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Abstract. Classical Higgs fields and related canonical conserved quantities are defined

by invariant variational problems on suitably defined gauge gluon bundles. We consider

Lagrangian field theories which are assumed to be invariant with respect to the action

of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’,

i.e. a Yang-Mills Lagrangian on the (1, 1)-order gauge-natural bundle of S U(3)-principal

connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by

inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.

1 Introduction

In this note we shall deal with the definition of a classical Higgs field canonically induced by the

invariance of a gluon Yang-Mills Lagrangian with respect to the gauge-natural infinitesimal tranfor-

mations of the bundle of S U(3)-connections, seen as a (1, 1)-order gauge-natural affine bundle.

In particular, the Jacobi equations associated with the gluon Lagrangian define a canonical clas-
sical Higgs field, that is a reduction of the relevant principal bundle structure. It is noteworthy that

the principal bundle structure is not the S U(3)-principal bundle, but its (1, 1)-order gauge-natural pro-
longation. For basics on gauge-natural prolongations and applications in Physics, see e.g. [1, 2, 4].
Classical physical fields are sections of bundles functorially associated with gauge-natural prolonga-

tions of principal bundles, by means of left actions of Lie groups on manifolds.

Let us shortly summarize the geometric frame. Denote by P → X a principal bundle with structure

group G, dimX = n, by Lk(X) the bundle of k–frames in X. For r ≤ k the gauge-natural prolongation
of P is W(r,k)P � Jr P×X Lk(X), a principal bundle over X with structure group the semi-direct product

W(r,k)
n G ≡ T r

nG � GLk(n), with GLk(n) group of k–frames in Rn while T r
nG is the space of (r, n)-

velocities on G.

Let F be a manifold and ζ : W(r,k)
n G × F → F be a left action of W(r,k)

n G on F. It is associated a

gauge-natural bundle of order (r, k) defined by Yζ �W(r,k)P ×ζ F.

Since the group Di f f (X) is not canonically embedded into the group Aut(P) of all automorphisms

of the underling principal bundle P, there is a priori no natural way of relating infinitesimal gauge

transformations with infinitesimal base transformations. A canonical determination of Noether con-

served quantities, without fixing any connection a priori, can be performed on a reduced subbundle of
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W (r,k)P determined by the original W (r,k)
n G-invariant variational problem. Connections can be charac-

terized by means of such a canonical reduction and conserved quantities can be characterized in terms

of Higgs fields on gauge principal bundles having such a richer structure [6, 8, 9].

2 Higgs field induced by ‘gluon Lagrangians’

As well known the Standard Model is a gauge theory with structure group G = S U(3)×S U(2)×U(1).

One can consider the coupling with gravity by adding the principal spin bundle Σ̄ with structure

group Spin(1, 3); the structure bundle of the whole theory can be then taken to be the fibered product

Σ = Σ̄ ×X P. There is an action of Spin(1, 3) on a spinor matter manifold V = Ck and therefore a

representation Spin(1, 3) × S U(3) × S U(2) × U(1) × V , given by a choice of Dirac matrices for each

component of the spinor field.

A corresponding Lagrangian is therefore given by λ = ψ̄(iγμDμ − m)ψ − 1
4
(FμνF μν + F A

μνF μν
A +F a

μνF μν
a ). Experimental evidence concerned with symmetry properties of fundamental interactions

shows the phenomenon of spontaneous symmetry breaking suggesting the presence of a scalar field

called the Higgs boson on which the spin group acts trivially. A very clear and precise introduction to

those topics can be found in [12].

For an illustrative purpose, let us then restrict to pure gluon fields assumed to be critical sections

of the ‘gluon Lagrangian’ λgluon = − 1
4
F a
μνF μν

a . In this note, we shall therefore restrict to a principal

bundle Σ with structure group G = S U(3) such that Σ/S U(3) = X and dimX = 4.

Recall that W (1,1)
4

G is the semi-direct product of GL(4,R) on T 1
4G, where GL(4,R) is the structure

group of linear frames in R4.

The set { jk
0
α : α : R4 → R4}, with α(0) = 0 locally invertible, equipped with the jet composition

jk
0
α ◦ jk

0
α′ := jk

0
(α ◦ α′) is a Lie group called the k-th differential group and denoted by Gk

4
. For k = 1

we have, of course, the identification G1
4 � GL(4,R). The principal bundle over X with group Gk

4

is called the k-th order frame bundle over X and will be denoted by Lk X. For k = 1 we have the

identification L1X � LX, where LX is the usual (principal) bundle of linear frames over X.

Unlike J1Σ, W (1,1)Σ is a principal bundle over X with structure group W (1,1)
4

G � T 1
4S U(3) �

GL(4,R), T 1
4S U(3) being the Lie group of (4, 1)-velocities of S U(3) (if u : R4 → S U(3), a generic

element of j10u ∈ T 1
4S U(3) is represented by gb = ub(0) and gb

ν = (∂ν(g
−1 · u(x))|x=0)b). The group

multiplication on W (1,1)G being ( j10α, j10a) 	 ( j10β, j10b) � ( j10(α ◦ β), j10((a ◦ β) · b)) and denoting by ·r
the right action of S U(3) on Σ, the right action of W (1,1)

4
G on W (1,1)Σ is then defined by ( j10ρ, j1xσ) 	

( j10α, j10a) � ( j10(ρ ◦ α), j1x(σ ·r (a ◦ α−1 ◦ ρ−1))).
The bundle of principal connections on Σ is a gauge-natural bundle associated with the gauge-

natural prolongation W (1,1)Σ. Consider the action ζ induced by the adjoint representation:

ζ : W1,1
4

G × (R4)∗ ⊗ su(3) → (R4)∗ ⊗ su(3) : ((gb, gc
μ, α

σ
ρ ), f a

ν ) �→ (Adg)a
b( f b

σ − gb
σ)ᾱ

σ
ν , where (Adg)a

b
are the coordinate expression of the adjoint representation of G = S U(3) and gb, gc

μ denote natural

coordinates on T 1
4S U(3). The sections of the associated bundle C(Σ) � W (1,1)Σ ×ζ (R4)∗⊗ su(3) → X

are in 1 to 1 correspondence with the principal connections on Σ and are called a S U(3)-connections.

Clearly, by construction, C(Σ) is a (1, 1)-order gauge-natural affine bundle [4], see also [3].

Note that the Lie algebra of W (1,1)
4

S U(3) is the semi-direct product of gl(4,R) with the Lie algebra,

t14su(3), of T 1
4S U(3). It is easy to characterize the semi-direct product of the two Lie algebras, from

now on denoted by S, as the direct sum t14su(3)⊕ gl(4,R) with a bracket induced by the right action of

GL(4,R) on T 1
4S U(3) given by the jet composition, in particular by the induced Lie algebra homomor-

phism t14su(3) → hom(gl(4,R)); given a base of t14su(3)� gl(4,R); the adjoint representation of the Lie

group W (1,1)
4

S U(3) is also easily defined (see e.g. [15, 16], §1.3). Local coordinates on W1,1
4

S U(3) are

    
  

DOI: 10.1051/,129 129EPJ Web of Conferences epjconf/2016
QCD@Work 2016

00016 (2016) 00016

2



given by (gb, gb
σ;α

μ
σ) and induced local coordinates on S are given by (Ya,Ya

μ , X
μ
σ). Local generators

of the tangent space are of course partial derivative with respect to such local coordinates.

Consider the right action Rĝ : W (1,1)Σ → W (1,1)Σ, ĝ ∈ W (1,1)
4

S U(3). Let Ξ be a right invariant

vector field on W (1,1)Σ. In coordinates we have Ξ = ξλ(x)∂λ + Ξa(x)b̃a where (b̃a) is the base of

vertical right invariant vector fields on W (1,1)Σ which are induced by the base (ba) of S. They are

sections of the bundle TW (1,1)Σ/W (1,1)
4

S U(3) → X. We have b̃a = (Rĝ)
b
a∂b, where the invertible

matrix (Rĝ)
b
a is the matrix representation of TRĝ. It is clear that so-called Gell-Mann matrices λa are

matrix representations of ba and they therefore induce b̃a in the standard way. Analogously a matrix

representation can be obtained for b
μ
a, being essentially T 1

4S U(3)�GL(4,R) � (S U(3)×(R4)∗⊗su(3))�
GL(4,R).

2.1 A variationally featured classical Higgs field associated with the gauge-natural
invariant gluon Lagrangian

The functorial linearity properties of the gauge-natural lift Ξ̂ of infinitesimal automorphisms of W (1,1)Σ

to he bundle C(Σ) of S U(3)-connections enable to define a gauge-natural generalized Jacobi mor-
phism associated with a Lagrangian λ and the variation vector field Ξ̂V , the vertical part of Ξ̂, i.e. the
linear morphism J(λgluon, Ξ̂V ) � Ξ̂V�E(Ξ̂V�E(λgluon)), where E is the Euler-Lagrange operator [5, 7].

Lifted tangent vector fields the vertical part of which are in the kernel K � kerJ(λgluon, Ξ̂V ) are called

generalized Jacobi vector fields and generate canonical covariant conserved quantities [8]. They have

the property that the Lie derivative of critical sections of Yang–Mills Euler–Lagrange equations taken

with respect to them is zero, i.e. they leave invariant the equations and their solutions. It is a subalge-

bra of the Lie algebra of vertical tangent vector field, which can be interpreted as internal symmetry

algebra (see the Remark below). An explicit description of K for λgluon and the corresponding Jacobi

quadratic form J will appear in a separate paper.

A split structure given by K⊕ ImJ is defined on VW (1,1)Σ / W (1,1)
4

S U(3). Furthermore, let h be the

Lie algebra of right-invariant vector fields on W (1,1)Σ and k the Lie subalgebra of generalized Jacobi

vector fields; it is easy to see that the split structure is also reductive, being [k, ImJ] = ImJ [5, 7, 8].

For each p ∈ W (1,1)Σ, denote S � hp, R � kp and V � ImJp; we have a reductive Lie algebra

decomposition S � t14su(3) � gl(4,R) = R ⊕ V, with [R,V] = V; we recall that S is the Lie algebra

of the Lie group W (1,1)
4

S U(3). R is a reductive Lie subalgebra of t14su(3)� gl(4,R). The reductive split

structure is responsible of the canonical variational breaking of the symmetry group W (1,1)
4

S U(3) and

of the generation of Higgs fields. There exists an isomorphism between V � ImJp and TxX so that

V turns out to be the image of an horizontal subspace. We caracterize a principal bundle H → X,

with dimH = dimS and such that X = H/R, where R is a Lie group of the Lie algebra R which is

a closed subgroup of W (1,1)
4

S U(3). The principal subbundle H ⊂ W(1,1)Σ is then a reduced principal
bundle [9].

We have the composite fiber bundle W (1,1)Σ → W (1,1)Σ/R → X, where W (1,1)Σ/R =

W (1,1)Σ ×W (1,1)
4

S U(3) W (1,1)
4

S U(3)/R → X is a gauge-natural bundle functorially associated with

W (1,1)Σ × W (1,1)
4

S U(3)/R → X by the right action of W (1,1)
4

S U(3). The left action of W (1,1)
4

S U(3)

on W (1,1)
4

S U(3)/R is defined by the reductive Lie algebra decomposition.

According to [13, 14], we call a global section h : X → W (1,1)Σ/R a gluon classical Higgs field.

The following Remark is now noteworthy .

Let ω be a principal connection on W (1,1)Σ; ω̄ principal connection on the principal bundle H
defines the splitting T pH �ω̄ R ⊕ H̄p, p ∈ H. Note that, for each q ∈ W (1,1)Σ, TqW (1,1)Σ �ω
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VqW (1,1)Σ⊕Hq. We find that VqW (1,1)Σ � TqH �ω̄ R⊕H̄q, q ∈ H, i.e. it is defined a Cartan connection

ω̂ of type S/R, such that ω̂|V H = ω̄. It is a connection on W (1,1)Σ = H ×R W (1,1)
4

S U(3) → X, thus a

Cartan connection on H → X with values in S, the Lie algebra of the gauge-natural structure group

of the theory; it splits into the R-component which is a principal connection form on the R-manifold

H, and theV-component which is a displacement form.

A gluon gauge-natural Higgs field is therefore a global section of the Cartan horizontal bundle

Ĥp, with p ∈ H, it is related with the displacement form defined by the V-component of the Cartan

connection ω̂ above. A global section h of W (1,1)Σ/R → X defines a vertical covariant differential

and therefore the Lie derivative of fields is constrained and it is parametrized by gluon Higgs fields h
characterized by K [10, 11].
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