sources and sinks

By stochastically estimating the inverse of the Dirac matrix, we are allowed to split
the quark line into two parts: quark sources and quark sinks. Take the original
definition of the quark line, Equation 3.30,

Qjk (t, t0) = DjSΩ−1 (t, t0)SD†
k.

Using the noise vector properties written in matrix form, E(η) = 0, E
(
ηη†
)
= I,

we can rewrite the quark line as such

Qjk = DjSΩ−1E
(
ηη†
)
SD†

k

= E
(
DjSΩ−1η (DkSη)†

)
.

(3.37)

Recall that S is Hermitian. Similar to the process above, let us include the new
vector ϕ which is a solution of the equation, Ωϕ = η. Then Ω−1η = ϕ. By making
this replacement, one can see that the quark line can be rewritten as an outer product
of a sink vector and source vector,

Qjk = E
(
DjSϕ (DkSη)†

)

= E
(
ϕjη

†
k

)
,

(3.38)
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where

ηj = DjSη and ϕj = DjSϕ. (3.39)

Dilution projectors can also be inserted into our quark line equation similarly to
the noise vector. With a few simple steps, we can use the stochastically estimated
noise vectors instead,

Qjk =
∑

a

DjSΩ−1P (a)P (a)†SD†
k

=
∑

a

DjSΩ−1P (a)E
(
ηη†
)
P (a)†SD†

k

=
∑

a

E
(
DjSΩ−1P (a)η

(
DkSP (a)η

)†)

=
∑

a

E
(
ϕ
[a]
j η

[a]†
k

)
,

(3.40)

where we have defined

η
[a]
j = DjSη[a], η[a] = P (a)η

ϕ
[a]
j = DjSϕ[a], Ωϕ[a] = η[a].

(3.41)

Though one can in principle introduce noise in the full spin-color-space-time vector
space, there is another framework available to us: the LapH subspace. Because the
LapH subspace has already been introduced in the simulation, it is a very convenient
candidate for noise vectors. This also reduces the number of indices to track as the
color and spin indices are replaced by a LapH eigenvector indices.

To understand how this stochastic factorization improved the computational cost
of the simulation, consider a 323 × 256 lattice with LapH eigenumber, Nν = 264. If
we consider all possible single and multi-hadron correlators of mesons and baryons
made up of u and d quarks, for full dilution, this requires 270,336 inversions per
configuration, whereas when stochastic LapH is applied, only 1664 inversions are
needed per configuration [4].

3.3 Two-point Correlator Construction

I have now introduced the single-hadron and multihadron operators as well as quark
lines. Next I will explain how we stitch those pieces together as well as use the
consequences of stochastic estimation to further improve the total computation time
of all correlators.
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Correlator Factorization

In order to compute correlators, we shall review the original equation for computing
observables on the lattice, Equation 2.19

⟨O⟩T =

∫
D[U ]F (D−1[U ])detD[U ]e−SG[U ]

∫
D[U ]detD[U ]e−SG[U ]

,

where O is some operator, T indicates the finite time extent, and is normalized by
the partition function. To compute two-point correlators in particular, we review
Equation 2.10,

Cij,T (t) = ⟨0|T Oi(t+ t0)Oj(t0)|0⟩,
where O and O are operators in the channel of interest.

If we apply the elemental operators as discussed in Section 3.1,

Cll (tF − t0) = c
(l)
αβγc

(l)∗
αβγ

〈
ΦABC
αβγ (tF ) Φ

ABC

αβγ (t0)
〉
, (3.42)

we have the formal equation for any correlator. Then, we shall apply the analytic
evaluation of the fermionic fields to rewrite the correlator in terms of quark lines, for
example, the baryon correlator,

Cll(t) = c
(l)
αβγc

(l)∗
αβγ

∑

xx

εabc εabce
−ip·(x−x)

×
〈
Q

(AA)
aα;aαQ

(BB)

bβ;bβ
Q

(CC)
cγ;cγ −Q

(AA)
aα;aαQ

(BC)
bβ;cγQ

(CB)

cγ;bβ

− Q
(AB)

aα;bβ
Q

(BA)
bβ;aαQ

(CC)
cγ;cγ −Q

(AC)
aα;cγQ

(BB)

bβ;bβ
Q

(CA)
cγ;aα

+ Q
(AC)
aα;cγQ

(BA)
bβ;aαQ

(CB)

cγ;bβ
+Q

(AB)

aα;bβ
Q

(BC)
bβ;cγQ

(CA)
cγ;aα

〉
U
, (3.43)

where we have defined t ≡ tF − t0, where time and spatial labels have been omitted,
and where

⟨f(U)⟩U =

∫
DUf(U) det(M [U ])e−SG[U ]

∫
DU det(M [U ])e−SG[U ]

. (3.44)

From here, we can apply the stochastic estimation and rewrite the quark lines in
terms of quark sources and sinks. The sources and sinks can be combined into hadron
sources and sinks, for example, a baryon source,

B[b1b2b3]
l (φ1, φ2, φ3; t) = c

(l)
αβγ

∑
x e

−ip·xεabc

×φ[b1]
aαxt (ρ1)φ

[b2]
bβxt (ρ2)φ

[b3]
cγxt (ρ3) ,

(3.45)

where b1, b2, and b3 are dilution indices, and we use short-hand notation to represent
φk = φ(ρk), i.e. the sink vector related to the noise vector ρk. The correlator can
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then be rewritten as

Cll (tF − t0) =
〈
B[b1b2b3]
l (φ1, φ2, φ3; tF )

×
(
δABCABCB[b1b2b3]

l (ϱ1, ϱ2, ϱ3; t0)

− δACBABCB[b1b3b2]
l (ϱ1, ϱ3, ϱ2; t0)

− δBACABCB[b2b1b3]

l
(ϱ2, ϱ1, ϱ3; t0)

− δCBAABCB[b3b2b1]

l
(ϱ3, ϱ2, ϱ1; t0)

+ δCABABCB[b2b3b1]

l
(ϱ2, ϱ3, ϱ1; t0)

+δBCAABCB[b3b1b2]

l
(ϱ3, ϱ1, ϱ2; t0)

)∗〉
U,ρ
,

(3.46)

where δDEFABC = δADδBEδCF and ⟨. . .⟩U,ρ represents an expectation value over the gauge
fields U and the noise vectors ρk. As is shown in Equation 3.45, the correlators can
be split into parts: the hadron sources and the hadron sinks.

By factorizing the correlators, this means that the sources and sinks can be calcu-
lated separately and then used for multiple correlators. One baryon sink can be used
for a single or multi-hadron correlator that contains that baryon. This is yet another
way we can greatly reduce the computation time.

Due to their properties, tetraquarks cannot be factorized into any smaller pieces.
Similarly to mesons and baryons, the tetraquark can be thought of as one entity.
In the analysis presented in this thesis, tetraquarks are not part of any multihadron
operator. This is because we are not in the expected energy range of any tetraquark-
meson scattering. However, as shown in the results, there is much more to learn about
the nature of tetraquarks. Tetraquarks have a much more significant computational
cost than mesons or baryons, for there are many more Wick contractions associated
with the tetraquark operator to include when integrating out the fermions.
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Chapter 4

Finite-Volume Spectrum

In order to take advantage of the Lüscher formalism to obtain continuum scattering
physics, the finite-volume energies must first be evaluated. This task is challenging,
and a number of theorems and methodologies have been utilized and investigated to
precisely and robustly obtain the spectrum.

4.1 Correlator Matrices

Let us recall the time-dependent correlator we computed in the last chapter,

Cij(t) = ⟨0|T Oi(t+ t0)Oj(t0)|0⟩, (4.1)

where Oi and Oj may represent different single- or multi-hadron operators within the
same channel and irrep. Infinite-time extent is assumed. The operators are engineered
to enforce the matrix as Hermitian. The correlation matrices can then be decomposed
into the energy eigenstates of the channel and irrep

Cij(t) =
∑

n

Z
(n)
i Z

(n)∗
j e−Ent, (4.2)

where the energies En have the property En < En+1 and Z
(n)
i represents the overlap of

Oi(t0)|0⟩ with eigenstate of energy En, also called operator overlap factors. Temporal
wrap-around effects are neglected. If one were to apply a phase change to the operator
overlaps Z

(n)
j → Z

(n)
j eiϕn , then Equation 4.2 would remain unchanged. Due to this

effect, we can only determine the magnitudes of these operator overlaps.
Often, to gain a visualization of the energy dependence of the correlators, we plot

the effective energy or effective mass. The effective energy Eeff is the function of the
correlator

Eeff(t) = − d

dt
lnC(t), (4.3)

which can be estimated as

− 1

∆t
(lnC(t+∆t)− lnC(t)) (4.4)
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in discretized time. For any given correlator, the effective energy of the correlator
should have the limit

lim
t→∞

Eeff(t) → E0, (4.5)

where E0 is the lowest contributing energy of the energy sum.

4.2 The Generalized Eigenvalue Problem

Though in principle one could fit to the correlators above, fitting to a tower of states
at once can be very challenging and results in an often unstable high-parameter fit.
Instead, we use a tactic that disentangles the lowest N energy levels in the matrix.
This makes the retrieval of the energy levels much more reliable. Lüscher and Wolff
outlined this important theorem in Reference [34]:

Theorem: For every t ≥ 0, let λn(t) be the eigenvalues of an N × N
Hermitian correlation matrix C(t) ordered such that λ0 ≥ λ1 ≥ · · · ≥
λN−1, then

lim
t→∞

λn(t) = bne
−Ent

[
1 +O(e−t∆n)

]
, bn > 0, ∆n = min

m̸=n
|En − Em|.

(4.6)

This theorem informs us that solving for the eigenvalues at large t will allow us to
determine the N lowest energies accessible to the operators in the matrix.

Because the scale of the correlators can change dramatically, to prevent round-off
error when solving the eigenvalue problem, we choose a normalization time τN and
normalize the correlator matrix at that time in the manner

Cij(t) =
Cij(t)√

Cii(τN)Cjj(τN)
, (4.7)

where Cij is our normalized correlator matrix. The normalized operator overlaps then
are

|Z(n)
i | = |Z(n)

i |√
Cii(τN)

. (4.8)

Despite the valuable disentanglement of the exponentials and the improvement
of the round-off error, Theorem 4.6 alone is not enough to adequately separate the
lowest energy levels. The correction term O(e−t∆n) is only negligible at large times
when there is a low signal-to-noise ratio. At those times, the correlators contain
high fluctuations and a pivot is no longer trustworthy. Fortunately, Lüscher and
Wolff addressed this issue in the same paper: The correction term can be reduced to
O(e−t(EN−En)) by instead solving the generalized eigenvalue problem (GEVP)

C(t)vn (t, τ0) = λn (t, τ0) C (τ0) vn (t, τ0) , n = 1, · · · , N − 1,
t

2
≤ τ0 < t, (4.9)
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where τ0 is called metric time. Solving this equation is equivalent to diagonalizing
G(t) = C−1/2 (τ0) C(t)C−1/2 (τ0). The resulting time-dependent eigenvalues, or rotated
correlators, are now guaranteed with high precision that the lowest energy level for
each set of eigenvalues has E0 ≤ En < EN and any other energies that contribute
to each eigenvalue are greater than EN . The lowest-lying level is much easier to fit
to as with larger time the higher-energy states will die off more quickly. The new
eigenvalues have the form

λn(t) → |Z ′
n|2 e−Ent, t→ ∞. (4.10)

and the operator overlaps can be retrieved by

Z(n)
j ≈ Cjk (τ0)

1/2 Vkn(t)Z
′
n (no sum over n). (4.11)

We then order the eigenmodes of the GEVP by increasing energy. An example of the
input and output of a GEVP solution is shown in Figure 4.1.
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Figure 4.1: A GEVP example. Error bars are determined using bootstrap resampling method.
Left. Diagonal correlators of the isotriplet channel with zero strangeness and irrep Hg of the little
group for the total momentum squared P 2 = 0. The composition of the operator is indicated by the
correlator label and includes multi-hadron operators of the nucleon (N) or pion (π) operator with
their individual momenta in the form of O(d2) where P 2 = (2π/L)2d2. Right. Time-dependent
eigenvalues of the GEVP for the same channel presented in the plot on the left. Each eigenvalue is
indicated by their label “ROT n” with index n which is ordered by increasing energy. GEVP was
solved using the single-pivot method (see Section 4.2.1) with (τN , τ0, τD) = (4,8,16).

The GEVP method assumes that the basis vectors of the matrix are linearly
independent, although this is not always known before applying this method. If
linearly dependent, then one eigenvalue will be very small, equal to or near zero. We
can check for this by creating a condition number for the matrix using the largest
and smallest eigenvalues λ

ξcn =

∣∣∣∣
λmax

λmin

∣∣∣∣ . (4.12)

If this number is very large (≥ 150) then this indicates that the matrix is ill-
conditioned due to its basis vectors being linearly dependent. In this case, the eigen-
vector and eigenvalue associated with the smallest eigenvalue (≈ 0) are thrown out
of the solution and not used in the result.
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Although there are other methods of solving the GEVP on the samples, we have
found that solving the GEVP for a given correlation matrix on the mean of the
samples and then using the eigenvectors as a “pivot” to rotate on the samples of the
resampling method gives us satisfactory variance on our final results. Solving the
GEVP on every sample will provide more accurate error bars, but we found that this
has a high computational cost and is negligibly different from the approximation (see
Section 8.1 for verification of this claim). Therefore, in our analyses, we solve the
GEVP on the mean sample and then apply that same pivot to the samples.

There are multiple strategies for solving and applying the solution to the correlator
matrix including the single pivot and the rolling pivot.

4.2.1 Single Pivot

Though this description above indicates that the GEVP is solved on all time-slices, in
practice it is less computationally intensive and more robust to compute the GEVP
at one time, the diagonalization time τD, and then use the eigenvectors to rotate
the other time-slices. This method is called the single pivot. Though not exact, the
diagonalization at one time is nearly the same as the diagonalization of the same
correlator at another time. To maximize the reduction in off-diagonal variance in the
GEVP solution, τD is chosen as ≥ 2τ0. τD should also be a place where there is still
a high signal-to-noise ratio.

4.2.2 Rolling Pivot

In all of our studies, the single-pivot method proved to be our preferred method,
but to validate the method, I extended the capabilities of our analysis to include
the rolling-pivot method, where the GEVP is solved on every time slice. In this
case, there are some difficulties due to the statistical noise in the correlator. In
the ideal, noiseless case, the GEVP method could be performed on each time slice
independently and order the eigenvalues in increasing order at each time slice. The
eigenvalues in this order would each match to the same rotated correlator. In any
Monte-Carlo simulation, exactness is impossible to reach, and there is statistical noise
present. This statistical noise can cause the eigenvalues to fluctuate, and levels that
are near each other can change order at some time slices. To prevent this, I check the
eigenvectors. By matching the eigenvectors between each time slice, I can prevent
this switching effect.

An additional issue when using the rolling-pivot method is that solving the GEVP
is only trustworthy when the signal-to-noise ratio is reasonably high. At large times,
the signal-to-noise ratio decreases, but that is also where the most valuable informa-
tion is. (As a reminder, we seek the lowest energy from these correlators, which is
achieved by estimating the t→ ∞ behavior.) It is more sensible to use an accurately
determined pivot and apply it to later time slices than to compute the pivot at a noise-
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dominated time slice; thus, the single-pivot method is preferred (given that there is
no sensitivity in the final results due to changes in the diagonalization parameters).

An example of the level 0 rotated correlators for the single pivot and rolling pivot
is shown in Figure 4.2.

Figure 4.2: The lowest eigenvalue of the correlation matrix with isospin I = 0, strangeness S =
−1, and irrep Λ(d2) = G1g(0). The eigenvalue was calculated using the single-pivot method with
parameters (τN , τ0, τD) = (4,4,16) and the rolling-pivot method (τN , τ0) = (4,4). Left. Rotated
correlator plotted. Right. Effective energy of rotated correlator plotted.

4.3 Spectrum Fitting Methods

Once the rotated diagonal correlators are computed, we can fit to them and the
noninteracting correlators to estimate the t → ∞ limit. There are some key fea-
tures to remember when computing these fits. One, in a Markov-Chain Monte-Carlo
simulation, because each correlation function was computed from the same set of
gauge ensembles, the measurements are highly correlated. Rather than a simple min-
imization of χ2, we must minimize the correlated-χ2. This requires computing the
resampling covariance between observables. For the jackknife method, the covariance
estimation is

cov(fi, fj) =
Nc − 1

Nc

Nc∑

i=1

(
⟨f⟩i − ⟨f⟩J

) (
⟨f⟩j − ⟨f⟩J

)
, (4.13)

where ⟨f⟩i denotes the average of f over the ith jackknife resampling, and ⟨f⟩J denotes
the average of f over all samples. For bootstrap resampling, the covariance estimation
is

cov(fi, fj) =
1

Nb − 1

Nb∑

i=1

(
⟨f⟩i − ⟨f⟩B

) (
⟨f⟩j − ⟨f⟩B

)
, (4.14)
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where ⟨f⟩i denotes the average of f over the ith bootstrap resampling, and ⟨f⟩B
denotes the average of ⟨f⟩i over all bootstrap resamplings. Once we have our equations
for the covariances, we can compute the correlated-χ2 defined by

χ2 =
∑

t,t′

(C(t)− f(t;α)) cov−1 (C(t), C(t′)) (C(t′)− f(t′;α)) , (4.15)

where f indicates the fit model and α indicates the model’s parameter set. The model
parameters are then chosen by minimizing this equation on each resampling where
the uncertainties are determined by the covariance equations above.

To determine the goodness of the fit (especially between different datsets and
models), we compare the χ2/d.o.f. where d.o.f. stands for the degrees of freedom. In
principle, the ideal fit is χ2/d.o.f. = 1. χ2/d.o.f. << 1 indicates overfitting of the
data, and χ2/d.o.f. >> 1 indicates that the model is not a good descriptor of the
data. Due to Monte Carlo fluctuations in our data, the latter tends to be the case.
Our rule of thumb is to aim for fits in the range χ2/d.o.f. < 1.5, though this is not
always possible.

The energies retrieved from fits to the correlator with non-zero momentum frames
are in the lab frame. We want to compare and use the energies in the center-of-mass
frame instead. We can shift from the lab frame to the center-of-mass frame using the
energy dispersion relation

Elab =
√
E2

cm + P 2, (4.16)

where Elab is the energy in the lab frame, Ecm is the energy in the center-of-mass
frame, and P 2 is squared momentum.

Occasionally, when there are many models for a fit with varying complexity, the
Akaike information criterion (AIC) [35] is used to choose a fit. The AIC balances the
goodness of fit with the simplicity of the model and is defined by

AIC = χ2 − 2ndof , (4.17)

where ndof denotes the number of degrees of freedom. This value is a prediction of
the information error; therefore, the fit with the lowest AIC would maximally reduce
the potential loss of information.

Another occasional strategy to reduce computation time is to use a derivative
method of calculating the variance. Generally, to accurately calculate the variance
of a fit result, the fit is performed on every sample, then the results use the method
described in Section 2.3.2 to compute the variance. If the fit is a costly endeavor,
then, to reduce the computational cost, a derivative method will be used instead.
As described in Equation 3.4 of Reference [36], rather than recomputing the fit, this
method uses the matrix of covariances between the parameters pn and pm, given by

Vnm =

(
∂Xi

∂pn
(C−1)ij

∂Xj

∂pm

)−1

, (4.18)
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where the partial derivatives are evaluated numerically at the minimum of χ2 and X
is the data being fitted to. This method often underestimates the variance, because it
assumes linear error propagation and it does not take single-hadron mass fluctuations
into account.

The AIC and the derivative method of variance are typically applied when comput-
ing scattering amplitudes from the finite-volume spectrum, though the correlated-χ2

fitting will be the same.

4.3.1 Ratio Fits

I often fit to the correlators directly, but there is usually still a high amount of higher-
energy contribution to the correlators. As stated above, the GEVP solution merely
sorts out the N lowest levels for the resulting correlators. Anything above the N
lowest levels still contributes to the correlators.

To remedy this, I have found that dividing the correlator by corresponding non-
interacting single-hadron correlators often cancels out the higher-lying states. The
ratio correlator is defined as

R(t) =
λn(t)

CSH
i (t)CSH

j (t)
, (4.19)

where λn(t) indicates a correlation matrix eigenvector and CSH
i (t) indicates a nonin-

teracting single-hadron correlator. The single-hadron correlators chosen correspond
to the same hadrons used in the multi-hadron interacting correlators of the irrep.
When possible, they are often chosen to match the constituents of the interacting
operator that contributes the most significantly to that eigenvector. The limit of the
ratio correlator is then

lim
t→∞

R(t) → Ae−δnt. (4.20)

The En can easily be retrieved by the relation δn = En − ESH,i − ESH,j where ESH,i

is retrieved using the zero-momentum single-hadron fit and the energy dispersion
(Equation 4.16) relation to boost into the momentum frame of the noninteracting
correlator.

One potential issue with fitting to the ratio correlator is that the ratio correlator
is no longer a sum of decaying exponentials. Therefore, the location of the plateau
for the correlator is not guaranteed to be the same for the ratio correlator. We find
that in practice the plateau of the ratio correlator tends to start before the plateau
of the simple rotated correlator. To verify our results, we compare to the results of
other fit forms.

4.3.2 Standard Fit Forms

The simplest fit form to determine the t→ ∞ limit is the single-exponential model

C(t) = Ae−Et. (4.21)
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If there was no contamination, then one could fit to the entire available time range
of the correlator. This is not the case, and thus we have to choose a late time range
in which the correlator plateaus. Two examples are shown in Figure 4.3.
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Figure 4.3: Example fits to the second eigenvalue of the Hg(0) irrep matrix in isoquartet non-
strange channel. Upper left. Correlator plotted with single-exponential model fit to t-range=[17,25].
Upper right. Same fit as upper left plot, but effective energy is plotted instead. Lower left. Ratio
correlator with single-exponential model fit (independent fit in comparison to the upper plots) with
t-range=[15,25]. The denominator is π(1)N(1). Lower right. Same fit as lower left plot, but effective
energy of the ratio is plotted instead.

Instead of ignoring the high-energy contribution completely, because we know the
form of the correlator, we have several fit forms that account for it. Usually, including
multiple exponentials quickly leads to unstable fits; the fit form can be written in a
way that ensures stability in the χ2 minimization. The simplest method of estimating
the contamination in the fit is a simple two-exponential model

C(t) = Ae−Et
(
1 +Be−∆2t

)
. (4.22)

A two-exponential fit does not simulate an infinite tower of states, so fitting to the
whole time range is generally not possible for a two-exponential fit either, but it tends
to use more data than a single-exponential fit to the tail.
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Another method that we use to try to characterize the contamination is the
geometric-series model

C(t) =
Ae−Et

1−Be−∆2t
= Ae−Et

(
∞∑

n=0

Bne−n∆
2t

)
. (4.23)

As shown in Equation 4.23, the denominator expands into an infinite set of evenly
spaced states. Although higher-lying states cannot be accurately determined with
this method, it is often successful in estimating the contamination.

5 10 15 20 25

t/at

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

a
tE

la
b

corr: isoquartet S=0 P=(0,0,0) Hg ROT 1

atElab=0.4557(43)

χ2/dof = 0.96

5 10 15 20 25

t/at

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

a
tE

la
b

corr: isoquartet S=0 P=(0,0,0) Hg ROT 1

atElab=0.4555(30)

χ2/dof = 1.17

Figure 4.4: More example fits to the second eigenvalue of the Hg(0) irrep matrix in isoquartet
nonstrange channel. Left. Effective energy of the correlator plotted with a two-exponential model fit
to t-range=[10,25]. Right. Effective energy of the correlator plotted with a geometric-series model
fit to t-range=[6,25].

4.3.3 Stability Analysis

When choosing a fit, not only do we consider the χ2/d.o.f, we take into account a
variety of fit forms applied to both the rotated correlator and the ratio of the rotated
correlator over non-interacting correlators. If a fit is applied to the ratio correlator,
the result is nicknamed a “ratio fit”. To assess the validity of a fit, we often compare
the fit results with a similar fit to the same fit form but with a different tmin. We
consider the fit to be reliable if it has a good χ2/d.o.f and is consistent between fits
with varying tmins, also called the plateau of the fit. We compare the plateau regions
of multiple fit forms. An example is shown in Figure 4.5. In this case, we chose a
single-exponential fit to the ratio correlator with tmin = 9 because it was precise and
consistent with similar fits and the plateau regimes of other fit forms.

4.3.4 Finite-time Domain Effects

To seek t → ∞ information on a lattice of finite temporal extent T , some care must
be taken. We can make this assumption because T is large enough that any effects
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Figure 4.5: Results of many fits to the second eigenvalue of the Hg(0) irrep matrix in isoquartet
nonstrange channel. All fits use tmax = 25. Left. Elab of the resulting fit for varying tmin and fit
forms. In this plot, ratio fit results shifted to Elab for comparison. The energies are shifted using the
relation described in the text of Section 4.3.1. Right. Same data as left plot, but the ratio results are
unmodified and all the other fit results are shifted to compare to the ratio fit results. Filled symbols
indicate a good fit (χ2/dof < 1.4). Hollow symbols indicate a poor fit (χ2/dof ≥ 1.4). Horizontal
dotted black line and grey band indicate the value and variance of the chosen fit.

of the far wall are negligible.
To verify this assumption, we can study the single-exp fit model with wall effects

C(t) = A(e−Et + e−E(T−t)). (4.24)

When the assumption T → ∞ is made, the model simplifies to a single-exponential
fit. Fits to the kaon and nucleon are shown in Figure 4.6. The finite-time effects are
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Figure 4.6: Several fits for varying tmin to single-exponential model (1-exp) and Equation 4.24
(1-exp-sym). Filled symbols indicate a good fit (χ2/dof < 1.5). Hollow symbols indicate a poor fit
(χ2/dof ≥ 1.5). Horizontal dotted black line and grey band indicate the value and variance of the
chosen fit. Left. Fits to the kaon single-hadron correlator are shown. Right. Fits to the nucleon
correlator.
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known to only affect the lightest states. The pion was also investigated, but because
of its extremely high precision, statistical fluctuations due to autocorrelation caused
the pion fits using Equation 4.24 to have a large χ2.

4.3.5 Exploratory Fit Forms

The precision and amount of information to be gained from the Lüscher analysis
greatly depend on the precision and accuracy of the finite-volume spectrum. Single-
and two-exponential fits alone often produce fits with variance that is similar in
magnitude to the statistical noise of the tail-end data. We often need more precise
results. This can be produced in two ways: we can either use increased statistics
(computationally expensive), or we can use the properties of the correlators to pre-
cisely determine the tail-end behavior (much cheaper).

I have integrated two additional methods/tools into our analysis chain to use on
future projects, priors and simultaneous fits. Using these tools, new fit models have
been investigated.

Constrained Parameters

Given that we have knowledge of how the parameters should behave, we can introduce
parameter constraints into the fit [37]. By setting a mean and width for the prior of
a given parameter, we can stabilize fits that would otherwise have failed.

In order to add priors to the fit, instead of minimizing the correlated-χ2 we fit to
an augmented correlated-χ2

χ2 → χ2
aug ≡ χ2 + χ2

prior (4.25)

where χ2
prior takes the form

χ2
prior ≡

∑

i

(Pi − P̃i)
2

σ̃2
i

(4.26)

where some or all parameters of the fit Pi are given the prior mean P̃i and prior
width σ̃i. This augmented χ2 discourages the parameter from moving away from the
value P̃i with strength dependent on σ̃i. The values for the priors are based on prior
knowledge of the fits.

To prevent these priors from artificially reducing our error bar, we tend to choose
large prior widths, larger than the noise in the tail-end behavior. Also, when resam-
pling, rather than using the user set point P̃i, the fits to the samples instead use a
random sampling from a normal distribution with mean of P̃i and width of σ̃i. Param-
eter constraints are very helpful in modeling contributions from the high-lying states
that are not of interest, but care must be taken to ensure the low-lying parameters
of interest are insensitive to the parameter constraints.
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Simultaneous Fits

Exactly as the name indicates, simultaneous fits are when two fit forms to two datasets
are minimized together. Because of the highly correlated data, this can be advanta-
geous even if the parameters and data are completely independent between the two
fits, but simultaneous fits also have the ability to share parameters between fits. This
can be advantageous when we believe that different correlators will share parameters.
This will be useful when a precise signal cannot be achieved otherwise.

Multiexponential Method

The current method of our analysis includes looking at every single rotated correlator
and manually choosing a fit form and t-range based on the plateaus of each fit. This
is a very tedious task that we would like to simplify by generating a fit form that can
characterize the entire time range of the correlator while still accurately retrieving
the energies.

One method I came up with and tested was what I called the “multiexponential
method”. This method was developed with the intention of trying to characterize
the correlator contamination with a sum of exponentials, but only the lowest energy
level obtained from the fit is considered for later use. Fits to a linear superposition of
exponential terms are generally unstable due to the large number of parameters that
are poorly constrained. In order to make the fits produce useful results, additional
constraints must be added. The method tested here imposes such constraints using
Bayesian priors and a level-by-level approach.

The level-by-level approach begins with a fit to a simple single-exponential model,

C(t) = A0e
−E0t, (4.27)

and with the full available time-range. Then, the tmin is increased until the fits reach a
consistency in value and also achieve an acceptable χ2/d.o.f.. Once a final fit has been
chosen based on these qualifications, the energy fit and error are used as a prior in
the next fit with prior mean of E0 and prior width of cσE0 where σE0 is the variance
and c is a inflating factor. To avoid an underestimation of the error variance, the
inflating factor is greater than one. The next fit is to the two-exponential model

C(t) = A0e
−E0t

(
1 + A1e

−E2
1 t
)
, (4.28)

where E0 is priored with the resulting value from the single-exponential fit. Similarly,
this fit is done with the entire time-range and then the tmin is increased until it has
entered the stability region and has an acceptable χ2/d.o.f..

After the two-exponential fit, the data is fit to a three-exponential fit

C(t) = A0e
−E0t

(
1 + A1e

−E2
1 t + A2e

−E2
2 t
)
, (4.29)
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to the entire t-range where E0 and E1 are priored according to the best stable results
for the two-exponential fit (widths are inflated). Fits with three exponential fits or
higher are given a wide-ranging prior of mean Ẽn = 2En−1 and width σ̃En = En−1/2
on the highest energy to prevent the highest energy from running away to infinity or
falling to the same value as one of the lower energies. This process is continued until
the entire range is fitted with a tower of states with a good χ2/d.o.f.. An example of
this process at each stage is presented in Figure 4.7.

An issue found with this method was that it had the tendency to overfit the noise
region. See the example in Figure 4.8. Checks on this method included looking for
consistency with alterations of the inflating factor. Due to the overfitting of the noise
and these failed checks, this method was never used for final results.

Conspiracy

Based on the success of the ratio fits, a new method developed by André Walker-
Loud, facetiously called the “conspiracy” method, takes advantage of contamination
cancellation to form a priored simultaneous fit. Based on the similar contamination
structures, it was hypothesized that the leading contaminating states are the same
or similar. To construct this fit, we first start with a two-exponential fit to the single
hadrons. Let us start with the degenerate case, where the two single hadrons chosen
for the interacting correlator are the same hadron. The single hadron is fit to a
two-exponential model:

CSH(t) = ASHe
−mSHt

(
1 +BSHe

−∆2
SHt
)
. (4.30)

Then for the interacting correlator fit, the single hadron is fit to Equation 4.30 simul-
taneously with the conspiracy fit to the interacting correlator

CROT(t) = AROTe
−E0t(1.0 +RROT,1e

−(∆2
SH+δ1)t +RROT,2e

−(2.0∆2
SH+δ2)t), (4.31)

where each parameter is given a prior according to Table 4.1. The conspiracy model
in Equation 4.31 is based on C2

SH(t),

C2
SH(t) → A2

SHe
−2mSHt(1.0 + 2BSHe

−∆2
SHt +B2

SHe
−2.0∆2

SHt). (4.32)

As you can see, the conspiracy model bases its exponential form on the denominator,
but does not assume amplitudes and allows for flexibility of the exponents. Due to
the large number of exponentials, priors are needed to keep the fit stable, but the
widths of the priors are inflated to ensure accuracy of the precision of the results.
This method has had success, especially in noisy baryon-baryon correlators studied
in current projects. This same methodology is applied to the non-degenerate case as
well as using three-exponential single-hadron fits for the conspiracy fit.
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Figure 4.7: Example of the steps in the multi-exp method applied to the D200 pion correlator.
On the left, the correlator and model are plotted in effective energy. On the right, each result is
compared to fits of the single- (1-exp) and two- (2-exp) exponential models without priors.
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Figure 4.8: Example of the multi-exponential fit applied to the thirteenth correlator of the G(3)
irrep in the channel with isospin I = 0 and strangeness S = −1. All fits used a tmax = 25. Left.
Effective energy of the rotated correlator. Right. t-min plot comparing results of various fit forms
with different fit-ranges.

parameter mean width
ASH ASH,ind cσASH,ind

mSH mSH,ind cσmSH,ind

BSH BSH,ind cσBSH,ind

∆SH ∆SH,ind cσ∆SH,ind

E0 Ẽ0 ≡ Effective energy of correlator
at diagonalization time

0.1Ẽ0

AROT ÃROT ≡ C(τD)/e
−Ẽ0τD 0.5ÃROT

RROT,1 1.0 0.5
RROT,2 1.0 0.5
δ1 0.0 0.015
δ2 0.0 0.015

Table 4.1: Priors set for degenerate conspiracy fits. The single-hadron parameters in the simulta-
neous fit are set by the resulting parameters of an independent fit, and the widths are inflated by
parameter c. The priors for the conspiracy fit to the interacting hadron are set based on expectations
of the values and the data at the diagonalization time τD.
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Chapter 5

Scattering Observables from the
Lattice

The energy spectrum of a lattice of finite volume is very different from the spectrum of
infinite volume. Because of the finite volume, first, there are no asymptotic states, and
second, the boundary conditions quantize the momentum which gives us a discrete set
of states in our spectrum, whereas in infinite volume the energy states are a continuous
distribution. However, the discrete energy states can still give us information about
the scattering amplitudes. Though the results that we observe will depend on the
lattice volume, once we have the same calculations on multiple lattices with different
lattice volumes, the continuum-physics results can be achieved at high precision.

The information and descriptions in this section are based heavily on the works
of References [38, 39].

5.1 Scattering Observables of Interest

The ultimate goal for our calculations is to compute observables that experimental-
ists can compare to. The values that experimentalists measure in particle scattering
experiments are the differential cross sections, i.e. the probability of the particle scat-
tering at a certain angle for a certain interaction (see diagram in Figure 5.1). In order
to accurately determine the differential cross section, all possible interactions must be
accounted for in the experiment. Lattice QCD can provide input for many possible
interactions, especially strong-force-dominated interactions, in the non-perturbative
regime.

In our analyses, we do not directly calculate the differential cross section, but
instead the partial-wave amplitudes. As a quick exercise, I will illustrate how the
differential cross section is related to these quantities.

Through quantum field theory, the differential cross section dσ
dΩ

is related to the
scattering amplitude M. For example, for the 2 → 2 scattering in the center-of-mass
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Figure 5.1: Visualization of the differential cross section dσ
dΩ (θ). Figure provided by Wikipedia

Commons [40].

(cm) frame for nonidentical particles, the relation is

dσ

dΩ
(θ) =

1

64π2s

pf
pi
|Mfi(θ)|2, (5.1)

where pi and pf represent the magnitude of each incoming and outgoing particle
momentum and s =

√
Ea + Eb where Ea and Eb are the center-of-mass energies of

the incoming particles of masses ma and mb. The elastic scattering amplitude can
then be decomposed into terms of partial-wave amplitudes,

M(θ) =
1

4π

∑

ℓ

Pℓ(cos θ)Mℓ(s). (5.2)

Hadronic resonances are expected to only affect one of the infinite set of partial wave
amplitudes, giving us a way to isolate their effect. To conserve the probability above
the kinematic threshold, the transition amplitude must satisfy the elastic unitarity
condition

Im
1

Mℓ

= − 1

16π

2 q

E
Θ(E − Ethr.), (5.3)

where E is the cm-frame energy, q is the cm-frame momentum, and Ethr. is the
kinematic threshold Ethr. = ma + mb. Utilizing the Equations 5.2 and 5.3, it is
common to write the real part of the partial-wave amplitudes in terms of phase shifts

Re
1

Mℓ

=
1

16π

2 q

E
cot δℓ(E). (5.4)

5.2 Resonances

Relatively few hadron species exist in the form of bound states, hadrons that do not
decay1 such as pions, neutrons, protons and so on, but most known species decay

1I am only considering decay through the strong force in this thesis.
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quickly and are known as resonances. Resonances are short-lived particle states that
decay into the common hadrons of the scattering channel, whether that be the original
particles or two particles of the same combined quantum numbers.

Narrow resonances contribute peak-like structures to cross sections and are char-
acterized by their mass and widths. A qualitative diagram is shown in Figure 5.2.
The mass and width can be computed from the lattice using the scattering amplitudes
calculated from the Lüscher quantization condition. The presence of a resonance can
be clearly be indicated by a rapid rise in the phase shift, as shown in Figure 5.2.

E

σ

no resonance

resonance

q2
δ

no resonance

resonance

Figure 5.2: Left. Diagram of the qualitative features of a resonance in a cross section. Right.
Diagram of qualitative features of phase shift when resonance is and is not present.

5.2.1 Riemann Sheets

Bound states and resonances correspond to specific poles in the scattering matrix,
which can occur on different Riemann sheets. When considering the center-of-mass
momentum,

q =
1

2

[
s− 2(m2

1 +m2
2) +

(
m2

2 −m2
1

)2

s

]1/2
, (5.5)

one would notice that there is an overall square root function. Because this is a func-
tion of the complex Mandelstam variable s, Mℓ(s) features a branch cut at threshold

s =
(
m1 +m2

)2
and therefore, two Riemann sheets to represent the q domain for

scattering in a single channel. A visualization of the singularities in the complex q
and complex Ecm planes for non-relativistic single-channel scattering can be seen in
Figure 5.3. The physical (first) sheet in the complex energy plane where real scatter-
ing occurs is where Im(q) > 0 and the unphysical (second) sheet is where Im(q) < 0.
Particles will appear as pole singularities in Mℓ(s) where ℓ is the particle’s angular
momentum. The type of particle can be defined by its location on the Riemann
sheet. Bound states are poles on the real axis of the physical sheet and below thresh-
old. Poles off the real axis on the unphysical sheet are resonances. A pole on the real

53



(a) (b)

Figure 5.3: Diagrams of the pole locations on the Riemann sheets for non-relativistic single-channel
scattering. (a) Pole positions corresponding to different types of particles in the center-of-mass
momentum k and then on the Riemann sheets of the cm energy E. Figure provided by Colin
Morningstar. (b) Example of the Riemann surface of the complex function f(z) =

√
z. Figure

provided by Wikipedia Commons [41].

axis but on the unphysical sheet is a virtual bound state. All other locations on this
Riemann sheet are unphysical locations for poles.

When considering nonphysical pion mass, this can cause poles to move on the
Riemann sheets compared to the physical pion mass. Using effective field theories,
we can often predict how the pole positions will move as a function of quark mass,
and often the particles that we study in our lattice QCD simulations can be stable
for large quark mass, and then become unstable resonances for lighter quark masses.

5.3 Phase Shifts: A One-Dimensional Example

To better understand how finite-volume energies can yield infinite-volume scattering
information, I will present an example of calculating the scattering phase shift on a
one-dimensional lattice. In this example, I will overview the simple case of elastic
scattering of two identical spinless bosons in one spatial dimension in non-relativistic
quantum mechanics [42].

For the quantum mechanics formulation, let us suppose that bosons, separated by
a distance |x|, interact through a finite-range potential, V (|x|), with V (|x| > R) = 0.
Outside the potential, the wave-function of the two-boson system will be of the form
ψp(|x|) ∼ cos

(
p|x| + δ(p)

)
, where all values of the momentum, p ≥ 0, are allowed.

Given that we know the potential function, the energy eigenfunctions within the range
of the potential and the wavefunctions can be matched at x = R to determine the
phase shift.

Now, instead of a continuum system, place this system on a lattice with size
L > R. The momenta are quantized due to the boundary conditions, but in addition,
due to the boundary conditions, the allowed momenta of the wavefunctions have the
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condition

p =
2π

L
n− 2

L
δ(p).

This result highlights some of the qualitative features that we are looking for in our
spectrum. If there is no scattering, the phase shift will be δ = 0, and the spectrum
will be equivalent to the free particle spectrum. When δ is nonzero, the discrete
spectrum will depend on the infinite-volume phase shift. Both the spectrum and the
phase shift will depend on the lattice volume.

These same qualitative features are present when repeating this exercise with
quantum field theory and a three-dimensional cubic box.

5.4 Lüscher Quantization Condition

The Lüscher quantization condition (LQC) is given by

det
[
F−1(E,P ;L) +M(E)

]
= 0, (5.6)

where M is built out of infinite-volume scattering matrices and F−1, where F−1

encodes how the partial waves fit into the finite volume to satisfy the boundary con-
ditions. Though the idea of extracting scattering information predates Lüscher’s first
published quantization condition [43, 44], he was the first to adapt a method for lattice
QCD. In this first work, the relation was limited to scattering between two identical
spinless particles with zero total momentum interacting via a central potential. Much
work has been done since to expand its capabilities [45–63], and the modern relation
[63] is only limited to all possible two-to-two scattering. (Breakthroughs are currently
being made in three-particle scattering [64, 65].) While we are limited to two-to-two
scattering, our energy range is limited by the three-particle threshold.

The Lüscher quantization condition in Equation 5.6 is derived by equating two
different but equivalent versions of the two-point correlation function in a finite vol-
ume. The first way to write the correlation function is as a discrete set of eigenstates,
which is outlined in Section 2.2.2, but is generalized here,

CL(t,P ) = L6
∑

n

e−Ent ⟨0|O(0)|En,P ;L⟩
〈
En,P ;L|O(0)|0

〉
, (5.7)

where the function is equivalent to Equation 2.10 but the volume dependence is
included. The second way is diagrammatic, where the difference between the finite
and infinite correlators come to play. The diagram is shown in Figure 5.4c and can
be written as

FL =


 1

L3

∑

k−
∫

dk
(2π)3



∫
dk4
2π

× L(P − k, k)∆(k)∆(P − k)R†(P − k, k), (5.8)
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Figure 5.4: Diagrams of relevant scattering quantities. (a) Fully dressed single particle propagator.
(b) Solid lines correspond to the particles in the primary channel being considered, while dashed
lines indicate fluctuations due to particles that cannot go on-shell. (c) The finite-volume function,
F(P,L), defined in Equation 5.8, expressed in terms of the difference between finite and infinite-
volume two-particle loop. (d) The diagrammatic representation of the finite-volume two-point
correlation function for energies where the two-particle states can go on-shell.

where R and L are arbitrary smooth functions and k is the discrete momentum
k = (2π/L)n. The finite-volume diagrammatic equation can then be written as

CL(t,P ) = L3

∫
dP4

2π
eiP4t

[
C∞ −O⋆

i F (L)
∑

n=0

(
−MF (L)

)n
O⋆
j

]
, (5.9)

= L3

∫
dP4

2π
eiP4t

[
C∞ −O⋆

i

[
F−1(L) +M

]−1

O⋆
j

]
, (5.10)

where Oi are the hadronic operators, C∞ is the infinite-volume correlation function,
F−1 is related to FL via FL = −Lℓm(P )Fℓm;ℓ′m′(P,L)R†

ℓ′m′(P ), and all matrices and
operators have dependence on P .

To compare Equation 5.10 with Equation 5.7, the poles that appear when eval-
uating the integral in Equation 5.10 must cancel and create a similar exponential
function as in Equation 5.7. These poles that arise due to the finite volume will

appear in the
[
F−1(P,L) +M(P )

]−1
term in Equation 5.10. The term will diverge

if the matrix [F−1(P,L) +M(P )
]
is singular, leading to the coveted LQC found in

Equation 5.6.

5.5 K-matrix/Box Matrix Form of Lüscher Quan-

tization Condition

The current form of the LQC relates each individual energy to an infinite sum of
partial waves. The equation also does not account for irreps in the finite-volume
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energies instead of the angular momentum (recall Section 3.1.2). In order to solve
the LQC, the infinite sum of partial waves must be truncated in a sensible way, and
the basis of the energies needs to be subduced into irreps. To accomplish this, we
start by rewriting Equation 5.6 in a more convenient form.

The elastic scattering matrix M is unitary and dimensionless. Because it is easier
to manipulate a real symmetric matrix than a unitary one, the commonly used K-
matrix can be introduced. Through some simple matrix algebra, one can use the
relations M = S− 1 and S = (1+ iK)(1− iK)−1, to replace M with K in the LQC

det
[
F−1(E,P ;L) + 2iK(P )(1− iK(P ))−1

]
= 0. (5.11)

Next, it is prudent to establish a basis and include symmetries in the matrices
F and K. We use the quantum numbers of the continuum to establish our basis
|JmJLSa⟩, where J is the total angular momentum of the two particles in the center-
of-momentum frame, mJ is the projection of the total angular momentum of the two
particles on the z-axis, L is the orbital angular momentum of the two particles in
the center-of-momentum frame, and S is the total spin of the two particles. Index a,
for convenience, will represent all other quantum numbers including strangeness and
the species indicators for the two constituent particles: each particle will have spin,
parity, isospin, isospin projection and occasionally G-parity. Note that L and S are
also used for lattice length and the S-matrix everywhere else, but in the remainder
of this section, these variables will indicate the quantum numbers for the system. In
this basis, F is defined as

⟨J ′mJ ′L′S ′a′|F (P)|JmJLSa⟩ = δa′aδS′S
1

2
{δJ ′JδmJ′mJ

δL′L

+⟨J ′mJ ′|L′mL′SmS⟩⟨LmLSmS|JmJ⟩W (Pa)
L′mL′ ; LmL

},
(5.12)

where ⟨j1m1j2m2|JM⟩ are the Clebsch-Gordan coefficients. The matrix element
W (Pa) includes a sum of Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta func-
tions Zlm [46, 47, 66, 67].

For further convenience, we rewrite F andK into the box matrix, B, with elements
defined as

⟨J ′mJ ′L′S ′a′|B(P) |JmJLSa⟩ = −iδa′aδS′S u
L′+L+1
a W

(Pa)
L′mL′ ; LmL

×⟨J ′mJ ′|L′mL′ , SmS⟩⟨LmL, SmS|JmJ⟩
(5.13)

and K̃, with elements defined as

K−1
L′S′a′; LSa(Ecm) = u

−L′− 1
2

a′ K̃−1
L′S′a′; LSa(Ecm) u

−L− 1
2

a . (5.14)

The box matrix is Hermitian, and K̃ is real and symmetric and should behave
smoothly in E. In this form, the LQC can be written as

det
(
1−B(P )K̃

)
= det

(
1− K̃B(P )

)
= 0. (5.15)
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There are some other physics consequences that have not yet been explicitly out-
lined: The LQC formulation in this section applies to both indistinguishable and
distinguishable particles, although in the case of identical particles of isospin I1, the
value L + S + I − 2I1 must be even, where I is the total isospin and L and S are
quantum numbers of the basis. Also, rotational invariance implies that K̃ must have
the form

⟨J ′mJ ′L′S ′a′| K̃ |JmJLSa⟩ = δJ ′JδmJ′mJ
K(J)
L′S′a′; LSa(Ecm). (5.16)

Because K̃ is analytic in Ecm, we can now set some parameterizations for K. The
simplest being a sum of polynomials

K(J)−1
αβ (Ecm) =

Nαβ∑

k=0

c
(Jk)
αβ Ek

cm, (5.17)

where α and β are composite indices that each contain the quantum numbers orbital
momentum L, total spin S, and channel a, and the c

(Jk)
αβ form a real symmetric matrix

for each k. Another common setup is to express the K matrix as a sum of poles with
background

K(J)
αβ (Ecm) =

∑

p

g
(Jp)
α g

(Jp)
β

E2
cm −m2

Jp

+
∑

k

d
(Jk)
αβ Ek

cm, (5.18)

where the couplings g
(Jp)
α are real and the background coefficients d

(Jk)
αβ form a real

symmetric matrix for each k. These parametrizations can then be truncated later as
needed.

A common parameterization used in our analyses, is the effective range expan-
sion (ERE). The diagonal elements of the K-matrix are KL = tan(δL) where δL are
the scattering phase shifts of the L-th partial wave. If one assumes a short-ranged
potential in a single channel with spinless particles, the ERE is derived as

q
−L− 1

2
cm K−1

αβ = q
−L− 1

2
cm cot δL(qcm) =

∑

n=0

c2nq
2n
cm = − 1

aL
+
rL
2
q2cm +O(q4cm), (5.19)

where qcm =
√
q2cm, the constants aL are the scattering lengths, and rL are the effective

ranges.

5.6 Block Diagonalization of LQC

Even in its new form, the LQC in Equation 5.15 still describes an infinite matrix
with continuum quantum numbers. If, instead, we transform the basis into a basis
in which both B and K̃ are block diagonal and each block is truncated in the orbital
angular momentum, then each block can be separately solved.
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In order to block diagonalize, let us start with a symmetry transformation G which
is defined as being a spatial rotation R or a spatial inversion Is. The total momentum
P changes to GP and if we define a unitary matrix Q(G) as

〈
J ′mJ ′L′S ′a′|Q(G)|JmJLSa

〉
=

{
δJ ′JδL′LδS′Sδa′aD

(J)
mJ′mJ (R), (G = R),

δJ ′JδmJ′mJ
δL′LδS′Sδa′a(−1)L, (G = Is),

(5.20)

where D
(J)
m′m(R) are the Wigner rotation matrices, one can show that

B(GP ) = Q(G) B(P ) Q(G)†. (5.21)

Because Q(G) is unitary, B(P ) is ensured to commute with Q(G) for all G in little group
P , and thus, we can simultaneously diagonalize B(P ) and Q(G). By rotating into a
basis constructed from the eigenvectors of Q(G), B(P ) is consequently block diagonal
because different eigenvectors of Q(G) must vanish within B(P ).

A direct consequence of applying the symmetry transformations of G to the basis
state |JmJLSa⟩ is a projection into irreps. The symmetry transformations only mix
indices of mJ and so the new basis-state indices will replace mJ ,

|ΛλnJLSa⟩ =
∑

mJ

cJη; ΛλnmJ
|JmJLSa⟩ , (5.22)

where η = (−1)L and n identifies each occurrence of Λ in |JmJLSa⟩. The coefficients
depend on irrep Λ, irrep row λ, J and η, and are independent of spin S and a. The
method of calculating the transformation coefficients is outlined in [39], but I will
note that B is diagonal in Λ, λ, spin S, and a:

⟨Λ′λ′n′J ′L′S ′a′|B(P ) |ΛλnJLSa⟩ = δΛ′Λδλ′λδS′Sδa′a B
(PΛBSa)
J ′L′n′; JLn(E). (5.23)

Of course, we then want to represent K̃ in the same basis. Due to orthonormality
in the states between the bases mJ and Λ, K̃ is diagonal in Λ, λ, n, and J . To identify
the various blocks of B and K̃, we can use a common diagonal index. In this case
B and K̃ share Λ and λ, and as I described earlier, the correlators of different irrep
rows can be summed over, so our choice for labeling each block is to use Λ.

5.7 Minimization Methods

Finding the determinant of the LQC is not trivial. The techniques explored in our
results are the determinant residual method and the spectrum method. Both utilize
correlated-χ2 minimization described in Section 4.3.
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5.7.1 Determinant Residual Method

The determinant residual method uses the LQC itself to form residuals of a χ2 function
that is then minimized.

Using the LQC directly is not ideal because the determinant of large matrices can
produce very large numbers. Using the principle that when one eigenvalue is zero,
the determinant is zero, we can write a new function that is zero when the eigenvalue
is zero, but is also limited to the range [−1, 1]

Ω(µ,A) ≡ det(A)

det[(µ2 + AA†)1/2]
. (5.24)

Equation 5.24 renormalizes all eigenvalues such that the function is bounded. The
scalar µ can be used to optimize minimization.

To minimize the LQC, we merely plug in the contents of the LQC

rk = Ω
(
µ, 1−B(P )(E

(obs)
cm,k ) K̃(E

(obs)
cm,k )

)
, (k = 1, . . . , NE), (5.25)

where NE is the number of energies in the given Λ and rk are the residuals to be
minimized. (Other variations of the LQC will also work as an input to Ω.) There is no
advantage in introducing the energies, particle masses, and anisotropy as parameters,
so they are left as lattice inputs. The only fit parameters needed are the parameters
of the K̃ or K̃−1 matrix elements which will generally be referenced as κj. The finite-
volume spectrum can then be computed using the κj parameters and the LQC and
compared to the original inputs.

This method has some advantages and disadvantages. One, the covariance matrix
will need to be computed at each step of the minimization for the changing κj, but
because the box matrix (dependent on finite-spectrum energies, particle masses, and
anisotropy) will remain unchanged, the complicated RGL zeta functions are only
computed at the initialization. Also, treating B as an observable can give physical
insights into lattice QCD qualitative physics.

5.7.2 Spectrum Method

This method entails having the energies of the two-interacting particles in the center
of mass Ecm,k, the masses of the particles m, the spatial length of the lattice L,
and the anisotropy ξ = as/at as both input to the model and as observables. The
observations are either properties of the lattice or are measured from the correlators.
The parameters are the same quantities but computed from the LQC.

The observations measured or set on the lattice are

Observations Ri: {E(obs)
cm,k , m

(obs)
j , L(obs), ξ(obs) }, (5.26)

and the model parameters are,

Model fit parameters αk: { κi, m(model)
j , L(model), ξ(model) }, (5.27)
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for i = 1, . . . , NK and j = 1, . . . , Np, where NK is the total number of parameters in

the K̃-matrix elements and Np indicates the number of particle species. With each
iteration, the model parameters are plugged into the LQC, then the energy Ecm is
scanned until the determinant of the LQC is zero. These zero roots of the determinant
must then be matched to the observed E

(obs)
cm,k . The roots are then defined as E

(model)
cm,k .

The residuals for the minimization are

rk =





E
(obs)
cm,k − E

(model)
cm,k , (k = 1, . . . , NE),

m
(obs)
k′ −m

(model)
k′ , (k = k′ +NE, k

′ = 1, . . . , Np),
L(obs) − L(model), (k = NE +Np + 1),
ξ(obs) − ξ(model), (k = NE +Np + 2).

(5.28)

In this case, both the RGL zeta functions and the covariance matrix are calculated
throughout minimization, though to save computational cost, often an uncorrelated-
χ2 minimization is used instead.
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Chapter 6

Computational Details

Both the ∆(1232) and Λ(1405) were computed on a single lattice ensemble, the D200.
Details are provided below. Due to the fine-tuning of the analysis process, there are
some changes between the ∆(1232) and Λ(1405) analyses. The way I determined the
effect of autocorrelation on our results and the correlation functions used for the pion
and kaon were both updated in the later Λ(1405) analysis.

6.1 D200 Ensemble Computational Details

The D200 ensemble, generated by the Coordinated Lattice Simulations (CLS) con-
sortium, utilizes the tree-level improved Lüscher-Weisz gauge action [24] and a non-
perturbatively O(a)-improved Wilson fermion action [25]. This ensemble includes
dynamical mass-degenerate u- and d-quarks, which are heavier than their physical
counterparts, and an s-quark that is lighter than physical. This results in a pion
mass mπ ≈ 200 MeV and a kaon mass mK ≈ 487 MeV, slightly different from their
physical values of mphys

π ≈ 140 MeV and mphys
K ≈ 495 MeV [68].

(L/a)3 × T/a 643 × 128 afπ 0.04226(13)
Nmeas 2000 afK 0.04910(11)
amη 0.1768(22) mπL 4.181(16)
a[fm] 0.0633(4)(6)

Table 6.1: A summary of ensemble details and various decay constants (with normalization
fphys
π ≈ 130 MeV) for the CLS D200 gauge ensemble used in this work. The η mass is taken from
Reference [69], and the decay constants of the pion and the kaon are obtained from Reference [70].
All other masses are determined in Figure 6.3.

This table also includes the η mass, as well as the pion and kaon decay constants.
The hadrons used in this thesis are all stable under QCD and in the isospin limit
with mu = md. Due to the newly realized availability of some long-time single-
hadron correlators that had been computed, the Λ(1405) channel features a different
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calculation of the single-hadron correlators.

To reduce the effect of autocorrelation on observables, open temporal boundary
conditions are used [71]. All interpolating fields must be sufficiently distant from the
boundaries to mitigate spurious contributions to the tail-end behavior of temporal
correlation functions. An analysis of the single-pion at rest and ρ-meson correlators
in Reference [72] indicates that a minimum distance of mπtbnd ≳ 2 is necessary to
keep temporal boundary effects below the statistical errors in energy determinations.
In both ∆(1232) and Λ(1405) analyses, the correlator time ranges are such that
mπtbnd ≳ 2.3.

The generation of the D200 ensemble, described in Reference [68], faces challenges
due to low-lying eigenvalues of the Dirac matrix from either the light quark doublet
or the strange quark, which can cause instabilities in the Hybrid Monte Carlo (HMC)
or Rational Hybrid Monte Carlo (RHMC) algorithm [27]. This issue, addressed in
Reference [73], is resolved by adding a “twisted mass” term to the action, the effect
of which is removed through light- and strange-quark re-weighting [74]. Re-weighting
factors, computed in Reference [75], are included in the analysis to convert the sim-
ulated action to the desired one. The lattice spacing is determined in Reference [76]
and updated in Reference [77].

6.2 Rebin Analysis

For the D200 lattice, correlation function measurements are separated by four molec-
ular dynamics units (MDUs). In the earlier study of the ∆(1232) resonance, I checked
for signs of autocorrelation in the measurement of the variance of the correlators them-
selves, particularly, the most sensitive correlators, the pion and nucleon. To determine
the effect of autocorrelations, the original measurements are rebinned by every Nbin

samples. The dependence of the relative errors on Nbin for the single-nucleon and
single-pion correlators is shown in Figure 6.1. Although evidence of autocorrelation
was still found for t/a ≲ 8− 10 between Nbin = 20 and 40, these early timeslices are
not used in the spectrum fits, suggesting that Nbin = 20 was sufficient to account for
any autocorrelations in my energy determinations for the ∆(1232) study.

However, in the Λ(1405) study, rather than using the variance of the correlators,
I instead studied the variance on the results of the correlator fits. This analysis
was shown as an example in Figure 2.3 of Section 2.3.4. There, I determined that
Nbin = 10 was sufficient to account for autocorrelation effects in our results for the
Λ(1405) study.

Whenever applying the rebinning scheme, it was found that a negligible difference
was observed on the mean and variance of the scattering amplitude calculations, but
the χ2 of the fits noticeably improved.
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Figure 6.1: Relative error of the nucleon (left) and pion (right) correlators at rest, denoted RNbin
(t),

for several bin sizes Nbin. All points are normalized by the Nbin = 5 value with errors estimated
using the bootstrap resampling method with NB = 800 resamples. Nbin = 20 was chosen for the
∆(1232) analysis. Though there is still evidence of autocorrelation in the range t/a ≲ 8 − 10, this
range is not used in any subsequent fits.

6.3 Single Hadrons

The single hadrons for the pion and kaons were different between the ∆(1232) and
Λ(1405) analyses. For the ∆(1232), the correlators were calculated up to t/a-range
of [2,25] and 4 sources were averaged over (sources referring to part of the quark
line as described in Section 3.3) The single hadrons used for the ∆(1232) are shown
in Figure 6.2. The fit choices were made according to the strategy described in
Section 4.3.3, and the tmin plots used to aid this decision-making process are displayed
along with the fits.

When beginning the Λ(1405) analysis, I learned that longer time correlators for
the kaon and pion had been computed (t/a=[2,40]) but only using 2 sources [36]. For
forming the ratio correlators, the higher-precision short-time correlators were used,
but to determine the masses, the longer time correlators provided us with valuable
tail-end behavior. This led to slightly different determinations of the pion mass,
and negligibly different fits for the other single-hadron masses. The fit differences
are outlined in Table 6.2. Different fit preferences for the two analyses led to a
nucleon with larger variance for the Λ(1405) analysis. The single hadrons and the fit
determinations used in the Λ(1405) analysis are shown in Figure 6.3.

analysis t-range amπ amK amN amΣ amΛ

∆(1232) [2a,25a] 0.06617(33) 0.15644(16) 0.3148(23)
Λ(1405) [2a,40a] 0.06533(25) 0.15602(16) 0.3143(37) 0.3830(19) 0.3634(14)

Table 6.2: Energy determinations for the resting single-hadron correlators for the two different
sets of correlators used for the ∆(1232) and Λ(1405) analyses.
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Figure 6.2: Fits to determine amπ and amN for the ∆(1232) analysis. Bottom row. Variation of
the fit range [tmin, tmax] with tmax = 25a for correlated-χ2 fits. Both single- and two-exponential fits
are shown and the horizontal band indicates the chosen fit and corresponding error. Top row. The
effective masses of chosen two-exponential fits. Left column. Fit results associated with the pion.
Right column. Fit results associated with the nucleon.
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Figure 6.3: Determination of single-hadron masses for the Λ(1405) analysis. Each row contains fit
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Chapter 7

∆(1232) Resonance

High-precision calculations of the ∆(1232) resonance are of great interest for future
neutrino-scattering physics and pose valuable constraints on effective field theories.
Nucleon-pion interactions contribute largely to the long-range nuclear force and the
binding of protons and neutrons in atomic nuclei. Due to the structure of future
neutrino experiments, which will most likely rely on the scattering of neutrinos off
of atoms with large nuclei, the nature of Nπ scattering must be fully fleshed out for
it will inevitably occur in these targets. The expected interactions include energies
where the ∆(1232) can occur. Our study of this resonance, previously published in
Reference [78], is presented in this chapter.

Although our focus was on the ∆(1232) resonance in the I = 3/2 Nπ scattering
channel, we also studied the I = 1/2 Nπ scattering channel alongside it. To begin this
process, operator bases must be decided to compute the correlation matrices. The
operator bases used for this analysis included multihadron operators with constituents
resembling π and N , and also baryon-type single-hadron operators resembling the
channel quantum numbers were included. For the I = 3/2 Nπ scattering channel,
the single hadron resembled a ∆ particle, and for the I = 1/2 Nπ scattering channel,
an N -type single hadron was used. All operators predicted to provide levels below
the three-particle threshold plus a few more were included. A full detailed list of the
operators is available in Appendix A. A deeper analysis of the finite-volume spectrum
dependencies on the operators will be discussed in the next chapter.

7.1 Finite-Volume Spectrum

Ratio fits were chosen for all interacting levels. In my findings, they were stable in
tmin and consistent with single- and double-exponential fits directly to the GEVP
eigenvalues. They also had the benefit of generally providing more precise fit results.
These tmin-plots are available in Figures B.1-B.6 in Appendix B.1.

In a similar vein to the stability analysis for the energy fits, I verified the choice
of pivot parameters in the GEVP by analyzing and comparing to similar parameters.
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Though the rule of thumb described in Section 4.2 tends to give accurate results, I
verified this choice by varying the GEVP metric and diagonalization times (t0, td)
defined in Equation 4.9. The model and t-range for the fits for each energy level
are kept the same. Furthermore, I also varied the dimension of the input correlation
matrix Nop. Taking into account both GEVP stability and statistical precision, the
parameters (t0, td) = (8a, 16a) are found to work well for both isospin channels. As
shown in Figure 8.1, the spectrum is rather insensitive to variations in (t0, td) and
Nop.
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(a) the I = 1/2 spectrum.
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Figure 7.1: Stability of the finite volume spectra calculated using the single pivot method with
varying values for (Nop, t0, td). Each irrep is shown in a column in the same manner as Figure 7.2
with n denoting the maximum Nop. Levels used in scattering-amplitude fits are indicated by solid
symbols.

The spectra resulting from this analysis are shown in Figure 7.2b.
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Figure 7.2: The low-lying I = 1/2 and I = 3/2 nucleon-pion spectra in the center-of-momentum
frame on the D200 ensemble described in Table 6.1. Each column corresponds to a particular irrep
Λ of the little group of total momentum P 2 = (2π/L)2d2, denoted Λ(d2). Dashed lines indicate
the thresholds of the elastic region. Solid lines with grey bands represent non-interacting Nπ levels
and their associated statistical errors. Levels used in scattering-amplitude fits are indicated by solid
symbols. For I = 3/2, all well-constrained levels with overlap below the Nππ threshold are included.
For the I = 1/2 channel, due to limited information in the elastic region, we could only use the
ground state in each irrep to determine the I = 1/2 amplitude near the Nπ threshold.

7.2 Scattering Amplitudes

As explained in Section 5.6, the scattering fits can be truncated in ℓ for practical
reasons. Based on the energy range and the number of available energy levels, we
only consider energy levels associated with ℓ < 3. The occurrence pattern of lowest-
lying partial waves in the finite-volume irreps is given in Table 7.1.

Computing scattering results for nucleon-pion scattering presents additional dif-
ficulties compared to other scattering processes. First, due to the nonzero nucleon
spin, two partial waves contribute for each non-zero ℓ, one with J = ℓ+ 1/2 and the
other with J = ℓ− 1/2. Secondly, the box matrix is not diagonal in ℓ, therefore there
are mixings of different partial waves in the quantization condition. For ℓmax = 2,
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d Λ dim. contributing (2J, ℓ)nocc for ℓmax = 2
(0, 0, 0) G1u 2 (1, 0)

G1g 2 (1, 1)
Hg 4 (3, 1), (5, 2)
Hu 4 (3, 2), 5, 2)
G2g 2 (5, 2)

(0, 0, n) G1 2 (1, 0), (1, 1), (3, 1), (3, 2), (5, 2)
G2 2 (3, 1), (3, 2), (5, 2)2

(0, n, n) G 2 (1, 0), (1, 1), (3, 1)2, (3, 2)2, (5, 2)3

(n, n, n) G 2 (1, 0), (1, 1), (3, 1), (3, 2), (5, 2)2

F1 1 (3, 1), (3, 2), (5, 2)
F2 1 (3, 1), (3, 2), (5, 2)

Table 7.1: A list of the lowest contributing partial waves for each irrep of the finite-volume little
group Λ in the momentum class d used in this work. All partial waves with ℓ ≤ ℓmax for ℓmax = 2
are shown and each partial wave is denoted by (2J, ℓ). The superscript nocc denotes the number
of multiple occurrences (subductions) of the partial wave in the irrep. The pattern of partial-wave
mixing is more complicated for irreps with non-zero total momentum as seen in this table.

energies Ecm in irreps with d2 = 0 determine the quantity q2ℓ+1
cm cot δJℓ(Ecm) for s- and

p-waves, while these partial waves cannot be isolated for levels in irreps with non-zero
total momentum. This complication requires global fits of all energies to determine
the partial waves.

Our aim in this analysis is to describe the JP = 1/2− partial wave for both isospins
and the 3/2+ wave with I = 3/2. Conveniently, energies from irreps with zero total
momentum directly provide points for these partial waves up to corrections from
ℓ ≥ 3 contributions as seen in Table 7.1. However, mixing among various partial
waves generally occurs for energies in irreps with non-zero total momentum. The
zero-momentum points are therefore a useful guide when plotted together with the
partial-wave fits.

Each partial wave is parametrized using the effective range expansion (ERE). For
the I = 3/2, JP = 3/2+ wave, the next-to-leading order is included

q3cm
m3
π

cot δ3/2+ =
6π

√
s

m3
πg

2
∆,BW

(m2
∆ − s), (7.1)

where
√
s = Ecm =

√
m2
π + q2cm +

√
m2
N + q2cm, and the standard effective range fit

parameters are reorganized to conform to the conventional Breit-Wigner parameters
of the ∆(1232) resonance, denoted g2∆,BW and m∆. For all other waves, the leading-
order effective range expansion is sufficient

q2ℓ+1
cm

m2ℓ+1
π

cot δIJP =

√
s

mπAIJP

, (7.2)
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where the overall
√
s factors are adopted from standard continuum analysis [79], and

the single fit parameter AIJP is related to the scattering length

m2ℓ+1
π aIJP =

mπ

mπ +mN

AIJP . (7.3)

For the I = 3/2 fits, the JP = 1/2+, 3/2−, and 5/2− partial waves are added to
the spectrum method fits along with lowest levels in the G1g(0) and Hu(0) irreps. The
I = 3/2 spectrum in the G2g(0) irrep and irreps in the I = 1/2 channel that do not
contain the s-wave were not computed. This choice was made to reduce computational
cost, although these irreps may be beneficial to further constrain higher partial waves
in future work. The determinant residual method was found to be not as capable
of constraining higher partial waves and was only used in fits that included just the
JP = 1/2−, 3/2+ waves. Nonetheless, the consistency between these different fitting
methods and those including higher partial waves indicates that uncertainties on
amplitude parameters are dominated by statistics.

For the I = 1/2 channel, ℓmax = 0 is employed. Although the small number of
levels disallows a complicated model, the influence of higher waves can be explored
by examining the influence of the highest-lying non-zero momentum energy level on
the fit. Table 7.2 indicates that the effective range is insensitive to the omission of the
G1(4) irrep level. These I = 1/2 fits were also insensitive to an additional term in the
effective range expansion and showed no statistically significant difference between
the spectrum and determinant-residual methods.

Fit Npw A1/2− χ2 dofs
SP 1 0.82(12) 1.68 5− 1
DR 1 0.92(22) 1.72 5− 1
SP 1 0.82(13) 0.79 4− 1

Table 7.2: Results for fits to the I = 1/2 spectrum in Figure 7.2a. Npw is the number of partial
waves included in the fit. Due to the small number of levels, all fits include only the JP = 1/2−

partial wave. Nonetheless, the effect of the omitted p-waves is estimated by removing the G1(4)
level, which clearly has little influence on the result. ‘SP’ refers to the spectrum method, and ‘DR’
refers to the determinant-residual method.

Results from fits using both the spectrum and determinant-residual methods in-
cluding various partial waves are given in Tables 7.2 and 7.3 for I = 1/2 and I = 3/2,
respectively. In addition to the desired partial waves, fits using the spectrum method
are mildly sensitive to the JP = 1/2+, 3/2−, and 5/2− waves with I = 3/2. Al-
though not included in the table, the fit results of the effective range parameter for
both isospins are robust to the addition of the next term in the ERE. Results for the
partial waves from the fit are shown with the points from the total-zero momentum
irreps in Figures 7.3 and 7.4 for the I = 3/2 and I = 1/2 partial waves, respectively.
The phase shift δ3/2+ contains the characteristic profile of the ∆(1232) resonance and
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Fit Npw A1/2− g∆,BW M∆/Mπ A1/2+ A3/2− A5/2− χ2 dofs
SP 2 −1.56(4) 13.8(6) 6.281(16) — — — 44.38 23− 3
DR 2 −1.57(5) 14.4(5) 6.257(36) — — — 14.91 23− 3
SP 5 −1.53(4) 14.7(7) 6.290(18) −0.19(6) −0.46(12) 0.37(10) 30.17 25− 6

Table 7.3: Results for the fits in the I = 3/2 channel. Npw is the number of partial waves included
in the fit. Two fit forms are presented, the one denoted Npw = 2 includes only the desired partial
waves, namely JP = 1/2− and 3/2+, while the one with Npw = 5 includes all s-, p-, and d-waves,
adding two more energy levels from the G1g(0) and Hu(0) irreps to the fit. For the Npw = 2 fit,
results from the determinant-residual method (DR) are shown in addition to the spectrum method
(SP).

is shown in Figure 7.5. Because the s-wave scattering length was the only parameter
of interest from the I = 1/2 spectrum, only the lowest nucleon-pion levels from each
irrep are included in the fit, indicated by the solid symbols in Figure 7.2a. Investi-
gation into the JP = 1/2+ wave containing the N(1440) Roper resonance will likely
require three-particle operators and the three-particle LQC for this particular pion
mass.

−5.0

−4.5

−4.0

−3.5

−3.0

q c
m

m
π

co
t
δ 1
/2
−

G1u(0)

0.0 0.5 1.0 1.5 2.0 2.5

(qcm/mπ)2

(a) JP = 1/2−

−5.0

−2.5

0.0

2.5

q3 cm m
3 π

co
t
δ 3
/2

+

Hg(0)

G2(1)

F1(3)

F2(3)

G2(4)

0.0 0.5 1.0 1.5 2.0 2.5

(qcm/mπ)2

(b) JP = 3/2+

Figure 7.3: The results from fits to the I = 3/2 spectrum in Figure 7.2b using the spectrum method
including the JP = 1/2−, 3/2+ partial waves only, omitting the Hu(0) and G1g(0) irreps. The lower
panel of each partial wave shows the q2cm of the finite volume levels included in the fit, displaced
vertically for visibility. Hollow symbols indicate energy levels that only couple to one partial wave.
Solid symbols indicate energy levels that couple to more than one partial wave and therefore cannot
be displayed in the upper plot (though it was used to constrain the fit).

Because the residuals of the spectrum method directly compare the Ecm of the fi-
nite volume and the Ecm of the LQC, the two resulting determinations of the spectrum
can be compared. Such comparisons are shown in Figure 7.6 for both the I = 1/2
and I = 3/2 spectra. The ground states in the G1g(0) and Hu(0) irreps are not shown
on the plot and were only included in the Npw = 5 fit in Table 7.3.

The final results for the scattering lengths in this work are taken from the deter-
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Figure 7.5: Scattering phase shift of the I = 3/2, JP = 3/2+ partial wave containing the ∆(1232)
resonance. The curve is obtained from a fit of the finite-volume energies shown in the lower panel
using the LQC and a Breit-Wigner form. Levels used in the fit are shown in the lower panel, similar
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minant residual method fit in Table 7.3 with Npw = 2 for I = 3/2 and the spectrum
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Figure 7.6: The center-of-mass momentum q2cm/m
2
π for the I = 1/2 and I = 3/2 spectra together

with model values from spectrum method fits with Npw = 2 partial waves for I = 3/2. For I = 1/2,
only the s-wave is included and the spectrum method fit to all five points is shown.

method fit for I = 1/2 including all five levels

mπa
3/2
0 = −0.2735(81) , mπa

1/2
0 = 0.142(22). (7.4)

In Figure 7.7, the results from this work for the Breit-Wigner parameters of the
∆(1232) resonance in the I = 3/2, JP = 3/2+ partial wave are compared to the
published numbers in References [5] and [80] where, as is customary, the definition
of the g∆Nπ coupling from leading-order effective field theory is used, as defined in
Equation 39 of Reference [80]. The quark mass trajectory in Figure 7.7 used in
these results and in Reference [5] fixes the sum of the quark masses, and differs from
that used in Reference [80], which fixes the strange quark mass to its physical value.
The scattering lengths determined in this analysis are compared to past lattice QCD
results in Figure 7.7.
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7.3 New Method for Detecting Missing Energies

Although the energy spectrum is independent of our choice of operators, our ability
to extract the spectrum is strongly dependent on the operators used. The GEVP
method must not only be linearly independent, but it must include enough operators
such that when acting on the vacuum there is at least one operator that produces a
state for each of the N lowest energies of the spectrum. Furthermore, the mappings
between the energy levels produced and the operators associated with them must also
be linearly independent. If any of these requirements are violated, then the resulting
spectrum determination is incorrect and there will be levels missing. These cases will
be outlined in the next section.

In order to robustly check for missing levels, it is recommended to add more
operators to the operator basis and expand the correlator matrix. The states produced
by the operator’s action on the vacuum are generally predictable using the non-
interacting levels as a reference. Though this method is the most robust method, it
can also be computationally expensive, and for reasons later mentioned, the needed
operators may not be straightforward or obvious.

Currently, the only method known to the author to determine if the spectrum is
incorrect after one has already computed the correlators is if the scattering-amplitude
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fits fail to capture well-determined physics. Because the volume dependence and
quark-mass dependence of lattice QCD results are not always known for a quantity,
and lattice QCD is continually searching beyond scattering channels where there is
no experimental data, abnormalities in the scattering-amplitude fits cannot be relied
upon for verification of the finite volume spectrum.

To ensure we obtain all of the levels in the energy range of interest, we generally
calculate all possible single-hadron and multi-hadron operators (meson and baryon
combinations) expected to be within the elastic scattering range plus a few more to
be safe. A recent analysis [86] showed that a tetraquark operator is a vital operator
in some two-meson scattering channels even where no tetraquark resonances were
expected. This tetraquark study gives us another reminder that there is much we
still have yet to understand about the nature of QCD.

In almost all meson-baryon scattering analyses, hadronic states with four or more
quarks are ignored, including the ones presented in this thesis, but due to the limitless
potential quark configurations for hadrons, there is a possibility that a complicated
hadron could contribute in any channel. A robust method to test this is to compute
the additional correlation matrices that include the hadron operator with the large
number of quarks, but the exotic operator is both cumbersome to calculate and
computationally expensive to compute compared to the simple mesons and baryons.
Therefore, I thought I would experiment with the ∆(1232) I = 3/2 channel to better
understand the effect of missing operators and find a way to detect it using the
incomplete correlation matrix and spectrum. The ∆(1232) channel serves as a good
test bed for such a method due to its relative simplicity (only one resonance and only
one scattering channel) and high statistics.

7.3.1 Spectrum Extraction with ∆ Operators Excluded

In this experiment, to understand the effects of missing operators, I studied the irreps
in which the ∆ operator contributed. For each of the bases, I used the same pivot
parameters for solving the GEVP on the correlator matrices, one with the complete
operator basis, and one truncated to only include the πN multi-hadron operators.
The fit forms and t-ranges were also set to be the same for each resulting level. Those
two spectrum determinations are compared in Figure 7.8. As one can see, when the
∆ operators are excluded from the operator basis of the correlation matrix, then
the resulting set of energy levels is missing levels in the elastic scattering range and
appears to be more weakly interacting.

To illustrate how the GEVP solution is missing levels, I compared a few of the
computed operator overlaps for G1(1) irrep for each set of operators in Figure 7.9.
Figures 7.9b and 7.9c show that the diagonal correlators containing the π(1)N(0)0
and ∆ operators have contributions from the second and third energy levels of the
spectrum. These two operators are the only ones with overlaps onto these two levels,
so when the ∆ is omitted, the π(1)N(0)0 operator is the only operator with infor-
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Figure 7.8: A comparison of the spectrum determinations where all operators are included in the
operator basis and when the ∆ operators are missing from the operator basis. The label ‘w/ ∆’
indicates that the ∆ operators were included. The labels ‘w/o ∆’ indicates that all the ∆ operators
were removed from the operator bases.
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Figure 7.9: Operator overlaps of operators where ∆ operator was included and excluded in the
basis. I = 3/2 π(1)N(0)0 operator overlap factors without (a) and with (b) the ∆ operator
included in the operator basis of the correlation matrix. (c) ∆ operator overlap factors. Magnitudes
are normalized based on the sum of the level of each operator and level-number ordering is based
on increasing final-energy fit values of the spectrum including the ∆ operator.

mation about these two levels. Solving the GEVP cannot discern this, and thus it
combines the information of these two levels, appearing as one.

In the provided example, the correlators associated with the π(1)N(0)0 operator
contain information about more than one level. Even if the ∆ operator is not included,
the information is still there. This may provide a means of detecting missing levels.

The example outlined in this section is not a universal rule. Many of the multi-
hadron operators only overlap with one level; therefore, if omitted from the basis, the
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information about that level would not appear anywhere in the correlation matrix.
But when it comes to resonance operators, generally they mix with many levels and
are not the sole operator that overlaps with any given level. This is also not a firm
rule of behavior. In these cases, the only way to discover if there is a new level in the
energy range of interest is to add the operator to the basis and test. Any test on the
GEVP results cannot guarantee that the spectrum is complete, but it may increase
confidence in the spectrum achieved.

The goal here is to try to generate a method that can alert us to the probability
of a missing energy level for the case shown in Figure 7.9.

7.3.2 Toy Correlators

First, to confidently test any method and control the mitigating factors such as Monte
Carlo fluctuations and higher-state contamination, based on the resulting operator
overlaps and the finite volume energies from the solution of the GEVP, I generated
toy correlators,

Ctoy,ij =
N∑

n

|Z(n)
i ||Z(n)

j |e−Ent, (7.5)

where |Z(n)
i | and En are the values determined using the GEVP solution determined

in Section 7.1. This does not recreate the original correlator matrices of the ∆(1232)
analysis, but it does serve as a test bed for new missing-operator detection methods.
A couple examples of the GEVP solution’s reconstructed correlators compared to the
original data can be seen in Figure 7.10.

Using these zero-noise, uncontaminated toy correlators, I can repeat the steps in
the last section and remove the ∆ operators from the basis and then compare the
resulting spectrum determination to the full-basis results. In this instance, I only
remove one ∆ operator from each basis to further control each test case. Though it is
trivial to obtain the spectrum from the full set of toy correlators, the toy correlators
with and without ∆ operator are compared to the real calculations with and without
a ∆ operator in Figure 7.11.

After reproducing the spectrum determinations with the toy correlators using the
full and truncated operator bases, we can repeat the reconstruction of the correlators
using the GEVP solution again. Naturally, this is, again, trivial for the full basis, as it
merely recreates the toy correlator. But for the case of the spectrum calculated from
a truncated basis, there is a notable difference between the truncated recreation and
the original toy correlator. Some examples are shown in Figures 7.12a-7.12c. This
change in general slope does not occur for every correlator as seen in Figure 7.12d,
but there is at least one correlator in every basis that sees the slope change.

This effect in the truncated basis results is promising, for it indicated that despite
not having any information about the operator, there still seems to be a real effect
of the missing operator on the resulting GEVP solutions. Whether or not this effect
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Figure 7.10: Example GEVP solution reconstructions of the diagonal correlators of the G2(1)
irrep. The line indicates the reconstructed correlator and the markers with error bars indicate the
original correlator data. (a) and (b) contain the diagonal single-hadron ∆0 correlator. (c) and (d)
contain the diagonal multi-hadron π(1)N(2)0 correlator.

is discernible when contamination and noise is present is the more interesting ques-
tion. It is simple enough to add either effect to the calculations, but I will limit my
investigations to the noise.

To test whether the noise will influence this slope feature, I compared the GEVP
solution reconstruction and then added noise to the correlator. The noise was gener-
ated using a normal distribution around zero with a spread of R min(C(t)) for each
correlator. The noisy correlator is then fitted with a simple linear regression to esti-
mate the slope of the noisy correlator. Using the GEVP solution reconstruction with
the full basis, the results can be seen in Figure 7.13. R = 0.01 suffices to simulate the
average Monte Carlo noise seen in the resulting correlators of the ∆(1232) analysis.
As shown in Figure 7.13, as the noise is increased, the estimation of the effective
energy slope increasingly diverges from the true slope. Any slope deviation due to a
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Figure 7.11: A comparison of the spectrum determinations where all operators are included in
the operator basis and when one ∆ operator is missing from the operator basis using both real
correlator and the toy correlators. The label ‘w/ ∆’ indicates that the ∆ operators were included.
The labels ‘w/o ∆’ indicates that one ∆ operator was removed from each operator basis. The label
‘Data’ indicates that the spectrum was computed from the Monte Carlo correlators. The label ‘Toy’
indicates that the spectrum was computed from the GEVP solution reconstructed correlators.

missing level is likely to be misrepresented due to the noise.

7.3.3 Spectrum Check Fits

Another method I developed and tested was a fitting scheme. Based on the expecta-
tion when there is a missing operator, the GEVP solution of a basis with N operators
is estimating the contribution of two levels as

Ame
−Emt + Am+1e

−Em+1t ≈ Asume
−Esum (7.6)

where index 0 ≤ m < N − 1 and Asum and Esum are some composite of the original
parameters. Using this premise, I constructed the fit form in assumption that there
are two levels being approximated as one,

C(t) = Am
(
Re−(Em−δ)t + (1−R)e−(Em+δ)t

)
+

N−1∑

n=0,n ̸=m

Ane
−Ent, (7.7)

where 0 ≤ m < N − 1, δ and R are parameters, and Ai and Ei are the operator
overlaps and energies of the GEVP solution. R is bounded within the range [0, 1].

Though Equation 7.7 would not be able to accurately determine the true levels
and overlaps (for this is impossible without the needed operator in the basis), it may
be able to determine flexibility in the spectrum. To verify this test, I will fit the toy
correlators using the solution generated with and without a ∆ operator included. The
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Figure 7.12: A comparison of the GEVP reconstruction using the full basis of the original diagonal
correlators to a reconstruction of the toy correlator using the GEVP solution of the toy correlators
using the truncated operator bases. The label ‘Data’ in this plot indicates the toy correlators (error
bars are estimated by resampling). The label ‘GEVP Recon.’ indicates the reconstruction using
the truncated operator basis. Captions include the irrep and then the name of the original diagonal
correlator being reconstructed.

results of the fit to toy correlators from the G(3) irrep are shown in Figure 7.14, where
the fitted energy spectrum for each available operator is shown. The level m chosen
for each fit to a given diagonal correlator was chosen based on the level at which the
operator maximally overlaps. The diagonal correlator corresponding to the operator
with maximal overlap to the highest level N −1 was omitted, for the highest levels of
the spectrum are poorly determined anyway. The results for all operators of all bases
are available in Appendix D. In the G(3) irrep and all the others, the flexibility δ
was found to be large (larger than the estimated resampling error of the mth energy
level) in at least one of the fits to a given diagonal correlator of the truncated GEVP
solution. For the GEVP solution with the full basis, there was no instance of a large
δ.
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Figure 7.13: Effective energy of GEVP solution reconstruction of the π(0)N(3)0 operator with
irrep G(3). The exact reconstruction is represented by the blue line and plot label ‘GEVP Recon.’
The GEVP solution reconstruction with added noise is indicated by markers (with errors estimated
by resampling) and labeled as ‘Data’. A linear regression fit to the GEVP solution reconstruction
with added noise is labeled by ‘Fitted Lin. Regr.’

Though the test is successful for the ideal toy correlators, when noise is introduced,
the fit test begins to fail. In Figure 7.15, noise is introduced to the toy correlators
being fitted to with R = 0.001 and 0.01. Though at R = 0.001, δ is still small,
Figure 7.15b shows false positives within the full-basis toy spectrum at R = 0.01.

Despite these two tests working thoroughly in the ideal case, they begin to fail as
soon as noise is introduced. The probability of successful or unsuccessful detection
should be determined by the magnitude of noise present in the correlator, though this
determination is saved for a future study. It would be preferable to improve upon this
test or develop another such that it maintains accuracy with larger noise fluctuations.
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(a) Spectrum and fit results calculated from the full basis of toy correlators.
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(b) Spectrum and fit results calculated from the truncated basis of toy correlators. Label
‘GEVP*’ is the original spectrum for reference.

Figure 7.14: Fits to the toy correlators using spectrum determinations calculated from the full
and truncated correlation matrices. The fit form is Equation 7.7 and levels Em − δ and Em + δ are
indicated by the filled symbols for each spectrum. The operator names indicate the flavor structure
and the projected momentum on each constituent hadron. The index attached to each operator
corresponds to its Clebsch-Gordan index.
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(a) Spectrum and fit results calculated from the full basis of toy correlators with R = 0.001.
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Figure 7.15: Fits to the toy correlators using spectrum determinations calculated from the full
and truncated correlation matrices with added noise. The fit form is Equation 7.7 and levels Em− δ
and Em + δ are indicated by the filled symbols for each spectrum.
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Chapter 8

Λ(1405) Resonance

The Λ(1405) resonance is a difficult resonance to study because it appears in both
πΣ scattering and K̄N scattering. In order to understand the properties of Λ(1405),
we must incorporate both scattering channels into our analysis beginning with the
operator basis used for our correlator matrices. The interacting operators used in
our correlators included πΣ and K̄N multi-hadron operators as well as the Λ single
hadron operator. A detailed list is provided in Appendix A.

Including all of the possible single- and multi-hadron operators makes us confident
that we have enough operators that map onto all levels below the three-particle
threshold. The complete procedure for this analysis of the Λ(1405) resonance is
described in great detail in the previous chapters of this text, and specific details
about the ensemble and calculation can be found in Section 6.1. This work was
simultaneously published in References [18, 19].

8.1 Finite-Volume Spectrum

Figure 8.1 shows center-of-mass-frame energy determinations in four symmetry chan-
nels for various GEVP methods. I compare two different choices of td in the single
pivot method alongside the “Rolling Pivot M” which is the rolling pivot described in
Section 4.2.2. To confirm my results, a collaborator computed the spectrum using the
“Rolling Pivot B” method. The distinction between “Rolling Pivot M” and “Rolling
Pivot B” is that the former computes the GEVP on the mean of every time slice,
but then the pivot computed there is applied to the bootstrap samples. In the latter
case, the GEVP is solved on every time slice as well as on every sample. The simplest
single-pivot method produces nearly identical results to the other two more compli-
cated methods as long as the variables t0 and td are stable with variation. Based on
these requirements, the choice of pivot for final results was the single-pivot method
with t0 = 4a and td = 16a, though it is reassuring that the more intensive methods
confirm our findings.

To select a final result for each finite-volume spectrum level, I applied several
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Figure 8.1: Stability of the finite-volume spectra under variation of the correlation matrix rotation
method using the GEVP for four different irreps. The metric time is set to t0 = 4a. “Rolling Pivot
M” refers to the second approach that uses eigenvectors determined using the mean values of the
correlation matrix, and “Rolling Pivot B” is where the GEVP is solved on all of the bootstrap
samples as well as the mean of every time slice.

rules of thumb. First, the selected fit must have a p-value greater than 0.1 and/or
χ2/dof < 1.5. Agreement of the fit result with those from nearby tmin values was
also considered. When choosing a final fit, I also looked for consistency with the
other fit methods. From these considerations, a single-exp ratio fit was selected for
all levels, and I required that the final fit is within 2σ of the other ratio fit of the same
tmin. Consistency with the plateau regions of the two-exponential and geometric-exp
fits was also required. The final fit is chosen such that it is stable between nearby
tmin values and maintains consistency between methods. The same fitting strategy to
extract the energies from the interacting correlators was used for the single hadron
energies, only two-exponential fits were preferred.

An example energy determination of the lowest level of the G1u(0) irrep is shown
in Figure 8.2. After comparing the four fit forms described in the figure caption
and Section 4.3, the single-exponential ratio fit for tmin = 15a is selected as the
final estimate. The plots used for the determination of all other levels are given in
Appendix B.2.

The final spectra with total isospin I = 0 and strangeness S = −1 in the center-
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Figure 8.2: Results of different fit models and fit ranges for fits to the rotated correlator associated
with the lowest level of the G1u(0) irrep. Each point is the direct result of different fits using
temporal range tmin, shown on the horizontal axis, to tmax = 25a. The fit results compared include
two-exponential and geometric-series model fits to the direct rotated correlator, as well as single-
exponential fits to the ratio of the rotated correlator over the product of single-hadron correlators
where the denominator was either K̄(0)N(0) or π(0)Σ(0) the zeroes in parentheses referring to d2

of each hadron. The dark horizontal band and filled symbol indicate the final chosen fit selected
as described in the text. Error bars in fit-stability plots are determined by binning the samples on
either side of the mean to include the nearest 68% of the samples.

of-mass frame for all available symmetry channels are presented in Figure 8.3. The
solid lines and gray bands indicate non-interacting two-particle combinations.

8.2 Scattering Amplitudes

8.2.1 Coupled-Channel Fits

Using the finite-volume spectrum, my collaborators computed results for the scatter-
ing transition amplitudes using coupled-channel parametrizations. The pole locations
for each of the fits in Tables C.1 to C.6 are shown in Figure 8.4a. The transition am-
plitudes are shown in the upper panel, and the resulting poles from the analytic
continuations are shown in the middle panel of Figure 8.4a. Each line in the upper
panel is a different fit in Tables C.1 to C.6, with the corresponding pole positions rep-
resented as points in the middle panel. The transparency of each fit result is directly
related to the value of the AIC1, darker implying a lower AIC. The variations between
the results of the transition amplitudes and the S-matrix poles of the different fits
are no longer large.

For ℓmax = 0, the finite-volume spectrum shown in Figure 8.3 constrains the
coupled-channel scattering amplitude via Equation 5.15 and center-of-mass energies

1As described in Section 4.3.
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Figure 8.3: Finite-volume stationary-state energy spectrum (circles with error bars) in the center-
of-mass frame for total isospin I = 0, strangeness S = −1, for various irreps indicated along the
horizontal axis. The gray bands show the values and variances of energy sums for non-interacting
two-particle combinations. Various two- and three-particle thresholds are shown as dashed horizontal
lines. Energies are shown in units of the pion mass mπ.

near the πΣ and K̄N thresholds. All irreps in Table 1 of Reference [78] to which the
JP = 1/2− partial wave contributes are included.

Six different types of parametrizations of K̃ with ℓmax = 0 are tested and pre-
sented. In the expressions below, the subscripts i and j denote either of the two
scattering channels (channel 0 is πΣ and channel 1 is K̄N). The matrices A, B, Â,

B̂, Ã, B̃, Ĉ, A′ and B′ below are real and symmetric. The six forms of parametriza-
tions studied are defined as:

1. An effective range expansion (ERE) of the form

K̃ij =
mπ

Ecm

(
Aij +Bij∆πΣ(Ecm)

)
. (8.1)

2. A variation of the first parametrization without the factor of mπ/Ecm:

K̃ij = Âij + B̂ij∆πΣ(Ecm). (8.2)

3. An ERE of K̃−1 of the form

K̃−1
ij =

Ecm

mπ

(
Ãij + B̃ij∆πΣ(Ecm)

)
. (8.3)
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Figure 8.4: The isospin I = 0 and strangeness S = −1 coupled-channel πΣ − K̄N transition
amplitudes as a function of the center-of-mass energy difference to the πΣ threshold. The quantities
t and k̂ are defined in Equation 8.10, and the subscripts i, j indicate the flavor channels. The
middle panel in each figure displays the S-matrix poles corresponding to each fit result displayed
in the upper panels. The bottom panel in each figure shows the finite-volume spectrum used to
constrain the fits involving the transition amplitudes. (a) Scattering amplitudes and S-matrix
pole locations against center-of-mass energy difference to the πΣ threshold for various fits. The
means of various fit results detailed in Tables C.1 to C.6 are shown in the upper panel. The
transparency parameter in matplotlib [87] of each line and corresponding pair of points is set to
be alpha = exp(− (AIC−AICmin) /2). (b) Results are obtained using the best fit specified by
Equations 8.12 and 8.1, with uncertainties estimated by bootstrap resampling.

4. A Blatt-Biederharn [88] parametrization:

K̃ = C F C−1, (8.4)

where

C =

(
cos ϵ sin ϵ
− sin ϵ cos ϵ

)
, (8.5)

F =

(
f0(Ecm) 0

0 f1(Ecm)

)
, (8.6)

and

fi(Ecm) =
mπ

Ecm

ai + bi∆πΣ(Ecm)

1 + ci∆πΣ(Ecm)
. (8.7)

5. A parametrization based on the leading-order Weinberg-Tomozawa term [89]:

K̃ij =
Ĉij
mπ

(2Ecm −Mi −Mj) , (8.8)

where M0 = mΣ and M1 = mN .
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6. An expansion that is linear in the energy around the πΣ threshold:

K̃ij = A′
ij +

B′
ij

mπ

(Ecm −mπ −mΣ) . (8.9)

Using these forms for K̃, fits are carried out to determine the best-fit values of the
above parameters using the spectrum method [60]. The correlated-χ2 minimized in
these fits is defined similar to Equation 14 in Reference [78], except that the residuals
are formed in terms of differences between the center-of-mass energy interaction shifts
∆Ecm obtained from the quantization condition using the K̃-matrix parametrization
and the interaction shifts determined from the Monte Carlo computations.

Based on the six parametrizations defined above, even more variations were tested
by setting various parameters to zero. Tables C.1 to C.6 of Appendix C contain a
summary of the results of all fits using the aforementioned parametrizations. In these
tables, statistical uncertainties are estimated using the derivative method rather than
the resampling method. This method is sufficient for the purposes of illustrating
model dependence as well as reduced computational costs. Each fit in these tables
also shows the value of the AIC. In Tables C.1-C.6, it can be seen that several of the
best-fit results for the K̃-matrix parameters vary widely, though we see consistency in
the physically relevant quantities such as the scattering amplitudes and the S-matrix
pole positions.

We define a quantity t
(JP )
ij (Ecm) that is proportional to the amplitude of the scat-

tering transition and is related to K̃ by

t−1 = K̃−1 − ik̂, (8.10)

where mπk̂ = diag (kπΣ, kK̄N) and k indicates the center-of-mass momentum for
the πΣ particles or for the K̄N particles. The different parameterizations give us
information about the energy dependence of the amplitudes near the finite-volume
energies. Knowledge over this limited range enables the analytic continuation of
tij(Ecm) to complex Ecm and the identification of poles close to the real axis on
sheets adjacent to the physical one. Analytic continuation of the coupled-channel
πΣ− K̄N scattering amplitude involves four different Riemann sheets (Im(kπΣ) > 0,
Im(kπΣ) < 0, Im(kK̄N) > 0, Im(kK̄N) < 0 ), each labelled by the sign of the imaginary
parts of (kπΣ, kK̄N), with (+,+) denoting the physical sheet. Complex poles in the
scattering amplitudes correspond to vanishing eigenvalues in the right-hand side of
Equation 8.10 and are determined numerically. In the vicinity of a pole, the divergent
part of the amplitude is

t =
mπ

Ecm − Epole

(
c2πΣ cπΣ cK̄N

cπΣ cK̄N c2
K̄N

)
+ . . . , (8.11)

where the (complex) residues cπΣ, cK̄N represent the coupling of the resonance pole
to each channel.
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For the fit with the lowest AIC, the errors were more accurately determined using
a bootstrap procedure with 800 samples. The fit with the lowest AIC value is a
four-parameter fit of the form of Equation 8.1, and the best-fit parameter values are

A00 = 4.1(1.8), A11 = −10.5(1.1),

A01 = 10.3(1.5), B01 = −29(18),
(8.12)

with fixed B00 = B11 = 0 and χ2 = 10.52 for 11 degrees of freedom. This fit
is shown in Figure 8.4b. The finite-volume energies that are used in this fit are
shown in Figure 8.5. The green circles show the center-of-mass energies obtained
from the Monte Carlo lattice QCD computations, and the blue squares show the
energies obtained from the fit using the LQC and the K̃-matrix parametrization of
Equation 8.1 with best-fit values given in Equation 8.12.

G1(1) G(2) G(3)G1u(0)

6.8

7.0

7.2

7.4

7.6

7.8

E
cm
/m

π

input data

amplitude fit

πΣ

ππΛ

K̄N

Figure 8.5: finite-volume spectrum in the center-of-mass frame used as input data to constrain
parametrizations of the coupled-channel πΣ-K̄N scattering amplitude (green circles). Each column
corresponds to a particular irrep Λ(d2) of the little group of total momentum P 2 = (2π/L)2d2.
Only irreps where the ℓ = 0 partial wave contributes are included. Dashed lines indicate various
thresholds, as labeled. Model energies from the resultant fit are shown as blue squares.

For this preferred fit, two poles are found on the (−,+) sheet, which is the one
closest to physical scattering in the region between the two thresholds, with energies

E1/mπ = 6.856(45)st(06)md,

E2/mπ = 7.144(63)st(07)md − i 0.057(22)st(17)md,

E1 = 1392(9)st(2)md(16)a MeV

E2 = [1455(13)st(2)md(17)a

− i× 11.5(4.4)st(4)md(0.1)a] MeV,

(8.13)
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while their couplings are

c
(1)
πΣ = i 0.52(10)st(2)md,

c
(1)

K̄N
= i 0.28(8)st(6)md,

c
(2)
πΣ = 0.26(9)st(5)md − i 0.13(3)st(3)md,

c
(2)

K̄N
= 0.12(6)st(4)md − i 0.53(4)st(2)md.

(8.14)

The ratios of these couplings (with correlated uncertainties) show that the lower pole
is more strongly coupled to the πΣ channel, while the pole at a larger real energy is
more strongly coupled to the K̄N channel:

∣∣∣∣∣
c
(1)
πΣ

c
(1)

K̄N

∣∣∣∣∣ = 1.9(4)st(6)md,

∣∣∣∣∣
c
(2)
πΣ

c
(2)

K̄N

∣∣∣∣∣ = 0.53(9)st(10)md.

(8.15)

In the above results, the first uncertainty is statistical, the second is derived from
model variation, and when the pole positions are quoted in physical units, the third
comes from the scale-setting uncertainty in Table 6.1. The systematic uncertainty
due to the parametrization dependence is estimated by considering all models that
satisfy AIC − AICmin < 1, and taking half the difference in the maximal spread of
values as the model uncertainty.

As shown in Figure 8.4b, the K̃-matrix parametrizations described in this analyis
make no assumptions about the number or locations of the S-matrix poles, and can
fit zero, one, or two poles. The best-fit results indicate that E1 is a virtual bound
state (though a few fits produced a bound state), while the one at E2 is a resonance.
The first pole couples more strongly to πΣ, and the second, to K̄N .

The scattering amplitude related to the scattering phase shifts δi and the inelas-
ticity η through t by

t00 =
mπ(ηe

2iδπΣ − 1)

2ikπΣ
,

t11 =
mπ(ηe

2iδK̄N − 1)

2ikK̄N
,

t01 =
mπ

√
1− η2ei(δπΣ+δK̄N )

2
√
kπΣkK̄N

,

(8.16)

where the indices again indicate the flavor channel: 0 for πΣ and 1 for K̄N . The
results are shown in Figure 8.6. The sharp increase in the δπΣ at the πΣ threshold
is indicative of a virtual bound state, and the sharp decrease of δK̄N just below the
K̄N threshold is indicative of a bound state.
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Figure 8.6: Inelasticity η and phase shifts δπΣ and δK̄N against center-of-mass energy difference
to the πΣ threshold. These quantities are defined in Equation 8.16. Results are obtained using the
best fit specified by Equations 8.12 and 8.1, with uncertainties estimated by resampling.

8.2.2 Single-Channel Fits

Below the K̄N threshold, the standard single-channel Lüscher formalism can be used
to calculate the πΣ scattering amplitude up to effects that are exponentially sup-
pressed with respect to the distance to the K̄N threshold. To verify the existence of
the lower pole, the single-channel Lüscher analysis was performed in this regime.

The elastic-scattering phase shift can be parametrized by

kπΣ
mπ

cot δπΣ =
Ecm

mπ

(aπΣ + bπΣ∆πΣ), (8.17)

where aπΣ and bπΣ are fit parameters where the quantity

∆πΣ(Ecm) =
E2

cm − (mπ +mΣ)
2

(mπ +mΣ)2
, (8.18)

is related to the center-of-mass energy gap above πΣ threshold.
The s-wave fit with ℓmax = 0, is equivalent to the fit performed to the πN I = 1/2

spectrum. In this case, the only available irreps are G1u(0), G1(1), G(2) and G(3)
irreps, but there is sufficient effect in the spectra of nonzero momentum frames to
use the next-to-leading-order ERE. The fit performed using these levels is shown in
Figure 8.5 using the parametrization in Equation 8.17. The results are

aπΣ = 0.047(14), bπΣ = 0.65(50), χ2 = 5.04, (8.19)

with two degrees of freedom and is shown in Figure 8.7, along with a comparison to the
elastic phase shift from the multi-channel analysis in Equation 8.12. One observes
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that the phase-shift curve (blue band) intersects the virtual-bound-state condition
(black dashed line). That is,

kπΣ cot δπΣ − ikπΣ = 0, (8.20)

for purely imaginary and negative kπΣ. The position of the virtual bound state is
found at

E1/mπ = 6.822(37),

E1 = 1389(8)st(16)a MeV.
(8.21)

Thus, the results are consistent with those obtained in the multi-channel analysis.
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Figure 8.7: The πΣ elastic phase shift as a function of the center-of-mass momentum squared,
determined in a single-channel analysis and compared against the multi-channel result. The dashed
black line corresponds to the virtual bound state condition in Equation 8.20. The blue dashed line
and corresponding band show the fit to an ERE with statistical errors. The star highlights the
position of the virtual-bound-state in the single-channel analysis. The solid purple line and the
associated band show the result from the multi-channel fit with lowest AIC value. The scattering
phase shifts from each energy level are shown by the hollow blue symbols.
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Chapter 9

Conclusions

In summary, my collaborators and I were successful in calculating high-precision scat-
tering observables using lattice QCD to precisely determine resonance properties of
the ∆(1232) and the Λ(1405) resonances. These scattering observables demonstrate
that the stochastic LapH methods are successful in reducing computation time while
maintaining high-precision results. Throughout the analyses, our methodologies im-
proved and new ones are in development.

This work presents a computation of the lowest partial waves for the elastic
nucleon-pion scattering amplitude. The s-wave scattering lengths are determined
for isospins I = 1/2 and I = 3/2. The results reviewed in this thesis were the
first unquenched lattice QCD determinations of both nucleon-pion scattering lengths
for mπ < 250 MeV. The Breit-Wigner resonance parameters of the ∆(1232) in the
JP = 3/2+ partial wave with I = 3/2 are also determined. The main results of the
πN study are in Figures 7.3-7.5 and Tables 7.2-7.3 using Equations 7.1-7.4.

Using the finite-volume spectrum of the πN of I = 3/2 channel, two tests were
developed to detect potential missing levels from the spectrum due to insufficient op-
erators. Both of these tests were successful when using the toy correlators, but as soon
as noise was introduced, both tests led to false positives. Further analysis is required
to determine the probability of success based on the magnitude of fluctuations. If
modifications to these tests overcome the noise problem, the other mitigating factor,
contamination from higher-lying energies, should also be investigated and addressed.

Similar to the ∆(1232) analysis, hermitian correlation matrices using single baryon
and meson-baryon interpolating operators for a variety of different total momenta and
irreducible representations were used to determine the finite volume stationary-state
energies in the isospin I = 0, strangeness S = −1 sector with lattice QCD and
the stochastic LapH method. Various K-matrix parameterizations restricted to s-
waves were then used in the quantization condition to fit the finite-volume spectrum
obtained from lattice QCD. The resulting best-fit parameter values from theK-matrix
parametrization yielding the lowest AIC produced the πΣ-K̄N transition amplitudes
shown in Fig. 8.4b. The best scattering-amplitudes fit as well as all other successful
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fits revealed two poles, a virtual bound state below the πΣ threshold and a resonance
just below the higher K̄N threshold. A single-channel fit of πΣ scattering support the
coupled-channel findings of the lower pole. Higher-wave contributions were examined
and found to be negligible at the current statistical precision. The main results of
our Λ(1405) study are in Figures 8.4b and 8.6 using Equation 8.13.

The scattering results reviewed in this thesis are not computed at the physical
pion mass and are only computed on one lattice size. In order to produce usable data
for future experiments, these calculations will need to be repeated on multiple lattice
sizes and for multiple pion masses to determine the true continuum scattering results.
In the meantime, the results can still give us meaningful insight into QCD physics.

With recent developments of the three-particle Lüscher formalism, new resonances
and new physics can be explored above the three-particle threshold. For three-particle
scattering, there can easily be upward of a hundred levels in the finite-volume spec-
trum, requiring magnitudes more correlators to extract them. With the stochastic
LapH method, the computation time to calculate these is feasible, and the result-
ing analysis can hopefully gain further confidence and efficiency with the continued
development of the new analysis processes discussed in this work.

The processes used in this thesis will also be applied to three-point functions to
facilitate matrix-element evaluations of important currents, as well as various physical
transition amplitudes important for near-future experiments such as DUNE.
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Appendix A

∆(1232) and Λ(1405) Operator
Selection

All operators used in this study are single-site operators. The notation for the irreps
follows the conventions in Reference [32]. The subscripts g/u indicate even/odd parity,
and the superscripts +/− indicate even/odd G-parity. Whenever there is more than
one independent Clebsch-Gordan combination, the multiplicity is indicated by an
integer to the right of the operator identification. The Clebsch-Gordan coefficients
that fully define each operator are not given, but are available upon request.

The single- and two-hadron operators used for the ∆(1232) study are specified in
Tables A.1-A.2 in this section. The single- and two-hadron operators used for the
Λ(1405) study are specified in Tables A.3-A.4. We utilize multi-hadron operators
made up of individual constituent hadrons, each corresponding to a definite momen-
tum. Each single-hadron operator is specified by its flavor structure, such as Λ, Σ, N ,
π, K̄, then in square brackets, the irrep of its little group, with the squared spatial
momentum, in units of (2π/L)2, shown in parentheses. The subscript indicates an
identification number for the multiple variations of the single-site configuration. The
spin and orbital structure associated with each identification number can be obtained
from the author upon request.
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Λ(d2) Operators
G1u(0) π[A−

1u(0)]0 N [G1g(0)]0
π[A−

2 (1)]1 N [G1(1)]0
G1(1) N [G1(1)]0

π[A−
1u(0)]0 N [G1(1)]0

π[A−
2 (1)]1 N [G1g(0)]0

G(2) N [G(2)]0
π[A−

1u(0)]0 N [G(2)]0
π[A−

2 (1)]1 N [G1(1)]0 (2)
G(3) N [G(3)]0

π[A−
1u(0)]0 N [G(3)]0

π[A−
2 (1)]1 N [G(2)]0 (2)

G1(4) N [G1(4)]0
π[A−

1u(0)]0 N [G1(4)]0
π[A−

2 (1)]1 N [G1(1)]0

Table A.1: Single- and two-hadron operators used in each symmetry sector of the I = 1/2 channel
of the ∆(1232) analysis. Operator notation is described in the text.

Λ(d2) Operators
G1u(0) π[A−

1u(0)]0 N [G1g(0)]0
π[A−

2 (1)]1 N [G1(1)]0
Hg(0) ∆[Hg(0)]0

π[A−
2 (1)]1 N [G1(1)]0

π[A−
2 (2)]0 N [G(2)]0 (2)

G1(1) ∆[G1(1)]0
π[A−

1u(0)]0 N [G1(1)]0
π[A−

2 (1)]1 N [G1g(0)]0
π[A−

2 (1)]1 N [G(2)]0 (2)
π[A−

2 (2)]0 N [G1(1)]0 (2)
G2(1) ∆[G2(1)]0

π[A−
2 (1)]1 N [G(2)]0 (2)

π[A−
2 (2)]0 N [G1(1)]0 (2)

G(2) ∆[G(2)]0
∆[G(2)]1
π[A−

1u(0)]0 N [G(2)]0
π[A−

2 (1)]1 N [G1(1)]0 (2)
π[A−

2 (1)]1 N [G(3)]0 (2)
π[A−

2 (2)]0 N [G1g(0)]0

(a) d2 = 0, 1, 2

Λ(d2) Operators
F1(3) ∆[F1(3)]0

π[A−
2 (1)]1 N [G(2)]0

π[A−
2 (2)]0 N [G1(1)]0

F2(3) ∆[F2(3)]0
π[A−

2 (1)]1 N [G(2)]0
π[A−

2 (2)]0 N [G1(1)]0
G(3) N [G(3)]0

π[A−
1u(0)]0 N [G(3)]0

π[A−
2 (1)]1 N [G(2)]0 (2)

π[A−
2 (2)]0 N [G1(1)]0 (2)

π[A−
2 (3)]0 N [G1g(0)]0

G1(4) ∆[G1(4)]0
π[A−

1u(0)]0 N [G1(4)]0
π[A−

2 (1)]1 N [G1(1)]0
π[A−

2 (2)]0 N [G(2)]0 (2)
G2(4) ∆[G2(4)]0

π[A−
2 (2)]0 N [G(2)]0 (2)

(b) d2 = 3, 4

Table A.2: Single- and two-hadron operators used in each symmetry sector of the I = 3/2 channel
of the ∆(1232) analysis. Operator notation is described in the text.
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Λ(d2) Operators
Hu(0) π[A−

1u(0)]0 Σ[Hg(0)]0
π[A−

2 (1)]1 Σ[G1(1)]0
K̄[A2(1)]1 N [G1(1)]0

G1g(0) Λ[G1g(0)]0
Λ[G1g(0)]1
Λ[G1g(0)]3
K̄[A2(1)]1 N [G1(1)]0
π[A−

2 (1)]1 Σ[G1(1)]0
G1u(0) Λ[G1u(0)]0

Λ[G1u(0)]1
Λ[G1u(0)]2
Λ[G1u(0)]3
K̄[A1u(0)]0 N [G1g(0)]0
π[A−

1u(0)]0 Σ[G1g(0)]0
K̄[A2(1)]1 N [G1(1)]0
π[A−

2 (1)]1 Σ[G1(1)]0

(a) d2 = 0

Λ(d2) Operators
G1(1) Λ[G1(1)]0

Λ[G1(1)]1
Λ[G1(1)]2
Λ[G1(1)]4
Λ[G1(1)]6
K̄[A1u(0)]0 N [G1(1)]0
π[A−

1u(0)]0 Σ[G1(1)]0
K̄[A2(1)]1 N [G1g(0)]0
π[A−

2 (1)]1 Σ[G1g(0)]0
G2(1) Λ[G2(1)]0

Λ[G2(1)]1
π[A−

1u(0)]0 Σ[G2(1)]0
π[A−

2 (1)]1 Σ[G(2)]0 (2)
K̄[A2(1)]1 N [G(2)]0 (2)

(b) d2 = 1

Table A.3: Single- and two-hadron operators used in the Λ(1405) analysis in each symmetry sector
with total momentums d2 = 0 and d2 = 1. Operator notation is described in the text.
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Λ(d2) Operators
G(2) Λ[G(2)]0

Λ[G(2)]1
Λ[G(2)]2
Λ[G(2)]3
Λ[G(2)]5
Λ[G(2)]6
K̄[A1u(0)]0 N [G(2)]0
π[A−

1u(0)]0 Σ[G(2)]0
K̄[A2(1)]1 N [G1(1)]0 (2)
π[A−

2 (1)]1 Σ[G1(1)]0 (2)
K̄[A2(2)]0 N [G1g(0)]0
π[A−

1u(0)]0 Σ[G(2)]1
π[A−

1u(0)]0 Σ[G(2)]7

(a) d2 = 2

Λ(d2) Operators
F1(3) Λ[F1(3)]0

π[A−
2 (1)]1 Σ[G(2)]0

K̄[A2(1)]1 N [G(2)]0
π[A−

2 (2)]0 Σ[G1(1)]0
K̄[A2(2)]0 N [G1(1)]0
π[A−

1u(0)]0 Σ[F2(3)]0
F2(3) Λ[F2(3)]0

π[A−
2 (1)]1 Σ[G(2)]0

K̄[A2(1)]1 N [G(2)]0
π[A−

2 (2)]0 Σ[G1(1)]0
K̄[A2(2)]0 N [G1(1)]0
π[A−

1u(0)]0 Σ[F1(3)]0
G(3) Λ[G(3)]0

Λ[G(3)]1
Λ[G(3)]4
Λ[G(3)]5
K̄[A1u(0)]0 N [G(3)]0
π[A−

1u(0)]0 Σ[G(3)]0
K̄[A2(1)]1 N [G(2)]0 (2)
π[A−

2 (1)]1 Σ[G(2)]0 (2)
K̄[A2(2)]0 N [G1(1)]0 (2)
K̄[A2(2)]0 N [G1g(0)]0

(b) d2 = 3

Table A.4: Same as Table A.3 with d2 = 2 and d2 = 3.
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Appendix B

Fit-Stability Analysis for
Finite-Volume Spectrum

B.1 ∆(1232)

As discussed in Sec. 7, multiple fit ranges and fit forms are compared for every en-
ergy level to ensure systematic errors associated with excited-state contamination are
smaller than the statistical errors. Ultimately, single-exponential fits to the correlator
ratios are chosen because of their mild sensitivity to tmin and good statistical preci-
sion. The fit range is chosen to be consistent with the double-exponential tmin plateau,
defined as the range of tmin for which the fitted energy does not exhibit statistically
significant variation. Most levels are also consistent with the single-exponential fit
plateau, although as shown in Figure 6.2 for mN, these fits may not describe the
correlators that have significant excited-state contamination. Figure B.1 contains
tmin-plots for each of the I = 1/2 levels and the I = 3/2 levels in Figures B.2-B.6.

B.2 Λ(1405)

The energy determinations are shown in Figures B.7 in this section. The results of
four different fit methods are shown: two-exponential and geometric series fits to
the rotated correlator, and single-exponential fits to the ratio of the rotated diagonal
correlator over the product of single-hadron correlators for either K̄(d2

K̄
)N(d2

N) or
π(d2

π)Σ(d
2
Σ). The dark horizontal band and the filled symbol denote the final chosen

fit for each level selected as described in Section 8.1. Bootstrap samples for extracted
energies are available in Reference [90].
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Figure B.1: Stability of the I = 1/2 spectrum illustrated by varying the fit range and fit form.
The chosen fit for each level is indicated by the solid black line and the corresponding errors are
indicated by dotted lines. Each subplot contains the spectrum for a single irrep labeled in the same
manner as Figure 7.2. The chosen values are taken from ratio fits and compared to both single- and
double-exponential fits over a range of tmin with tmax = 25a.
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Figure B.2: Stability of fits to determine the I = 3/2 spectrum for total momentum having
d2 = 0. As in Figure B.1, a variety of fit ranges and fit forms is compared for each level. Each plot
contains all fits for a single level in a particular irrep. Indexing for the levels begins at zero for the
lowest and increases with increasing energy.
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Figure B.3: Same as Figure B.2 for I = 3/2 except that d2 = 1.
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Figure B.4: Same as Figure B.2 for I = 3/2 except that d2 = 2.
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Figure B.5: Same as Figure B.2 for I = 3/2 except that d2 = 3.
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Figure B.6: Same as Figure B.2 for I = 3/2 except that d2 = 4.
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Figure B.7: Fit results for the stationary-state energies in the Λ(1405) channel (I = 0). These
plots are similar to those shown in Figure 8.2. Orange diamonds and purple triangles indicate results
from fits using a two-exponential and a geometric-exp series, respectively. Green circles and blue
squares indicate results from single-exponential fits to ratios of the rotated diagonal correlator over
the product of N(d2

1) K(d2
2) and Σ(d2

1) π(d2
2) single-hadron correlators, respectively, as described

in Section 4.3.1. In each plot, the integers in square brackets in the legend show the values [d2
1,d

2
2].

The dark horizontal band and the filled symbol denote the final chosen fit selected as described in
Section 8.1.
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Appendix C

Λ(1405) Amplitude Fit Results

Best-fit results for the parameters in the various K̃-matrix parameterizations are
presented here. The results are obtained by fitting the spectrum obtained from the K̃-
matrix parametrizations and the quantization condition to the spectrum determined
in the lattice QCD computations. Tables C.1-C.6 contain results from fits using
ℓmax = 0.

Fit A00 A11 A01 B00 B11 B01 χ2/dof AIC
a 1.5(1.4) -8.78(72) 8.30(65) 15.68/(15-3) -8.32
b 4.1(1.2) -10.5(1.1) 10.3(1.3) -29(15) 10.52/(15-4) -11.48
c 2.3(1.3) -8.62(58) 7.60(80) -18(11) 12.29/(15-4) -9.71
d 15.1(5.3) -11.8(1.3) 7.6(1.3) -56(19) 11.48/(15-4) -10.52
e 9.6(6.2) -12.7(3.4) 11.1(2.8) -23(26) 18(31) -37(29) 9.70/(15-6) -8.30

Table C.1: Fit results for K̃ parametrization class 1 shown in Eq. (8.1). Errors are propagated
through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers
to Akaike Information Criterion.

Fit Â00 Â11 Â01 B̂00 B̂11 B̂01 χ2/dof AIC
a 0.16(19) -1.229(91) 1.140(88) 15.44/(15-3) -8.56
b 0.52(18) -1.45(15) 1.42(18) -3.9(2.0) 10.73/(15-4) -11.27

Table C.2: Fit results for K̃ parametrization class 2 shown in Eq. (8.2). Errors are propagated
through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers
to Akaike Information Criterion.
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Fit Ã00 Ã11 Ã01 B̃00 B̃11 B̃01 χ2/dof AIC
a 0.092(21) -0.036(15) 0.082(20) 0.28(15) 11.73/(15-4) -10.27
b 0.114(25) -0.041(24) 0.096(19) 0.19(16) 14.57/(15-4) -7.43
c 0.137(33) -0.019(14) 0.119(21) -0.142(85) 13.10/(15-4) -8.90

Table C.3: Fit results for K̃ parametrization class 3 shown in Eq. (8.3). Errors are propagated
through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers
to Akaike Information Criterion.

Fit a0 a1 b0 b1 c0 c1 ϵ χ2/dof AIC
a 5.7(1.2) -11.4(1.2) -27(15) 0.451(56) 13.27/(15-4) -8.73
b 13.7(4.1) -14.06(86) -37(17) 0.349(75) 10.63/(15-4) -11.37
c 5.8(1.2) -11.8(1.1) -1.62(95) 0.468(48) 13.54/(15-4) -8.46
d 12.2(3.4) -14.06(87) 5.8(3.2) 0.360(82) 11.13/(15-4) -10.87

Table C.4: Fit results for K̃ parametrization class 4 shown in Eq. (8.4). Errors are propagated
through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers
to Akaike Information Criterion.

Fit Ĉ00 Ĉ11 Ĉ01 χ2/dof AIC
a 0.005(58) -0.270(12) -0.295(22) 15.28/(15-3) -8.72

Table C.5: Fit results for K̃ parametrization class 5 shown in Eq. (8.8). Errors are propagated
through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers
to Akaike Information Criterion.

Fit A′
00 A′

11 A′
01 B′

00 B′
11 B01 χ2/dof AIC

a 2.11(77) -1.64(19) 1.08(17) -2.51(88) 11.88/(15-4) -10.12
b 0.27(18) -1.222(75) 1.05(11) -0.69(44) 12.63/(15-4) -9.37
c 0.51(18) -1.46(15) 1.43(18) -1.18(62) 10.76/(15-4) -11.24

Table C.6: Fit results for K̃ parametrization class 6 shown in Eq. (8.9). Errors are propagated
through the derivative method. Empty entries indicate parameters set to zero in a fit. AIC refers
to Akaike Information Criterion.
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Appendix D

∆(1232) Operator Analysis

As described in Section 7.3, it is essential to include all the operators that act on the
eigenstates with energies in the elastic scattering range (for two-to-two scattering).
If any of these operators are assumed to have no relation to such energies and are
omitted, then the resulting spectrum may be incorrect. A test to detect missing levels
using the method described in Section 7.3.3 is shown in Figures D.1-D.8. In each of
these tests, I am considering a positive detection in which one of the fits to a diagonal
correlator of the toy matrix produces a ∆ greater than the variance of energy Em.
More details on the operators can be found in Appendix A.
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(a) Spectrum and fit results calculated from the full basis of toy correlators.
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(b) Spectrum and fit results calculated from the truncated basis of toy correlators. Label
‘GEVP*’ is the original spectrum for reference.

Figure D.1: Fits to the toy correlators using spectrum determinations from the full and truncated
correlation matrices. The fit form is Equation 7.7 and levels Em − δ and Em + δ are indicated
by the filled symbols for each spectrum. The operator names indicate the flavor structure and the
projected momentum on each constituent hadron. The index attached to each operator corresponds
to its Clebsch-Gordan index.
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(a) Spectrum and fit results calculated from the full basis of toy correlators.
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(b) Spectrum and fit results calculated from the truncated basis of toy correlators.

Figure D.2: Fits to the toy correlators using spectrum determinations from the full and truncated
correlation matrices. Labels are the same as in Figure D.1.
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(a) Spectrum and fit results calculated from the full basis of toy correlators.
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(b) Spectrum and fit results calculated from the truncated basis of toy correlators. Label
‘GEVP*’ is the original spectrum for reference.

Figure D.3: Fits to the toy correlators using spectrum determinations from the full and truncated
correlation matrices. Labels are the same as in Figure D.1.
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(a) Spectrum and fit results calculated from the full basis of toy correlators.
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(b) Spectrum and fit results calculated from the truncated basis of toy correlators. Label
‘GEVP*’ is the original spectrum for reference.

Figure D.4: Fits to the toy correlators using spectrum determinations from the full and truncated
correlation matrices. Labels are the same as in Figure D.1.

115



F1(3)

0.44

0.45

0.46

0.47

0.48

0.49
a
tE

cm
GEVP

∆(3)0

π(1)N(2)0

(a) Spectrum and fit results calculated from the full basis of toy correlators.
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(b) Spectrum and fit results calculated from the truncated basis of toy correlators. Label
‘GEVP*’ is the original spectrum for reference.

Figure D.5: Fits to the toy correlators using spectrum determinations from the full and truncated
correlation matrices. Labels are the same as in Figure D.1.
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(a) Spectrum and fit results calculated from the full basis of toy correlators.
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(b) Spectrum and fit results calculated from the truncated basis of toy correlators. Label
‘GEVP*’ is the original spectrum for reference.

Figure D.6: Fits to the toy correlators using spectrum determinations from the full and truncated
correlation matrices. Labels are the same as in Figure D.1.
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(a) Spectrum and fit results calculated from the full basis of toy correlators.
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(b) Spectrum and fit results calculated from the truncated basis of toy correlators.

Figure D.7: Fits to the toy correlators using spectrum determinations from the full and truncated
correlation matrices. Labels are the same as in Figure D.1.
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Figure D.8: Fits to the toy correlators using spectrum determinations from the full and truncated
correlation matrices. Labels are the same as in Figure D.1.
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