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For 
Emax = 6 GeV 

Ν ≈ 1.9( 2
3/2 Kmc2 

)½. 
Ν ≈ 1.9( v N )½. 

We choose 
VN = 100 kV, Κ = 5, N ≈ 714 frequencies. 

The minimum frequency spacing is given by 
ω0 

= K( 
v N )½ =6.0 × 10-3 at 6 GeV ω2 = K( 23/2 KE 2 

)½ =6.0 × 10-3 at 6 GeV 

ω2 is about 1 Mc at 6 GeV, then the basic repetition 
rate is 6 kc. 
The different frequencies would be applied to 

drift tube electrodes located at radial positions 
where the frequencies are effective. This would 
eliminate difficulties due to different harmonic orders 
of the same frequency. With thirty electrodes 
located along one circumference, a peak voltage of 
100 kV would produce about 100 kV peak accelera­
tion per turn. Then there would be about 23 accel­
erating electrodes located on one radius. 

DISCUSSION 
DZHELEPOV : What would be the number of frequencies 

in each and what number of electrodes should you have with 
a machine for 600 MeV? 
ROBINSON : I have been describing a 300 MeV machine. 

Are you asking about another machine now from the ones 
I described? For a 600 MeV machine of what type? Of an 
FFAG type or of a cyclotron type? For a cyclotron type, 
if we obtained something like 6 or 7 MeV per electrode, we 
would then require the order of a hundred frequencies. 
MARTIN : My question is with respect to the fixed frequency 

cyclotron. I did not understand how the electrodes are arranged. 
ROBINSON : It would be a drift-tubes type structure as is 

used in a cyclotron at present, except it would be divided in 

such a way that there are divisions between separate electrodes 
such that the lower frequencies would be applied to the electrodes 
to the outside and the higher to the inside. 

MARTIN : I should also like to ask if you made any calcula­
tions concerning the radial amplitudes developed in the beam 
using an acceleration scheme of this sort? 

ROBINSON : No, not really. One will have to be somewhat 
concerned with phenomena similar to RF knock-out. You 
would have to avoid exciting radial betatron oscillations by a 
frequency which was non-synchronous. 
It seems that when the total frequency change is small, all 

this is not much of a problem. 
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I. INTRODUCTION 
There are two distinct directions to be considered 

in the planning of future high-energy accelerators : 
high energy, much higher than the accelerators 
presently under construction (CERN, Switzerland; 
Brookhaven National Laboratory, USA), namely 
of the order of 100 BeV; or moderate energy, 10 to 
30 BeV, but much higher current of the order of a 
few micro-amperes. 

Steel magnets have certain inherent limitations. In 
the case of very high energy, the circumference of 
a steel magnet becomes undesirably large. The only 
way to reduce the length of the circumference is to 
use higher values of magnetic field (i.e., 50 000 G) 
which are possible only with air-core magnets. The 
air-core magnets are allegedly associated with high 
stored energy. However, with proper coil design 

(*) This work was performed under the auspices of the U.S. Atomic Energy Commission. 



196 Session 2 Β 

it is possible to reduce the stored energy to the same 
value as in a steel-magnet machine for the same 
particle energy. This can be obtained by reducing 
the size of the magnet, and by proper arrangement 
of the current distribution in the coils. The peak 
power requirements of such a magnet are rather 
high. However, this can be considerably reduced 
by operating the magnet at a temperature of 80° Κ 
or lower. Recent developments in cryogenics, or 
rather the necessity of building large refrigeration 
units for other applications, resulted in a considerable 
reduction of the cost of such units. Hence, applica­
tion of cryogenics in accelerators is now under con­
sideration, although positive conclusions are not yet 
possible. In addition to the reduction of the required 
peak power it is possible to reduce considerably the 
average power by contemplating a short acceleration 
time, less than one-tenth of a second. This shorter 
acceleration time requires in turn a more powerful RF 
amplifier but this is necessary anyway, if it is desired 
to accelerate a large number of particles per pulse, 
to compensate for azimuthal space charge forces in 
the bunch. An additional advantage of the high 
field value is that the particle density in the bunch 
becomes high enough so that synchroclash operation 
might be possible without the necessity of storage 
rings. 

II. MAGNET COILS 
The magnet coils are confined between two coaxial 

cylinders of radius ri and r0 respectively (Fig. 1). 
The cylinder of radius ri is the vacuum chamber. 
Thus the aperture of the machine is of circular cross-section. 
The required field in the aperture is a dipole 
field (the guiding field) combined with a quadrupole 
focusing field. The solution of the vector potential 
within the coil must satisfy the boundary conditions; 

Fig. 1 Schematic of cross-section of coil. 

namely, to match the field components of the vacuum 
field in the aperture and in the space outside the coil. 
The current distribution (j) within the coil is then 
determined from the equation 

4πj 
= - × ( × Az), (1) 10 = - × ( × Az), (1) 

where z is along the axis of the coil. 
There is a variety of functions which can satisfy 

these conditions. However, the calculations are 
much simplified by employing Bessel functions as 
solutions for the vector potential within the coil. 
Hence, the solutions can be identical with solutions 
of Maxwell equations for time-varying fields where 
the displacement current has been substituted by the 
actual current distribution in the coil. These solutions 
for each harmonic (of nth order) assume the form 

Az = -B0 Cn(kr).cos(nθ), (2) Az = - k Cn(kr).cos(nθ), (2) 

where 
Cn(kr) = c1Jn(kr) + c2γn(kr) 

and Jn, γu are the Bessel functions of nth order of 
the first and second kind, respectively. 
The boundary conditions are (see Appendix I) 

Cn + 1 (kri) = 0 
Cn-1(kr0) = 0. 

By integrating the square of the field and the current 
density we can determine the stored energy and the 
power loss respectively, as a function of the ratio 
r0/ri of the outer to the inner radius of the coil. 
A plot of these two quantities as a function of r0/ri 
is shown in Fig. 2. The stored energy varies almost 
linearly with r0/ri while the power loss increases 
rapidly for values of r0/ri less than 2. In the example 
cited hereafter a ratio of r0/ri ≈ 3 has been selected. 
For this particular example, the current density 
distribution j, the power loss WR, and the stored 
energy W 0 are given by the following equations : 

j = 
2 B0 [C1(k1r) cos θ + 1.5775αC2(k2r) cos 2θ]A/cm2, j = π ri 

[C1(k1r) cos θ + 1.5775αC2(k2r) cos 2θ]A/cm2, 

(3) 
where 

C1 (k1r) = 2.3711 J1 (k1r) + 0.076221 γ1 (k1r) 
C2 (k2r) = 3.9448 J2 (k2r) + 0.04738 γ2 (k2r) 
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Fig. 2 Variation of the stored energy and power-loss with the 
ratio of the outer to the inner coil radii. 

J1 and J2 are Bessel functions of the first kind of the 
first and second order, respectively. 

γ1 and γ2 are Bessel functions of the second kind of 
the first and second order, respect­
ively. 

k1ri = 0.8 
k2 = 1.5775 k1 
B0 = peak value of the field at the orbit (G) 
ri = the inner radius of the coil in cm 
a = the ratio of the quadrupole to the 

dipole field strength at r = ri. 
a = 0.3375 in the following examples. 

The power loss in the coil is 
Wr = (ρ/η) B02k02ri2{(r02)C12(k1r0) - C12(k1ri) + 

+ (k2α/k1)2[(r02/ri2)C22(k2r0)-C22(k2ri)]}w/cm, 

and the total stored energy on the magnet is 

W0 = 5ri2(B02/8.108){(r02/ri2)C12(k1r0)-k12ri2 + 

+ α2[(r02/ri2)C22(k2r0)-(k22ri2/4)]}J/cm, (5) 

where ρ is the resistivity (ρ = 1.72 × 10-6 for copper 
at 300° K) and n is the space factor; in the following 
examples it is assumed that n = 0.58. 
More details on the calculations of the magnet are 

included in Appendix I. 

III. MAGNET UNITS, RF CAVITIES 

The magnet units consist of a pair of magnet 
coils enclosed in a cylindrical evacuated tank (Fig. 3). 
This tank serves also as a radio-frequency cavity where 
each coil is approximately a quarter wavelength at 
the highest frequency. The gap between the two 
coils serves as an accelerating gap. In this way, 
straight sections for pump connections and accelera­
tion are not necessary, thus enabling a smaller cir­
cumference length. The tuning of the cavity can be 
done with rotating condensers up to 1% of the fre­
quency. The fine tuning (± 1%) can be accomplished 
with ferrite coils disposed in series with the rotating 
condensers. Thus the effect of the low Q of the 
ferrite is minimized and an overall Q of 1500 is expected 
for each cavity. Furthermore, by having a plurality 
of accelerating cavities we minimize the overall RF 
power requirements. Since the required volts per 
turn is rather high, in order to keep the amplitude 
of the phase oscillations within reasonable limits a 
high harmonic RF order of 30 or more, is required. 

The dimensions of the magnet coils and the cavity 
in an example are : 

Aperture 2.5 cm 
Outer coil diameter 8 cm 
Cavity diameter 60 cm 
Cavity length 100 cm 
Field index [n = ( δB 

) 
R 450 Field index [n = ( δR ) B 

450 

Betatron oscillations per turn, " ν " 8 

The acceleration time is assumed as 0.06 seconds. 
The power source of the magnet can be either motor-generators 
or a condenser bank. It appears that 
for such a short acceleration time the cost of a capacitor 
bank is comparable with the cost of motor-generator 
units. However, detailed cost estimates are not yet 
available at this time. In my opinion, though, other 
conditions bang equal, condenser banks are pref­
erable to motor-generators with all their rotating 
equipment. 

In the calculation of the power losses a 60 milli­
second linear rise of the magnetic field has been 
assumed. At the peak value a "flat top" of 10 milli­
seconds has been included. A decay time of 60 milli­
seconds has been postulated. Continuous operation 
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Fig. 3 Schematic of the cross-section of the machine. 

of the machine at 60 cps is also possible. In this 
case, the magnet current varies as 

I = I0(1 + cos ωt). (6) 
This is accomplished by d.c. biasing of the magnet. 
The a.c. is provided by a capacitor bank. The power 
loss in this case is rather high. Hence, a.c. operation 
must be considered only in a case where very high 
current is required. It should be noted that a machine 
built initially for pulsed operation can be converted 
later to continuous a.c. operation if higher current is 
required. 

IV. PARTICLE INJECTION, SPACE CHARGE LIMIT 

The number of particles per pulse which can be 
trapped are limited by the allowed change of the 
number of betatron oscillations " ν " due to the space 
charge forces in the bunch. We have assumed an 
(allowable) δν = 0.25 in calculating the number of 
particles per unit length of the machine. Since the 
number of trapped particles increases with the in­
jection energy, a higher than usual injection energy 
can be employed, inasmuch as the linear accelerator 
cost is not a large part of the overall cost of the 
machine. For one-turn injection the linear accelerator 
current becomes too high. Hence, multiturn injection 

appears more attractive. The most promising way 
for multiturn injection, in my opinion, is the molecular 
injection, namely, to accelerate H2+ and split the 
molecules upon injection with a mercury jet or other­
wise. Of course in this way the particles must be 
accelerated up to twice the injection energy. However, 
no other way of multiturn injection appears to me at 
this time as promising as the molecular injection. 
An injection energy of 80 MeV has been postulated. 

This in turn requires that the H2+ ions must be 
accelerated up to 160 MeV. The resulting number 
of accelerated particles per pulse (for δν = 0.25) is 
6 × 1012. In order to maintain all these particles 
as they go through the phase transition, it is desirable 
to avoid any blow-up of the beam at the phase transi­
tion. Consequently, a mode of variation of the 
accelerating voltage was sought which would allow 
finite amplitude of the phase and momentum oscilla­
tions near the transition energy. This investigation 
was fruitful and it turned out that in a rather simple 
way one can find solutions for the phase oscillations, 
thus avoiding the blow-up problem. The required 
variation of the accelerating voltage V near the 
phase transition is given by the equation 

(V cos Φs)-Vs= - τ Vi cos Φ0, (7) (V cos Φs)-Vs= -
Ts 
Vi cos Φ0, (7) 

where Φs is the instantaneous value of the equilibrium 
phase; Vs is the effect of the space charge of the 
bunch (which actually at the phase transition energy 
is negligible); τ = t — t0; t0 is the time the transition 
occurs; and Ts is a constant. The resulting solution 
of the phase oscillation is (see Appendix II) 

Φ = C0 cos(ατ2 + δ). (8) 

At the transition point the bunch is exactly at the 
crest of the wave (ΦS = π/2), and the accelerating 
voltage is equal to the threshold voltage per turn. 
Beyond the phase transition, the accelerating voltage 
is gradually increased up to the initial value and the 
equilibrium phase is restored to the original value 
but at the other side of the wave. By employing 
this method it appears that the amplitude of the phase 
oscillations at the end of the acceleration becomes 
a small fraction of the betatron oscillations. Since 
this method is not particular to the proposed accel­
erator, it can be tried on any of the accelerators now 
under construction. 
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V. ACCELERATOR PARAMETERS 
As an illustrative example, the parameters for a 

24 BeV accelerator are listed below. 
Particle energy (BeV) 24 
Orbit radius (m) 16 
Aperture (cm) 2.5 
Peak value of the magnetic field at the orbit 
(G) 51 000 

Field index "n" 450 
Approximate " ν " value 8 
Number of magnet units 96 
Stored energy in the magnet (MJ) 3.8 
Duration of acceleration (ms) 60 
Peak R F volts per turn 6 × 106 
Harmonic order (frequency range 32-80 mc) 32 
Injection energy (MeV) 80 
Number of particles accelerated per pulse 6 × 1012 
Final beam cross-section (cm2) 0.1 
Final beam current density (A/cm2) 150 
Magnet operating temperature (°K) 80 
Magnet time constant (ms) 62 
Peak magnet power (MW) 240 
Average magnet power (15 pulses/min) (kW) 1500 
Cryogenics plant power (approx.) (kW) 10000 
In comparison, for operation at room temperature, 

the peak value of the magnetic field must be restricted 
to 25 kG. Then all the dimensions of the machine 
become twice as large, namely R = 32 m, and the 
aperture 5 cm. The stored energy is also doubled. 
The required peak power is 500-700 M W while the 
average power is 4000-6000 kW depending on the 
coil space factor. If the additional cost for the larger 
motor generator capacity is higher than the cost of 
the cryogenics plant (in the above example), then 
the first set of parameters is preferable inasmuch as 
the beam current density is 4 times as high as in the 
second case. 
A detailed cost estimate of the machine is not avail­

able at this time. However, preliminary estimates 
indicate that it is not much in excess of a conventional 
A.G.S. machine. 

It is possible to use the above type of machine for 
a.c. operation. Then the current becomes 60 μΑ 
approximately, but also the cost would be at least 
twice as high in comparison with the pulsed operation. 
The aperture of the machine, although it is physically 
small, is actually larger than the presently built 
Brookhaven-CERN type machines, because the figure 
of merit is the product of the field value times the 
aperture. Furthermore, the small aperture allows 
high beam current density as well as smaller size of 
the machine. Of course, the above quoted para­
meters are cited for the purpose of illustration only. 
Further studies would yield the optimum machine 
parameters. In the case of 2.5 cm aperture, operation 
in synchroclash without storage rings would yield 
100 reactions per millisecond for 1 millibarn cross-
section. It should be noted here that particles of a 
given energy at the laboratory system colliding with 
a second beam of 25% of the energy of the first 
beam would yield in the centre of mass system the 
energy of the first beam. Consequently, the problem 
to make available the energy of any high energy 
machine in the centre of mass becomes rather simple 
requiring only an additional expenditure of 25% of 
the cost of the machine. This is quite important 
allowing a flexibility in the planning of a future high 
energy accelerator facility. 
For example, one could at first build a 24 BeV 

machine for pulsed operation. Later, after this 
machine is completed, there are two choices : 
(a) to provide the necessary equipment for 60 cps 

operation, thereby having a very high current 
machine; or 

(b) to build an additional 100 BeV machine and 
operate both at synchroclash, thereby obtaining 
100 BeV at the c.m.s. 

Since today it is not clear which of the two solutions 
is preferable, it is very desirable to build a machine 
which potentially can be extended later either towards 
high current or towards very high energy at the centre 
of mass system. 

APPENDIX I 

We shall discuss here in more detail the derivation 
of the relations for the calculations of the parameters 
of the coils. As mentioned in Section II, the aperture 
of the magnet is a cylinder of radius ri and the con­

ductors are located between two cylinders of radius 
r0 and ri, respectively. The field components are 
in the r, θ (Fig. 1) direction only. The current 
direction is along the z-axis, which is parallel to the 
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axis of the cylinders (r0, ri). The vector potential 
in the current-free regions can be written for any 
field with 2n poles as follows : 
region 0 < r < ri: 

Az = Β0ri(rn/nrin) cos (nθ); (9) 
region r > r0 : 

Az = - c0B0r0(r0n/nrn) cos (nθ), (10) 
where c0 is a dimensionless constant. 
Within the coil region we have 

× ( × A) = -4πj/10, (11) 
where j is the current density in the coil. 
By assuming that 

4πj/10 = k2Az, (12) 
the solution of Az is given in Bessel functions of the 
first and second kind, thus : 

A z = - (B0/k)[c1Jn(kr) + c2 γn(kr)] cos (nθ) (13) 
or 

Az = -(B0/k)Cn(kr) cos (nθ). (13a) 
The boundary conditions are that the field com­

ponents are matched at the boundaries and the resulting 
relations are 
at r = ri: 

C'n(kri) = 1, (14) 

nCn(kri)/kri = 1; (14a) 
at r = r0: 

C'n(kr0)= -c0, (15) 

nCn(kr0)/kr0 = c0. (15a) 
From Eqs. (14) — (15a) and the recurrence formulas, 

we obtain 
C'n(kri)- [nCn(kri)/kri] = - Cn + 1(kri) = 0 (16) 
C'n(kr0)+[nCn(kr0)/kr0] = Cn-1(kr0) = 0. (17) 

The requirements of Eqs. (16) and (17) result in that 
Jn - 1 (kr0)/γn - 1(kr0) = Jn + 1(kri)/γn + 1(kri). (18) 

k is determined from Eq. (18) and c0, c1, c2 from 
Eqs. (14)-(16). Finally by substitution in Eq. (12) 
the current distribution is specified. By constructing 
the coil with the thus-specified current distribution 
the desired field can be realized. By assuming the 

solutions in Bessel functions one has the convenience 
of existing tabulations, recurrence formulas, etc. 
The stored energy in all three regions is obtained 

from the integral 

W0 = (10-7/8π) 
∞,2π 

B2 r dr dθ J/cm (19) W0 = (10-7/8π) ∫ B2 r dr dθ J/cm (19) W0 = (10-7/8π) 
0,0 

B2 r dr dθ J/cm (19) 

and the losses from the integral 

Wr0 = (ρ/η)(10/4π)2k4 
r0,2π 

Az2r dr dθ W/cm. (20) Wr0 = (ρ/η)(10/4π)2k4 ∫ Az2r dr dθ W/cm. (20) Wr0 = (ρ/η)(10/4π)2k4 
ri,0 

Az2r dr dθ W/cm. (20) 

The actual losses depend on the time variation of 
the field; in the case where the current varies as 
(1 + cos ωt), the actual losses are 

Wr = (3/8)Wr0. (21) 
Any combination of harmonics can be obtained by 
adding linearly the corresponding vector potentials. 
Analogous solutions can be obtained in axial 

symmetric field configuration in spherical co-ordinates; 
in the spherical case the coil is assumed to be con­
fined between concentric spheres of radius ri and 
r0; then for a 2n-pole field the solution of the vector 
potential in the coil region is assumed thus : 

CΦ = (B0/k√kr)Cn + ½(kr) (22) 
with the condition that 

Cn + 3/2(kri) = 0 (23) 
Cn - ½(kr0) = 0. (23a) 

The other constants are determined by the same 
procedure as in the cylindrical case. 
In the cylindrical case we observe from Eqs. (20) 

and (21) that the power loss is independent of the 
scaling factor, whereas the stored energy is propor­
tional to the square of the radius ri. 
The actual coil construction presents some practical 

difficulties. Since many conductors must be con­
nected in parallel, it is required that the emf is the 
same in each group of parallel conductors; otherwise 
the current distribution will be disturbed. The emf 
is in the z-direction; namely, 

E z= -
1 

z. (24) E z= -c z. (24) 

We observe that according to Eq. (24) the emf is 
constant along surfaces of constant vector potential. 
This in turn means that the emf is constant on surfaces 
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whose trace on a plane z = constant are magnetic 
lines. Hence groups of conductors connected in 
parallel must be placed on such surfaces. If Ν is the 
(total) number of conductor groups desired to be 
connected in series, we shall divide the coil area in Ν 
zones where in each zone 

∫ jr dr dθ = I0/N, (25) 

where I0 is the total current in the coil (in the case 
where all the conductors were connected in parallel). 
After the zones have been determined, the conductors 
are placed in the center of each zone. 

APPENDIX II 

The well-known equation for the phase oscillations is 
d 
( 
γ dΦ )+ω02 hVi cos Φ0 φ = 0 , (26) dt ( Γ dt 

)+ω02 2πV0 
φ = 0 , (26) 

where 
Γ = ( 

1 - 1 ) (26a) 
Γ = ( γ2 - ν2 ) (26a) 

γ = E/M0c2 (the relativistic mass ratio) 
ν = the number of betatron oscillations per turn 
ω0 = c/R the Larmor frequency of a particle with 

velocity c 
h = the harmonic order 
V0 = M0c2/e 
Φ = the phase angle in respect to the equilibrium 

phase 
Φ0 = the equilibrium phase 
Vi = the applied RF voltage per turn. 
The phase transition occurs when 

γ ≡ γ0 = ν. (27) 
The adiabatic approximate solution of Eq. (26) is 

Φ = const (Γ/γ)¼ cos (∫ Ωdt + δ), (28) 
where 

Ω = ( 
Vi cos Φ0Γ )½· (28a) 

Ω = ( 2nV0γ )½· (28a) 

Near the phase transition the approximation is not 
valid and it is customary to assume that Γ is varying 
linearly with time. Then the solutions admitted 
are Bessel and Neumann functions of order 2/31). In 
the present case this solution was not considered 
satisfactory and a new one was sought in order to 
avoid beam blow-up during the phase transition. I 
assumed that near the phase transition the equilibrium 
phase is shifted with time according to the equation 

(V cos Φs) - Vs= -τ (Vi cos Φ0), (29) (V cos Φs) - Vs= -Τs 
(Vi cos Φ0), (29) 

where Vs results from the space charge of the bunch 
(this quantity is however negligible at the phase 
transition and it can be deleted from the equation); 
Φs, V are the instantaneous values of the equilibrium 
phase and applied accelerating voltage, respectively; 
τ = t - t0; t0 is the time the transition occurs, and 
Ts is a constant with dimensions of time. This 
quantity must be larger than the transition mistim­
ing due to momentum spread. 
We assume that the quantity Γ varies linearly with 

time: 

Γ = 1 - 1 = -(τ/γ02Τ0), (30) Γ = γ2 - ν2 = -(τ/γ02Τ0), (30) 
where 

T0 = (γ3/2γ γ02)≈(γ0/2) (31) 
and 

= Ė/M0c2. (32) 
Upon substitution in Eq. (26) we obtain 

- Φ + ω12( τ 2 )Φ = 0, (33) - τ + ω1
2( T0 Ts 

)Φ = 0, (33) 
where 

ω1 = ω0(hVi cos Φ0/2πV0γ03)½. (34) 
Equation (33) admits the solution 

Φ = τ [c1J½(ατ2) + c2 γ½(ατ2)], (35) Φ = Τs 
[c1J½(ατ2) + c2 γ½(ατ2)], (35) 

where 
α = ω1 .(35a) α = 2Τs½ Τ0½ 

.(35a) 

Substituting the Bessel and Neumann functions by 
their trigonometric expressions we obtain 

Φ = c1 cos (ατ2) + c2 sin (ατ2) (36) 
or 

Φ = c0 cos (ατ2 + δ). (37) 
We observe that Eq. (37) is the desired solution. 

As long as the equilibrium phase varies as prescribed 
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by Eq. (27), the amplitude of the phase oscillations 
remains constant; thus blow-up of either phase or 
momentum oscillations is avoided. 
Equation (31) indicates that γ must remain constant 

during the time the phase shifts. Consequently the 
applied voltage times the sine of the equilibrium 
phase must remain constant during the same time 
interval; namely, 

V sin Φs= Vi sin Φ0. (38) 
Equations (29) and (38) yield 

cot Φs = τ/Τs' (39) 

sin Φs = [ 
1 

]½ (40) sin Φs = [ 

1 + ( 

τ 

)2 

]½ (40) sin Φs = [ 

1 + ( Ts' )2 

]½ (40) 

V = (Vi sin Φ0)√1 + ( 
τ 

)2 (41) V = (Vi sin Φ0)√1 + ( Ts' )2 (41) 

where T's = Ts tan Φ0. At t = t0, at the phase transi­
tion point, the equilibrium phase is π/2, the applied 
voltage becomes equal to the threshold voltage per 
turn and the bunch rides at the crest of the accel­
erating wave. 

The amplitude of the momentum oscillations and 
the corresponding radial oscillations are 

δρ = c0 [ (Vi cos Φ0)Τ0γ0 ]½ (42) 
Ρ = c0 [ (2nhV0Ts) 

]½ (42) 

δR 
-( 

δp )/γ02. (43) R -( Ρ 
)/γ02. (43) 

The constants c0, δ0 are determined from Eq. (28) 
at τ = - Ts, i.e., at the time where the applied voltage 
starts to vary in accordance with Eq. (41). Due to 
the momentum spread all of the particles are not 
going through the phase transition simultaneously. 
Consequently, due to this mistiming error as well 
as non-linear effects, both the amplitude of the phase 
and momentum oscillations are expected to be some­
what higher than indicated from the above calculations. 
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DISCUSSION 

O'NEILL : I have three questions. 1) Why is it easier to 
remove heat at 80° Κ than at a higher temperature? 2) There 
is a good reason for not trying to carry out the synchroclash 
operation by building two of these machines, that is, they 
are already fairly complicated and if you want to do synchro-
clash you have to put an ultra-high vacuum system in the 
same machine, which seems like an unnecessary complication. 
3) 1 agree indeed that you could get a higher current density 
because you are using a smaller radius for the machine but 
about the same q-value as for a big AGS. However, it is 
hard to see how you get more than about a factor of 100, 
because the field which is used is certainly no more than ten 
times the average field in an AGS machine and you would 
expect that the current density would scale as at most the 
square of the focusing strength, for a given injection system. 

From the viewpoint of the experimenter, straight sections 
should be very long; magnets are a necessary evil. Since your 
machine has a betatron wavelength only 1/10 as long as that 
of a big AGS, the straight section length allowable would 
also be 1/10 as long or about 1 meter. 

CHRISTOFILOS : 1) It is easier to remove the heat simply 
because you have quite less heat to remove. 2) It would be 
uneconomical if one had to build two identical machines, 
but if having a machine which is, say, 100 BeV you build only 
an additional 25 BeV which constitutes 25% of the cost, then 
I think this will be cheaper than a storage ring at 100 BeV. 
That is one thing.. The other is that as I am not optimistic 
about vacuum and I assume a pressure of 10-8 to 10-9 which 
appears feasible because the magnets are at very low temperature. 
Then there is a lot of background, but I assume that the bubble 
chambers are somewhat removed from the machine and shielded 
so the background will remain small. 3) The current density 
is measured at the centre of each bunch, so it is not the average 
current along the ring as the bunches are five times smaller. 
The average current is 30 A per cm2 but at the centre of 
the bunch it is about 150 because the bunches occupy only 
one-fifth of the circumference. In the first case the cross-section 
of the beam at the end is about one-tenth of a cm2. 
WIDEROE : The relative high temperature of 80°K seems to 

indicate that you are using coils of copper or aluminium and 
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the calculations show that you then can gain by a factor of 
3, or something like that, against 300°K; but the calculations 
of Post seem to show that if you use coils made out of sodium 
and go down to a much lower temperature, then you can make 
a gain up to 25 and this, of course, would be very important 
just in this case. 

CHRISTOFILOS : Well, sodium gives always very much more 
gain, but only if we consider d.c. magnets. If you consider 
pulsed magnets, because the conductivity is very high at 10°K, 
the skin depth is so small that it is completely impractical 
to use sodium, considering that sodium is a dangerous material 
and has to be contained inside tubes, and those tubes would 
be of the order of 1 m m for that case. Therefore the most 
one can do with that type of pulsed machine is to go to 30°K 
with aluminium coils. 

SANDS: I do not understand how you propose to use these 
machines for synchroclash, because if I understand they are 

pulsed machines and they will remain at the peak energy only 
a small fraction of the time. 
CHRISTOFILOS: Yes, they remain at peak energy a small 

fraction of the time, but the utility of the machine depends 
on what type of experiment we do; for example, a bubble 
chamber operates only for 1 msec. There only are 10 msec 
in which the experiments can be done; more power is required 
to extend this time. 
SANDS: I think from the point of view of the physicists 

a synchroclash machine which has a short duty cycle will be 
a big disadvantage. 
CHRISTOFILOS : If the final operation of the machine is at 

60 cps, it is possible, with the use of third harmonic, to obtain 
a flat top, and thus a 15% duty cycle. Moreover, after the 
synchroclash stage, the particles may be decelerated, thus 
avoiding all the radiation effects created by the high energy 
particles. 

SCANNING FIELD ALTERNATE GRADIENT ACCELERATORS 

T. Kitagaki (*) and J. Riedel 
Princeton-Pennsylvania Accelerator, Princeton University, Princeton, N. J. 

(presented by T. Kitagaki) 

Historically, the scanning field alternate gradient 
accelerator has developed from an idea for a d.c. 
field synchrotron first conceived in 1953. The essen­
tial feature of the scanning field alternate gradient 
accelerator (SFAG) is to use a scaling d.c. guide 
field with a gradient, and a scanning quadrupole 
field giving the opposite gradient for the AG focusing. 
Because the scanning field need only provide a gradient 
in the vicinity of the instantaneous orbit, the magnetic 
energy in this time varying field is quite small compared 
with the energy of the d.c. guide field. 
One type of SFAG accelerator can be called the 
superposed type SFAG. This is a ring machine 
similar to the radial sector FFAG, but with positive 
curvature of orbit everywhere. Alternate sectors 

have simple d.c. scaling fields, and the other half 
have running quadrupole fields superposed on the 
d.c. scaling guide fields (Fig. 1). The null point of 
the quadrupole field appears along an instantaneous 

Fig. 1 Superposed type SFAG. 

(*) On leave from Tohoku University, Sendai, Japan 


