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Abstract 

A new class of integrable two-dimensional dilaton gravity theories, in which 
scalar matter fields satisfy the Toda equations, is proposed. The simplest case of 
the Toda system is considered in some detail, and on this example we outline how the 
general solution can be obtained. We also demonstrate how the wave-like solutions 
of the general Toda systems can be simply derived. In the dilaton gravity theory, 
these solutions describe nonlinear waves coupled to gravity. A special attention is 
paid to making the analytic structure of the solutions of the Toda equations as 
simple and transparent as possible, with the aim to apply the idea of the separation 
of variables to non-integrable theories. 

1 Introduction 

The theories of (1+1)-dimensional dilaton gravity coupled to scalar matter fields are 
known to be reliable models for some aspects of higher-dimensional black holes, cosmo­
logical models, and waves. The connection between higher and lower dimensions was 
demonstrated in different contexts of gravity and string theory and, in several cases, has 
allowed finding the general solution or special classes of solutions in high-dimensional the­
ories 1

. A generic example is the spherically symmetric gravity coupled to. Abelian gauge 
fields and massless scalar matter fields. It exactly reduces to a (1+1)-dimensional dilaton 
gravity and can be explicitly solved if the scalar fields are constants independent of coor­
dinates. These solutions can describe interesting physical objects - spherical static black 
holes and simplest cosmologies. However, when the scalar matter fields, which presumably 
play a significant cosmological role, are nontrivial, not many exact analytical solutions of 
high-dimensional theories are known2

. Correspondingly, the two-dimensional models of 
dilaton gravity that nontrivially couple to scalar matter are usually not integrable. 

To obtain integrable models of this sort one usually has to make serious approxima­
tions, in other words, to deform the original two-dimensional model obtained by direct 
dimensional reductions of realistic higher-dimensional theories3 . Nevertheless, the de-

1See, e.g., (1]- (27] for a more detailed discussion of this connection, references, and solution of some 
integrable two-dimensional and one-dimensional models of dilaton gravity. 

2 See, e.g., (8], [11], [12], [17]- [23]; a review and further references can be found in [25], [26] and [23] 
3 We note that several important four-dimensional space-times with symmetries defined by two com­

muting Killing vectors may also be described by two-dimensional models of dilaton gravity coupled to 
scalar matter. For example, cylindrical gravitational waves can be described by a (1+1)-dinwusional 
dilaton gravity coupled to one scalar field [28]- [30], (22). The stalionary axially symmetric pure gravity 
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formed models can qualitatively describe certain physically interesting solutions of higher­
climcnsional gravity or supergravit.y theories relatt~cl t.o the low-energy limit of snperstring 
th<~ories. 

In our previous work (see, e.g., [20] - [23] and rdcrences therein) we const.ructed and 
studied some explicitly integrable~ mode~ls based on the Liou ville equation. Re!ccntly, we at­
tempted to find solutions ofsmrw realistic two-climensioual clilaton gravity nwdcls (derived 
from higher-dimensional gravity thcorfos by diuwnsional reduction) using a gcrwralized 
separation of variahlc-!s introduced in [21], [22]. These attempts showed that semningly 
natural ansatze8 for the structure of the sPparation, which proved a success iu pn:viously 
studied integrable models, do not give~ interesting euo11gh solutions ('zero' approximation 
of a perturbation theory) in realistic nonintcgrnblc models. Thus an inve8tigat.ion of nHn·e 
complex dilaton gravity model~, which arc based on the two dimensional Toda chains, 
was initiated. Here we briefly present some results of this investigation. In particular, we 
propose a simplest clas8 of mod(~ls, which can be explicitly solved in tr.rms of tlw solutions 
of the Toda equations. These solutions as well as their moduli space will be presented in 
a very simple and convenient form that allows for a simple descriptioH of the analytic and 
asymptotic properties of the solutions. At the same time this representation is extremely 
convenient for their reductions to the wave solutions that include static and cosmological 
ones. This construction essentially and naturally genera]i,,;cs the previous results , [20] 
- [23], and shows that essentially more complex structures of the separation of variables 
should be employed in realistic theories of gravity. 

2 General model of (1+1)-dimensional dilaton gravity 
minimally coupled to scalar matter fields. 

The effective Lagrangian of the (1+1)-dimensional dilaton gravity coupled to scalar 
fields 7/Jn obtainable by dimensional reductions of a higher-dimensional spherically sym­
metric (super)gravity can usually be (locally) transformed to the form (see [20] - [23] for 
a detailed motivation and specific examples): 

£ = H [i.pR(g) + V(ip, 7/J) + L Zmn(i.p, 7/J) gij 8;7/Jm 8j7/Jn] 
mn 

(!) / 
Here 9ij(x0

, x 1
) is the (1+1)-dimensional metric with the signature (-1,1), g == det19iJI, 

and R is the Ricci curvature of the two-dimensional space-time, 

ds2 = 9ij dxi dxi , i, j = 0, 1 . (2) 

T IH !'!ffoctivo poLc>nt,ials V a 11 d Z,.,,. dc-1pc•111 l 011 1.lw tl i lnLon ip(:i:ci , ~1; 1 ) uncl on N - :t Hmlar 
G eld~ t/111 (x0

,.-i;
1) (we 11otc: tha:t the mat.rl x Z,,111 shoul d be negative <kfinitc Lo r.xt:lude th· 

so caHed ' pl1 a ut 111
1 H !<ls). T li 'Y 1m1y depend 1111 nLhcr pa1·amel,r.n; c:h<ll:w·V·riii 11g the 

111urut higher-climcnsional Urnory (e.g., 011 ·hurges iutrod11c •cl 111 solviug Ii{' cq11a,Lio 11s for 
t.he Abr;:lian fi elds) . Here wr: considPr i.'h • ' nduimn l' ki11el.ic Ltinus with Lhl! cli11g<111nl a nd 
cm1 ::ibm ~ Z-potca t.ia.ls Z,,rn(rp, 1/,1.) = Om,.Z,, . This appr xii 11 a.Li011 ex ·ludcs Lhc ir:rlJ><>rLa.nt 

( [31], [ll]) is equivalent to a (0+2)-dimensional dilaton gravity coupled to one scalar field. Similar but 
more general <lilaton gravity models were also obtained in striug theory. Some of them can be solved by 
using modern mathematical methods developed in the soliton theory (see e.g. [l], [2], [ll], [19]) 
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class of the sigma - model - like scalar matter discussed, e.g., in [27); such models can be 
integrable if V = 0 and Zm11 (cp,1/J) satisfy certain rather stringent c:ondit.ions. In (1) we 
also used the vv·cyl transformation to eliminate the gradient term for the dilaton. 

To simplify derivations, we write the equations of motion in the light-cone metric, 

ds2 = -4f(u,·u) dudv. 

By first varying the Lagrangian in generic coordinates and then passing to the light-cone 
coordinates we obtain the equations of motion (Z11 are constants!) 

8uf3v'P + j V(cp, 1/J) = 0, 

J 8i{a;cp/ J) = L Zn(B;'l/;11 )
2

, i = u,v . 

2Zn8u8v1/Jn + JVi1,Jtp, 1/J) = 0, 

a,, av ln Ill+ JV<p(cp, 'ljJ) = 0' 

(3) 

(4) 

(5) 

(6) 

where V'P = a'P V, \:~" = 8,µ" V. These equations are not independent. Actually, (6) follows 
from (3) - (5). Alternatively, if (3), (4), and (6) are satisfied, one of the equations (5) is 
also satisfied. 

The higher-dimensional origin of the Lagrangian (1) suggests that the potential is the 
sum of the exponentials of linear combinations of the scalar fields, q~o), and of the dilaton 
cp 4 . In our previous work (23] we studied the constrained Liou ville model, in which 
the system of the equations of motion (3), (5) and (6) is equivalent to the system of the 
independent Liou ville equations for the linear combinations of the fields Qn = F + q~o), 
where F = ln If I· The easily derived solutions of these equations should satisfy the 
constraints (4), which was the most difficult part of the problem. The solution of the 
whole problem revealed an interesting structure of the moduli space of the solutions that 
allowed us to easily identify static, cosmological and wave-like solutions and effectively 
embed these essentially one-dimensional (in some broad sense) solutions into the set of 
all two-dimensional solutions and study their analytic and asymptotic properties. 

Here we propose a natural generalization of the Liouville model to the model in which 
the fields are described by the Toda equations (or by nonintegrable deformations of them). 
To demonstrate that the model shares many properties with the Liouville one and to 
simplify a transition from the integrable models to nonintegrable theories we suggest a 
different representation of the Toda solutions, which is not directly related to their group 
- theoretical background. 

Consider the theory defined by the Lagrangian (1) with the potential: 

N 

V = L2gnexpq~o), Zn= -1, (7) 
n=l 

where 
N 

q~O) = ancp + L 'l/!mamn. (8) 
m=3 

4 Actually, the potential V usually contains terms non exponentially depending on <p (e.g., linear in 
cp), and then the expouentiation of <pis only an approximation, see the discussion in (23]. 
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In what follows we also mm 

N 

qn = F + q~O} = L 1/Jmanm , (9) 
m::=:l 

1 +an, 
a2n = l - aw 

Rewriting the equations of motiori in terms of 1/Jn, we find that Eqs. (3) - (6) are 
equivalent to N equations of motion for N functions 1/Jn, 

N 

OuOv1/1n = € L tnanm9meq"'; t1 = -1, En= +1, if n 2: 2' (10) 
m=l 

and two constraints, 

N 

a;<p = af (v'1 -1/.12) = - 2::: tn(8;1/Jn) 2
, i = u, v. (11) 

n=l 

With arbitrary parameters amn, these equations of motion are not integrable. But as 
proposed in (16] - (18], (20] (23], Eqs.(10) are integrable and constraints (11) can be solved 
if the N-component vectors Vn = (amn) are pseudo-orthogonal. 

Now, consider more general nondegenerate matrices Umn and define the new scalar 
fields Xn: 

N 

- '"' -1 ·'· Xn = ~ anmtm'f'm, 

m=l 

In terms of these fields, Eqs.(11) read as 

N 

1/Jn = L tnanmXm . 

m=l 

N N 

OuOvXm = Egm exp L tnanmankXk = exp L AmkXk ' 
k,n=l k=l 

and we see that the symmetric matrix 

A= aTw, 

defines the main properties of the model. 

(12) 

(13) 

(14) 

If A is a diagonal matrix, we return to the N-Liouville model. If A is the Cartan 
matrix of a Lie algebra, the system (13) coincides with the corresponding Toda system, 
which is integrable and can be more or less explicitly solved (see, e.g., (32], [33] ).5 Here 
we mostly consider the AN Toda systems having very simple solutions. However, the 
solutions have to satisfy the constraints that in terms of Xn are: 

N N 

2 Lan a;xn = - L O;Xm Arnn O;Xn ' i = u, v. (15) 
n=l n,m=l 

5It can easily be seen that, due to the special structure of Umn (a1n = 1 +an, a2,. = 1-a,.), the Cartan 
matrices of the simple algebras of rank 2 and 3 cannot be represented in the form (14). Further analysis 
shows that this probably is true also for any rank. As will be shown in a forthcoming publication, any 
symmetric matrix Am,., which is the direct sum of a diagonal L x £-matrix 1',-;- 1om 11 and of an arbitrary 
symmetric matrix Am,., can be represented in form (14). If Arnn is a Cartan matrix, the system (13) 
reduces to L independent Liouville (Toda A1) equations and the higher-rank Toda system. 
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In the N-Liouville model the most difficult problem was to solve the constraints (15) but 
this problem was eventually solved. In the general nonintegrable case of an arbitrary 
matrix A we do not know even how to approach this problem. We hope that in the Toda 
case the solution can be somehow derived but this problem is not addressed here. Instead, 
in Section 4 we introduce a simplified model that can be completely solved. 

Now, let us write the general equations in the form that is particularly useful for the 
Toda systems. Introducing notation 

1 
Xn = exp(-2AnnXn), Ll2(X) = X 8u8vX - 8uX 8vX, etmn = -2Amn/Ann, (16) 

it is easy to rewrite Eqs.(13) in the form: 

(17) 

The multiplier I - ~E 9nAnn I can be removed by using the transformation Xn >--+ Xn + c5n 
and the final (standard) form of the equations of motion is 

Ll2(Xn) =En II x::,nrn ' (18) 
rn;Cn 

where En = ±1. 
These equations are in general not integrable. However, when Arnn are the Cartan ma­

trices, they simplify to integrable equations (see [32]). For example, for the Cartan matrix 
of AN, only the near-diagonal elements of the matrix Ctrnn are nonvanishing, Ctn-t,n+l = 1. 
This allows one to solve Eq.(18) for any N. The parameters Ctrnn are invariant w.r.t. 
transformations Xn >--+ AnXn + c5n and hence Arnn can be made non-symmetric while pre­
serving the standard form of the equations (recall that the Cartan matrices of EN, CN, 
G2, and F4 are not symmetric). In this sense, Ctmn are the fundamental parameters of the 
equations of motion. From this point of view, the characteristic property of the Cartan 
matrices is the simplicity of Eqs. (18) which allows one to solve them by a generalization of 
separation of variables. As is well known, when Arnn is the Cartan matrix of any simple 
algebra, this procedure gives the exact general solution (see [32]). In next Section we 
show how to construct the exact general solution for the AN Toda system and write a 
convenient representation for the general solution that differs from the standard one given 
in [32]. 

3 Solution of the AN Toda system 

The AN equations are extremely simple, 

and can be reduced to one equation for X 1 by using the relation between t.2 (X) and 
higher determinants, Lln(X) (see [32]): 

(20) 
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From Eqs.(19), (20) we find that 

~N+l (Xi) = II En· (21) 
n 

This equation looks horrible but is known to be soluble. 
Let us start with the Liouville (A 1 Toda) equation .62 (X) = g (see [34), [35), [32], [23]). 

Calculating the derivatives of 6.2 (X) w.r.t. u and v, we find that 

a~ (x- 1 a;x) = o, (22) 

It follows that if X satisfies (22) then there exist some 'potentials' U(u), V(v) such that 

8~X - U(u)X = 0, a~X - V(v) X = 0. (23) 

Thus the Liouville solution can be written as ( [23]) 

X(u, v) = L aµ(u) Cµv bv(v), (24) 

where aµ(u) and bv(u) (µ, v = 1, 2) are linearly independent solutions of the equations 

a"(u) - U(u) a(u) = 0, b"(v) - V(v) b(v) = 0. (25) 

and Cµv is a nonsingular matrix. As the potentials are unknown, the solutions a 1, b1 can 
be taken arbitrary while a2, b2 then may be defined by the Wronskian first-order equations 

(26) 

The matrix Cµv should obviously satisfy the normalization condition <let C = g. 
We have repeated this well known derivation at some length because it is completely 

applicable to the AN Toda equation (21). By similar but rather cumbersome derivations 
it can be shown that X 1 satisfy the equations 

N-1 N-1 

at'+1x + L Un(u) a~x = 0' a:;+1x + L Vn(v) a:x = 0. (27) 
n=O n=O 

Thus Urn so lution of (2 l) (:an lw written in the same 'separated' form (24), where now 
aµ(u) a11d b.,(v) S;tt is fy l.11 • unli rw.ry Unt:;l.r differential equations of the order N + 1 (cor­
respo11d i11g to Gqs.(27)), wiL11 uult Wrnnskians, 

(28) 

and det C = IT E:n· 

As an exercise, we suggest the reader to prove these statements for N = 2. The key 
relation that follows from the condition 8u6.3 (X) = 0 is the partial integral 

(29) 

It follows that the expression in the square brackets is equal to an arbitrary function 
A0 (u) and thus we have 

(30) 
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Denoting the expression in the square bracket by -A 1(u) and introducing the notation 
U1(v.) = A1/A0 and U0 (u.) = A;- 1

, we get Eq.(27) with N = 2. 
Let us return to the general solution of Eq.(21). In fact, considering Eqs.(28) as 

inhornogcm~ous differential equations for aN+t (1t), bN+1 (v) with arbitrary chosen functions 
a11 (u), b,,(v) (1::; n::; N), it is easy t.o write the explicit solution of this problem: 

N 

aN+1(u) = 2.:>11(u) r d'fl w,v2(u) MN,11Ui) . 
n=I . 

(31) 

H<~re H1,v is tlw Wronskian of the arbitrary chosen functions n,, and l\1N,n are the com­
plementary minors of the last row in the Wronskian. Replacing a by b and u by v we can 
find the expression for bN+i(v) from the same formula (31). To complete the solution we 
should derive the expressions for all X 11 in terms of an and b11 • This can be done with 
simple combinatorics that allows one to express Xn in terms of the n-th order minors. 
For example, it is very easy to derive the expressions for X2 : 

X2 = c1Ll2(X1) = c1 L W[a;(u), aj(u)] W[b;(v), bj(v)] , 
i<j 

which is valid for any N 2: 1 (i , j = 1, .. ., N + 1). Note that expressions for all Xn 
have a similar separated form. This possibly hints that some rather complex separation 
of variables may give us a tool for (approximate) solving more general, nonintegrable 
equations (18). 

Our simple representation of the AN Toda solution is completely equivalent to what 
one can find in [32] but is more convenient for treating some problems. For example, it 
is useful in discussing asymptotic and analytic properties of the solutions of the original 
physics problems. It is especially appropriate for constructing wave-like solutions of the 
Toda system which is similar to the wave solutions of the N-Liouville model. In fact, quite 
like the Liouville model, the Toda equations support the wave-like solutions. To derive 
them let us first identify the moduli space of the Toda solutions. Recalling the N-Liouville 
case, we may try to identify the moduli space with the space of the potentials Un ( u), Vn (v). 
Possibly, this is not the best choice and, in fact, in the Liouville case we finally made a more 
cumbersome choice suggested by the solution of the constraints. For our present purposes 
the choice of the potentials is as good as any other because each choice of Un(u) and 
V11 (v) defines some solution and, vice versa, any solution given by the set of the functions 
(a1(u), .. .,aN+i(u)), (b1(v), .. .,bN+1(v)) satisfying the Wronskian constraints (28) defines 
the corresponding set of the potentials (U0 (u), .. ., UN-I (u) ), (Vo(v), .. ., VN-I (v)). 

Now, as in the Liouville case, we may consider the reduction of the moduli space to 
the space of constant 'vectors' (U0 , .. ., UN_i), (Vo, .. ., VN_i) . The fundamental solutions 
of the equations (27) with these potentials are exponentials (in the nondegenerate case) 

N+I N+I 
an(u) = exp(µnu) , bn(v) = exp(v,.v), L µn = 0, L l/11 = 0. (32) 

n=l n=I 

In this reduced case we may regard the space of the parameters (µ11 , vn) the new moduli 
space, in complete agreement with the Liouville case. Of course, the constraints (11) define 
further restrictions on the moduli (µ11 , v11 ) but here we do not address this problem. 

Note only that, as in the N-Liouville case, one can construct nonsingular waves. To 
show this is not much more difficult than in the Liouville case but requires more lengthy 
derivatio11s. Wr hope to publish these in a forthcoming paper. 
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4 A simple integrable model of (1+1)-dimensional dilaton grav­
ity coupled to Toda scalar matter 

Let us suppose that. the potential Vis independent of cp, i.e. V(cp, 'if;)= ll(1/J)6 . Then 
Eq.(6) is simply the D'Alembert equation for F(u, v). It follows that the metric can be 
written as 

f "."' ca'(u) b'(v). 

Due to the residual freedom of the coordinate choice in the light-cone metric we can choose 
(a, b) as the new (local) coordinates and then denote them by (u, v). In this coordinates 
and notation we simply have f = c and F = 0 in all the equations. We thus see that the 
equations (5) are independent of cp and can be solved independently of the equations (3), 
(4) . Suppose that the matter fields 1f; are known and first solve equations (3) and (4). 

The general solution of Eq.(3) can be written as 

cp = -€ L' 1v diidv V['if;(ii, v)] + A(u) + B(v), (33) 

where A(u), B(v) are arbitrary functions. The constraints (4) in this model have the form 

N 

a;cp = - 2:)8i1/Jn) 2
, i = u, v. (34) 

n=l 

Using (5) we easily derive 

N 

ay = caj 2_)8;1/Jn) 2
, (i, j) = (u, v) or (v, u), (35) 

find A(a), B(b) in terms 'if;, and finally obtain: 

cp = -c 1u 1v diid-u V['if;(u, v)]-l' du 1" du <l',,(u)-1v dv 11i dv cI>v(v)+A'(O)u+B'(O)v, 

(36) 
where we omitted the unimportant arbitrary term A(O) + B(O) = cp(O, 0) and denoted 

N N 

<I>u(u) = 2:)8u1/Jn(u, 0)) 2
, <I>v(v) = 2_)8v1/Jn(v, 0)) 2

. 

l l 

ow, Lo g •L int wable eq1iatio1)s for 1/J we tak th ' pot ntial (7) with 'q},0> givt'll l>y th • 
r.11.s. f' Eq. (9). Then, w\" tau 11sc l'or LI.JP scalnr fields the eqnaLions ('IO) a 11 cl ( 12) - (14) . 
l f w f,u.ke I.Ii p tenLi:i..l for wlt ich Lh • '1{1 equatious of mot.ion can b •reduced Lo irttegrnbl 
T oda cqualiom; WO fi11d au expl ici t; sol11Lio11 r( r LIH llOllLrivi al class ()f dilaLO!l grnvity 
minimally co11p lcd to scalar mattm f:iclds. This model is a very cornplex ge11 ralizaLion or 
t,he wc:IJ studi ·tl 'C HS modul i11 which th scalar fi Ids are [rc·r and V = g. 111 fut, 11 re, WP 
p lait " deLail11cl stndy of' th11 AN case. The asicst rn:;;e is N = l (the T.itrnvii lr. r.c prnt;io11 

6In this model we suppose that there are N scalar matter fields 1/Jn with n = 1, .. ., N while Fis trivial 
and cp is treated separately 
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for one 1/J). The first really interesting but simple theory is the case of two scalar fields 
satisfying the A2 Toda equations. Taking, for example, 

we~ find thr simplest realization of the A2 Toda dilaton gravity model the complete solution 
of which can be obtained by use of the above derivations. 

As a simple exercise one may consider the reduction from dimension ( 1+1) both to 
the dimension (1+0) ('cosmological' reduction) and to the dimension (0+1) ('static' or 
'black hole ' reduction) as well as the moduli space reduction to waves. One of the most 
interesting problems for future investigations is the connection between these three ob­
jects. It was discovered in the N -Liouville theory but now we see that it can be found 
in a much more complex theory described by the Toda equations . It is not impossible 
that the connection also exists (in a weaker form?) in some nonintegrable theories, say, 
in theories close to the Toda models. 

Note in conclusion, that the Toda equations (one-dimensional) were earlier employed 
mostly in connection with the cosmological and black hole solutions (see, e.g. [36] - [38]). 
To include into consideration the waves one has to step up at least on dimension higher. 
The principal aim of the present paper was to make the first step and explore this problem 
in a simplest two-dimensional Toda environment. 
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