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Outline

* Why Fast ML for Science?
* The intelligent edge of tomorrow
* Towards ultra-fast automated experimentation

2= Fermilab



“Scientific discoveries come from groundbreaking ideas and
the capability to validate those ideas by testing nature at
new scales - finer and more precise temporal and spatial
resolution. This is leading to an explosion of data that must
be interpreted, and ML is proving a powerful approach. The
more efficiently we can test our hypotheses, the foster we
can achieve discovery. To fully unleash the power of ML and
accelerate discoveries, it is necessary tfo embed it into our
scientific process, into our instruments and detectors.”

Applications and Techniques for Fast Machine Learning in Science
https://doi.org/10.3389/fdata.2022.787421
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Moving data expensive, compute cheap

Relative Energy Cost

Operation: Energy (pJ)

8b Add 0.03
16b Add 005 | ]
32b Add o1 [N ]
16b FP Add 04 [N ]
32b FP Add SR — ]
8b Mult 02 | ]
32b Mult 31 [ ]
16b FP Mult 1.1 [ ]
32b FP Mult 37 [ ]
32b SRAM Read (8KB) R ——— ]
32b DRAM Read s40 |

Adapted from Horowitz
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Teo Much Data
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The Standard Model describes the stuff (matter) we are made of and how that stuff interacts (forces)

Open fundamental questions

Why are we here?
(Why more matter than anti-matter) What is dark matter?

dark quarks?
dark forces?

dark
higgs?

dark leptons?

Why is gravity se weak?
What is the fate of the universe (is it stable)?
etc,
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On-detector
ASIC compression

~100ns latency

CMS Experiment

4HOMHz collision rate
~1IB detector channels

Pb/s

4O0MHz

FPGA filter stack
~us latency
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CMS Experiment
4HOMHz collision rate
~1IB detector channels

K. 3 .
1
f |
i
=
e
=]
=
el
iead

\\\\\\\\\\\\\mnn////////////

ool -l MM

([

NN\

N

‘ ‘i"\\\\\\\:‘(\\

\

& -G Worldwide
g computing grid

\ 4

Exabyte-scale
datasets

Q Q)Y
Q. Q09 900

X & On-prem CPU/GPU
filter farm
~100 ms latency

//////////l/ (] l\\\\\\\‘{\\\\w \

14 INTERNET TRAFFIC BANDWIDTH




Al-on-chip
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Al-on-chip

Inference time: 280 ns
Throughput: 104 Gb/s

Dense Network
23 = 30
-> & classifier
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Fast ML for Science
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https://science.osti.gov/-/media/np/pdf/research/NP-Accel-RD-PI-Meeting/2022/day2/Liu_Fast-ML-DOE-Presentation-11302022-final-v3.pdf
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https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf
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https://indico.cern.ch/event/1283970/contributions/5550643/attachments/2721973/4729145/READS%20FastML%20v3.pdf

Fast ML for Science
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https://indico.cern.ch/event/1283970/contributions/5550641/attachments/2721072/4727363/Agar_FastML_talk.pdf
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https://indico.cern.ch/event/1283970/contributions/5550644/attachments/2722081/4729360/Fast_ML_DUNE%20SN_Pointing_Final.pdf
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https://indico.cern.ch/event/1283970/contributions/5554333/attachments/2722515/4730432/FastML.pdf
https://github.com/openquantumhardware/qick

Fast ML for Science
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https://fastmachinelearning.org/iccad2023/program.html
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ware of a high energy physics experi-

nt
The first such application comes
from a recent Fermilab test beam
experiment, where a VLSI neural
| network chip was interfaced to the
data acquisition system of a proto-
pe drift chamber. Drift ime infor
tion from the sense wires, encoded
as voltages, was passed to the
neural network, which calculated the
slope and Intercept of the track
lraversing the chamber and sent this
information back to the mother
readout board to be read out with the
rest of the event, without any dead
time.

Neural network hardware is also
finding its way into other trigger
systems, The CDF experiment has

ETANMN CHEF v TARCET TRACK

j ENSE VIRE . SN TRACK
DRIFT DESTAMCE | T THACK
3
Yl
N\
\
INTERCEPT +
- S
@work +
R G hea

three neural network Inggers in place
for its 1992 run: an isolated endplug
electron tngger, an isolated centra
photon trigger, and a semileptonic B

/”~ Also at Fermilab’s Tevatron coll doﬁ

| the feasibility of neural networks for

particie tngger,

a group in the DO experiment is
studying the use of neural networks
in the muon trigger for the DO Muon
Upgrade. A neural network trigger for
H1 at DESY has been under devel-
opment for some time and will be
tested in the current run. Several
R&D projects at CERN are looking at

LHC experiment trigger systems

Another application of neural
networks under study s in adaptive
control systems for accelerators. A
group at SLAC recently simulated
how a neural network control system
could be trained both to emulate and
control a section of beamline

These new artificial intelligence
technigues could go on to play an
important role in the acquisition and
analysis of axperimental data for the
coming generabion of proton
colliders

From Bruce Denby and Clark
Lindsey (Fermilab) and Louis Lyons
(Oxford)
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Edge of Tomorrow

48 Years of Microprocessor Trend Data
T
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Industry 4.0
Industry 3.0 Cyber physical

Industry 1.0 LoD i
7 automation of Things,
Mechanizafion, electronics networks
water power,
steam power

28 1700s 18008 1900s Today



Edge of Tomorrow

* Necessity
e Hardware
* ML Research

 Tools
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48 Years of Microprocessor Trend Data
T

T N 4
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A LAa g
106 - x PY VWS —
., 42 A Single-Thread
105 s Aa"a cws 0 N Performance
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10° = - N
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) * - T T vy s o 8%e| Numberof
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10° —s * T . 3 ee e e Senm wrenenm oo -
| 1
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Clukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Technologysize | Year Technology size | Year
10um 1971 130 nm 2001
6 um 1974 90 nm 2004
3um 1977 65 nm 2006

1.5um 1982 45 nm 2008
1um 1985 32 nm 2010

800 nm 1989 22 nm 2012

600 nm 1994 14 nm 2014

350 nm 1995 10 nm 2017

250 nm 1997 7 nm 2018

180 nm 1999 5nm 2020 F
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Neural Networks

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) Deep Feed Forward (DFF)

I e n S 0 r F I ow Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)
Q Q Q

0
Y Y
SHASRAS SRERAA

Auto Encoder (AE) Variational AE (VAE) Denoising AE(DAE) Sparse AE (SAE)

O PyTorch

Custom RTL functions
in Vitis HLS HLS IP or Kernel

/-

LU FLALPLFL LR LR
ot

C++ top function

<ANVIDIA.

CUDA.

- <.nilab




Efficient codesign

Hardware

Heterogeneous system-in-package

Integrated in-memory compute, 3DIC, Wireless (5G)
144§

Efficient co-design

s
#*
0]

O

/2 : ~POO0
" Db Al 05"
H (o}
- phl[SICS Data compression, reconfiqurable
Particle physics, _ ) and adaptive, continuous learning
XFEL. synchrotron Physics-inspired
distributed Al

29
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Efficient codesign

algerithm

A lot of literature on sparsity and quantization as very generalizable techniques

Relative Energy Cost before pruning after pruning
Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05 .
32b Add X I prumng
16b FP Add 04 | Synapses
32b FP Add oo | |
8b Mult o2 [N |
32b Mult 31 | pruning
16b FP Mult 11 -->
32b FP Mult 37 I fleurons
32b SRAM Read (8KB) 5 I
32b DRAM Read 640 imee———
Adapted from Horowitz 1 10 100 1000 10000

2= Fermilab
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Efficient codesign

31

algerithm

More interesting directions — distillation and inductive bias

Teacher model knows about
Teacher Model Lorentz equivariance

(large neural network)

Loss

|

L(g;p,y) = A —=DH(Y,q) + 2Dk, (P119)

q: student’s prediction, p: teacher’s
prediction, y: ground truth, p:
temperature soften distribution.

2= Fermilab


https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121

Efficient codesign

algerithm

More interesting directions — distillation and inductive bias

Teacher model knows about Model performance improves with distillation of
Teacher Model Lorentz equivariance expert knowledge, and more robust (see talk)

(large neural network)

Qo m T T T T
w I —— MLP from scratch |
e 10% MLP KD T=1
c F =
2 —— MLPKDT=3
o —— MLPKD T=5
S 10°F E
Loss g ]
o
o |
.’*’ ‘v 0 é 102? |
‘ ?’ 4:9 PR @
.’;' ’;{\J A, I
0@ 10" &
o L@py) = Q- DH©,q) + Dk (B11) ’
q: student’s prediction, p: teacher’s qooll i L
" ~ 00 02 04 06 08 10
prediction, y: ground truth, p: Sianal effici .
s al efficiency es &
temperature soften distribution. 9 Ceney e g Fermilab
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https://indico.cern.ch/event/1283970/contributions/5554385/attachments/2720545/4726373/fastml.pdf
https://arxiv.org/abs/2310.16121

Efficient codesign

algerithm

More interesting directions — distillation and inductive bias

Teacher model knows about

Teacher Model Lorentz equivariance

(large neural network)

,7,1*, W=

o e — ¢ ]

JJiere

o £(g;p,y) = (1 — DH(y,q) + ADk,(B1d)

q: student’s prediction, p: teacher’s
prediction, y: ground truth, p:

temperature soften distribution.
32

19 Parameters Is All You Need:
Tiny Neural Networks for Particle Physics

Alexander Bogatskiy Timothy Hoffman
Center for Computational Mathematics Department of Physics, University of Chicago
Flatiron Institute, New York, NY, U.S.A. Chicago, IL, U.S.A.
abogatskiy@flatironinstitute.org hoffmant@uchicago.edu

Jan T. Offermann
Department of Physics, University of Chicago
Enrico Fermi Institute
Chicago, IL, U.S.A.
jano@uchicago.edu

n.b. not necessarily computationally light, TBD
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https://arxiv.org/abs/2206.07527
https://github.com/fastmachinelearning/qonnx

Efficient codesign
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Use his4ml to convert a neural network from Keras to HLS

“hls4ml" is a package developed to convert machine learning models (like those from
Keras) into high-level synthesis (HLS) code. This allows the deployment of such models onto
FPGAs. The following steps will guide you through converting a Keras neural network model

to HLS using “hlsaml':

Installation:

If you haven'tinstalled “hls4ml" yet, you can do so using "pip :

() Copycode
pip install hlsdml

Prepare Your Keras Model:
Let's assume you've trained a simple model in Keras or you have a Keras model ready:

python () Copycode

keras.models i Sequential

keras.layers Dense

Cr imple model
model = Sequential()
model.add(Dense (54, input_shap ,), activatio

model.add(Dense (32, activation= »

model.add(Dense (1, activation= »

model.compile(optimize: , metrics=[

Make sure you've saved your trained model:

python B Copycode

model.save(

Convert with his4ml:

) Copy code

hls4ml

!
config = hls4ml.utils.config_from_keras_model(model, granularity=
t(config)

hls_model = hls4ml.converters.convert_from_keras_model(model,

output_dir=

fpga_part=

hls4ml.utils.plot_model(hls_model, show_shapes=True, show_precision=

Inthe "hls4ml.converters.convert_from_keras_model" function:
* “hls_config :is the configuration for the conversion. We generated it using
“config_from_keras_model for simplicity, but you can customize this as needed.
* “output_dir:is the directory where the HLS project will be created
* “fpga_part ": specifies the FPGA part. Adjust this based on your target FPGA.
Build the HLS Project:
Once the model is converted, you can compile it into HLS:

python ) Copycode

hls_model.compile()

Run the HLS Simulation (Optional):
Before synthesizing for FPGA, you can run a C-simulation to check if the model works

correctly in HLS:

python ) Copycode

hls_model.build(csim=T

After this, you'll have an HLS project in the specified “output_dir" that you can use with

FPGA development tools to generate bitstreams for FPGA deployment.



A seemingly different topic - rolling it all up!
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Accelerating fusion science through
learned plasma control
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Plasma control

MHD workshop,
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Control
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Credit: Chris Hansen

e Magneto-hydrodynamic (MHD) instabilities form when magnetic field lines become distorted, become critical on the order of microseconds
o Leads to confinement loss on contact with vacuum chamber wall and damage to the reactor
o One of the major roadblocks preventing lasting sustained fusion reactions
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https://fusion.gat.com/conference/event/124/
https://docs.google.com/presentation/d/1NDXGV6ad_56qHEJC9EhplQHxFLFZ5msULCrftVAky2Y/edit#slide=id.g260e18753a1_0_183

Plasma control MHD workshop,
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e Magneto-hydrodynamic (MHD) instabilities form when magnetic field lines become distorted, become critical on the order of microseconds
o Leads to confinement loss on contact with vacuum chamber wall and damage to the reactor
o One of the major roadblocks preventing lasting sustained fusion reactions
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OTS, open-source high speed camera system
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Performance and optimization
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Amplitude error distributions
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—
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Amplitude error (G)

Model Name PPCF23 Baseline QAT+Pruning Optimized
Image Resolution 128 x 64 128 x64 32x32
Conv layer filters {8,8,16} {8,8,16} {16,16,24}
Dense layer widths {256,64} {256,64} {42,64}
Total parameters 362,730 362,730 12,910
Parameter precision ~ PTQ, 18 bits QAT, 8 bits QAT, 7 bits
Sparsity none 80% 50%
Bit Operations 6.74e13 X 4.52el1
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Latency vs Resources
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Prototype system
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experiments!
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Outline

* Why Fast ML for Science?
* The intelligent edge of tomorrow
* Towards ultra-fast automated experimentation
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