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Abstract 

The use of artificial intelligence (AI) has the potential 
to significantly reduce the time required to tune particle ac-
celerators, such as the Argonne Tandem Linear Accelerator 
System (ATLAS). Bayesian optimization with Gaussian 
processes is a suitable AI technique for this purpose, it al-
lows the system to learn from past observations to make 
predictions without explicitly learning representations of 
the data. In this paper, we present a Bayesian optimization 
method with deep kernel learning that combines the repre-
sentational power of neural networks with the reliable un-
certainty estimates of Gaussian processes. The kernel is 
first trained with physics simulations, then the model is de-
ployed online in a real machine, in this case a subsection 
of the ATLAS linac, to perform the optimization. In addi-
tion to the kernel, we also modelled the mean of the Gauss-
ian process using a neural network trained with simulation 
data and later with experimental data. The results show that 
the model not only converges quickly to an optimal tune, 
but it also requires very little initial data to do so. These 
approaches have the potential of significantly improving 
the efficiency of particle accelerator tuning, and could have 
important applications in a wide range of settings. 

INTRODUCTION 
 The Argonne Tandem Linear Accelerator System (AT-
LAS) [1] is a Department of Energy (DOE)/Nuclear Phys-
ics (NP) User Facility for studying low-energy nuclear 
physics with heavy ions. It operates ~6000 hours per year. 
The facility (see Fig. 1), uses three ion sources and serves 
six target areas at beam energies from ~1-15 MeV/u.  To 
accommodate the total number of approved experiments 
and their wide range of beam-related requirements, ATLAS 
reconfigures once or twice per week over 40 weeks of op-
eration per year. The start-up time varies from ~12 – to 48 
hours depending on the complexity of the tuning. 
 

 
Figure 1: ATLAS Layout. 

The procedure of tuning such an accelerator system is 
time-consuming and relies heavily on the intuition and ex-
perience of the operators. The uncertainties involved in 
tuning are in part due to unknown misalignments of the 
beamline components and the limited number of diagnostic 
devices to properly characterize the beam. The use of arti-
ficial intelligence (AI) has the potential of filling the infor-
mation gap and significantly reducing the time needed to 
tune the accelerator. By reducing the time for beam tuning, 
more beam time will be available to help relieve the over-
booked experimental nuclear physics program at ATLAS. 
In addition to beam tuning, AI models can be used to im-
prove beam quality with the installation of new diagnostics 
and real-time data acquisition. These improvements will 
increase the facility’s scientific throughput and the quality 
of the data collected.  

This work is part of a DOE/NP project [2] that aims to 
apply artificial intelligence techniques to support the oper-
ations of ATLAS. The main goal of the project is to use AI 
to streamline beam tuning and improve the performance of 
the machine. The ultimate goal is to develop an AI model 
that can tune the machine in real-time while also providing 
insights that can help improve its overall performance. The 
experiments described in this paper represent an important 
step forward in achieving this goal. 

The ultimate goal of this study is to optimize the trans-
mission and quality of the beam in a subsection of ATLAS 
as quickly as possible. The authors achieve this by using 
Bayesian optimization with deep kernel learning to find the 
optimum settings of the linac, and also by using neural net-
works to model the mean of the Gaussian process. These 
approaches allow for a more efficient optimization of the 
accelerator's performance when the models are trained of-
fline with simulation data and then transferred to the real 
machine. 

TUNING MODEL 
Bayesian optimization with Gaussian processes is a 

well-suited technique for tuning particle accelerators [3] 
because it has several appealing properties. It is a powerful 
and efficient method for optimizing black-box functions 
that are expensive or time-consuming to evaluate. The key 
advantage is its capability to balance exploration and ex-
ploitation in a way that is guided by the model's uncer-
tainty, which allows it to efficiently find the global opti-
mum of the objective function. This method allows the sys-
tem to learn from past observations and to make predic-
tions without explicitly learning representations of the 
data. This property makes this technique well-suited for 
problems where the data may be noisy or limited, as is of-
ten the case when working with particle accelerators. 

The Gaussian process is defined by a mean function and 
a covariance function (also called a kernel), which together 
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determine the shape and behavior of the model. In Bayes-
ian optimization, the mean function is typically set to zero, 
and the kernel is chosen based on the characteristics of the 
data. Because Bayesian optimization with Gaussian pro-
cesses is based on statistical models of the system, the 
model may not accurately reflect the true behavior of the 
accelerator in all cases. This can lead to limitations in the 
performance of the model, particularly in cases where the 
system exhibits complex or non-linear behavior. Moreover, 
the large number of tunable parameters in a particle accel-
erator generally requires a large number of observations to 
find the optimum which is problematic for BO due to the 
computational complexity of scaling the GP.  

There are several strategies that people have used to ad-
dress the challenges of applying Bayesian optimization 
with Gaussian processes to tune particle accelerators. In the 
context of tuning particle accelerator is common to incor-
porate prior physics information into the GP to improve the 
accuracy and efficiency of the optimization. It allows the 
optimization process to be guided by the known physical 
relationships in the system, rather than relying solely on 
data-driven learning. 

This physics knowledge is usually introduced by con-
straints or training offline classical kernels such as the ra-
dial basis function (RBF) kernel [4], one of the most com-
mon choices for Gaussian process models. However, the 
performance of the model may be limited by the expres-
siveness of the kernel used to define the surrogate model. 
Alternatively, modelling the Gaussian Process’s prior mean 
function is another way to incorporate prior physics-based 
knowledge about the target function [5]. 

This work explores the concept of using a more general-
ized kernel based on neural network and on the other hand 
the modelling of the prior mean with neural network.  

DEEP KERNEL MODEL 
By using a neural network as the kernel in the GP model, 

it may be possible to capture complex relationships be-
tween the machine parameters and the performance of the 
accelerator, which could allow the model to find the opti-
mal settings more efficiently.  

In this work, the kernel is built by interpolating between 
two kernels following the structured kernel interpolation 
method. The approach chosen was a deep kernel learning 
with a SKI kernel that includes an RBF basis kernel. The 
deep kernel learning has been shown to be effective at cap-
turing complex relationships in the data [6], which can be 
particularly useful in particle accelerators where the rela-
tionship between the input and output variables is nonlin-
ear, complex and highly structured. By combining deep 
kernel learning with a structured interpolation kernel that 
includes an RBF basis kernel, it may be possible to capture 
these complex relationships more effectively than using a 
single kernel function alone. The SKI allows the model to 
flexibly adjust the combination of both kernels during 
training. 

The deep-learning kernel used is composed of a fully 
connected network with the layered architecture 500-250-
125-2 and acts as a neural network feature extractor in the 

kernel of the Gaussian process. Rectified linear activation 
function (ReLU) is used as the activation function and the 
features are scaled to be between 0 and 1 and remain in the 
grid bounds expected by SKI. 

Because of the data needs for the neural network and the 
potential benefit of training a model offline that would 
work in the real machine, the data used was generated from 
TRACK simulations, particularly 4k samples for the train-
ing set and 1k samples for the validation set. The ATLAS 
subsection used in this work is the new material irradiation 
station, AMIS.  The input parameters involved are the cur-
rent settings of a triplet and a doublet, the objective is to 
maximize the transmission through the beamline using an 
upper confidence bound acquisition (ß=2). See Figure 2 for 
a schematic of the involved section.  

 
Figure 2: AMIS beamline. 

Before experimental testing, a first test was done with 
the TRACK code comparing both a BO with RBF kernel 
over 100 different BO simulations starting from a bad 
transmission configuration. Figure 3 shows how BO-DKL 
tends to optimize better the beamline than BO with RBF, 
even though the problem might not be complex enough for 
leveraging the whole potential of BO-DKL. 

 
Figure 3: BO-DKL versus BO with RBF kernel mean and 
2-sigma maximum transmission after each iteration. 

The next step was to evaluate the performance of both 
methods in the real machine at the AMIS beamline. The 
results for the BO-GP and BO-DKL approaches are com-
pared in Figure 4, where the blue line represents the results 
for the BO-GP approach and the green line represents the 
results for the BO-DKL approach after 100 iterations and 
using 3 configurations as warm start. The BO-DKL ap-
proach was able to achieve a maximum transmission of 
56% in less than 50 iterations, surpassing the maximum 
transmission achieved by the operators on the same day 
(~53%). 
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Figure 4: Comparison of the evolution of the maximum 
transmission achieved after each iteration for a 16O beam 
using traditional BO-GP and BO-DKL. 

The BO-DKL approach was also applied to a different 
beam, 22Ne. For this beam, the data obtained for the 16O 
beam was scaled and used to train the surrogate model. In 
this case, the BO-DKL approach was able to achieve a 
maximum transmission of 56% in less than 20 iterations, 
surpassing the maximum transmission achieved by the op-
erators on the same day (~48%). The results for the BO-
DKL approach on the 16O and 22Ne beams are shown in 
Fig. 5, where the green line corresponds to the BO-DKL 
approach on the 16O beam and the orange line corresponds 
to the BO-DKL approach on the 22Ne beam. The switching 
from 16O beam to a 22Ne beam demonstrate the transfer 
learning of the BO-based beam tuning model from one ion 
beam to another. 

 
Figure 5: Comparison of the evolution of the maximum 
transmission achieved after each iteration using BO-DKL 
for a 16O and the same model and scaled data for a 22Ne 
beam. 

PRIOR MEAN NN-MODEL 
On the other hand, by using a neural network to model 

the prior mean in the GP model based on historical data is 
another way of incorporating prior physics-based 
knowledge about the target function, which tends to make 
the optimization more efficient and accurate. Notice that 
choosing a bad prior can have detrimental consequences 
for the whole inference endeavour because of the nature of 
the GP. The prior mean for the GP was modeled using a 
neural network of a couple of layers and 20 hidden nodes 
each using the TRACK simulation data mentioned in the 
DKL section. Figure 6 shows how the BO with NN-prior 
mean GP is capable of instantaneously optimizing the 
transmission by varying the 5 input settings during the 100 

simulations while the BO with no prior knowledge takes 
more time. However, when transferring this model into the 
real machine, the results were not so clear, and we have not 
included them in this study. The different beams and the 
differences between the simulation lattice and the real lat-
tice played a key role when transferring the prior mean 
model so far. 

 
Figure 6: NN-Prior Mean BO versus BO with no prior 
knowledge and 2-sigma maximum transmission after each 
iteration. 

Then, we trained the same model with experimental data 
based on a 14N beam experiment and used it for a later 16O 
beam experiment with promising results. Figure 7 shows 
how the BO with NN-prior mean based on previous exper-
iment data was capable of optimizing better and faster than 
a BO with no prior knowledge, showing not only the power 
of using a model prior mean for the GP but again the po-
tential of transfer learning techniques in tuning particle ac-
celerators.  

 
Figure 7: NN-Prior Mean BO versus BO with no prior 
knowledge and 2-sigma maximum transmission after each 
iteration. 

CONCLUSIONS  
In conclusion, this study highlights the effectiveness and 

accuracy of Bayesian optimization with deep kernel learn-
ing and NN-prior mean in optimizing the performance of 
real particle accelerators. These approaches enable transfer 
learning from simulation to machine and from one beam to 
another, even with limited data. However, further research 
is required to fully investigate the potential and limitations 
of these methods. Overall, the findings suggest that these 
approaches hold significant promise for optimizing particle 
accelerator performance in a more efficient and accurate 
manner. 
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