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Abstract

A new class of integrable two-dimensional dilaton gravity theories, in which
scalar matter fields satisfy the Toda equations, is proposed. The simplest case of
the Toda system is considered in some detail, and on this example we outline how the
general solution can be obtained. We also demonstrate how the wave-like solutions
of the general Toda systems can be simply derived. In the dilaton gravity theory,
these solutions describe nonlinear waves coupled to gravity. A special attention is
paid to making the analytic structure of the solutions of the Toda equations as
simple and transparent as possible, with the aim to apply the idea of the separation
of variables to non-integrable theories.

1 Introduction

The theories of (14-1)-dimensional dilaton gravity coupled to scalar matter fields are
known to be reliable models for some aspects of higher-dimensional black holes, cosmo-
logical models, and waves. The connection between higher and lower dimensions was
demonstrated in different contexts of gravity and string theory and, in several cases, has
allowed finding the general solution or special classes of solutions in high-dimensional the-
ories 1. A generic example is the spherically symmetric gravity coupled to Abelian gauge
fields and massless scalar matter fields. It exactly reduces to a (1+1)-dimensional dilaton
gravity and can be explicitly solved if the scalar fields are constants independent of coor-
dinates. These solutions can describe interesting physical objects — spherical static black
holes and simplest cosmologies. However, when the scalar matter fields, which presumably
play a significant cosmological role, are nontrivial, not many exact analytical solutions of
high-dimensional theories are known?. Correspondingly, the two-dimensional models of
dilaton gravity that nontrivially couple to scalar matter are usually not integrable.

To obtain integrable models of this sort one usually has to make serious approxima-
tions, in other words, to deform the original two-dimensional model obtained by direct
dimensional reductions of realistic higher-dimensional theories®. Nevertheless, the de-

!See, e.g., [1]- [27] for a more detailed discussion of this connection, references, and solution of some
integrable two-dimensional and one-dimensional models of dilaton gravity.

“See, e.g., (8], [11], [12], [17]- [23]; a review and further references can be found in [25], [26] and [23]

3We note that several important four-dimensional space-times with symmetries defined by two com-
muting Killing vectors may also be described by two-dimensional models of dilaton gravity coupled to
scalar matter. For example, cylindrical gravitational waves can be described by a (1+1)-dimensional
dilaton gravity coupled to one scalar field [28]- [30], [22]. The stationary axially symmetric pure gravity
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formed models can qualitatively describe certain physically interesting solutions of higher-
dimensional gravity or supergravity theories related to the low-energy limit of superstring
theories.

In our previous work (see, e.g., [20] - [23] and references therein) we constructed and
studied some explicitly integrable models based on the Liouville ecquation. Recently, we at-
tempted to find solutions of some realistic two-dimensional dilaton gravity models (derived
from higher-dimensional gravity theories by dimensional reduction) using a gencralized
separation of variables introduced in [21], [22]. These attempts showed that scemingly
natural ansatzes for the structure of the separation, which proved a success in previously
studied integrable models, do not give interesting cnough solutions (‘zero’ approximation
of a perturbation theory) in realistic nonintegrable models. Thus an investigation of more
complex dilaton gravity models, which are based on the two dimensional Toda chains,
was initiated. Here we Driefly present some results of this investigation. In particular, we
propose a simplest class of models, which can be explicitly solved in terms of the solutions
of the Toda equations. These solutions as well as their moduli space will be presented in
a very simple and convenient form that allows for a simple description of the analytic and
agymptotic properties of the solutions. At the same time this representation is extremely
convenient for their reductions to the wave solutions that include static and cosmological
ones. This construction essentially and naturally generalizes the previous results, [20]
- [23], and shows that essentially more complex structures of the separation of variables
should be employed in realistic theories of gravity.

2  General model of (141)-dimensional dilaton gravity
minimally coupled to scalar matter fields.

The effective Lagrangian of the (1+1)-dimensional dilaton gravity coupled to scalar
fields 9, obtainable by dimensional reductions of a higher-dimensional spherically sym-
metric (super)gravity can usually be (locally) transformed to the form (see [20] - [23] for
a detailed motivation and specific examples):

L==g | eR(g) + V(. ¥) + Y Zna(0,¥) 97 8ithm Ot | (1)

mn

Here g;;(z°, «') is the (1+1)-dimensional metric with the signature (-1,1), g = det|g;],
and R is the Ricci curvature of the two-dimensional space-time,

ds® = gijdz*da’, 4,5 =0,1. (2)

The effective potentials V and Z,,, depend on the dilaton ¢(z", ') and on N — 2 scalar
fields 1, (2", 2') (we note that the matrix Z,,, should be negative definite to exclude the
so called ‘phantom’ fields). They may depend on other parameters characterizing the
parent higher-dimensional theory (e.g., on charges introduced in solving the equations for
the Abelian fields). Here we consider the ‘minimal’ kinetic terms with the diagonal and
constant Z-potentials, Z,, (@, %) = Oy, This approximation excludes the important

( [31], [11]) is equivalent to a (0+2)-dimensional dilaton gravity coupled to one scalar field. Similar but
more general dilaton gravity models were also obtained in string theory. Some of them can be solved by
using modern mathematical methods developed in the soliton theory (see e.g. (1], [2], [11], [19]).
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class of the sigma - model - like scalar matter discussed, e.g., in [27]; such models can be
integrable if V = 0 and Z,,,, (¢, %) satisfy certain rather stringent conditions. In (1) we
also used the Weyl transformation to eliminate the gradient term for the dilaton.

To simplify derivations, we write the equations of motion in the light-cone metric,

ds* = —4f(u,v) dudv.

By first varying the Lagrangian in generic coordinates and then passing to the light-cone
coordinates we obtain the equations of motion (Z, are constants!)

auau‘ro + f V(‘P) 1/)) =0, (3)
[0:0u0/f) =3 Zu(0n)’  i=uyw. (4)
2Znauau"/}n T+ fV\l'n ((P, ¢) =0, (5)

8.0, In|f| + fVplp,9) =0, (6)

where V,, = 0,V Vy, = 0y, V. These equations are not independent. Actually, (6) follows
from (3) — (5). Alternatively, if (3), (4), and (6) are satisfied, one of the equations (5) is
also satisfied.

The higher-dimensional origin of the Lagrangian (1) suggests that the potential is the
sum of the exponentials of linear combinations of the scalar fields, q,(,o), and of the dilaton
¢ 1. In our previous work [23] we studied the constrained Liouville model, in which
the system of the equations of motion (3), (5) and (6) is equivalent to the system of the
independent Liouville equations for the linear combinations of the fields ¢, = F + q,(.O),
where F' = In|f|. The easily derived solutions of these equations should satisfy the
constraints (4), which was the most difficult part of the problem. The solution of the
whole problem revealed an interesting structure of the moduli space of the solutions that
allowed us to easily identify static, cosmological and wave-like solutions and effectively
embed these essentially one-dimensional (in some broad sense) solutions into the set of
all two-dimensional solutions and study their analytic and asymptotic properties.

Here we propose a natural generalization of the Liouville model to the model in which
the fields are described by the Toda equations (or by nonintegrable deformations of them).
To demonstrate that the model shares many properties with the Liouville one and to
simplify a transition from the integrable models to nonintegrable theories we suggest a
different representation of the Toda solutions, which is not directly related to their group
- theoretical background.

Consider the theory defined by the Lagrangian (1) with the potential:

N
V=Y 2geapg®, Z=-1, (7
n=1
where
N
49 = 0o+ Y Ymmn - (8)

m=3

1Actually, the potential V usually contains terms non exponentially depending on ¢ (e.g., linear in
. (), and then the expouentiation of ¢ is only an approximation, see the discussion in [23].
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In what follows we also use

N
m=F+0¢0 =" P, ©)
m=1
where ¥ + 1 = In|f| = F (f = ee”, e = £1), ¥ — 2 = ¢ and hence aj,, = 1 + a,,
Aop = 1-— Qn.
Rewriting the equations of motion in terms of t,, we find that Egs. (3) - (6) are
equivalent to N equations of motion for N functions p,

N
0u0yif, = € Z €nlnmgme™ ; € =—1, eg=+1, if n>2, (10)

m=1

and two constraints,
N
O = 02(Yn — ) = — Y _ ea(0%n)’, i=1,0. (11)
n=1

With arbitrary parameters a,,,, these equations of motion are not integrable. But as
proposed in [16] - [18], [20] [23], Eqgs.(10) are integrable and constraints (11) can be solved
if the N-component vectors v, = (@mn) are pseudo-orthogonal.

Now, consider more general nondegenerate matrices a,, and define the new scalar
fields z,:

N N
Ty = Z A €mWm » Yn = Z EnGnmTm - (12)
m=1 m=1
In terms of these fields, Eqs.(11) read as
N N
0u0uTm = EGmeXD Y | EnlnmGnkTk = XD Y AmiTk, (13)
k=1 k=1

and we see that the symmetric matrix
A=d"ea v €mn = €m Omn, (14)

defines the main properties of the model.

If A is a diagonal matrix, we return to the N-Liouville model. If A is the Cartan
matrix of a Lie algebra, the system (13) coincides with the corresponding Toda system,
which is integrable and can be more or less explicitly solved (see, e.g., [32], [33] ).° Here
we mostly consider the Ay Toda systems having very simple solutions. However, the
solutions have to satisfy the constraints that in terms of z,, are:

N N
ZZan Oz, =~ Z OiZm Amn i, 1=u,v. (15)
n=1

nym=1

51t can easily be seen that, due to the special structure of amn (@1, = 1+an, azn = 1 —a,), the Cartan
matrices of the simple algebras of rank 2 and 3 cannot be represented in the form (14). Further analysis
shows that this probably is true also for any rank. As will be shown in a forthcoming publication, any
symmetric matrix Amn, which is the direct sum of a diagonal L x L-matrix 7,; 'dmn and of an arbitrary
symmetric matrix Apn, can be represented in form (14). If A, is a Cartan matrix, the system (13)
reduces to L independent Liouville (Toda A,;) equations and the higher-rank Toda system.
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In the N-Liouville model the most difficult problem was to solve the constraints (15) but
this problem was eventually solved. In the general nonintegrable case of an arbitrary
matrix A we do not know even how to approach this problem. We hope that in the Toda
case the solution can be somehow derived but this problem is not addressed here. Instead,
in Section 4 we introduce a simplified model that can be completely solved.

Now, let us write the general equations in the form that is particularly useful for the
Toda systems. Introducing notation

X, = exp(—%Annzn) v (X)) =X 0u0,X — 0uX 8y X, Omn = —24ma/Ann, (16)

it is easy to rewrite Eqs.(13) in the form:

1 o
B2(Xn) = =5 gnAnn 11 xamm. am)
m#n
The multiplier | — %e gnAnn| can be removed by using the transformation z, — x, + 6,

and the final (standard) form of the equations of motion is

Do(Xn) =&, ] X, (18)

m#n

where ¢, = £1.

These equations are in general not integrable. However, when A,,, are the Cartan ma-
trices, they simplify to integrable equations (see [32]). For example, for the Cartan matrix
of Ay, only the near-diagonal elements of the matrix cimy are nonvanishing, e,_1 541 = 1.
This allows one to solve Eq.(18) for any N. The parameters q,, are invariant w.r.t.
transformations x, +— Az, + &, and hence Ay, can be made non-symmetric while pre-
serving the standard form of the equations (recall that the Cartan matrices of By, Cl,
G, and F are not symmetric). In this sense, ¢y, are the fundamental parameters of the
equations of motion. From this point of view, the characteristic property of the Cartan
matrices is the simplicity of Egs.(18) which allows one to solve them by a generalization of
separation of variables. As is well known, when A,,, is the Cartan matrix of any simple
algebra, this procedure gives the exact general solution (see [32]). In next Section we
show how to construct the exact general solution for the Ay Toda system and write a
convenient representation for the general solution that differs from the standard one given

in [32].
3 Solution of the Ay Toda system
The Ay equations are extremely simple,
Az(Xn) = E"Xn_an+1 i Xo =1 5 XN+1 = 1, n= 1, ...,N, (19)

and can be reduced to one equation for X; by using the relation between A,(X) and
higher determinants, A, (X) (see [32]):

Ag(An(X)) = Apr(X) Apii(X), A(X)=X, n>2. (20)
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From Egs.(19), (20) we find that
L\N+1(X1):H5n~ (21)
This equation looks horrible but is known to be soluble.

Let us start with the Liouville (4, Toda) equation Ay (.X) = g (see [34], [35], [32], [23]).
Calculating the derivatives of Ay(X) w.r.t. u and v, we find that

R(X'oXx) =0, §(X'OX)=0. (22)
It follows that if X satisfies (22) then there exist some ‘potentials’ U (u), V(v) such that
X —UW)X =0, X - VW)X =0. (23)
Thus the Liouville solution can be written as ( [23])
X(u,v) = Zau ) Cuw by (v), (24)
where a,(u) and b,(u) (4, v = 1,2) are linearly independent solutions of the equations
a’(u) — U(u)alu) = 0, b'(v) — V(v)b(v) = 0. (25)

and Cy, is a nonsingular matrix. As the potentials are unknown, the solutions a;, b; can
be taken arbitrary while as, b, then may be defined by the Wronskian first-order equations

Wilai(u),as(u)) =1, Wlbi(v),b(v)]=1. (26)

The matrix Cy, should obviously satisfy the normalization condition det C = g.

We have repeated this well known derivation at some length because it is completely
applicable to the Ay Toda equation (21). By similar but rather cumbersome derivations
it can be shown that X satisfy the equations

N-1 N-1
VX + > Up(u) X =0, ONVX+D Va(v) X =0. (27)
n=0 n=0

Thus the solution of (21) can be written in the same ‘separated’ form (24), where now
a,(uw) and b, (v) satisfy the ordinary linear differential equations of the order N + 1 (cor-
responding to Eqs.(27)), with unit Wronskians,

Wlay(u),...,an41(u)] =1, Wbhi(v),....,bn41(v)] =1, (28)

and det C =[] &,.
As an exercise, we suggest the reader to prove these statements for NV = 2. The key
relation that follows from the condition 8,A3(X) = 0 is the partial integral

X 02X
ofn(35) ()] -
It follows that the expression in the square brackets is equal to an arbitrary function
Ao(u) and thus we have
X BX
o[ + a0 (385)
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Denoting the expression in the square bracket by —A,(u) and introducing the notation
Uy (u) = Ay JAy and Up(u) = AT', we get Eq.(27) with N = 2.

Let us return to the general solution of Eq.(21). In fact, considering Eqs.(28) as
inhomogeneous differential equations for ay . (u), by 41 (v) with arbitrary chosen functions
a,(u), bp(v) (1 <n < N), it is easy to write the explicit solution of this problem:

N u
ayp{u) = Za,,(u) / dii VV,Q?(ﬂ) My (7). (31)

Here Wy is the Wronskian of the arbitrary chosen functions @, and Ay, are the com-
plementary minors of the last row in the Wronskian. Replacing a by b and u by v we can
find the expression for byyi(v) from the same formula (31). To complete the solution we
should derive the expressions for all X, in terms of @, and b,. This can be done with
simple combinatorics that allows one to express X, in terms of the n-th order minors.
For example, it is very easy to derive the expressions for Xs:

Xp = e109(X1) = €1 ) Wlas(u), a5(u)] Wbi(v), b;(v)] ,
i<j
which is valid for any N > 1 (i,7 = 1,..., N + 1). Note that expressions for all X,
have a similar separated form. This possibly hints that some rather complex separation
of variables may give us a tool for (approximate) solving more general, nonintegrable
cquations (18).

Our simple representation of the Ay Toda solution is completely equivalent to what
one can find in [32] but is more convenient for treating some problems. For example, it
is useful in discussing asymptotic and analytic properties of the solutions of the original
physics problems. It is especially appropriate for constructing wave-like solutions of the
Toda system which is similar to the wave solutions of the /N-Liouville model. In fact, quite
like the Liouville model, the Toda equations support the wave-like solutions. To derive
them let us first identify the moduli space of the Toda solutions. Recalling the N-Liouville
case, we may try to identify the moduli space with the space of the potentials Uy (v), V,(v).
Possibly, this is not the best choice and, in fact, in the Liouville case we finally made a more
cumbersome choice suggested by the solution of the constraints. For our present purposes
the choice of the potentials is as good as any other because each choice of U, (u) and
V,.(v) defines some solution and, vice versa, any solution given by the set of the functions
(a1(u), ..., an41(u)), (b1(v), ..., by41(v)) satisfying the Wronskian constraints (28) defines
the corresponding set of the potentials (Up(u), ..., Un—1()), (Vo(v), ..., Vnv_1(v)).

Now, as in the Liouville case, we may consider the reduction of the moduli space to
the space of constant ‘vectors’ (Uy,...,Un—1), (Vo,..., Vn—1). The fundamental solutions
of the equations (27) with these potentials are exponentials (in the nondegenerate case)

N+1 N+1
an(u) = exp(pau) , ba(v) = exp(vav), Z #n =0, E vy = 0. (32)
n=1 n=1

In this reduced case we may regard the space of the parameters (u,, 1,) the new moduli
space, in complete agreement with the Liouville case. Of course, the constraints (11) define
further restrictions on the moduli (i, #,) but here we do not address this problem.

Note only that, as in the N-Liouville case, one can construct nonsingular waves. To
show this is not much more difficult than in the Liouville case but requires more lengthy
derivations. We hope to publish these in a forthcoming paper.
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4 A simple integrable model of (141)-dimensional dilaton grav-
ity coupled to Toda scalar matter

Let us suppose that the potential V is independent of ¢, i.e. V(p, %) = V (1)%. Then
Eq.(6) is simply the D'Alembert equation for F(u,v). It follows that the metric can be
written as

f=ed(u) ¥ (v).
Due to the residual freedom of the coordinate choice in the light-cone metric we can choose
(a,b) as the new (local) coordinates and then denote them by (u,v). In this coordinates
and notation we simply have f = ¢ and F' = 0 in all the equations. We thus see that the
equations (5) are independent of ¢ and can be solved independently of the equations (3),
(4). Suppose that the matter fields 9 are known and first solve equations (3) and (4).
The general solution of Eq.(3) can be written as

o= [ [ duds Viv(a,0) + 4w + Bo), (33)
where A(u), B(v) are arbitrary functions. The constraints (4) in this model have the form
N
0= - E(&ﬂ/}n)z, i=u,v. (34)
n=1
Using (5) we easily derive
N
oV =¢€0; > (On)?,  (6,5) = (u,v) or (v,u), (35)
1

find A(a), B(b) in terms 1, and finally obtain:

=g / / duds V{(a, o)) / i / da @, (a / dp / 45 B,(0)+A'(0)u+B'(0)v,
o Jo 0 0
(36)
where we omitted the unimportant arbitrary term A(0) + B(0) = ¢(0,0) and denoted

N

N
)= 0,0, By(0) =) (B¥a(v,0))°.

1

Now, to get integrable equations for 1 we take the potential (7) with ¢l given by the
r.h.s. of Eq.(9). Then, we can use for the sealar fields the equations (10) and (12) — (14).
If we take the potential for which the o equations of motion can be reduced to integrable
Toda equations we find an explicit solution for the nontrivial class of dilaton gravity
minimally coupled to scalar matter fields. This model is a very complex generalization of
the well studied CGHS model in which the scalar fields are free and V' = g. In future, we
plan a detailed study of the Ay case. The easiest case is N = 1 (the Liouville equation

$In this model we suppose that there are N scalar matter fields 1, with n = 1,..., N while F is trivial
and ¢ is treated separately

163



for one 7). The first really interesting but simple theory is the case of two scalar fields
satisfying the A, Toda equations. Taking, for example,

V = exp (V3 9 — ) + exp (2 ¢),

we find the simplest realization of the A, Toda dilaton gravity model the complete solution
of which can be obtained by use of the above derivations.

As a simple exercise onc may consider the reduction from dimension (141) both to
the dimension (140) (‘cosmological’ reduction) and to the dimension (0+1) (‘static’ or
‘black hole’ reduction) as well as the moduli space reduction to waves. One of the most
interesting problems for future investigations is the connection between these three ob-
jects. It was discovered in the N-Liouville theory but now we see that it can be found
in a much more complex theory described by the Toda equations. It is not impossible
that the connection also exists (in a weaker form?) in some nonintegrable theories, say,

in theories close to the Toda models.

Note in conclusion, that the Toda equations (one-dimensional) were earlier employed
mostly in connection with the cosmological and black hole solutions (see, e.g. [36] - [38]).
To include into consideration the waves one has to step up at least on dimension higher.
The principal aim of the present paper was to make the first step and explore this problem
in a simplest two-dimensional Toda environment.
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