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1 Introduction

The conformal bootstrap method was applied by the paper [1] to solve an infinite class
of two-dimensional conformal field theories (CFTs). Now, it is known as one of the most
influential and fascinating tools to analyze CEF'T from the point of nonperturbative aspects
of the theory. It carves out the space of consistent CFTs by imposing physical conditions
such as symmetry, causality, and unitarity. It leads to nontrivial conditions that cannot
be obtained from the algebraic structure of conformal algebra and perturbative analysis.
About thirty years after their work [1], the paper [2] introduced the numerical method
for conformal bootstrap equations to get constraints for higher-dimensional CFTs. Using
crossing symmetry for the four-point function, they showed the upper bound on the con-
formal dimension of the first scalar appearing in the Operator Product Expansion (OPE)
of two identical scalars. After their work, much progress has been made, such as fixing the
critical exponents of the Ising model in three-dimensional CFT [3-9] and getting bounds
on the scaling dimensions of the theory with global O(N) symmetry [5, 6, 8, 10]. Please
see the reviews [11-13] to check the recent works in conformal bootstrap.

As numerical bootstrap methods developed, there was a growing body of research in-
vestigating the analytical properties of bootstrap. One of the current research directions
on conformal bootstrap is large N expansion. This analysis method is robust in AdS/CFT
correspondence [14-17], in which we have a good correspondence between weakly coupled
gravity in AdS and its dual CFTs. “Weakly coupled” translates to the CFT with large
N, and in addition, we demand that CFT on the boundary is strongly coupled to make
the gravity theories on the bulk without light particles of spin greater than two. In the
analysis, we perturb the CFT by 1/N and 1/A, where A is the conformal dimension of
the lightest operator in the CFT. Many researchers have studied the relationship between
weakly coupled bulk theory and CFT data on its boundary [18-24]. The conformal boot-
strap helps obtain consistent theories of gravity in AdS from the effective field theories,
the swampland program [25-27]. In AdS/CFT correspondence, the AdS cylinder in global
coordinates corresponds to the boundary CFT in radial quantization. With these physical



motivations, formulating conformal bootstrap at finite volume on the cylinder is naturally
needed to understand the bulk theory.

Recently, CFT in momentum space has been developed formally in [28-32]. Those
papers define correlation functions in momentum space as a Fourier transform of that
in position space. CFT in momentum space has physical applications such as the study
of anomalies [33-39], the determination of the form of conformal invariance in the non-
Gaussian features of the cosmic microwave background [40, 41], and an investigation for
inflation [42, 43].

One of the difficulties of analysis in momentum space is that we cannot expect the
time-ordered correlation function to behave well because the integral calculation in the
Fourier transform involves the position where the operators are not time-ordered. Instead,
the Wightman function is a good function for the analysis in momentum space. The
Wightman function has an operator algebra, but we have yet to study its structure so
much. The conclusion and discussion summarize the future direction that surveys algebraic
construction in momentum space.

When studying CFT in radial quantization, we can expect that the analysis in mo-
mentum space is the most suitable because the feature of CFT in radial quantization is
that the energy and momentum are quantized. So, studying CFT in momentum space is
natural if we try to find the difference between CFT in R1¥~! and CFT in R x S¢1.

From those considerations, we formulate the basis for the conformal bootstrap in mo-
mentum space using the Wightman function at finite volume in this paper. We expect that
the conformal bootstrap at finite volume gives constraints for CF'T data that cannot be
obtained in CFT at infinite volume. In this paper, we show that the two- and three-point
function at finite volume leads to that at infinite volume under the “Large volume limit.”
It implies that the information in conformal bootstrap at finite volume is richer than that
at infinite volume. As an analysis method that is particular for CFT at finite volume, we
consider expansion by 1/R, where R is a compactification radius. We leave this kind of
analysis to future work.

This paper is organized as follows. We summarize the result in two-dimensional CFT
in section 2. We compute two- and three-point functions in momentum space with Ward
Identities (WIs). This method is powerful because it applies to general operators and
is helpful for computational calculation. In section 3, we study three-dimensional CFT
by using WIs. Though we cannot get a closed form for the three-point function, ODEs
obtained from WIs may be helpful for calculation with a computer. Finally, we show one
of the applications of our calculation result. We develop bootstrap equations by using
improved microcausality conditions. It was designed in infinite volume in the paper [44].
We resolve some problems and get a proper bootstrap equation in finite volume. Though
our development is incomplete, it implies that the bootstrap method in momentum space
might be helpful. We leave the problem for future work.



2 Main results in D =2

This section summarizes the derivation of two- and three-point Wightman functions in
two-dimensional momentum space. We deal with CFT quantized on a cylinder.

For two-dimensional CFT, the factorization method is potent as we can independently
calculate holomorphic and antiholomorphic parts. After that, we can construct complete
correlation functions for general operators.

There are three ways to get them. The first is a direct integral calculation, which is
easy for a simple case, but an analytic continuation for general situations is not trivial.

On the other hand, the Ward Identity (WI) method is helpful for the general case,
which is the second procedure. Though solving the ODEs obtained from WI is a little
tricky for three-point functions, this method emphasizes that we can determine all of the
correlation functions of the mode operator from ones including only primaries.

The third procedure is an algebraic construction, which helps construct a completeness
relation when calculating a four-point function.

The most crucial difference between two-dimensional CFT and higher-dimensional
CFT is that there are Virasoro descendants in the two-dimensional CFT. In this paper,
we call the descendants made by acting L_1s on primaries as “descendants” and the de-
scendants made by working L_,, (n>2)s on primaries as “Virasoro descendants.” When
considering four-point functions in momentum space, we do not have to consider descen-
dants, but we cannot ignore the contributions from Virasoro descendants. We will see
the calculation in the latter chapter. We summarize the results briefly, so please visit the
appendix for a more detailed analysis and supplements.

2.1 Conformal generators and their action

We use cylinder coordinates and complex plane coordinates. In the complex plane, we use
z and Zz as coordinates, and w =01 +1i09 =0 —i7 and w =01 —i09 =0 447 for the cylinder
frame. They are related to each other by conformal transformations with radius R.

io+T —10+4T

z=re = Re'ft =Re R, Z=re ¥ =Re ® = Re R (2.1)
We define two “Spatially-integrated mode” types for primary operators. The first one is

On(r) = /C | gcf)(r, f)e—in0. (2.2)

where the integral path C, is the circumference of radius r. And the second one is defined
for holomorphic operators O(z) and antiholomorphic operators O(Z), respectively.

1 dz - 1 dz - _
On %W(’)(z), On fﬁO(z) (2.3)

2mi 2mi

For example, for holomorphic operators, O,, (r)=7r"0,,. For operators with spin s, we also
use other types of representation. Define J=n+s and J=—n—s, then

011 = O, @[j] =0,. (2.4)



We obtain the action of the conformal generators on these modes. For example,

~ 1 ) : 1 1\ ~ 1 /- ~
P,-O, = /d@ <8r0—2890) e—in+1)0 _ = <6T+n+> Oni1=— (E_|_n_|_1) Oni1,
2) 2w r T

2 2r
(2.5)
where E =10, Similarly, we get the following equations.
~ 1 n—1\ = 1 /- -
Pg On2((97~— r )On_lzr(E_n‘i‘l)On_l (26)
. 2 —1\ -~ - . .
K*.0,=_ (ar+ n ) On1+2hr Oy = (E+n+4h=1)0, (2.7)
2 r 2
L 2 1\ - - . A
K*.0,=_ (aT _nt ) Ot + 20Oy = - (B—n+4h-1) 0,1 (2.8)
2 r 2
.1 1 -
Lg-On:§(raT+n+2h)On:§(E+n+2h)(’)n (2.9)
1 ~ 1/ -\ o~
Lo On:f(r@r—n+2h)(’)n:§(E—n+2h) On (2.10)
2.2 Two-point function
2.2.1 Two-point function for primaries
Define the complete Wightman two-point function of primaries as
C(ny,ne,r1,r2) = ((’},(122) (7“2)@,(111) (r1))=d(n1+n2+s1+ SQ)TfA1r5A2Fn1 (y), (2.11)

where y =71 /79 is a ratio of radius. We used Ly and Lo WIs to get the reduced form.
Usually, the above delta function means Dirac’s delta function, but in this paper, it often
means 0 or 1 function when its content has a discrete value.

5(z) = {1 ifr=0 (2.12)

0 otherwise

For this reduced form, we get WIs, which give ODEs for a two-point function. Four are
left, as we used two of six WIs to get the reduced form.

d d
L_q: (ydy —Aj+n+ 1) Foii(y)+y <_ydy —Aos—n—s57 —52> F.(y)=0 (2.13)

= d d
L qi:y (ydy —Nog+n+1+s; +52) Foii(y)+ (ydy —Aq n> F.(y)=0 (2.14)

d d
Ly: (_ydy +Ao—n—1-—s1 +82) Fn+1(y) +vy (ydy +A1+2s —i—n) Fn(y) =0 (2.15)
~ d d
Ly:y (ydy 4+ A1 —281—n— 1) Foii1(y)+ (_ydy +Ag+n+s— 32) F.(y)=0 (2.16)
The solution of these ODEs is as follows.

Gn+s =Fn :KsyA+|n|(ch+s\ly21) (217)
=0

 T(A+s+l+n)T(A—s+l)
T DA+ 8)D(A—s)D(I+n+ 1)D(I+1)

(2.18)



K is an undetermined constant depending on the normalization of operators. The ap-
pendix summarizes how to solve these WIs and checks that this solution matches that
obtained by a direct integral.

In the two-point function, A+s=~h and A—s=~h appear independently. In other
words, we can factorize it into holomorphic and antiholomorphic parts. It is natural, but
we summarize it to clarify the situation. Let us perform the Fourier transform of the
two-point function of scalar operators with the above solution.

461 2 —inatr—inat2 | 0@ 1)y — §(y + 1) MZ L(A+1+n)T(A+]) <7‘1>2”’“
27 2m Ll+n+ DI+ 1)T(A)2 \ o
(2.19)
The operator normalisation has been chosen to set K to unity. The coordinate trans-
formation from the complex plane to the cylinder, inverse Wick rotation, and complete
Fourier transform give

/ doy doo /dt1 /dtQ —'LEltle—'LEgtge i~ R e —iog 2 = <O(2)(02,7'2)O(1)(01,7'1)>

27R ) 2nR
R-2a T (R(E1 72k1)+A) T (R(E1+k1)+A) (2.20)

(C(A)?p (BE=E ) p (BEZS 1)

= 5(1{71 +k2)5(E1 —I—E2)

The point is that we can factorize the two-point function in momentum space into 7 &k
parts. It indicates that we can calculate it by multiplying the results in holomorphic and
antiholomorphic parts, but what is the procedure? For holomorphic operators,

d791d792€_m191_m292 <(’)(2)(’)(1)> o rl_hrg_hé(nl +ng+2h)

L(ny+2h) <n>”1+h
2 2w )

L(ni+1I'(2h
(2.21)
And for antiholomorphic operators,

d0y B> 5,6, 1ins0, A (2) A1 3 L(ni+2h)  (r\™*h
5 o € 10itinz2 (O QW)Y o p 7y 5(n1+n2+2h)m <> :
(2.22)
Multiplying them doesn’t give (2.20). The physical states created by Om are ones with
spin ni, so they have the form (P,)™+1(P;)1|®) with some integer 1, where |®) is a
primary state created by inserting primary operator with conformal weight (h,h).

For this state, ny in (2.21) should be replaced by nj+1;1, and n; in (2.22) should be
replaced by [1. From here, we only concentrate on the Gamma function dependent part in
the two-point function since the delta functional part and 71,72 dependent part only give
conservation law.

The multiplication of the holomorphic part and the antiholomorphic part gives

T(ni+2h+10)  D(li+2h) T(A+mi+h)  T(A+h)
L(ni+0L+1DT(2h) D1 +1)0(2h)  T(ni+L+1)I(A) (L +1D)T(A)

(2.23)



Energy for the state (P,)" T (P;)1|®) is By =(h+h+ni+0+1)/R=(A+n+2)/R
and momentum for the state is k; =n;/R. So, the Gamma function dependent part is

) r (R(E1—2k1)+A> r (R(E1+2k1)+A)

(D(A))* p (RE)=8 1) p (AELRZE )

(2.24)

It is the same as (2.20).

In the above example, we calculated the two-point function of scalar operators: direct
integral calculation and factorization. Their results are the same, and we can generalize
this method for other two-point functions. We will show more clearly that we can use the
factorization method to calculate three-point functions later, and the logic is the same.

2.2.2 Two-point function for descendants
As well known, inserting descendant fields in the correlation function means acting differ-

ential operators on others.

N — .
(L) E)on () (e)) =3 [ = i ] (0 (en) o)

T li—2)
(2.25)

So, for example,

B dzy dz (m—1)h 1 0 Nl
GenLomdin) = f 5 T | (o~ ey 5| G200
B T(J+h)
=t D T T @h ) (2:26)
In general,
K+ Dh+ X my | D(J +h)
<¢[—J](Lfmk"'L7m2L7m1¢)[J]>:F [ =1 j} (227)

(1 +J—h— Zi‘le mi)r(2h+ Z?:l ml) '

For more general calculations such as ((L—2¢)[—j(L—3¢)[s)), we also need to consider more
complicated calculation including OPEs between energy-momentum tensors. Although one
can compute an arbitrary correlation function in momentum space by a straightforward
analysis, we can understand it more simply by using the algebraic method described next.

2.2.3 Algebraic construction

Like CFT in position space, we can calculate the two-point function by algebraic calcula-
tion. In the procedure, we consider in-state and out-state naturally, which is useful when
constructing the completeness relation to calculate a four-point function.

As we can calculate the holomorphic and antiholomorphic parts independently, we only
focus on the holomorphic part. First, the ket ‘qb[ J]> is defined as

. o | "
001 = § oo ()10 = §reme 00 0) = e L ). (2:28)




The ket for descendant field (L_y,, -+ L_ymyL_m, ®)(2) is

,L'J—h

SR — LML Ly L, ). (2.29)

’L—mk L—mzL—m1 ¢[J >

In this paper, we arrange the Virasoro generators so that mji >mg > --- > my is satisfied.
We define the bra for the primary field and for the descendant field as

d 1 1 —i)/h
(o] = § s Ol (oot = (2.30)
(=0)"" J—h
(Lo Loy Ly 1) = = ML+ L L (2.31)

The phases are chosen so that <¢[J} ’¢[J]> >0and <L,mk o Loy, @1 ’L,mk . ~L,mlgbm> >
0 are satisfied. With those definitions, we can recover the previous result, for example,

I'(2h+2)
I'(3)T'(2h)

This algebraic construction helps make a completeness relation needed to calculate the

(P—h—21Plht2)) = <¢[h+2]‘¢[h+2]> 2191 <h|L2L21\h> h(2h+1).  (2.32)

four-point function by conformal block decomposition. We will deal with it later.

2.2.4 Large volume limit for two-point function

In Gillioz’s paper [45], they calculated the two-point function of scalars in momentum space
in d-dimensional Minkowski space. They defined the double bracket notation as

(01¢1(k1) -+~ @ (kn) [0) = (2m) 8 (k1 4+ K ) (91 (K1) -~ () ). (2.33)

Here, Fourier transform of operator ¢(z) is ¢(k) = [ d4ze’**¢(x). So

<<¢1(k1 /ddl’l dd i(k1-m1+--.+kn_1-zn_1) <0|Q~51(«T1)(Z~5n(0) ’0> (2‘34)

The two-point function of the scalar operators for momentum % lying in a forward light

cone is
(47T)d/2+1

2AHID(AT(A -2 +1)

(o(=k)o(k)) = (K%)5-2, (2.35)

In two-dimensional spacetime,

(4m)°

(01(k1)¢a(ka)) = (2m)6° (ks +k2)m(k’2)

(2.36)

We want this result by taking the limit of R — oo for our result in finite volume. We call
it “Large Volume Limit.” Our result is

dtl dtQ d0'1 dO‘Q elfflkl

oo | g ot e e e T B gy (1, 09) 61 (11, 01))

R-2A T (R(E1 ;k1)+A) T (R(E1+k1)+A>

é’(klakZaElaEQ)E/

2
(D(A))? p (MEf)=8 4y p (AERIZA | )
(2.37)

= 5(k1 —|—k‘2)5(E1 —i—Eg)




With Stirling’s approximation, we get

R™?2 (k1 — E))*'R® (k1 4+ E1)*'RA
. 2
ngrclxy (Lh.s. ) o< 6(k1 +k2) ONE 9A1 oA—1

2)A—1

(2. 38)

This is identical to the result (2.36) at infinite volume calculated in the paper [45].

2.3 Three-point function

Solving WIs for the three-point function is complicated. So first, we Fourier transform the
three-point function of holomorphic operators directly and check that the solution satisfies
the ODEs obtained from WIs. The three-point function of holomorphic operators is

<03(Z3)02(22)01 (2’1)) /\3212 - hzzgé_h:s_hQng_hl_h:g = )\32122_117323_21)1 Z3_lb2. (239)

Here, h1,ho,h3 are conformal weight of operator O1,02,03. And we define z;; = z; — 25,
b1 =hs+hs—hi, bo =h1+hs—ho and bs = hy + hs — hs. We assume that conformal weights
are all integers, but we can analytically continue the region of conformal weights by taking
n; (i=1,2,3) non-integers. Then,

dz dz dz
(Ony On, Op, ) = (27i)3 % 1+i3% 1+igf{ 1+7111 O3(23)02(22)O1(21))

Min{ni,ms}
o )‘3216(21‘:1 Ji) Z I'[bs+g+Max{0,n1 —m3 }T'[ba—g+Min{ni,ms }I'[b1 +g+Max{ms—n1,0}]
T I'(b1)T'(b2)T'(b3) T'[1+g+Max{0,n1 —m3 }|T'[1—¢+Min{ni,m3}|I'[1+g+Max{ms—n1,0}] ’

q=0
(2.40)

where mg = —(n3+2h3). In the appendix, we summarize the detail of the derivation and
check that the solution for the three-point function satisfies the ODEs obtained from WIs.

In the paper [28] by Gillioz, they calculated the three-point function in infinite volume
in the fully factorized form

{01 (ps)P0(P0)i(pi)) = AsoiW (F 05 07 )W (07,15 > ) (2.41)

where p* =pg+p; and

W(pE vk pE (2m)? ()22 (i) 2
(PF Py p;) = 0B TR A )2 |pE By —BotA)/2
@(pa:) r (Af—Ao—l-Ai Af Ao—i—A . D; >
2471 ) za s
[(A;)D (M) 2 2 e
+
N O(—pj) 2F1<Af—Ag~|—Ai Ap—Ag+A, A pf>
F(Af)l—‘ (Ai+A20*Af) 9 ) 2 =D poi
(2.42)
Here, o F is a hypergeometric function
oF 1 (a,b:c: 2) nZ:O Z (2.43)



where (a),, is the Pochhammer symbol defined as follows.

! (n=0)
(a)n_{a(a+1)(a+2)...(a+n_1) (n>0) (2.44)

We can see that the Wightman 3-point function is factorized into holomorphic and anti-
holomorphic pieces, or equivalently into left- and right-movers.

We want to get this result by taking a large volume limit for our result at a finite
volume. We use a time-reversal symmetric form for three-point functions. K,.q is defined as

K(n1,n2,n3) = (Ony(23)Ony (22) Op, (21)) = 0(n1 +ng +n3+ hi + ho + h3) Krea(n1,13).
(2.45)
And remember that this is equal to

Kred(n1,n3)

Min{ni,ms3}
Z I'[b3+g+Max{0,n1 —m3}]I'[ba—g+Min{ni,ms}]I'[b1 +g+Max{ms—n1,0}]
I'[14+g+Max{0,n1 —m3}|I'[1—g+Min{ni,m3}|I'[1+g+Max{mz—n1,0}] *

_ A321
T D(b1)(b2)T(bs)

q=0
(2.46)

To take a large volume limit, define Nz,y|=T(1+x+y)/T'(1+2)[(1+y). Under the
y — 00 limit, N[z, y] ~y*/T'(1+x). With it, we can write a three-point function as

Min{ni,m3}
Krea(ni,ns)=Xsa1 Y N[bs—1,¢+Max{0,n; —ms}]
q=0

N[bg — 1, —q+Min{n1,m3}]N[b1 — 1,q—|—Max{m3 —nl,O}].

(2.47)

Under a large volume limit, n; and ms also go to infinity. We define §=¢/R, 1 =n1/R,
and M3 =ms/R. Then, we get

Nb1 —1,q+Max{ms—nq,0}] ~ o) (g+Max{mz —ny,0})" 7 (2.48)
1

N by —1,—g+Min{ni,ms}] ~ m(—q—i—Min{nl,mg})bz_1 (2.49)

Nbs —1,q+Max{0,n1 —mg}] ~ F(ig)(q—FMaX{O,nl —mg})b L, (2.50)

The product is

Nbi —1,qg+Max{ms —ny,0}]N by —1,—qg+Min{n;,m3}|N[bs — 1,q+Max{0,n; —ms}]

Y2

3

= ( p&m) (q+Max{ms —n1,0})" " (=g+Min{ni,ms})*~* (g+Max{0,n1 —mz})* !
=1
3

- (H ?17(;)1> (§+Max{rhz —n1,0})" 1 (=G +Min{ny,m3})% 1 (§+Max{0, 7, —1ng}) !
i=1

(2.51)



Using >°,~ [dg= R [ dq, we get

Icred (nl ) ?23)
A Min{n1,/m3}

~5 2 (@ Max{img =, 01)" T (=g+Min{an, g} G+ Max{0, 7 — g }) !
q=0

Min{f1,7h3} b
:A/ di(d+Max{rnz — iy, 0})01 !
0
(=G4 Min{fy,m3})°2 1 (G+Max{0,7; —rz})? 71, (2.52)

where A= Aggq RO102403=2 /T (h1)T(bg)['(b3). Now define x = §/Min{nq,7m4} to change the
range of integration from [0, Min{n,73}] to [0,1].

Kred(n1,mz)A™"

2[Min{ﬁl,mg}]b1+b2+b3—2/ldx (Hw)bl—l(l_@bz—l (Hw)brl
0

Min{n1,7h3} Min{71,73}
C o \b3—1
B m§1+h2+h3_2 fol dr I’bl_l (1 _$)b2*1 ($+ nl’r%;ng) 3 (ﬁl 2 m3) (2 53)
= L Nbi—1 L \b3—1 :
e tha=2 gy (g mam )T gyt (g s )T () < g

To make this expression simpler, we use a hypergeometric function.

14+a)(1+

/ de z®(1—z)P(x+1)” —ﬂ%gﬂ {1+a,—fy;2+oz+ﬁ;—ﬂ (2.54)

Let us consider the case of 77 >r3. In the above expression, this case corresponds to
a:bl—l, ﬁ:bz—l, ’}/:bg—l, t:(ﬁl—ﬁlg)/mg.
/ d.’E xbl 1 1 x)bz 1 (.T+ n]— m3>b3*1

m3

(2.55)

bs—1 R
= (st ) BOURE) )y [y, 1~ by by + b — 528

So, the three-point function is

e (11,115) 3y = A = )20, 1 (1,1 by 2 — 2] (256)

In chiral theory, P’ = E = P! and E= P! = J/R, so under large volume limit,
2J1 2(711 + hl)

Pr=pf= == g = 27 (2.57)
2Jy 2 h
P;:P;:;:W?z)ﬂ(mg_m) (2.58)
_ 23 _ 2(n3+ha) 2(m3+h3) .
p+ Pt = =— ~ —2mM3. 2.
3 R R R ms ( 59)

In this case, P;>0, P, <0, P;<0. And h;=h;=A;/2 for i=1,2,3. We can write the
three-point function in terms of P;, P,, Pr as

,Cred(nlamii)‘p;rZiPJr

o dap (Rt =2 oy WA g RFR0TAY Ar+Ao—A; Ap+A P*
~ R e (P77 (RS I s e T VEE

(2.60)
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Here, Ay=D—A,=2—A,. With Euler Identity 2F}[A,B;C;z]=(1—2)¢"4-B,R[C—
A,C - B;C;z], we get
Ap—N;—Ag

A R/2 h1+hg+hg—2 As— Az_ Bo—Ai—Af
Krea(m1,m3)| g <o 2 22 BB 22 (1PF A (IR ) (P
F(Af)r(f)

(2.61)

Af—DotA; Ar—AotA; P

2F1[ = , —— ;Af;—é

Compare it to the P,” <0 component of the chiral factor of the three-point function in

D =2 of Gillioz’s formula. They are identical modulo the overall momentum-independent

and time-reversal-invariant prefactor. Our formula is consistent with results in infinite
volume under a large volume limit.

2.4 Some comments

Analytic continuation. We derived two-point functions by the WI method and direct
integral calculation. We derived three-point functions by straightforward Fourier trans-
form. Whether the conformal weights of operators are an integer or not is not essential in
the WI method, but it is vital in the direct integral calculation because cuts can appear
when the conformal weights are not an integer. Therefore, we must show that we can ana-
lytically extend the three-point function formula to the region where the conformal weights
are not integers. We summarize the detail of the discussion in the appendix. Here, we only
deal with an outline of the debate.

We can show that two and three-point functions are polynomials in conformal weight,
and the polynomial order is limited to a finite value by the number of excitations. Polyno-
mials of finite degree that agree at an infinite number of points are equal to each other, so
the three-point function formula, which we obtained by direct integral calculation, can be
extended analytically to the case where the conformal weights are not integers. For more
details, please see the appendix.

Four point function. We can construct a four-point function from the two- and three-
point functions in momentum space as in position space. One of the most important
features is that decomposing four-point functions into two- and three-point functions must
satisfy the conservation laws. We summarize the construction briefly.

As we can calculate the holomorphic and antiholomorphic parts independently, we
only focus on the four-point function of holomorphic operators. In usual CFT in position
space, we can calculate four-point functions by inserting an “intermediate state” between
the second and the third operators. It enables us to calculate the whole four-point function
with the data of three-point functions.

The procedure is the same in momentum space, but the conservation rule of J=n-+s
restricts the intermediate state. Inserting the completeness relation (4.21) gives

(©H 0 0@ o, ool

1) HB) H2) HD)y _ (J4] Y13 Y [+ 0] Y [ =] Y [ 1) YT
(OO O Ol =2 —— 0(15) - 0(5)1 SE— (2.62)
() { =) Ol 4 )

Here, J; + Jo+ J3+ J4 =0 must be satisfied for the four-point function not to vanish. The
sum is about conformal families. We will summarize its explicit calculation later.
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3 Main results in D=3

Calculations in three-dimensional CFT proceed the same way as in two-dimensional CFT,
but some difficulties were absent in two-dimensional CFT. In two-dimensional CFT, fac-
torization made the analysis easier. In higher dimensional CFT, on the other hand, we
must perform a highly complicated calculation. In particular, the form of the three-point
function is complicated, and there is no closed description. We must calculate the three-
point function with recursion relations obtained from WI term by term. Nevertheless, the
momentum space description for higher dimensional CFT is compelling. One of the rea-
sons is that we only have to consider the contributions from primaries when we calculate
a four-point function. So, the structure of conformal blocks is straightforward.

3.1 Conformal generators and their action

We use a spherical coordinate system.
x =rsinfcos ¢, y=rsinfsin g, z=rcosf (0<¢p<2m,0<0<m) (3.1)

We now turn our attention to scalar operators to make the discussion simple. We can
make the same argument for operators with general spin. The actions of the conformal
generators on the scalar operator are as follows.

P,-O= (sinﬁcosqﬁgr + 8 HTCOS¢§9 — :::nd; ;gb) (3.2)
P, 0= (sinﬁsingbgr + 9 9:1“(’5 ;6 :;Sn(i ;) (3.3)
P,-O= (cos@ﬁr— s129§0> (3.4)
K, -O= (r2 sin@cosqﬁaar —rcosﬁcosqbaag +r:1:1z68¢ +2Arsinﬂcosq§> (@) (3.5)
K, 0= (r2 sin@sinqﬁ(fr —rcos&singbaae - r‘;’z“;;d) +2Arsmasin¢> O (3.6)
K, -O= (T2COSH§F +7’sin0§9+2Ar0080)(’) (3.7)
Jp-O= (—sinqﬁaag - E;i?%) o (3.8)
Jy-O= (cos gb% - :;T:Z aagb) (3.9)
J,-O= aaqb(’) (3.10)
D OE(raar—kA)O (3.11)

Spatially-integrated mode is defined as

Ot = /dQYlj‘m(G,gb)O(r,Q, ) (0<0<m0<¢<2m,d2=dfdgsing).  (3.12)
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We removed coefficient factors such as ¢ to simplify the calculations. Y ,, is a spherical
harmonics, and Y}, =(—1)"Y} _p, is its complex conjugate. The actions of conformal
generators on the spatially integrated mode are as follows.

+ —
(Po+iP,)-Opm =Dy Opptm14+Dr* Ot n 1 (3.13)
pt _ [ 11+1 I 1 1+1 0 m—2
Dt =(=1)""1/(21+1)(2 2 (— )
oy (o ve( ) (-
N I 1 0+1\/I+m)(I—m+1) (3.14)
—-m+10m-—1 r
P [ 11-1 [ 1 1-1 0 m-—2
Dyt =(=1)""1/(21+1)(20—1 2 -
(=1) 21+ 1)(21 >(00 0) f(—mlm—l)(@r r )
N I 1 1-1\/{I+m)((—m+1) (3.15)
—m+10m-—1 T
) P P-
(Px_ZPy)'Ol,m =Dy~ Ol+1,m+1 +Dy Ol—l,m+1 (3-16)

ol =y e @its) (é . T) [ﬂ(_lm y ;fﬁ) (5+™5)

+< l 1l+1>\/(l—m)(l+m+1)

3.17
m—10 m+1 ( )

P~ 1 11— [ 1 0 m+2
D, =(— W (21+1) (20— 2 —
(=™ i ! (0 0 0 > [ m —1 m—i—l) <8r+ r )

+< I 11-1 )\/(z m)((+m+1) (3.18)
m—10m-+1
PZ-Ol7m:Drz Ol+1 m—l—D z Ol 1,m (3.19)
111+1 1141\ /0 m-2
DP = (—1)™ /(21 +1)(2 (— )
" (=0" i+ l+3<00 0) (m() m) or r
I+m)({—m+1
—Hf( l 1 1+1\/(+m)({—m+1) (3.20)
m+1 -1 m
- 171-1 0 m-—2
D= = (—1)™/(214+1)(21-1) (- )
" (=1)™ + ( ) [( mO0 m ) or r
- —m+1
+ﬁ< Lo ) )l m+1) (3.21)
m+1 -1 m
+ —
(Ko +iKy) O =Dr* Opptm1+Dr* Ot 1 (3.22)

K+ B [ 1141 I 1 1+1
D, T = (=12 /(21+1)(21 2
(™Y @ +3)<00 0) f(—mlm—l)

<8+2A+m2)_< 11 l+1>\/(l+m)(lm+1)1 (3.23)

or r —-m+10m-—1 T
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Dy = (—1)m 1?2 (2z+1)(m—1)<l ! l_1> l\@( L l_1>

00 O -m1lm-—1
d 2A+m-—2 I 1 1-1\/{I+m)(l—-m+1)
— ") 3.24
<3r+ T > <—m—i—1 0 m—1> T ( )
. Kt K~
(Km_ZKy)'Ol,m:DT Ol+1,m+1+DT Olfl,erl (325)
Kt [ 11+1 [ 1 [+1
Dy~ =(=1)"r%/(21+1)(20+3 2
(=1 (+)(+)<00 ())\[(—m—lm—i-l)

(2 —2A+m+2>_< l ”“)V(l‘m)(”m“) (3.26)

or r —m—10m=+1 r
K- 111-1 I 1 1-1
Dy~ =(=1)"r?\/(201+1)(21 -1 2

Ly @ )<oo o) f(—m—lm—i—l)

(8 —2A—|—Tn+2>_< l 1 l_1>\/(l—m)(l+m—i—1)] (3.27)

or r —m—10m+1 r
K. Opm=DE Oy +DE= Oy (3.28)
KF [ vm.2 [ 11+1 I 11+1 <8 2A+m—2)
DK = (—1)ymy (2z+1)(2z+3)<00 0 oo Mgt
“m+1
—ﬂ( l 1 l+1> V({I+m)(—m+1) (3.29)
—m—+1 -1 m r
- 1 11-1 I 11-1\/08 2A+m—2
DE= = (—1)™r2,/(20+1)(20—1 < )
" (=1)"r7y (2H1)( )<00 O)[(—mo m) 87“+ r
- “m+1
—\/§< l 11 1> V(I+m)(I—m+1) (3.30)
—-m+1 -1 m r
(Jotidy)- Opn = i/ (Lm) (I =m+1) Oy (3.31)
(Jo—idy)- Opn = i/ (l—=m) (I-+m+1) Oy i1 (3.32)
T2 O = —imOy, (3.33)

The 2-by-3 matrix in the above is the Wigner 35 symbol. We summarize it and the
derivation of the above expressions in the appendix.

3.2 Two-point function

The action of J, on the operator mode implies the conservation law of m. So, we have the
following reduced form for the two-point function.

(Ot (72) Oty s (r1)) = 8y + 1)y ey B2 il (3 (y - ) (3.34)

— 14 —



We want to get the exact form of it. First, start from J, £¢J, Wls.

(JJ? +in) ’ <Ol2,m2 (TQ)Oll,ml (T1)> (3'35)
= Z'\/(l2 +ma)(l2—m2+1){Olymy-101,m,) +i\/(11 +ma)(l—m1+1){O1y my Oty iy —1)

= z5(m1 +Mmo — 1)TIA1T5A2 [\/(ZQ —|—m2)(l2 —ma+ 1)F,%il2 + \/(ll +m1)(l1 —mq+ 1)F7%1l31]

When mo =—mq+1,

V(o= +1) (o ma ) F2 4/ (l 4 ma ) ( —ma + D FL2, =0 (3.36)

1

(Jﬂ?_i‘]y) ’ <Ol2,m2(r2)011,m1 (7‘1)> (3‘37)
= i\/(b —m2)(l2+m2+1)(Olmy4+101,m,) +i\/(h —ma)(l1+m1+1)(Olmy Oty i +1)

= i8(my +ma+ 1)y 2y 82 [y (L —ma) (I +ma+ DELE 4/ (1 —ma) (n+my +1)Fi2)

When mo =—mq—1,

Vot +1) (b —ma ) F2 /(0 —ma) (L -+ + D FLR, =0 (3.38)

Shifting (3.36) by mi — my+1, we get

Vi +1) (=) F2 0/ (la —ma ) (o +ma + D FLL2, =0, (3.39)
From (3.38) and (3.39), for —l1 <my <l1 —1 —ls <mg <ly—1, we get
(lh—m1)(l1+m1+1)=(lo—my)(la+my +1). (3.40)
As 1 >0 and I3 >0, we get [1 =I5 and
Flub gl g, (3.41)
These relations say that the two-point function has the following structure.
(Oby.ms (12) Oty iy (1)) = 8(m +ma)d(l —la)ry Moy 22 (—=1)™ G (y) (3.42)

where Gh :Fél’l2. From P, and the K, WIs, we can find that it vanishes unless the
conformal dimensions of the two operators are the same. We summarize the detail of the
calculation in the appendix to get the exact form of G!*. From the WTs, we get the following
second-order differential equation.

2Ay2+2(A-1) d

— Gl (y)+ —Gl(y)+

(A+1)(A—1—-1)

)2 Gl(y)=0 (3.43)

The solution for it is

G'= Kyt (Z blny2"> = Koy~ (Z cl|ny2”> (3.44)
n=0

n=0
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I3 T(A+)

K = Ko (3.45)

T(+3) T(4)
D(A+14+n)(A—L+n) ()T +1)

bijn = L(A+DT(A —)1‘(21+n)1“(%+l2+n) (3.46)
D(A+I+n)D(A=5+n)(1)T(3)

Un = T AT (A= TG+ L) (347)

The normalization of operators determines the value of Ky. We can always set it unity.
To see if the solution for the two-point function of scalar primaries is consistent with
the result in [45], we only have to focus on the form of (3.47). As we calculated in two-
dimensional CFT, with Stirling’s approximation, we get
R(Ei—k1)+A 1 R(Ei1+k1)+A
o r(mmees () s
lln — )
"TT@A-Dr (BB ) (REERA L gy T(A)NA-3+1)
(3.48)
where k= (E1,k1) = (Aﬂ%“" i) This is identical to the result (2.35) with d =3 at infinite
volume calculated in the paper [45].

3.3 Three-point function

Finding the explicit closed formula for the three-point function is complicated. Of course,
we can perform direct integral calculations honestly, but the number of terms for that
expression is too large to handle.

On the other hand, the WI method implies that the number of terms in the formula
should be manageable. However, the WIs are too complicated to find a definitive solution.
We must get the exact solution term by term with recursion relations obtained from Wils.

First, consider the reduction of the three-point function. As the J, WI implies the
conservation of m, we can write the three-point function as

<Ol37m30l2 m20l1 m1 /dQl/dQQ/dQ3 l1, m1Y22 ma l: m3 <O30201>

= §(my +ma+mg)ry My Ay A F () (3.49)

where y1 =71 /ry and y3 =r3/ra. Next, consider the J, +iJ, Wis.

Jo+idy: \/13+m3 lg—mg—f—l)Fll l2:ls 1+\/(l2+m1+m3)(l2—m1—m:;—i—l)F,%i%?

mi,ms—
/(L Fm) (G —my+ DEREE =0
(3.50)

Jo—idy:\[(ls—ma) (s +ms+ 1FL2 43 /(la—my —ms)(la+ma +ms +1)Fl1 2l

—i—\/(h —mq)(l1+mi+ 1)Frlﬁ{li{?m3 =0
(3.51)

They are related by conjugate transformation m; — —my and ms — —ms.
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The equations (3.50) and (3.51) imply that F'1/2:3 and Fll’l2 s differ only by a constant
3

mi,ms3

factor. The relation between Fl1:2:15 and Fll’l2 313 is

plolels  (_qynth (20 —n)!'(2l3— k) (lo—li+13)!(la+ 11 — I3+ k—n)! £ R s

h=n,—ls+k ™ (20! (2Us) k! (I — 11 +13 — k+n)(lg+1; —13)! 7™ bl

(3.52)
with
k
Enl2l3—k+D o+l —l3+k=D)(la—li +13+n—Fk)!
N\ 3 2+l —13 2—l1+13
fk =2 )l!(k—l)!(n—l)!(2l3—k:)!(lz+l1—l3—n+k:)!(lz—l1+l3—k‘+l)!' (3.53)

=0
We summarize its derivation in the appendix. Now, we only have to consider F'1:!2:43 =

ﬂlll’l2’13 because we can derive all Fll’l2’l38 from F!1-243 by using the above relation.

The WIs for a general F'1:2:53 are very complicated. For example, the P, +1iP, WI for

mi,ms3
a three-point function is

(Is3—ma+1)(I3—ms+2) 1 d Py
0=/ st [y - Akl 2] ElS

1 d
I3 4+ms—1)(I3+ phidels—1
(3(2?9?31)()2%?)13) {93(13_%_13“} Foms—1

(la+mi1+m3)(l1+mi1+m3z+1)
(2[2+1) (2[2 +3)

L
d Ys—~—

d my,m3

d +Ay—1ly— ] 9| plil2+1.ls

+ \/(lz—ml —m3)(la—mi—m3+1)
(2[2—1)(2l2+1)

d d
— ty3— + Ag+ly— 1| Fll2—Lls
Y1 du Ys dys 2T l2— ] mi,ms

(h—mi+D)(l1—m+2) 1 d e
+\/ 1 (g;bi+1)(211147:§1) " {yldylA1+l1+2 Fi 1%?

l -1)(I 1 d —

R gy, | B (350

We have similar Wls for P, —iP,, P,, K,+iK, and K,. They are too complicated to
handle, but the reduction (3.52) helps us a little. For example, the P, +iP, WI becomes

2l3+2 Fll la,l3+1
213 3y3 dy3

(lo+11—13)(la+l —l3+1) i d I1,la+1,0
_\/ LTS dy +y3dy3 Ag —1—12—0—2} Flula+Lls

(o=l +1s) (la—l1 +l3+1) d d o Ilo—1,1
+\/ - 1)(2 D) yldT/ler‘gdiyg Az l2+1} FrEe

_ _ _ _ 1 d .
+\/(211+2)(lg+z1 13)(l§(+21l11+zf;(r21l)l(f3)zl+z3)(12 11+z3+1)£ [@hdyl%-&—h—? Fltlizls
d
21 l _l)l 7l
- y1dy1+A1+ll—1]F1 2l (3.55)

We have similar WIs for P, —iP,, P,, K, +iK,, and K,. However, they are still difficult
to handle as they are two-variable differential equations. Therefore, we use new notation
to get one-variable differential equations.

Flulals _ Z F(l;),(llz),l3y1A1+l1+2p —Az—l3—2q _ Z Kll,lg,lg A1+l1+2p (3.56)

P,9€Z>0 PEZ>
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Substituting it for the WIs and comparing the coefficients for y¥, we get one-variable
differential equations for KIZ}’IQ’Z?’. Here, we focus on getting F'%%0. We list the differential
equations related to KS’O’O. K}l,l’l%li" vanishes when p <0.

—Ag+2
Y3
0=y3 20 + Y3 KM + (A1 — Ag+2p) K9 + (A5 — 2)ys KOM + (241 +2p - 3) K119 (3.58)

0=y3K, "0+ K" + (A1 + Ay +2p) KO + KM+ (2p+3) K" (3.57)
’ ! A

0=K" +ys KM — y—3K£00 + (A1 + Ay +2p—2) KM — (2p+3) K (3.59)
3

0= 3,20 +ys M + Agys KOO+ (A — Ag+2p+2) KoM — (24 +2p—3)K 1% (3.60)
5—2

0=y3 kM0 — K10+ (2p+2) K% + +(A1+Ag+2p— 1)K (3.61)
0=ys K, — g3 KM+ 2(A1 +p) KO — (Mg —2)ys K1 + (A1 — Ap +2p+3) K110 (3.62)
From (3.58) with p=0 and (3.60) with p=0, we get a second order differential equation.

3 (Y3 — 1)K "0 +2[Asgyi + (Ao — Aq — 1)ys] K

000 (3.63)
+[As(As—1)y5 — (A1 — Ag) (A1 — Ay +1)] K7™ =0
We can get the solution for this ODE assuming that K{% is an analytic function at y3 =0.

0 A1 —NAy—A )! A
Kooo_ ( 1 2 3 Asz—2q
§<2q+1>!<A1—A2—A3+1>!y3

(3.64)

Substituting it for six ODEs (3.57)-(3.62), we get all K}, K0!, K% and K}'°. The
procedure is as follows. First, substituting (3.64) for (3.58) with p=0 and (3.60) with
p=0, we get K. Substituting KJ and K{ for (3.57), (3.59) and (3.62) gives K}
and K} Next, we can get KV by substituting K} and K}1° for (3.61). K{"! can
be obtained from (3.58) or (3.60). K{% and K can be obtained from (3.57), (3.59)
and (3.62). In this way, we can get all Kgoo, Kgu, Kgm and Kglo. We can guess from the
procedure that not all ODEs are needed to get the solutions.

The direct integral calculation is less helpful in this case. We summarize the detail
of the calculation in the appendix. Here, we only show the result for (9(()?3(’)83(983 and
compare it to that in the WI method.

dQ2 dQ2 dQ A
/ 1/ 2 3 030201>:)\3217‘1_A1T2_A2T3_A3 Z F&?g)ylAl+2py3 As—2q (365)

P,q€ZL>0

F 8)02) has the following form.

min(p,q) k p—kq—k

dQ dQ dQ ;
000 _ Z ZZZA'%JM/ 1/ 2 3% @3@@3{

k=0 j=0n=010=0

min(p—1,g—1) k& p—k—1q¢—k—1

ST dﬂl/ 0 [ giyiagial meo
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o 22(j+n+1) g12'923!931!
Akl = RO~ F—ma—F—1)! (ga1 g1z —p+ k) gz~ 7o) (3.67)
B, 22(j+n+1)+3 g12'ges'gs1!
k.gmsl = 25+ D)I@n+ D)1+ 1) (k—5) (p—k—n—1)1(q—k—I—1)! (g31—k—j—1)(g12—p+k—n)(gaz—q+k—1)!
(3.68)

where g12=(A3—A;—Ay)/2 and 12 =sinb; sinfycos(¢p; — ¢2)+cosy cosba. The prob-
lem is that this configuration has too many terms. At least, the number of the terms is

of the order of pg[min(p,q)]?>. Moreover, we have not yet found a simple expression for

(A [dQy [dQs®2 DD and [dQ; [dQ [dQs®2 2SI We would like to get
a valuable expression for three-point functions because we need to calculate more for con-
formal bootstrap in momentum space. This direct integral calculation result is not helpful
in that sense.

4 Applications

In this section, we show some examples of applications of the calculations in previous
sections. The ultimate goal is to compare the results of conformal bootstrap at finite
volume with those at infinite volume to see how the 1/R term comes into play, but this
has not been fully explored yet and will be left as an issue to be resolved in the future.

In this paper, we only deal with two types of test functions. The first is the delta
function, also used in the previous article [44]. The other one is the step-like function,
which helps us understand how to handle the step function.

In those cases, it is easy to derive bootstrap equations in momentum space. However,
we must consider contributions equally from all intermediate states, from the primary state
to the state with high energy.

On the other hand, it may be possible to suppress contributions from the intermediate
state with high energy if we choose a better test function. However, there is currently
a challenge in that it is difficult to do Fourier transforms for all but delta and step-like
functions. If we could succeed in finding a test function that is calculable and well-behaved
for summing up the intermediate state, that would be a better test function.

Though the delta function and step-like function are interesting enough to be studied,
searching for a better test function will be left as an issue to resolve.

4.1 Conformal bootstrap in momentum space for infinite volume
4.1.1 Conformal bootstrap equation

We review the Momentum-Space Bootstrap for Wightman functions at infinity volume in
brief. For more details, please check the paper [44]. The paper seems they use a test
function with support at coincident point o9 = 03,7 =73. It makes a problem when the
commutator of the second and the third operators have a singular term at the coincident
point. If we try to Fourier transform the commutation relation, including the singular
point, we must thoroughly consider the commutation relation of the second and third
operators. We leave this problem to future work.
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So instead of that, we use a test function with support only at spacelike points. Though
we deal with two-dimensional CFT in the following, the logic is parallel for general dimen-
sional CFT in infinite volume. In this part, the delta function represents Dirac’s delta

function.
First, let us consider the four-point function in infinite volume. We use o and 7 to

represent space and time coordinates. The microcausality condition says
(0] OW (24)[0P) (23), 0P (29)]OW (21)]0) =0 for x5 —x9 spacelike. (4.1)

It is inconvenient for Fourier transform since we have to integrate it over where x3— x9 is
timelike. Instead, we adopt the following improved microcausality condition.

(0] OW (04, 72) [0 (5,73), 0P (2,72)] OV (51, 71) |0) f w5 —22) =0 (4.2)
Here, f(x) has support only for spacelike 2. For example,
f(l’g—xg):(5(03—02—(1)5(7'3—7'2) (a%O). (4.3)

With this test function, we get

4
(H / dejein-ﬂfj) (0]OW [0 0PD0W |0)§(03 — 09— a)d (T3 —T2)
j=1

2
_ / ((21 ];2 d2x2d2x36—i(P2.:c2+P3.x3)eik~(x3—x2)e—iak1 <0| @(4) (P4) [0(3) ’ 0(2)]@(1) (Pl) |0>
T

o /d2kd2$2d2x3€_iakl —i(Pa+k)-x2—i(Ps—k)-x3 <0| @(4) (P4) [0(3) (Ig), 0(2) (332)](7)(1) (Pl) |0>
_ / ke~ %1 (0| OW (P OB (Py — k), 0@ (P + k)| OD (P1) |0)

x8(YP) [ Qe @ (OW(PIOW (-Q - B3, 00 (@ - B oW (py))

=0 P) [ Qe X W (PL Q) - W (PP~ Q)
=0. (4.4)

The last equation does not automatically hold, and this gives non-trivial information as
the bootstrap equation. We defined Q = (Qo, Q1) = (P2 — P3+2k)/2.

Let us check whether this is satisfied by the four-point function in generalized free field
theory. In that case, the four-point function is given by multiplying two-point functions.

((P1)d(P3)d(P2)(F1))
= (2n)? > 3*(PL+ P){S(Pr)d(P))(S(P)d(Pr))
(1,,k)=(2,3,4)(3,2,4)(4,2,3)

B (27)6 1
sy L)

S Y (Pt Py) + 8(Py + Py)O(Pay)O(Py) (4.5)
j=2.3
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So,
W(Py, Pi|Q) =W (Py, | - Q)

T 6
= 24A¢_<2[F>(A¢)]4 (P12)A¢_152(P1 +P4)(Q2)A¢_1[®(Q+)®(Q*) - @(_Q+)®(_Q*)]
(4.6)

As this is an odd function of @, (4.4) is actually satisfied.

As we substituted the form (4.5) to the Ward Identity, we do not get any constraint for
CFT data. This is only a check to ensure the validity of the bootstrap equations we have
obtained. In general, to get a constraint for CF'T data, we should describe the four-point
function with OPE coefficients.

4.1.2 Other test functions for infinite volume

Let us consider other test functions. We define a step function as follows.

0 ifx<0
H(z)={3% ifz=0 (4.7)
1 ifzxz>0

This function has the following representation.

0)=1- [ sy (4.8)

In this paper, we define the delta function as having the following properties.
€ 0 1
/ s)= [ dw)=5  (0<e) (4.9)
0 —€
With this delta function, we have

r)=1- / dy— / dke* =1 — / dk / dyet*v (4.10)

Introduce the convergence parameter e.

00 ei(kz—i—ie)a}

H(z)=1- S lim dk:/ dye’ iy — 1 4 L lim (4.11)

27 e—=0 211 =0 o ke
The second term is —1 when <0, —1/2 when =0, and 0 when z>0. We can check
it by complex analysis. When z >0, we take the integral path in the upper semicircle.
As the contour surrounds no pole, the second term above is 0. When z <0, we take the
integral path in the lower semicircle. In this case, the pole exists at k = —t¢e, which gives the
residue 1. Since we take the contour clockwise, a negative sign appears, and the second term
above is —1. When x =0, we can close the contour in either the upper or lower semicircle.
In the former, the contour doesn’t enclose any poles, so only the integral contribution
of the arc portion exists. In total, the second term above is (—1)(mi)/(27i)=—1/2. In
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03— 02

Figure 1. The test function has support at the green region, including the boundary. The red area
represents the timelike region.

the latter, the contour encloses a pole at k= —ie. In total, the second term above is
(=) {(2m1)/(2mi) — (mwi)/(2mi) } = —1/2. Both calculations yield the same result.

With this function, we can formulate various test functions. For example,

f(x3—a:2) :H((Ug—ag) — (7’3—7’2) — 1)H((0’3—0’2)+(T3—7’2) —1)

z(k1+iel)(03—02—7'3+72—1)
—|—— hm/ dk;

1 €10 k1 +ieq
pilkatiez)(03—02+73—72—1)
1+ — lim / de , . (4.12)
274 €2—0 ko +ier

This test function has support for —(o3—02)+1 <713 —79 < (03 —02)—1, which is shown
in the figure 1. With this test function, we get

(H/ &zt ) (00 [O®,010W0) f (23— z2)

. k1+161)(03—0'2—7'3+7'2—1)
= H/d%‘eﬂpj’xﬁ +— hm/ dkl
, J 2717 e1—0 k1 +ier

et(katiez)(o3—02+73—12—1)
Lo by Wio®) o@100
l+2mezl£>n0/ dk2 ko +ieg ](O\O (O, 01077 0)
= 0*(Pi+ Py + Py+ Py) [(OW(P1)[0F)(P3), 0P (P,)]0W(Py))
g Y w50 50) 51)

+%6111LH0 dlﬁm«o (O (B3 —k1,p3— k1), 0" (Ea+k1,p2+k1)|OY)

1 o e ) S a) 52) 5(1)
+%6121LH0 dk2m«o (O (E3+ka,p3 —ka), 0\ (Ea — ko, p2 +k2)|O)
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1 2 [e%} (k‘1+’i€1) 0 e*i(k2+i€2)
—— | lm L dk: dkog——mF—
+ <27Ti) 611£>n0 621g0 — ki+ie; Loo 2 ko +1e2
(OW(P)[OB) (B3 — ky + ko, p3 — k1 — k2), O (Ea+ k1 — ka, pa + k1 + k)] OD (1) )]
(4.13)

We omitted €; and es in the double brackets. Let us consider the four-point function of
generalized free field theory. Using the previous result (4.5), we get

d(E2+ E3)d(p2+p3)

H

O(P24)0(P2-) — O(P34)0(Ps-))]

et k1+151) o, o 5 9 Ay—1
g lim [ diy S (PP} 42 (B~ pa)) (P 201 (Ba o) PD)

[©(E2 +pa+2k1)O(Ey —p2) — O(E3 +p3 — 2k1)O(E3 —ps3)]

77, (ka+ie2) 2 ) 5 Ay—1
— 1 —2ko(FE Py +2ky(E P
by i [ Al (PP~ 2Byt o) (PR k(B ) PP)

[ (E2+p2)@(E2—pg—ng)—@(E3+p3)@(E3—p3+2k2)]
1 2 00 e~ (k1+i61) o0 e*i(k2+’i62) A(bfl
— ] lim li dkj——— dko———(P2P,
+(27Ti> 611§0621£>n0 —x ki+1eq Loo 2 ko 1€ (P 1)
Ag—1
{P§+2k1(E3—p3) — 2ko(Es+p3) +4kiko} 2

Afl

{P22 —2k1 (E2 *pg) +2k‘2(E2 +p2) +4]€1k2)} 2
[@(EQ +p2+2k1)O(Ey —pa— ng) —O(E3+p3— le)@(E3 —P3 +2/€2)H . (4.14)

Considering the delta functions, we get
PV (0(Po)O(Po-) — O(=Pos )O(— Py )

e—i(k1+ier) .
51 dky————— (P2 — 2k (Ey — o=
+2m ellglo/ ke tie (Py —2k1(E2 —p2))

[O(Fa+p2+2k1)O(E2 —p2) — O(—E2 —p2 — 2k1)O(—Ea +p2)]

(k‘z-}—lez) A
- hm/ dsz(Png?kz(Eerpz)) ot

271 e2—0 2+ 1€9

[O(E2+p2)O(E2 —pa —2ks) — O(—E2 — p2)O(—Ea + p2 +2k2)]

—z(k1+zel) e—i(kg—‘rieg)
| 1 dk dkg————
+ (277@) 611g10621£>n0/ Yk e ki+iep /_oo 2 ko +1eo

(P§ =2k (B —p2) +2ka (B +p2) + Ak ka) 20~

[O(E2+p2+2k1)O(Ey —po — 2ke) — O(—Ea — pa — 2k1)O(— E2 + pa + 2k2)]. (4.15)
Taking each integral path in the lower semicircle, we have residues at k3 = —ie; and ko=
—iey. It vanishes as expected. Though we checked that the exact four-point function in

generalized field theory satisfies the bootstrap equation, it can constrain OPE data. We
skip the analysis here and leave the problem to future work.
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Time
direction
B A
Space
Directi

=

Figure 2. When we set the second operator at A and the third operator at B, they commute
because of the microcausality condition.

4.2 Conformal bootstrap in momentum space for finite volume

4.2.1 Conformal bootstrap equation

Consider the following four-point function.
(0] OM (04,74)[0P) (03,73), 0P (52, 72)] O (51, 71) |0) (4.16)

o is a coordinate for spatial direction (—mR<o<wR) and 7 is a coordinate for time

direction —co <7 < co. We summarize them as = = (2°,21) = (7,0).

The microcausality condition says,

(0] OW (04, 74)[0P) (a5, 73), 0P (52,72)]OV (51, 71)|0) =0 for x3 — 9 spacelike.
(4.17)
As in the case of infinite volume, we adopt the following improved microcausality condition.

(0] OW (04, 72) [0 (5,73), 0P (52,72)] OV (51, 71) |0 f 25— 22) =0 (4.18)
Here, f(x) has support only for spacelike z (figure 2). For example,
f(zg—x9)=06(03—02—a)d(13—12) (0<a<2mR). (4.19)

For this test function, we get
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(H/dmj —ih m) 0|OW 0P 020W |0)§(03 — 2 —a)d (13 —T2)

O(/d2x2d2x36—2(P2~1‘2+P3~x3 /dkoe—iko(ﬂg—‘l’z)

Z eikl(ag—ag—a) <0| @(4) [0(3)’ 0(2)]0(1) ‘0>

_z
k=%

O(/dko ( H /dx) Z e~ ilaki+(p2+ki)oo+(p3—k1)os—(Ez2+ko)m2—(E3—ko)Ts]
7=2,3 | —

=%
(0] OW[OB), 000 |0)
=5°3_P) > e M (OW (P)O®) (B3 — ko, ps — k1), 0P (Ey + ko, pa + k1)]OW (Py))

=62<ia>kge—"“’“<<@<4><P4>[@<3><P3—k>,@<2>(P2+k>]@“><P1>>>

occs?éa)k;:l ¢ P(OW(P) [0 (~Q - F151), 0P (Q ~ AE)IOW (1))
—62(iPi>Q§1e—le[W<P4,P1|@>W(P4,P1|Q)}

=0. S (4.20)

The last equation does not automatically hold, and this gives non-trivial information as
the bootstrap equation. We defined Q = (Qo,Q1) = (P> — P3s+2k)/2. The value of Qo and
()1 depends on the theory and the boundary conditions of “in-state” and “out-state.” Let
us see the situation next.

4.2.2 Completeness relation

We need to insert a completeness relation between the second and the third operators to
calculate the four-point function. In previous papers, it is constructed in momentum space
in an infinite volume [44, 46-48]

‘1/7(1) ) (D)
=10 0'+2/ P ) (#.21)

Y#1

where

o)) = [dlre e p@0), (S0 = (00| =01dp).  (422)

The point is that in higher dimensional CFT, we only have to consider the contributions
from primaries because we can make all descendants acting P, on the primary state, which
are eigenstates of the momentum operator. So, only primary states can expand the com-
pleteness relation in momentum space.

On the other hand, in two-dimensional CFT, we also have to consider Virasoro de-
scendants because they include L_,, (m>2) in general.
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So, our goal is to construct completeness relations from the primary state and Virasoro
descendants. Moreover, we need to study the summation for momentum because it is
discrete in finite volume. The integral for momentum in (4.21) is replaced by 3°,.

As correlation functions in two-dimensional CFT are factorized into the holomorphic
and antiholomorphic parts, we only have to consider the completeness relation for the
former. First, make a linear combination of almost orthogonal states with coefficients.

>y AN LG em) (Lunoy]

J=h+Z0 [{k}],[{#"}]
= O™ [y ) d1n1| + Oty [ s ) s
+ Cﬂ[g} ‘¢[h+2]><¢[h+2] ’ + Cﬂ[? ‘L—2¢[h+2l ><L—2¢[h+2l ‘
+ O L a0pa) Y dnan |+ CMLS |dpa ) Loopugay|++-- (4.23)

Here, {k}=ki,---,k1 (ki >---> k1) means that the Virasoro operators act in the form
L_j, ---L_g, |h). Please note that L_; does not appear in the above expression. They are
absorbed in the basis ’gzb[ J] ><¢>[ J]’ as L_ corresponds to a momentum operator.

Let us see how we can determine the coeflicients C‘[]{k}“{kl} I from the demand that it
should correspond to a completeness relation. Before that, we need some preparation.

1

T=hE (h|LI~"L77" |h) (4.24)

(Plern) =

'Zl‘c—1 mj thfzk .
== j=1" r J—h
(L Ly 11| 011) = Tl ) (h| Ly, -+ Lim, Ly )
(4.25)

(—’L')Zj:l m;
(J=I)T=h=34 m))!

h* k mj
Z']:l L*mk"'L*ml |h>

J—
(D Ly Lo 1)) = (h|L{™"L_,

(4.26)
(Lo, L, @15 | Ly Ly, B1a1)
'Z:;lmj —1 Zj’=1 i J—h— k m; J—h— ! n;
= 1 . ( Z) , <h|Lm1 . Lkal Z]’:l JL_l Zj:l JL_nl B -L_nl |h>
(4.27)

Now we have everything, let us start from the level J=h. The demand that the above
expression should be the completeness relation means that the expression above is identity.
So, multiplying <¢>[h]‘ from the left and ‘¢[h]> from the right, we get

<¢[h] ’¢[h]> =10 <¢[h] ‘¢[h]>2- (4.28)
For h#£0, it gives

ol =y, (4.29)
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Next, consider the level J=h+1. Sandwich the above expression between <<Z>[h +1]‘ and

‘¢[h+1} >

2
<¢[h+1] ’¢[h+1]> =cl) <¢[h+1] ‘¢[h+1]> (4.30)
It gives
ojio] _ 1
oY = (4.31)

When the primary operator is identity, the level J=h+1=1 does not appear because the
vacuuin is invariant under the action of L_1.

Nontriviality appears from the next level J=h+2. We have four parameters C’,Ejoﬂg},

C’,ﬂ[g], C,[ﬂ_[g}, C,[ZOJ]F[;] and four equations obtained by sandwiching it between <q§[h +2]‘ or

<L_2¢[h+2]‘ and ‘qﬁ[h+2}> or ’L_2¢[h+2]>. We get the following four equations.

h(2h+1) = h2(2h+1)°C0 —302(2n+ 1) — 302 (2h+ 1)1 4 (3n)2C2E (4.32)

+2 +2 +2
4h+ § = (3h)2CI0 —3h(ah+ §)CAY —3n(an+ 5B+ (4n 1 5)2C ) (4.33)
—3h=—3h%2h+ 1)C + (4h+ S)h(2h+ 1O + (30) 20 —3h(4h+ §)C)
(4.34)
—3h=—3h2(2h+ 1)C0 + (30)2CLI + (4h+ §)n(2h+ )OS — 3h(4h+ §) O
(4.35)

They only sometimes have a solution. For example, when h=1/2, ¢=1/2, they become
the same equation.

o)[0] 3 A0 3012 9 A2
1=l S-S+ St 130

It is all constraint for them so that we can set C,[ﬂ[g] =1, C}[g]_[g] = Cf[ﬂ_[g] = C’E_[Qz} =0.

This corresponds to a energy operator € in Ising model (M3, ¢=1/2). The fact that
the above four equations are not linearly independent corresponds to the fact that the Kac
determinant [49] vanishes at level 2 for h=1/2, ¢=1/2.

Next, consider the case h=3/2, ¢=7/10. It is one of the operators in the Tricritical
Ising model [50). We get C10 —127/357, C20 = 30/119, 12 = 30/119, CP18 = 40/119.
Of course, we can get eigenvectors, but it is not so useful for calculating the four-point

function.
20 128 \12|7+ /32449 2
1=+ (1 I
* [119< +\/32449)] 130 [Ginsal) | L20ipra)) .
, .
20 128 \1?|7—/32449
+[119 (1_\/32449” 180 ‘¢[h+2}>_‘L—2¢[h+21> o

Let us summarize the result. We can construct the completeness relation by determining
each coeflicient C"[]{k}”{k 1 by sandwiching it between in-states and out-states. As well
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known, the number of linearly independent states is determined by the number of a singular
vector. So we need to study the Kac determinant to construct the completeness relation.

We can write the four-point function as

@ 0® 00100 o o®
O 0 0 0 ) - 3 (OO0 O O 1) Ot O}
1915 O L G o
4 3 2 1 o) <O[7J5}O[J5]>

(4.38)

where Js =J1+Jo=—J3—Jy and ‘(’)Sﬁﬁ is an orthogonal states at the level Js.

In the bootstrap calculation, we start by considering intermediate states at J =0 and
increase the number of J. By viewing the intermediate states at a higher level, we can
improve the accuracy of constraint for CF'T.

4.2.3 Nontriviality

The question is whether or not the bootstrap equation (4.20) can restrict the OPE data
for some CFT. In other words, is (4.20) satisfied regardless of the details of OPE data?
Let us consider this issue.

As an example, consider the four-point function of the identical operator ¢ with confor-
mal weight (hg,he) = ((Ag+54)/2,(Ag—54)/2). When we compute the four-point func-
tion, many contributions from conformal families are inserted between the second and the
third operators. We call the contribution from the OPE O € ¢ x ¢ “O conformal block.”
And we write the O conformal block in W (Py, P1|Q) as Wo (P, P1|Q).

The O conformal block includes all contributions from the conformal family of O. So,
there are Virasoro descendants in the intermediate state. We call the contribution from the
intermediate state ‘O[ J] ><O[ J}‘ “O primary conformal block” and write it as W (Py, P1|Q).

We call the contribution from other intermediate states such as ‘L_mk Oy ><L_m,C O ‘
“O Virasoro descendants conformal block” and write it as WY (Py, P1|Q). As ‘(’)[ J] ><(’)[ J]‘

and ‘L_mk o Lom, O ><L_mk . 'L—m1O[J]‘ are not orthogonal basis at level J,
W§ (P, P1|Q) + W (P, PL|Q) # Wo(Py, Pi|Q), in general.

If the sum of the difference of W is 0 for each O contribution, the bootstrap equation
is trivially satisfied.

Bootstrap equation is trivially satisfied.

o Z o—1aQ1 [Wo(Py, P1|Q) —Wo(Py, P1|— Q)] =0 for each Ocpx¢
Qo,Q1

We focus on the difference of O primary conformal block to see whether it is true.

Z e—1aQ1 [Wg(p47p1|Q) — Wg(P4,P1| — Q)] =0 is satisfied or not?
Qo,Q1

Though there are many other contributions from O conformal block, to check whether this
is correct or not is enough because we can give the same logic for other contributions,
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including Virasoro descendants. We can write O primary conformal block as follows. O
has conformal weight (ho,ho) = ((Ao+50)/2,(Ao —50)/2).

WE (P, PLIQ) = Clh ) (@ 1p1 617 Orp WO,
T
The notation is defined by (A.88). The coefficient C'(h,c) is determined by the conformal

weight of O and the central charge. It has a nontrivial configuration when some nonnegative
integers nr, ng, ny, ny, Np, Ng exist such that the following relations hold.

Plan—nR+s¢, 51:nL—|—nR+A¢ (4.40)
Py=—(np, —ng+5¢), Ey=—(np +nR+Ay) (4.41)
Ps=Nr—Ngr—+s0, E=Nrp+Nrp+Ao (4.42)
,PQ:—nL—I—TLR—i-NL—NR—S(z)—i-So, 82:—nL—nR+NL+NR—A¢+A(’) (4.43)
P3:n/L_n/R_NL+NR+5¢:_5(’)7 ggzn/L—l-an—NL—NR—f-A(i,—A(g (4.44)
We can rewrite the last four equations as
((: _5 / /
Qo= 22 3:_”””R‘;”LJF"R+NL+NR—A¢+AO (4.45)
Py —P np—nr+ny —n)
o= 22 3oL R2 L R+NL—NR—3¢+SO~ (4.46)

P2+ Ps3 and E + E3 equations are satisfied if Py, &1, P4, €4 equations are confident because
of the conservation law of energy and momentum.

We ignore the condition as we set P1, &1, Py, £4 conditions as “boundary” conditions

for each bootstrap equation. And Ps, &5 conditions are satisfied if Qy, Q1 conditions are
satisfied. So, we only concentrate on Qg, Q1 conditions.

4 N
Under the proper boundary conditions, W (Py, P1|Q) has nontrivial configuration

when there are nonnegative integers Ny, and Ng such that

Ey—E& nr+ngr-+n, +n Es—E&
Q= 22 2= L R2 LR LN+ Np—Ag+ Ao =Lt N + N+ Ao
(4.47)
Py —P: np—ng+ny—n Py—P
Q= 22 3 _ L R2 L R+NL—NR—S¢+SO: 42 1+NL—NR+S(9.
(4.48)
\ )

How about W& (Py, Pi|—Q)?
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a N

Under the proper boundary conditions, Wk (Py, P| — Q) has nontrivial configuration
when there are nonnegative integers N; and N, such that
E3—E& nr+ng+n; +n/ E,—E&
~Q="g = LR g AN N = Mg+ Ao = & 5 TN N+ Ao
(4.49)
P3—P: nr—ngr+ny —n) Ps—P
—== 2 B — g+ N Np—ss+so= L+ N — Np+so.
(4.50)
\ J
So, the contribution from the O primary conformal block in the equation is
Z [efia(P4g7’1 +Np—Ngr+so0) eia(@JrNL—NRJrSo)}Wg(P% P1 |NL7NR)
N,,Ng>0
e (4.51)

=-2 > sin{a<P4_Pl+NL—NR—|—so)]Wg(P4,P1|NL,NR).
2
Np,Nr>0

As Q is characterized by nonnegative integers Ni, and Ng, we write W& (Py, P1| N, NR)
instead of Wk (Py, P1|Q).

It does not vanish in general, meaning the bootstrap equation is nontrivial. To sum-
marize, the whole bootstrap equation is, for any a (0 <a < 27),

Y e Wo (P, PL|Q) = Wo(Py, Pi|— Q)] =0. (4.52)
Qo,Q1

4.2.4 Comments on contributions from Virasoro descendants

Next, consider contributions from intermediate states other than the O primary conformal
block. First, the three-point function of two chiral operators ¢(z3), ¢(z2) with conformal
weight ho = h3 =hy and L_,O(z1) with conformal weight hi =ho+n is

(n—1hs 1 0
(Zj—Zl)n (Zj—Zl)nfl 82]‘

(9(23)B(22)O(21)). (4.53)

(D(23)d(22)(LnO)(21)) = Y

7=2,3

After acting the differential operator on the three-point function (¢(z3)¢(22)O(21)), we
perform integration by zi1,z2,23. Each term in the differential operators acts as if they
increase the conformal weights of the three operators. We can calculate the three-point
function with one Virasoro descendant by considering the three-point function of primaries

with changed conformal weights. For example,

(n—1)hy
(z3—z1)"

—1)h
(P(23)$(22)O(21)) = (21 — 29) 1 Tha=hs 2, _(ZZ)hQJF)hj_hl (25— 21 )hathi—hatn”

(4.54)

— 30 —



So, it changes the conformal weight as follows.

n

hlzhoﬁh’:h1+g:ho+2 (4.55)
h2:h¢—>h/2:h2:h¢ (4.56)
hy=ho— hy=ha+5 =hs+7 (4.57)

The differential operator —(z3 — 21)17"0,, acts on (23 — 23) "2~ "3 +M and (23 — 2y ) “he—hithe,

In the former,

-1 -1
h1:h0—>h’1:h1+%:h@+n7 (4.58)
1 1
hy=ho— hy=ha+ 5 =hs+7. (4.60)
In the latter,
h1:h0—>h’:h1+g:ho+g (4.61)
hg = h¢ — h/2 = h2 = h¢ (4.62)
hg:h¢—>hg:h3+g:h¢+g. (4.63)
So, there are four ways to change the conformal weights of operators.
(h1+%,ha+5,h3)
hi1+%,ho,h3+ %
(h1,ha,hg) — (B, hy, hy) = (ha 2712 3+n2) . (4.64)
(h1+T,h2+§,h3+§)
(h1+nT_1,h2+%,h3+%)

The three-point function vanishes for a fixed J3 if hg becomes larger than —.J3. We can use
those facts to calculate contributions from intermediate states other than the O primary
conformal block.

4.2.5 Formalism of bootstrap equation without Virasoro descendants

In this section, we summarize the formalism of the bootstrap equation without considering
the contribution of Virasoro descendants. It tells us some information about CFT data.

Let us consider the four-point function of identical operators ® without spin (h,ﬁ) =
(hr,hr). Of course, there are many contributions from various intermediate states, but
here, we only consider the contributions from primary scalar states and their descendants.
We neglect Virasoro descendants.
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The intermediate state can be described by inserting primary operator ¥ with confor-
mal weight (h,h) = (Hp,Hg). So, the contribution from W is

(@ rﬂ ¢ rd] v rs] N {_Pﬂ o rz} o rl] )

54 53 55 *55 52 5'1
(W ¥ )
=) [E]
(€ (0 o) e (0 () PLE g o 0 o 0 )
Lf)] [J§+)‘| Léw] [Jé+)‘| LQ(H} Lﬁ)] (4.65)

G,
e

K" (N )K" (i, N

I'(Np+2Hp)
T(N,+DI(2HL)

x (L— R).

We defined the factorization as ®(z,2) = ¢(2)p(2) and ¥(z,z) =1(2)1(2). Remember that
we can calculate the three-point function in the numerator as follows.

Kred "™ (')

Min{n,n’} , ) , , (466)
Z T'(bs+g+Max{0,n—n })F(bg—q+M1n{n,n DI (b1+g+Max{n’'—n,0})
T'(14+g+Max{0,n—n'})I'(1—g+Min{n,n’ })I'(1+g+Max{n’—n,0})

q=0

where b; = hq + ho + hsy — 2h;.

By determining the boundary condition (nr,ng,n},n’), we get bootstrap equation.
(1) (ng,ng,n7,nz)=1(0,0,0,0)

It does not give any nontrivial bootstrap equation because the phase factor in (4.51)
is antisymmetric for Ny, and Ng though WE (Py, P1|Np, Ng) is symmetric.
(2) (np,nr,ny,nR)=(1,0,0,0)

It gives us the first nontrivial bootstrap equation.

0=—2h (AT®)%sing+> " (A§*)? > sinfa(—1+Np—Ng)|Wy(Nr,Ng)  (4.67)

N NL,Ng>0
where
_[HL(Rhp —Hp+1)+2hy (N —1)[T(2HL)U(HL + Np)U(Hp + Ny — 1)
W‘II(NL,NR)_ ( ( L))QF(NL+2HL)F(NL+1)

T'(2Hg)(T(Hg+ Ng))*
(T(HR))*I'(Ngp+2HR)T(Ngr+1)"

(4.68)

For example, when a =1

0=—=2h,(AT*)* =Y (AF")? Y (~)"MHVEWy (N, Ng). (4.69)
v N Np>0
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Contribution from conformal blocks of intermediate states

0 -
—14
=
—9
—34
—— h=05
h=1.0
—4 — h=2.0
T T T T T T
0 2 4 6 8 10

Conformal weight of intermediate state

Figure 3. The horizontal axis represents the conformal weight of the intermediate state. We
calculated them for the four-point function of identical scalar operators with h=0.5,1.0,2.0. We
can see that they give negative contributions for the intermediate state with a small conformal
weight, and on the other hand, they provide positive contributions above some conformal weight.

We can also write it by using the hypergeometric function.

0=(AT*) Wi+ (2§ We (4.70)
v

where W; = —2h;, and

Wy =oF(Hg,Hp,2HR,—1)hroF1(Hy, H, +1,2H;, +1,—1)

(4.71)
—I—(HL —2hL)2F1(HL— 1,HL,2HL,—1)].

We can calculate the conformal block for each intermediate state (figure 3). It includes all
contributions from each conformal family created by the primary scalar operator and the
action of L_1, but here we neglect the contributions from Virasoro descendants.

5 Conclusions and Discussion

Summary. In this paper, we have done the following:

e We formulated one of the conformal bootstrap equations in momentum space rep-
resentation at finite volume. We dealt with two-dimensional and three-dimensional
CFT, but this approach applies to CFTs with d > 3.
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e In two-dimensional CFT, factorization helps calculate momentum space’s two- and
three-point functions. We explained three methods to calculate them, direct integral
calculation, algebraic calculation, and WI method, though they are equivalent in
principle. The most valuable and fascinating approach is the WI method since this
applies to the Wightman function of operators with general conformal weight and
the higher-dimensional CFTs.

e On the other hand, three-dimensional CFT is a little tricky to handle. One of the
reasons is that the structure of the product of complete orthogonal basis, spherical
harmonics {Y],,}, in three-dimensional CFT (52 x R) is more complicated than that,
{e=™9} in two-dimensional CFT (S! xR). Because of the reason, it was too diffi-
cult to find a general solution for WIs. We have to solve the differential equations
from (3.57) to (3.62) term by term with the computer.

o Taking large volume limit, we proved that the two-point function and the three-point
function we got at finite volume are consistent with the previous result [28, 44, 45, 51]
at infinite volume.

e The main ingredient of this paper is that we explicitly constructed conformal blocks
in two-dimensional CFT and showed how we could introduce bootstrap equations
in momentum space. We applied the bootstrap equation [44] obtained from mi-
crocausality condition in infinite volume to finite volume case. One of the exciting
properties of our formula is that we only have to take a discrete sum because of
the quantization of energy and momentum. It helps us calculate conformal blocks
analytically and numerically. We proved that our bootstrap equation is not satisfied
trivially, which means it could give us a constraint for CFT data.

Remaining challenges. We have some remaining challenges to be solved in the future.

e In two-dimensional CFT, the problem is how, to sum up the contributions from
Virasoro descendants. There is no exact result for summing them, so we have to
calculate them by computer.

¢ In three-dimensional CFT, we have technical problems. The most challenging issue
to be solved is we do not know the exact form of the three-point functions. We can
calculate them term by term with recursion relations obtained from WIs, but it needs
calculation by computer. If we could find the exact form, it would make it easier to
calculate conformal blocks in three-dimensional CEFT.

e In three-dimensional CFT, in this paper, we only dealt with scalar primaries because
it is easy to handle. We have to consider various primaries with spin, but we can get
them similarly as we did for scalar primaries. The generalization of our result in this
paper is one of the remaining challenges, though it is not so hard.

Future research direction. We formulated the basis for the conformal bootstrap equa-
tion in momentum space at finite volume. We end our paper with a discussion of future
research directions.
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e One of the future approaches is to consider better test functions. In this paper, we
chose the delta function and step-like function as test functions because they are easy
to derive bootstrap equations. In that case, we had to consider many contributions
from the intermediate state, whose energy ranges from the lowest one to infinity. If we
set a smoother function as a test function, we might get better bootstrap equations in
which the contributions from an intermediate state with high energy are suppressed.
Considering many types of test functions is one of our future directions.

e This paper dealt with conformal bootstrap obtained from the microcausality condi-
tion. In the construction, we ignored the explicit form of the commutator by multiply-
ing the test function that has support only at spacelike region. On the other hand,
finding a concrete expression for the commutator is needed to find a valid, closed
bootstrap equation for the Wightman function by comparing (43)(21), (42)(31), and
(32)(41) channels. However, the commutator of the operators is not well-defined for
a non-free CF'T, so we need to consider the commutator of the smeared operators for
time and space directions. This formulation has been constructed [52, 53] but has
yet to apply it to the conformal bootstrap equations fully. It is a desirable research

direction.

Acknowledgments

The author thanks his supervisor Simeon Hellerman for his scientific advice. His insight
into conformal bootstrap methods helped the author a lot. And the author also thanks
their dear schoolmates for providing helpful guidance on research activities.

This project is supported by the WINGS-FMSP (World-leading Innovative Graduate
Study for Frontiers of Mathematical Sciences and Physics) project.

A Supplement to two-dimensional CFT

A.1 Solution for the Ward Identities

Let us solve ODEs (2.13)—(2.16) obtained from WIs in two-dimensional CFT. Remember
that we used Ly and Lo WIs to determine the reduced form for the two-point function.
First, shift n by n —n—s;, and define G,, = F,_5,. We get

d d
L_q: <ydy —Aj+n—s +1> Gnt1(y)+y (_ydy —As —n—52> Gn(y)=0 (A.1)

L, Y (—y(;z — Ao +n+1+32) Gry1(y)+ (yi — Ay —n+31> Gn(y)=0 (A.2)

Ly: (—y(;z +As—n—1 +82> Gni1(y) +y <y(§/ +A1+s1 —i—n) Gn(y)=0 (A.3)

Li:y (y(i/ +A1—s1—n— 1> Gny1(y) + (yij +As+n— S2> Gn(y)=0. (A.4)
Adding equations (A.1) and (A.3) gives

0=2(hg —h1)[Gnt1(y) —yGn(y)]- (A.5)
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And adding equations (A.2) and (A.4) gives
0=2(h1 —h2)[yGr+1(y) = Gu(y)]- (A.6)

There are four possibilities.

(1) hi1#hg, h1# hy supported only at y=1
(2) hi=ha, Guly) =y "Go(y)

(3) hi=ha, Guly)=y"Goly)

(4) hi=hg, hi=hy

The first solution is different from what we are looking for. Substituting the second solution
for (A.1) gives

d 1+y?
—Go ) =2h———-G) Y). A7
15 Gol0) =2 o) (A7)
Solving them, we get
y 2h
Goly) o (> . A8
Wiy A9
So, the Wightman two-point function is
A A y 2
M ) TS . A.
C(ni1,n2,r1,r2) X1 ~trg (n1+mn2+s1+s2)y <|1—y|(1+y)> (A.9)

The second solution is wrong because it diverges when we take y to 0 for fixed 9. In the
same way, we can say that the third solution is wrong. So, we can conclude that hy =ho =h
and hy = hy =h. Then we only have two independent equations.

d d
(y2h+n+1)Gn+1(y)+y<y2hn>an(y):o (A.10)
d o5 d -

y(—y—2h+n+1>Gn+1(y)+(y—2h—n>Gn(y):o (A.11)

dy dy

From them, we get

1 i 8
L o Ty E=2hy=2hy ™ = (y+y " InlGy A12
N hg iz YY) y—2hy™ —(y+y~)nl (A.12)

1 L o »

" onrohg oV TYE 2Ry =2hy (- +1)]Gn1. A3
hrohgan Y Y y y++y ) (n+1)]Gnn (A.13)

Let us fix n to solve it. The most reasonable choice is n=s=h—h.

G = 55— [0 0 (E+9)~ (5 +3)(A+9)Gs (A.14)
T 2Ai2s[(y_1 —9)(E=s)+(y+y ) (s+1-2)|Gan (A.15)

Combining them gives

(2A+1)y2 +(2A 1)
Y3 —y

2 2
Glyl+ A%, 4 2) G.ly] =0. (A.16)

(T

G;[yH(
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From unitarity, we can assume that G5 must be a discrete sum of the powers of y. And
small-y behavior of the solution are Gs(y) ocy®. From these facts, we get the answer by

series expansion.

= KsyA Z Cly2l (A.17)
1=0
o= FNA+s+)I'(A—s+1) (A18)

T(A+s)I(A—s)2(1+1)

K is an undetermined constant depending on the normalization of operators.
Now we get a solution for the primary state with spin s. Next, we derive a solution
for the excited (descendant) state. The recursion relation is

2A - 251— 55l = (E+s) — (T +y) (At s +n)Gris. (A9)

Gn+s+1 =
Assume that the solution has the following form.

Gnis= n+sy an—i—sﬂy KsyA+nZCn+s|ly2l (A.20)
>0 >0

Kn+sbn+s\l :Kscn+s|l (A21)
F(A+s+1)I'(A—s+1)

b, = = A .22
=S = AT DA+ s)T(A—s)D2(+1) (4.22)
bn+s\l:0 =1 (A23)
We use mathematical induction to get the solution.
(1) Calculation of Gst1
Gris= K1+syA+1 Zb1+s|ly2l (A.24)
1>0
1 d
= |(1-)——y 'A—y(2s+A)| K, ! A2
2A—25—2[( y)dy y y(2s+ } y l;)bsuy (A.25)
Picking up the coefficient of y2*! gives
Kiys=(A+9)Ks. (A.26)
Picking up the coefficient of y212+1 gives
Ky T(A+s+1+1)I'(A—s+1)
K1 sbiysi = . A27
PPl ™ T T(A 4+ s)D(A—s)T2(1+1) (A.27)
So, we get
IFA+4+s+I+1)I'A—-s+1
biysi= ( _) ( ) (A.28)
DN(A4+s+1)T(A—=s)T'(+2)T(1+1)
Ky FNA+s+l+1DI(A—s+1)
= - = . A-2
Crolt = g, Dbl T(A+s)D(A—s)T(I+2)T(1+1) (4.29)
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(2) Calculation of Gsi9

Gots=Kop sy boy gy (A.30)
1>0
1 d
= =)~y (A1) —y(2s + A+ 1) | K15y by git?
n e (1) gy A s A K o
(A.31)
Picking up the coefficient of y212 gives
A A 1
Koy s= ( +S)(2 i )Ks. (A.32)
Picking up the coefficient of y212+2 gives
NA+s+1+2)T(A—s+1)
b =2 A.33
2+sll N(A+s+2)T(A—s)T'(I+3)T(1+1) ( )
Koy FNA+s+1+2)I'(A—s+1)
- b — . A.34
sl = T T DAL )D(A— )T+ 3)D(1+1) (A.34)
(3) General Gp4s
From (1) and (2), we can guess the form of general G,,4s.
I'A+s+n)
Kpis= s A.
T T+ )T (A +s) (A.35)
FA+n)(A+s+14+n)'(A-s+1)
bn+s|l = (A36)
FNA+s+n)T(A=s)I(l+n+1)T(1+1)
F(A+s+I+n)T'(A—s+1
Cnts|l = ( ) ( ) (A37)
DA+ IN(A=s)T'(l+n+1)I(1+1)
We show it by mathematical induction. Picking up the coefficient of y2+2+2! gives
Kn S
Kontst1bpysy1= A — [T+ Db yspirr — 5+ A+1)bpy g1 (A.38)
—s—n—1
From this, we obtain recursion relations for Ky ts, b, and ¢,
bpysji=1— (A+s+n)
Kntst1=Knys A_s—n—_1 (ASQ)
(l+1)bn+s|l+1 _(Z+S+A+n)bn+s|l
bpssiill = A.40
et bn+s|l:1 - (A+S+n) ( )
Kn 1
Cntstl = }_—:_z—i_ bn+s+1 (A41)
When the configuration (A.35), (A.36) and (A.37) are valid for n,
Kn+s+1
ra 1 ra ra 1 NA—-s+1
_ (A+s+n) K. (I4+n)(A4+s+1+n)(A—s+ )—(A+s+n)
Fin+1)I'(A+s) "A—s—n—1| I'(A+s+n)I'(A—s)I'(n+2)T'(2)
F(A+s+n+1)
= K, A.42
I'(n+2)I'(A+s) ( )
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1 _ {(H_1)F(1+n)F(A+s+l+1+n)F(A—s+l+1)_

nts Ll T(A+s+n)(A—s)D(I+n+2)(+2)
FA+n)(A+s+14+n)'(A-s+1)

F(A+s+n)T(A=s)I(l+n+1)T(1+1)
L(1+n)(A+s+1+n)(A—s+1) -1

{ T(A+stnl(A_sTmiar@ (AFstn
Fr2+n)l'(A+s+l4+n)T(A—-s+1) (+1)(A+s+i+n)(A—s—n—1)

FNA+s+n)I(A—=s)I'({+n+2)'(1+2) (A+s+n)(A—s—n—1)
F2+n)'A+s+l+n+1)I'(A—s+1)

(I+s+A+n)

F(A4s+n+1) I (A—s)I'(l+n+2)I'(1+1) (A.43)
~ (A+s+n+1) TER+n)I(A+s+I+n+1)I'(A—-s+1)

st = P+ 2)T(A+8) T(A+s+n+ DD(A—s)D(I+n+2)T(+1)
_ FA+s+l+n+1)I(A—-s+1) ' (A.44)

FA+s)T(A—=s)I'(l+n+2)'(1+1)
So, the configurations (A.35), (A.36) and (A.37) are also valid for n+1. By mathematical
induction, we get (A.35), (A.36) and (A.37) for positive integer n. In the same way, we
can also get the solution for negative n.

A.2 Direct integral calculation of three-point function

Let us perform the Fourier transform directly for the three-point function.

dz3 dzo dzy _
(O (75) Oy (r2) Oy (1)) 2m - = §- = f- Ermetal sl (A

First, integrate it with respect to z;.

Asat [ der g by by s i P(bs+ k)L (ba+11—K) i —bymith b
i J RIFm TR T T D ()T (by) A T(1+ )T (1+ny—k) > 3 32
(A.46)
Next, define w3 =1/z3 and integrate it with respect to ws. Under this transformation, the
contour integral around z = oo becomes contour integral around ws = 0.

1% dz3 (A.46) = 1 7{ dws A321 ir(b3+k)r(bz+m—k) 7w
2mi ) l+ns 2mi ] wyt™s D(bg)L(be) (g T(L+E)D(1+n1—k) (1—zows)™
(A.47)

Here, we defined m3 = —ng—2hg. There are two cases. ms>nq or mz <nj.

(1) m3<my

(A.AT) =

123 i F(b3+k)I‘(b2+n1—k) F(bl —|—m3—n1+k) z*b3+m3*n1
L(b3)T(ba) | _ L(1+k)(14+ny—k) T(mz—ni+k+1)T(by) >
(A.48)
So, the three-point function is

o (Z?zl(nﬁhi)) A23 JL - T(by+ k)T (b +n1 — k) T(by +mz —nq +k)

PETG)T(B1) 2= TO+RT(A+n—k) T +ms—ni+k)
(A.49)

(A.45) =
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(2) m3>ny

A123 i F(b3+k)r(62 +n1_k) F(bl +m3_n1+k) —bg+mgz—n1

(A'47):F(b3)f‘(52)k:0 T(1+ k) (1+n1—k) D(ms—ni+k+1)T(by) 2

(A.50)
So, the three-point function is

(A.45) =

5( ?:l(ni_'_hi)) Al23 1 F(b3+k)F(b2+n1—k) F(b1+m3—n1 ‘|‘k‘)
I'(b3)T(b2)T(by) 2 P(1+k)T(Q4+n—k) T(1+ms—ni+k)’
(A.51)

k=0

In the end, we get

8 (o5 (nitha)) Aas 1 BT .k
(A.45) = ( ! ) 3 L'(bs+k)I'(b2+n1—k) (b1 +msg—n1+k)

F(bg)r(bg)r(bl) k=Max{0,n1 —ms } F(1+l<:)F(1+n1—k) F(1+m3—n1+k) '
(A.52)
Define a new variable ¢ = k—Max{0,n1 —ms}. Then, we get
_ A321
(Ony (13)Ony (12)Ony (1)) = 0(n1+no+ng+hi+ha+hs) T(61)T (ba)T (b3 (A.53)

Mindnms} prp g4 Max{0, 71 —ms T [bs — g+ Min{ny, ms by +g-+Max{ms —n1,0}]

= I[1+g¢+Max{0,n; —m3}T[1—q¢+Min{n;, ms}|T[1+qg+Max{ms—n;,0}]

It is valid for all integer n; and mgs, and invariant under the time-reversal transfor-
mation (ny < ms, by < b3).

A.3 Consistency check for three-point function

A.3.1 Ward Identities for three-point function

Define the complete Wightman three-point function as

C(n1,na,ng,m1,72,73) = (OF) (r3) OF) (r2) O (r1)) (A.54)

3

We get a reduced three-point function using Lo+ Lo WIs.

Ay _A2T

C(ny,ng,n3) =17 1y 2205836 (ny +ng +n3 + 51+ 52+ 53) F(n1,n3,y1,Y3) (A.55)

with y1 = % and y3 = :—; Next, consider P,, P;, K? and K* Wls.

PZ'C(n17n27n3):0

1 d 1 d
= — <r3—|—n3+1> C(nl,ng,ng—l—l)—l—— (T‘er —|—n2—|—1) C’(nl,ng—l—l,ng)
2

2?”3 dT’g 27"2
1 d
+— (r1+n1+1) C(n1+41,n2,n3) (A.56)
27“1 d7“1
K*-C(ny1,n2,n3)=0
d d
= rﬁ <r3—|—n3—|—4h3—1) C’(nl,ng,ng—l)—l—rj <’I“2+’I’L2 +4h2—1> C(nl,ng—l,ng)
2 d7“3 2 d?"z
d
+ 2 (r1+n1+4h1—1> C(n1—1,n2,n3) (A.57)
2 d?”l
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P;-C(n1,n2,n3)=0

1 d 1 d
L | s 1) — (o g1 1
5 <T3dr3 n3+ >C(n1,n2,n3 )+ 5 (T2dr2 ng + )C(n17n2 ,n3)
1 d
S ~1 A,
+27‘1 (m ar ny+ )C’(nl ,N2,M3) (A.58)

KE-C(nl,ng,ng) =0

d - d ;
- %3 <7”3dr3_n3+4h3—1) C(n17n2,n3+1)+%2 (Tzdrg_n2+4h2_1> Clm,ma+1,m3)

o (Tldi_nl +4/~11—1> C(n1+1,n9,n3) (A.59)
1

1)

Substitute the reduced form for WIs. We get
. 1 d
P, Ward Identity : 0=— (yg +ng—Asz+ 1) F(ni,n3+1,91,y3)
ys \""dys

d d
+ (—y1—y3—n1 —n3—81—83—2h2> F(ni,n3,y1,y3)
dyr dys

1 d
+<y1+n1—A1+1> F(ni+1,n3,y1,y3) (A.60)
Y1 dy

1 d
P; Ward Identity : 0=— (yg —ng—As+ 1) F(ni,n3—1,y1,y3)
Y3 dys

d d ~
+ (—y1—y3+n1 +n3+81+83—2h2> F(ni,n3,y1,y3)
dyr dys

1 d
+<y1—n1—A1+1> F(n1—1,n3,y1,y3) (A.61)
Y1 dy1

d
K* Ward Identity : 0=ys (ygd +ng+4hs —Ag— 1) F(n1,m3—1,91,y3)
Y3

d d
+ (—y1—y3—n1 —n3—S1 —83+2h2) F(ni,n3,y1,y3)
dyr dys

d
+y1 <y1dy1+nl+4h1_A1_1> F(n1_17n3ay17y3) (A62)

_ d -
K* Ward Identity : 0=y3 (ygd —ng+4hs— Az — 1) F(ni,n3+1,91,y3)
Y3

d d -
+ <_y1—y3+n1+n3+31+33+2h2> F(n1,n3,y1,y3)
dyr dys

d ~
+y1 (yldyl —ni +4h1 _Al - 1) F(n1+17n3ay17y3)' (A63)

A.3.2 Reduction of Ward Identities for holomorphic three-point function
The relation between Kieq(n1,m3) and F(ni,ns,y1,ys) is

Kred(ni,ms)ritry?ry? = rfAlr;A2r§A3F(n1,ng,yl,yg). (A.64)

Remember that mg is defined as ms = —(n3+2hs). Then,

muthyypsths g (ng,ms). (A.65)

F(nl)n37yl7y3):y Yy
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For holomorphic operators, WIs for F'(ny,ns,y1,ys) are

1
P, Ward Identity : — (y +n3—h3+1) F(n1,n3+1,y1,y3)
2/3
+\—wn (m—y:a%—nl—n?,—hl—hs—%z) F(ni,n3,y1,y3)
+— (y —+mn —h1+1> F(ni+1,n3,91,93) (A.66)
Y1 dy1

1
Pz Ward Identity : —
il/3

1

(y3d—n3—h3+1> F(ni,n3—1,y1,y3)

+< Z/ldf—y?) +n1+n3+h1+h3> F(ni1,n3,91,93)
1

e (yl—m—h1+1> Fni—1,n3,91,y3) (A.67)
Y1 dy1

K*” Ward Identity : 0=ys ygdi +n3+3hg— ) F(nbn&‘» - 1,y1,y3)
Y3
d

+< Y1+ —Y3=— —nl—ng—hl—h3+2h2>F(n1,n3yy1,y3)
dy dys

d
+y1 (y1dy1+n1+3h1—1> F(n1—1,n3,y1,y3) (A.68)

_ d
K* Ward Identity : 0=y3 (ygd —ng—hs— 1) F(n1,n3+1,y1,y3)
Y3

d d
+< yly3+n1+n3+h1+h3> F(ni1,n3,91,93)

dy1 dys
d
+U1 (y1dy1—n1—h1—1> F(n1+17n37y17y3)' (A.GQ)

Substituting (A.65) for them gives the following relations.

P.:0=(n3+1)Krea(n1,n3+1) = (h1 +ho + hz +n1 +n3)Krea(n1,n3)

+ (n1+1)Krea(n1 +1,n3) (A.70)
Ps : satisfied trivially
K?:0=(n3+2h3—1)Krea(n1,n3—1) — (n1 +ns+hi+hs — ho)Krea(n1,n3)

+(n142h1 —1)Kred(n1 — 1,n3) (A.71)
K7 :satisfied trivially

They are the reduced WIs for the holomorphic three-point function. All we have to do is
to check whether this P, WI and K* WI are satisfied.
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A.3.3 Consistency check
We have to prove the following equations. For reduced P, WI, we get

i P(b3+k)F(bg+n1—k)F(b1 +ms—n1 —l—k—l)

p— 1
0=(n3+1) T(1+k)T(1+n;—k)T(1+ms—ni+k—1)

k:MAX{O,nl 7m3+1}

i F(b3+k)r(bg +n1—k)F(b1 +TTL3—7”L1+/€)

_ h
(n1+n3+h1+ha+h3) F1+k)T(14n —k)'(1+m3s—n1+k)

kE=MAX{0,n1 —m3}
mtl F(b3+k)P(b2+n1+1—k)P(61 +m3—n1+k—1)

+(n1+1) >
K=MAX {07 —ms 1} F1+kTr(14n+1-k)T(A+ms—n1+k—1)

For reduced K#* WI, we get

. (A72)

i F(b3+k)F(b2+n1—k)F(b1 +m3—n1—|—k+1)

0=2hs+n3—1) T(1+ &) (1471 —k)T(1+mg—ny + kit 1)

k=MAX{0,n1—1—m3}
i F(b3+k)F(b2+n1—k)F(b1 +ms3—n1 +l{7)
FA+k)I(14n —k)I'(1+ms—n1+k)

—(h1 —ha+hz+n1+n3)
k=MAX{0,n1—m3}
il L(b3+ k) (ba+n1 —1—k)T(b1 +mg—ny +k+1)

—+ (2h1 +n1— 1) Z .
K=MAX {01 —1—m3) F1+k)(14n—1-k)T(14+mg—ny1+k+1)
(A.73)

e (A-1) P, WIfor ni+1<mg
When n; +1<mgs, r.h.s. of (A.72) is

! F(b3+k)F(b2+n1—k)F(b1 +m3—n1—|—k:—1)

(rhs. )= (=m3—bi—by+1) ];) P(1+k)T(1+n1 —k)D(1+ms —n +k—1)

L F(bg + k‘)r(bg +n1— k)F(b1 +ms3—n1+ k‘)

—(n1—mg+b
(n1—ms 3),;) T(1+k)C(1+n — k)T (1+ms—n1+k)

ni+1
L(bs+k)T(b 1-K)I'(b — k—1
(1) Z (bs+ (ba+n1+ )JT'(b1 +m3—ng + )
k=0

. (AT4
TR+ m + 1R tms—m+h=1) ~ 7

We call the first term (A), the second term (B), and the third term (C).

! L(bs+k)(ba+n1 —k)L(by+m3—n1+k—1)

(A>:(—m3—b1_1’2+1),§ P14k 4+ — k)T (1+ms—ni+k—1)

e F(bg + k)r(bg +nq— k)F(b1 +m3—n1+ ]{7)

(B)z—(nl—m3+b3),§) P(1+E)C(1+n1 — k)T (1+m3 —ni +k)

P (bg+ k) (ba+nq +1—k)D(by+ms —nqy +k—1)

(C)=(n1+1)k§ T(1+k)T(A+ni+1—k)(1+mg—ni+k—1)

(A.75)

Then, we get

o F(b3+k‘)F(b2 +n1—k)F(b1 +m3—n1+k‘—1)

(A) :—lgo(b1+b2+m3_1) F(1+k)p(1+n1_k)P(1+m3—n1+k—1)
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F(bg —i—k)F(bg +nq— ]C)F(bl +ms3—n1 —i—k)
FA+k)I(14+n —k)I'(ms—n1+k+1)

ny
=— Z(mg —n1+k)
k=0

o F(b3+k)F(b2+n1—k+1)F(b1+m3—n1 —i—k‘—l)
> (4 —k) .
o F(1+k)F(2+n1—k)F(mg—nl—l—k‘)

(A.76)
We call the first term (A-1) and the second (A-2). Then, we get

(rhs.)=((A-1)+(B))+((A-2)+(C))

B F(b3+n1+1>r<b2>r<b1 +m3) i F(b3+k)F(b2+n1—k+1)F(b1 +m3—n1+k—1)
- F(1+n1)F(1)F(1+m3) I‘(k)F(2+n1—k)I‘(m3—n1+k)

k=0
L F(b3+k)F(b2+n1—k)F(b1 +m3—n1+k)
_kg(bi”*k) T(1+k) T (11— BT (mg— 11 + b 1)
. F(b3+n1+1)F(b2)F(b1 +m3) i F(b3+k)F(b2+n1—k+1)F(b1 +m3—n1—|—k‘—1)
 T(1+n)T()C(1+m3) = L(k)T(2+n1—k)L(m3—ni+k)
_nil F(b3+k)F(b2+n1—k+ 1)F(b1 +m3—n1—|—k‘—1)
1 F(k)F(2+n1—k)F(m3—n1+k)
- F(b3+n1+1)F(b2)I‘(b1 +m3) B F(bg—i-nl—i-l)r(bg)r(bl +m3)
 T(1+n)T()T(1+m3) T(14n1)T(1)T(1+ms3)
0. (A7)

The above calculation shows that P, WI is satisfied for ni+1 <msg.
o (A-2) P, WI for ny >mg When n; >ms, r.h.s. of (A.72) is

1 F(b3+k)F(b2+n1—k)F(b1+m3—n1+k:—1)
hs ) )=(—mgz—b1—by+1
(chs.)=(-ms=bi—bt1) 3, T+ &) (1 +n— kKA +ms—ni+k—1)

k=n1—ms3+1
i F(b3+k)F(b2 +n1—k)I‘(b1 —|—m3—n1+k)
FA+K)I'(14+n—k)I(1+ms—ni+k)

— (n1—ms3+bs3)

k=ni—ms

nil F(b3+k)F(b2+n1+1 —k:)F(bl +mg—n1+k— 1)
FA+k)T(14+n+1—-k)T(1+m3—ny1+k—1)

(A.78)

+(n1+1)

k=ni1—ms3+1

We call the first term (D), the second term (E), and the third term (F).

i F(b3+k‘)r(bg —|—n1—k:)I‘(61 +m3—n1+k—1)

(D) =(-m3—b1—ba+1) FA+k)LA+n1 - k) (14+m3—n1+k—1)

k=n1—ms+1
f‘: [(bs+ k)T (ba+n1 —k)I'(by +m3—n1+k)
FA+E)I(14n —k)I'(14+m3—ni+k)

(E) = —(n1 —ms +b3)

k=n1—mg
ni1+1
I‘(bg—i—k)f‘(b2+n1—|—1—k)I‘(b1+m3—n1+k—1)
F)= 1 A.79
(F) = (m+ )k:n;nsﬂ Fr1+k)r(14+nm+1-k)T(14+mg—ny1+k—1) ( )
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Then, we get

! F(b3+k)P(bg+n1—k)l“(bl—l—mg—m—kk—l)
D)=-— b1+by—1
™ k:n§n3+1<m3+ 1+b=) F1+k)(1+m—k)(14+mg—ni+k—1)
1 F(b3+k)F(b2+n1—k:)F(b1+m3—n1+k)
—_ —n+k
k_n1§—;n3+1(m3 m+k) F(1+E)T(A+n —k)C(1+m3—n1+k)
B i (1+n _k)F(bg—i—k)I‘(bg—i—nl—k+1)I‘(b1+m3—n1+k—1)
e ! T(1+kT(A+n—k+ )T (1+mg—ni+k—1)
(A.SO)

We call the first term (D-1) and the second (D-2). Then, we get

(rhs. )=(D-1)+(E)+((D-2)+(F))
L' (b3 4n1 —ms3)L(by+m3)L(by)
['(1+mn1 —mz)I'(1+m3)I'(1)
i D (bg+ k)T (by +n1 — k)L (by +ms —ni + k)

=—(n1—m3+b3)

k
_k:nl—m3+1(b3+k) F(1+k)r(1+n1—k:)F(l—{—mg—nl—}—k)
T(bg+11 + 1T (bs)T (b + )
A+ ) S T T )
ml P(b3+k)F(b2+n1—k)P(b1+m3—n1 —i—k)
+k:§m3(b3+k> T(L+ k)T (1 +m1 — BT (1 +m3 — 1+ k)
__F(bg—i—m—m;»,—i—l)F(bg—i—mg)F(bl) F(b3+n1—m3+1)F(bg—m3)I‘(b1)
F(1+n1—m3)F(1+m3)F(1) F(1+n1—m3)F(1+m3)F(1)
L(bs+n1+1)I(b2)'(by +m3) I'(bs+mn1)I'(b2)L' (b1 +ms3)
) T ems) ™) T ) DT (1 £mg)
0, (A.81)

The above calculation shows that P, WI is satisfied for n; > ms.

o (B-1) K* WI for ny <mgs

When n; <mg, r.h.s. of (A.73) is

™ F(b3+k)F(b2+n1—k)F(b1 —|—m3—n1+k—|—1)
hs ) =— 1
(hs.)=—(ms+1) T+ k)T +n1— k)T +ms—n +k+1)

k=0
e F(bg + k)F(b2 +ny— k)F(bl +m3—ni1+ k)

+(ma—n1+0b
(ms—m 1);0 P(14+k)T(1+n1—k)C(1+mg—n1 +k)

ni—1
L(bs+k)(ba+n1 —1—k)['(by+mg—ni1+k+1)
bo+b -1 .
b2 +bstm )kg T(1+k)(1+n—1—k)(A+ms—ny+k+1)
(A.82)
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We call the first term (G), the second term (H), and the third term (I).

ny—1
F(b3+k)F(b2+n1—1—]{:)F(b1+m3—n1—|—kz+1)
)= b —1-k
() ];)( 2+ m1 ) F(1+k:)F(1+n1—1—k)F(1+m3—n1—|-k'+1)
+nlz:1 bg—l—k‘) (bg—l—ﬂl—1—k:)F(b1—|—m3—n1—|—k‘—|—1)
T+ k)T 1 —1— )L+ —m + k1)
_n1 1(n —k) (b3+k)F(b2+n1—k)F(b1+m3—n1+k:+1)
P T(1+k)D(1+n— k)T (1+ms—ny+k+1)
+nil(1+k)F(b3+k+1)F(b2+n1—1—k)F(b1+m3—n1+k+1)
k=0 F(1+k+1)F(1+n1—1—k:)F(1+m3—n1+k:+1)
ni—1

Y (n _k)F(b3+k:)F(b2+n1—k)F(b1+m3_n1+k+1)
= 1 F1+k)T(14n —k)(1+ms—ni+k+1)

i F(b3 +k)]._‘(b2 +ny— ]C)F(bl +ms3—n1 —I—k)
= TA+ET(A+n —k)I(1+m3—ni+k)

We call the first term (I-1) and the second (I-2). Then, we get
(rhs.)=((I-1)+(G))+(I-2)+(H))

(A.83)

ni—1
P(bs -+ KT by 1 — ) (by + 13—y + k1)
=- 1+mg—ni+k
I;)( T )F(l—i-k)F(l—l—nl—/{:)F(1+m3—n1+k+1)
I'(b I'(b2)I' (b 1
~(mg+1) (b3 +n1)T (b2)T' (b1 +m3+1)

T(1+n)C()T(1+mg+1)

F(bg+k)F(b2+n1 —k)F(bl +ms3—n1 —i—k‘)
FA+k)I(14+n —k)I(1+ms—n1+k)
['(b3)T'(bg +n1)L' (b1 +m3—nq)
F()r(1+n)r'(1+ms—n1)

b3)I'(ba +n1)L(by +mg—ny +1)
F()C(1+n)(2+m3—n1)

['(b3)T'(bg +n1)L' (b1 +m3—nq)

L +n)r'd+ms—ny)
['(bs+n1)(b2)T'(by +ms3)

ni

+Y (m3—ni+b1+k)
k=1

+(m3—n1+b1)

I'(

—(1+mg—mny)

+(m3—n1+b1)

(m3 400 o PO T (L - 119)
—(ms+1) ['(bs+n1)l(b2) (b +ms3+1)
F'(1+n)(H)I(1+m3+1)
—0. (A.84)

The above calculation shows that K, WI is satisfied for n; <msg.

o (B-2) K* WI for n; >mgz+1
When n; >ms+1, r.hs. of (A.73) is

ni

0:—(m3+1) Z

k=n1—1—ms

F(b3+k)1“(bg+n1—k)1“(b1 +m3—n1—|—k+1)
T+ k)T +n1— k)1 +ms—m+k+1)
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ni

+(m3—n1+bl) Z

k=n1—ms

F(bg + k)F(bQ +nq1— k)F(b1 +m3—n1+ /{)
F'A+k)I(14+n—k)I(1+m3—ni+k)

ni—1
+(ba+bg+ni—1) >

k=ni—1—mg

F(b3+k)F(b2 +n1 *1*]43)]?(()1 +m37n1+k:+1)
F1+k)0(14+n —1-k)T(1+m3—ny1+k+1)

(A.85)
We call the first term (J), the second term (K), and the third term (L).
L) = nlz_:l ( _k)F(b3+k)F(b2 +n1—k)L(bi+m3—ni+k+1)
k=n1—mg—1 1 PA+k)T(1+n =k +ms—n1+k+1)
o T(bs+k)(b —k)T(b —n1+k
LYk (b3+E)L(bo +ny —k)T(by +m3 —n1 +k) (A.56)

FA+k)I(14+n —k)I'(1+ms—ni+k)

k=n1—mg

We call the first term of this (L-1) and the second term (L-2). Then, we get
(rhs. )=(L-1)+))+(L-2)+(K))

n1—1
['(b3+ k)T (ba+n1 —k)L'(by +mz—n1+k+1)
= 1+mg—ni1+k
knlz—’ﬂw( e FA+E)T(1+m — k)T (1+mg—ni+k+1)
INQZ ['(b2)T'(b 341
~(ms+1) (b3 +n1)T (b2)T' (b1 +m3+1)

L(1+n)C()T(1+mg+1)

F(bg —i—k‘)l—‘(bg +n1— k‘)l—‘(bl +ms3—n1 —i—k‘)
F(1+k)T(14n—k)T(1+ms—ni1+k)

F(b3+n1)F(b2)F(b1 +m3+1) —l—(b tm )F(bg +n1)F(b2)F(b1 —|—m3)
T(1+n) LT (1+m3+1) YT T ) DD (T +ms)

=0. (A.87)

The above calculation shows that K, WI is satisfied for n; > mg+1.

ni
+ > (bi+mz—ni+k)

k=n1—ms

=—(m3+1)

Proof completed. Our formula for the three-point function satisfies P, and K, WIs.
So, our procedure is consistent with WIs.

A.4 Factorization method

This section summarizes the factorization method for the three-point function in two-
dimensional CFT. The same argument can be made for a two-point function.
A.4.1 Definitions of new modes
Let us define
(’)[ J/R = Fourier component of O carrying momentum % and energy %. (A.88)
n

For a product C(z,Z)= A(z)B(2) of a holomorphic local operator A(z) and an antiholo-
morphic local operator B(Z), we have

CH :A[HL} B{ ) } (A.89)
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Define a local w-frame operator.

0 wa= (L)' (£) 0t (a0

dw dw
Here, z = Re™/B Z=Re=™/F and o' = 0 = Re|w|, 0> = —7 = Im[w]. The Jacobian is
dz z dz z
e _ s iw/R e S —iw/R
=" e/ G in ie (A.91)
So,
C{w} = istAeisal/RefA@/RC{z}. (A.92)

Now we would like to express our w frame quantities as discrete sums of Fourier modes.

C{w}(O', t) — Z eiPU+iEtc[Pi| _ Z 67iJa'/R+’i5t/RC J:| (Agg)
PE E J.€ £

We always have P=J/R. We will also call €= ER so E=&/R. The quantity £ is dimen-
sionless and denotes the amount by which the operator raises or lowers the eigenvalue of
the dilatation generator A=RH. 1t is not quantized in integer units however, except for
modes of a holomorphic or an antiholomorphic operator.

A.4.2 Correlators of spacetime fourier modes
Let us find correlators of the Crp7. We have
"
<0‘C Ps C P2 ¢ P1 |0>
{53} L’z} [51}

=(0[A {Js(w} ' {Jzﬁ)} ' |:J1(+):| K |J}+)Eé(7>1+€1) ol B[ g5 ] B{ i } B[ A ] . ‘J;_)E%(’Pz—&)

J§+) J2(+) J1(+) 7‘]?(’*) 7]2(*) 7J1(*)
=06(P14+P2+P5)0(E1+E2+E3)Krea(np,nh ) Kred(nr, '), (A.94)
where
1 1 -
nL:§(P1+81)—h1, nR:—§(7%—51)—h1
1 1 -
”/L:—§(773+53)—h3, n/R:§(P3_53)_h3- (A.95)

All the nr,ng,n},n’p are nonnegative. So the minimum energies of the in-state and out-
state are when ny, =ng=n =ny =0. Now define

I=min{ng,nr}, I'=min{n},nz}. (A.96)

Then, we get
E1=A1+|P1—s1|+2l, 53:A3+"P3—83|+2l/. (A.97)

The interpretation of these equations is as follows. The energy in a conformal family is
minimized by the primary state. The primary state is the one for which P; =s; (for the
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in-state) or Ps = s3 (for the out-state), and for which the excitation energy within a given
momentum sector of the conformal family is as small as possible — namely zero. The
excitation energy (in units of 1/R as always, of course) within a given momentum sector of
the conformal family is the thing we're calling 2[ (for the in-state) or 2’ (for the out-state).
Then, for a given momentum sector within a conformal family, the minimum energy is
A1+ |Py—s1| (for the in-state), or Ag+|Ps—ss| (for the out-state). Then, for a given
momentum-sector within a conformal family, the minimum energy is Ay + |P; — s1| (for the
in-state), or Ag+|Ps—s3| (for the out-state).

A.5 Analytic continuation for conformal weight
A.5.1 New notation

To extend the domain of conformal weight, we need a new notation. Remember that O,,(r)

is defined as
[ de

~J om

Let us rescale this mode so that it becomes dimensionless.

On(r) Op(r,0)e~. (A.98)

Oy =20, (r) =r "0, (r) (A.99)

Using this new mode, we can write the actions of the conformal operators on the operator
as follows.

L_1-Opyy = %(E—h— h+n+1)O0g, 11y (A.100)

L_1-0py= %(E—h— h—n+1)0y,_1 (A.101)

Lo Oy = %(E+h— h+n)Oyny (A.102)

Lo-Opay = 5(B—htFi—n)Oyy (A.103)

L1 Oy = 5(E+3h—h+n—1)0p ) (A.104)

L1-Opy = g(E—h+3l~z—n— 1)Oi1) (A.105)

where E is the differential operator E =70,. Next, define

Oy =00y niy- (A.106)
Then, we get
L_1-Oyy= %(Efzhau 1O 41y (A.107)
Ly <J>_2ir(E—2B—J+1)(§<J_1> (A.108)
Lo-Oyyy = %(E+J)@<J> (A.109)
Lo-Oyyy = %(E—J)(7)<J> (A.110)
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~ r oA -
Ly 'O(J) = §(E+2h+<]— 1)O<J_1>
~ ~ r oA ~ ~
Next, expand this by r/R.
~ ~ r\¢
Oy (r)=2_0Oq) (R)
For @< J¢), the actions of conformal generators are described as

1 ~
Lo1-Opyey = ﬁ(5— 2h+J+2)Oj41,e41)

- ~ 1 = A
Lo1-Opyoy = ﬁ(5— 2h—J+2)O0 71 e41)
~ 1 =
Ly- O<],5> = ﬁ(g"i_ J)O<J75>
- ~ 1 ~
L-1-0ye) = 55(e = J)O0q)

R ~
L1-Oye) = 5(5+ 2h+J =2)0( 111y

R - ~
IOy = 5 e+ 28— =20 1100y

(A.111)

(A.112)

(A.113)

(A.114)
(A.115)
(A.116)
(A.117)
(A.118)

(A.119)

Define the variables é* = %(Eﬂ:J ), and rewrite the above equations in terms of them. We

define new mode as

2 2
Then, we get
- I . ~
L4 O[5+ = E(é‘ +1— h)0[5++1 &)
- ~ 1, A
L1-Opt )= E(E +1=h)Ope+ -1
Ly- @[g+,s—] = 5+@[é+,é—]
.Z() . @[é+ -] =¢ O[e*,é’]
Ly- @[é+,é—] = R(5+ -1+ h)0[5+,1,5—]
El : @[éﬂéf] =R(E —1 +}~l)@[a+ é-—1]

Loy Ot o) = (1 +1=h)Opet 41,61
IN/—l @[§+,g—} :(é_+1*}~l)@[é+,s—+1]
Lo-Opr g =1 Ops o
Ly @[é+,s—}: _@[e+,s ]
£ ]
]
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They can be summarized as

ere = (A=1)m+E)0+ _p o) (A.133)
et =[(h=1)m+ET10p+ s - (A.134)

A.5.2 Two-point function

Let us analyze the two-point function again. First, define
y2[h,ﬁ|§+,§_} = <0| @[*EA"’,*EA_]@[?F:EA_] |O> . (A.135)
Let us calculate the commutator of L_; and @[_éﬂ_éf]@[ﬁ_l’éf].

0

(0 [L—lv@[—é+,—é*]@[é+—1,é*]} 0)
[1—h—&"1(0|Op e+ —e-10p+ —1,6-110) + [T =R (0| O e+ e~ 1O+ 21 |0)
[1—h—&tY2[h,h|et —1,67 ]+ [ — h)V2[h,hléT,é7] (A.136)

So, we have
Ef+h—1

2(h,h|ét 67 = —————V2[h,hléT —1,£7). Al
N R R e ey (A.137)
Shifitng T by 1 gives
At
ot & Hh Plat a—
V2[h,h|ET+1,é ]—é+_h+1y2[h,h\s L& (A.138)
Similarly, the L_; identity gives
- S .
Va[h, ket e 11 = " yon ket e, (A.139)
e~ —h+1
In terms of n;, and ng,
B 20 B
V2(hhlng+ 1k = 222 Yol B, ng] (A.140)
nr+1
- 2% -
Voh, b1 = 220 By nl. (A.141)
np+1
To write this recursion relation simpler, we define
RY2[h,h,np,ngl =T(n,+1)T(ng+1)Y2[h,hlng,ng|. (A.142)

And in terms of it, we can write the recursion relations as
RY2[h,h,np +1,np] = (ng+2R)RY2[h, h,nr,nE] (A.143)
RY2[h,h,np,ng+1] = (ng+2h)RY2[h,h,nr,ng]. (A.144)
From these recursion relations, we get

[(ng+2h) D(ng, +2h)
I'(2h) I'(2h)

RY2[h,h,np,ng] = RY2[h,h,0,0]. (A.145)
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So,

['(ng+2h) [(np+2h)
T(ng+1)T(2h) T (np+1)I'(2h)
We can calculate RJ&[h,iL,0,0] with ease. And this has the same form as our result, for
example (2.24), in the main text. It is important to note that this result can be applied to

V2[h,h,np,ng] = RY2[h,h,0,0]. (A.146)

all pairs of real numbers except negative integers, (h, l~z)

A.5.3 Three-point function
In the same way, we can extend the domain of (hq, Bl, ho, Bg, hs, ng) in our formula for the

three-point function. First, define the three-point function as

y3[h3,2,1,Bg,z,l\é;,éf,ég,é;]z<oy@[(3>€ 0% oY o). (A.147)

—€3] [6:?_5?753 -] ¢ Jr751]
Commuting L_; with (9( ) — O(?) — (5(}) . and taking the vacuum expecta-

[ 3 ) 53 } [ngéf»sg —& ] [EI"*LEI]
tion value give,

0:[é+—h1]y3[h321,5321\é§,él+,ég,é;]
+[—€3+1—h3]3’3[h3,2,17h3,2,1!€3 ~1é& ~1 55751_}

(3)
[_5;7_53]

Next, commuting L; with O (’)[( J)r o+ oo @(1) and taking the vacuum ex-
€3

&5 —¢7) [Ef+1e7)
pectation value give,

0:[A++hl]y3[h321,ﬁ321\€§,éf,é§,éf]
+[ef — & —1+ha)V3lhs 21, hao|é 67 +1,65,67] (A.149)
+[—53—1+h3]y3[h37271,h3,271]53 +1,67+1,63,67]

In this case, each £ can be written as
éf:nl,L—i-hh él_:nLR—HNzl
éf =nsp+hs, é3 =n3.r+hs. (A.150)
Then, we get
V3[hs1,hs 213, + 1,10+ 1,03 R, 01, R)

_nyrp—n3rL—hs+hi+hy—1
n17L+1

n3,r +2h3 .
77))3 h ,
— [h3,2,1,h3,2,

V3[h321,h32.1|n3,L+1,n1 1,13 R, 11.R)

n1,L,M3,R,1,R)- (A.151)

And

V3[hso1,hs21|ns.1+1,n1+1,n3 N1 R
_ n3p—niL —hi+hs+ho—1

V3[hsa.1,h nyp+1,n3gr,n

3, +1 lhs 2.1, ha2 1L+ 1 ms R, ]
n17L—|—2h1 -

+————V3[h32,1, n1,L, N3,k N1, R)- (A.152)
nsr+1
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In the same way, we can get the following two equations from WI for L_; and L.

V3[hs21,hs2.1|n8,0,m1,0,n3,8+ 1,015 +1]
_ nlyR—ngyR—ﬁg—Fill +I~12— 1
nl,R—i—l
n37R—|—2ng
nir+1

V3[h321,h321|n3 1,71,1,n3 R+ 1,11 R]

V3[ha21,h32.1

n3,1,M1,L,N3,R, 11, R] (A.153)

V3[hso1,hs21|n3.1,m1,L,n3 R+ 1,n1,8+1]
_ n37R—n17R—i~11 +f~l3+}~12— 1
ng,R—l-l
n173+2ﬁl
ng.r+1

V3[h321,h321|n3 1,71,1,73 R 11,8+ 1]

V3[ha21,h321

n3,L,M1,L, 13, R, V1,R) (A.154)
And from unitarity, we have

yS[h372,1,ﬁ3,271|n37L,n17L,n37R,n1,R] =0 if n3 L < 0 or niL < 0 or ng r < 0 or ny,r< 0.
(A.155)
From the recursion relations and the unitarity condition, we can get the three-point func-
tions for semi-positive integers (ng r,n1,r1,73,Rr,n3,,). From here, we summarize how we
can extend the domain of (ng 1,111,731, "3.1)-
First, fix n3 p =n1 r =0 and derive all y3[h3,271,3372,1|n3,L,n17L,0,0] values using re-
cursion relations (A.151) and (A.152). From (A.151) with n; p=mn3 r=0 and n3 =—1,
we get

ni,r, —hs+hi+hy

hso1,h 1,0,01=
YV3[h32,1,h321/0,n1,1+1,0,0] nyr+1

V3[h321,h321]0,n1.2,0,0]. (A.156)

From this relation, we can see that y3[h3’271,5372,1 |0,n1,,,0,0] is a ny -th degree polynomial
in hzo1. And from (A.152) with n; p=n3r=0 and n; = —1, we get

n3 1, —hi+hs+ho

ha 2,1, h3.2.1 03,1 +1 =
YV3[h32,1,h3,2,1In3,0+1,0,0,0] n3+1

y3[h37271,713,271]713@,0,0,0]. (A157)

From this relation, we can see that y3[h3’271,5372’1 In3,1,0,0,0] is a n3 r-th degree polynomial
in h3’2’1.
Next, from (A.151) with ny g =n3 g =0 and nz =0, we get

nlyL—h3+h1+h2—1
n17L+1
2hs
nyr+1

V3[hs21,h321|1,n1.2+1,0,0] = V3[hs21,h32.1

17”1,[/7070]

+ V3[h32.1,h321]0,n1,1,0,0] (A.158)

When ny, =0, the first term on the r.h.s. is a quadratic polynomial in A1 2 3, and the second
term is a linear polynomial in hq 23, so the Lh.s. is a quadratic polynomial in hq 2 3.
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Figure 4. Prepare the arbitrarily normalized Figure 5. The recursion relation (A.151) with
initial value (green triangle) and unitary con- n1 g =n3 r=0and nz ; =—1 gives three-point
dition (blue circle). function at horizontal axis.

When ny, =1, the first term on the r.h.s. is a cubic polynomial in &1 2 3, and the second
term is a quadratic polynomial in hq 23, so the Lh.s. is a cubic polynomial in hq o 3.

In this way, we can determine all of y3[h3,271,5372,1\1,111@,0,0] for n;,>0. And
V3[ha21,h32.1
mine all of y3[h37271,5372,1]n37L, 1,0,0] for n3 1, >0, and it is a polynomial in hq 2 3.

1,n17L,0,0] is a ny,r+1-th polynomial in hj 3. Similarly, we can deter-

Mathematical induction on Min{ns r,n1 } shows that yS[h&g,l,l~13,271|n37L,n1,L,0,0]
is a my 1 +ng -th polynomial in h321. In the antiholomorphic part, fixing the value of
(n3.r,n1,1), and using (A.153) and (A.154), we can perform mathematical induction simi-
larly.

The point is that all of )73[113,271,5372,1
lowings.

n3.r,M,L,N3.r,N1,r] are determined by the fol-

o The unitarity condition (A.155)
e The arbitrarily normalized initial value y3[h37271,ﬁ3’271]0,0,0,0]

o The left moving recursion relations (A.151) and (A.152), and the right moving recur-
sion relations (A.153) and (A.154). They are derived from the Ly and the Ly, WIs
respectively.

And another important thing is that the three-point function is a polynomial in hq 2 3, and
its degree is not greater than mn3 1, 4+n1, 1, and that the three-point function is a polynomial
in hy93, and its degree is not greater than nz g +n1 g.

The derivation from the recursion relations of all three-point functions is summarized in
the images. The horizontal axis represents n; ;, and the vertical axis represents ns r,.
0,0,0,0], which is
green triangle in the figure 4. From the unitarity condition, three-point functions at blue

First, prepare the arbitrarily normalized initial value Y3[h3 21, ﬁ372,1
points vanish. At blue points, n1,7, <0 or n3, <0 is satisfied.

Next, from the recursion relation (A.151) with ny g =n3r=0 and ng =—1, we can
get three-point functions at horizontal axis (figure 5). And in the same way, three-point
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Figure 6. The recursion relation (A.152) with Figure 7. The recursion ralation (A.151) with

n1,r =n3 r=0and n; ; = —1 gives three-point n1,r =n3,r =0 and ns =0 gives three-point
functions at vertical axis. functions at ns  =1.
4 [ ] [ ] x ‘!l’
4 ° [ * * * * *
3 [ ] [ ]
3 ° [ * * * * *
2 [ ] [ ]
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-1 [ ] [ ] > [ ] [ ] [ ] [ ]
-2 [ ] [ ] » [ ] [ ] [ ] [ ]
. -2 [ ] [ ] > [ ] [ ] [ ] [ ]
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Figure 8. The recursion ralation (A.152) with
ni,r =n3,r =0 and n; ;=0 gives three-point
functions at nq r =1.

Figure 9. We can get three-point functions at
all points.

functions at the vertical axis can be calculated from the recursion relation (A.152) with
ni,r=n3r=0 and n; ;, =—1 (figure 6).

Recursion relation (A.151) with ny r =n3 r =0 and n3 1, =0 gives three-point functions
at ng =1 (figure 7). And three-point functions at n; ;, =1 can be gotten in the same way
(figure 8).

Finally, we can get three-point functions for all integer pairs of (ni r,n3 1,71 R, 73 R)
(figure 9).

Next, consider an explicit solution for the three-point functions.

First, start from the pair of nonnegative integer conformal weight (hy23,h123). In
these particular cases, the three-point function factorizes globally rather than just locally
into a product of a holomorphic and antiholomorphic three-point function. Fourier trans-
form of three-point functions also factorizes and can be calculated individually by contour
integration. We performed the contour integration in the previous appendix, and the result
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is

V3[ha21,h32.1|n3.1,71.0,73 R, 11.R]

= KY3(hiralp, o ng 1, ng ) Y3@0tichiral (po o | ng g0 g),

where K is an unfixed constant related to the OPE coefficient. The chiral part for
ni,r,n3,r =0 is

1

3(Chiral) h
Y a2, b1)I(b2)T(b3)

na,L,M,1) = i

Min{n,r,n3,1} )
Z I[bs+g+Max{0,n1,1,—n3,1 }I'[b2—g+Min{n,, 1 ,n3,1 }I'[b1+g+Max{ns,, —n1,1,0}] (A.159)
F[l—&-q—l—Max{O,nl,L—ng’L}]F[l—q—i—Min{nLL,ngﬁL}]F[l—l—q-‘rMax{ng,L—nl,L,0}} ? :

q=0

and 0 for otherwise. And the antichiral part for n r,n3 r >0 is

—_

(antichiral)
e GOT Gt )

h321|n3.R,m1.R] = T

Min{ni,r,n3,r} _ N ) .
Z I'[b3+g+Max{0,n1, g—n3 g} [b2—g+Min{ni r,n3 r}|I'[b1+g+Max{ns r—n1 r,0}] (A 160)
I'[1+¢+Max{0,n1,r—n3,r}|I'[1—g+Min{ni r,n3 r}'[14+q+Max{ns3 r—n1,r,0}] ’ .

q=0

and 0 for otherwise.

The contour integral derivation of (A.159) and (A.160) are only valid for a pair of
nonnegative integers (h372’1,ﬁ3’271).

We proved that any solution to the L+; and L+ WIs, which also satisfies the unitarity-
derived condition, is uniquely determined by the primary-to-primary three-point coeflicient
y3[h37271,5372,1 0,0,0,0]. So what we have to do is only to prove that the formula (A.159)
and (A.160) actually satisfy the WIs for general conformal weights.

In the previous section, we proved that the formula satisfies WIs. We dealt with
positive integer conformal weights there, but we can use the same proof to show that Wls
are satisfied for general conformal weights because we didn’t use the fact that conformal
weights are positive integers there.

So the proof is completed. We can use our formula of the three-point function for
operators with general conformal weights, except for negative integers.

B Supplement to three-dimensional CFT

B.1 Wigner 35 symbol

The Wigner 35 symbol is a more symmetric form of Clebsch-Gordan coefficients.

Lol 1 _1)h
(o o) = S s ) w1

It has the following properties.
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(1) Symmetry.
It is symmetric under an even permutation, but the phase factor appears under an
odd permutation. For example,

bl 3\ (I3 bl (L I3 h (B.2)
mi 1mo2 M3 N m3 1mi1 My N mo 13 Mmq '
holo I3 _ (_1)l1+l2+l3 o i 13 _ (_1)ll+l2+l3 ls la I ] (B.3)
mi1 mo Mms3 mgo M1 M3 m3 mo Mq

(2) Selection rule.
The 35 symbol is 0 unless all of the following conditions are met.

(A) mi+mo+mz=0 (B.4)
(B) 11412413 is an integer.

Moreover, an even integer if m; =mo=mg=0 (B.5)
(C) |mi <l (B.6)
(D) [l —lal <l < |l +1s] (B.7)

(3) Relationship with spherical harmonics.
The 35 symbol is deeply related to the product of spherical harmonics.

-Yllyml (0’ ¢)K27m2 (6 ¢>

_\/(2l1+1 )(202+1) Z Z 2z+1<l1 2 )(lglg@nm(e,@

mip mo —m

I=0m=-I
(B.8)
The 35 symbols can be computed using the Racah formula.
i 1o 3 _ (_1)l1—lg—l3 (l1+l2—13)!(l1—12 +lg)!(—l1+lg+l3)!
mi mg Mg (lh+la+13+1)!
\/(ll +m1) (ll—ml) (ZQ —|—m2) (lg—mg)'(l3+m3) (l3—ﬂ23)'
> (=D)F
A k‘!(lg—l2—|—k‘—|—m1)!(l3—l1—I—k‘—mz)!(ll—l—lz—l;g—k)!(ll—k—ml)!(ZQ—k—Fmg)!
(B.9)

Though the formula above is a little complicated, we often use the following specific
simple case in this paper.

i Iy i+l
mi Mo —1Mmi1—1mo
_(_1)l1—l2+m1+m2\/ (20)1(202)! [ (I +ly4+my+m2)!(l1+1lo —m1 —mg)!
(

2l1+212+1)! (ll +m1) (ll—ml)'(l2+m2) (lg—m2>'
(B.10)
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Using them, we can calculate conformal generators’ action on spatially-integrated opera-

tors’ modes in three-dimensional CFT. Here, we show the calculation for P,+iP, as an
example. We can get relations for other generators similarly.

v 0 cosl ;4,0 e 9
. . — * . ip ¥ PV e Y . v
(Py+iP,)-O1m /dQ 1 (0,0) [smﬁe 5 + o0 Jrlrsin@@gb] O(r,0,¢) (B.11)

We calculate each term in (B.11) separately.

(First term)—/dQYlj‘m(H@)sinﬁei‘b;ﬁ(’)&,&@)——2 ?;ﬂ/d@)ﬁfmlfl,l(’) (B.12)

(Second term):/dQY}*m(H,qb)Coseew’aae(?(rﬂ,qb)
’ T

1 .
:7/d0d¢ [—cos2 0Y)",, +sin0Y;", —siHGCOSQ;YZ*m} 0
,r; b K I

1 . .
- / dod¢ [1+28in26’cose{mcosﬁsin€\/ (I4+m)(l—m+ 1)6—“?}} Y;*, €0
/ra b
—1 o 2(m=2) [2
_m= / dedéifl*me“ﬁ(?—irm)\/; / dQY}*, Y110
/ra b /’n b

+2\/(l+m)7a(l—m+1) \/Z/dQYETleLoO

(B.13)
: _ " i e 0 :_m_l/ « _id
(Third term)= [ A0, (0.0)——e* £-0==""= [ha6¥;;,e %0 (B.14)
In total,
(Px +iPy) . Ol,m
2 ) p———
:2,/”(”" _3)/dm*my110+2\/?\/(l+m)<l m )/dQYl*m_lYloO
3 r or ' ’ 3 r ' ’
(B.15)

We would like to write the action of P, +iF, by a linear combination of modes of operators,
so let us apply the contraction rule to the product of spherical harmonics.

B2+ & & 1 c\(lle
Y Yig= (-1 ="~ —1)7v2c+1 Ye B.16
mY1,0=(=1) . ;)7;; ) m(—m 0 —’Y> (0 0 0) 7 (B-16)

From (B.5) and (B.7), only ¢=1+1 survive when [ > 1, and only ¢ =1 survives when [ =0.
And from (B.4), only 7= —m survives.

. 3(2041 I 1141\ [111+1
o= 2B s Yist-m
’ 4 -m 0 m 00 O
(B.17)
I 11-=1\[111-1
VaI—1 Yi i
+ (—mOm)(OO 0)“’ ]
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In the same way,

3(20+1)

Y Yii=— i

[ 1 1+1 I 11+1
2l+3<—m 1 m—1> (0 0 0 )Ylﬂ"m“
171-1 I111-1
V2l—1 Y1 _mat]-
* <m1m 1)(00 0)“’ “]
By using the above contraction rule, we get the following relation.

. _ I 11+1 I 1 1+1 0 m-—2
Py+iP)-Opm=(—1)""1/(20+1)(20+3 2 (— >
ey () (1) (3

+< 11 l+1>\/(l+m)(l—m+1)

-m+10m-—1 r

e | i 1
+< l 1l—1>\/(l+m)(l—m+1)

—m+10m-—1 r

(B.18)

Ol+17m—1

Ol tm-1 (B.19)

We can get the actions of other conformal generators similarly.

B.2 Exact two-point function

We show the detail of the calculation of exact two-point function in three-dimensional CFT
by solving ODEs obtained from WIs. First, consider the P, WI.

P, <Olg,m2 (r2)0l1,m1 (T1)>

lo11ls+1 lo 1lo+1 0 mo — 2
e300 ) (L) (555 7)

= (~1)"2/(
+\/§< | 52+1>¢(12+m2)(l2—m2+1)

O )
—ma+1 =1 my < l2+1,m2 l1,m1>

ma lp 11—1 lo 11ls—1 0 me —2
+ (1) /(22 +1) (20— 1) (0 0o > K_mQ ) ) ((%_ = )
+\@< L2 L - )\/(12+m2)(l2—m2+1)

—mo+1 —1 my

<012*1,m2011,m1>
h1hLh+1
+(=1)™ /(20 +1) (26 +3) (1 o )
)

1 14hH+1 (8_m1—2>
00 0 —-m1 0 my or1 1

+\/§< I 1 l1+1> V(i +m (ll—m1+1)

<Ol27m2 Ol1+1,m1>

—mi1+1 -1 my

m ll ].ll—]. ll 1l1—1 (8 m1—2>
1) /(2L +1)(2l1 1) ——
+(=1) \/( 110 (0 0 0 ) [(—ml 0 my > or 1
)

+\@< L1 51—1> V(i +my (ll_m1+1)

—-mi1+1 -1 my

<Ol27m2 Oll—l,m1> (B'2O)
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The first and fourth terms have §(l; —ly—1), and the second and third have 6(l; —l2+1).
We have two independent recursion relations for them. From the latter, we get

1 105+1 ( d ) h 1 1+1 I
0= —y——Ags+2 2 L+ +2)|G*
yl(oo 0 ) Vg~ V2 0 VDG
(L1 +1) [ d L1 L+l (521
1 1L+ 1 1+ l1+1
— —A1+2 2 L+ G
+_<0 0 0 ><ydy 1 )+‘[<1 ~1 0 ) 1+ )
And from the K, WI, we get
(11 0+1 ( d ) L1 i+1 .
0= —+A1—-2)—V2 L+ +2)| G*
y<00 0>ydy+ 1 \[0—1 1 (h+1)(l1+2)
T(h1n+1 d ho1 h+1 (8:22)
11 L+ 1 1+ l1+1
—y—+Ay—2)—V2 Llh+1)| G
+Koo 0>(ydy+ ? ) ‘[<1—1 0) i+ D)
From (B.21) and (B.22), we get
(A1 —Ay)[yGh —GhHL =0. (B.23)
First, assume that Gt =yGU is satisfied. Substituting it for (B.21) yields
(A1 4+ Ay +1)yG =0. (B.24)

However, as A;+Ag+1>0, G must vanish. So A; = Ay must be satisfied for two-point
function not to vanish. Next, consider P,+iP, and K, +tK, WIs. There are only two
independent identities.

I 11+1\/ d I 11+1 l
0= [v2 — —A+2 2)(1+1
‘[<—11 0 )(ydy + )+<_10 . ) (1+2)(1+1)| G
I 1141 d 1 11+1 (B.25)
+ + I+1
2 —y——A-+1 I+ G
+yf<—11 0>(ydy +>+<00 0) (t+1)
I 11+1 d I 1141 l
=y |V2 —+A-2)— 1+2)(1+1
Oy[\[<—11 O)(ydy+ ) (—10 1) ((+2)(+1)) &
I 11+1 d 111+1 l
2 —y—+A—-1)— I+1)| G
+\[<11 ())(ydy+ > (00 0>(+)
Substituting the explicit form of the Wigner 35 symbol, we get
d d
[y—A+l+2 Gl+1+y[—y—A—J] G'=0 (B.26)
dy dy
d d
y [—y—A+l+2} G 4 {y —A—l] Gl—o. (B.27)
dy dy
Combining them gives
d? 2Ay? +2(A—-1) d A(A-1)
— G — Gl == gt —o. B.28
az” " Y3 —y Qo T (B.28)

It is very similar to the ODE (A.16) for the two-point function in two-dimensional CFT.
We can solve it by series expansion as we did in two-dimensional CFT. The answer is shown
in the main text.
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Figure 10. J,+iJy relates three points connected by the blue line, and J, —iJ, relates three
points connected by the red line.

B.3 Reduction of the three-point function
B.3.1 Strategy

In the calculation of the two-point functions in three-dimensional CFT, we found that the
ODE (3.43) obtained from the WIs was independent of the subscripts m; and ma because
of the linear relationship (3.41) between Ff,}bib and F,%;lil. Similarly, we can get a linear

relationship between F!1:2:53 and Ffﬁ,’lz’h which enables us to get the simpler ODEs.
17

mi,m3 mp)
First, remember that the J, +14.J, Wl relates Ff,{il’%g, Ff];li’ll?mg and Fql?;l;n’l;_l, and that
the J, —iJ, WI relates F}1:'2s, Fg;li’fm3 and Frl,;l,%l;’ 4+1- The situation can be explained

graphically. The figure 10 shows examples of how J, -1J, relates F, l1,02,03 5t three points in

mi,m3
the mi —mg plane. In the figure, for example, if we know the value of Fllfde’IS and Fll711’12’l3
we can derive Fll’ldl"”l3 with the J, +1iJ, WL
Next, consider the selection rule for anl ilfn’{g. Prepare [y, lo and I3 which satisfy |l; —lo| <
Is3<li+ly, |la—13| <ly <la+l3 and |l3—1;| <l <l3+1;. For this fixed pairs of [, the rule

is as follows. Ff,}bil?’IB vanishes unless the all following inequalities are satisfied.

,m3
-l <mi <y, —l3<m3<l3, —lp <myi+m3 <l (B.29)
The last condition comes from mo = —m1 —mg3 and —ly <mg <ly. The area which satisfies

the above conditions is diamond-shaped as figure 11. Our goal is to get all F,i}blll;nlgs in this
area using Elllv’lfl’;?’ and the recursion relations obtained from J=+i.J, WIs.

First, apply the J, —iJ, recursion relation to (mi,ms) = (l1,—ls+k) (0<k<lp—1; —
l3—1). Fyléllﬁgms vanishes for this m; and ms3, so the J, —iJ, recursion relation relates

two points. We can find all the values of F' at the right boundary. Similarly, we can find
all the values of F' at the bottom boundary. We show the situation in the figure 12.
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Figure 11. Example of selection rule (I1,ls,03) = (3,4,5). Fl:!2:ls vanish in areas outside the blue

mi,ms
line.

x—ily

x+ily

Figure 12. We can get the F's at the right boundary and at the bottom boundary by applying

Jz £iJy Wls respectively.

Next, apply the J, —iJ, WI to the right part of the area and apply the J,+iJ, WI to
the left part of the area figure 13 and figure 14. Then we can find all the F's in the area.

B.3.2 Solution

Now that we know the strategy, all we have to do is solve the recursion relations. Applying

the J, —iJ, WI to the right boundary gives

Lo s _(_1)k\/(l2—ll+lg)!(lg+ll—l3+k)!(213—k)! Lo ds
l1,7l3+k_

And applying the J, +1J, WI to the bottom boundary gives

l1—n,—l3 —

Fl1,l27l3 _ (_1)n\/(l2 +l1_lg)!(l2_ll+l3+n)!(2l1_n)!Fll,ZQ,lg
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(lQ—ll —|—l3—k)!(l2+l1—l3)!(2l3)!k¢! hy=ls

(lo+1 —l3—n)!(la— 11 +13)!(2]1)!n! h,=ls -

(B.30)

(B.31)
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Figure 13. Apply the J, —¢J, WI to the right Figure 14. Apply the J,+1J, WI to the left
part of the area. part of the area.

Next, applying the J, +iJ, WI to m1 =11,m3 = —Il3+k gives

r lz—ll—i-lg (l2+l1—l3+k 1) (2[3—]43)
btk \ﬁ (la— i+ 13— k+1)(lo+11 —I3)!(23) K] (B.32)
[21ﬂ€—(l2+l1—lg)(lg—l1+l3+1)]F11’12’l3.

I3

And applying the J; +iJy, WI to mi =11 —1,m3 = —Il3+k gives

I B (—1)k+1 (lg—h—i—lg)!(b—i-ll—l3+k—2) (213 —k)!
W2tk = @ -1\ (o=l +1ls—k+2)/(la+1 —13)!(203)k!
{20k — o+l —13)(la—lh + I3+ D2 — Dk — (lo+ 1, — 15 —1 )(12—11+z3+2)}]F11712713.

[2[1]43(2[3 k+ 1)—

I3
(B.33)
They induce us to write Fl1 12 l3 2tk 88
plias 1k, [l =)l 2l — k)l —l +15)! (l2+l1*l3+k n) pluiz s
li—n,—l3+k — =(-1) [ 121(7- — — — JrkFi l1,~l3 -
(B.34)

The J, £1J, recursion relations for this f, ; are
for1k=kQ@l3—k+1)frnp—1—(lo+h—ls—n+k)(lo—lL+l3+n—k+1)foi (B.35)
frgr1 =02l —n+1) fuo1 1+ f(n, k). (B.36)

From its definition, fo, =1. The following results can be obtained from actual calculations
using the recursion relations.

oo+l —=13) (o=l +13+n)!

" ! B.37

f 0T ( ) (l2+l1—l3— )(lg—l1+l3), ( )
f ( 1)n(l2+l1_l3+1) (l2_ll+lg+n—1)!
e (lo+h —ls—n+1)(la—11+13—1)!
lo+11—13)(la— 11 +1 —1)!

(1) Lo+l =B)(—li+l3+n-1) onls (B.38)

(lg—l—ll—lg—n—i-l)!(lz—ll—i-lg)!
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n(l2+l1—l3+2)!(l2—l1 —I—l3+n—2)'
(l2+l1—l3—n+2)!(l2—ll+l3—2)!
+(_1)n71 (l2+l1*l3+1)!(l2*l1+l3+n*2)!
(lz+l1—l3—n+2)!(l2—l1 +l3—1)!
(l2+l1*l3)!(l2*l1 +l3+n72)'
(l2+l1—l3—n+2)!(l2—l1 +l3)'
fog= (_1)n (l2+l1*l3+3)!(l2*l1 +13+TL*3)'
’ (l2+l1—l3—n+3)!(l2—ll+l3—3)!
n—1 (l2+l1—l3+2)!(l2—l1+l3+n73)
(lo+1l —l3—n+3)(la—11 +13—2)
+(_1)n(l2+l1*lg“l’l)!(lQ*ll +l3+n73)!
(lo+1l—l3—n+3)(la—11 +13—1)!
n—1 (l2+l1—l3)!(l2—l1 +l3+n—3)'

fn,2 = (_1)

2n(2l3—1)

+ (=1 n(n—1)215(2l3—1) (B.39)

+(=1) isn(zzg_z)

3n(n—1)(2l3 —1)(2l3 —2)

-1 1) (n—2)205(205 — 1)(213 —2

D w1 D= 2022 = 1) (2 —2)
(B.40)

From them, we can assume that f, ; has the following form.
k
e+l —ls+k=DI(e—lL+Is+n—Fk)!
k= P B.41
I ; w1 (lo+l—l3—n+k)(la—l1 +1l3—k+1)! (B.41)
| (2s—k+1)! kin!(23 — k+1)!

Py ki =1C nt (2l k+]) nl(2ly —k+1) (B.42)

(n—10)! (ls—k)!  0k—1)(n—1)(2l3—k)!

We prove it by mathematical induction. First, the above configuration is consistent with
the result for (n,k) = (n,0) shown in (B.31). The recursion relations of P, j; for k are

Pn,k+170 = Pn,k,O =1 (B43)
Pn,k+1,1 = Pn,k,l — n(211 —2l3—n+2k+ l)PnJg’O +n(211 —n—+ 1)Pn71,k,0 (B.44)
Pn,k+1,2 = Pn,k,Z - (’I’L — 1)(2[1 —2l3—n+ Qk)Pn,k,l —|—7”L(2[1 —n+ I)Pn—l,k,l (B.45)

Pygs1=Ppr— (n—k)(2l1 —2ls—n+k+ 2)Pn7k,0 +n(2lp —n+ 1)Pn—1,k,k:—1 (B.46)
Pn,k+1,k+1 = —(n — k)(?ll — 2l3 —n—+ ]C-f- 1)Pn,k,k +n(2l1 —n—+ 1)Pn—1,k,k' (B.47)

Assume that the above configuration (B.41) and (B.42) are correct for k> 0. Then, from
the above recursion relations, we get

Ppry10=1 (B.48)
Pn,k+1,m: mkm—(n—m+1)(2l1—2l3—n+2k‘—|—2—m)Pn7k7m_1—|—n(2l1—n—|—1)Pn_17k7m_1
n! (2[3—]’6—!—777,)! (77,—1)! (2l3—k+m—1)!
(n—m)!  (2l3—k)! (n—m)! (213 —k)!
nl (2 —k+m—1)!
—m+1) (2s—Fk)!
n! (2[3—/{—1—1—7)?,)!
—m)' (2[3—/{—1)!

:kcm

+n,Cm—1

(2[1 —n—+ 1)

—(n—m+1)Cp—1

(2[1—2[3—7@—1—2]{74-2—771)

=10y (1<m<k) (B.49)
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Pokt1,k+1
n! (213)!
(=) (23— F)!

(n—1)  (203)!

=—(n—k)(2lh —2l3—n+k+1) (n—k—1)! (2l3—k)!

+n(2l1 —n+1)
n! (213)!

= ) B.
(n—k—1)!(2l3—k—1)! (B-50)
So, the configuration (B.41) and (B.42) are also correct for k+1.
The conclusion is
Flulals (qynth (20 =)\ Q2ls k)Nl —h )Mo+ b —lgtk—n)! iy gy
hi—n,—l3+k (2[1)‘71'(2[3)']45'([2—[1 —|—l3—k:+n).(l2+l1—l ) Rl
(B.51)
k
lg—{-ll—l3+k‘—l)!(l2—l1+l3+n—k)!
oS p ol B.52
Tk l; wa(=1) (o+l —ls—n+k)(lo—l1+13—k+1)! (B.52)
In!(2l3 — !
kn!(2l3 —k+1) (B.53)

Py = .
L N =D (n=1)1(213— k)!

B.4 Direct integral calculation of three-point function

In two-dimensional CFT, the direct integral calculation is straightforward because we can
decompose it into holomorphic and antiholomorphic parts. We can calculate them in-
dependently by a complex integral technique. On the other hand, in three-dimensional
CFT, we don’t have such techniques, so we have to perform direct integral calculations
straightforwardly. From the definition,

dQ dQ dQ
/ 1/ 2 3 030201>:)\321T1—A —As —Ag Z F%OS y1A1+2p —A3—2q
P,9€ZL >0

/dQl /dQQ dQs A321 (B 54)

A1+A2—A3 Ao+A3z3—A1 A3+A1—-As’
AT iy T3z T3y

where x =r? —1—7" —27;1;®;;. We can obtain F, 8)02) by differentiating it.

o /dQl/dQQ ng 11 (d)%(d>2q
)!(2(])! d21 dZ3

(1 + Zl — 221(1)12)912 (1 + Z3 — 223(1)23)923 (1 + (212’3)2 — 22123@31)931 |z1=Z3=0 (B55)

To calculate it, we need the following relation.

— Eq: 92k g! o2 (B.56)
zzD_k:() (q—k)(2K)! (9g—q—k)! .
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We omit its derivation here. With this, calculate the amplitude F&Og). First, consider the
differentiation by z3.

d \*
() (1+Z§—223(1)23)923(1+(2123)2—22’123(1)31)931

dzs3
_ zq: 2’“: qu 22<g+z> (29)! 9311923105 2%, a
P S A Wg—k—=DY20)! (g31 —k—j) (g3 —q+k—1)!
Jrq 1zk:qzk:1 22(j+z+1)(2q)! 931|g23'(1)2]+1q)21+1 aen
i—0i=0 =0 N2i+ D g—k—1—D)120+1)! (gs1 —k—5— 1) gos—q+k—1)!""

(B.57)

Next, consider the differentiation by z;.

d \? 0 (p< k)
(le) (1+2%_221@12)912Z%k {Zpk 22n(2p) 912"1)2” S k,) (B58)
21=0 n=0 (p k— TL) ( )l (912 p+k n)| p_
d \?P i 0 (p - k)
<d,2’1> (1+Z%—221<I>12)912z% +1 = {Zpkl _o2n41(2p)1 gral@2nt -
z1=0 n=0 (p—k—n—1)2n+1)! (giz—pthk—n) P
(B.59)

With them, we get
min(p,q) k p—kq—k

dQ; [dQe [dQ ;
F = > XY A [ G2 Glebeke

k=0 j=0n=01=0
m —1,q-1) k p—k—1g—k-1

Z Z Z Z By ynl/dQl/dQ2 dQ3q>2n+1q>21+1¢,2y+17

1n
k=0 =0 n=0

(B.60)

where

) o 22(j+n+1) g12!923'931!
T e e e e B ene el e e T ez ) (B.61)

B . = 22(+n+D+3 912!923'g31!
k.dml = 25+ D) 2n+ D)1 RI+ 1) (k—j) (p—k—n—1)(q—k—I—1)! (g31—k—j—1)!(g12—p+k—n)(g2z—q+k—1)!*

(B.62)
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