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1 Introduction

The conformal bootstrap method was applied by the paper [1] to solve an infinite class

of two-dimensional conformal field theories (CFTs). Now, it is known as one of the most

influential and fascinating tools to analyze CFT from the point of nonperturbative aspects

of the theory. It carves out the space of consistent CFTs by imposing physical conditions

such as symmetry, causality, and unitarity. It leads to nontrivial conditions that cannot

be obtained from the algebraic structure of conformal algebra and perturbative analysis.

About thirty years after their work [1], the paper [2] introduced the numerical method

for conformal bootstrap equations to get constraints for higher-dimensional CFTs. Using

crossing symmetry for the four-point function, they showed the upper bound on the con-

formal dimension of the first scalar appearing in the Operator Product Expansion (OPE)

of two identical scalars. After their work, much progress has been made, such as fixing the

critical exponents of the Ising model in three-dimensional CFT [3–9] and getting bounds

on the scaling dimensions of the theory with global O(N) symmetry [5, 6, 8, 10]. Please

see the reviews [11–13] to check the recent works in conformal bootstrap.

As numerical bootstrap methods developed, there was a growing body of research in-

vestigating the analytical properties of bootstrap. One of the current research directions

on conformal bootstrap is large N expansion. This analysis method is robust in AdS/CFT

correspondence [14–17], in which we have a good correspondence between weakly coupled

gravity in AdS and its dual CFTs. “Weakly coupled” translates to the CFT with large

N, and in addition, we demand that CFT on the boundary is strongly coupled to make

the gravity theories on the bulk without light particles of spin greater than two. In the

analysis, we perturb the CFT by 1/N and 1/∆, where ∆ is the conformal dimension of

the lightest operator in the CFT. Many researchers have studied the relationship between

weakly coupled bulk theory and CFT data on its boundary [18–24]. The conformal boot-

strap helps obtain consistent theories of gravity in AdS from the effective field theories,

the swampland program [25–27]. In AdS/CFT correspondence, the AdS cylinder in global

coordinates corresponds to the boundary CFT in radial quantization. With these physical
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motivations, formulating conformal bootstrap at finite volume on the cylinder is naturally

needed to understand the bulk theory.

Recently, CFT in momentum space has been developed formally in [28–32]. Those

papers define correlation functions in momentum space as a Fourier transform of that

in position space. CFT in momentum space has physical applications such as the study

of anomalies [33–39], the determination of the form of conformal invariance in the non-

Gaussian features of the cosmic microwave background [40, 41], and an investigation for

inflation [42, 43].

One of the difficulties of analysis in momentum space is that we cannot expect the

time-ordered correlation function to behave well because the integral calculation in the

Fourier transform involves the position where the operators are not time-ordered. Instead,

the Wightman function is a good function for the analysis in momentum space. The

Wightman function has an operator algebra, but we have yet to study its structure so

much. The conclusion and discussion summarize the future direction that surveys algebraic

construction in momentum space.

When studying CFT in radial quantization, we can expect that the analysis in mo-

mentum space is the most suitable because the feature of CFT in radial quantization is

that the energy and momentum are quantized. So, studying CFT in momentum space is

natural if we try to find the difference between CFT in R
1,d−1, and CFT in R×Sd−1.

From those considerations, we formulate the basis for the conformal bootstrap in mo-

mentum space using the Wightman function at finite volume in this paper. We expect that

the conformal bootstrap at finite volume gives constraints for CFT data that cannot be

obtained in CFT at infinite volume. In this paper, we show that the two- and three-point

function at finite volume leads to that at infinite volume under the “Large volume limit.”

It implies that the information in conformal bootstrap at finite volume is richer than that

at infinite volume. As an analysis method that is particular for CFT at finite volume, we

consider expansion by 1/R, where R is a compactification radius. We leave this kind of

analysis to future work.

This paper is organized as follows. We summarize the result in two-dimensional CFT

in section 2. We compute two- and three-point functions in momentum space with Ward

Identities (WIs). This method is powerful because it applies to general operators and

is helpful for computational calculation. In section 3, we study three-dimensional CFT

by using WIs. Though we cannot get a closed form for the three-point function, ODEs

obtained from WIs may be helpful for calculation with a computer. Finally, we show one

of the applications of our calculation result. We develop bootstrap equations by using

improved microcausality conditions. It was designed in infinite volume in the paper [44].

We resolve some problems and get a proper bootstrap equation in finite volume. Though

our development is incomplete, it implies that the bootstrap method in momentum space

might be helpful. We leave the problem for future work.

– 2 –
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2 Main results in D = 2

This section summarizes the derivation of two- and three-point Wightman functions in

two-dimensional momentum space. We deal with CFT quantized on a cylinder.

For two-dimensional CFT, the factorization method is potent as we can independently

calculate holomorphic and antiholomorphic parts. After that, we can construct complete

correlation functions for general operators.

There are three ways to get them. The first is a direct integral calculation, which is

easy for a simple case, but an analytic continuation for general situations is not trivial.

On the other hand, the Ward Identity (WI) method is helpful for the general case,

which is the second procedure. Though solving the ODEs obtained from WI is a little

tricky for three-point functions, this method emphasizes that we can determine all of the

correlation functions of the mode operator from ones including only primaries.

The third procedure is an algebraic construction, which helps construct a completeness

relation when calculating a four-point function.

The most crucial difference between two-dimensional CFT and higher-dimensional

CFT is that there are Virasoro descendants in the two-dimensional CFT. In this paper,

we call the descendants made by acting L−1s on primaries as “descendants” and the de-

scendants made by working L−n (n≥ 2)s on primaries as “Virasoro descendants.” When

considering four-point functions in momentum space, we do not have to consider descen-

dants, but we cannot ignore the contributions from Virasoro descendants. We will see

the calculation in the latter chapter. We summarize the results briefly, so please visit the

appendix for a more detailed analysis and supplements.

2.1 Conformal generators and their action

We use cylinder coordinates and complex plane coordinates. In the complex plane, we use

z and z̄ as coordinates, and ω=σ1 + iσ2 =σ− iτ and ω̄=σ1 − iσ2 =σ+ iτ for the cylinder

frame. They are related to each other by conformal transformations with radius R.

z= reiθ =Re
iω
R =Re

iσ+τ
R , z̄= re−iθ =Re− iω̄

R =Re
−iσ+τ

R (2.1)

We define two “Spatially-integrated mode” types for primary operators. The first one is

Õn(r) ≡
∫

Cr

dθ

2π
O(r,θ)e−inθ, (2.2)

where the integral path Cr is the circumference of radius r. And the second one is defined

for holomorphic operators O(z) and antiholomorphic operators Ō(z̄), respectively.

On ≡ 1

2πi

∮

dz

z1+n
O(z), Ōn ≡ 1

2πi

∮

dz̄

z̄1+n
Ō(z̄) (2.3)

For example, for holomorphic operators, Õn(r) = rnOn. For operators with spin s, we also

use other types of representation. Define J ≡n+s and J̄ ≡ −n−s, then

O[J ] ≡ On, Ō[J̄ ] ≡ Ōn. (2.4)
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We obtain the action of the conformal generators on these modes. For example,

Pz · Õn =
1

2

∫

dθ

2π

(

∂rO− i

r
∂θO

)

e−i(n+1)θ =
1

2

(

∂r+
n+1

r

)

Õn+1 =
1

2r

(

Ê+n+1
)

Õn+1,

(2.5)

where Ê= r∂r. Similarly, we get the following equations.

Pz̄ · Õn =
1

2

(

∂r− n−1

r

)

Õn−1 =
1

2r

(

Ê−n+1
)

Õn−1 (2.6)

Kz · Õn =
r2

2

(

∂r+
n−1

r

)

Õn−1 +2hrÕn−1 =
r

2

(

Ê+n+4h−1
)

Õn−1 (2.7)

K z̄ · Õn =
r2

2

(

∂r− n+1

r

)

Õn+1 +2h̃rÕn+1 =
r

2

(

Ê−n+4h̃−1
)

Õn+1 (2.8)

L0 · Õn =
1

2
(r∂r+n+2h)Õn =

1

2

(

Ê+n+2h
)

Õn (2.9)

L̃0 · Õn =
1

2

(

r∂r−n+2h̃
)

Õn =
1

2

(

Ê−n+2h̃
)

Õn (2.10)

2.2 Two-point function

2.2.1 Two-point function for primaries

Define the complete Wightman two-point function of primaries as

C(n1,n2, r1, r2) ≡ 〈Õ(2)
n2

(r2)Õ(1)
n1

(r1)〉 ≡ δ(n1 +n2 +s1 +s2)r−∆1
1 r−∆2

2 Fn1(y), (2.11)

where y≡ r1/r2 is a ratio of radius. We used L0 and L̃0 WIs to get the reduced form.

Usually, the above delta function means Dirac’s delta function, but in this paper, it often

means 0 or 1 function when its content has a discrete value.

δ(x) ≡






1 if x= 0

0 otherwise
(2.12)

For this reduced form, we get WIs, which give ODEs for a two-point function. Four are

left, as we used two of six WIs to get the reduced form.

L−1 :

(

y
d

dy
−∆1 +n+1

)

Fn+1(y)+y

(

−y d

dy
−∆2 −n−s1 −s2

)

Fn(y) = 0 (2.13)

L̃−1 : y

(

−y d

dy
−∆2 +n+1+s1 +s2

)

Fn+1(y)+

(

y
d

dy
−∆1 −n

)

Fn(y) = 0 (2.14)

L1 :

(

−y d

dy
+∆2 −n−1−s1 +s2

)

Fn+1(y)+y

(

y
d

dy
+∆1 +2s1 +n

)

Fn(y) = 0 (2.15)

L̃1 : y

(

y
d

dy
+∆1 −2s1 −n−1

)

Fn+1(y)+

(

−y d

dy
+∆2 +n+s1 −s2

)

Fn(y) = 0 (2.16)

The solution of these ODEs is as follows.

Gn+s ≡Fn =Ksy
∆+|n|(

∑

l=0

cn+s|ly
2l) (2.17)

cn+s|l =
Γ(∆+s+ l+n)Γ(∆−s+ l)

Γ(∆+s)Γ(∆−s)Γ(l+n+1)Γ(l+1)
(2.18)
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Ks is an undetermined constant depending on the normalization of operators. The ap-

pendix summarizes how to solve these WIs and checks that this solution matches that

obtained by a direct integral.

In the two-point function, ∆+s=h and ∆−s= h̃ appear independently. In other

words, we can factorize it into holomorphic and antiholomorphic parts. It is natural, but

we summarize it to clarify the situation. Let us perform the Fourier transform of the

two-point function of scalar operators with the above solution.

∫

dθ1

2π

dθ2

2π
e−in1θ1−in2θ2〈O(2)O(1)〉 = δ(n1 +n2)r−2∆

2

∑

l=0

Γ(∆+ l+n1)Γ(∆+ l)

Γ(l+n1 +1)Γ(l+1)Γ(∆)2

(

r1

r2

)2l+n1

(2.19)

The operator normalisation has been chosen to set Ks to unity. The coordinate trans-

formation from the complex plane to the cylinder, inverse Wick rotation, and complete

Fourier transform give

∫

dσ1

2πR

∫

dσ2

2πR

∫

dt1
2π

∫

dt2
2π

e−iE1t1e−iE2t2e−iσ1
n1
R e−iσ2

n2
R 〈O(2)(σ2, τ2)O(1)(σ1, τ1)〉

= δ(k1 +k2)δ(E1 +E2)
R−2∆

(Γ(∆))2

Γ
(

R(E1−k1)+∆
2

)

Γ
(

R(E1+k1)+∆
2

)

Γ
(

R(E1−k1)−∆
2 +1

)

Γ
(

R(E1+k1)−∆
2 +1

) .
(2.20)

The point is that we can factorize the two-point function in momentum space into E1 ±k1

parts. It indicates that we can calculate it by multiplying the results in holomorphic and

antiholomorphic parts, but what is the procedure? For holomorphic operators,

∫

dθ1

2π

dθ2

2π
e−in1θ1−in2θ2〈O(2)O(1)〉 ∝ r−h

1 r−h
2 δ(n1 +n2 +2h)

Γ(n1 +2h)

Γ(n1 +1)Γ(2h)

(

r1

r2

)n1+h

.

(2.21)

And for antiholomorphic operators,

∫

dθ1

2π

dθ2

2π
ein̄1θ1+in̄2θ2〈Ō(2)Ō(1)〉 ∝ r−h̃

1 r−h̃
2 δ(n̄1 + n̄2 +2h̃)

Γ(n̄1 +2h̃)

Γ(n̄1 +1)Γ(2h̃)

(

r1

r2

)n̄1+h̃

.

(2.22)

Multiplying them doesn’t give (2.20). The physical states created by Õn1 are ones with

spin n1, so they have the form (Pz)
n1+l1(Pz̄)

l1 |Φ〉 with some integer l1, where |Φ〉 is a

primary state created by inserting primary operator with conformal weight (h, h̃).

For this state, n1 in (2.21) should be replaced by n1 + l1, and n̄1 in (2.22) should be

replaced by l1. From here, we only concentrate on the Gamma function dependent part in

the two-point function since the delta functional part and r1, r2 dependent part only give

conservation law.

The multiplication of the holomorphic part and the antiholomorphic part gives

Γ(n1 +2h+ l1)

Γ(n1 + l1 +1)Γ(2h)

Γ(l1 +2h)

Γ(l1 +1)Γ(2h)
=

Γ(∆+n1 + l1)

Γ(n1 + l1 +1)Γ(∆)

Γ(∆+ l1)

Γ(l1 +1)Γ(∆)
. (2.23)
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Energy for the state (Pz)
n1+l1(Pz̄)

l1 |Φ〉 is E1 = (h+ h̃+n1 + l1 + l1)/R= (∆+n1 +2l1)/R

and momentum for the state is k1 =n1/R. So, the Gamma function dependent part is

1

(Γ(∆))2

Γ
(

R(E1−k1)+∆
2

)

Γ
(

R(E1+k1)+∆
2

)

Γ
(

R(E1−k1)−∆
2 +1

)

Γ
(

R(E1+k1)−∆
2 +1

) . (2.24)

It is the same as (2.20).

In the above example, we calculated the two-point function of scalar operators: direct

integral calculation and factorization. Their results are the same, and we can generalize

this method for other two-point functions. We will show more clearly that we can use the

factorization method to calculate three-point functions later, and the logic is the same.

2.2.2 Two-point function for descendants

As well known, inserting descendant fields in the correlation function means acting differ-

ential operators on others.

〈(L−mφ)(z)φ1(z1) · · ·φN (zN )〉 =
N
∑

i=1

[

(m−1)hi
(zi−z)m

− 1

(zi−z)m−1

∂

∂zi

]

〈φ(z)φ1(z1) · · ·φN (zN )〉

(2.25)

So, for example,

〈φ[−J ](L−mφ)[J ]〉 =

∮

dz2

z1−J−h
2

∮

dz1

z1+J−h−m
1

[

(m−1)h

(z2 −z1)m
− 1

(z2 −z1)m−1

∂

∂z2

]

〈φ(z2)φ(z1)〉

= (m+1)h
Γ(J+h)

Γ(1+J−h−m)Γ(2h+m)
. (2.26)

In general,

〈φ[−J ](L−mk
· · ·L−m2L−m1φ)[J ]〉 =

∏k
i=1

[

(mi+1)h+
∑i−1
j=1mj

]

Γ(J+h)

Γ(1+J−h−∑k
i=1mi)Γ(2h+

∑k
i=1mi)

. (2.27)

For more general calculations such as 〈(L−2φ)[−J ](L−3φ)[J ]〉, we also need to consider more

complicated calculation including OPEs between energy-momentum tensors. Although one

can compute an arbitrary correlation function in momentum space by a straightforward

analysis, we can understand it more simply by using the algebraic method described next.

2.2.3 Algebraic construction

Like CFT in position space, we can calculate the two-point function by algebraic calcula-

tion. In the procedure, we consider in-state and out-state naturally, which is useful when

constructing the completeness relation to calculate a four-point function.

As we can calculate the holomorphic and antiholomorphic parts independently, we only

focus on the holomorphic part. First, the ket
∣

∣

∣φ[J ]

〉

is defined as

∣

∣

∣φ[J ]

〉

=

∮

dz

z1+J−h
φ(z) |0〉 =

∮

dz

z1+J−h
eiL−1zφ(0)e−iL−1z |0〉 =

iJ−h

(J−h)!
LJ−h

−1 |h〉 . (2.28)
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The ket for descendant field (L−mk
· · ·L−m2L−m1φ)(z) is

∣

∣

∣L−mk
· · ·L−m2L−m1φ[J ]

〉

=
iJ−h

(J−h)!
LJ−h

−1 L−mk
· · ·L−m2L−m1 |h〉 . (2.29)

In this paper, we arrange the Virasoro generators so that m1 ≥m2 ≥ ·· · ≥mk is satisfied.

We define the bra for the primary field and for the descendant field as

〈

φ[J ]

∣

∣

∣=

∮

dz

z1−J−h

1

z2h
〈0|φ(∞)e−iL1

1
z =

(−i)J−h

(J−h)!
〈h|LJ−h

1 (2.30)

〈

L−mk
· · ·L−m2L−m1φ[J ]

∣

∣

∣=
(−i)J−h

(J−h)!
〈h|Lm1Lm2 · · ·Lmk

LJ−h
1 . (2.31)

The phases are chosen so that
〈

φ[J ]

∣

∣

∣φ[J ]

〉

≥ 0 and
〈

L−mk
· · ·L−m1φ[J ]

∣

∣

∣L−mk
· · ·L−m1φ[J ]

〉

≥
0 are satisfied. With those definitions, we can recover the previous result, for example,

〈φ[−h−2]φ[h+2]〉 =
Γ(2h+2)

Γ(3)Γ(2h)
=
〈

φ[h+2]

∣

∣

∣φ[h+2]

〉

=
1

2!

1

2!
〈h|L2

1L
2
−1 |h〉 =h(2h+1). (2.32)

This algebraic construction helps make a completeness relation needed to calculate the

four-point function by conformal block decomposition. We will deal with it later.

2.2.4 Large volume limit for two-point function

In Gillioz’s paper [45], they calculated the two-point function of scalars in momentum space

in d-dimensional Minkowski space. They defined the double bracket notation as

〈0|φ1(k1) · · ·φn(kn) |0〉 = (2π)dδd(k1 + · · ·+kn)⟪φ1(k1) · · ·φn(kn)⟫. (2.33)

Here, Fourier transform of operator φ̃(x) is φ(k) ≡ ∫ ddxeik·xφ̃(x). So,

⟪φ1(k1) · · ·φn(kn)⟫=

∫

ddx1 · · ·ddxn−1e
i(k1·x1+···+kn−1·xn−1) 〈0| φ̃1(x1) · · · φ̃n(0) |0〉 . (2.34)

The two-point function of the scalar operators for momentum k lying in a forward light

cone is

⟪φ(−k)φ(k)⟫=
(4π)d/2+1

22∆+1Γ(∆)Γ(∆− d
2 +1)

(k2)∆−d/2. (2.35)

In two-dimensional spacetime,

〈φ1(k1)φ2(k2)〉 = (2π)2δ2(k1 +k2)
(4π)2

22∆+1(Γ(∆))2
(k2)∆−1. (2.36)

We want this result by taking the limit of R→ ∞ for our result in finite volume. We call

it “Large Volume Limit.” Our result is

C̃(k1,k2,E1,E2) ≡
∫

dt1
2π

dt2
2π

∫

dσ1

2πR

dσ2

2πR
eiσ1k1eiσ2k2e−it1E1e−it2E2〈φ2(t2,σ2)φ1(t1,σ1)〉

= δ(k1 +k2)δ(E1 +E2)
R−2∆

(Γ(∆))2

Γ
(

R(E1−k1)+∆
2

)

Γ
(

R(E1+k1)+∆
2

)

Γ
(

R(E1−k1)−∆
2 +1

)

Γ
(

R(E1+k1)−∆
2 +1

) .

(2.37)
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With Stirling’s approximation, we get

lim
R→∞

(l.h.s. ) ∝ δ(k1 +k2)2 R
−2∆

Γ(∆)2

(k1 −E1)∆−1R∆

2∆−1

(k1 +E1)∆−1R∆

2∆−1
∝ δ(k1 +k2)2 (k2)∆−1

(Γ(∆))2
.

(2.38)

This is identical to the result (2.36) at infinite volume calculated in the paper [45].

2.3 Three-point function

Solving WIs for the three-point function is complicated. So first, we Fourier transform the

three-point function of holomorphic operators directly and check that the solution satisfies

the ODEs obtained from WIs. The three-point function of holomorphic operators is

〈O3(z3)O2(z2)O1(z1)〉 ≡λ321z
h3−h1−h2
21 zh1−h3−h2

32 zh2−h1−h3
31 ≡λ321z

−b3
21 z−b1

32 z−b2
31 . (2.39)

Here, h1,h2,h3 are conformal weight of operator O1,O2,O3. And we define zij ≡ zi−zj ,

b1 ≡h2 +h3 −h1, b2 ≡h1 +h3 −h2 and b3 ≡h1 +h2 −h3. We assume that conformal weights

are all integers, but we can analytically continue the region of conformal weights by taking

ni (i= 1,2,3) non-integers. Then,

〈On3On2On1〉 =
1

(2πi)3

∮

dz3

z1+n3
3

∮

dz2

z1+n2
2

∮

dz1

z1+n1
1

〈O3(z3)O2(z2)O1(z1)〉

=
λ321δ(

∑3

i=1
Ji)

Γ(b1)Γ(b2)Γ(b3)

Min{n1,m3}
∑

q=0

Γ[b3+q+Max{0,n1−m3}]Γ[b2−q+Min{n1,m3}]Γ[b1+q+Max{m3−n1,0}]
Γ[1+q+Max{0,n1−m3}]Γ[1−q+Min{n1,m3}]Γ[1+q+Max{m3−n1,0}] ,

(2.40)

where m3 = −(n3 +2h3). In the appendix, we summarize the detail of the derivation and

check that the solution for the three-point function satisfies the ODEs obtained from WIs.

In the paper [28] by Gillioz, they calculated the three-point function in infinite volume

in the fully factorized form

⟪φf (pf )φ0(p0)φi(pi)⟫=λf0iW (p+
f ,p

+
0 ,p

+
i )W (p−

f ,p
−
0 ,p

−
i ), (2.41)

where p± = p0 ±p1 and

W (p±
f ,p

±
0 ,p

±
i ) =

(2π)2

2(∆f +∆0+∆i−2)/2

(p±
f )∆f −d/2(p±

i )∆i−d/2

|p±
0 |(∆f −∆0+∆i)/2





Θ(p±
0 )

Γ(∆i)Γ
(

∆f +∆0−∆i

2

)2F1

(

∆f −∆0 +∆i

2
,
∆f −∆̃0 +∆i

2
;∆i;−

p±
i

p±
0

)

+
Θ(−p±

0 )

Γ(∆f )Γ
(

∆i+∆0−∆f

2

)2F1

(

∆f −∆0 +∆i

2
,
∆f −∆̃0 +∆i

2
;∆f ;−

p±
f

p±
0

)



 .

(2.42)

Here, 2F1 is a hypergeometric function

2F1(a,b : c : z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
, (2.43)
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where (a)n is the Pochhammer symbol defined as follows.

(a)n =







1 (n= 0)

a(a+1)(a+2) · · ·(a+n−1) (n> 0)
(2.44)

We can see that the Wightman 3-point function is factorized into holomorphic and anti-

holomorphic pieces, or equivalently into left- and right-movers.

We want to get this result by taking a large volume limit for our result at a finite

volume. We use a time-reversal symmetric form for three-point functions. Kred is defined as

K(n1,n2,n3) ≡ 〈On3(z3)On2(z2)On1(z1)〉 ≡ δ(n1 +n2 +n3 +h1 +h2 +h3)Kred(n1,n3).

(2.45)

And remember that this is equal to

Kred(n1,n3)

= λ321
Γ(b1)Γ(b2)Γ(b3)

Min{n1,m3}
∑

q=0

Γ[b3+q+Max{0,n1−m3}]Γ[b2−q+Min{n1,m3}]Γ[b1+q+Max{m3−n1,0}]
Γ[1+q+Max{0,n1−m3}]Γ[1−q+Min{n1,m3}]Γ[1+q+Max{m3−n1,0}] .

(2.46)

To take a large volume limit, define N [x,y] ≡ Γ(1+x+y)/Γ(1+x)Γ(1+y). Under the

y→ ∞ limit, N [x,y] ≃ yx/Γ(1+x). With it, we can write a three-point function as

Kred(n1,n3) =λ321

Min{n1,m3}
∑

q=0

N [b3 −1, q+Max{0,n1 −m3}]

N [b2 −1,−q+Min{n1,m3}]N [b1 −1, q+Max{m3 −n1,0}].

(2.47)

Under a large volume limit, n1 and m3 also go to infinity. We define q̂≡ q/R, n̂1 ≡n1/R,

and m̂3 ≡m3/R. Then, we get

N [b1 −1, q+Max{m3 −n1,0}] ≃ 1

Γ(b1)
(q+Max{m3 −n1,0})b1−1 (2.48)

N [b2 −1,−q+Min{n1,m3}] ≃ 1

Γ(b2)
(−q+Min{n1,m3})b2−1 (2.49)

N [b3 −1, q+Max{0,n1 −m3}] ≃ 1

Γ(b3)
(q+Max{0,n1 −m3})b3−1. (2.50)

The product is

N [b1 −1, q+Max{m3 −n1,0}]N [b2 −1,−q+Min{n1,m3}]N [b3 −1, q+Max{0,n1 −m3}]

=

(

3
∏

i=1

1
Γ(bi)

)

(q+Max{m3 −n1,0})b1−1(−q+Min{n1,m3})b2−1(q+Max{0,n1 −m3})b3−1

=

(

3
∏

i=1

Rbi−1

Γ(bi)

)

(q̂+Max{m̂3 − n̂1,0})b1−1(−q̂+Min{n̂1, m̂3})b2−1(q̂+Max{0, n̂1 −m̂3})b3−1

(2.51)

– 9 –



J
H
E
P
0
6
(
2
0
2
3
)
1
5
2

Using
∑

q ≃ ∫ dq=R
∫

dq̂, we get

Kred(n1,n3)

≃ A

R

Min{n̂1,m̂3}
∑

q=0

(q̂+Max{m̂3 − n̂1,0})b1−1(−q̂+Min{n̂1, m̂3})b2−1(q̂+Max{0, n̂1 −m̂3})b3−1

≃A

∫ Min{n̂1,m̂3}

0
dq̂(q̂+Max{m̂3 − n̂1,0})b1−1

(−q̂+Min{n̂1, m̂3})b2−1(q̂+Max{0, n̂1 −m̂3})b3−1, (2.52)

where A≡λ321R
b1+b2+b3−2/Γ(b1)Γ(b2)Γ(b3). Now define x≡ q̂/Min{n̂1, m̂

′
3} to change the

range of integration from [0,Min{n̂1, m̂3}] to [0,1].

Kred(n1,n3)A−1

≃ [Min{n̂1, m̂3}]b1+b2+b3−2
∫ 1

0
dx
(

x+ Max{m̂3−n̂1,0}
Min{n̂1,m̂3}

)b1−1
(1−x)b2−1

(

x+ Max{0,n̂1−m̂3}
Min{n̂1,m̂3}

)b3−1

=











m̂h1+h2+h3−2
3

∫ 1
0 dx x

b1−1 (1−x)b2−1
(

x+ n̂1−m̂3
m̂3

)b3−1
(n̂1 ≥ m̂3)

n̂h1+h2+h3−2
1

∫ 1
0 dx

(

x+ m̂3−n̂1
m̂3

)b1−1
(1−x)b2−1

(

x+ n̂1−m̂3
m̂3

)b3−1
(n̂1<m̂3)

(2.53)

To make this expression simpler, we use a hypergeometric function.
∫ 1

0
dx xα(1−x)β(x+ t)γ = tγ Γ(1+α)Γ(1+β)

Γ(2+α+β) 2F1

[

1+α,−γ;2+α+β;−1
t

]

(2.54)

Let us consider the case of n̂1 ≥ m̂3. In the above expression, this case corresponds to

α= b1 −1, β= b2 −1, γ= b3 −1, t= (n̂1 −m̂3)/m̂3.
∫ 1

0
dx xb1−1(1−x)b2−1

(

x+ n̂1−m̂3
m̂3

)b3−1

=
(

n̂1−m̂3
m̂3

)b3−1 Γ(b1)Γ(b2)
Γ(b1+b2) 2F1

[

b1,1−b3;b1 +b2;− m̂3
n̂1−m̂3

]

(2.55)

So, the three-point function is

Kred(n1,m3)|n1≥m3
≃Am̂2h3−1

3 (n̂1 −m̂3)h1+h2+h3−1
2F1

[

b1,1−b3;2h3;− m̂3
n̂1−m̂3

]

. (2.56)

In chiral theory, P 0 =E=P 1 and E=P 1 = J/R, so under large volume limit,

P+
i =P+

1 =
2J1

R
=

2(n1 +h1)

R
≃ 2n̂1 (2.57)

P+
o =P+

2 =
2J2

R
=

2(n2 +h2)

R
≃ 2(m̂3 − n̂1) (2.58)

P+
f =P+

3 =
2J3

R
=

2(n3 +h3)

R
= −2(m3 +h3)

R
≃ −2m̂3. (2.59)

In this case, Pi ≥ 0, Po ≤ 0, Pf ≤ 0. And hi = h̃i = ∆i/2 for i= 1,2,3. We can write the

three-point function in terms of Pi, Po, Pf as

Kred(n1,m3)|P+
i

≥−P+
f

≃ λ321(R/2)h1+h2+h3−2

Γ(∆f )Γ(h1+h2−h3) (|P+
f |)∆f −1(|P+

0 |)
∆i+∆0−∆f

2
−1

2F1

[

∆f +∆o−∆i

2 ,
∆f +∆̃o−∆i

2 ;∆f ;−P+
f

P+
o

]

.

(2.60)
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Here, ∆̃o =D−∆o = 2−∆o. With Euler Identity 2F1[A,B;C;z] = (1−z)C−A−B
2F1[C−

A,C−B;C;z], we get

Kred(n1,m3)|P+
o ≤0 ≃ λ321(R/2)h1+h2+h3−2

Γ(∆f )Γ

(

∆i+∆o−∆f

2

)(|P+
f |)∆f −1(|P+

i |)∆i−1(|P+
0 |)

∆o−∆i−∆f

2

2F1

[

∆f −∆o+∆i

2 ,
∆f −∆̃o+∆i

2 ;∆f ;−P+
f

P+
o

]

.

(2.61)

Compare it to the P+
o ≤ 0 component of the chiral factor of the three-point function in

D= 2 of Gillioz’s formula. They are identical modulo the overall momentum-independent

and time-reversal-invariant prefactor. Our formula is consistent with results in infinite

volume under a large volume limit.

2.4 Some comments

Analytic continuation. We derived two-point functions by the WI method and direct

integral calculation. We derived three-point functions by straightforward Fourier trans-

form. Whether the conformal weights of operators are an integer or not is not essential in

the WI method, but it is vital in the direct integral calculation because cuts can appear

when the conformal weights are not an integer. Therefore, we must show that we can ana-

lytically extend the three-point function formula to the region where the conformal weights

are not integers. We summarize the detail of the discussion in the appendix. Here, we only

deal with an outline of the debate.

We can show that two and three-point functions are polynomials in conformal weight,

and the polynomial order is limited to a finite value by the number of excitations. Polyno-

mials of finite degree that agree at an infinite number of points are equal to each other, so

the three-point function formula, which we obtained by direct integral calculation, can be

extended analytically to the case where the conformal weights are not integers. For more

details, please see the appendix.

Four point function. We can construct a four-point function from the two- and three-

point functions in momentum space as in position space. One of the most important

features is that decomposing four-point functions into two- and three-point functions must

satisfy the conservation laws. We summarize the construction briefly.

As we can calculate the holomorphic and antiholomorphic parts independently, we

only focus on the four-point function of holomorphic operators. In usual CFT in position

space, we can calculate four-point functions by inserting an “intermediate state” between

the second and the third operators. It enables us to calculate the whole four-point function

with the data of three-point functions.

The procedure is the same in momentum space, but the conservation rule of J ≡n+s

restricts the intermediate state. Inserting the completeness relation (4.21) gives

〈O(4)
[J4]O

(3)
[J3]O

(2)
[J2]O

(1)
[J1]〉 =

∑

(5)

〈O(4)
[J4]O

(3)
[J3]O

(5)
[J1+J2]〉〈O

(5)
[−J1−J2]O

(2)
[J2]O

(1)
[J1]〉

〈O(5)
[−J1−J2]O

(5)
[J1+J2]〉

. (2.62)

Here, J1 +J2 +J3 +J4 = 0 must be satisfied for the four-point function not to vanish. The

sum is about conformal families. We will summarize its explicit calculation later.
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3 Main results in D = 3

Calculations in three-dimensional CFT proceed the same way as in two-dimensional CFT,

but some difficulties were absent in two-dimensional CFT. In two-dimensional CFT, fac-

torization made the analysis easier. In higher dimensional CFT, on the other hand, we

must perform a highly complicated calculation. In particular, the form of the three-point

function is complicated, and there is no closed description. We must calculate the three-

point function with recursion relations obtained from WI term by term. Nevertheless, the

momentum space description for higher dimensional CFT is compelling. One of the rea-

sons is that we only have to consider the contributions from primaries when we calculate

a four-point function. So, the structure of conformal blocks is straightforward.

3.1 Conformal generators and their action

We use a spherical coordinate system.

x= r sinθ cosφ, y= r sinθ sinφ, z= r cosθ (0 ≤φ< 2π,0 ≤ θ≤π) (3.1)

We now turn our attention to scalar operators to make the discussion simple. We can

make the same argument for operators with general spin. The actions of the conformal

generators on the scalar operator are as follows.

Px ·O ≡
(

sinθ cosφ
∂

∂r
+

cosθ cosφ

r

∂

∂θ
− sinφ

r sinθ

∂

∂φ

)

O (3.2)

Py ·O ≡
(

sinθ sinφ
∂

∂r
+

cosθ sinφ

r

∂

∂θ
+

cosφ

r sinθ

∂

∂φ

)

O (3.3)

Pz ·O ≡
(

cosθ
∂

∂r
− sinθ

r

∂

∂θ

)

O (3.4)

Kx ·O ≡
(

r2 sinθ cosφ
∂

∂r
−r cosθ cosφ

∂

∂θ
+r

sinφ

sinθ

∂

∂φ
+2∆r sinθ cosφ

)

O (3.5)

Ky ·O ≡
(

r2 sinθ sinφ
∂

∂r
−r cosθ sinφ

∂

∂θ
−r

cosφ

sinθ

∂

∂φ
+2∆r sinθ sinφ

)

O (3.6)

Kz ·O ≡
(

r2 cosθ
∂

∂r
+r sinθ

∂

∂θ
+2∆r cosθ

)

O (3.7)

Jx ·O ≡
(

−sinφ
∂

∂θ
− cosφ

tanθ

∂

∂φ

)

O (3.8)

Jy ·O ≡
(

cosφ
∂

∂θ
− sinφ

tanθ

∂

∂φ

)

O (3.9)

Jz ·O ≡ ∂

∂φ
O (3.10)

D ·O ≡
(

r
∂

∂r
+∆

)

O (3.11)

Spatially-integrated mode is defined as

Ol,m ≡
∫

dΩY ∗
l,m(θ,φ)O(r,θ,φ) (0 ≤ θ≤π,0 ≤φ< 2π,dΩ = dθdφsinθ). (3.12)
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We removed coefficient factors such as i to simplify the calculations. Yl,m is a spherical

harmonics, and Y ∗
l,m = (−1)mYl,−m is its complex conjugate. The actions of conformal

generators on the spatially integrated mode are as follows.

(Px+iPy)·Ol,m =D
P+

+
r Ol+1,m−1+D

P−
+

r Ol−1,m−1 (3.13)

D
P+

+
r = (−1)m−1

√

(2l+1)(2l+3)

(

l 1 l+1

0 0 0

)[√
2

(

l 1 l+1

−m 1 m−1

)

(

∂

∂r
−m−2

r

)

+

(

l 1 l+1

−m+1 0 m−1

)
√

(l+m)(l−m+1)

r

]

(3.14)

D
P−

+
r = (−1)m−1

√

(2l+1)(2l−1)

(

l 1 l−1

0 0 0

)[√
2

(

l 1 l−1

−m 1 m−1

)

(

∂

∂r
−m−2

r

)

+

(

l 1 l−1

−m+1 0 m−1

)
√

(l+m)(l−m+1)

r

]

(3.15)

(Px−iPy)·Ol,m =D
P+

−
r Ol+1,m+1+D

P−
−

r Ol−1,m+1 (3.16)

D
P+

−
r = (−1)m

√

(2l+1)(2l+3)

(

l 1 l+1

0 0 0

)[√
2

(

l 1 l+1

−m −1 m+1

)

(

∂

∂r
+
m+2

r

)

+

(

l 1 l+1

−m−1 0 m+1

)
√

(l−m)(l+m+1)

r

]

(3.17)

D
P−

−
r = (−1)m

√

(2l+1)(2l−1)

(

l 1 l−1

0 0 0

)[√
2

(

l 1 l−1

−m −1 m+1

)

(

∂

∂r
+
m+2

r

)

+

(

l 1 l−1

−m−1 0 m+1

)
√

(l−m)(l+m+1)

r

]

(3.18)

Pz ·Ol,m =DP+
z

r Ol+1,m+DP−
z

r Ol−1,m (3.19)

DP+
z

r = (−1)m
√

(2l+1)(2l+3)

(

l 1 l+1

0 0 0

)[(

l 1 l+1

−m 0 m

)

(

∂

∂r
−m−2

r

)

+
√

2

(

l 1 l+1

−m+1 −1 m

)
√

(l+m)(l−m+1)

r

]

(3.20)

DP−
z

r = (−1)m
√

(2l+1)(2l−1)

(

l 1 l−1

0 0 0

)[(

l 1 l−1

−m 0 m

)

(

∂

∂r
−m−2

r

)

+
√

2

(

l 1 l−1

−m+1 −1 m

)
√

(l+m)(l−m+1)

r

]

(3.21)

(Kx+iKy)·Ol,m =D
K+

+
r Ol+1,m−1+D

K−
+

r Ol−1,m−1 (3.22)

D
K+

+
r = (−1)m−1r2

√

(2l+1)(2l+3)

(

l 1 l+1

0 0 0

)[√
2

(

l 1 l+1

−m 1 m−1

)

(

∂

∂r
+

2∆+m−2

r

)

−
(

l 1 l+1

−m+1 0 m−1

)
√

(l+m)(l−m+1)

r

]

(3.23)
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D
K−

+
r = (−1)m−1r2

√

(2l+1)(2l−1)

(

l 1 l−1

0 0 0

)[√
2

(

l 1 l−1

−m 1 m−1

)

(

∂

∂r
+

2∆+m−2

r

)

−
(

l 1 l−1

−m+1 0 m−1

)
√

(l+m)(l−m+1)

r

]

(3.24)

(Kx−iKy)·Ol,m =D
K+

−
r Ol+1,m+1+D

K−
−

r Ol−1,m+1 (3.25)

D
K+

−
r = (−1)mr2

√

(2l+1)(2l+3)

(

l 1 l+1

0 0 0

)[√
2

(

l 1 l+1

−m −1 m+1

)

(

∂

∂r
− −2∆+m+2

r

)

−
(

l 1 l+1

−m−1 0 m+1

)
√

(l−m)(l+m+1)

r

]

(3.26)

D
K−

−
r = (−1)mr2

√

(2l+1)(2l−1)

(

l 1 l−1

0 0 0

)[√
2

(

l 1 l−1

−m −1 m+1

)

(

∂

∂r
− −2∆+m+2

r

)

−
(

l 1 l−1

−m−1 0 m+1

)
√

(l−m)(l+m+1)

r

]

(3.27)

Kz ·Ol,m =DK+
z

r Ol+1,m+DK−
z

r Ol−1,m (3.28)

DK+
z

r = (−1)mr2
√

(2l+1)(2l+3)

(

l 1 l+1

0 0 0

)[(

l 1 l+1

−m 0 m

)

(

∂

∂r
+

2∆+m−2

r

)

−
√

2

(

l 1 l+1

−m+1 −1 m

)
√

(l+m)(l−m+1)

r

]

(3.29)

DK−
z

r = (−1)mr2
√

(2l+1)(2l−1)

(

l 1 l−1

0 0 0

)[(

l 1 l−1

−m 0 m

)

(

∂

∂r
+

2∆+m−2

r

)

−
√

2

(

l 1 l−1

−m+1 −1 m

)
√

(l+m)(l−m+1)

r

]

(3.30)

(Jx+iJy)·Ol,m = i
√

(l+m)(l−m+1)Ol,m−1 (3.31)

(Jx−iJy)·Ol,m = i
√

(l−m)(l+m+1)Ol,m+1 (3.32)

Jz ·Ol,m = −imOl,m (3.33)

The 2-by-3 matrix in the above is the Wigner 3j symbol. We summarize it and the

derivation of the above expressions in the appendix.

3.2 Two-point function

The action of Jz on the operator mode implies the conservation law of m. So, we have the

following reduced form for the two-point function.

〈Ol2,m2(r2)Ol1,m1(r1)〉 = δ(m1 +m2)r−∆1
1 r−∆2

2 F l1,l2m1
(y)

(

y=
r1

r2

)

(3.34)
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We want to get the exact form of it. First, start from Jx± iJy WIs.

(Jx+ iJy) · 〈Ol2,m2(r2)Ol1,m1(r1)〉 (3.35)

= i
√

(l2 +m2)(l2 −m2 +1)〈Ol2,m2−1Ol1,m1〉+ i
√

(l1 +m1)(l1 −m1 +1)〈Ol2,m2Ol1,m1−1〉

= iδ(m1 +m2 −1)r−∆1
1 r−∆2

2 [
√

(l2 +m2)(l2 −m2 +1)F l1,l2m1
+
√

(l1 +m1)(l1 −m1 +1)F l1,l2m1−1]

When m2 = −m1 +1,

√

(l2 −m1 +1)(l2 +m1)F l1,l2m1
+
√

(l1 +m1)(l1 −m1 +1)F l1,l2m1−1 = 0. (3.36)

(Jx− iJy) · 〈Ol2,m2(r2)Ol1,m1(r1)〉 (3.37)

= i
√

(l2 −m2)(l2 +m2 +1)〈Ol2,m2+1Ol1,m1〉+ i
√

(l1 −m1)(l1 +m1 +1)〈Ol2,m2Ol1,m1+1〉

= iδ(m1 +m2 +1)r−∆1
1 r−∆2

2 [
√

(l2 −m2)(l2 +m2 +1)F l1,l2m1
+
√

(l1 −m1)(l1 +m1 +1)F l1,l2m1+1]

When m2 = −m1 −1,

√

(l2 +m1 +1)(l2 −m1)F l1,l2m1
+
√

(l1 −m1)(l1 +m1 +1)F l1,l2m1+1 = 0. (3.38)

Shifting (3.36) by m1 →m1 +1, we get

√

(l1 +m1 +1)(l1 −m1)F l1,l2m1
+
√

(l2 −m1)(l2 +m1 +1)F l1,l2m1+1 = 0. (3.39)

From (3.38) and (3.39), for −l1 ≤m1 ≤ l1 −1 −l2 ≤m2 ≤ l2 −1, we get

(l1 −m1)(l1 +m1 +1) = (l2 −m1)(l2 +m1 +1). (3.40)

As l1 ≥ 0 and l2 ≥ 0, we get l1 = l2 and

F l1,l2m1
+F l1,l2m1+1 = 0. (3.41)

These relations say that the two-point function has the following structure.

〈Ol2,m2(r2)Ol1,m1(r1)〉 = δ(m1 +m2)δ(l1 − l2)r−∆1
1 r−∆2

2 (−1)m1Gl1(y) (3.42)

where Gl1 =F l1,l20 . From Pz and the Kz WIs, we can find that it vanishes unless the

conformal dimensions of the two operators are the same. We summarize the detail of the

calculation in the appendix to get the exact form of Gl1 . From the WIs, we get the following

second-order differential equation.

d2

dy2
Gl(y)+

2∆y2 +2(∆−1)

y3 −y

d

dy
Gl(y)+

(∆+ l)(∆− l−1)

y2
Gl(y) = 0 (3.43)

The solution for it is

Gl ≡Kly
∆+l

(

∑

n=0

bl|ny
2n

)

=K0y
∆+l

(

∑

n=0

cl|ny
2n

)

(3.44)
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Kl =
Γ(3

2)

Γ(l+ 3
2)

Γ(∆+ l)

Γ(∆)
K0 (3.45)

bl|n =
Γ(∆+ l+n)Γ(∆− 1

2 +n)Γ(1)Γ(3
2 + l)

Γ(∆+ l)Γ(∆− 1
2)Γ(1+n)Γ(3

2 + l+n)
(3.46)

cl|n =
Γ(∆+ l+n)Γ(∆− 1

2 +n)Γ(1)Γ(3
2)

Γ(∆)Γ(∆− 1
2)Γ(1+n)Γ(3

2 + l+n)
. (3.47)

The normalization of operators determines the value of K0. We can always set it unity.

To see if the solution for the two-point function of scalar primaries is consistent with

the result in [45], we only have to focus on the form of (3.47). As we calculated in two-

dimensional CFT, with Stirling’s approximation, we get

cl|n =
1

Γ(∆)Γ(∆− 1
2)

Γ
(

R(E1−k1)+∆
2 − 1

2

)

Γ
(

R(E1+k1)+∆
2

)

Γ
(

R(E1−k1)−∆
2 +1

)

Γ
(

R(E1+k1)−∆
2 + 3

2

)

R→∞−−−−→ (k2)∆−3/2

Γ(∆)Γ(∆− 3
2 +1)

,

(3.48)

where k= (E1,k1) =
(

∆+l+2n
R , lR

)

. This is identical to the result (2.35) with d= 3 at infinite

volume calculated in the paper [45].

3.3 Three-point function

Finding the explicit closed formula for the three-point function is complicated. Of course,

we can perform direct integral calculations honestly, but the number of terms for that

expression is too large to handle.

On the other hand, the WI method implies that the number of terms in the formula

should be manageable. However, the WIs are too complicated to find a definitive solution.

We must get the exact solution term by term with recursion relations obtained from WIs.

First, consider the reduction of the three-point function. As the Jz WI implies the

conservation of m, we can write the three-point function as

〈Ol3,m3Ol2,m2Ol1,m1〉 ≡
∫

dΩ1

∫

dΩ2

∫

dΩ3Y
∗
l1,m1

Y ∗
l2,m2

Y ∗
l3,m3

〈O3O2O1〉

≡ δ(m1 +m2 +m3)r−∆1
1 r−∆2

2 r−∆3
3 F l1,l2,l3m1,m3

(y1,y3), (3.49)

where y1 ≡ r1/r2 and y3 ≡ r3/r2. Next, consider the Jx± iJy WIs.

Jx+ iJy :
√

(l3 +m3)(l3 −m3 +1)F l1,l2,l3m1,m3−1 +
√

(l2 +m1 +m3)(l2 −m1 −m3 +1)F l1,l2,l3m1,m3

+
√

(l1 +m1)(l1 −m1 +1)F l1,l2,l3m1−1,m3
= 0

(3.50)

Jx− iJy :
√

(l3 −m3)(l3 +m3 +1)F l1,l2,l3m1,m3+1 +
√

(l2 −m1 −m3)(l2 +m1 +m3 +1)F l1,l2,l3m1,m3

+
√

(l1 −m1)(l1 +m1 +1)F l1,l2,l3m1+1,m3
= 0

(3.51)

They are related by conjugate transformation m1 → −m1 and m3 → −m3.
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The equations (3.50) and (3.51) imply that F l1,l2,l3m1,m3
and F l1,l2,l3m′

1,m
′
3

differ only by a constant

factor. The relation between F l1,l2,l3m1,m3
and F l1,l2,l3l1,−l3

is

F l1,l2,l3l1−n,−l3+k ≡ (−1)n+k

√

(2l1 −n)!(2l3 −k)!(l2 − l1 + l3)!(l2 + l1 − l3 +k−n)!

(2l1)!n!(2l3)!k!(l2 − l1 + l3 −k+n)!(l2 + l1 − l3)!
fn,kF

l1,l2,l3
l1,−l3

(3.52)

with

fn,k =
k
∑

l=0

(−1)l
k!n!(2l3 −k+ l)!(l2 + l1 − l3 +k− l)!(l2 − l1 + l3 +n−k)!

l!(k− l)!(n− l)!(2l3 −k)!(l2 + l1 − l3 −n+k)!(l2 − l1 + l3 −k+ l)!
. (3.53)

We summarize its derivation in the appendix. Now, we only have to consider F l1,l2,l3 ≡
F l1,l2,l3l1,−l3

because we can derive all F l1,l2,l3m1,m3
s from F l1,l2,l3 by using the above relation.

The WIs for a general F l1,l2,l3m1,m3
are very complicated. For example, the Px+ iPy WI for

a three-point function is

0 =

√

(l3−m3+1)(l3−m3+2)
(2l3+1)(2l3+3)

1

y3

[

y3
d

dy3
−∆3 + l3 +2

]

F l1,l2,l3m1,m3−1

−
√

(l3+m3−1)(l3+m3)
(2l3−1)(2l3+1)

1

y3

[

y3
d

dy3
−∆3 − l3 +1

]

F l1,l2,l3−1
m1,m3−1

−
√

(l2+m1+m3)(l1+m1+m3+1)
(2l2+1)(2l2+3)

[

y1
d

dy1
+y3

d

dy3
+∆2 − l2 −2

]

F l1,l2+1,l3
m1,m3

+

√

(l2−m1−m3)(l2−m1−m3+1)
(2l2−1)(2l2+1)

[

y1
d

dy1
+y3

d

dy3
+∆2 + l2 −1

]

F l1,l2−1,l3
m1,m3

+

√

(l1−m1+1)(l1−m1+2)
(2l1+1)(2l1+3)

1

y1

[

y1
d

dy1
−∆1 + l1 +2

]

F l1+1,l2,l3
m1−1,m3

−
√

(l1+m1−1)(l1+m1)
(2l1−1)(2l1+1)

1

y1

[

y1
d

dy1
−∆1 − l1 +1

]

F l1−1,l2,l3
m1−1,m3

. (3.54)

We have similar WIs for Px− iPy, Pz, Kx± iKy and Kz. They are too complicated to

handle, but the reduction (3.52) helps us a little. For example, the Px+ iPy WI becomes

0 =
√

2l3+2
2l3+3

1

y3

[

y3
d

dy3
+∆3 − l3 −2

]

F l1,l2,l3+1

−
√

(l2+l1−l3)(l2+l1−l3+1)
(2l2+1)(2l2+3)

[

y1
d

dy1
+y3

d

dy3
−∆2 + l2 +2

]

F l1,l2+1,l3

+

√

(l2−l1+l3)(l2−l1+l3+1)
(2l2−1)(2l2+1)

[

y1
d

dy1
+y3

d

dy3
−∆2 − l2 +1

]

F l1,l2−1,l3

+

√

(2l1+2)(l2+l1−l3)(l2+l1−l3+1)(l2−l1+l3)(l2−l1+l3+1)
2(2l1+1)(2l1+3)

1

y1

[

y1
d

dy1
+∆1 − l1 −2

]

F l1+1,l2,l3

−
√

2l1
2l1+1

1

y1

[

y1
d

dy1
+∆1 + l1 −1

]

F l1−1,l2,l3 . (3.55)

We have similar WIs for Px− iPy, Pz, Kx± iKy, and Kz. However, they are still difficult

to handle as they are two-variable differential equations. Therefore, we use new notation

to get one-variable differential equations.

F l1,l2,l3 =
∑

p,q∈Z≥0

F l1,l2,l3(p,q) y∆1+l1+2p
1 y−∆3−l3−2q

3 =
∑

p∈Z≥0

K l1,l2,l3
p (y3)y∆1+l1+2p

1 (3.56)
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Substituting it for the WIs and comparing the coefficients for yk1 , we get one-variable

differential equations for K l1,l2,l3
p . Here, we focus on getting F 0,0,0. We list the differential

equations related to K0,0,0
p . K l1,l2,l3

p vanishes when p< 0.

0 = y3K
′000
p +K

′011
p +(∆1 +∆2 +2p)K000

p +
−∆3 +2

y3
K011
p +(2p+3)K110

p (3.57)

0 = y3K
′000
p +y2

3K
′011
p +(∆1 −∆2 +2p)K000

p +(∆3 −2)y3K
011
p +(2∆1 +2p−3)K110

p−1 (3.58)

0 =K
′000
p +y3K

′011
p − ∆3

y3
K000
p +(∆1 +∆2 +2p−2)K011

p −(2p+3)K101
p (3.59)

0 = y2
3K

′000
p +y3K

′011
p +∆3y3K

000
p +(∆1 −∆2 +2p+2)K011

p −(2∆1 +2p−3)K101
p−1 (3.60)

0 = y3K
′110
p −K

′101
p +(2p+2)K000

p+1 +
∆3 −2

y3
K101
p +(∆1 +∆2 +2p−1)K110

p (3.61)

0 = y3K
′110
p −y2

3K
′101
p +2(∆1 +p)K000

p −(∆3 −2)y3K
101
p +(∆1 −∆2 +2p+3)K110

p (3.62)

From (3.58) with p= 0 and (3.60) with p= 0, we get a second order differential equation.

y2
3(y2

3 −1)K
′′000
0 +2[∆3y

3
3 +(∆2 −∆1 −1)y3]K

′000
0

+[∆3(∆3 −1)y2
3 −(∆1 −∆2)(∆1 −∆2 +1)]K000

0 = 0
(3.63)

We can get the solution for this ODE assuming that K000
0 is an analytic function at y3 = 0.

K000
0 =

∞
∑

q=0

(∆1 −∆2 −∆3)!

(2q+1)!(∆1−∆2 −∆3 +1)!
y−∆3−2q

3 (3.64)

Substituting it for six ODEs (3.57)–(3.62), we get all K000
p , K011

p , K101
p and K110

p . The

procedure is as follows. First, substituting (3.64) for (3.58) with p= 0 and (3.60) with

p= 0, we get K011
0 . Substituting K000

0 and K011
0 for (3.57), (3.59) and (3.62) gives K101

0

and K110
0 . Next, we can get K000

1 by substituting K101
0 and K110

0 for (3.61). K001
1 can

be obtained from (3.58) or (3.60). K101
0 and K110

0 can be obtained from (3.57), (3.59)

and (3.62). In this way, we can get all K000
p , K011

p , K101
p and K110

p . We can guess from the

procedure that not all ODEs are needed to get the solutions.

The direct integral calculation is less helpful in this case. We summarize the detail

of the calculation in the appendix. Here, we only show the result for O(3)
0,0O(2)

0,0O(1)
0,0 and

compare it to that in the WI method.

∫

dΩ1

4π

∫

dΩ2

4π

∫

dΩ3

4π
〈O3O2O1〉 =λ321r

−∆1
1 r−∆2

2 r−∆3
3

∑

p,q∈Z≥0

F 000
(p,q)y

∆1+2p
1 y−∆3−2q

3 (3.65)

F 000
(p,q) has the following form.

F 000
(p,q) =

min(p,q)
∑

k=0

k
∑

j=0

p−k
∑

n=0

q−k
∑

l=0

Ak,j,n,l

∫

dΩ1

4π

∫

dΩ2

4π

∫

dΩ3

4π
Φ2n

12 Φ2l
23Φ2j

31

−
min(p−1,q−1)

∑

k=0

k
∑

j=0

p−k−1
∑

n=0

q−k−1
∑

l=0

Bk,j,n,l

∫

dΩ1

4π

∫

dΩ2

4π

∫

dΩ3

4π
Φ2n+1

12 Φ2l+1
23 Φ2j+1

31 (3.66)
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Ak,j,n,l =
22(j+n+l)

(2j)!(2n)!(2l)!(k−j)!(p−k−n)!(q−k−l)!
g12!g23!g31!

(g31−k−j)!(g12−p+k−n)!(g23−q+k−l)! (3.67)

Bk,j,n,l =
22(j+n+l)+3

(2j+1)!(2n+1)!(2l+1)!(k−j)!(p−k−n−1)!(q−k−l−1)!
g12!g23!g31!

(g31−k−j−1)!(g12−p+k−n)!(g23−q+k−l)!

(3.68)

where g12 ≡ (∆3 −∆1 −∆2)/2 and Φ12 ≡ sinθ1 sinθ2 cos(φ1 −φ2)+cosθ1 cosθ2. The prob-

lem is that this configuration has too many terms. At least, the number of the terms is

of the order of pq[min(p,q)]2. Moreover, we have not yet found a simple expression for
∫

dΩ1
∫

dΩ2
∫

dΩ3Φ2n
12 Φ2l

23Φ2j
31 and

∫

dΩ1
∫

dΩ2
∫

dΩ3Φ2n+1
12 Φ2l+1

23 Φ2j+1
31 . We would like to get

a valuable expression for three-point functions because we need to calculate more for con-

formal bootstrap in momentum space. This direct integral calculation result is not helpful

in that sense.

4 Applications

In this section, we show some examples of applications of the calculations in previous

sections. The ultimate goal is to compare the results of conformal bootstrap at finite

volume with those at infinite volume to see how the 1/R term comes into play, but this

has not been fully explored yet and will be left as an issue to be resolved in the future.

In this paper, we only deal with two types of test functions. The first is the delta

function, also used in the previous article [44]. The other one is the step-like function,

which helps us understand how to handle the step function.

In those cases, it is easy to derive bootstrap equations in momentum space. However,

we must consider contributions equally from all intermediate states, from the primary state

to the state with high energy.

On the other hand, it may be possible to suppress contributions from the intermediate

state with high energy if we choose a better test function. However, there is currently

a challenge in that it is difficult to do Fourier transforms for all but delta and step-like

functions. If we could succeed in finding a test function that is calculable and well-behaved

for summing up the intermediate state, that would be a better test function.

Though the delta function and step-like function are interesting enough to be studied,

searching for a better test function will be left as an issue to resolve.

4.1 Conformal bootstrap in momentum space for infinite volume

4.1.1 Conformal bootstrap equation

We review the Momentum-Space Bootstrap for Wightman functions at infinity volume in

brief. For more details, please check the paper [44]. The paper seems they use a test

function with support at coincident point σ2 =σ3, τ2 = τ3. It makes a problem when the

commutator of the second and the third operators have a singular term at the coincident

point. If we try to Fourier transform the commutation relation, including the singular

point, we must thoroughly consider the commutation relation of the second and third

operators. We leave this problem to future work.
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So instead of that, we use a test function with support only at spacelike points. Though

we deal with two-dimensional CFT in the following, the logic is parallel for general dimen-

sional CFT in infinite volume. In this part, the delta function represents Dirac’s delta

function.

First, let us consider the four-point function in infinite volume. We use σ and τ to

represent space and time coordinates. The microcausality condition says

〈0|O(4)(x4)[O(3)(x3),O(2)(x2)]O(1)(x1) |0〉 = 0 for x3 −x2 spacelike. (4.1)

It is inconvenient for Fourier transform since we have to integrate it over where x3 −x2 is

timelike. Instead, we adopt the following improved microcausality condition.

〈0|O(4)(σ4, τ4)[O(3)(σ3, τ3),O(2)(σ2, τ2)]O(1)(σ1, τ1) |0〉f(x3 −x2) = 0 (4.2)

Here, f(x) has support only for spacelike x. For example,

f(x3 −x2) = δ(σ3 −σ2 −a)δ(τ3 −τ2) (a 6= 0). (4.3)

With this test function, we get





4
∏

j=1

∫

d2xje
−iPj ·xj



〈0|O(4)[O(3),O(2)]O(1) |0〉δ(σ3 −σ2 −a)δ(τ3 −τ2)

=

∫

d2k

(2π)2
d2x2d2x3e

−i(P2·x2+P3·x3)eik·(x3−x2)e−iak1 〈0| Õ(4)(P4)[O(3),O(2)]Õ(1)(P1) |0〉

∝
∫

d2kd2x2d2x3e
−iak1−i(P2+k)·x2−i(P3−k)·x3 〈0| Õ(4)(P4)[O(3)(x3),O(2)(x2)]Õ(1)(P1) |0〉

=

∫

d2ke−iak1 〈0| Õ(4)(P4)[Õ(3)(P3 −k),Õ(2)(P2 +k)]Õ(1)(P1) |0〉

∝ δ2(
∑

i

Pi)

∫

d2Qe−iaQ1⟪Õ(4)(P4)[Õ(3)(−Q− P1+P4
2 ),Õ(2)(Q− P1+P4

2 )]Õ(1)(P1)⟫

≡ δ2(
∑

i

Pi)

∫

d2Qe−iaQ1 [W (P4,P1|Q)−W (P4,P1|−Q)]

= 0. (4.4)

The last equation does not automatically hold, and this gives non-trivial information as

the bootstrap equation. We defined Q= (Q0,Q1) ≡ (P2 −P3 +2k)/2.

Let us check whether this is satisfied by the four-point function in generalized free field

theory. In that case, the four-point function is given by multiplying two-point functions.

⟪φ̃(P4)φ̃(P3)φ̃(P2)φ̃(P1)⟫

= (2π)2
∑

(i,j,k)=(2,3,4)(3,2,4)(4,2,3)

δ2(P1 +Pi)⟪φ̃(Pk)φ̃(Pj)⟫⟪φ̃(Pi)φ̃(P1)⟫

=
(2π)6

24∆φ−2[Γ(∆φ)]4
(

4
∏

j=1

P 2
j )

∆φ−1

2 [
∑

j=2,3

δ2(P1 +Pj)+δ2(P1 +P4)Θ(P2+)Θ(P2−)] (4.5)
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So,

W (P4,P1|Q)−W (P4,P1|−Q)

=
(2π)6

24∆φ−2[Γ(∆φ)]4
(P 2

1 )∆φ−1δ2(P1 +P4)(Q2)∆φ−1[Θ(Q+)Θ(Q−)−Θ(−Q+)Θ(−Q−)].

(4.6)

As this is an odd function of Q0, (4.4) is actually satisfied.

As we substituted the form (4.5) to the Ward Identity, we do not get any constraint for

CFT data. This is only a check to ensure the validity of the bootstrap equations we have

obtained. In general, to get a constraint for CFT data, we should describe the four-point

function with OPE coefficients.

4.1.2 Other test functions for infinite volume

Let us consider other test functions. We define a step function as follows.

H(x) ≡



















0 if x< 0
1
2 if x= 0

1 if x> 0

(4.7)

This function has the following representation.

H(x) = 1−
∫ ∞

x
δ(y)dy (4.8)

In this paper, we define the delta function as having the following properties.

∫ ǫ

0
δ(x) =

∫ 0

−ǫ
δ(x) =

1

2
(0<ǫ) (4.9)

With this delta function, we have

H(x) = 1−
∫ ∞

x
dy

1

2π

∫ ∞

−∞
dkeiky = 1− 1

2π

∫ ∞

−∞
dk

∫ ∞

x
dyeiky. (4.10)

Introduce the convergence parameter ǫ.

H(x) = 1− 1

2π
lim
ǫ→0

∫ ∞

−∞
dk

∫ ∞

x
dyei(k+iǫ)y = 1+

1

2πi
lim
ǫ→0

∫ ∞

−∞
dk
ei(k+iǫ)x

k+ iǫ
(4.11)

The second term is −1 when x< 0, −1/2 when x= 0, and 0 when x> 0. We can check

it by complex analysis. When x> 0, we take the integral path in the upper semicircle.

As the contour surrounds no pole, the second term above is 0. When x< 0, we take the

integral path in the lower semicircle. In this case, the pole exists at k= −iǫ, which gives the

residue 1. Since we take the contour clockwise, a negative sign appears, and the second term

above is −1. When x= 0, we can close the contour in either the upper or lower semicircle.

In the former, the contour doesn’t enclose any poles, so only the integral contribution

of the arc portion exists. In total, the second term above is (−1)(πi)/(2πi) = −1/2. In
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σ3− σ2
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0.0
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1.0

1.5

τ 3
−
τ 2

Figure 1. The test function has support at the green region, including the boundary. The red area

represents the timelike region.

the latter, the contour encloses a pole at k= −iǫ. In total, the second term above is

(−1){(2πi)/(2πi)−(πi)/(2πi)} = −1/2. Both calculations yield the same result.

With this function, we can formulate various test functions. For example,

f(x3 −x2) =H((σ3 −σ2)−(τ3 −τ2)−1)H((σ3 −σ2)+(τ3 −τ2)−1)

=

[

1+
1

2πi
lim
ǫ1→0

∫ ∞

−∞
dk1

ei(k1+iǫ1)(σ3−σ2−τ3+τ2−1)

k1 + iǫ1

]

[

1+
1

2πi
lim
ǫ2→0

∫ ∞

−∞
dk2

ei(k2+iǫ2)(σ3−σ2+τ3−τ2−1)

k2 + iǫ2

]

. (4.12)

This test function has support for −(σ3 −σ2)+1 ≤ τ3 −τ2 ≤ (σ3 −σ2)−1, which is shown

in the figure 1. With this test function, we get





4
∏

j=1

∫

d2xje
−iPj ·xj



〈0|O(4)[O(3),O(2)]O(1) |0〉f(x3 −x2)

=





4
∏

j=1

∫

d2xje
−iPj ·xj





[

1+
1

2πi
lim
ǫ1→0

∫ ∞

−∞
dk1

ei(k1+iǫ1)(σ3−σ2−τ3+τ2−1)

k1 + iǫ1

]

[

1+
1

2πi
lim
ǫ2→0

∫ ∞

−∞
dk2

ei(k2+iǫ2)(σ3−σ2+τ3−τ2−1)

k2 + iǫ2

]

〈0|O(4)[O(3),O(2)]O(1) |0〉

= δ2(P1 +P2 +P3 +P4)
[

⟪Õ(4)(P4)[Õ(3)(P3),Õ(2)(P2)]Õ(1)(P1)⟫

+
1

2πi
lim
ǫ1→0

∫ ∞

−∞
dk1

e−i(k1+iǫ1)

k1 + iǫ1
⟪Õ(4)[Õ(3)(E3 −k1,p3 −k1),Õ(2)(E2 +k1,p2 +k1)]Õ(1)⟫

+
1

2πi
lim
ǫ2→0

∫ ∞

−∞
dk2

e−i(k2+iǫ2)

k2 + iǫ2
⟪Õ(4)[Õ(3)(E3 +k2,p3 −k2),Õ(2)(E2 −k2,p2 +k2)]Õ(1)⟫
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+

(

1

2πi

)2

lim
ǫ1→0

lim
ǫ2→0

∫ ∞

−∞
dk1

e−i(k1+iǫ1)

k1 + iǫ1

∫ ∞

−∞
dk2

e−i(k2+iǫ2)

k2 + iǫ2

⟪Õ(4)(P4)[Õ(3)(E3 −k1 +k2,p3 −k1 −k2),Õ(2)(E2 +k1 −k2,p2 +k1 +k2)]Õ(1)(P1)⟫].

(4.13)

We omitted ǫ1 and ǫ2 in the double brackets. Let us consider the four-point function of

generalized free field theory. Using the previous result (4.5), we get

δ(E2 +E3)δ(p2 +p3)



(
4
∏

j=1

P 2
j )

∆φ−1

2 [Θ(P2+)Θ(P2−)−Θ(P3+)Θ(P3−)]

+
1

2πi
lim
ǫ1→0

∫ ∞

−∞
dk1

e−i(k1+iǫ1)

k1 + iǫ1
(P 2

4 (P 2
3 +2k1(E3 −p3))(P 2

2 −2k1(E2 −p2))P 2
1 )

∆φ−1

2

[Θ(E2 +p2 +2k1)Θ(E2 −p2)−Θ(E3 +p3 −2k1)Θ(E3 −p3)]

+
1

2πi
lim
ǫ2→0

∫ ∞

−∞
dk2

e−i(k2+iǫ2)

k2 + iǫ2
(P 2

4 (P 2
3 −2k2(E3 +p3))(P 2

2 +2k2(E2 +p2))P 2
1 )

∆φ−1

2

[Θ(E2 +p2)Θ(E2 −p2 −2k2)−Θ(E3 +p3)Θ(E3 −p3 +2k2)]

+

(

1

2πi

)2

lim
ǫ1→0

lim
ǫ2→0

∫ ∞

−∞
dk1

e−i(k1+iǫ1)

k1 + iǫ1

∫ ∞

−∞
dk2

e−i(k2+iǫ2)

k2 + iǫ2
(P 2

4P
2
1 )

∆φ−1

2

{P 2
3 +2k1(E3 −p3)−2k2(E3 +p3)+4k1k2}

∆φ−1

2

{P 2
2 −2k1(E2 −p2)+2k2(E2 +p2)+4k1k2)}

∆φ−1

2

[Θ(E2 +p2 +2k1)Θ(E2 −p2 −2k2)−Θ(E3 +p3 −2k1)Θ(E3 −p3 +2k2)]] . (4.14)

Considering the delta functions, we get

P
2(∆φ−1)
2 [Θ(P2+)Θ(P2−)−Θ(−P2+)Θ(−P2−)]

+
1

2πi
lim
ǫ1→0

∫ ∞

−∞
dk1

e−i(k1+iǫ1)

k1 + iǫ1
(P 2

2 −2k1(E2 −p2))∆φ−1

[Θ(E2 +p2 +2k1)Θ(E2 −p2)−Θ(−E2 −p2 −2k1)Θ(−E2 +p2)]

+
1

2πi
lim
ǫ2→0

∫ ∞

−∞
dk2

e−i(k2+iǫ2)

k2 + iǫ2
(P 2

2 +2k2(E2 +p2))∆φ−1

[Θ(E2 +p2)Θ(E2 −p2 −2k2)−Θ(−E2 −p2)Θ(−E2 +p2 +2k2)]

+

(

1

2πi

)2

lim
ǫ1→0

lim
ǫ2→0

∫ ∞

−∞
dk1

e−i(k1+iǫ1)

k1 + iǫ1

∫ ∞

−∞
dk2

e−i(k2+iǫ2)

k2 + iǫ2

(P 2
2 −2k1(E2 −p2)+2k2(E2 +p2)+4k1k2)∆φ−1

[Θ(E2 +p2 +2k1)Θ(E2 −p2 −2k2)−Θ(−E2 −p2 −2k1)Θ(−E2 +p2 +2k2)]. (4.15)

Taking each integral path in the lower semicircle, we have residues at k1 = −iǫ1 and k2 =

−iǫ2. It vanishes as expected. Though we checked that the exact four-point function in

generalized field theory satisfies the bootstrap equation, it can constrain OPE data. We

skip the analysis here and leave the problem to future work.
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Direction

Figure 2. When we set the second operator at A and the third operator at B, they commute

because of the microcausality condition.

4.2 Conformal bootstrap in momentum space for finite volume

4.2.1 Conformal bootstrap equation

Consider the following four-point function.

〈0|O(4)(σ4, τ4)[O(3)(σ3, τ3),O(2)(σ2, τ2)]O(1)(σ1, τ1) |0〉 (4.16)

σ is a coordinate for spatial direction (−πR≤σ <πR) and τ is a coordinate for time

direction −∞<τ <∞. We summarize them as x= (x0,x1) = (τ,σ).

The microcausality condition says,

〈0|O(4)(σ4, τ4)[O(3)(σ3, τ3),O(2)(σ2, τ2)]O(1)(σ1, τ1) |0〉 = 0 for x3 −x2 spacelike.

(4.17)

As in the case of infinite volume, we adopt the following improved microcausality condition.

〈0|O(4)(σ4, τ4)[O(3)(σ3, τ3),O(2)(σ2, τ2)]O(1)(σ1, τ1) |0〉f(x3 −x2) = 0 (4.18)

Here, f(x) has support only for spacelike x (figure 2). For example,

f(x3 −x2) = δ(σ3 −σ2 −a)δ(τ3 −τ2) (0<a< 2πR). (4.19)

For this test function, we get
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



4
∏

j=1

∫

dxje
−iPj ·xj



〈0|O(4)[O(3),O(2)]O(1) |0〉δ(σ3 −σ2 −a)δ(τ3 −τ2)

∝
∫

d2x2d2x3e
−i(P2·x2+P3·x3)

∫

dk0e
−ik0(τ3−τ2)

∑

k1= Z

R

eik1(σ3−σ2−a) 〈0| Õ(4)[O(3),O(2)]Õ(1) |0〉

∝
∫

dk0





∏

j=2,3

∫

dx2
j





∑

k1= Z

R

e−i[ak1+(p2+k1)σ2+(p3−k1)σ3−(E2+k0)τ2−(E3−k0)τ3]

〈0| Õ(4)[O(3),O(2)]Õ(1) |0〉
= δ2(

∑

i

Pi)
∑

k0,k1

e−iak1⟪Õ(4)(P4)Õ(3) (E3 −k0,p3 −k1) ,Õ(2) (E2 +k0,p2 +k1)]Õ(1)(P1)⟫

= δ2(
∑

i

Pi)
∑

k0,k1

e−iak1⟪Õ(4)(P4)[Õ(3)(P3 −k),Õ(2)(P2 +k)]Õ(1)(P1)⟫

∝ δ2(
∑

i

Pi)
∑

Q0,Q1

e−iaQ1⟪Õ(4)(P4)[Õ(3)(−Q− P1+P4
2 ),Õ(2)(Q− P1+P4

2 )]Õ(1)(P1)⟫

≡ δ2(
∑

i

Pi)
∑

Q0,Q1

e−iaQ1 [W (P4,P1|Q)−W (P4,P1|−Q)]

= 0. (4.20)

The last equation does not automatically hold, and this gives non-trivial information as

the bootstrap equation. We defined Q= (Q0,Q1) ≡ (P2 −P3 +2k)/2. The value of Q0 and

Q1 depends on the theory and the boundary conditions of “in-state” and “out-state.” Let

us see the situation next.

4.2.2 Completeness relation

We need to insert a completeness relation between the second and the third operators to

calculate the four-point function. In previous papers, it is constructed in momentum space

in an infinite volume [44, 46–48]

✶= |0〉〈0|+
∑

ψ 6=✶

∫

ddp

(2π)d
Θ(p0)Θ(p2)

∣

∣

∣ψ̃(p)
〉〈

ψ̃(p)
∣

∣

∣

⟪ψ̃(−p)ψ̃(p)⟫
, (4.21)

where

∣

∣

∣ψ̃(p)
〉

=

∫

ddxe−ip·xψ(x) |0〉 ,
〈

ψ̃(p)
∣

∣

∣=
〈

ψ̃(p)
∣

∣

∣

†
= 〈0| ψ̃(−p). (4.22)

The point is that in higher dimensional CFT, we only have to consider the contributions

from primaries because we can make all descendants acting Pµ on the primary state, which

are eigenstates of the momentum operator. So, only primary states can expand the com-

pleteness relation in momentum space.

On the other hand, in two-dimensional CFT, we also have to consider Virasoro de-

scendants because they include L−m (m≥ 2) in general.
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So, our goal is to construct completeness relations from the primary state and Virasoro

descendants. Moreover, we need to study the summation for momentum because it is

discrete in finite volume. The integral for momentum in (4.21) is replaced by
∑

p.

As correlation functions in two-dimensional CFT are factorized into the holomorphic

and antiholomorphic parts, we only have to consider the completeness relation for the

former. First, make a linear combination of almost orthogonal states with coefficients.

∑

J=h+Z≥0

∑

[{k}],[{k′}]

C
[{k}][{k′}]
J

∣

∣

∣L{k}φ[J ]

〉〈

L{k′}φ[J ]

∣

∣

∣

=C
[0][0]
h

∣

∣

∣φ[h]

〉〈

φ[h]

∣

∣

∣+C
[0][0]
h+1

∣

∣

∣φ[h+1]

〉〈

φ[h+1]

∣

∣

∣

+C
[0][0]
h+2

∣

∣

∣φ[h+2]

〉〈

φ[h+2]

∣

∣

∣+C
[2][2]
h+2

∣

∣

∣L−2φ[h+2]

〉〈

L−2φ[h+2]

∣

∣

∣

+C
[2][0]
h+2

∣

∣

∣L−2φ[h+2]

〉〈

φ[h+2]

∣

∣

∣+C
[0][2]
h+2

∣

∣

∣φ[h+2]

〉〈

L−2φ[h+2]

∣

∣

∣+ · · · (4.23)

Here, {k} = ki, · · · ,k1 (ki ≥ ·· · ≥ k1) means that the Virasoro operators act in the form

L−ki
· · ·L−k1 |h〉. Please note that L−1 does not appear in the above expression. They are

absorbed in the basis
∣

∣

∣φ[J ]

〉〈

φ[J ]

∣

∣

∣ as L−1 corresponds to a momentum operator.

Let us see how we can determine the coefficients C
[{k}][{k′}]
J from the demand that it

should correspond to a completeness relation. Before that, we need some preparation.

〈

φ[J]

∣

∣φ[J]

〉

=
1

(J−h)!2
〈h|LJ−h

1 LJ−h
−1 |h〉 (4.24)

〈

L−mk
· · ·L−m1φ[J]

∣

∣φ[J]

〉

=
i

∑

k

j=1
mj

(J−h−∑k

i=1mi)!(J−h)!
〈h|Lm1

· · ·Lmk
L

J−h−

∑

k

j=1
mj

1 LJ−h
−1 |h〉

(4.25)

〈

φ[J]

∣

∣L−mk
· · ·L−m1φ[J]

〉

=
(−i)

∑

k

j=1
mj

(J−h)!(J−h−∑k

j=1mj)!
〈h|LJ−h

1 L
J−h−

∑

k

j=1
mj

−1 L−mk
· · ·L−m1 |h〉

(4.26)
〈

L−mk
· · ·L−m1

φ[J]

∣

∣L−nl
· · ·L−n1

φ[J]

〉

=
i

∑

k

j=1
mj (−i)

∑

l

j=1
nj

(J−h−∑k

j=1mj)!(J−h−∑l

j=1nj)!
〈h|Lm1

· · ·Lmk
L

J−h−

∑

k

j=1
mj

1 L
J−h−

∑

l

j=1
nj

−1 L−nl
· · ·L−n1

|h〉

(4.27)

Now we have everything, let us start from the level J =h. The demand that the above

expression should be the completeness relation means that the expression above is identity.

So, multiplying
〈

φ[h]

∣

∣

∣ from the left and
∣

∣

∣φ[h]

〉

from the right, we get

〈

φ[h]

∣

∣

∣φ[h]

〉

=C
[0][0]
h

〈

φ[h]

∣

∣

∣φ[h]

〉2
. (4.28)

For h 6= 0, it gives

C
[0][0]
h = 1. (4.29)
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Next, consider the level J =h+1. Sandwich the above expression between
〈

φ[h+1]

∣

∣

∣ and
∣

∣

∣φ[h+1]

〉

.

〈

φ[h+1]

∣

∣

∣φ[h+1]

〉

=C
[0][0]
h+1

〈

φ[h+1]

∣

∣

∣φ[h+1]

〉2
(4.30)

It gives

C
[0][0]
h+1 =

1

2h
. (4.31)

When the primary operator is identity, the level J =h+1 = 1 does not appear because the

vacuum is invariant under the action of L−1.

Nontriviality appears from the next level J =h+2. We have four parameters C
[0][0]
h+2 ,

C
[2][2]
h+2 , C

[2][0]
h+2 , C

[0][2]
h+2 and four equations obtained by sandwiching it between

〈

φ[h+2]

∣

∣

∣ or
〈

L−2φ[h+2]

∣

∣

∣ and
∣

∣

∣φ[h+2]

〉

or
∣

∣

∣L−2φ[h+2]

〉

. We get the following four equations.

h(2h+1) =h2(2h+1)2C
[0][0]
h+2 −3h2(2h+1)C

[2][0]
h+2 −3h2(2h+1)C

[0][2]
h+2 +(3h)2C

[2][2]
h+2 (4.32)

4h+ c
2 = (3h)2C

[0][0]
h+2 −3h(4h+ c

2)C
[2][0]
h+2 −3h(4h+ c

2)C
[0][2]
h+2 +(4h+ c

2)2C
[2][2]
h+2 (4.33)

−3h= −3h2(2h+1)C
[0][0]
h+2 +(4h+ c

2)h(2h+1)C
[2][0]
h+2 +(3h)2C

[0][2]
h+2 −3h(4h+ c

2)C
[2][2]
h+2

(4.34)

−3h= −3h2(2h+1)C
[0][0]
h+2 +(3h)2C

[2][0]
h+2 +(4h+ c

2)h(2h+1)C
[0][2]
h+2 −3h(4h+ c

2)C
[2][2]
h+2

(4.35)

They only sometimes have a solution. For example, when h= 1/2, c= 1/2, they become

the same equation.

1 =C
[0][0]
h+2 − 3

2
C

[2][0]
h+2 − 3

2
C

[0][2]
h+2 +

9

4
C

[2][2]
h+2 (4.36)

It is all constraint for them so that we can set C
[0][0]
h+2 = 1,C

[0][2]
h+2 =C

[2][0]
h+2 =C

[2][2]
h+2 = 0.

This corresponds to a energy operator ǫ in Ising model (M3, c= 1/2). The fact that

the above four equations are not linearly independent corresponds to the fact that the Kac

determinant [49] vanishes at level 2 for h= 1/2, c= 1/2.

Next, consider the case h= 3/2, c= 7/10. It is one of the operators in the Tricritical

Ising model [50]. We get C
[0][0]
h+2 = 127/357, C

[2][0]
h+2 = 30/119, C

[0][2]
h+2 = 30/119, C

[2][2]
h+2 = 40/119.

Of course, we can get eigenvectors, but it is not so useful for calculating the four-point

function.

✶= · · ·+
[

20

119

(

1+
128√
32449

)]2
∣

∣

∣

∣

∣

7+
√

32449

180

∣

∣

∣φ[h+2]

〉

+
∣

∣

∣L−2φ[h+2]

〉

∣

∣

∣

∣

∣

2

+

[

20

119

(

1− 128√
32449

)]2
∣

∣

∣

∣

∣

7−
√

32449

180

∣

∣

∣φ[h+2]

〉

−
∣

∣

∣L−2φ[h+2]

〉

∣

∣

∣

∣

∣

2

+ · · ·
(4.37)

Let us summarize the result. We can construct the completeness relation by determining

each coefficient C
[{k}][{k′}]
J by sandwiching it between in-states and out-states. As well
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known, the number of linearly independent states is determined by the number of a singular

vector. So we need to study the Kac determinant to construct the completeness relation.

We can write the four-point function as

〈O(4)
[J4]O

(3)
[J3]O

(2)
[J2]O

(2)
[J1]〉 =

∑

O(5)

〈O(4)
[J4]O

(3)
[J3]O

(5)
[J5]〉〈O

(5)
[−J5]O

(4)
[J2]O

(4)
[J1]〉

〈O(5)
[−J5]O

(5)
[J5]〉

(4.38)

where J5 =J1 +J2 = −J3 −J4 and
∣

∣

∣O(5)
[J5]

〉

is an orthogonal states at the level J5.

In the bootstrap calculation, we start by considering intermediate states at J = 0 and

increase the number of J . By viewing the intermediate states at a higher level, we can

improve the accuracy of constraint for CFT.

4.2.3 Nontriviality

The question is whether or not the bootstrap equation (4.20) can restrict the OPE data

for some CFT. In other words, is (4.20) satisfied regardless of the details of OPE data?

Let us consider this issue.

As an example, consider the four-point function of the identical operator φ with confor-

mal weight (hφ, h̃φ) = ((∆φ+sφ)/2,(∆φ−sφ)/2). When we compute the four-point func-

tion, many contributions from conformal families are inserted between the second and the

third operators. We call the contribution from the OPE O ∈φ×φ “O conformal block.”

And we write the O conformal block in W (P4,P1|Q) as WO(P4,P1|Q).

The O conformal block includes all contributions from the conformal family of O. So,

there are Virasoro descendants in the intermediate state. We call the contribution from the

intermediate state
∣

∣

∣O[J ]

〉〈

O[J ]

∣

∣

∣ “O primary conformal block” and write it as WP
O (P4,P1|Q).

We call the contribution from other intermediate states such as
∣

∣

∣L−mk
· · ·O[J ]

〉〈

L−mk
· · ·O[J ]

∣

∣

∣

“O Virasoro descendants conformal block” and write it as W V
O (P4,P1|Q). As

∣

∣

∣O[J ]

〉〈

O[J ]

∣

∣

∣

and
∣

∣

∣L−mk
· · ·L−m1O[J ]

〉〈

L−mk
· · ·L−m1O[J ]

∣

∣

∣ are not orthogonal basis at level J ,

WP
O (P4,P1|Q)+W V

O (P4,P1|Q) 6=WO(P4,P1|Q), in general.

If the sum of the difference of WO is 0 for each O contribution, the bootstrap equation

is trivially satisfied.

Bootstrap equation is trivially satisfied.

⇔
∑

Q0,Q1

e−iaQ1 [WO(P4,P1|Q)−WO(P4,P1|−Q)] = 0 for each O ∈φ×φ

We focus on the difference of O primary conformal block to see whether it is true.

∑

Q0,Q1

e−iaQ1 [WP
O (P4,P1|Q)−WP

O (P4,P1|−Q)] = 0 is satisfied or not?

Though there are many other contributions from O conformal block, to check whether this

is correct or not is enough because we can give the same logic for other contributions,
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including Virasoro descendants. We can write O primary conformal block as follows. O
has conformal weight (hO, h̃O) = ((∆O +sO)/2,(∆O −sO)/2).

WP
O (P4,P1|Q) =C(h,c)⟪φ̃[P4

E4

]φ̃[P3

E3

]Õ[P5

E5

]⟫⟪Õ[−P5

−E5

]φ̃[P2

E2

]φ̃[P1

E1

]⟫ (4.39)

The notation is defined by (A.88). The coefficient C(h,c) is determined by the conformal

weight of O and the central charge. It has a nontrivial configuration when some nonnegative

integers nL, nR, n
′
L, n

′
R, NL, NR exist such that the following relations hold.

P1 =nL−nR+sφ, E1 =nL+nR+∆φ (4.40)

P4 = −(n′
L−n′

R+sφ), E4 = −(n′
L+n′

R+∆φ) (4.41)

P5 =NL−NR+sO, E5 =NL+NR+∆O (4.42)

P2 = −nL+nR+NL−NR−sφ+sO, E2 = −nL−nR+NL+NR−∆φ+∆O (4.43)

P3 =n′
L−n′

R−NL+NR+sφ−sO, E3 =n′
L+n′

R−NL−NR+∆φ−∆O (4.44)

We can rewrite the last four equations as

Q0 ≡ E2 −E3

2
= −nL+nR+n′

L+n′
R

2
+NL+NR−∆φ+∆O (4.45)

Q1 ≡ P2 −P3

2
= −nL−nR+n′

L−n′
R

2
+NL−NR−sφ+sO. (4.46)

P2 +P3 and E2 +E3 equations are satisfied if P1, E1, P4, E4 equations are confident because

of the conservation law of energy and momentum.

We ignore the condition as we set P1, E1, P4, E4 conditions as “boundary” conditions

for each bootstrap equation. And P5, E5 conditions are satisfied if Q0, Q1 conditions are

satisfied. So, we only concentrate on Q0, Q1 conditions.
✓ ✏

Under the proper boundary conditions, WP
O (P4,P1|Q) has nontrivial configuration

when there are nonnegative integers NL and NR such that

Q0 ≡ E2 −E3

2
= −nL+nR+n′

L+n′
R

2
+NL+NR−∆φ+∆O =

E4 −E1

2
+NL+NR+∆O

(4.47)

Q1 ≡ P2 −P3

2
= −nL−nR+n′

L−n′
R

2
+NL−NR−sφ+sO =

P4 −P1

2
+NL−NR+sO.

(4.48)

✒ ✑
How about WP

O (P4,P1|−Q)?
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✓ ✏
Under the proper boundary conditions, WP

O (P4,P1|−Q) has nontrivial configuration

when there are nonnegative integers N ′
L and N ′

R such that

−Q0 ≡ E3 −E2

2
= −nL+nR+n′

L+n′
R

2
+N ′

L+N ′
R−∆φ+∆O =

E4 −E1

2
+N ′

L+N ′
R+∆O

(4.49)

−Q1 ≡ P3 −P2

2
= −nL−nR+n′

L−n′
R

2
+N ′

L−N ′
R−sφ+sO =

P4 −P1

2
+N ′

L−N ′
R+sO.

(4.50)

✒ ✑
So, the contribution from the O primary conformal block in the equation is

∑

NL,NR≥0

[e−ia(
P4−P1

2
+NL−NR+sO) −eia(

P4−P1
2

+NL−NR+sO)]WP
O (P4,P1|NL,NR)

= −2i
∑

NL,NR≥0

sin

[

a

(P4 −P1

2
+NL−NR+sO

)]

WP
O (P4,P1|NL,NR).

(4.51)

As Q is characterized by nonnegative integers NL and NR, we write WP
O (P4,P1|NL,NR)

instead of WP
O (P4,P1|Q).

It does not vanish in general, meaning the bootstrap equation is nontrivial. To sum-

marize, the whole bootstrap equation is, for any a (0<a< 2π),

∑

Q0,Q1

e−iaQ1 [WO(P4,P1|Q)−WO(P4,P1|−Q)] = 0. (4.52)

4.2.4 Comments on contributions from Virasoro descendants

Next, consider contributions from intermediate states other than the O primary conformal

block. First, the three-point function of two chiral operators φ(z3), φ(z2) with conformal

weight h2 =h3 =hφ and L−nO(z1) with conformal weight h1 =hO +n is

〈φ(z3)φ(z2)(L−nO)(z1)〉 =
∑

j=2,3

[

(n−1)hφ
(zj −z1)n

− 1

(zj −z1)n−1

∂

∂zj

]

〈φ(z3)φ(z2)O(z1)〉. (4.53)

After acting the differential operator on the three-point function 〈φ(z3)φ(z2)O(z1)〉, we

perform integration by z1,z2,z3. Each term in the differential operators acts as if they

increase the conformal weights of the three operators. We can calculate the three-point

function with one Virasoro descendant by considering the three-point function of primaries

with changed conformal weights. For example,

(n−1)hφ
(z3 −z1)n

〈φ(z3)φ(z2)O(z1)〉 =
(n−1)hφ

(z1 −z2)h1+h2−h3(z2 −z3)h2+h3−h1(z3 −z1)h3+h1−h2+n
.

(4.54)
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So, it changes the conformal weight as follows.

h1 =hO →h′
1 =h1 +

n

2
=hO +

n

2
(4.55)

h2 =hφ →h′
2 =h2 =hφ (4.56)

h3 =hφ →h′
3 =h3 +

n

2
=hφ+

n

2
(4.57)

The differential operator −(z3 −z1)1−n∂z3 acts on (z2 −z3)−h2−h3+h1 and (z3 −z1)−h3−h1+h2 .

In the former,

h1 =hO →h′
1 =h1 +

n−1

2
=hO +

n−1

2
(4.58)

h2 =hφ →h′
2 =h2 +

1

2
=hφ+

1

2
(4.59)

h3 =hφ →h′
3 =h3 +

n

2
=hφ+

n

2
. (4.60)

In the latter,

h1 =hO →h′
1 =h1 +

n

2
=hO +

n

2
(4.61)

h2 =hφ →h′
2 =h2 =hφ (4.62)

h3 =hφ →h′
3 =h3 +

n

2
=hφ+

n

2
. (4.63)

So, there are four ways to change the conformal weights of operators.

(h1,h2,h3) → (h′
1,h

′
2,h

′
3) =































(h1 + n
2 ,h2 + n

2 ,h3)

(h1 + n
2 ,h2,h3 + n

2 )

(h1 + n−1
2 ,h2 + n

2 ,h3 + 1
2)

(h1 + n−1
2 ,h2 + 1

2 ,h3 + n
2 )

(4.64)

The three-point function vanishes for a fixed J3 if h3 becomes larger than −J3. We can use

those facts to calculate contributions from intermediate states other than the O primary

conformal block.

4.2.5 Formalism of bootstrap equation without Virasoro descendants

In this section, we summarize the formalism of the bootstrap equation without considering

the contribution of Virasoro descendants. It tells us some information about CFT data.

Let us consider the four-point function of identical operators Φ without spin (h, h̄) =

(hL,hR). Of course, there are many contributions from various intermediate states, but

here, we only consider the contributions from primary scalar states and their descendants.

We neglect Virasoro descendants.
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The intermediate state can be described by inserting primary operator Ψ with confor-

mal weight (h, h̄) = (HL,HR). So, the contribution from Ψ is

⟪Φ[P4

E4

]Φ[P3

E3

]Ψ[P5

E5

]⟫⟪Ψ[−P5

−E5

]Φ[P2

E2

]Φ[P1

E1

]⟫

⟪Ψ[−P5

−E5

]Ψ[P5

E5

]⟫

=

⟪φ[
J

(+)
4

J
(+)
4

]φ[
J

(+)
3

J
(+)
3

]ψ[
J

(+)
5

J
(+)
5

]⟫⟪ψ[
−J

(+)
5

−J
(+)
5

]φ[
J

(+)
2

J
(+)
2

]φ[
J

(+)
1

J
(+)
1

]⟫

⟪ψ[
−J

(+)
5

−J
(+)
5

]ψ[
J

(+)
5

J
(+)
5

]⟫
×(+ → −)

=
K(hL,hL,HL)

red (NL,n
′
L)K(HL,hL,hL)

red (nL,NL)
Γ(NL+2HL)

Γ(NL+1)Γ(2HL)

×(L→R).

(4.65)

We defined the factorization as Φ(z, z̄) ≡φ(z)φ̄(z̄) and Ψ(z, z̄) ≡ψ(z)ψ̄(z̄). Remember that

we can calculate the three-point function in the numerator as follows.

K(h3,h2,h1)
red (n,n′)

≡ 1
Γ(b1)Γ(b2)Γ(b3)

Min{n,n′}
∑

q=0

Γ(b3+q+Max{0,n−n′})Γ(b2−q+Min{n,n′})Γ(b1+q+Max{n′−n,0})
Γ(1+q+Max{0,n−n′})Γ(1−q+Min{n,n′})Γ(1+q+Max{n′−n,0})

(4.66)

where bi ≡h1 +h2 +h3 −2hi.

By determining the boundary condition (nL,nR,n
′
L,n

′
R), we get bootstrap equation.

(1) (nL,nR,n
′
L,n

′
R) = (0,0,0,0)

It does not give any nontrivial bootstrap equation because the phase factor in (4.51)

is antisymmetric for NL and NR though WP
Ψ (P4,P1|NL,NR) is symmetric.

(2) (nL,nR,n
′
L,n

′
R) = (1,0,0,0)

It gives us the first nontrivial bootstrap equation.

0 = −2hL(λΦΦ
✶

)2 sin a
2 +

∑

Ψ

(λΦΦ
Ψ )2

∑

NL,NR≥0

sin[a(−1
2 +NL−NR)]WΨ(NL,NR) (4.67)

where

WΨ(NL,NR) =
[HL(2hL−HL+1)+2hL(NL−1)]Γ(2HL)Γ(HL+NL)Γ(HL+NL−1)

(Γ(HL))2Γ(NL+2HL)Γ(NL+1)

Γ(2HR)(Γ(HR+NR))2

(Γ(HR))2Γ(NR+2HR)Γ(NR+1)
.

(4.68)

For example, when a=π,

0 = −2hL(λΦΦ
✶

)2 −
∑

Ψ

(λΦΦ
Ψ )2

∑

NL,NR≥0

(−1)NL+NRWΨ(NL,NR). (4.69)
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Conformal weight of intermediate state
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W

Contribution from conformal blocks of intermediate states

h=0.5

h=1.0

h=2.0

Figure 3. The horizontal axis represents the conformal weight of the intermediate state. We

calculated them for the four-point function of identical scalar operators with h= 0.5,1.0,2.0. We

can see that they give negative contributions for the intermediate state with a small conformal

weight, and on the other hand, they provide positive contributions above some conformal weight.

We can also write it by using the hypergeometric function.

0 = (λΦΦ
✶

)2W✶+
∑

Ψ

(λΦΦ
Ψ )2WΨ (4.70)

where W✶ = −2hL and

WΨ =2F1(HR,HR,2HR,−1)[hL2F1(HL,HL+1,2HL+1,−1)

+(HL−2hL)2F1(HL−1,HL,2HL,−1)].
(4.71)

We can calculate the conformal block for each intermediate state (figure 3). It includes all

contributions from each conformal family created by the primary scalar operator and the

action of L−1, but here we neglect the contributions from Virasoro descendants.

5 Conclusions and Discussion

Summary. In this paper, we have done the following:

• We formulated one of the conformal bootstrap equations in momentum space rep-

resentation at finite volume. We dealt with two-dimensional and three-dimensional

CFT, but this approach applies to CFTs with d> 3.
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• In two-dimensional CFT, factorization helps calculate momentum space’s two- and

three-point functions. We explained three methods to calculate them, direct integral

calculation, algebraic calculation, and WI method, though they are equivalent in

principle. The most valuable and fascinating approach is the WI method since this

applies to the Wightman function of operators with general conformal weight and

the higher-dimensional CFTs.

• On the other hand, three-dimensional CFT is a little tricky to handle. One of the

reasons is that the structure of the product of complete orthogonal basis, spherical

harmonics {Yl,m}, in three-dimensional CFT (S2 ×R) is more complicated than that,

{e−inθ}, in two-dimensional CFT (S1 ×R). Because of the reason, it was too diffi-

cult to find a general solution for WIs. We have to solve the differential equations

from (3.57) to (3.62) term by term with the computer.

• Taking large volume limit, we proved that the two-point function and the three-point

function we got at finite volume are consistent with the previous result [28, 44, 45, 51]

at infinite volume.

• The main ingredient of this paper is that we explicitly constructed conformal blocks

in two-dimensional CFT and showed how we could introduce bootstrap equations

in momentum space. We applied the bootstrap equation [44] obtained from mi-

crocausality condition in infinite volume to finite volume case. One of the exciting

properties of our formula is that we only have to take a discrete sum because of

the quantization of energy and momentum. It helps us calculate conformal blocks

analytically and numerically. We proved that our bootstrap equation is not satisfied

trivially, which means it could give us a constraint for CFT data.

Remaining challenges. We have some remaining challenges to be solved in the future.

• In two-dimensional CFT, the problem is how, to sum up the contributions from

Virasoro descendants. There is no exact result for summing them, so we have to

calculate them by computer.

• In three-dimensional CFT, we have technical problems. The most challenging issue

to be solved is we do not know the exact form of the three-point functions. We can

calculate them term by term with recursion relations obtained from WIs, but it needs

calculation by computer. If we could find the exact form, it would make it easier to

calculate conformal blocks in three-dimensional CFT.

• In three-dimensional CFT, in this paper, we only dealt with scalar primaries because

it is easy to handle. We have to consider various primaries with spin, but we can get

them similarly as we did for scalar primaries. The generalization of our result in this

paper is one of the remaining challenges, though it is not so hard.

Future research direction. We formulated the basis for the conformal bootstrap equa-

tion in momentum space at finite volume. We end our paper with a discussion of future

research directions.
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• One of the future approaches is to consider better test functions. In this paper, we

chose the delta function and step-like function as test functions because they are easy

to derive bootstrap equations. In that case, we had to consider many contributions

from the intermediate state, whose energy ranges from the lowest one to infinity. If we

set a smoother function as a test function, we might get better bootstrap equations in

which the contributions from an intermediate state with high energy are suppressed.

Considering many types of test functions is one of our future directions.

• This paper dealt with conformal bootstrap obtained from the microcausality condi-

tion. In the construction, we ignored the explicit form of the commutator by multiply-

ing the test function that has support only at spacelike region. On the other hand,

finding a concrete expression for the commutator is needed to find a valid, closed

bootstrap equation for the Wightman function by comparing (43)(21), (42)(31), and

(32)(41) channels. However, the commutator of the operators is not well-defined for

a non-free CFT, so we need to consider the commutator of the smeared operators for

time and space directions. This formulation has been constructed [52, 53] but has

yet to apply it to the conformal bootstrap equations fully. It is a desirable research

direction.
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A Supplement to two-dimensional CFT

A.1 Solution for the Ward Identities

Let us solve ODEs (2.13)–(2.16) obtained from WIs in two-dimensional CFT. Remember

that we used L0 and L̃0 WIs to determine the reduced form for the two-point function.

First, shift n by n→n−s1, and define Gn ≡Fn−s1 . We get

L−1 :

(

y
d

dy
−∆1 +n−s1 +1

)

Gn+1(y)+y

(

−y d

dy
−∆2 −n−s2

)

Gn(y) = 0 (A.1)

L̃−1 : y

(

−y d

dy
−∆2 +n+1+s2

)

Gn+1(y)+

(

y
d

dy
−∆1 −n+s1

)

Gn(y) = 0 (A.2)

L1 :

(

−y d

dy
+∆2 −n−1+s2

)

Gn+1(y)+y

(

y
d

dy
+∆1 +s1 +n

)

Gn(y) = 0 (A.3)

L̃1 : y

(

y
d

dy
+∆1 −s1 −n−1

)

Gn+1(y)+

(

−y d

dy
+∆2 +n−s2

)

Gn(y) = 0. (A.4)

Adding equations (A.1) and (A.3) gives

0 = 2(h2 −h1)[Gn+1(y)−yGn(y)]. (A.5)
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And adding equations (A.2) and (A.4) gives

0 = 2(h̃1 − h̃2)[yGn+1(y)−Gn(y)]. (A.6)

There are four possibilities.

(1) h1 6=h2, h̃1 6= h̃2 supported only at y= 1

(2) h1 =h2, Gn(y) = y−nG0(y)

(3) h̃1 = h̃2, Gn(y) = ynG0(y)

(4) h1 =h2, h̃1 = h̃2

The first solution is different from what we are looking for. Substituting the second solution

for (A.1) gives
d

dy
G0(y) = 2h

1+y2

y(1−y2)
G0(y). (A.7)

Solving them, we get

G0(y) ∝
(

y

|1−y|(1+y)

)2h

. (A.8)

So, the Wightman two-point function is

C(n1,n2, r1, r2) ∝ r−∆1
1 r−∆2

2 δ(n1 +n2 +s1 +s2)y−n1−s1

(

y

|1−y|(1+y)

)2h

. (A.9)

The second solution is wrong because it diverges when we take y to 0 for fixed r2. In the

same way, we can say that the third solution is wrong. So, we can conclude that h1 =h2 ≡h

and h̃1 = h̃2 ≡ h̃. Then we only have two independent equations.
(

y
d

dy
−2h+n+1

)

Gn+1(y)+y

(

−y d

dy
−2h−n

)

Gn(y) = 0 (A.10)

y

(

−y d

dy
−2h̃+n+1

)

Gn+1(y)+

(

y
d

dy
−2h̃−n

)

Gn(y) = 0 (A.11)

From them, we get

Gn+1 =
1

2h+2h̃−2n−2
[(y−1 −y)Ê−2hy−2h̃y−1 −(y+y−1)n]Gn (A.12)

Gn =
1

2h+2h̃+2n
[(y−1 −y)Ê−2hy−1 −2h̃y+(y+y−1)(n+1)]Gn+1. (A.13)

Let us fix n to solve it. The most reasonable choice is n= s=h− h̃.

Gs+1 =
1

2∆−2s−2
[(y−1 −y)(Ê+s)−(y−1 +y)(∆+s)]Gs (A.14)

Gs =
1

2∆+2s
[(y−1 −y)(Ê−s)+(y+y−1)(s+1−∆)]Gs+1 (A.15)

Combining them gives

G′′
s [y]+

(2∆+1)y2 +(2∆−1)

y3 −y
G′
s[y]+

(

∆2

y2
+

4s2

1−y2

)

Gs[y] = 0. (A.16)
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From unitarity, we can assume that Gs must be a discrete sum of the powers of y. And

small-y behavior of the solution are Gs(y) ∝ y∆. From these facts, we get the answer by

series expansion.

Gs[y] =Ksy
∆

∞
∑

l=0

cly
2l (A.17)

cl =
Γ(∆+s+ l)Γ(∆−s+ l)

Γ(∆+s)Γ(∆−s)Γ2(l+1)
(A.18)

Ks is an undetermined constant depending on the normalization of operators.

Now we get a solution for the primary state with spin s. Next, we derive a solution

for the excited (descendant) state. The recursion relation is

Gn+s+1 =
1

2∆−2s−2n−2
[(y−1 −y)(Ê+s)−(y−1 +y)(∆+s+n)]Gn+s. (A.19)

Assume that the solution has the following form.

Gn+s =Kn+sy
∆+n

∑

l≥0

bn+s|ly
2l =Ksy

∆+n
∑

l≥0

cn+s|ly
2l (A.20)

Kn+sbn+s|l =Kscn+s|l (A.21)

bs|l = cs|l = cl =
Γ(∆+s+ l)Γ(∆−s+ l)

Γ(∆+s)Γ(∆−s)Γ2(l+1)
(A.22)

bn+s|l=0 = 1 (A.23)

We use mathematical induction to get the solution.

(1) Calculation of Gs+1

G1+s =K1+sy
∆+1

∑

l≥0

b1+s|ly
2l (A.24)

=
1

2∆−2s−2

[

(1−y2)
d

dy
−y−1∆−y(2s+∆)

]

Ksy
∆
∑

l≥0

bs|ly
2l (A.25)

Picking up the coefficient of y∆+1 gives

K1+s = (∆+s)Ks. (A.26)

Picking up the coefficient of y∆+2l+1 gives

K1+sb1+s|l =
Ks

l+1

Γ(∆+s+ l+1)Γ(∆−s+ l)

Γ(∆+s)Γ(∆−s)Γ2(l+1)
. (A.27)

So, we get

b1+s|l =
Γ(∆+s+ l+1)Γ(∆−s+ l)

Γ(∆+s+1)Γ(∆−s)Γ(l+2)Γ(l+1)
(A.28)

c1+s|l =
K1+s

Ks
b1+s|l =

Γ(∆+s+ l+1)Γ(∆−s+ l)

Γ(∆+s)Γ(∆−s)Γ(l+2)Γ(l+1)
. (A.29)
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(2) Calculation of Gs+2

G2+s =K2+sy
∆+2

∑

l≥0

b2+s|ly
2l (A.30)

=
1

2∆−2s−4

[

(1−y2)
d

dy
−y−1(∆+1)−y(2s+∆+1)

]

K1+sy
∆+1

∑

l≥0

b1+s|ly
2l

(A.31)

Picking up the coefficient of y∆+2 gives

K2+s =
(∆+s)(∆+s+1)

2
Ks. (A.32)

Picking up the coefficient of y∆+2+2l gives

b2+s|l = 2
Γ(∆+s+ l+2)Γ(∆−s+ l)

Γ(∆+s+2)Γ(∆−s)Γ(l+3)Γ(l+1)
(A.33)

c2+s|l =
K2+s

Ks
b2+s|l =

Γ(∆+s+ l+2)Γ(∆−s+ l)

Γ(∆+s)Γ(∆−s)Γ(l+3)Γ(l+1)
. (A.34)

(3) General Gn+s

From (1) and (2), we can guess the form of general Gn+s.

Kn+s =
Γ(∆+s+n)

Γ(n+1)Γ(∆+s)
Ks (A.35)

bn+s|l =
Γ(1+n)Γ(∆+s+ l+n)Γ(∆−s+ l)

Γ(∆+s+n)Γ(∆−s)Γ(l+n+1)Γ(l+1)
(A.36)

cn+s|l =
Γ(∆+s+ l+n)Γ(∆−s+ l)

Γ(∆+s)Γ(∆−s)Γ(l+n+1)Γ(l+1)
(A.37)

We show it by mathematical induction. Picking up the coefficient of y∆+2+2l gives

Kn+s+1bn+s+1|l =
Kn+s

∆−s−n−1
[(l+1)bn+s|l+1 −(l+s+∆+n)bn+s|l]. (A.38)

From this, we obtain recursion relations for Kn+s, bn+s|l and cn+s|l.

Kn+s+1 =Kn+s

bn+s|l=1 −(∆+s+n)

∆−s−n−1
(A.39)

bn+s+1|l =
(l+1)bn+s|l+1 −(l+s+∆+n)bn+s|l

bn+s|l=1 −(∆+s+n)
(A.40)

cn+s+1 =
Kn+s+1

Ks
bn+s+1 (A.41)

When the configuration (A.35), (A.36) and (A.37) are valid for n,

Kn+s+1

=
Γ(∆+s+n)

Γ(n+1)Γ(∆+s)
Ks

1

∆−s−n−1

[

Γ(1+n)Γ(∆+s+1+n)Γ(∆−s+1)

Γ(∆+s+n)Γ(∆−s)Γ(n+2)Γ(2)
−(∆+s+n)

]

=
Γ(∆+s+n+1)

Γ(n+2)Γ(∆+s)
Ks (A.42)
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bn+s+1|l =

[

(l+1)
Γ(1+n)Γ(∆+s+ l+1+n)Γ(∆−s+ l+1)

Γ(∆+s+n)Γ(∆−s)Γ(l+n+2)Γ(l+2)
−

(l+s+∆+n)
Γ(1+n)Γ(∆+s+ l+n)Γ(∆−s+ l)

Γ(∆+s+n)Γ(∆−s)Γ(l+n+1)Γ(l+1)

]

[

Γ(1+n)Γ(∆+s+1+n)Γ(∆−s+1)

Γ(∆+s+n)Γ(∆−s)Γ(n+2)Γ(2)
−(∆+s+n)

]−1

=
Γ(2+n)Γ(∆+s+ l+n)Γ(∆−s+ l)

Γ(∆+s+n)Γ(∆−s)Γ(l+n+2)Γ(l+2)

(l+1)(∆+s+ l+n)(∆−s−n−1)

(∆+s+n)(∆−s−n−1)

=
Γ(2+n)Γ(∆+s+ l+n+1)Γ(∆−s+ l)

Γ(∆+s+n+1)Γ(∆−s)Γ(l+n+2)Γ(l+1)
(A.43)

cn+s+1|l =
Γ(∆+s+n+1)

Γ(n+2)Γ(∆+s)

Γ(2+n)Γ(∆+s+ l+n+1)Γ(∆−s+ l)

Γ(∆+s+n+1)Γ(∆−s)Γ(l+n+2)Γ(l+1)

=
Γ(∆+s+ l+n+1)Γ(∆−s+ l)

Γ(∆+s)Γ(∆−s)Γ(l+n+2)Γ(l+1)
. (A.44)

So, the configurations (A.35), (A.36) and (A.37) are also valid for n+1. By mathematical

induction, we get (A.35), (A.36) and (A.37) for positive integer n. In the same way, we

can also get the solution for negative n.

A.2 Direct integral calculation of three-point function

Let us perform the Fourier transform directly for the three-point function.

〈On3(r3)On2(r2)On1(r1)〉 =
1

(2πi)3

∮

dz3

z1+n3
3

∮

dz2

z1+n2
2

∮

dz1

z1+n1
1

λ321z
−b3
21 z−b1

32 z−b2
31 (A.45)

First, integrate it with respect to z1.

λ321

2πi

∮

dz1

z1+n1
1

z−b3
21 z−b1

32 z−b2
31 =

λ321

Γ(b3)Γ(b2)

n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)

Γ(1+k)Γ(1+n1 −k)
z−b3−k

2 z−b2−n1+k
3 z−b1

32

(A.46)

Next, define ω3 = 1/z3 and integrate it with respect to ω3. Under this transformation, the

contour integral around z= ∞ becomes contour integral around ω3 = 0.

1

2πi

∮

dz3

z1+n3
3

(A.46) =
1

2πi

∮

dω3

ω1+m3
3

λ321

Γ(b3)Γ(b2)

n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)

Γ(1+k)Γ(1+n1 −k)

z−b3−k
2 ωn1−k

3

(1−z2ω3)b1

(A.47)

Here, we defined m3 ≡ −n3 −2h3. There are two cases. m3 ≥n1 or m3 ≤n1.

(1) m3 ≤n1

(A.47) =
λ123

Γ(b3)Γ(b2)

n1
∑

k=n1−m3

Γ(b3+k)Γ(b2+n1−k)

Γ(1+k)Γ(1+n1−k)

Γ(b1+m3−n1+k)

Γ(m3−n1+k+1)Γ(b1)
z−b3+m3−n1

2

(A.48)

So, the three-point function is

(A.45) =
δ
(

∑3
i=1(ni+hi)

)

λ123

Γ(b3)Γ(b2)Γ(b1)

n1
∑

k=n1−m3

Γ(b3 +k)Γ(b2 +n1 −k)

Γ(1+k)Γ(1+n1 −k)

Γ(b1 +m3 −n1 +k)

Γ(1+m3 −n1 +k)
.

(A.49)
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(2) m3 ≥n1

(A.47) =
λ123

Γ(b3)Γ(b2)

n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)

Γ(1+k)Γ(1+n1 −k)

Γ(b1 +m3 −n1 +k)

Γ(m3 −n1 +k+1)Γ(b1)
z−b3+m3−n1

2

(A.50)

So, the three-point function is

(A.45) =
δ
(

∑3
i=1(ni+hi)

)

λ123

Γ(b3)Γ(b2)Γ(b1)

n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)

Γ(1+k)Γ(1+n1 −k)

Γ(b1 +m3 −n1 +k)

Γ(1+m3 −n1 +k)
.

(A.51)

In the end, we get

(A.45) =
δ
(

∑3
i=1(ni+hi)

)

λ123

Γ(b3)Γ(b2)Γ(b1)

n1
∑

k=Max{0,n1−m3}

Γ(b3+k)Γ(b2+n1−k)

Γ(1+k)Γ(1+n1−k)

Γ(b1+m3−n1+k)

Γ(1+m3−n1+k)
.

(A.52)

Define a new variable q≡ k−Max{0,n1−m3}. Then, we get

〈On3(r3)On2(r2)On1(r1)〉 = δ(n1+n2+n3+h1+h2+h3)
λ321

Γ(b1)Γ(b2)Γ(b3)
(A.53)

Min{n1,m3}
∑

q=0

Γ[b3+q+Max{0,n1−m3}]Γ[b2−q+Min{n1,m3}]Γ[b1+q+Max{m3−n1,0}]

Γ[1+q+Max{0,n1−m3}]Γ[1−q+Min{n1,m3}]Γ[1+q+Max{m3−n1,0}]

It is valid for all integer n1 and m3, and invariant under the time-reversal transfor-

mation (n1 ⇔m3, b1 ⇔ b3).

A.3 Consistency check for three-point function

A.3.1 Ward Identities for three-point function

Define the complete Wightman three-point function as

C(n1,n2,n3, r1, r2, r3) ≡ 〈Õ(3)
n3

(r3)Õ(2)
n2

(r2)Õ(1)
n1

(r1)〉. (A.54)

We get a reduced three-point function using L0 ± L̃0 WIs.

C(n1,n2,n3) = r−∆1
1 r−∆2

2 r−∆3
3 δ(n1 +n2 +n3 +s1 +s2 +s3)F (n1,n3,y1,y3) (A.55)

with y1 ≡ r1
r2

and y3 ≡ r3
r2

. Next, consider Pz, Pz̄, K
z and K z̄ WIs.

Pz ·C(n1,n2,n3) = 0

=
1

2r3

(

r3
d

dr3
+n3 +1

)

C(n1,n2,n3 +1)+
1

2r2

(

r2
d

dr2
+n2 +1

)

C(n1,n2 +1,n3)

+
1

2r1

(

r1
d

dr1
+n1 +1

)

C(n1 +1,n2,n3) (A.56)

Kz ·C(n1,n2,n3) = 0

=
r3

2

(

r3
d

dr3
+n3 +4h3 −1

)

C(n1,n2,n3 −1)+
r2

2

(

r2
d

dr2
+n2 +4h2 −1

)

C(n1,n2 −1,n3)

+
r1

2

(

r1
d

dr1
+n1 +4h1 −1

)

C(n1 −1,n2,n3) (A.57)
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Pz̄ ·C(n1,n2,n3) = 0

=
1

2r3

(

r3
d

dr3
−n3 +1

)

C(n1,n2,n3 −1)+
1

2r2

(

r2
d

dr2
−n2 +1

)

C(n1,n2 −1,n3)

+
1

2r1

(

r1
d

dr1
−n1 +1

)

C(n1 −1,n2,n3) (A.58)

K z̄ ·C(n1,n2,n3) = 0

=
r3

2

(

r3
d

dr3
−n3 +4h̃3 −1

)

C(n1,n2,n3 +1)+
r2

2

(

r2
d

dr2
−n2 +4h̃2 −1

)

C(n1,n2 +1,n3)

+
r1

2

(

r1
d

dr1
−n1 +4h̃1 −1

)

C(n1 +1,n2,n3) (A.59)

Substitute the reduced form for WIs. We get

Pz Ward Identity : 0 =
1

y3

(

y3
d

dy3
+n3 −∆3 +1

)

F (n1,n3 +1,y1,y3)

+

(

−y1
d

dy1
−y3

d

dy3
−n1 −n3 −s1 −s3 −2h2

)

F (n1,n3,y1,y3)

+
1

y1

(

y1
d

dy1
+n1 −∆1 +1

)

F (n1 +1,n3,y1,y3) (A.60)

Pz̄ Ward Identity : 0 =
1

y3

(

y3
d

dy3
−n3 −∆3 +1

)

F (n1,n3 −1,y1,y3)

+

(

−y1
d

dy1
−y3

d

dy3
+n1 +n3 +s1 +s3 −2h̃2

)

F (n1,n3,y1,y3)

+
1

y1

(

y1
d

dy1
−n1 −∆1 +1

)

F (n1 −1,n3,y1,y3) (A.61)

Kz Ward Identity : 0 =y3

(

y3
d

dy3
+n3 +4h3 −∆3 −1

)

F (n1,n3 −1,y1,y3)

+

(

−y1
d

dy1
−y3

d

dy3
−n1 −n3 −s1 −s3 +2h2

)

F (n1,n3,y1,y3)

+y1

(

y1
d

dy1
+n1 +4h1 −∆1 −1

)

F (n1 −1,n3,y1,y3) (A.62)

Kz̄ Ward Identity : 0 =y3

(

y3
d

dy3
−n3 +4h̃3 −∆3 −1

)

F (n1,n3 +1,y1,y3)

+

(

−y1
d

dy1
−y3

d

dy3
+n1 +n3 +s1 +s3 +2h̃2

)

F (n1,n3,y1,y3)

+y1

(

y1
d

dy1
−n1 +4h̃1 −∆1 −1

)

F (n1 +1,n3,y1,y3). (A.63)

A.3.2 Reduction of Ward Identities for holomorphic three-point function

The relation between Kred(n1,m3) and F (n1,n3,y1,y3) is

Kred(n1,m3)rn1
1 rn2

2 rn3
3 = r−∆1

1 r−∆2
2 r−∆3

3 F (n1,n3,y1,y3). (A.64)

Remember that m3 is defined as m3 = −(n3 +2h3). Then,

F (n1,n3,y1,y3) = yn1+h1
1 yn3+h3

3 Kred(n1,m3). (A.65)
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For holomorphic operators, WIs for F (n1,n3,y1,y3) are

Pz Ward Identity : 0 =
1

y3

(

y3
d

dy3
+n3 −h3 +1

)

F (n1,n3 +1,y1,y3)

+

(

−y1
d

dy1
−y3

d

dy3
−n1 −n3 −h1 −h3 −2h2

)

F (n1,n3,y1,y3)

+
1

y1

(

y1
d

dy1
+n1 −h1 +1

)

F (n1 +1,n3,y1,y3) (A.66)

Pz̄ Ward Identity : 0 =
1

y3

(

y3
d

dy3
−n3 −h3 +1

)

F (n1,n3 −1,y1,y3)

+

(

−y1
d

dy1
−y3

d

dy3
+n1 +n3 +h1 +h3

)

F (n1,n3,y1,y3)

+
1

y1

(

y1
d

dy1
−n1 −h1 +1

)

F (n1 −1,n3,y1,y3) (A.67)

Kz Ward Identity : 0 =y3

(

y3
d

dy3
+n3 +3h3 −1

)

F (n1,n3 −1,y1,y3)

+

(

−y1
d

dy1
−y3

d

dy3
−n1 −n3 −h1 −h3 +2h2

)

F (n1,n3,y1,y3)

+y1

(

y1
d

dy1
+n1 +3h1 −1

)

F (n1 −1,n3,y1,y3) (A.68)

Kz̄ Ward Identity : 0 =y3

(

y3
d

dy3
−n3 −h3 −1

)

F (n1,n3 +1,y1,y3)

+

(

−y1
d

dy1
−y3

d

dy3
+n1 +n3 +h1 +h3

)

F (n1,n3,y1,y3)

+y1

(

y1
d

dy1
−n1 −h1 −1

)

F (n1 +1,n3,y1,y3). (A.69)

Substituting (A.65) for them gives the following relations.

Pz : 0 = (n3 +1)Kred(n1,n3 +1)−(h1 +h2 +h3 +n1 +n3)Kred(n1,n3)

+(n1 +1)Kred(n1 +1,n3) (A.70)

Pz̄ : satisfied trivially

Kz : 0 = (n3 +2h3 −1)Kred(n1,n3 −1)−(n1 +n3 +h1 +h3 −h2)Kred(n1,n3)

+(n1 +2h1 −1)Kred(n1 −1,n3) (A.71)

K z̄ : satisfied trivially

They are the reduced WIs for the holomorphic three-point function. All we have to do is

to check whether this Pz WI and Kz WI are satisfied.
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A.3.3 Consistency check

We have to prove the following equations. For reduced Pz WI, we get

0 = (n3 +1)
n1
∑

k=MAX{0,n1−m3+1}

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k−1)

−(n1 +n3 +h1 +h2 +h3)
n1
∑

k=MAX{0,n1−m3}

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

+(n1 +1)
n1+1
∑

k=MAX{0,n1−m3+1}

Γ(b3 +k)Γ(b2 +n1 +1−k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 +1−k)Γ(1+m3 −n1 +k−1)
. (A.72)

For reduced Kz WI, we get

0 = (2h3 +n3 −1)
n1
∑

k=MAX{0,n1−1−m3}

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k+1)

−(h1 −h2 +h3 +n1 +n3)
n1
∑

k=MAX{0,n1−m3}

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

+(2h1 +n1 −1)
n1−1
∑

k=MAX{0,n1−1−m3}

Γ(b3 +k)Γ(b2 +n1 −1−k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −1−k)Γ(1+m3 −n1 +k+1)
.

(A.73)

• (A-1) Pz WI for n1 +1 ≤m3

When n1 +1 ≤m3, r.h.s. of (A.72) is

(r.h.s. ) = (−m3 −b1 −b2 +1)
n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k−1)

−(n1 −m3 +b3)
n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

+(n1 +1)
n1+1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 +1−k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 +1−k)Γ(1+m3 −n1 +k−1)
. (A.74)

We call the first term (A), the second term (B), and the third term (C).

(A) = (−m3 −b1 −b2 +1)
n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k−1)

(B) = −(n1 −m3 +b3)
n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

(C) = (n1 +1)
n1+1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 +1−k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 +1−k)Γ(1+m3 −n1 +k−1)
(A.75)

Then, we get

(A) = −
n1
∑

k=0

(b1 +b2 +m3 −1)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k−1)
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= −
n1
∑

k=0

(m3 −n1 +k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(m3 −n1 +k+1)

−
n1
∑

k=0

(1+n1 −k)
Γ(b3 +k)Γ(b2 +n1 −k+1)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(2+n1 −k)Γ(m3 −n1 +k)
.

(A.76)

We call the first term (A-1) and the second (A-2). Then, we get

(r.h.s. ) = ((A−1)+(B))+((A−2)+(C))

=
Γ(b3+n1+1)Γ(b2)Γ(b1+m3)

Γ(1+n1)Γ(1)Γ(1+m3)
+

n1
∑

k=0

Γ(b3+k)Γ(b2+n1−k+1)Γ(b1+m3−n1+k−1)

Γ(k)Γ(2+n1−k)Γ(m3−n1+k)

−
n1
∑

k=0

(b3+k)
Γ(b3+k)Γ(b2+n1−k)Γ(b1+m3−n1+k)

Γ(1+k)Γ(1+n1−k)Γ(m3−n1+k+1)

=
Γ(b3+n1+1)Γ(b2)Γ(b1+m3)

Γ(1+n1)Γ(1)Γ(1+m3)
+

n1
∑

k=1

Γ(b3+k)Γ(b2+n1−k+1)Γ(b1+m3−n1+k−1)

Γ(k)Γ(2+n1−k)Γ(m3−n1+k)

−
n1+1
∑

k=1

Γ(b3+k)Γ(b2+n1−k+1)Γ(b1+m3−n1+k−1)

Γ(k)Γ(2+n1−k)Γ(m3−n1+k)

=
Γ(b3+n1+1)Γ(b2)Γ(b1+m3)

Γ(1+n1)Γ(1)Γ(1+m3)
− Γ(b3+n1+1)Γ(b2)Γ(b1+m3)

Γ(1+n1)Γ(1)Γ(1+m3)

= 0. (A.77)

The above calculation shows that Pz WI is satisfied for n1 +1 ≤m3.

• (A-2) Pz WI for n1 ≥m3 When n1 ≥m3, r.h.s. of (A.72) is

(r.h.s. ) = (−m3 −b1 −b2 +1)
n1
∑

k=n1−m3+1

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k−1)

−(n1 −m3 +b3)
n1
∑

k=n1−m3

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

+(n1 +1)
n1+1
∑

k=n1−m3+1

Γ(b3 +k)Γ(b2 +n1 +1−k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 +1−k)Γ(1+m3 −n1 +k−1)
.

(A.78)

We call the first term (D), the second term (E), and the third term (F).

(D) = (−m3 −b1 −b2 +1)
n1
∑

k=n1−m3+1

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k−1)

(E) = −(n1 −m3 +b3)
n1
∑

k=n1−m3

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

(F) = (n1 +1)
n1+1
∑

k=n1−m3+1

Γ(b3 +k)Γ(b2 +n1 +1−k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 +1−k)Γ(1+m3 −n1 +k−1)
(A.79)
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Then, we get

(D) = −
n1
∑

k=n1−m3+1

(m3 +b1 +b2 −1)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k−1)

= −
n1
∑

k=n1−m3+1

(m3 −n1 +k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

−
n1
∑

k=n1−m3+1

(1+n1 −k)
Γ(b3 +k)Γ(b2 +n1 −k+1)Γ(b1 +m3 −n1 +k−1)

Γ(1+k)Γ(1+n1 −k+1)Γ(1+m3 −n1 +k−1)
.

(A.80)

We call the first term (D-1) and the second (D-2). Then, we get

(r.h.s. ) = ((D−1)+(E))+((D−2)+(F))

= −(n1 −m3 +b3)
Γ(b3 +n1 −m3)Γ(b2 +m3)Γ(b1)

Γ(1+n1 −m3)Γ(1+m3)Γ(1)

−
n1
∑

k=n1−m3+1

(b3 +k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

+(n1 +1)
Γ(b3 +n1 +1)Γ(b2)Γ(b1 +m3)

Γ(1+n1 +1)Γ(1)Γ(1+m3)

+
n1−1
∑

k=n1−m3

(b3 +k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

= −Γ(b3 +n1 −m3 +1)Γ(b2 +m3)Γ(b1)

Γ(1+n1 −m3)Γ(1+m3)Γ(1)
+

Γ(b3 +n1 −m3 +1)Γ(b2 −m3)Γ(b1)

Γ(1+n1 −m3)Γ(1+m3)Γ(1)

+(n1 +1)
Γ(b3 +n1 +1)Γ(b2)Γ(b1 +m3)

Γ(1+n1 +1)Γ(1)Γ(1+m3)
−(b3 +n1)

Γ(b3 +n1)Γ(b2)Γ(b1 +m3)

Γ(1+n1)Γ(1)Γ(1+m3)

= 0. (A.81)

The above calculation shows that Pz WI is satisfied for n1 ≥m3.

• (B-1) Kz WI for n1 ≤m3

When n1 ≤m3, r.h.s. of (A.73) is

(r.h.s. ) = −(m3 +1)
n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k+1)

+(m3 −n1 +b1)
n1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

+(b2 +b3 +n1 −1)
n1−1
∑

k=0

Γ(b3 +k)Γ(b2 +n1 −1−k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −1−k)Γ(1+m3 −n1 +k+1)
.

(A.82)
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We call the first term (G), the second term (H), and the third term (I).

(I) =
n1−1
∑

k=0

(b2 +n1 −1−k)
Γ(b3 +k)Γ(b2 +n1 −1−k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −1−k)Γ(1+m3 −n1 +k+1)

+
n1−1
∑

k=0

(b3 +k)
Γ(b3 +k)Γ(b2 +n1 −1−k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −1−k)Γ(1+m3 −n1 +k+1)

=
n1−1
∑

k=0

(n1 −k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k+1)

+
n1−1
∑

k=0

(1+k)
Γ(b3 +k+1)Γ(b2 +n1 −1−k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k+1)Γ(1+n1 −1−k)Γ(1+m3 −n1 +k+1)

=
n1−1
∑

k=0

(n1 −k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k+1)

+
n1
∑

k=1

k
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)
(A.83)

We call the first term (I-1) and the second (I-2). Then, we get

(r.h.s. ) = ((I−1)+(G))+((I−2)+(H))

= −
n1−1
∑

k=0

(1+m3 −n1 +k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k+1)

−(m3 +1)
Γ(b3 +n1)Γ(b2)Γ(b1 +m3 +1)

Γ(1+n1)Γ(1)Γ(1+m3 +1)

+
n1
∑

k=1

(m3 −n1 +b1 +k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

+(m3 −n1 +b1)
Γ(b3)Γ(b2 +n1)Γ(b1 +m3 −n1)

Γ(1)Γ(1+n1)Γ(1+m3 −n1)

= −(1+m3 −n1)
Γ(b3)Γ(b2 +n1)Γ(b1 +m3 −n1 +1)

Γ(1)Γ(1+n1)Γ(2+m3 −n1)

+(m3 −n1 +b1)
Γ(b3)Γ(b2 +n1)Γ(b1 +m3 −n1)

Γ(1)Γ(1+n1)Γ(1+m3 −n1)

(m3 +b1)
Γ(b3 +n1)Γ(b2)Γ(b1 +m3)

Γ(1+n1)Γ(1)Γ(1+m3)

−(m3 +1)
Γ(b3 +n1)Γ(b2)Γ(b1 +m3 +1)

Γ(1+n1)Γ(1)Γ(1+m3 +1)

= 0. (A.84)

The above calculation shows that Kz WI is satisfied for n1 ≤m3.

• (B-2) Kz WI for n1 ≥m3 +1

When n1 ≥m3 +1, r.h.s. of (A.73) is

0 = −(m3 +1)
n1
∑

k=n1−1−m3

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k+1)
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+(m3 −n1 +b1)
n1
∑

k=n1−m3

Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

+(b2 +b3 +n1 −1)
n1−1
∑

k=n1−1−m3

Γ(b3 +k)Γ(b2 +n1 −1−k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −1−k)Γ(1+m3 −n1 +k+1)
.

(A.85)

We call the first term (J), the second term (K), and the third term (L).

(L) =
n1−1
∑

k=n1−m3−1

(n1 −k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k+1)

+
n1
∑

k=n1−m3

k
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)
(A.86)

We call the first term of this (L-1) and the second term (L-2). Then, we get

(r.h.s. ) = ((L−1)+(J))+((L−2)+(K))

= −
n1−1
∑

k=n1−m3

(1+m3 −n1 +k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k+1)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k+1)

−(m3 +1)
Γ(b3 +n1)Γ(b2)Γ(b1 +m3 +1)

Γ(1+n1)Γ(1)Γ(1+m3 +1)

+
n1
∑

k=n1−m3

(b1 +m3 −n1 +k)
Γ(b3 +k)Γ(b2 +n1 −k)Γ(b1 +m3 −n1 +k)

Γ(1+k)Γ(1+n1 −k)Γ(1+m3 −n1 +k)

= −(m3 +1)
Γ(b3 +n1)Γ(b2)Γ(b1 +m3 +1)

Γ(1+n1)Γ(1)Γ(1+m3 +1)
+(b1 +m3)

Γ(b3 +n1)Γ(b2)Γ(b1 +m3)

Γ(1+n1)Γ(1)Γ(1+m3)

= 0. (A.87)

The above calculation shows that Kz WI is satisfied for n1 ≥m3 +1.

Proof completed. Our formula for the three-point function satisfies Pz and Kz WIs.

So, our procedure is consistent with WIs.

A.4 Factorization method

This section summarizes the factorization method for the three-point function in two-

dimensional CFT. The same argument can be made for a two-point function.

A.4.1 Definitions of new modes

Let us define

O[J/R
L/R

]≡ Fourier component of O carrying momentum J
R and energy L

R . (A.88)

For a product C(z, z̄) ≡A(z)B̃(z̄) of a holomorphic local operator A(z) and an antiholo-

morphic local operator B̃(z̄), we have

C[J
L

]=A[J+L
2

J+L
2

]B̃[ J−L
2

− J−L
2

]. (A.89)
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Define a local ω-frame operator.

O{ω}(ω,ω̄) ≡
(

dz

dω

)h( dz̄

dω̄

)h̄

O(z, z̄) (A.90)

Here, z=Reiω/R, z̄=Re−iω̄/R and σ1 ≡σ≡ Re[ω], σ2 ≡ −τ ≡ Im[ω]. The Jacobian is

dz

dω
= i

z

R
= ieiω/R,

dz̄

dω̄
= −i z̄

R
= −ie−iω̄/R. (A.91)

So,

C{ω} = isR−∆eisσ1/Re−∆σ2/RC{z}. (A.92)

Now we would like to express our ω frame quantities as discrete sums of Fourier modes.

C{ω}(σ,t) =
∑

P,E

e−iPσ+iEtC[P
E

]=
∑

J,E

e−iJσ/R+iEt/RC[J
E

] (A.93)

We always have P = J/R. We will also call E ≡ER so E= E/R. The quantity E is dimen-

sionless and denotes the amount by which the operator raises or lowers the eigenvalue of

the dilatation generator ∆̂ ≡RH. It is not quantized in integer units however, except for

modes of a holomorphic or an antiholomorphic operator.

A.4.2 Correlators of spacetime fourier modes

Let us find correlators of the C[P
E

]. We have

〈0|C[P3

E3

]C[P2

E2

]C[P1

E1

] |0〉

= 〈0|A[
J

(+)
3

J
(+)
3

]A[
J

(+)
2

J
(+)
2

]A[
J

(+)
1

J
(+)
1

] |0〉 |
J

(+)

I
≡

1
2 (PI +EI )

〈0|B[
J

(−)
3

−J
(−)
3

]B[
J

(−)
2

−J
(−)
2

]B[
J

(−)
1

−J
(−)
1

] |0〉 |
J

(−)

I
≡

1
2 (PI −EI )

= δ(P1 +P2 +P3)δ(E1 +E2 +E3)Kred(nL,n
′

L)Kred(nR,n
′

R), (A.94)

where

nL =
1

2
(P1 +E1)−h1, nR = −1

2
(P1 −E1)− h̃1

n′
L = −1

2
(P3 +E3)−h3, n′

R =
1

2
(P3 −E3)− h̃3. (A.95)

All the nL,nR,n
′
L,n

′
R are nonnegative. So the minimum energies of the in-state and out-

state are when nL =nR =n′
L =n′

R = 0. Now define

l≡ min{nL,nR}, l′ ≡ min{n′
L,n

′
R}. (A.96)

Then, we get

E1 = ∆1 + |P1 −s1|+2l, E3 = ∆3 + |P3 −s3|+2l′. (A.97)

The interpretation of these equations is as follows. The energy in a conformal family is

minimized by the primary state. The primary state is the one for which P1 = s1 (for the
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in-state) or P3 = s3 (for the out-state), and for which the excitation energy within a given

momentum sector of the conformal family is as small as possible — namely zero. The

excitation energy (in units of 1/R as always, of course) within a given momentum sector of

the conformal family is the thing we’re calling 2l (for the in-state) or 2l′ (for the out-state).

Then, for a given momentum sector within a conformal family, the minimum energy is

∆1 + |P1 −s1| (for the in-state), or ∆3 + |P3 −s3| (for the out-state). Then, for a given

momentum-sector within a conformal family, the minimum energy is ∆1 + |P1 −s1| (for the

in-state), or ∆3 + |P3 −s3| (for the out-state).

A.5 Analytic continuation for conformal weight

A.5.1 New notation

To extend the domain of conformal weight, we need a new notation. Remember that Õn(r)

is defined as

Õn(r) ≡
∫

dθ

2π
On(r,θ)e−inθ. (A.98)

Let us rescale this mode so that it becomes dimensionless.

Õ{n} ≡ r−∆Õn(r) = r−h−h̃Õn(r) (A.99)

Using this new mode, we can write the actions of the conformal operators on the operator

as follows.

L−1 · Õ{n} =
1

2r
(Ê−h− h̃+n+1)Õ{n+1} (A.100)

L̃−1 · Õ{n} =
1

2r
(Ê−h− h̃−n+1)Õ{n−1} (A.101)

L0 · Õ{n} =
1

2
(Ê+h− h̃+n)Õ{n} (A.102)

L̃0 · Õ{n} =
1

2
(Ê−h+ h̃−n)Õ{n} (A.103)

L1 · Õ{n} =
r

2
(Ê+3h− h̃+n−1)Õ{n−1} (A.104)

L̃1 · Õ{n} =
r

2
(Ê−h+3h̃−n−1)Õ{n+1} (A.105)

where Ê is the differential operator Ê≡ r∂r. Next, define

Õ〈J〉 ≡ Õ{J−h+h̃}. (A.106)

Then, we get

L−1 · Õ〈J〉 =
1

2r
(Ê−2h+J+1)Õ〈J+1〉 (A.107)

L̃−1 · Õ〈J〉 =
1

2r
(Ê−2h̃−J+1)Õ〈J−1〉 (A.108)

L0 · Õ〈J〉 =
1

2
(Ê+J)Õ〈J〉 (A.109)

L̃0 · Õ〈J〉 =
1

2
(Ê−J)Õ〈J〉 (A.110)
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L1 · Õ〈J〉 =
r

2
(Ê+2h+J−1)Õ〈J−1〉 (A.111)

L̃1 · Õ〈J〉 =
r

2
(Ê+2h̃−J−1)Õ〈J+1〉. (A.112)

Next, expand this by r/R.

Õ〈J〉(r) =
∑

ǫ

Õ〈J,ε〉

(

r

R

)ε

(A.113)

For Õ〈J,ε〉, the actions of conformal generators are described as

L−1 · Õ〈J,ε〉 =
1

2R
(ε−2h+J+2)Õ〈J+1,ε+1〉 (A.114)

L̃−1 · Õ〈J,ε〉 =
1

2R
(ε−2h̃−J+2)Õ〈J−1,ε+1〉 (A.115)

L0 · Õ〈J,ε〉 =
1

2R
(ε+J)Õ〈J,ε〉 (A.116)

L̃−1 · Õ〈J,ε〉 =
1

2R
(ε−J)Õ〈J,ε〉 (A.117)

L1 · Õ〈J,ε〉 =
R

2
(ε+2h+J−2)Õ〈J−1,ε−1〉 (A.118)

L̃1 · Õ〈J,ε〉 =
R

2
(ε+2h̃−J−2)Õ〈J+1,ε−1〉. (A.119)

Define the variables ε̂± ≡ 1
2(ε±J), and rewrite the above equations in terms of them. We

define new mode as

Õ〈J,ε〉 = Õ[ ε+J
2
, ε−J

2
]. (A.120)

Then, we get

L−1 · Õ[ε̂+,ε̂−] =
1

R
(ε̂+ +1−h)Õ[ε̂++1,ε̂−] (A.121)

L̃−1 · Õ[ε̂+,ε̂−] =
1

R
(ε̂− +1− h̃)Õ[ε̂+,ε̂−+1] (A.122)

L0 · Õ[ε̂+,ε̂−] = ε̂+Õ[ε̂+,ε̂−] (A.123)

L̃0 · Õ[ε̂+,ε̂−] = ε̂−Õ[ε̂+,ε̂−] (A.124)

L1 · Õ[ε̂+,ε̂−] =R(ε̂+ −1+h)Õ[ε̂+−1,ε̂−] (A.125)

L̃1 · Õ[ε̂+,ε̂−] =R(ε̂− −1+ h̃)Õ[ε̂+,ε̂−−1]. (A.126)

Absorbing powers of R into conformal generator Lm →R−mLm gives

L−1 · Õ[ε̂+,ε̂−] = (ε̂+ +1−h)Õ[ε̂++1,ε̂−] (A.127)

L̃−1 · Õ[ε̂+,ε̂−] = (ε̂− +1− h̃)Õ[ε̂+,ε̂−+1] (A.128)

L0 · Õ[ε̂+,ε̂−] = ε̂+Õ[ε̂+,ε̂−] (A.129)

L̃0 · Õ[ε̂+,ε̂−] = ε̂−Õ[ε̂+,ε̂−] (A.130)

L1 · Õ[ε̂+,ε̂−] = (ε̂+ −1+h)Õ[ε̂+−1,ε̂−] (A.131)

L̃1 · Õ[ε̂+,ε̂−] = (ε̂− −1+ h̃)Õ[ε̂+,ε̂−−1]. (A.132)
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They can be summarized as

Lm · Õ[ε̂+,ε̂−] = [(h−1)m+ ε̂+]Õ[ε̂+−m,ε̂−] (A.133)

L̃m · Õ[ε̂+,ε̂−] = [(h̃−1)m+ ε̂+]Õ[ε̂+,ε̂−−m]. (A.134)

A.5.2 Two-point function

Let us analyze the two-point function again. First, define

Y2[h, h̃|ε̂+, ε̂−] ≡ 〈0| Õ[−ε̂+,−ε̂−]Õ[ε̂+,ε̂−] |0〉 . (A.135)

Let us calculate the commutator of L−1 and Õ[−ε̂+,−ε̂−]Õ[ε̂+−1,ε̂−].

0 = 〈0|
[

L−1,Õ[−ε̂+,−ε̂−]Õ[ε̂+−1,ε̂−]

]

|0〉
= [1−h− ε̂+]〈0| Õ[1−ε̂+,−ε̂−]Õ[ε̂+−1,ε̂−] |0〉+[ε̂+ −h]〈0| Õ[−ε̂+,−ε̂−]Õ[ε̂+,ε̂−] |0〉
= [1−h− ε̂+]Y2[h, h̃|ε̂+ −1, ε̂−]+[ε̂+ −h]Y2[h, h̃|ε̂+, ε̂−] (A.136)

So, we have

Y2[h, h̃|ε̂+, ε̂−] =
ε̂+ +h−1

ε̂+ −h
Y2[h, h̃|ε̂+ −1, ε̂−]. (A.137)

Shifitng ε̂+ by 1 gives

Y2[h, h̃|ε̂+ +1, ε̂−] =
ε̂+ +h

ε̂+ −h+1
Y2[h, h̃|ε̂+, ε̂−]. (A.138)

Similarly, the L̃−1 identity gives

Y2[h, h̃|ε̂+, ε̂− +1] =
ε̂− + h̃

ε̂− − ĥ+1
Y2[h, h̃|ε̂+, ε̂−]. (A.139)

In terms of nL and nR,

Y2[h, h̃|nL+1,nR] =
nL+2h

nL+1
Y2[h, h̃|nL,nR] (A.140)

Y2[h, h̃|nL,nR+1] =
nR+2h̃

nR+1
Y2[h, h̃|nL,nR]. (A.141)

To write this recursion relation simpler, we define

RY2[h, h̃,nL,nR] = Γ(nL+1)Γ(nR+1)Y2[h, h̃|nL,nR]. (A.142)

And in terms of it, we can write the recursion relations as

RY2[h, h̃,nL+1,nR] = (nL+2h)RY2[h, h̃,nL,nR] (A.143)

RY2[h, h̃,nL,nR+1] = (nR+2h̃)RY2[h, h̃,nL,nR]. (A.144)

From these recursion relations, we get

RY2[h, h̃,nL,nR] =
Γ(nR+2h)

Γ(2h)

Γ(nL+2h̃)

Γ(2h̃)
RY2[h, h̃,0,0]. (A.145)
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So,

Y2[h, h̃,nL,nR] =
Γ(nR+2h)

Γ(nL+1)Γ(2h)

Γ(nL+2h̃)

Γ(nR+1)Γ(2h̃)
RY2[h, h̃,0,0]. (A.146)

We can calculate RY2[h, h̃,0,0] with ease. And this has the same form as our result, for

example (2.24), in the main text. It is important to note that this result can be applied to

all pairs of real numbers except negative integers, (h, h̃).

A.5.3 Three-point function

In the same way, we can extend the domain of (h1, h̃1,h2, h̃2,h3, h̃3) in our formula for the

three-point function. First, define the three-point function as

Y3[h3,2,1, h̃3,2,1|ε̂+
3 , ε̂

+
1 , ε̂

−
3 , ε̂

−
1 ] ≡ 〈0| Õ(3)

[−ε̂+
3 ,−ε̂

−
3 ]

Õ(2)

[ε̂+
3 −ε̂+

1 ,ε̂
−
3 −ε̂−

1 ]
Õ(1)

[ε̂+
1 ,ε̂

−
1 ]

|0〉 . (A.147)

Commuting L−1 with Õ(3)

[−ε̂+
3 ,−ε̂

−
3 ]

Õ(2)

[ε̂+
3 −ε̂+

1 ,ε̂
−
3 −ε̂−

1 ]
Õ(1)

[ε̂+
1 −1,ε̂−

1 ]
and taking the vacuum expecta-

tion value give,

0 =[ε̂+
1 −h1]Y3[h3,2,1, h̃3,2,1|ε̂+

3 , ε̂
+
1 , ε̂

−
3 , ε̂

−
1 ]

+[ε̂+
3 − ε̂+

1 +1−h2]Y3[h3,2,1, h̃3,2,1|ε̂+
3 , ε̂

+
1 −1, ε̂−

3 , ε̂
−
1 ]

+[−ε̂3 +1−h3]Y3[h3,2,1, h̃3,2,1|ε̂+
3 −1, ε̂+

1 −1, ε̂−
3 , ε̂

−
1 ].

(A.148)

Next, commuting L1 with Õ(3)

[−ε̂+
3 ,−ε̂

−
3 ]

Õ(2)

[ε̂+
3 −ε̂+

1 ,ε̂
−
3 −ε̂−

1 ]
Õ(1)

[ε̂+
1 +1,ε̂−

1 ]
and taking the vacuum ex-

pectation value give,

0 =[ε̂+
1 +h1]Y3[h3,2,1, h̃3,2,1|ε̂+

3 , ε̂
+
1 , ε̂

−
3 , ε̂

−
1 ]

+[ε̂+
3 − ε̂+

1 −1+h2]Y3[h3,2,1, h̃3,2,1|ε̂+
3 , ε̂

+
1 +1, ε̂−

3 , ε̂
−
1 ]

+[−ε̂3 −1+h3]Y3[h3,2,1, h̃3,2,1|ε̂+
3 +1, ε̂+

1 +1, ε̂−
3 , ε̂

−
1 ].

(A.149)

In this case, each ε̂ can be written as

ε̂+
1 =n1,L+h1, ε̂−

1 =n1,R+ h̃1

ε̂+
3 =n3,L+h3, ε̂−

3 =n3,R+ h̃3. (A.150)

Then, we get

Y3[h3,2,1, h̃3,2,1|n3,L+1,n1,L+1,n3,R,n1,R]

=
n1,L−n3,L−h3 +h1 +h2 −1

n1,L+1
Y3[h3,2,1, h̃3,2,1|n3,L+1,n1,L,n3,R,n1,R]

+
n3,L+2h3

n1,L+1
Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R,n1,R]. (A.151)

And

Y3[h3,2,1, h̃3,2,1|n3,L+1,n1,L+1,n3,R,n1,R]

=
n3,L−n1,L−h1 +h3 +h2 −1

n3,L+1
Y3[h3,2,1, h̃3,2,1|n3,L,n1,L+1,n3,R,n1,R]

+
n1,L+2h1

n3,L+1
Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R,n1,R]. (A.152)
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In the same way, we can get the following two equations from WI for L̃−1 and L̃1.

Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R+1,n1,R+1]

=
n1,R−n3,R− h̃3 + h̃1 + h̃2 −1

n1,R+1
Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R+1,n1,R]

+
n3,R+2h̃3

n1,R+1
Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R,n1,R] (A.153)

Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R+1,n1,R+1]

=
n3,R−n1,R− h̃1 + h̃3 + h̃2 −1

n3,R+1
Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R,n1,R+1]

+
n1,R+2h̃1

n3,R+1
Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R,n1,R] (A.154)

And from unitarity, we have

Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R,n1,R] = 0 if n3,L< 0 or n1,L< 0 or n3,R< 0 or n1,R< 0.

(A.155)

From the recursion relations and the unitarity condition, we can get the three-point func-

tions for semi-positive integers (n3,L,n1,L,n3,R,n3,L). From here, we summarize how we

can extend the domain of (n3,L,n1,L,n3,R,n3,L).

First, fix n3,R =n1,R = 0 and derive all Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,0,0] values using re-

cursion relations (A.151) and (A.152). From (A.151) with n1,R =n3,R = 0 and n3,L = −1,

we get

Y3[h3,2,1, h̃3,2,1|0,n1,L+1,0,0] =
n1,L−h3 +h1 +h2

n1,L+1
Y3[h3,2,1, h̃3,2,1|0,n1,L,0,0]. (A.156)

From this relation, we can see that Y3[h3,2,1, h̃3,2,1|0,n1,L,0,0] is a n1,L-th degree polynomial

in h3,2,1. And from (A.152) with n1,R =n3,R = 0 and n1,L = −1, we get

Y3[h3,2,1, h̃3,2,1|n3,L+1,0,0,0] =
n3,L−h1 +h3 +h2

n3,L+1
Y3[h3,2,1, h̃3,2,1|n3,L,0,0,0]. (A.157)

From this relation, we can see that Y3[h3,2,1, h̃3,2,1|n3,L,0,0,0] is a n3,L-th degree polynomial

in h3,2,1.

Next, from (A.151) with n1,R =n3,R = 0 and n3,L = 0, we get

Y3[h3,2,1, h̃3,2,1|1,n1,L+1,0,0] =
n1,L−h3 +h1 +h2 −1

n1,L+1
Y3[h3,2,1, h̃3,2,1|1,n1,L,0,0]

+
2h3

n1,L+1
Y3[h3,2,1, h̃3,2,1|0,n1,L,0,0] (A.158)

When nL = 0, the first term on the r.h.s. is a quadratic polynomial in h1,2,3, and the second

term is a linear polynomial in h1,2,3, so the l.h.s. is a quadratic polynomial in h1,2,3.
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Figure 4. Prepare the arbitrarily normalized

initial value (green triangle) and unitary con-

dition (blue circle).

−2 −1 0 1 2 3 4
n1, L

−2

−1

0

1

2

3

4

n 3
,L

Figure 5. The recursion relation (A.151) with

n1,R =n3,R = 0 and n3,L = −1 gives three-point

function at horizontal axis.

When nL = 1, the first term on the r.h.s. is a cubic polynomial in h1,2,3, and the second

term is a quadratic polynomial in h1,2,3, so the l.h.s. is a cubic polynomial in h1,2,3.

In this way, we can determine all of Y3[h3,2,1, h̃3,2,1|1,n1,L,0,0] for n1,L ≥ 0. And

Y3[h3,2,1, h̃3,2,1|1,n1,L,0,0] is a n1,L+1-th polynomial in h1,2,3. Similarly, we can deter-

mine all of Y3[h3,2,1, h̃3,2,1|n3,L,1,0,0] for n3,L ≥ 0, and it is a polynomial in h1,2,3.

Mathematical induction on Min{n3,L,n1,L} shows that Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,0,0]

is a n1,L+n3,L-th polynomial in h3,2,1. In the antiholomorphic part, fixing the value of

(n3,L,n1,L), and using (A.153) and (A.154), we can perform mathematical induction simi-

larly.

The point is that all of Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R,n1,R] are determined by the fol-

lowings.

• The unitarity condition (A.155)

• The arbitrarily normalized initial value Y3[h3,2,1, h̃3,2,1|0,0,0,0]

• The left moving recursion relations (A.151) and (A.152), and the right moving recur-

sion relations (A.153) and (A.154). They are derived from the L±1 and the L̃±1 WIs

respectively.

And another important thing is that the three-point function is a polynomial in h1,2,3, and

its degree is not greater than n3,L+n1,L, and that the three-point function is a polynomial

in h̃1,2,3, and its degree is not greater than n3,R+n1,R.

The derivation from the recursion relations of all three-point functions is summarized in

the images. The horizontal axis represents n1,L and the vertical axis represents n3,L.

First, prepare the arbitrarily normalized initial value Y3[h3,2,1, h̃3,2,1|0,0,0,0], which is

green triangle in the figure 4. From the unitarity condition, three-point functions at blue

points vanish. At blue points, n1,L< 0 or n3L
< 0 is satisfied.

Next, from the recursion relation (A.151) with n1,R =n3,R = 0 and n3,L = −1, we can

get three-point functions at horizontal axis (figure 5). And in the same way, three-point
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Figure 6. The recursion relation (A.152) with

n1,R =n3,R = 0 and n1,L = −1 gives three-point

functions at vertical axis.
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Figure 7. The recursion ralation (A.151) with

n1,R =n3,R = 0 and n3,L = 0 gives three-point

functions at n3,L = 1.
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n 3
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Figure 8. The recursion ralation (A.152) with

n1,R =n3,R = 0 and n1,L = 0 gives three-point

functions at n1,L = 1.
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n1, L
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1

2

3

4

n 3
,L

Figure 9. We can get three-point functions at

all points.

functions at the vertical axis can be calculated from the recursion relation (A.152) with

n1,R =n3,R = 0 and n1,L = −1 (figure 6).

Recursion relation (A.151) with n1,R =n3,R = 0 and n3,L = 0 gives three-point functions

at n3,L = 1 (figure 7). And three-point functions at n1,L = 1 can be gotten in the same way

(figure 8).

Finally, we can get three-point functions for all integer pairs of (n1,L,n3,L,n1,R,n3,R)

(figure 9).

Next, consider an explicit solution for the three-point functions.

First, start from the pair of nonnegative integer conformal weight (h1,2,3, h̃1,2,3). In

these particular cases, the three-point function factorizes globally rather than just locally

into a product of a holomorphic and antiholomorphic three-point function. Fourier trans-

form of three-point functions also factorizes and can be calculated individually by contour

integration. We performed the contour integration in the previous appendix, and the result
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is

Y3[h3,2,1, h̃3,2,1|n3,L,n1,L,n3,R,n1,R]

=KY3(chiral)[h3,2,1|n3,L,n1,L]Y3(antichiral)[h̃3,2,1|n3,R,n1,R],

where K is an unfixed constant related to the OPE coefficient. The chiral part for

n1,L,n3,L ≥ 0 is

Y3(chiral)[h3,2,1|n3,L,n1,L] =
1

Γ(b1)Γ(b2)Γ(b3)

Min{n1,L,n3,L}
∑

q=0

Γ[b3+q+Max{0,n1,L−n3,L}]Γ[b2−q+Min{n1,L,n3,L}]Γ[b1+q+Max{n3,L−n1,L,0}]
Γ[1+q+Max{0,n1,L−n3,L}]Γ[1−q+Min{n1,L,n3,L}]Γ[1+q+Max{n3,L−n1,L,0}] , (A.159)

and 0 for otherwise. And the antichiral part for n1,R,n3,R ≥ 0 is

Y3(antichiral)[h̃3,2,1|n3,R,n1,R] =
1

Γ(b̃1)Γ(b̃2)Γ(b̃3)

Min{n1,R,n3,R}
∑

q=0

Γ[b̃3+q+Max{0,n1,R−n3,R}]Γ[b̃2−q+Min{n1,R,n3,R}]Γ[b̃1+q+Max{n3,R−n1,R,0}]
Γ[1+q+Max{0,n1,R−n3,R}]Γ[1−q+Min{n1,R,n3,R}]Γ[1+q+Max{n3,R−n1,R,0}] , (A.160)

and 0 for otherwise.

The contour integral derivation of (A.159) and (A.160) are only valid for a pair of

nonnegative integers (h3,2,1, h̃3,2,1).

We proved that any solution to the L±1 and L̃± WIs, which also satisfies the unitarity-

derived condition, is uniquely determined by the primary-to-primary three-point coefficient

Y3[h3,2,1, h̃3,2,1|0,0,0,0]. So what we have to do is only to prove that the formula (A.159)

and (A.160) actually satisfy the WIs for general conformal weights.

In the previous section, we proved that the formula satisfies WIs. We dealt with

positive integer conformal weights there, but we can use the same proof to show that WIs

are satisfied for general conformal weights because we didn’t use the fact that conformal

weights are positive integers there.

So the proof is completed. We can use our formula of the three-point function for

operators with general conformal weights, except for negative integers.

B Supplement to three-dimensional CFT

B.1 Wigner 3j symbol

The Wigner 3j symbol is a more symmetric form of Clebsch-Gordan coefficients.

(

l1 l2 l3
m1 m2 m3

)

≡ (−1)l1√
2l3 +1

〈l1,m1, l2,m2|l3,−m3〉 (B.1)

It has the following properties.
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(1) Symmetry.

It is symmetric under an even permutation, but the phase factor appears under an

odd permutation. For example,
(

l1 l2 l3
m1 m2 m3

)

=

(

l3 l1 l2
m3 m1 m2

)

=

(

l2 l3 l1
m2 m3 m1

)

(B.2)

(

l1 l2 l3
m1 m2 m3

)

= (−1)l1+l2+l3

(

l2 l1 l3
m2 m1 m3

)

= (−1)l1+l2+l3

(

l3 l2 l1
m3 m2 m1

)

. (B.3)

(2) Selection rule.

The 3j symbol is 0 unless all of the following conditions are met.

(A) m1 +m2 +m3 = 0 (B.4)

(B) l1 + l2 + l3 is an integer.

Moreover, an even integer if m1 =m2 =m3 = 0 (B.5)

(C) |mi| ≤ li (B.6)

(D) |l1 − l2| ≤ l3 ≤ |l1 + l2| (B.7)

(3) Relationship with spherical harmonics.

The 3j symbol is deeply related to the product of spherical harmonics.

Yl1,m1(θ,φ)Yl2,m2(θ,φ)

=

√

(2l1 +1)(2l2 +1)

4π

∞
∑

l=0

l
∑

m=−l

(−1)m
√

2l+1

(

l1 l2 l

m1 m2 −m

)(

l1 l2 l3
0 0 0

)

Yl,m(θ,φ)

(B.8)

The 3j symbols can be computed using the Racah formula.

(

l1 l2 l3
m1 m2 m3

)

= (−1)l1−l2−l3

√

(l1 + l2 − l3)!(l1 − l2 + l3)!(−l1 + l2 + l3)!

(l1 + l2 + l3 +1)!
√

(l1 +m1)!(l1 −m1)!(l2 +m2)!(l2 −m2)!(l3 +m3)!(l3 −m3)!

∑

k

(−1)k

k!(l3 − l2 +k+m1)!(l3 − l1 +k−m2)!(l1 + l2 − l3 −k)!(l1 −k−m1)!(l2 −k+m2)!

(B.9)

Though the formula above is a little complicated, we often use the following specific

simple case in this paper.
(

l1 l2 l1 + l2
m1 m2 −m1 −m2

)

= (−1)l1−l2+m1+m2

√

(2l1)!(2l2)!

(2l1 +2l2 +1)!

√

(l1 + l2 +m1 +m2)!(l1 + l2 −m1 −m2)!

(l1 +m1)!(l1 −m1)!(l2 +m2)!(l2 −m2)!

(B.10)
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Using them, we can calculate conformal generators’ action on spatially-integrated opera-

tors’ modes in three-dimensional CFT. Here, we show the calculation for Px+ iPy as an

example. We can get relations for other generators similarly.

(Px+ iPy) ·Ol,m =

∫

dΩY ∗
l,m(θ,φ)

[

sinθeiφ
∂

∂r
+

cosθ

r
eiφ

∂

∂θ
+ i

eiφ

r sinθ

∂

∂φ

]

O(r,θ,φ) (B.11)

We calculate each term in (B.11) separately.

(First term)=

∫

dΩY ∗
l,m(θ,φ)sinθeiφ

∂

∂r
O(r,θ,φ)=−2

√

2π

3

∂

∂r

∫

dΩY ∗
l,mY1,1O (B.12)

(Second term)=

∫

dΩY ∗
l,m(θ,φ)

cosθ

r
eiφ

∂

∂θ
O(r,θ,φ)

=
1

r

∫

dθdφ

[

−cos2θY ∗
l,m+sin2θY ∗

l,m−sinθcosθ
∂

∂θ
Y ∗
l,m

]

eiφO

=
1

r

∫

dθdφ

[

−1+2sin2θ−cosθ{−mcosθ−sinθ
√

(l+m)(l−m+1)e−iφ}
]

Y ∗
l,me

iφO

=
m−1

r

∫

dθdφY ∗
l,me

iφO+
2(m−2)

r

√

2π

3

∫

dΩY ∗
l,mY1,1O

+
2
√

(l+m)(l−m+1)

r

√

π

3

∫

dΩY ∗
l,m−1Y1,0O (B.13)

(Third term)=

∫

dΩY ∗
l,m(θ,φ)

i

rsinθ
eiφ

∂

∂φ
O=−m−1

r

∫

dθdφY ∗
l,me

iφO (B.14)

In total,

(Px+ iPy) ·Ol,m

= 2

√

2π

3

(

m−2

r
− ∂

∂r

)∫

dΩY ∗
l,mY1,1O+2

√

π

3

√

(l+m)(l−m+1)

r

∫

dΩY ∗
l,m−1Y1,0O

(B.15)

We would like to write the action of Px+ iPy by a linear combination of modes of operators,

so let us apply the contraction rule to the product of spherical harmonics.

Y ∗
l,mY1,0 = (−1)m

√

3(2l+1)

4π

∞
∑

c=0

c
∑

γ=−c

(−1)γ
√

2c+1

(

l 1 c

−m 0 −γ

)(

l 1 c

0 0 0

)

Yc,γ (B.16)

From (B.5) and (B.7), only c= l±1 survive when l≥ 1, and only c= 1 survives when l= 0.

And from (B.4), only γ= −m survives.

Y ∗
l,mY1,0 =

√

3(2l+1)

4π

[√
2l+3

(

l 1 l+1

−m 0 m

)(

l 1 l+1

0 0 0

)

Yl+1,−m

+
√

2l−1

(

l 1 l−1

−m 0 m

)(

l 1 l−1

0 0 0

)

Yl−1,−m

]
(B.17)
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In the same way,

Y ∗
l,mY1,1 = −

√

3(2l+1)

4π

[√
2l+3

(

l 1 l+1

−m 1 m−1

)(

l 1 l+1

0 0 0

)

Yl+1,−m+1

+
√

2l−1

(

l 1 l−1

−m 1 m−1

)(

l 1 l−1

0 0 0

)

Yl−1,−m+1

]

.

(B.18)

By using the above contraction rule, we get the following relation.

(Px+iPy)·Ol,m = (−1)m−1
√

(2l+1)(2l+3)

(

l 1 l+1

0 0 0

)[√
2

(

l 1 l+1

−m 1 m−1

)

(

∂

∂r
−m−2

r

)

+

(

l 1 l+1

−m+1 0 m−1

)
√

(l+m)(l−m+1)

r

]

Ol+1,m−1

+(−1)m−1
√

(2l+1)(2l−1)

(

l 1 l−1

0 0 0

)[√
2

(

l 1 l−1

−m 1 m−1

)

(

∂

∂r
−m−2

r

)

+

(

l 1 l−1

−m+1 0 m−1

)
√

(l+m)(l−m+1)

r

]

Ol−1,m−1 (B.19)

We can get the actions of other conformal generators similarly.

B.2 Exact two-point function

We show the detail of the calculation of exact two-point function in three-dimensional CFT

by solving ODEs obtained from WIs. First, consider the Pz WI.

Pz · 〈Ol2,m2(r2)Ol1,m1(r1)〉

= (−1)m2

√

(2l2 +1)(2l2 +3)

(

l2 1 l2 +1

0 0 0

)[(

l2 1 l2 +1

−m2 0 m2

)

(

∂

∂r2
−m2 −2

r2

)

+
√

2

(

l2 1 l2 +1

−m2 +1 −1 m2

)
√

(l2 +m2)(l2 −m2 +1)

r2

]

〈Ol2+1,m2Ol1,m1〉

+(−1)m2

√

(2l2 +1)(2l2 −1)

(

l2 1 l2 −1

0 0 0

)[(

l2 1 l2 −1

−m2 0 m2

)

(

∂

∂r2
−m2 −2

r2

)

+
√

2

(

l2 1 l2 −1

−m2 +1 −1 m2

)
√

(l2 +m2)(l2 −m2 +1)

r2

]

〈Ol2−1,m2Ol1,m1〉

+(−1)m1

√

(2l1 +1)(2l1 +3)

(

l1 1 l1 +1

0 0 0

)[(

l1 1 l1 +1

−m1 0 m1

)

(

∂

∂r1
−m1 −2

r1

)

+
√

2

(

l1 1 l1 +1

−m1 +1 −1 m1

)
√

(l1 +m1)(l1 −m1 +1)

r1

]

〈Ol2,m2Ol1+1,m1〉

+(−1)m1

√

(2l1 +1)(2l1 −1)

(

l1 1 l1 −1

0 0 0

)[(

l1 1 l1 −1

−m1 0 m1

)

(

∂

∂r1
−m1 −2

r1

)

+
√

2

(

l1 1 l1 −1

−m1 +1 −1 m1

)
√

(l1 +m1)(l1 −m1 +1)

r1

]

〈Ol2,m2Ol1−1,m1〉 (B.20)
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The first and fourth terms have δ(l1 − l2 −1), and the second and third have δ(l1 − l2 +1).

We have two independent recursion relations for them. From the latter, we get

0 =y

[(

l1 1 l1 +1

0 0 0

)

(

−y d

dy
−∆2 +2

)

+
√

2

(

l1 1 l1 +1

0 −1 1

)

√

(l1 +1)(l1 +2)

]

Gl1

+

[(

l1 1 l1 +1

0 0 0

)

(

y
d

dy
−∆1 +2

)

+
√

2

(

l1 1 l1 +1

1 −1 0

)

√

l1(l1 +1)

]

Gl1+1.

(B.21)

And from the Kz WI, we get

0 =y

[(

l1 1 l1 +1

0 0 0

)

(

y
d

dy
+∆1 −2

)

−
√

2

(

l1 1 l1 +1

0 −1 1

)

√

(l1 +1)(l1 +2)

]

Gl1

+

[(

l1 1 l1 +1

0 0 0

)

(

−y d

dy
+∆2 −2

)

−
√

2

(

l1 1 l1 +1

1 −1 0

)

√

l1(l1 +1)

]

Gl1+1.

(B.22)

From (B.21) and (B.22), we get

(∆1 −∆2)[yGl1 −Gl1+1] = 0. (B.23)

First, assume that Gl1+1 = yGl1 is satisfied. Substituting it for (B.21) yields

(∆1 +∆2 +1)yGl1 = 0. (B.24)

However, as ∆1 +∆2 +1> 0, Gl1 must vanish. So ∆1 = ∆2 must be satisfied for two-point

function not to vanish. Next, consider Px± iPy and Kx+ iKy WIs. There are only two

independent identities.

0 =

[√
2

(

l 1 l+1

−1 1 0

)

(

y
d

dy
−∆+2

)

+

(

l 1 l+1

−1 0 1

)

√

(l+2)(l+1)

]

Gl

+y

[√
2

(

l 1 l+1

−1 1 0

)

(

−y d

dy
−∆+1

)

+

(

l 1 l+1

0 0 0

)

√

(l+1)l

]

Gl+1

(B.25)

0 =y

[√
2

(

l 1 l+1

−1 1 0

)

(

y
d

dy
+∆−2

)

−
(

l 1 l+1

−1 0 1

)

√

(l+2)(l+1)

]

Gl

+

[√
2

(

l 1 l+1

−1 1 0

)

(

−y d

dy
+∆−1

)

−
(

l 1 l+1

0 0 0

)

√

(l+1)l

]

Gl+1

Substituting the explicit form of the Wigner 3j symbol, we get
[

y
d

dy
−∆+ l+2

]

Gl+1 +y

[

−y d

dy
−∆− l

]

Gl = 0 (B.26)

y

[

−y d

dy
−∆+ l+2

]

Gl+1 +

[

y
d

dy
−∆− l

]

Gl = 0. (B.27)

Combining them gives

d2

dy2
Gl+

2∆y2 +2(∆−1)

y3 −y

d

dy
Gl+

∆(∆−1)

y2
Gl = 0. (B.28)

It is very similar to the ODE (A.16) for the two-point function in two-dimensional CFT.

We can solve it by series expansion as we did in two-dimensional CFT. The answer is shown

in the main text.
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Figure 10. Jx + iJy relates three points connected by the blue line, and Jx − iJy relates three

points connected by the red line.

B.3 Reduction of the three-point function

B.3.1 Strategy

In the calculation of the two-point functions in three-dimensional CFT, we found that the

ODE (3.43) obtained from the WIs was independent of the subscripts m1 and m2 because

of the linear relationship (3.41) between F l1,l2m1 and F l1,l2m1+1. Similarly, we can get a linear

relationship between F l1,l2,l3m1,m3
and F l1,l2,l3m′

1,m
′
3
, which enables us to get the simpler ODEs.

First, remember that the Jx+ iJy WI relates F l1,l2,l3m1,m3
, F l1,l2,l3m1−1,m3

and F l1,l2,l3m1,m3−1, and that

the Jx− iJy WI relates F l1,l2,l3m1,m3
, F l1,l2,l3m1+1,m3

and F l1,l2,l3m1,m3+1. The situation can be explained

graphically. The figure 10 shows examples of how Jx± iJy relates F l1,l2,l3m1,m3
at three points in

the m1 −m3 plane. In the figure, for example, if we know the value of F l1,l2,l31,0 and F l1,l2,l31,1 ,

we can derive F l1,l2,l31,0 with the Jx+ iJy WI.

Next, consider the selection rule for F l1,l2,l3m1,m3
. Prepare l1, l2 and l3 which satisfy |l1 − l2| ≤

l3 ≤ l1 + l2 , |l2 − l3| ≤ l1 ≤ l2 + l3 and |l3 − l1| ≤ l2 ≤ l3 + l1. For this fixed pairs of l, the rule

is as follows. F l1,l2,l3m1,m3
vanishes unless the all following inequalities are satisfied.

− l1 ≤m1 ≤ l1, −l3 ≤m3 ≤ l3, −l2 ≤m1 +m3 ≤ l2 (B.29)

The last condition comes from m2 = −m1 −m3 and −l2 ≤m2 ≤ l2. The area which satisfies

the above conditions is diamond-shaped as figure 11. Our goal is to get all F l1,l2,l3m1,m3
s in this

area using F l1,l2,l3l1,−l3
and the recursion relations obtained from J± iJy WIs.

First, apply the Jx− iJy recursion relation to (m1,m3) = (l1,−l3 +k) (0 ≤ k≤ l2 − l1 −
l3 −1). F l1,l2,l3m1+1,m3

vanishes for this m1 and m3, so the Jx− iJy recursion relation relates

two points. We can find all the values of F at the right boundary. Similarly, we can find

all the values of F at the bottom boundary. We show the situation in the figure 12.
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Figure 11. Example of selection rule (l1, l2, l3) = (3,4,5). F l1,l2,l3
m1,m3

vanish in areas outside the blue

line.

−6 −4 −2 0 2 4 6
m1

−6

−4

−2

0

2

4

6

m
3 Jx− iJy

Jx+ iJy

Figure 12. We can get the F s at the right boundary and at the bottom boundary by applying

Jx ± iJy WIs respectively.

Next, apply the Jx− iJy WI to the right part of the area and apply the Jx+ iJy WI to

the left part of the area figure 13 and figure 14. Then we can find all the F s in the area.

B.3.2 Solution

Now that we know the strategy, all we have to do is solve the recursion relations. Applying

the Jx− iJy WI to the right boundary gives

F l1,l2,l3l1,−l3+k = (−1)k

√

(l2 − l1 + l3)!(l2 + l1 − l3 +k)!(2l3 −k)!

(l2 − l1 + l3 −k)!(l2 + l1 − l3)!(2l3)!k!
F l1,l2,l3l1,−l3

. (B.30)

And applying the Jx+ iJy WI to the bottom boundary gives

F l1,l2,l3l1−n,−l3
= (−1)n

√

(l2 + l1 − l3)!(l2 − l1 + l3 +n)!(2l1 −n)!

(l2 + l1 − l3 −n)!(l2 − l1 + l3)!(2l1)!n!
F l1,l2,l3l1,−l3

. (B.31)
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Figure 13. Apply the Jx − iJy WI to the right

part of the area.
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Figure 14. Apply the Jx + iJy WI to the left

part of the area.

Next, applying the Jx+ iJy WI to m1 = l1,m3 = −l3 +k gives

Fl1−1,−l3+k =
(−1)k√

2l1

√

(l2 − l1 + l3)!(l2 + l1 − l3 +k−1)!(2l3 −k)!

(l2 − l1 + l3 −k+1)!(l2 + l1 − l3)!(2l3)!k!

[2l1k−(l2 + l1 − l3)(l2 − l1 + l3 +1)]F l1,l2,l3l1,−l3
.

(B.32)

And applying the Jx+ iJy WI to m1 = l1 −1,m3 = −l3 +k gives

Fl1−2,−l3+k =
(−1)k+1

2
√

l1(2l1 −1)

√

(l2 − l1 + l3)!(l2 + l1 − l3 +k−2)!(2l3 −k)!

(l2 − l1 + l3 −k+2)!(l2 + l1 − l3)!(2l3)!k!
[2l1k(2l3 −k+1)−

{2l1k−(l2 + l1 − l3)(l2 − l1 + l3 +1)}{2(l1 −1)k−(l2 + l1 − l3 −1)(l2 − l1 + l3 +2)}]F l1,l2,l3l1,−l3
.

(B.33)

They induce us to write F l1,l2,l3l1−n,−l3+k as

F l1,l2,l3l1−n,−l3+k = (−1)k

√

(2l1 −n)!(2l3 −k)!(l2 − l1 + l3)!(l2 + l1 − l3 +k−n)!

(2l1)!n!(2l3)!k!(l2 − l1 + l3 −k+n)!(l2 + l1 − l3)!
fn,kF

l1,l2,l3
l1,−l3

.

(B.34)

The Jx± iJy recursion relations for this fn,k are

fn+1,k = k(2l3 −k+1)fn,k−1 −(l2 + l1 − l3 −n+k)(l2 − l1 + l3 +n−k+1)fn,k (B.35)

fn,k+1 =n(2l1 −n+1)fn−1,k+f(n,k). (B.36)

From its definition, f0,k = 1. The following results can be obtained from actual calculations

using the recursion relations.

fn,0 = (−1)n
(l2 + l1 − l3)!(l2 − l1 + l3 +n)!

(l2 + l1 − l3 −n)!(l2 − l1 + l3)!
(B.37)

fn,1 = (−1)n
(l2 + l1 − l3 +1)!(l2 − l1 + l3 +n−1)!

(l2 + l1 − l3 −n+1)!(l2 − l1 + l3 −1)!

+(−1)n−1 (l2 + l1 − l3)!(l2 − l1 + l3 +n−1)!

(l2 + l1 − l3 −n+1)!(l2 − l1 + l3)!
2nl3 (B.38)
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fn,2 = (−1)n
(l2 + l1 − l3 +2)!(l2 − l1 + l3 +n−2)!

(l2 + l1 − l3 −n+2)!(l2 − l1 + l3 −2)!

+(−1)n−1 (l2 + l1 − l3 +1)!(l2 − l1 + l3 +n−2)!

(l2 + l1 − l3 −n+2)!(l2 − l1 + l3 −1)!
2n(2l3 −1)

+(−1)n
(l2 + l1 − l3)!(l2 − l1 + l3 +n−2)!

(l2 + l1 − l3 −n+2)!(l2 − l1 + l3)!
n(n−1)2l3(2l3 −1) (B.39)

fn,3 = (−1)n
(l2 + l1 − l3 +3)!(l2 − l1 + l3 +n−3)!

(l2 + l1 − l3 −n+3)!(l2 − l1 + l3 −3)!

+(−1)n−1 (l2 + l1 − l3 +2)!(l2 − l1 + l3 +n−3)!

(l2 + l1 − l3 −n+3)!(l2 − l1 + l3 −2)!
3n(2l3 −2)

+(−1)n
(l2 + l1 − l3 +1)!(l2 − l1 + l3 +n−3)!

(l2 + l1 − l3 −n+3)!(l2 − l1 + l3 −1)!
3n(n−1)(2l3 −1)(2l3 −2)

+(−1)n−1 (l2 + l1 − l3)!(l2 − l1 + l3 +n−3)!

(l2 + l1 − l3 −n+3)!(l2 − l1 + l3)!
n(n−1)(n−2)2l3(2l3 −1)(2l3 −2)

(B.40)

From them, we can assume that fn,k has the following form.

fn,k =
k
∑

l=0

Pn,k,l(−1)n−l (l2 + l1 − l3 +k− l)!(l2 − l1 + l3 +n−k)!

(l2 + l1 − l3 −n+k)!(l2 − l1 + l3 −k+ l)!
(B.41)

Pn,k,l = kCl
n!

(n− l)!

(2l3 −k+ l)!

(2l3 −k)!
=

k!n!(2l3 −k+ l)!

l!(k− l)!(n− l)!(2l3 −k)!
(B.42)

We prove it by mathematical induction. First, the above configuration is consistent with

the result for (n,k) = (n,0) shown in (B.31). The recursion relations of Pn,k,l for k are

Pn,k+1,0 =Pn,k,0 = 1 (B.43)

Pn,k+1,1 =Pn,k,1 −n(2l1 −2l3 −n+2k+1)Pn,k,0 +n(2l1 −n+1)Pn−1,k,0 (B.44)

Pn,k+1,2 =Pn,k,2 −(n−1)(2l1 −2l3 −n+2k)Pn,k,1 +n(2l1 −n+1)Pn−1,k,1 (B.45)

· · ·
Pn,k+1,k =Pn,k,k−(n−k)(2l1 −2l3 −n+k+2)Pn,k,0 +n(2l1 −n+1)Pn−1,k,k−1 (B.46)

Pn,k+1,k+1 = −(n−k)(2l1 −2l3 −n+k+1)Pn,k,k+n(2l1 −n+1)Pn−1,k,k. (B.47)

Assume that the above configuration (B.41) and (B.42) are correct for k≥ 0. Then, from

the above recursion relations, we get

Pn,k+1,0 = 1 (B.48)

Pn,k+1,m =Pn,k,m−(n−m+1)(2l1 −2l3 −n+2k+2−m)Pn,k,m−1 +n(2l1 −n+1)Pn−1,k,m−1

= kCm
n!

(n−m)!

(2l3 −k+m)!

(2l3 −k)!
+nkCm−1

(n−1)!

(n−m)!

(2l3 −k+m−1)!

(2l3 −k)!
(2l1 −n+1)

−(n−m+1)kCm−1
n!

(n−m+1)!

(2l3 −k+m−1)!

(2l3 −k)!
(2l1 −2l3 −n+2k+2−m)

= k+1Cm
n!

(n−m)!

(2l3 −k−1+m)!

(2l3 −k−1)!
(1 ≤m≤ k) (B.49)
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Pn,k+1,k+1

= −(n−k)(2l1 −2l3 −n+k+1)
n!

(n−k)!

(2l3)!

(2l3 −k)!
+n(2l1 −n+1)

(n−1)!

(n−k−1)!

(2l3)!

(2l3 −k)!

=
n!

(n−k−1)!

(2l3)!

(2l3 −k−1)!
. (B.50)

So, the configuration (B.41) and (B.42) are also correct for k+1.

The conclusion is

F l1,l2,l3l1−n,−l3+k = (−1)n+k

√

(2l1 −n)!(2l3 −k)!(l2 − l1 + l3)!(l2 + l1 − l3 +k−n)!

(2l1)!n!(2l3)!k!(l2 − l1 + l3 −k+n)!(l2 + l1 − l3)!
fn,kF

l1,l2,l3
l1,−l3

(B.51)

fn,k =
k
∑

l=0

Pn,k,l(−1)l
(l2 + l1 − l3 +k− l)!(l2 − l1 + l3 +n−k)!

(l2 + l1 − l3 −n+k)!(l2 − l1 + l3 −k+ l)!
(B.52)

Pn,k,l =
k!n!(2l3 −k+ l)!

l!(k− l)!(n− l)!(2l3 −k)!
. (B.53)

B.4 Direct integral calculation of three-point function

In two-dimensional CFT, the direct integral calculation is straightforward because we can

decompose it into holomorphic and antiholomorphic parts. We can calculate them in-

dependently by a complex integral technique. On the other hand, in three-dimensional

CFT, we don’t have such techniques, so we have to perform direct integral calculations

straightforwardly. From the definition,

∫

dΩ1

4π

∫

dΩ2

4π

∫

dΩ3

4π
〈O3O2O1〉 =λ321r

−∆1
1 r−∆2

2 r−∆3
3

∑

p,q∈Z≥0

F 000
(p,q)y

∆1+2p
1 y−∆3−2q

3

=

∫

dΩ1

4π

∫

dΩ2

4π

∫

dΩ3

4π

λ321

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

, (B.54)

where x2
ij = r2

i +r2
j −2rirjΦij . We can obtain F 000

(p,q) by differentiating it.

F 000
(p,q) =

∫

dΩ1

4π

∫

dΩ2

4π

∫

dΩ3

4π

1

(2p)!

1

(2q)!

(

d

dz1

)2p( d

dz3

)2q

(1+z2
1 −2z1Φ12)g12(1+z2

3 −2z3Φ23)g23(1+(z1z3)2 −2z1z3Φ31)g31 |z1=z3=0 (B.55)

To calculate it, we need the following relation.

1

(2q)!

(

d

dz

)2q

(1+z2 −2zΦ)g
∣

∣

∣

∣

∣

z=0

=
q
∑

k=0

22k

(q−k)!(2k)!

g!

(g−q−k)!
Φ2k (B.56)
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We omit its derivation here. With this, calculate the amplitude F 000
(p,q). First, consider the

differentiation by z3.
(

d

dz3

)2q

(1+z2
3 −2z3Φ23)g23(1+(z1z3)2 −2z1z3Φ31)g31

=
q
∑

k=0

k
∑

j=0

q−k
∑

l=0

22(j+l)(2q)!

(k−j)!(2j)!(q−k− l)!(2l)!

g31!g23!Φ2j
31Φ2l

23

(g31 −k−j)!(g23 −q+k− l)!
z2k

1

+
q−1
∑

k=0

k
∑

j=0

q−k−1
∑

l=0

22(j+l+1)(2q)!

(k−j)!(2j+1)!(q−k− l−1)!(2l+1)!

g31!g23!Φ2j+1
31 Φ2l+1

23

(g31 −k−j−1)!(g23 −q+k− l)!
z2k+1

1

(B.57)

Next, consider the differentiation by z1.

(

d

dz1

)2p

(1+z2
1 −2z1Φ12)g12z2k

1

∣

∣

∣

∣

∣

z1=0







0 (p<k)
∑p−k
n=0

22n(2p)!
(p−k−n)!(2n)!

g12!Φ2n
12

(g12−p+k−n)! (p≥ k)
(B.58)

(

d

dz1

)2p

(1+z2
1 −2z1Φ12)g12z2k+1

1

∣

∣

∣

∣

∣

z1=0

=







0 (p≤ k)
∑p−k−1
n=0

−22n+1(2p)!
(p−k−n−1)!(2n+1)!

g12!Φ2n+1
12

(g12−p+k−n)! (p>k)

(B.59)

With them, we get

F 000
(p,q) =

min(p,q)
∑

k=0

k
∑

j=0

p−k
∑

n=0

q−k
∑

l=0

Ak,j,n,l

∫

dΩ1

4π

∫

dΩ2

4π

∫

dΩ3

4π
Φ2n

12 Φ2l
23Φ2j

31

−
min(p−1,q−1)

∑

k=0

k
∑

j=0

p−k−1
∑

n=0

q−k−1
∑

l=0

Bk,j,n,l

∫

dΩ1

4π

∫

dΩ2

4π

∫

dΩ3

4π
Φ2n+1

12 Φ2l+1
23 Φ2j+1

31 ,

(B.60)

where

Ak,j,n,l =
22(j+n+l)

(2j)!(2n)!(2l)!(k−j)!(p−k−n)!(q−k−l)!
g12!g23!g31!

(g31−k−j)!(g12−p+k−n)!(g23−q+k−l)! (B.61)

Bk,j,n,l =
22(j+n+l)+3

(2j+1)!(2n+1)!(2l+1)!(k−j)!(p−k−n−1)!(q−k−l−1)!
g12!g23!g31!

(g31−k−j−1)!(g12−p+k−n)!(g23−q+k−l)! .

(B.62)
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