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A Test of Newton's Law of Gravity
Using the BREN Tower, Nevada
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We predicted gravity values on a tower by upward continuing an extensive set of surface data
in order to test the 1/r2 dependence of Newton's Law of Universal Gravitation. We measured
gravity at 12 heights up to 454 m on a tower at the Nevada Test Site, and at 91 locations on the
surface of the earth within 2.5 kilometers of the tower. These data have been combined with
60,000 surface gravity measurements within 300 kilometers of the tower and have been used to
predict the gravitational field on the tower via a solution of Laplace's equation. A discrepancy
between the observed gravity values and the prediction could suggest a breakdown of
Newtonian Gravity, but we observe none. Our preliminary results are consistent with the
Newtonian hypothesis to within 93+£95 pigals at the top of the tower, a result which conflicts
with the previously reported 500 pigal non-Newtonian signal seen at 562 meters above the
earth.1,2

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract number W-7405-Eng-48.
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1. Motivation

Both theoretical3 and experimentall-45 studies have suggested that the inverse-square law for
gravity may be wrong over distances of 10-1000 m. The functional form has been validated on
short scales in the lab, and on long scales by observation of orbits. However, it was noted as
early as 19716 that lab-scale measurements determine the gravitational constant G while orbit
studies determine only the product GMg, 1, and therefore the asymptotic form of the force law.
Consequently, many functions are consistent with the observations, and no experiments had
been performed to define the law over ranges from 10 m to 10000 m.

Recently, Newton's Law has been tested by measurements over a range of heights both below
the ground, and above the Earth's surface in air? and in ice3. These approaches can be
understood by writing the Newtonian formula for the magnitude of the gravitational
acceleration (defined positive downward) at a point r on a non-rotating Earth as a volume
integral over the density distribution, p,in the Earth.
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where G is the universal gravitational constant postulated by Newton. Ignoring the ellipticity
of the Earth, we can describe its density distribution with two terms: p(r) ,which is a model
representing our best guess of the average density in each spherical shell of the Earth, and
Ap(r,6,¢) , which represents all the deviations from that model, including lateral variations of
density within the Earth. The radial component of the Newtonian gravity field is given by
integrating over these density distributions
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where Gauss' Theorem has been used to simplify the integral over p(r) , m(r) is the mass of
the model lying beneath the shell of radius r, and the # indicates a unit vector. The details of
the average density model below the experiment are not important.

All experiments use this Newtonian model to predict the difference between the gravity values

measured at two radii. Defining the gravity anomaly to be Ag () =g (f) - G_mz(r_) =K7),
r

we have a simple equation for an empirical test of Newton's Law



531

Ag(r)) —Ag(ry) =I(r) —ry) (3)
where the difference in the observed gravity anomalies at different radii is compared to a
volume integral over the density anomalies in the Earth.

The integrals on the r.h.s. contain all the complexities associated with lateral variations of
density within the Earth. If these are ignored, equation 3 describes an apparently straight-
forward test of Newton's Law, first proposed by Airy”. In this test, the difference in the
average-Earth model at two radii is usually expressed as the sum of two terms: the free-air
gradient term, and an integral over vertical variations in density.

Airy method experiments in a mine, in boreholes3:8. and in the air! produce deviations from
0 in equation 3 that vary linearly with radius with a derivative on the order of 1-2% of the
normal free-air gradient. These results can be interpreted to suggest violations of Newton's
Law on the order of 1-4%, but the sign and magnitude of the deviation differ from experiment
to experiment. An alternative interpretation suggested by the lateral variation integrals I(ry)
and I(rp) in equation 3 is that the measurements in the Earth orinice are detecting the effects of
variations in Ap that cause anomalous free-air gradients.98:5. Uncertainty about these density

variations is the greatest limitation of the Airy experiment.

Anomalous free-air gradients are seen throughout the world, and they normally are removed
from the data when inferring density from borehole gravity surveyslo. Hammer!! and later
Kuo!? collected gravity measurements in tall buildings in the eastern United States, seeking a
calibration method for gravity meters. After accounting for a variety of effects, including the
mass of the buildings, they found linear deviations from 0 in equation 3. Believing in
Newton's Law, they looked for causes in the Earth, and suggested that the integrals I(r;) - I(rp)
conspire to produce a correlation between the anomalous free-air gradient and the isostatic
gravity anomaly measured on the Earth's surface. The isostatic anomaly is defined as the
measured gravity minus the effect of a model of the Earth where the mass in each column of
material is the same even though the columns have different heights. In this model, the mass
of mountains is "compensated” by low-density roots that are apparently 50 to 150 km deep. A
map of isostatic anomalies has features with wavelengths of 10 to 50 km, and indicates the
effects of uncompensated mass or mass deficits, including short-wavelength topography, in the
crust and upper mantle.

We have examined more recent data to see if it is consistent with Hammer!! and Kuo'si2
suggestions. Five new determinations of anomalous gradient in the United States from this
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paper and others1,8:13, all reported for the purpose of testing the validity of Newton's law,
have been added to the seven earlier measurements to produce figure 1. The anomalous
gradient, expressed as percent, is plotted as a function of the isostatic anomaly estimated from
Woolard's isostatic gravity map of the US14. These data suggest that there are variations on
the order of 1-2% in the gradient, and that the gradient is low over areas of mass deficit, and
high over areas of mass excess. We musct account for the effects of these masses, and that is
difficult for a test requiring the determination of a volume integral over un-explored depths in
the Earth.

We can write another test of Newton's Law which involves comparing the difference between
gravity measurements on a tower directly to observable data, specifically a surface integral of
the measurable gravity anomaly on the Earth's surface, rather than to a volume integral over
unlnown density distributions. Newton's Law (equation 1) implies that the surface integral
describes all the contributions of the integral I(r) to the gravity field outside the earth.

2. Derivation of basis of method.

If equation 1 is correct, and the density of air is neglected, then the gravitational potential is a

solution to Laplace's equation V2U =0 outside the Earth, and sois rV U =rg,. Since the

solution to Laplace's equation is uniquely determined by values on a closed boundary, we

know there is a functional relationship F that operates on the values of rg.on the entire surface

to produce the value at some height above the surface
rg (air) = F[r' g .(surface)] )

Furthermore, that relationship holds for the Newtonian gravitational field of any proposed

mass lying beneath the earth's surface. Using equation 3 to subtract the effect of the whole-

earth model Th(r) from both sides, and dividing through by r gives

Gm . _ (air)
Ag (air) = g (air) - — B %F[r‘Agr.(sudacc)]

r? ®
Equation 5 describes a test of Newton's Law that involves a direct comparison of observable
data, with no assumptions about the density within the Earth. This experiment has two
limitations: our ability to sample the gravity anomalies on the Earth's surface completely, and
our ability to evaluate the function F with sufficient accuracy. Previous experimenters!-2 used
three different approaches to evaluate F, and argued they produced similar results. We have
chosen the most simple approximation, to treat our gravity measurements as if they were
collected at the same elevation, which turns the functional relationship into a surface integral.
The error in this approximation is estimated from numerical studies described later. The
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advantage of this approximation is that when the surface integral is "discretized" for numerical
evaluation, it reduces the surface sampling problem to the estimation of mean values of the
gravity anomaly within areas on the earth's surface, and itallows a rather straightforward
analysis to estimate the errors due to sampling and truncation of the integral6.

If the surface data are collected on a sphere of radius a, then equation 4 becomes Poisson's
equation:

dQ

a¥(r® - az)J' .
800 = e 0 ¢;(r2 +a’- 2arcos(9))3/2 (6)

where dQ is an element of solid angle and r the distance of the point of observation from the
center of the sphere . If z is the elevation of the point on the tower above the surface (z=r-a)
and r' is the distance along the surface of the sphere to a measurement point (r' = a6) then we

can expand Equation 6 in powers of z/a, keep leading terms, and find

2N
z(1 - 22/a) r'dr'dd
Ag(z,0,0)= ——=—| | Ag(0.1" ,0)—F—""—37
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where the whole-Earth model has been eliminated as in equation 5. The perturbations caused
by ignoring the terms O((z/a)2) are small, about 1 part in 70 million, as is the effectof the
ellipsoidal shape of the Earth. -Equation 7 describes a relationship between values measured
with a gravity meter on the Earth's surface and on a tower, and we use this spherical
approximation to test the validi.ty of Newton's Law.

Gravity meters measure the magnitude of the gravity force vector, described here in units of
gals, where 1 gal = 1 cm/sec2. The force vector is dominated by the 980-gal attraction of m(r)
but alsoincludes the effects of mass anomalies and topography(<50 mgal), the centrifugal
effect due to the Earth's rotation (<4 gal), and the tidal forces(<0.3 mgal). The magnitude of
the force vector is always nearly the sum of the radial components of these effects. Centrifugal
effects are not harmonic, and tidal forces change with time; so these effects do not obey
equation 7 and are removed from all gravity data.

Gravity cannot be measured continuously over the surface of the Earth. Thomas!6 has
described the steps involved in approximating the integral in equation 7 based on a finite set of
samples over a limited portion of the Earth and quantified the size of the resulting errors. The
samples are collected in sectors lying in rings around the tower. Several steps are involved in
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choosing the ring radii and sector sizes. We define the experimental observable to be the
difference in Ag at two heights on the tower. This modifies the integral in equation 7 by
making the integrand the difference of two terms. Next, we reduce the integral to a sum over
sectors where the average gravity value must be measured. We derive the expression for the
error in the sum based on the uncertainty in estimating the mean gravity of each sector, using a
preliminary dataset to estimate how well a single measurement of gravity represents the average
value as a function of sector size.

Based on that preliminary sampling information, we chose sector sizes to minimize the
expected sampling error, subject to 2 conditions: a fixed number of nearly square sectors, and a
decreasing error with distance so the sum converges. In addition, we estimated the truncation
error resulting from limiting the integral to a finite distance.

Thus, we have reduced the test of Newton's law to a problem of estimating the average gravity
value in rings around the tower, using a weighted sum of those averages to predict the
difference in gravity anomaly values at different heights on the tower.

3. Measurements

All gravity measurements were made with standard LaCoste-Romberg gravity meters!7. One
standard model G meter, and three model D meters, which measures a smaller range of gravity
values, and has less systemmatic error, were used. Many measurements were repeated to
check reproducibility. One of the model D meters was rebuilt and calibrated by the
manufacturer before this experiment. The other meter was borrowed from Los Alamos
National Laboratory and had been used routinely in the field.

The sources of error in the LaCoste-Romberg instrument and the procedures needed to keep
them small are generally well understood. The largest source of error is thermal drift of 100's
of pgal, but standard surveying practice reduces its effect to a few pgal for small-scale studies.
Drift is removed from the observations by collecting data in loops with repeated stations and
assuming that the drift occurred at a constant rate between those stations. Standard tidal
corrections18 based on the station location, date and time but not local structures or oceanic
loading, are also removed from each observation.

Fromeach data point, we removed the effect of a standard "whole-Earth" model WGS84,
which places the entire mass of the earth (excluding the average atmosphere above the
measurement point) below the geoid. The latitude dependence of that model includes the radial
component of the centrifugal effect. This step included the 1/r2 factor to produce Ag, as is
described in equation 3. Because of the strong dependence of 1/r2 on elevation, accurate
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surveying is required to achieve meaningful values of Ag. We consider the elevation

uncertainties in detail in the sections on the tower survey and the surface survey.

The BREN (Bare Reactor Experiment-Nevada) Tower, located on the Nevada Test Site, is an
excellent platform for gravity measurements. Built to support a massive reactor, it is stable and
free from radio-frequency signals, which might interfere with measurements. The tower rises
above Jackass Flats, on gently sloping alluvial deposits from a ring of hills that cover about
50% of the horizon. The slope of 1.59 is nearly constant out to 2 kilometers from the tower;
the nearest hills, whose summit is 5 kilometers away, rise to about the same elevation as the
tower. Thus, near our tower the topography is more gentle than in the previous tower
experimentl2. At a distance of 8-10 tower heights, where it is less important but not
negligible, there is more terrain in our experiment.

Measurements on the tower.

Our tower measurements were done with two model D gravimeters in order to check for
systemmatic errors of the measurements. The tower measurements were collected at

12 elevations in a series of 11 loops for a total of 42 observations. A typical loop was 1.8
hours long: the drift, never more than 31 pgal, was removed from the data as if it occurred
linearly in time. For the 6 stations in the upper half of the tower, each station had 3 or 4
repeated measurements, the average of the sample standard deviations was only 6 pigal, and the
maximum excursion from the mean was only 24 pigal. In the lower half of the tower, stations
had higher variability: the average sample standard deviation was 22 pgal, and the largest
excursion was 52 pgal.

We made our measurements only at sunrise during July through October, when the wind
velocities are typically below 3 mph. There were no perceptible tower motions when the wind
velocity was that low, and we were able to collect repeatable readings with the more sensitive
D meters.

Elevations were measured with a Leitz REDmini 2 EDM system, which was bolted to the
railing at cachlevel on the tower. We measured the distance from the railing to five corner
reflectors set on the concrete base of the tower, and the distance from the base of the gravimeter
to the railing was measured in order to determine the height of the gravimeter. The height
measurements were repeated for each gravity measurement, and all repeats ateach height fell
within+ 15 mm of the mean. There was no detectable correlation of gravity with variations in
height at each platform, so we believe that atmospheric changes in the light path are the cause
of these distance variations. After the measurements, we had the meter re-certified; its
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calibration was within specifications of £ S mm + 5 ppm, or a maximum calibration error of
12 mm at the top of the tower.

Our results are shown as a solid line labeled "BREN data" in Figure 2. The line through the
data is a straight line fit to the individual points, whose scatter is not visible on this plot. We
make two observations: the data set on the tower is linear and shows no obvious curvature due
to non-Newtonian effects. The second observation is that the data do not agree with the
predictions of the globally symmetric model of the earth, differing by 2.8 mgal at the highest
station. The gravity gradient on the BREN tower, 0.3030 mg/m, is about 1.8% lower than the
model predicts. Very litte can be concluded from these observations alone because topographic
effects or geologic variations could conspire to produce an anomalous gradient or mask an
exponential gravitational field. In fact, about 50% of the anomalous gradient is predicted by
calculating the effect of topography, with an assumed density of 2.2 g/cm3, out to 300 km.
These results illustrate that other measurements are needed to determine the effects of lateral
variations before one can study the reliability of the 1/r2 force law from a measurement of the

vertical variation of gravity

Surface Survey.

We used the method described above to design two surface surveys sampling the gravity field
with sufficient density to predict the gravity on the tower within chosen uncertainties. In the
first Phase of our experiment, described here, we used a sampling density that limited the
uncertainty at the top of the tower to £100 pgals. For our ultimate survey, to be completed by
August of 1989, we will collect nine times as many surface points, which will reduce that
uncertainty to about +30 pgals.

Wedesigned a radially symmetric survey pattern described in Table I

Table I: Parameters for surface survey

Phase 1 Phase 11
Our measurements
inner zone (<170 m) ‘
rays 9 27
rings 3 9
outer zone (200-2655 m)
rays 12 36
rings 5 15
Existing Database
(2.6-300km)
rays 12-76 36-76

rings 33 40
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To ensure that our sampling within 2.5 km of the tower was not biased by inaccessibility of
locations with either high or low elevation, we placed all stations within * 1 m of locations
determined from the regularradial grid pattern. This was easily accomplished, because of the
simple terrain and limited vegetation. A square board dug into the alluvial soil was used as a
base for both gravity and elevation measurements. All board locations were measured with
uncertainties of + 1 cm near the tower increasing to + 10 cm at 2.5 km using a theodolite
located on a small bunker about 30 m from the tower base. The location accuracy was checked
using ten independently surveyed benchmarks lying within 2 km of the tower.

The Phase I gravity survey of 91 stations was completed in a series of 61 loops, with a total of
187 measurements. All stations within 1.5 km of the tower were tied directly to the tower
base, and stations beyond that distance tied through a single intermediary station. Loop lengths
ranged from 30 to 220 minutes; all loops longer than 125 minutes had stations done on
independent loops for consistency checks. Typically, the instrument drifted less than 20 pgals
during each loop, although some loops had drifts as high as 50 pgals. One loop was
eliminated because its drift was over 100 pgals. Sample standard deviations based on stations
with repeated measurements were typically 10 pgals.

Beyond 2.5 km, we used public domain datasets from the USGS19 and NOAAZ20, Based on
our truncation error criteria, we included 60,000 data points out to 300 km from the tower.
Multiple samples in a sector were averaged to obtain a sample mean of both gravity and
elevation, from which the mean of Ag was calculated. The gravity values have a quoted
uncertainty of + 1 mgal, and the elevation uncertainty can be as large as + 6 m in the outer
zones.

4. Integration of surface data to predict values on tower

The upward continuation results, shown as circles, are compared to the observations in

Figure 2. Most of the anomalous gradient is predicted from the upward continuation. Our
predictions are within 93 pgals of the observations at all heights on the tower, and the
uncertainties at each height are as large as 95 pgals. The error bars in Figure 2 indicate the
single standard deviation uncertainty from sampling errors, derived as discussed above, which
are the largest source of error in this experiment. At all heights, these errors overlap the
observed gravity, providing no evidence for a breakdown of Newtonian gravity.

5. Possible sources of systematic and random error.
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Spherical approximation for upward continuation.

The surface field can be uniquely translated into a continuous surface-density distribution, from
which the values above the Earth can be readily calculated. For an irregular surface, this
transformation requires solution of a Fredholm integral equation that is cumbersome to solve
over the distance scales needed for this problem2!. However, in the approximation that the
Earth's surface is a smooth sphere, this integral equation reduces to an integral (equation 7) that
can be evaluated easily. This approximation is potentially our most significant source of
systemmatic error. Since we cannot correctly predict what we would have measured on the
smooth surface, some errors result from our estimates of gravity on that surface. Analysisof
the Fredholm integral equation solution for irregular terrain does not produce insights into the
size of this effect.

We are using a digital model of the terrain in a 54-km square centered on the tower to estimate
the magnitude of the errors from the spherical approximation. Elevation contours (6.1-m
interval) were digitized within a rectangle extending 6.1 km north, 5.2 km east, 8.3 km south
and 12.0 km west of the tower22. For the rest of the square, we used digital terrain sampled
on a 15-second grid23. The mass of terrain was approximated by a 300x300 grid of density
1.8 gm/cm3, right-rectangular prisms of identical square cross section, with all bases at an
arbitrary depth (-3318 m below sea level) and tops at the height of the smoothed terrain at their
centers. At greater distances, the Earth's surface was assumed to be constant to large distances
at values determined from the averages of the nearest side of the S54km square. The vertical
component of gravity caused by this mass was calculated?4 at all observation points on the
tower and at the model elevation in each sector. Using equation 7 to integrate the artificial
surface numbers, we found that the spherical approximation underestimates the calculated
magnitude of Ag(ry) - Ag(ry) by about100 pgal for a number of different gridding options. We
are continuing this study to include the effects of mass anomalies and to evaluate the
effectiveness of including terrain corrections in the definition of Ag.

Random errors and bias due to sampling.

Because gravity is strongly correlated with elevation, the observations must adequately sample
the topography, as well as the effects of density variations. Variations in topography and
density on a scale large compared to the sectors do not contribute to errors in estimating the
sector means. We bound the uncertainty in estimating a sector mean by calculating the sample
variance of all the gravity values in a ring of n sectors about the mean gravity for the ring,
ming. Using the assumption that sampling errors in different sectors are independent:
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The sample variance is a useful bound on the ring variance of the ring mean. In practice we
improve this estimate by removing long wavelength effects on the scale of the ring radius.
This is done by fitting one or two intersecting planes through Ag(6) around a ring and

removing that "regional” from the data before the ring uncertainty is estimated.

To estimate the uncertainties in the ring means, we assumed that the effects of sampling were
uncorrelated from sector to sector. That assumption is valid for our data within 2.6 km of the
tower, because the locations were chosen independently of the topography. However, because
it may be easier to take measurements in either the valleys or the highlands, there may be a
sampling bias in the elevations of measured points beyond 2.6 km. It is important to estimate
the magnitude of elevation bias.

We reduce the effect of the sampling by taking averages of many sectors per ring, but the
average in each sector can be biased if the sectors are larger than the topographic features
influencing the sampling distribution. We used our largest sectors, in the ring from about 270
to 300 km from the tower, to study the magnitude of bias. Here, the sectors are large
compared to the data density, and comparable in size to many topographic features in the
western US. In many of these sectors, there is a preponderance of data in valleys, but the
mountains are sampled on a 4-5 km spacing. We estimated the elevation bias in our outermost
ring by subdividing each sector into nearly square subsectors, determining the sector means
from the sum of the means in the subsectors, and calculating the ring average as a function of
the size of the sub-sectors. The maximum or minimum value as a function of subsector size

represents the best averaging we can do with our dataset.

We found that the best subsector size was about 7 km, and that the ring-averaged total gravity
and elevation differed from our original values by -7 mgal and 31 m. These numbers indicate
that for this ring, Ag is biased by approximately 2.5 mgal. We believe that this represents a
reasonable estimate of the elevation sampling bias beyond 80 km, and if it were applied to the
data beyond 80 km, it would change the prediction at the top of the tower by only 25 pgal.
Inside 80 km, the sector size is below 7km, and more than 85% of the sectors in each ring are
filled, except for the ring at 6.3 km, which has only 63% of its sectors filled. Based on the
studies of the outermost ring, this data density appears to eliminate much of the bias in
sampling topography.
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The effects of other sources of error on gravity at the top of the tower have been estimated.
These sources include ignoring the ellipsoidal shape of the Earth, uncertainties in gravity meter
calibration and measurement error, surveying errors near the tower, changes in geoid height
over the range of our surface survey, and the effect of our trucks on the measurements in the
tower. Only those discussed in detail above are important.

6. Status and future work

We have used the inverse-square dependence of the force of gravity to successfully predict
gravity measurements up to 454 m in the air, within an uncertainty of the order of 100 pgal.
To this accuracy level, we see no conflict with Newton's Law. This is in contrast with earlier
results from North Carolinal»2, which are included in figure 2. We are continuing to improve
our experiment by collecting more data on the surface and on the tower, by performing
numerical studies to better evaluate the uncertainty resulting from our approximations, and to
improve our method of upward continuation.
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Figure 1. Measured anomalous vertical gradients in the USA are correlated with isostatic
gravity anomalies. Data from buildings!1-12 and towers! (circles) support Hammer and Kuo's
conjecture that vertical gradient anomalies correlate with isostatic gravity anomalies. Data from
boreholes:13 (squares) are less well-correlated, probably because of limitations in our
knowledge of the sub-surface density.

Figure 2. Results for two tests of Newton's Law. Observed values of the change in Ag asa
function of height forexperiments on the BREN tower in Nevada, described in this paper, and
the WTVD tower in North Carolinal-2. The solid lines indicate linear fits to the observations,
which are represented by triangles. The dashed lines are linear fits to the predictions based on
Newton's Law (equation 7), and those predictions are shown as circles and squares. The
measurement errors are negligible on this scale. The stated errors in the predictions are
represented by vertical bars. The anomalous gradient we observe on the BREN tower is

predicted from the surface survey within our sampling uncertainty.
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