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1 Introduction

After twenty years of its formulation, the AdS/CFT duality remains the most concrete
example of a theory of quantum gravity [1, 2]. The correspondence has elucidated different
features of quantum gravity and has helped us understand dynamics of strongly coupled
quantum field theories.

The AdS/CFT duality is a correspondence between quantum theory of gravity in Anti-
de Sitter spacetime and Conformal Field Theory (CFT) that lives in the boundary of such
spaces. The AdS/CFT dictionary implies that each field, say ¢;, in the gravitational theory
corresponds to a local operator O in the CFT. Similarly, the spin of the bulk field is the
same as the spin of the CF'T operator, and the mass of the bulk field determines the scaling
dimension of the CFT operator. The correspondence has been effective to study non-
equilibrium phenomena in strongly coupled systems including condensed matter systems.!

It is worth comparing the similarities and differences between Anti-de Sitter space
correlators and the well-known flat space (Minkowski) amplitudes. The amplitudes in the
Anti-de Sitter space are not defined in the usual fashion as in the case of flat space. Unlike
flat space, AdS space does not admit asymptotic states that are needed for the standard

'For a more recent introduction to AdS/CFT, see [3]. For a complementary review on Conformal Field
Theory see [4].



definition of S-matrix. However, AdS space does bear close resemblance to flat space S-
matrix: creation and annihilation operators in AdS space can be defined by changing the
boundary conditions in the conformal boundary. The resultant scattering amplitudes in
AdS space are then related to CFT correlation functions. Therefore, with the AdS/CFT
correspondence, correlation functions can be computed by perturbative calculations that
can be diagrammatically represented by Witten diagrams. The prescription for computing
these correlators is very straightforward. However, after about two decades of AdS/CFT,
despite the directness of the procedure, it remains a challenge to do concrete computations
of correlation functions in the boundary for correlators of four and higher points.?

In the last few years, there has been a renewed attention in computing AdS/CFT corre-
lators. Many have argued that Mellin space can remarkably simplify correlation functions
in conformal field theories that has weakly coupled bulk duals [10-17]. While Mellin spaces
are interesting, it is not easy to generalize the interesting results to higher spin fields. In
this paper, we will study correlators in momentum space as a complementary approach.
Even though many exciting directions has been explored in momentum space [18-27], mo-
mentum space higher point correlators have not been fully explored. By computing higher
point correlators, we hope to provide theoretical data that may shed light to the structures
of these correlators in general.

In a concurrent development, there has been great progress in our understanding of
scattering amplitudes of gauge theories and gravity. Despite the complications due to
the proliferation of Feynman diagrams, the scattering amplitudes of multi-gluon processes
for gauge theories and gravity exhibit remarkably simple expressions. For instance, many
amplitudes whose computation once seemed untenable show remarkable simplicity and
sometime can be expressed in one line [28, 29]. Several new formalisms, computation tools,
and insights have been developed in the last ten years to understand this simplicity; for
instance, appropriate choice of physical basis such as twistors, recursion relations, and
geometric interpretation of amplitudes in term of a volume of an object such as the ampli-
tudhedron has given fresh and deep insights about locality and unitarity [30-32]. A natural
question to ask is if one can replicate the success of scattering amplitudes in flat space of
gauge theories and gravity to the study of AdS/CFT correlators.? In this spirit, we will
focus our attention on gauge theory AdS amplitudes that are dual to the conserved current
correlators in the boundary.

Here is the brief outline of the paper. We begin with a quick review of the formalism
for momentum space correlators in section 2 where we will introduce bulk to bulk and
bulk to boundary propagators for scalar and vector fields as solutions to their respective
equations of motions. We will also review three point Witten diagrams, construct the
ingredients essential to compute higher order functions, and move on to section 3 where we
will compute all four and five point diagrams explicitly and discuss calculation of six point
diagrams with an explicit example. Finally, we summarize this work and discuss possible
future directions in section 4.

2Early efforts in tackling this problem when the correspondence was at its infancy can be seen here
in [5-9].
3For a comprehensive review, see [33].



2 Review: momentum space perturbation theory in AdS

The main emphasis of this section is to quickly review the perturbation theory in Anti-de
Sitter space. Our building blocks are Witten diagrams, where a typical Witten diagram is
a combination of three distinctive constituents:

1. external lines which connect the bulk point of the AdS to the boundary,
2. internal lines that propagate the fields,
3. vertices where interaction can take place.

One can find the bulk to bulk propagators (which we will denote as BtB ) by solving the
Green’s function. By taking one of the points to the boundary, we can obtain the external
lines, i.e. the bulk-to-boundary propagators (which we will denote as Btb ) where they
correspond to propagation of some field perturbation into the bulk. Lastly, one integrates
over the bulk interaction points, denoted as z below.

We will first discuss the propagators and list possible solutions as equations of motion
both for scalars and vectors in AdS. Then we will use them in the simplest Witten diagram:
a three point amplitude.

2.1 Equations of motion and propagators

For simplicity, let us restrict to the scalars. Working in Poincaré coordinates, one can
derive the position space two point functions, i.e. BtB for scalars in AdS, by solving

(O+ m2) G(x1,21,22,22) = J%éd(xl — x9)0(21 — 22), (2.1)

where our conventions are such that
1
ds?® = - (d22 + de) ., zeRY ze(0,00) (2.2)
z

for the mostly positive convention for the metric at the boundary. The advantage of
these coordinates is the manifest Poincaré invariance which makes it easy to transform the
position space coordinates x; to their momentum space counterparts k;.

The solution to eq. (2.1) is given in terms of hypergeometric functions [34]; and, one
can obtain a Btb from this BtB by taking one of the end points to the boundary; say, with
the limit z; — 0. Instead, we will focus on the corresponding momentum space expressions
and restrict ourselves to the massless case for simplicity.

The expressions in what follows are based on the results of [18, 21]. We first expand
the Greens function in Fourier modes

Gr(z,2') = /ddx G(x, 2,2, 2) e~k (z—2') (2.3)
for which eq. (2.1) now reads as

2110, 21799,G1(2, 7)) — 22K%Gr(z, 7)) = id(z — 2)241L . (2.4)



Separation Solution

spacelike, k2 > 0 ¢(2) = 292K 45 (k2)
timelike (normalizable), k2 < 0 o(z) = zd/zjd/g(k?Z)
timelike (non-normalizable), k? < 0 o(z) = zd/QYd/g(kz)

Table 1. Solution to the equations of motion for scalar fields

By solving this equation, one finds that

d’k R @) ()82 745 (p2) Jao(p2') ()

Q(:E,z,x’,z’):—i/wpdp 2+ 7 ie) ) (2.5)

The appearance of Bessel function can be most readily observed from the massless
Klein Gordon equation in AdS4y; which reads as

1 —d
0= (az <Zd+15z> -2t k2> Py,

in momentum space. The solution depends on the chosen behavior around z = 0 and the
sign of k* = n"k;k;. We list them in table 1 where we define the positive definite norm k

as k = +/|k?|.

Vector fields: having quickly discussed the scalars, we can turn to the main interest of
the paper: gauge fields. The action for a non-abelian gauge group in AdS is written as,

1 > dz
5= /R dw /0 S Fg e (2.6)

where, following closely the treatment of [18], we impose axial gauge. This reduces the

action into?
Siial Gange = / @' dz (470,200 Ay oy — STUALO,0, A P) . (27)
In momentum space, the relevant equations of motion are,
D02 400 A% (2) — k2237 1A% (2) = 0 (2.8)

for the Fourier modes®
Ai(z,2z) = /dda: A (z)etk e, (2.9)

Similar to the scalar case, we have different solutions for different cases which we list
in table 2. Lastly, the Green’s function for the vector field can be written in the following

“Following [18] we simply add the gauge fixing term (>, (A2)? and take ¢ — oo to freeze A% at zero.
We also integrated by parts and ignored the boundary term S%,,,; which does not alter the free equations
of motion.

SWe will be mostly suppressing the momentum argument for the Fourier mode A%(z) = A%(k, 2).

5Note that only the norm of momentum enters the solutions, hence we need polarization vectors €. These
polarization vectors satisfy transversality k-e = 0 just like the gauge fields themselves k- A(k, z) = 0: these
conditions directly follow from the axial gauge choice.



Separation Solution

spacelike, k? > 0 Al(z) = €2 T Kus (kz)

(3

timelike (normalizable), k? < 0 Al(z) = €125 Jas kz)

(2 K3 -

timelike (non-normalizable), k% < 0 A%(2) = €22 Yao(kz)

Table 2. Solution to the equations of motion for gauge fields

way

A%k Cik'(wiwl)z%t]ﬂ (pZ)J@ (pzl>(zl)
Gij(x, 2,2, 2) :/ pdp . :
g\, <y Ly (27T)d (k2 +p2 — ZE)

Hyjp. k), (2.10)

where ok
Hyj(p, k) = —i (77ij + ;2J> (2.11)
and we have suppressed the color dependence.

2.2 A basic Witten diagram: three point amplitude

Three point amplitudes are very important as they correspond to three point correlation
functions in the holographic CFT’s, which contain all the dynamical data of a CFT [24].
Additionally, these amplitudes will be the building blocks for the higher point computations
in the following section.

By following [19], we consider a three-point amplitude with three incoming momenta,
k1, ko, and k3 with ki + ko + k3 = 0, and observe that the result takes a product form of
some tensor structure and the so-called triple-K integral,” a function of three magnitudes
denoted as ki, k9, and k3:

Ag = V123 (kl,kz,kg)/o ﬁz (“WZ 2 Ksz(k‘lz)>

x( %sz(g(m))( %zClEQK”(kgz)> (2.12)

s 2

where Vj is the color-ordered three point vertex structure.® The explicit form of color-
ordered three and four point structures can be written as

7
Vijk (K1, ko, k3) = 7 (nij (k1 — k2) i + njr (k2 — k3)i + nei(ks — k1))
(2.13)

V'Czjkl — nzkn]l _ 5 <nz]nkl + nzln]k) ]

Here, we use the shorthand notation Vij, = (—:iVMk and so on for the polarization
vector €;. One may be concerned with this shorthand notation as Vi, can also refer

"Similar conformal integrals have been computed in [25].
8We follow the convention of [35].



to Vijk ‘i:l' However, we will not have this ambiguity as we will never be interested in
individual components in this paper.

The structure V'’s above are the same antisymmetric tensors that appears in flat space,
contracted with the polarization vectors. In the above expression and what is to follow, we
will suppress the color factors and indices to lighten the notation and this simplification
will not affect our analysis.

Even though eq. (2.12) is valid in any dimensions, we will specialize to d = 3 in the rest
of the paper. Apart from its physical relevance, d = 3 is also important from computational
point of view: Bessel functions K/, and Jj /; are essentially sines and cosines hence we can
easily perform the otherwise complicated radial z integrals. For future use, let us define

|8prs
KKK (p, 7, 5,2) = ?le/QKl/Q(pz)Kl/Q(rz)Kl/Z(32)

[ 4dpr
KKJ (p,r,s,2) = %ZHﬂKl/Q(pz)K1/2(rZ)J1/2(SZ)

KJJ (p,7,5,2) =1/ %pz”/ 2K jo(p2)J1 j2(r2) Iy o(52) (2.14)
16prst ¢
KKKK (p,7, 5,1, 2) := e Ky /2(p2) K1 o(r2) Ky ja(s2) Ky 2(tz)

8prs
KKKJ (p,7,5,t, 2) =1/ ig ZGKl/z(pZ>K1/2(7’2)K1/2(SZ)Jl/Q(tZ)

where we take a product of one z* and bunch of (\/%z%f( a2 (pz)) 4y and
(Z%Jﬁ (tz))d:3 for each K and J respectively.” We are considering KKJ (p,7,s, 2)
and KJJ2(p, r, s, z) etc., as they correspond to the transition amplitude which is obtained
by replacing some of the bulk-to-boundary legs of a Witten diagram with normalizable
modes [21].

We can immediately integrate these products:

g 1
/ TKKK (a,b,¢,2) = —————
0o Z a+b+c

*©dz /2 Ve
—KKJ(a,b =\
/0 24 (a,,¢,2) 7 (a+b)?+ 2
> d 4 b
/ 3 (abie ) =2 avbe (2.15)
0

2 7 (@2 + (b= 0)?) (@ + (b+)?)
/o JaKKRK (a,b,¢,d,2) = —mmm s

> dz 2 Vd
— KKK b,c,d,z) =1/ —
/0 24 J(a,b,¢,d,2) \/;(a+b+c)2+d2

Going back to eq. (2.12), we can read off the three point amplitude

~ Vios (K1, k2, k3)

Aa = 2.16
3 ki + ko + k3 ( )

which is seen in [19, 36].

9Here, 2* is the vertex factor and it is critical in getting rid of the divergence
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k3
Figure 1. The three point vector amplitude.

3 Calculation of higher point amplitudes

As we have seen in the previous section, one can calculate any tree level diagram with the
following algorithm:

1. Take the product of elements of Witten diagram: z* factors for vertices, appropriately
normalized!? Bessel K functions for the sources at the boundary, and the BtB for
internal lines. Integrate this product over the bulk point z’s.

2. Using eq. (2.10), decompose BtB ’s over Bessel J functions

3. Carry out the bulk point integrations: for d = 3, we already computed the possible
results in eq. (2.15).1!

4. Carry out the internal momenta p integrations, which were introduced in the decom-
position of BtB .

Despite the straightforwardness of the procedure, analytically carrying out the integrals
of the last step can be quite cumbersome. However, we will show in this section that
these integrals actually yield extremely simple results and one can use residue theorem
to compute these integrations efficiently. Similarly, we will see that while the individual
residues are somewhat involved the final answers are actually simple.

The validity of residue theorem lies in the fact that bulk point integrated KKK, KKJ,
etc. are meromorphic functions with respect to the internal integration variable, and they
vanish at infinity. Also, even though they are not individually even functions of the in-
tegration variable, the relevant integrals will always be even with respect to the internal
momenta: this follows from the fact that we either have pdp or %p and bulk point z inte-
gration of Bessel function J’s bring ,/p at both ends of the propagator. Therefore, we can
always write the integration over internal momenta using residue theorem.

10See the explanation after eq. (2.14).

" There are similar computations that are ignored as they are irrelevant unless one goes to even higher
orders. For example, one needs bulk point integrations of KJJJ in tree level seven point diagram even
though we do not consider that in eq. (2.15).



In what follows, we will use the following notation to indicate norms and vectors of
momenta:

m

Na
ki11i12mi1n1 1219221209 - Im1im2---Imnm J1J2---Jp E , E kiab
a=1 [ b=1

p
c=1

hence, e.g. k1o = ‘k?1| + ‘ki2| , kQ = |k71 + kg‘ , k2g5 = |k71 + kg‘ + ‘k}g + ki4| + |k5| R
In accordance with the above convention, we will also use

kijiy..in, = ki iy +-- + ki, (3.2)
as a shorthand notation.

3.1 Four point function

In this section we will write the color-ordered four-point amplitude of a gauge boson prop-
agating in Anti-de Sitter space at tree level. The amplitude is the sum of three pieces: an

s—channel diagram, a t—channel diagram, and a contact diagram.'?

3.1.1 S-channel

Let us start with the s-channel diagram as show in figure 2. The important consideration
that we use while computing this integral is the factorization of the BtB in terms of two
Bessel functions of the first kind J,, as seen in 2.10. This allows us to write down the four
point function as a product of two three point function of the type KKJ (k;, kj,p, 2;) as seen
in eq. (2.14). With these considerations, we can write down an expression for the s-channel
diagram of the four point amplitude,

dz dZ/ M1234(k1 kig k3 k4)
Mus = [ p dp 2 KKI (k1 ko, p, 220 %93 B4) \ ) (e, Beas p, 2 3.3
4 /p P73 A (k1,k2,p, 2) (k%2+p2) (3 4pz) (3.3)
where,
M (k1 ko, k3, ka) = VI (ky, ko, —k12) Hy (p, k12) V" (K3, ka, K12) - (3.4)

Recall that we have Vg = eﬁegVijk and so on in our conventions.

We would like to remind the reader that in the above expression z and 2’ are two
radial coordinates where integration takes place: note that z* and z'* are part of the
appropriate volume factors in three dimensions. Writing eq. (3.3) using the the bulk z
integral performed in eq. (2.15), we obtain

M4s—/pdp \/% \/%

B k12 4 2koky + ko? + p? ks? + 2kyks + k42 + p?

Hmn(pa k12)

x V2 (K, ko, —k12)
("% + p2)

V3 (3, ky, k12) . (3.5)

12There is no u—channel diagram as we are considering color-ordered correlators, and color-ordered
amplitudes can only have poles in channels with exchanged momenta being sum of cyclically adjacent
external momenta [35].



k’l k2

ky ks

Figure 2. The four point exchange diagram.

Let us isolate p—dependent parts of the above integral: we can rewrite it as

Mys = —i VI (ky, ko, —k12) V3 (k3, ky, k1o) <77mnM£é) + (k12),, (K12), MS;?) (3.6)

for

2l
A

1
MG —/p dp
* (k1 + ko)® + p2 (kg + kq)? +p2 | kiy +p?

2l
o

11

M2 :/p dp =z
4 (k14 ko)? +p2 | \ (ks + ka)® + p2 | K35+ p? p?
1)

We will compute above integrals using the method of residues. For M, is
Res Mis) = thiz
P (kg ) (M )
Res M, 1) thi2
pihiz 7 (k3 — K3) (K — K3,)
Res M( ) = thss
=ik m (k3 — k%) (K3, — k)
which can be summed to a very simple expression: '3
M(l) =am < Res + Res + Res ) M(ls) _ .
p=iki2  p=ikiz  p=iks k1234k1212k3412
Similarly, we can perform integration for M, g). The residues are given by
Res ./\/1(2) = !
e T kg (1, — k) (K - 43.)
Res M( ) = !
=i by (K — ) (K — K,
Res M(Q) !
pthas Wk34 (K3y — ki) <k34 k%z)

(3.7)

, we have

(3.10)

Qverall factor im follows from the residue theorem and the fact that we are integrating an even function

from 0 to co.



Figure 3. The four point contact diagram.

Again, summing over the expressions, we get:

k123412

Mfli) =7 ( Res + Res + Res ) /\/lé(fs)

p=tiki2  p=iki2 p=ik3s

— 3.11
k12k3aki23ak12k1212Kk3412 (3:11)

Eq. (3.6) now reads as

V2 (Joy koy, —keyo) VI (kg by, o k kio) (k
My = —i (k1, k2, —k12) (k3, k4, k12) <?7mn+ 123412 (K12),, ( 12)n>  (312)
k12k3aki2

k1234k1212k3412
3.1.2 Contact diagram

The four point contact diagram has the same integral form as the three point amplitude
in eq. (2.12) upto the replacement of KKK with KKKK:

d
M, = 1/01234/;KKKK(kl,kQ,kg,k4,z) : (3.13)

where V1234 is defined in eq. (2.13).'* From eq. (2.15) we can immediately read the result

1234
Ve

M, = (3.14)

k1234

3.1.3 Final result
From eq. (3.12) and eq. (3.14) we can write down the full four point amplitude as

M4—pt :MS +Mt +MC
i [v”m(kl, ka, —k1o) V3" (s, by, ki) (n 4 k123412(k12)m(k12>n>

k1234 k1212k3412 k12k3aki2
N V2™ (ky, k3, —kog) V" (ky, k1, ko3) (77 N k234123(k23)m(k23)n>
mn
ko3a3ka123 koska1kos
+ V1234:|
c .
(3.15)
4 Here, we would like to remind the reader that 1,2, ... do not refer to components in V1234,

~10 -



Here the second line is the ¢ channel contribution which simply reads as
Mi=M;(1—2,2—33—4,4—1). (3.16)

Note that this result in generic dimensions is noted in eq. (6.26) of [21], albeit in an
integral form.'> For completeness, we have carried out those integrations to provide an ex-
plicit compact expression for the four point amplitude. Like all other symbolic integrations
we have carried out in this paper, we numerically verified these calculations as well.

3.2 Five point function

In this section we will write the five-point amplitude of a gauge boson propagating in Anti-
de Sitter space at tree level. As in the case of four point, we will look at color-ordered
expressions. There are two types of diagrams for the five point amplitude, as depicted in
figure 4 and figure 5. After permuting these two topologies we can obtain diagrams which
can be added to compute the total five point amplitude:

My = M5, + M, + permutations (3.17)
3.2.1 Type-a five point diagram

The amplitude is given as

dz1 dzg dz
21 Ry %3
o KRI (k1 k2, p, 1) KI (3, p, g, 22) KKJ (Ra, s, ¢, 23)

(k% +p?) (ki5 + ¢?)

(3.18)

where
MR (g Ko, K3, K, ks) = VI™ (ky, ko, —k12) Hypn (p, k12)
X VH (3, kas, k19) Hys(q, kas) VI (—kys, ka, ks) . (3.19)

Just like the four point case, we can rewrite it in terms of different pieces of different
internal momenta dependence:

Mso = — V(K ko, —k12)V3¥ (k3, kys, k12) VI (—kys, Ky, ks)
X (nijnklMé}z) + (k12)i(k12)j77klMgz) + Uij(k45)k(k45)lMéi)
+ (km)i(k’m)j(k45)k(k45)l/\4§,i)) - (3.20)

Let us focus on Mé? It reads as

2
M) = / (pdp)(qdq) \E ( vy >

(k1 +ko)? +p2 ) \7 (k3 + (p—)?) (k3 + (p+9)?)

= 1 1
i
X 3.21
ks + ¢ | kiy + p? ks + ¢ (3:21)

15The author carries out the computation using BCFW-like recursion relation and provides an explicit
result in helicity basis in section 5.1.1 of [19].

- 11 -



One can now proceed and do the brute force integration. Instead, we will find the
residues as we did for the four point case and use the residue theorem to get the answer.
We find that

k312
Res ./\/l( ) —
p— sz 27 (kfz k) (K1 — k) (Ko — #5)
k
Res M( ) — 123
pq_:lszlef 72 (koz — Kis) <k12 ]‘7%2) (k123 kis)
Res ./\/l(l) = ks = kas
b5a —
pi(ks—hs) 2 (ks — k35) (kas — ks) = ) (ks — ks) 2 = k3,
q=tk4s
k3 — kas
Res MSZ) =
pilhy ko) 212 ((kas — k3) 2 — ki) ((k45 — k3)? k%2> (7@%5 7@5)
k312
Res ./\/l =
ik o (K3 = k) (Ko — #35) (Ko — K3s)
a 2kgki9kas
T ) () (k) ) (1)
q=ikas 12 1245 — 12 45 45 45 (3.22)
1 2k53k‘45k‘12
R - _
p= z%?sz (kQ k ) k —k —k ) (k2 _ k2> <k2 _ /{2 )
q=ikas 12 12 12 45 3 4512 3 45 45
k
Res M() 123
5 ’lel?;g 27T2 (k%23 k?45) (k%2 k%z) (k%zs - kzis)
L _ 2/433]612]{:&
pBﬁc?zMsa N T2 (kQ _ k‘ ) ((k —k ) k‘2) <k2 _ k‘2 > (k:2 _ kQ)
q=ikas 12 12 12 45 45 — Mas 1245 3
Res M 2k3k12kys
72 (k12 — his) 2 = k) (kous — k) (3 — k) (K3 — 35
1) _ —k3 — kg5
e R )
d=ikas 45 — Ris 345 — Fio 345 — Fl2
k345
R
p= 123845./\/1 27r2 (k2 _ ]{:2 ) (k2 o k2 ) <k2 o k:2 )
q=ikas 345 — R12) \ K345 — Rig ) \Ris — Ki5
We can now sum these residues and write the total result:
ZRes k1212334545 (3.23)
Pi i “ /€12345/€1212k34512k312 45ka545Kk12345 ‘

This answer is remarkably simpler than the individual residues.

- 12 —
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Figure 4. Five point type-a vector diagram.

We can similarly do the other integrations:

M2 k1k334512.45k122334512.45 + k23a5k2345K3345 45 + k12k2334512.45K2334545
k12k3ask123a5k12k12 12k345 12K3 a5kas45Kk123 45Kk312 45

ks312ks5312k331212 + kak331212 45K122334512.45 + k5331212k5331212 45K45
= (3.24)
kasks12k12345k312k1212k 45312k 45k 4545K31245K312 45

1 1 (4)
M) = [ + M} }
% kygkaskiskaask1212k34512ka545K12345 | k12345 ba

where M\éi) is a genuinely AdS term that does not contribute in flat space limit. Its explicit

form is as follows.
MG = (ko+2s-+as) (ks -+ -+ ks +kus) Ky + |63 -+4 (2ka-+2ks +3kss) &
+ (23 +4kska+8kaska+2kZ + Ty +8kskas ) ks
+kas (ka+ks+kas) >+k3 (ks+ka+ks+kas)
ko (53 + (6ka+6ks+Thas) kg +kj +k3 +2k35+2kaks +3kakas +3kskas) } ks
| (3834 (a ki thas) s+ (s + has) 2) K
{83 +3 (kg Akt Shas) k4 (K + 2k + Bhag oy + 3 + 2k + ks has) ks
s (203 +Akska+ 3 oa+ 202+ s+ 3hskas) b
+(2hs+kus) {3k§+ (5ka+ ks +6kas) k3
+ (2k3 +4ksky+5kasks+2k3 +3kjs +5kskas) ks
+(ka+ks) ks (ka+ ks +kas) H@
(ko + k) (ka-+ ks -+ Kas) { 285 +4 (Ra+hs ) K3
+2 (katks+kas) 2ks+ (ka+ks) kas (ka+ks+Fas) }
+ki [2k§+4 (katks+kas) k3+2 (ka+ks+kas) ks
+ (ka+ks) kas (ka+ks+kas) +kiy (ks+ka+ks+kas)
+k12 (3k3+4 (katks+kas) ks+ (ka+ks+kas) 2)]

~13 -
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Figure 5. Five point type-b vector diagram.

+ki (2k2+2ks + k1o +kas) [2k§+4 (katks+kas) k3 +2 (ka+ks+kas) *ks
+(ka+ks) kas (ka+ks+kas) +kiy (ka+Ea+ks +Fas)
hig (3344 (ks +has) ks + (kat ks +as) ) | (3.25)

3.2.2 Type-b five point diagram

The amplitude is given as

dz1 dz
M5b — /(pdp)241242Mbl2345 (k17k25k37k47k5)
)
KKKJ (k1, ko, k KKJ (k4, k
« J( 1y A2, 3)12)72:1) : J( 45 57p722) (326)
(k35 +1?)
for
MPM™ Ry Koo, Kes, Kea, Kes) = V99K, kg, —ka) Hop (p, ko) VM (3.27)

where V™Mb was defined in eq. (2.13).

The integrations over z; and zy can immediately be carried out via eq. (2.15). Then
one can do the p—integration, either directly or via the method of residues. The result
takes the form

'V12a(k1’ kg, _k12)V345b

k1234545 >
Mop == ab + 7 ——(kas)a(k : 3.28
" k12345ka545K12345 (77 ’ k123k475k45( 45)a(Ka5 )b (3.28)

We can now write the full five point amplitude as the summation over different topolo-
gies and their permutations. We can compare this with the case of four point amplitude in
eq. (3.15), where we have two topologies and two permutations for the first one (first two
lines there) and one permutation for the second one (last line).

3.3 Six point function

Let us move on to six point amplitudes. Unlike the previous cases, we will not be pro-
viding the explicit results here because of two reasons: firstly, the number of calculations
proliferates as we consider higher point amplitudes; in particular, we have to compute 18
different terms to fully calculate all the topologies. While doing the calculations is actually

— 14 —



Type a : Type b :

Type c : Type d :

Figure 6. Topologies for six point vector diagrams.

straightforward and can easily be automated, the results are not extremely illuminating
and involve lengthy pieces such as ./(/l\éi).

The second reason for us to avoid explicitly writing six point amplitude is that we
expect a pattern and we believe higher point calculations can be carried out more efficiently
for generic n point amplitude.'® We do not pursue this idea in present work; instead, we give
a taste of what the six point amplitude looks like by computing one of the terms appearing
in type-a topology that is to be defined below: other expressions can be calculated in a
similar fashion.

In six points, we have 4 different topologies:
Mg = Mgg + Mgp + Mge + Mgg + permutations (3.29)
where we can see them as in figure 6. In particular, we can write type-a amplitude as

dz1 dzo dz3 dz
Mea = /(pldpﬂ(pzdpz)(pzdps)j424344M§23456 (K1, ko, ks, ka, ks, k)
21 Ry k3 %4

" KKJ (k1, k2, p1, 21) KJJ (3, p1, D2, 22) KJJ (K4, p2, p3, 24) KKJ (K5, k6, p3, 24)

(3.30)
(k3o + 1) (ki + p3) (K3 + 13)
where M7F™M™ i of the form
MIF™ (ky, Ko, ks, Kea, Kos, Keg)
= V% (ky, ko, —k12) Hap(p1, k12) V™ (K3, k12, —k123)
X Heq(pa, k123) V' (ky, k123, ksg) He (D3, ks6) V™™ (K5, kg, —ksg) (3.31)

16Here, we mean symbolic calculation as our method (or even a direct integration) is already sufficiently
convenient for numerical studies.
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hence

Mg = — i V2 (ky, ko, —K12)0ap V3 (K3, k12, —Kk123)1ed
X V4de(k74, k123, k56)ner56f(k5, k@, _kSG)Méi) —+ - (332)

Since the result is relatively simple, we will be providing Mécll) here:

1 1 ( 1 /f121212333456k123123445656>
6y = )
“ ki212k3as612k5656K123456 k123123 K456123 \ k123456 k123456Fk123123K123456

4 Conclusion

In this paper, we have calculated tree level momentum space amplitudes for a massless
vector propagating in AdS,. We are interested in such correlators because of their physical
relevance and their simplicity. These momentum correlators have not been fully investi-
gated despite their relevance in cosmology, conformal theories, and their possible connection
with scattering amplitudes in flat space.

We have computed explicit examples of previously uncomputed higher point correlators
in Anti-de Sitter space. We found it convenient to work in the axial gauge as it allowed us
to set the radial component to zero. We explicitly computed four and five point amplitudes
and provided a recipe to compute full six point expression. Remarkably, we discovered that
despite the tediousness of computation, we were able to write a compact and relatively
simple expression.

We believe that with this paper, we built on the formalism developed by Raju to
provide a complementary calculation to [19, 20], which were done using BCFW-like all line
recursion relations. While these recursion relations can be used in practice to compute
higher point amplitudes, the number of required partitions for the computation is greater
than the usual BCFW. The reason for this difference is the way external momenta are
deformed: unlike BCFW in which only two of them are complexified, all external lines are
deformed in [20], similar to Risager recursion relations introduced in [39]. This difference
also leads to quadratic solutions for the poles, meaning that the answers become extremely
complicated at five point and higher. This motivated us to compute higher point correlation
functions directly.

We would like to present many promising future directions. As the expressions for
these correlators are simple, we believe that there must be a simple structure that can
recursively compute n-point correlation function. We believe that these structures have
similar properties as the ones calculated in [37]. Work in this direction is in progress [38]
where we also hope to understand the flat space limits better. It would also be interesting
to consider other spacetime dimensions or higher spin correlators in AdSy.
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