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“  groundbreaking ideas and 
the capability to validate those ideas by 

. This is leading to an  that must 
be interpreted, and ML is proving a powerful approach. The 
more efficiently we can test our hypotheses, the faster we 

can achieve discovery. To fully 
, it is necessary to 

.”

Applications and Techniques for Fast Machine Learning in Science

https://doi.org/10.3389/fdata.2022.787421

Scientific discoveries come from 
testing nature at 

new scales - finer and more precise temporal and spatial 
resolution explosion of data 

unleash the power of ML and 
accelerate discoveries embed it into our 

scientific process, into our instruments and detectors 
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Moving data expensive, compute cheap
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R lati ost 
Operation: Energy (pJ) 
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1 channel ~ 10b 
1 channel, 1 MHz rate ~ 10 Mb/s 
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Too Much Data 
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Too Much Data 
Too Late

Embed more intelligence
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Blabla 
• Dodge 
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Blabla 
• Dodge 
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On-detec tor  ML

~10 billion collisions per second 
~10 PB of data per second

Large Hadron Collider

8

Thea Aarrestad

Geneva 

ATLAS 
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E = mc2
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Open fundamental questions
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The Standard Model describes the stuff (matter) we are made of and how that stuff interacts (forces)

Why are we here?  
(Why more matter than anti-matter) What is dark matter?

Why is gravity so weak?  
What is the fate of the universe (is it stable)? 

etc. 
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On-detector  
ASIC compression 

FPGA filter stack 
~us latency

CMS Experiment 
40MHz collision rate 
~1B detector channels

~100ns latency

Pb/s 
40MHz
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AI-on-chip
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�1

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

OFermilab 



Fast ML for Science
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Benchmarks bring innovation, 
Grand challenges spark imaginations!
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Benchmarks bring innovation, 
Grand challenges spark imaginations!
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Fast ML for Science
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Benchmarks bring innovation, 
Grand challenges spark imaginations!

https://science.osti.gov/-/media/np/pdf/research/NP-Accel-RD-PI-Meeting/2022/day2/Liu_Fast-ML-DOE-Presentation-11302022-final-v3.pdf


Fast ML for Science
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Benchmarks bring innovation, 
Grand challenges spark imaginations!

Real-time seizure detection


https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf


Fast ML for Science
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Particle accelerator controls


Benchmarks bring innovation, 
Grand challenges spark imaginations!

https://indico.cern.ch/event/1283970/contributions/5550643/attachments/2721973/4729145/READS%20FastML%20v3.pdf


Fast ML for Science
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New materials for quantum and energy


Benchmarks bring innovation, 
Grand challenges spark imaginations!

https://indico.cern.ch/event/1283970/contributions/5550641/attachments/2721072/4727363/Agar_FastML_talk.pdf


Fast ML for Science
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Supernova detection and multi-messenger astronomy


Benchmarks bring innovation, 
Grand challenges spark imaginations!

https://indico.cern.ch/event/1283970/contributions/5550644/attachments/2722081/4729360/Fast_ML_DUNE%20SN_Pointing_Final.pdf


Fast ML for Science
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Qubit readout and control


Benchmarks bring innovation, 
Grand challenges spark imaginations!

https://indico.cern.ch/event/1283970/contributions/5554333/attachments/2722515/4730432/FastML.pdf
https://github.com/openquantumhardware/qick


Fast ML for Science

25

Full 40 MHz readout with smart pixel detectors


Benchmarks bring innovation, 
Grand challenges spark imaginations!

https://fastmachinelearning.org/iccad2023/program.html
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• Necessity  
• Hardware 
• ML Research 
• Tools

Edge of Tomorrow
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Efficient codesign
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Aesource-constroined 
extreme environments 
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^algorithm

A lot of literature on sparsity and quantization as very generalizable techniques 



Efficient codesign
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More interesting directions — distillation and inductive bias 

Teacher model knows about 

Lorentz equivariance

^algorithm

https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121
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More interesting directions — distillation and inductive bias 

Teacher model knows about 

Lorentz equivariance

Model performance improves with distillation of 
expert knowledge, and more robust (see talk) 

^algorithm

https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121
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More interesting directions — distillation and inductive bias 

Teacher model knows about 

Lorentz equivariance

n.b. not necessarily computationally light, TBD

^algorithm
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^tools for

 (Google)
 (AMD)

 (UC Berkeley)
 (Microsoft/AMD)

~1000 Github stars, 
>750 downloads last month

adapted from Vladimir Loncar

https://pypi.org/project/hls4ml/
https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527


Efficient codesign
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Credit: Yaman Umuroglu

^tools for

https://arxiv.org/abs/2206.07527
https://github.com/fastmachinelearning/qonnx


• Open-source 

• Community-supported 

• User-driven 

• Accessible and usable

Efficient codesign
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^workflows and collabs for



A seemingly different topic - rolling it all up!
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G oogle DeepMind 

Accelerating fusion science through 
learned plasma control 

Pulsar Team, Swiss Plasma Center• {* External authors} 

< Share 

{})~:;-;~ RE UTE RS® World v Business v Markets v Sustainability v Legal v Breakingviews Tel ·.:;:f:f~:~·--

Energy I Grid & Infrastructure I Nuclear 

US scientists repeat fusion ignition 
breakthrough for 2nd time 
Reuters 

Aug ust 7, 2023 2:07 AM CDT· Updated 3 months ago 0 
vFerm1lab 



Plasma control
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MHD workshop, 


Credit: Chris Hansen

• Magneto-hydrodynamic (MHD) instabilities form when magnetic field lines become distorted, become critical on the order of microseconds

◦ Leads to confinement loss on contact with vacuum chamber wall and damage to the reactor

◦ One of the major roadblocks preventing lasting sustained fusion reactions

https://fusion.gat.com/conference/event/124/
https://docs.google.com/presentation/d/1NDXGV6ad_56qHEJC9EhplQHxFLFZ5msULCrftVAky2Y/edit#slide=id.g260e18753a1_0_183
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Credit: Yumou Wei
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OTS, open-source high speed camera system
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Overhead view 
of tokamak 

Camera 1 

I ... 

-- i - ,. -- - --------- -..,e ___ _ 

f/1.4, 12.5mm lf©D 
prime lens camera 2 

f/1.2, 8-48 mm zoom lens 

HBT control coils 
Control outputs 

High speed camera 

Ill 

Control coil 
amplifier 

DAC 

FPGA firmware 

_ ., ... ~ 

(!f Control request 

- ·- Frame grabber 

OFermilab 



Performance and optimization
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Amplitude error distributions 
- PPCF23 Baseline (128x64) 

Q, 5 -1----!-i'-"'"'-=~----.,_~ l----= ~~::.3&06!:~~::d(~~::~: 
- - LR (128x64) 
- - SVD (128x64) 

~ 0. 3 -l-----!:i==::;::::;.:=--1-- l--\.\..---l-----1----l 
"' C 
QJ 

0 

Model Name 

-4 

Image Resolution 
Conv layer filters 
Dense layer widths 
Total parameters 
Parameter precision 
Sparsity 
Bit Operations 

-2 0 2 4 
Amplitude error (G) 

PPCF23 Baseline QAT +Pruning Optimized 
128 x 64 128 x 64 32x 32 
{8,8,16} {8,8,16} {16,16,24} 
{256,64} {256,64} { 42,64} 
362,730 362,730 12,910 

PTQ, 18 bits QAT, 8 bits QAT, 7 bits 
none 80% 50% 

6.74e13 x 4.52el 1 0Fermilab 
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Prototype system
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120 kfps throughput

17.6 μs latency


Enabling new capabilities for fusion 
experiments! 
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