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A quantum transducer converts an input signal to an output probe at a distant frequency band while maintaining
the quantum information with high fidelity, which is crucial for quantum networking and distributed quan-
tum sensing and computing. In terms of microwave–optical quantum transduction, the state-of-the-art quantum
transducers suffer low transduction efficiency from weak nonlinear coupling, wherein increasing pump power
to enhance efficiency inevitably leads to thermal noise from heating. Moreover, we reveal that the efficiency-
bandwidth product of a cavity electro-optical or electro-optomechanical transducer is fundamentally limited by
pump power and nonlinear coupling coefficient, irrespective of cavity engineering efforts. To overcome this fun-
damental limit, we propose to noiselessly boost the transduction efficiency by consuming intraband entanglement
(e.g., microwave–microwave or optical–optical entanglement in the case of microwave–optical transduction). Via
a squeezer–coupler–antisqueezer sandwich structure, the protocol enhances the transduction efficiency to unity
in the ideal lossless case, given an arbitrarily weak pump and nonlinear coupling. In practical cavity systems, our
entanglement-assisted protocol surpasses the non-assisted fundamental limit of the efficiency-bandwidth prod-
uct and reduces the threshold cooperativity for positive quantum capacity by a factor proportional to two-mode
squeezing gain. Given a fixed cooperativity, our approach increases the broadband quantum capacity by orders of
magnitude. The entanglement-assisted advantage is robust to ancilla loss and cavity detuning.
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1. INTRODUCTION
Quantum transduction aims to interconnect quantum computers
and processors via converting quantum states between different
frequencies [1–3]. It serves as the hinge between the microwave
superconducting qubits and the optical telecommunication pho-
tons, enabling robust quantum networking [4–7], and ultimately
distributed quantum sensing [8] and distributed quantum com-
puting [9,10]. Despite the proposals based on various physical
platforms [11–27], current quantum transduction systems are
still far from satisfying, hurdled by a conundrum to balance
transduction efficiency, pump-induced heating, and bandwidth
[26,28–32].

An ideal transducer has unity transduction efficiency, zero
added noise, and large bandwidth. As one-way quantum commu-
nication is forbidden for efficiency below 50% [33], remarkable
efforts have been made to improve the on-resonance transduc-
tion efficiency to >50%. For example, the recent progress in
electro-optomechanical transducers [11,34] adopts extremely
high-Q mechanical resonators as a mediating mode to con-
nect the microwave mode and the optical mode, which achieves
the highest transduction efficiency up to 47% so far with
3.2 noise photons [30]. However, such mediation boosts the
on-resonance efficiency at the cost of bandwidth, e.g., the

bandwidth is limited to 2 kHz in Ref. [30], cf. typical bandwidth
∼ 10 MHz of direct conversion [28,29,35]. Indeed, the band-
width of an electro-optomechanical transducer is limited below
the mechanical resonance frequency, approximately megahertz,
which must operate at the resolved sideband limit to sup-
press the undesired blue sideband two-mode squeezing noise
[30,36]. Gigahertz piezo-optomechanical transducers [19,26]
offer room-temperature broadband transduction, but the trans-
duction efficiency is limited, e.g., ∼ 10−5 in Refs. [19,26], due
to the optical absorption heating of mechanical resonators [37].
The direct electro-optical conversion [15,16] is free from the
complications due to the mechanical mode, whereas its trans-
duction efficiency is still limited [17,28]. Pulsed pumping has
been demonstrated to mitigate the heating and further boost
the instantaneous nonlinear coupling for piezo-optomechanical
transduction [26] and direct electro-optical transduction [29,35],
however, its low duty cycle drastically reduces the transduction
rate and it is incompatible with continuous-wave signals.

Such a trade-off between the transduction efficiency and band-
width is inevitable. In this paper, we reveal that the efficiency-
bandwidth product (EBP) [38] of cavity electro-optical or
electro-optomechanical transduction, and any transduction with
similar Hamiltonian, is fundamentally limited by the nonlinear
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Fig. 1. Schematic of the EA transduction protocol. (a) EA
microwave-to-optical transduction, enhanced by optical entangle-
ment which can be generated by PPLN [57]. (b) EA optical-
to-microwave transduction, enhanced by microwave entanglement
which can be generated by JPA [53–55]. (c) Detailed protocol. An
input signal S is converted to an output probe Pout at a different
frequency. The probe and ancilla are initially cooled to vacuum
state, and two-mode squeezed by S(G) of gain G. Then, the signal
is cast onto the probe by a nonlinear coupler, which is modelled
as a beam splitter of transmissivity κ, signal–probe conversion effi-
ciency η, and loss κE = 1 − κ − η. Finally the probe and ancilla are
antisqueezed by S†(G′), the probe is output while the ancilla is
discarded.

coupling coefficient and pump amplitude, regardless of the
linewidths of cavities. Unfortunately, the nonlinear coupling
between photons is intrinsically weak, and a stronger pump
inevitably induces more thermal noise [37]. Therefore, besides
the endeavor in materials science and nanofabrication, paradigm
shifts are needed to boost quantum transduction and overcome
the limit.

Recently, there have been theoretical efforts toward this goal.
For example, one can utilize the conventionally discarded envi-
ronment output to correct the transducer imperfection, via
adaptive control [39] or Gottesman–Kitaev–Preskill (GKP)
encoding [40]. However, the adaptive control protocol relies on
ultra-precise broadband homodyne measurement and adaptive
displacement in addition to inline squeezing; the state-of-
the-art systems for GKP state engineering [41] are far from
usable. In addition, the GKP qubit encoding of the input quan-
tum information is not compatible with continuous variables.
Other approaches rely on crossband microwave–optical entan-
glement [32,42] to enable the teleportation-based transduction
approach [25,43]; however, noiseless teleportation requires high
fidelity crossband entanglement and thus extremely high pump
power along with the heating issue as challenging as the direct
frequency conversion.

In this work, we propose an intraband-entanglement-assisted
protocol to achieve a noiseless broadband enhancement in the
efficiency of bosonic transduction between arbitrary distant fre-
quencies, therefore overcome the fundamental limitation on
EBP. Adopting techniques from entanglement-assisted (EA)
weak signal sensing [44] and nonlinear interferometry [45,46],
the proposed protocol only requires intraband (optical–optical
or microwave–microwave) entanglement as shown in Figs. 1(a)

and 1(b), distinct from teleportation which requires crossband
entanglement, measurement, and conditional operation. In the
absence of loss, for an arbitrarily weak nonlinear coupling, the
transduction efficiency can always be enhanced up to unity with-
out any added noise. In the next section, we provide an overview
of the protocol and its EA advantage.

2. OVERVIEW
Entanglement assistance is known as a powerful resource that
enhances the precision of weak signal detection beyond the stan-
dard quantum limit (SQL) in various scenarios, e.g., nonlinear
interferometry [46,47], quantum illumination radar [48], and
dark matter search [44,49], via combining two-mode squeezing
and antisqueezing before and after the sensing process. The EA
advantage has been demonstrated experimentally using photonic
ancilla [50,51] and spin ancilla [52]. In this paper, we exploit
entanglement assistance to boost quantum transduction.

The EA protocol is shown in Fig. 1. Our protocol features an
ancilla entangled with the output at the same frequency band,
e.g., at the optical or microwave band for microwave–optical
transduction as shown in Figs. 1(a) and 1(b). The entanglement is
generated via an intraband two-mode squeezer S before the tra-
ditional nonlinear coupling, and processed by an antisqueezerS†
afterwards, as shown in Fig. 1(c). Such intraband entanglement
is much easier to implement than the crossband entanglement
required in teleportation-based transducers [25,43]. For exam-
ple, microwave squeezers have been well established via a
Josephson parametric amplifier (JPA) [53–55]. Optical entan-
glement has been readily generated using potassium titanyl
phosphate [56] and periodically poled lithium niobate (PPLN)
[57], while optical inline squeezers are also being actively devel-
oped [58,59]. While we explicitly consider optical–microwave
transduction in Figs. 1(a) and 1(b), in Fig. 1(c) we choose not
to specify the input and output frequencies in our protocol,
since the protocol allows general bosonic transduction, including
phonon–photon conversion [60].

The pumped nonlinear coupler can be described by a lin-
earized input–output relation, specifically a two-mode bosonic
Gaussian channel which can be categorized into beam-splitter-
type or two-mode-squeezing-type depending on the pump
detuning, for both the cavity electro-optic coupling [16] and
the cavity electro-optomechanical coupling [61]. Our analysis
focuses on beam-splitter-type nonlinear couplers, of which the
pumps are red-detuned, which avoid the two-mode squeezing
noise [30,36] and allow noiseless quantum transduction.

The performance of noiseless quantum transduction is char-
acterized by the signal-to-probe photon conversion efficiency
η(ω), as a function of the signal frequency ω. The broadband
performance can be quantified by the EBP

B ≡

∫ ∞

−∞

η(ω)dω (1)

or the broadband quantum capacity [62–66]

Q1 =

∫
dω
2π

max
[︃
log2

(︃
η (ω)

1 − η (ω)

)︃
, 0
]︃

, (2)

of which fundamental limits can be proven for beam-splitter-type
quantum transducers. In terms of EBP, we prove fundamen-
tal limits in Section 4.1 (see Theorem 2 and Theorem 3), as
summarized in Theorem 1.
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Theorem 1 (Informal overview). The EBP of an electro-
optical transducer B is upper-bounded byB ≤ π |gα |, limited by
the nonlinear coupling coefficient g and in-cavity pump power
|α |2, regardless of cavity linewidths. Enhanced by a mechanical
mediating mode, the EBP of an electro-optomechanical trans-
ducer is still upper-bounded similarly by nonlinear coupling
coefficients and pump power.

Such fundamental limits hold for any nonlinear couplings
of similar Hamiltonians. In terms of the quantum capacity, it
is known that cooperativity of the electro-optical transduction
cavity needs to overcome a threshold Cth = 3 − 2

√
2 to enable

any non-zero capacity [43]. These fundamental limits create a
conundrum in balancing pump power and heating in quantum
transduction engineering.

Our main result is that these fundamental limits can be over-
come by utilizing intraband entanglement. In the simple beam
splitter model of nonlinear coupling, the squeezer–coupler–
antisqueezer protocol allows noiseless amplification [45] of
the nonlinear coupling, capable of boosting an arbitrarily low
transduction efficiency to unity. Such EA noise reduction in
parametric amplification has been demonstrated in experiments
[67,68]. In the full cavity model, in terms of the quantum capac-
ity, the cooperativity threshold can be lowered by a factor of
Cth,EA ∼ 1/G proportional to the two-mode squeezing gain G,
relaxing the requirement of cavity engineering drastically. In
terms of EBP, the proposed EA transduction protocol enables
BEA ∼ G · B , allowing a factor of G advantage in EBP.

Our paper is organized as follows. We begin with the simple
beam splitter model of coupling in Section 3 to introduce the core
mechanism of the protocol and analyze the advantage at a single
frequency. Then, we connect the beam splitter model to the phys-
ical cavity model in Section 4, where we derive the fundamental
limits on transduction and show that these limits can be over-
come by intraband entanglement. Several appendices addressing
robustness of our protocol to experimental imperfections are
noteworthy: Appendix A, Section 2 addresses losses in two-
mode squeezing operations which can be simplified to ancilla
storage loss, where robustness to loss is observed; Appendix A,
Section 4 addresses imperfect pump detunings, where robust-
ness to large detuning is identified; Appendix A, Section 5
addresses the implementation of frequency-dependent squeez-
ing, where a sequential array of cavity parametric amplifiers is
shown to approach the required squeezing spectrum.

3. BEAM SPLITTER MODEL OF COUPLING
3.1. Protocol Design

As shown in Fig. 1(c), a general bosonic transducer converts an
input signal S to an output probe P′ at different frequency bands
via a nonlinear coupler. A general model for such coupler is a
frequency-dependent beam splitter [11,16,34,61]. Given a spe-
cific input frequency, the coupling can be modelled by a beam
splitter [69]. Without entanglement assistance, the transduction
efficiency is limited by the signal–probe photon conversion effi-
ciency 0<η≪ 1. The transmissivity of the initial probe P is
κ ≤ 1 − η, as an environment port E is inevitably mixed in
with transmissivity (the intrinsic loss) κE = 1 − κ − η ≥ 0. Its
input–output relation in the Fourier frequency domain is

ÊP′ = eiθP
√
κÊP + eiθS

√
ηÊS +

√
κEÊE, (3)

where θP, θS are phase shifts during the coupling. Here ÊX(ω)
is the traveling-wave field operator of system X at frequency ω

relative to its own carrier, satisfying the commutation relation
[ÊX(ω), Ê†X(ω′)] = δ(ω − ω′). In this section, we focus on the
beam splitter model at a single frequency and omit ω for sim-
plicity, while the broadband case will be discussed later in the
full cavity model. We will connect such a beam splitter model
to the physical cavity electro-optics and electro-optomechanical
systems in Section 4.

To enhance the overall quantum transduction efficiency from
the input to the output, we amplify the signal-carrying probe
while keeping the noise background in a vacuum state. To sup-
press the noise, we introduce an ancilla A. The ancilla and the
probe run a “squeezer–coupler–antisqueezer” protocol with a
sandwich structure for the transducer: first the probe P and the
ancilla A are cooled to vacuum states and entangled by a two-
mode squeezer with gain G; then, a portion η of the signal S
is converted to the probe P′ via nonlinear coupling; finally, the
converted probe P′ and the ancilla A are antisqueezed with gain
G′ to produce the final converted output Pout. The squeezer and
the antisqueezer are set to null the probe back to vacuum when
the input is vacuum. In the main text, we ignore the loss in the
squeezer and antisqueezer, as they operate on the probe–ancilla
pair at close frequencies (e.g., both in the microwave frequencies
[53–55]) thus it is much easier to engineer than the signal–probe
coupler. We analyze the impact of squeezing loss in Appendix
A, Section 2, which shows that the advantage of our EA protocol
is robust against the loss in squeezing and ancilla storage.

Below, we elaborate this protocol step by step. Before the
signal–probe coupling, we prepare the probe and the ancilla
using a two-mode squeezerS(G) of gain G on initial vacuums P0

and A0. The input–output relation can be conveniently expressed
via the linear transform of the field operators

ÊP =
√

GÊP0 +
√

G − 1Ê†A0
,

ÊA =
√

G − 1Ê†P0
+
√

GÊA0 .
(4)

After the two-mode squeezing, the signal is coupled to the probe
via the nonlinear coupler as described by Eq. (3). Finally, the
probe and the ancilla are antisqueezed using S†(G′) to output

ÊPout = e−iθP
√

G′ÊP′ −
√

G′ − 1Ê†A, (5)

where the phase is chosen to cancel the transduction phase shifts
θP in Eq. (3). The full formula of the overall input–output relation
can be found as Eq. (A.3) in Appendix A, Section 1. To minimize
the transduction noise, we solve G′ to keep the output to vacuum
when the input signal is vacuum, which gives

G′ ← G′⋆ ≡
1

1 − κ + κ/G
. (6)

In this case, the noise background in the output probe is vacuum

Ê⋆
Pout =

√
ηEAei(θS−θP)ÊS +

√︁
1 − ηEAÊVAC, (7)

where the background ÊVAC is in a vacuum state, and

ηEA = ηG′⋆ = η
G

G(1 − κ) + κ
, (8)

is the noiseless EA transduction efficiency. It is noteworthy that
the transduction efficiency enhancement holds even if the probe
and ancilla are initially in thermal states, wherein the background
ÊVAC will be in a thermal state instead.

One can regard the two-mode antisqueezerS†(G′) as an ampli-
fier of the probe, while the first input two-mode squeezer S(G)
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reduces the amplifier noise [45,67] from the antisqueezer. Equa-
tion (6) indicates that to increase the signal amplification G′
noiselessly, the input squeezer gain G needs to increase accord-
ingly to suppress the amplification noise. Below, our analysis
begins with the ideal lossless case where κE = 0 and then
proceeds to the lossy case of κE>0.

3.2. Lossless Coupler: Unity-Efficiency Transduction

Now we assume the lossless limit κE = 0 to gain intuition about
the protocol design, which is always true at the cavity overcou-
pling limit (see Section 4). In this case, κ = 1 − η and the optimal
gain in Eq. (6) reduces to G′ ← G′⋆ ≡ 1/[η + (1 − η)/G]. The
EA transduction efficiency is

ηEA |κE=0 = η ·
G

Gη + (1 − η)
, (9)

which approaches unity in the strong squeezing limit,

ηEA |κE=0 → 1, whenG′ → 1/η and G→∞. (10)

At this limit, the output probe Ê⋆
Pout = ei(θS−θP)ÊS is reflectionless

in both quadratures. Although the reflectionless transduction
requires infinite squeezing in Eq. (10), the EA advantage is still
significant at finite squeezing. For a finite gain, the EA proto-
col increases the efficiency to ηEA ≃ Gη by the amplifier gain
factor G, at the weak nonlinear coupling limit η ≪ 1. Note that
here no-cloning [70] is not violated because the other output
of the nonlinear coupler is infinitely noisy at the G→∞ limit.
The intuition behind such an enhancement is that the ancilla
A provides a reference entangled with the quantum fluctuation
in the probe P after the two-mode squeezer S(G). At the limit
G→∞, the quadratures of the two modes are fully correlated
as ReÊP = ReÊA, ImÊP = −ImÊA [69]. Thus, the antisqueezer
S†(G′) can noiselessly amplify the signal transduced into P′,
where the quantum noise from A during the antisqueezing
interference can be completely cancelled utilizing the remain-
ing entanglement. At the lossless limit, the signal is perfectly
recovered.

To enable quantum communication with one-way quantum
capacity Q1>0, one needs the overall conversion efficiency above
the zero-quantum-capacity threshold, ηEA>1/2 [33], leading to
η>1/(G + 1) which is drastically easier to achieve than the non-
EA case of η>1/2.

3.3. Lossy Coupler

Here we consider general case with intrinsic loss κE>0. In the
strong squeezing limit, the EA transduction efficiency Eq. (8)
goes to

ηEA →
1

1 + κE/η
, when G′ → 1/(1 − κ) and G→∞. (11)

The challenging non-EA zero-quantum-capacity threshold
η>1/2 is relaxed to the EA threshold η>κE now, which is always
achievable via overcoupling the cavity.

We evaluate the EA advantage in transduction efficiency in
Fig. 2. In Fig. 2(a), we fix the intrinsic loss κE = 0.01 and vary the
non-EA efficiency η. The EA efficiency overwhelms the non-EA
efficiency (blue diagonal line), even with an intermediate-scale,
near-term available squeezing gain G = 10 dB. In the inset,
we observe the EA efficiency ηEA surpasses the zero-quantum-
capacity threshold 1/2 (upper boundary of blue-shaded region)

Fig. 2. The EA transduction efficiency ηEA versus (a) the non-
EA efficiency η, with κE = 0.01 and (b) the intrinsic loss κE,
with η = 0.01. Inset in (a) is the zoom-in near η→ 0 in loga-
rithmic scale. Squeezer gain G, from blue to red; G increases
from 0dB (non-EA) to 30 dB by step of 10 dB. Red dashed,
G→∞ [Eq. (11)]. Blue-shaded region, zero quantum-capacity
region ηEA ≤ 1/2. Antisqueezer gain G′ is chosen according to
Eq. (6).

at η ≳ κE = 0.01, given squeezing gain G = 30 dB—as predicted
by Eq. (11). In Fig. 2(b), we fix η = 0.01 and vary κE. At high
squeezing, the zero-quantum-capacity threshold ηEA = 1/2 can
be achieved for κE ≲ η = 0.01. For the minimum squeezing
requirement, we observe that at least G = 20 dB is required
for ηEA ≥ 1/2 in the best case κE → 0, which can be predicted
by the lossless coupler, Eq. (9).

4. FULL CAVITY MODEL OF COUPLING
Now we proceed to the full cavity model for the nonlinear
couplers. Without loss of generality, here we present the formu-
lation of cavity electro-optical coupling. A similar formulation
of cavity electro-optomechanical coupling [11,34] is included
in Appendix A, Section 6, which holds for general bosonic
nonlinear coupling with a mediating mode.

In cavity electro-optics, probe P and signal S are carried on
optical/microwave cavity modes, associated with annihilation
operators âP, âS satisfying the commutation relation [âX , â†X] = 1,
where X = P, S. The quality of the cavities are characterized by
the cavity external coupling rates and intrinsic loss rates γX,c

and γX,0. In this paper, we adopt the alternative characterization
with the total linewidths ΓX ≡ γX,c + γX,0 and the coupling ratios
ζX ≡ γX,c/ΓX . Here we consider the perfectly red-detuned pump
for simplicity [15,16], e.g., for microwave-to-optical transduc-
tion the optical pump frequency is perfectly at ωpump = ωP − ωS,
where ωP,ωS are the cavity resonance frequencies of the optical
probe and microwave signal, respectively. We defer the general
formulation allowing imperfect pump detuning to Appendix A,
Section 4, which demonstrates that our protocol is robust against
the detuning imperfections. In the frame rotating with the cavity
resonance frequencies, assuming the rotating wave approxima-
tion, an electro-optics system in the red sideband pumping case
can be described by the effective Hamiltonian [15,16],

ĤI = −ℏg(α∗â†SâP + αâSâ†P), (12)

where g is the electro-optic nonlinear coupling coefficient in
hertz and α is the in-cavity pump amplitude. The interac-
tion strength is typically characterized by the cooperativity
C = 4|gα |2/ΓSΓP.
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Fig. 3. (a) The EA transduction efficiency spectrum ηEA(ω) under various squeezing gain G. Cooperativity C = 0.1. The dashed line is the
G→∞ limit obtained from Eq. (15). (b) The EA EBP BEA versus the effective nonlinear coupling strength |gα |. The solid lines are under
fixed ΓP, ΓS, for which we provide the cooperativity C values as the upper axis ticks; while the dot–dashed lines are under optimized ΓP, ΓS
that maximize BEA for a given |gα |. (c) Broadband quantum capacity rate Q1 versus cooperativity C under various squeezing gain G. The
crosses indicate the zero-quantum-capacity thresholds Cth under each G in Eq. (19). Inset is Cth,EA versus G(dB), as given in Eq. (19). The
G = 0 dB point goes back to Eq. (18). In all figures, ζP = ζS = 0.99; linewidths ΓP = 25.8 MHz, ΓS = 13.706 MHz are chosen according to
the high-cooperativity setup in Ref. [29], except the dot–dash lines of (b).

Solving the steady-state solution of the quantum Langevin
equation [16,71] for ĤI in the Fourier domain, we obtain the
broadband version of Eq. (3). The probe transmissivity spectrum
is √︁

κ(ω)eiθP(ω) = −1 +
2ζP(1 − 2i ω

ΓS
)

(1 − 2i ω

ΓP
)(1 − 2i ω

ΓS
) + C

, (13)

the signal-to-probe transduction efficiency spectrum is√︁
η(ω)eiθS(ω) =

2i
√

C
√
ζPζS

(1 − 2i ω

ΓP
)(1 − 2i ω

ΓS
) + C

. (14)

As a reminder, hereω is in the frame rotating with the cavity res-
onance frequencies. The intrinsic loss spectrum can be obtained
correspondingly as κE(ω) = 1 − κ(ω) − η(ω). It is worthwhile
to note that the cavity is asymptotically lossless (κE(ω) → 0)
at the cavity overcoupling limit (ζP, ζS → 1). For weak non-
linear coupling C ≪ 1, the peak conversion efficiency η(ω =
0) = ζPζS · 4C/(1 + C)2; the half-power bandwidth of η(ω) is
B ≃ min{ΓS, ΓP}.

Now we demonstrate the EA advantage. For simplicity, we
assume a broadband two-mode squeezing for the squeezer
G(ω) = G; for the gain in the antisqueezing, however, the
optimal choice of phase matching θP(ω) and gain G′⋆(ω) in
Eq. (6) will be frequency dependent. Nevertheless, these require-
ments can be achieved by properly engineering the squeezing
cavities, e.g., using a sequential array of parametric ampli-
fiers as we present in Appendix A, Section 5. In particular,
frequency-dependent squeezing is already being utilized in the
Laser Interferometer Gravitational-Wave Observatory (LIGO)
[72,73]. According to Eq. (8), the EA transduction efficiency is
ηEA(ω) = η (ω)G/[G (1 − κ (ω)) + κ (ω)]. At the G→∞ limit,
we obtain a closed-form expression

ηEA(ω)|G→∞ =
CΓ2

S ζS

Γ2
S (C + 1 − ζP) + 4ω2 (1 − ζP)

. (15)

With entanglement assistance, we observe an improvement in
the peak efficiency ηEA(ω = 0)|G→∞ = ζS/[1 + (1 − ζP)/C], and a

bandwidth broadening BEA |G→∞ =
√︁

1 + C/(1 − ζP)ΓS. Remark-
ably, the EA bandwidth no longer depends on the probe linewidth
ΓP at G→∞. Hence the EA advantage is not limited to the weak
nonlinear coupling scenarios: even though the on-resonance
efficiency can get close to unity with stronger pumping, entangle-
ment allows broadband improvement via bandwidth broadening.
Similar quantum advantages using non-classical probes have
been found in cavity dark matter searches [44,74].

We plot an example of the EA conversion efficiency spectrum
ηEA(ω) in Fig. 3(a). As predicted, we see that the bandwidth
of the non-EA case (G = 0 dB) is approximately ΓS, and the
EA bandwidth grows as G increases in addition to the peak
efficiency advantage.

In the following, we quantify the EA advantage with three
measures of transduction performance: EBP, minimum thresh-
old of cooperativity for quantum communication, and broadband
quantum capacity.

4.1. Fundamental Limit on EBP

To quantify the broadband transduction efficiency, we define
EBP as the integral of transduction efficiency over the entire
spectrum [see Eq. (1)]. This metric is particularly useful for
broadband quantum sensing applications [44].

Theorem 2 (The EBP limit for electro-optical transduction).
Without entanglement assistance, the EBP of quantum transduc-
tion with Hamiltonian Eq. (12) [which leads to lineshape η(ω),
Eq. (14)] is

B ≡

∫ ∞

−∞

η(ω)dω =
2πCΓPΓSζPζS
(C + 1)(ΓP + ΓS)

≤ Bmax, (16)

which achieves the maximumBmax ≡ πζSζP |gα | ≤ π |gα |, at ΓP =

ΓS = 2|gα | (i.e., C = 1) given a fixed |gα |.
The full derivation is in Appendix A, Section 3. Here Bmax

is a fundamental limit for the non-EA case determined by
the nonlinear coupling coefficient g and pump power ∝ |α |2,
which is independent on any higher-Q cavity engineering. For
electro-optomechanical transducers, we present a similar limit
in Subsection 4.3.
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Meanwhile, we also derive a closed-form expression of EA
EBP BEA ≡

∫ ∞
−∞
ηEA(ω)dω, which is too lengthy to be displayed

here. Under the same cavity setup ΓP = ΓS = 2|gα |, ζP = ζS = 1,
we obtainBEA = G1/4π |gα | ≥ G1/4Bmax, breaking the fundamen-
tal limit Bmax of the non-EA case. Allowing freely choosing
ΓP = ΓS = 2

√
G|gα |, we have BEA ≃ 0.703

√
Gπ |gα | with

√
G

advantage compared with Bmax. When G→∞,

BEA |G→∞ →
πCΓSζS

2
√︁
(1 + C − ζP)(1 − ζP)

, (17)

which diverges as ζP → 1 as expected.
While the above optimal results provide the ultimate limits,

here we also consider the practical case of low cooperativity
C ≪ 1. In this case, entanglement can enhance EBP by a factor
of G, BEA = G · B when ζP = ζS = 1.

Under imperfect ζP, ζS<1, we plot BEA in Fig. 3(b). Still, we
observe orders of magnitude of EA advantage. Either with ΓS, ΓP

fixed (solid lines), or with optimized ΓS, ΓP over each given
|gα | (dot–dashed lines), the EA advantages are demonstrated
over the maximal non-EA EBP Bmax (blue dot–dashed line)
over a wide range of effective nonlinear coupling strength |gα |,
corresponding to cooperativity C ∈ [0.01, 10] for the ΓS, ΓP fixed
cases.

4.2. Threshold of Cooperativity and Broadband
Quantum Information Rate

While the EBP provides an intuitive characterization of the
transduction efficiency, the ultimate quantum information trans-
mission rates are characterized by the quantum capacity [62–64]
across the entire spectrum. When the environment is cooled to
vacuum, the one-way quantum capacity of transducer is given
by Eq. (2) [65,66].

At the weak nonlinear coupling limit, the maximum trans-
duction efficiency locates at the on-resonance frequency ω = 0.
For the non-EA case, we have η(0) = 4CζPζS/(1 + C)2 which
surpasses the zero-capacity threshold 1/2 only when [43]

C ≥ Cth = −1 + 4ζSζP −
√︁

8ζSζP(2ζSζP − 1) ≥ 3 − 2
√

2. (18)

With the EA boost, we have the threshold

Cth,EA = − 1 + ζP ((4ζS − 2)G + 2)

− 2
√︁
ζPG (ζP (4ζS + (1 − 2ζS)2G − 1) − 2ζS).

(19)

When G→∞, the threshold converges to Cth → (1 − ζP)/(2ζS −
1) when ζS ≥ 1/2.

Additional insight can be obtained by considering the over-
coupling limit of ζP = ζS = 1, threshold in Eq. (19) leads to
Cth,EA |ζP=ζS=1 = 1/(

√
G +
√

1 + G)2, which is lowered by a factor
of 1/G asymptotically. It is easy to check that ηEA(0) approaches
unity at the large G limit. We plot the threshold in the inset of
Fig. 3(c) for a practical case and identify a reduction by over an
order of magnitude when squeezing gain G is large.

We plot Q1 versus the cooperativity C for different gain G in
Fig. 3(c). Merely G = 10 dB squeezing is sufficient to enable
orders of magnitude advantage at low cooperativity. Remark-
ably, for large C the quantum capacity without probe–ancilla
entanglement begins to decay with C as the cavity goes into
the oscillatory region with Rabi splitting; in contrast, the quan-
tum capacity assisted by probe–ancilla entanglement can further
increase with C ≫ 1.

4.3. Generalization to Transduction with Intermediate
Modes

Microwave–optical quantum transduction is known to be
enhanced by mediating modes. As an example, we focus on
the electro-optomechanical transduction, which yields the state-
of-the-art efficiency so far [30]. In the frame rotating at the
cavity resonance frequencies for microwave and optical modes,
the cavity electro-optomechanical dynamics can be described
by the effective Hamiltonian [11,71,75]

HI = ℏgSâ†SâSx̂M + ℏgPâ†PâPx̂M , (20)

where âS, âP, âM are the annihilation operators of the signal
(microwave/optical), probe (optical/microwave), and mediating
(mechanical) modes, and x̂M = xzp(âM + â†M) with xzp =

√︂
ℏ

2mωM

being the zero-point motion. The mechanical oscillator has mass
m and frequency ωM . Here the nonlinear coupling coefficients
gS, gP are in units of hertz per meter. We defineGS,P ≡ gS,Pxzp |αS,P |

proportional to the nonlinear coupling coefficients and pumping
amplitudes, analogous to g|α | in the electro-optical coupling
[16].

Consider red sideband pumping and the resolved sideband
limit, the electro-optomechanical coupling yields the beam-
splitter-type input–output relation similar to the electro-optics,
up to a different spectral lineshape. Thus, most of our conclu-
sions for the electro-optics can be trivially generalized to the
electro-optomechanics. Here we present the EBP limit.

Theorem 3 (The EBP limit for electro-optomechanical trans-
duction). Without entanglement assistance, the EBP of quantum
transduction with Hamiltonian Eq. (20) is upper-bounded by
Eq. (A.42) as a function of GP,GS.

Specifically, in the symmetric case of GP = GS = G, the EBP
is upper-bounded by

BGP=GS ≤

√︁
107 + 51

√
17

32
πζPζSG ≃ 1.749ζPζSG. (21)

The full derivation is in Appendix A, Section 6b.
Our EA transduction protocol also applies to electro-

optomechanical transduction. Similar enhancement in EBP
proportional to two-mode squeezing gain G can overcome the
above fundamental EBP limit. At the overcoupling limit ζP, ζS →
1 and lossless mechanical resonator, the overall coupling loss
κE(ω) → 0, then the signal can always be perfectly recovered
with strong squeezing G→∞ as ηEA(ω)|κE→0,G→∞ → 1 .

5. DISCUSSION
The most challenging part of the proposed EA transduction
is the frequency-dependent inline squeezing. In the optical-to-
microwave transduction, the required microwave inline squeez-
ing can be readily realized to high gain [53–55]. Alternative
to realizing optical inline squeezing for microwave-to-optical
transduction, one can also utilize the optical-to-microwave
transduction to generate optical–microwave entanglement from
optical–optical entanglement [76,77], then teleportation enables
bi-directional transduction [25,43,78]. We present a simple
frequency-dependent antisqueezer design using a sequential
array of cavity parametric amplifiers in Appendix A, Section 5,
which approaches the desired antisqueezing spectrum well and
achieves scalable advantage in the broadband quantum capacity
over the non-EA transduction.
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In this paper we have focused on the beam-splitter-type
nonlinear couplers. We expect the intraband entanglement to
similarly enhance the squeezing-type couplers, which we leave
for future study. We note that the squeezing-type transducers
cannot perform any quantum transduction without our pro-
posal of intraband entanglement assistance, because it forms
a phase-conjugate amplifier of zero quantum capacity [61,79].

Compared with the proposal with in-cavity squeezing [80]
that boosts a single quadrature transduction, our approach allows
transduction of both quadratures, and thus is free from encoding
in the ideal case, and does not require additional pumping at
the cavity that can lead to additional heating. We note that the
in-cavity squeezing protocol [80] requires the cavity system to
be on resonance with minimal detuning, resulting in a highly
limited operating bandwidth. In contrast, our protocol is robust
against the detunings (as shown in Section 4 and Appendix
A, Section 4b) and is only subject to frequency-independent
requirements of relatively low intrinsic loss (achievable by over-
coupled cavities) and strong squeezing, thus enabling broadband
transduction. Moreover, an explicit protocol that recovers the
initial quantum state is absent in Ref. [80]. Compared with the
GKP-based protocol in Ref. [40] that requires the input signal to
be GKP encoded, our protocol relies on less challenging quan-
tum resources of inline squeezing. Distinct from both the two
protocols above, our proposal lifts the requirement of encoding
and thus can be applied to transduce general bosonic quan-
tum states more compatible with existing optical communication
infrastructures. While Ref. [40] only considers the perfect cavity
of κE = 0, our protocol shows advantage for general scenarios.
Compared with the adaptive protocol [39], our protocol does
not require the precise broadband homodyne measurement and
adaptive control which include delay lines that increase the loss,
and limit the capacity and speed of transduction. We note that
our proposal requires two-mode squeezers, similar to the single-
mode squeezers in Ref. [39], of which the bandwidth is being
actively increased [55,57,81].

APPENDIX A
1. Full Derivation of the Overall Input–Output Relation of
the EA Transducer

Consider initial probe and ancilla modes ÊP0 , ÊA0 in vacuum.
The two-mode squeezer before nonlinear coupling gives

ÊP =
√

GÊP0 +
√

G − 1Ê†A0
,

ÊA =
√

G − 1Ê†P0
+
√

GÊA0 .
(A.1)

The nonlinear coupling forms a beam splitter between the
squeezed probe ÊP and the signal ÊS,

ÊP′ = eiθP
√
κÊP + eiθS

√
ηÊS +

√
κEÊE, (A.2)

while ancilla ÊA is intact. Here, the intrinsic loss κE = 1 − η − κ
and the environment mode ÊE is in vacuum. After the nonlinear
coupling, the antisqueezer, with phase compensation −θP on the
probe, gives the final output

ÊPout = e−iθP
√

G′ÊP′ −
√

G′ − 1Ê†A

= e−iθP
√

G′
(︂
eiθP
√
κÊP + eiθS

√
ηÊS +

√
κEÊE

)︂
−
√

G′ − 1Ê†A

=
(︂√

GκG′ −
√︁
(G′ − 1)(G − 1)

)︂
ÊP0 + ei(θS−θP)

√︁
ηG′ÊS

+
(︂√︁
(G − 1)κG′ −

√︁
(G′ − 1)G

)︂
Ê
†

A0
+ e−iθP

√︁
(1 − η − κ)G′ÊE.

(A.3)

To keep the output to vacuum when the input signal is vacuum,
one needs to annihilate the coefficient in front of Ê†A0

in Eq. (A.3),
leading to

G′ ← G′⋆ ≡
1

1 − κ + κ/G
. (A.4)

By such antisqueezing, finally the output reduces to

Ê⋆
Pout =
√
κÊP0 +

√
ηGei(θS−θP)ÊS +

√︁
(1 − η − κ)Ge−iθP ÊE√︁

G (1 − κ) + κ
.

(A.5)

Note that ÊP0 , ÊE are in the vacuum state, the output can be
written as

Ê⋆
Pout =

√
ηEAei(θS−θP)ÊS +

√︁
1 − ηEAÊVAC, (A.6)

where the noise background ÊVAC is in the vacuum state, we
define the EA transduction efficiency as

ηEA ≡
ηG

G(1 − κ) + κ
. (A.7)

At the same time, we can obtain the ancilla output

ÊAout = −eiθP
√

G′ − 1Ê†P′ +
√

G′ÊA

= −eiθP
√

G′ − 1
(︂
e−iθP
√
κÊ†P + e−iθS

√
ηÊ†S +

√
κEÊ

†

E

)︂
+
√

G′ÊA

=
(︂
−
√︁

Gκ(G′ − 1) +
√︁

G′(G − 1)
)︂
Ê
†

P0

− ei(θP−θS)
√︁
η(G′ − 1)Ê†S

+
(︂
−
√︁
(G − 1)κ(G′ − 1) +

√
G′G

)︂
ÊA0

− e−iθP
√︁
(1 − η − κ) (G′ − 1)ÊE ,

(A.8)

G′←−=G′⋆= − ei(θP−θS)
√︁
ηEAκ(1 − 1/G)Ê†S

+ (1 − κ)

√︄
G − 1

1 − κ + κ/G
Ê
†

P0
+ vac

(A.9)

where vac represents the vacuum noise terms. The ancilla output
is dominated by the quantum amplification noise at the limit
G→∞ with η>0.

2. Impact of Loss in Imperfect Squeezing

Now we investigate the impact of loss in imperfect squeezers
and antisqueezers. In fact, we only need to consider the loss for
the ancilla after the squeezer S(G) and before the antisqueezer
S†(G′). This is because any loss before the squeezer does not
change the vacuum state of the input ancilla and any loss after
the antisqueezer does not affect the output probe (we discard
the output ancilla since it is dominated by amplification noise
when G is large), meanwhile any additional signal loss between
squeezer and antisqueezer can be merged into the intrinsic loss
κE, which is already included in the model of the main text.
Therefore, one can also regard the squeezing-related loss as
imperfect ancilla storage.
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Denote the ancilla storage efficiency as κA (with loss 1 − κA),
Eq. (A.2) becomes

ÊP′ = eiθP
√
κÊP + eiθS

√
ηÊS +

√
κEÊE,

ÊA′ =
√
κAÊA +

√︁
1 − κAÊF,

(A.10)

where F is the environment mode involved in the ancilla loss,
initialized in the vacuum state. With the additional loss, the final
output probe in Eq. (A.3) becomes

ÊPout = e−iθP
√

G′ÊP′ −
√

G′ − 1Ê†A′

=
(︂√

GκG′ −
√︁
(G′ − 1)(G − 1)κA

)︂
ÊP0

+ ei(θS−θP)
√︁
ηG′ÊS +

(︂√︁
(G − 1)κG′ −

√︁
(G′ − 1)GκA

)︂
Ê
†

A0

+ e−iθP
√︁
(1 − η − κ)G′ÊE −

√︁
(G′ − 1)(1 − κA)Ê†F.

(A.11)

The last term invokes an additional amplification noise back-
ground, which leads to the total noise background of thermal
photon number

NB =
(︂√︁
(G − 1)G′κ −

√︁
(G′ − 1)GκA

)︂
2 + (G′ − 1) (1 − κA)

(A.12)
as a consequence of the nonzero ancilla loss 1 − κA. In this case,
the thermal noise in the output probe cannot be fully cancelled
any more. The optimal choice that minimizes the output noise is

G′⋆ =
(G − 1)κA +

√︁
(G − 1)2κ2

A − 2(G − 1)κA(Gκ + κ − 1) + ((G − 1)κ + 1)2 + (G − 1)κ + 1

2
√︁

2κ (G2 (−κA) + κA + G − 1) + ((G − 1)κA + 1) 2 + (G − 1)2κ2
. (A.13)

We note that the additional noise, Eq. (A.12), does not increase
with gain G. Thus, at the strong squeezing regime G ≫ 1, the
optimal choice of G′ is similar to Eq. (6) as

G′⋆ ≃
GκA

G(κA − κ) + κ
≃
κA
κA − κ

. (A.14)

Accordingly, the EA efficiency ηEA is similar to Eq. (8) as

ηEA = ηG′⋆ ≃ η
GκA

G(κA − κ) + κ
≃ η

κA
κA − κ

. (A.15)

In the presence of noise, the quantum capacity formula in Eq. (2)
does not apply. Instead, we adopt a lower bound of the quantum
capacity (in the units of bits) of the resulting bosonic thermal loss
channel of transmissivity ηEA and additive thermal background
photon number NB is [65]

qLB = max
{︃
0, log2

(︃
ηEA

|1 − ηEA |

)︃
− g

(︃
NB

|1 − ηEA |

)︃}︃
, (A.16)

where g(x) ≡ (x + 1) log2(x + 1) − x log2 x.
Now we evaluate the impact of the ancilla loss on the quantum

communication rate of the EA transduction. As shown in Fig. 4,
the advantage of our protocol is robust to ancilla loss. The advan-
tage survives losses as severe as 10−1 = 10%. Considering that
the ancilla is not involved in the nonlinear signal–probe coupling
which invokes extra losses, we expect 1 − κA can be typically

Fig. 4. Quantum capacity lower bound qLB versus non-EA trans-
duction efficiency η under various ancilla loss 1 − κA: (a) G = 10
dB; (b) G = 20 dB; black dashed, non-EA, G = 0 dB; intrinsic loss
κE = 0.01.

maintained lower than κE which is 1% here. Such robustness
comes from the fact that the probe encounters loss 1 − κ = κE + η
during the nonlinear coupling process, and therefore we expect
when 1 − κA<κE + η, the ancilla can enhance transduction as a
reference with smaller loss.

3. Full Derivation of EBP of Electro-Optical Transduction

To solve the EBP, we make use of the integration formula∫ ∞

−∞

dω
1

C1 + 4ω2C2 + 16ω4 =
π

√
2
√

C1

√︁
C2 + 2

√
C1

. (A.17)

Without the EA [see Eq. (14)], we have

η(ω) =
4CΓ2

PΓ
2
S ζPζS

(C + 1)2Γ2
PΓ

2
S + 4ω2

(︁
−2CΓPΓS + Γ

2
P + Γ

2
S

)︁
+ 16ω4

.

(A.18)
With EA and optimal G′ [see Eq. (8)], we have

ηEA(ω)

=
4CΓ2

PΓ
2
S ζPζSG

Γ2
PΓ

2
S

(︁
4(C+ 1)ζP(G− 1)+ (C+ 1)2 − 4ζ 2

P (G− 1)
)︁
+ 4ω2

×
(︁
−2CΓPΓS + Γ

2
S + Γ

2
P(4ζP(ζP − ζPG+G− 1)+ 1)

)︁
+ 16ω4

.

(A.19)
At the overcoupling limit of ζP = ζS = 1, Eq. (A.19) simplifies
to

ηEA(0)|ζP=ζS=1 = η(0)
G

[1 + 4(G − 1)C/(C + 1)2]
. (A.20)

Now consider cooperativity C = 4|gα |2/ΓSΓP, we fix the pump
power and the nonlinear coupling coefficient, and consider EBP
as a function of the cavity parameters ΓS, ΓP. With Eq. (A.17),
we have without EA

B ≡

∫ ∞

−∞

η(ω)dω =
2πCΓPΓSζPζS

CΓP + CΓS + ΓP + ΓS

= 8π |gα |ζPζS
Γ̃PΓ̃S

(Γ̃P + Γ̃S)(4 + Γ̃PΓ̃S)
,

(A.21)

where we have defined Γ̃X = ΓX/|gα |.
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For the EA formula, we can also obtain the lengthy closed-
form solution of EA EBP BEA ≡

∫ ∞
−∞
ηEA(ω)dω from Eq. (A.17),

which we will not display here. For ζP = ζS = 1, we have a
slightly simpler result,

BEA =
8πΓ̃PΓ̃SG|gα |√︃

(Γ̃PΓ̃S(Γ̃PΓ̃S + 16G − 8) + 16)
(︂
Γ̃2

P + Γ̃
2
S + 2

√︁
Γ̃PΓ̃S(Γ̃PΓ̃S + 16G − 8) + 16 − 8

)︂ . (A.22)

4. Full Model of Electro-Optical Transduction

Without loss of generality, here we take the microwave-to-optical
transduction as an example, where the signal mode is at the
microwave band and the probe mode is at the optical band.
The cavity electro-optical dynamics based on a second-order
nonlinear optical medium can be described by the Hamiltonian
[15,28,29]

H = ℏωSâ†SâS + ℏωPâ†PâP − ℏgâ†PâP(âS + âS), (A.23)

where âS, âP are the annihilation operators of the signal
(microwave), probe (optical), the frequencies of signal and
probe are denoted asωS,ωP, respectively, the nonlinear coupling
coefficient is g in hertz.

Now consider a strong optical pump of mean field αe−iωpump t

with α ≫ 1, at frequency ωpump = ωP + ∆ at the red sideband
(∆<0) of the optical probe âP, then the interaction Hamiltonian
becomes −ℏg(â†S + âS)(âP + αe−iωpump t)†(âP + αe−iωpump t). Moving
âP into the frame rotating with the optical pump, with the
rotating-wave approximation the final Hamiltonian becomes

Ĥ = ℏωSâ†SâS − ℏ∆â†PâP − ℏg(α∗â†SâP + αâSâ†P). (A.24)

In the main text, we considered the ideal case of ∆ = −ωS, thus
one could move âS, âP into the frame rotating with the cav-
ity resonance frequency instead and obtain the much simpler
Hamiltonian [Eq. (12)].

The input–output relation is described by the Langevin equa-
tion [71,75]. Below, we summarize the solution of Langevin
equation for cavity electro-optical transduction [28,29].

a. Input–Output Relation

Consider input field operator vector Êin ≡ [ÊS,in, ÊS,E, ÊP,in, ÊP,E,
Ê
†

S,in, Ê
†

S,E, Ê†P,in, Ê
†

P,E]
T , where ÊS,in, ÊP,in are input fields at signal

and probe frequencies, respectively, ÊS,E, ÊP,E are environment
fields at signal and probe frequencies, respectively; and similarly
output field operator vector Êout ≡ [ÊS,out, ÊP,out, Ê†S,out, Ê

†

P,out]
T ;

also the cavity mode annihilation operator vector â ≡
[âS, âP, â†S, â

†

P]
T . With the strong optical pump, the Langevin

equation is linearized as

d
dt

â(t) = Aâ(t) + BÊin(t), Êout(t) = Câ(t) + DÊin(t),
(A.25)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
ΓS

2
− i∆S igα 0 0

igα −
ΓP

2
+ i∆P 0 0

0 0 −
ΓS

2
+ i∆S −igα∗

0 0 −igα∗ −
ΓP

2
− i∆P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B =
⎛⎜⎜⎜⎝
√
γS,c

√
γS,0 0 0 0 0 0 0

0 0 √
γP,c

√
γP,0 0 0 0 0

0 0 0 0 √
γS,c

√
γS,0 0 0

0 0 0 0 0 0 √
γP,c

√
γP,0

⎞⎟⎟⎟⎠ ,

C =
⎛⎜⎜⎜⎝
√
γS,c 0 0 0
0 √

γP,c 0 0
0 0 √

γS,c 0
0 0 0 √

γP,c

⎞⎟⎟⎟⎠ ,

D =
⎛⎜⎜⎜⎝
−1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0

⎞⎟⎟⎟⎠ ,

(A.26)
where γS,0, γS,c are the intrinsic loss rate and the coupling rate
of the signal cavity, similar for γP,0, γP,c of the probe cavity, and
ΓS = γS,0 + γS,c, ΓP = γP,0 + γP,c are total linewidths. We define
the coupling ratios ζP ≡ γP,c/ΓP, ζS ≡ γS,c/ΓS. In the steady-state
limit, it is convenient to consider the frequency spectrum of
the input–output relation. Fourier transform of the Langevin
equation gives

Êout(ω) = S(ω)Êin(ω), (A.27)

whereω is the frequency at the frame rotating with the pump fre-
quency for the optical probe (stationary frame for the microwave
signal), the spectral transfer matrix S(ω) = C(−iωI4 − A)−1B +
D, I4 is a 4 × 4 identity matrix. Note that here ω is in a differ-
ent rotating frame from that in main text. From Eq. (A.36), we
obtain the cavity transmissivity for the optical probe

κoo(ω) = |S23(ω)|
2 =

C2Γ2
PΓ

2
S − 2CΓPΓS (ΓP (2ζP − 1) ΓS + 4 (ω − ωS) (∆P + ω)) +

(︁
Γ2

S + 4 (ω − ωS)
2
)︁ (︁
Γ2

P (1 − 2ζP) 2 + 4 (∆P + ω)
2
)︁

Γ2
PΓ

2
S

|︁|︁|︁C + (︂
1 − 2i(ω+∆P)

ΓP

)︂ (︂
2i(ωS−ω)
ΓS
+ 1

)︂|︁|︁|︁ 2
,

(A.28)

and the intrinsic conversion efficiency of electro-optical trans-
duction

ηeo(ω) = |S13(ω)|
2 =

4CζPζS|︁|︁|︁C + (︂
1 − 2i(ω+∆P)

ΓP

)︂ (︂
2i(ωS−ω)
ΓS
+ 1

)︂|︁|︁|︁ 2
, (A.29)

which agree with Eq. (13) and Eq. (14) with ∆→

−ωS, ω→ ω + ωS. Below, we evaluate the impact of the
pump detuning imperfection δ ≡ ∆ + ωS from the ideal
detuning −ωS.
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Fig. 5. Figure 3 with pump detuned from the probe cavity resonance frequency by various ∆ = ωpump − ωP = −ωS + δ, where δ is the
detuning imperfection from the ideal detuning −ωS. We consider δ ranging from 0 to 40 MHz (≃ 3ΓS). Here the squeezer gain is fixed to
G = 30 dB. (a) The EA transduction efficiency spectrum ηEA(ω) under various δ. C = 0.1. (b) The EA EBP BEA versus the effective nonlinear
coupling strength |gα |. We fix ΓP, ΓS, for which we provide the cooperativity C values as the upper axis ticks. (c) Broadband quantum
capacity rate Q1 versus cooperativity C. In all figures, ζP = ζS = 0.99; linewidths ΓP = 25.8 MHz, ΓS = 13.706 MHz are chosen according to
the high-cooperativity setup in Ref. [29].

b. Evaluation of the Impact of Imperfect Pump Detunings

Figure 5 shows the impact on Fig. 3 when the pump detun-
ing ∆ = ωpump − ωP deviates from the ideal value −ωS by an
imperfection δ. We plot δ ranging from 0 to 40 MHz (≃ 3B),
where B ≈ ΓS = 13.706 MHz is the bandwidth of the cavity
electro-optical coupler. In Fig. 5(a), we see a decay in the EA
efficiency ηEA with increasing δ, but at a negligible level. Such
robustness against detuning imperfection δ is because the intrin-
sic loss spectrum κE(ω) = 1 − κ(ω) − η(ω) is centered around
the probe cavity resonance frequency ω = −∆ (ω is in the frame
rotating with pump) while the electro-optic conversion effi-
ciency spectrum η(ω) is always centered around ω = ωS due
to energy conservation, thus the high efficiency region enjoys
a smaller κE for larger detuning imperfection |δ |, and our EA
protocol benefits from small κE as shown in Eq. (11). Such
robustness of EA efficiency spectrum ηEA(ω) immediately leads
to similar robustness of the EA EBP and quantum capacity, as
shown in Figs. 5(b) and 5(c).

5. Implementation of Frequency-Dependent
Antisqueezer

Here we present a simple design of the frequency-dependent
antisqueezer to beat the quantum capacity of the non-EA
transduction.

We aim to approach the noiseless antisqueezing gain spec-
trum G′⋆(ω) according to Eq. (6). Ideally, G′⋆(ω) ∝ 1/η(ω)
according to Eq. (10) at G→∞, which is approximately the
inverse of the quasi-Lorentzian cavity lineshape η(ω). We pro-
pose to adopt a sequential array of cavities to approximate the
required spectrum. Here, we consider a specific setup of a two-
periodic array—alternating antisqueezers and squeezers—as
shown in Fig. 6. We consider a specific class of parametric
amplifiers (PAs) of given lineshape as squeezers (and anti-
squeezers up to π phase) with tunable gains and linewidths, and
concatenate the squeezers and antisqueezers of various gains
and linewidths sequentially together, to approach the desired
squeezing lineshape G′⋆(ω).

We investigate a specific class of doubly resonant cavity PA
[82] as an example, which is subject to the Heisenberg–Langevin
equations d

dt âSi = −ΓiâSi + giΓiâ†Ii +
√

2ΓiâSi ,in, d
dt âIi = −ΓiâIi +

giΓiâ†Si
+
√

2ΓiâIi ,in for signal mode Si and idler mode Ii reso-
nant at the same frequency, where gi, Γi are the normalized
gain (the ratio of pump power over threshold power) and
half-linewidth for the ith PA. The squeezing gain lineshape is
then

Gi(ω) = 1 +
4g2

i(︂
−g2

i −
ω2

Γ2
i
+ 1

)︂2
+ 4ω2

Γ2
i

. (A.30)

Fig. 6. Schematic of the design of frequency-dependent antisqueezer using N-layer two-periodic sequential PA array with individually
tunable gain spectrum Gi(ω)’s determined by normalized gain gi’s and linewidth Γi’s, i = 1, 2, . . . , N. Each squeezer component is implemented
by a PA, while each antisqueezer component consists of the same type of PA with a π phase shift on either signal or idler input port.
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Fig. 7. Performance of various designs of antisqueezer. (a) Control group, EA advantage of an ultra-broadband antisqueezer of constant
gain G′(ω) = G′ in QLB [Eq. (A.32)] over non-EA QG=0dB

LB , the x axis is normalized by the on-resonance noiseless antisqueezing gain G′⋆ω=0 =
1

1−κ(ω=0)+κ(ω=0)/G (in decibel units); (b) EA advantage of frequency-dependent antisqueezer using N-layer two-periodic sequential PA array
(see Fig. 6) with numerically optimized gi’s and Γi’s, compared with the advantage using noiseless antisqueezing G′⋆ (black dashed) which
can be surpassed for G ≤ 10 dB, since ηEA can be further increased at the cost of increasing noise; (c) the overall antisqueezing gain spectrum
G′(ω) achieved by the N-layer sequential PA arrays, under fixed input squeezing G = 10 dB, compared with the noiseless antisqueezing
gain spectrum G′⋆(ω) (black dashed). In all panels, κ(ω), η(ω) are calculated using the parameter setup ΓP = 25.8 MHz, ΓS = 13.706 MHz,
chosen from the high-cooperativity setup in Ref. [29]. Here we consider ideally overcoupled cavities ζP = ζS = 1 to accelerate the numerical
simulation; and C = 0.49, higher than C = 0.1 in the main text, since the EA advantage is always infinite as QG=0dB

LB = 0 in the latter case.

It is trivial to derive the overall gain for the N-layer sequen-
tial array iteratively, while the general formula of any N is
too lengthy to be presented here. Note that the overall gain
is not simply the multiplication of individual gains, due to
the interferences with the idler. For N = 2, the overall gain
G′(ω) =

(︂√︁
(G1(ω) − 1)(G2(ω) − 1) −

√︁
G1(ω)G2(ω)

)︂2
.

An imperfect antisqueezer gain G′ invokes additional thermal
background of mean photon number

NB(ω) =
(︂√︁

G (G′(ω) − 1) ∓
√︁
(G − 1)κ(ω)G′(ω)

)︂2
, (A.31)

where∓ is− for an antisqueezer or+ for a squeezer. For G′(ω) →
1, κ(ω) → 1, it reduces to the well-known quantum-limited
phase-insensitive linear amplification noise G − 1 [36,69].

A lower bound of the broadband quantum capacity rate of the
resulting bosonic thermal loss channel of transmissivity ηEA and
additive thermal background photon number NB has been pre-
sented as Eq. (A.16) in Appendix A, Section 2. The broadband
rate of it is

QLB =

∫ ∞

−∞

max
{︃
0, log2

(︃
ηEA(ω)

|1 − ηEA(ω)|

)︃
− g

(︃
NB(ω)

|1 − ηEA(ω)|

)︃}︃
dω
2π

,

(A.32)
which is in units of bits per seconds. We use this lower bound
to benchmark the performance of our frequency-dependent
antisqueezer designs using the sequential PA array.

In Fig. 7, we evaluate the performance of the protocol.
We begin with a control group, a simple ultra-broadband

antisqueezer of uniform gain spectrum, to provide a baseline
of the advantage of our proposal of the sequential PA array.
Figure 7(a) plots the EA advantage in quantum capacity over the
non-EA case, with the uniform antisqueezer of constant gain G′.
We find that the optimal choice of G′ close to the noiseless on-
resonance value G′⋆ω=0 as expected. However, the EA advantage

is limited to <2. In fact, the advantage degrades as the input
squeezing G increases from 5 dB (blue) to 20 dB (red). For
G ≥ 15 dB, the EA protocol with such uniform antisqueezer
cannot even beat the non-EA case. This is because the quantum
amplification noise NB(ω) grows with the mismatching between
G′ and the noiseless gain G′⋆(ω) [Eq. (6)] more rapidly as G
increases, as shown in Eq. (A.31).

Next, we numerically optimize the normalized gain gi’s and
linewidth Γi’s of the PAs to maximize the quantum capac-
ity lower bound of Eq. (A.32). In Fig. 7(b), we observe that
the advantage bottleneck due to antisqueezing mismatching is
resolved by our sequential PA. Now the EA advantage increases
with G. With N = 4, a factor of 6.44 advantage is achieved at
G = 20 dB. Further increasing the layer number N may con-
tinue to boost the advantage, while the numerical optimization
is too costly and we leave it for future study. Remarkably, we
observe that the noiseless performance can be surpassed by our
sequential PA antisqueezer for G ≤ 10 dB, this is not surprising
since the EA efficiency ηEA(ω) can always be further increased
by larger G′(ω) at the cost of increasing noise NB(ω) (which
increases with G), note that data processing inequality does
not apply here because overamplifying (over-antisqueezing) is
not a simple Gaussian amplification channel here with the
entanglement assistance. In Fig. 7(c), we verify that, with
increasing layer number N, the optimized overall antisqueezing
gain spectrum indeed approaches the inverse-Lorentzian shape
G′⋆(ω) ∝ 1/η(ω) as expected.

6. Electro-Optomechanical Transduction

The cavity electro-optomechanical dynamics can be described
by the full Hamiltonian [11,75]

H = ℏωSâ†SâS + ℏωPâ†PâP + ℏωM â†M âM − ℏgSâ†SâSx̂M − ℏgPâ†PâPx̂M ,
(A.33)
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where âS, âP, âM are the annihilation operators of the sig-
nal (microwave), probe (optical), and mediating (mechanical)
modes, x̂M = xzp(âM + â†M) with xzp =

√︂
ℏ

2mωM
, the frequencies

of signal, probe, and mediating modes are denoted as ωS,ωP,
and ωM . Here the nonlinear coupling coefficients gS, gP (of
electro-mechanical and optomechanical couplings, respectively)
are in units of hertz per meter. (In the brackets we take the
microwave-to-optical transduction as an example.) We define
GS,P ≡ gS,PxzpαS,P proportional to the nonlinear coupling coef-
ficients and the pumping amplitudes, analogous to gα in the
electro-optical coupling [16]. Without loss of generality, we
assume GS,P real.

The input–output relation is described by the Langevin equa-
tion [71,75]. Below we summarize the solution of Langevin
equation for cavity electro-optomechanical transduction [11].

a. Input–Output Relation

Consider input field operator vector Êin ≡ [ÊS,in, ÊS,E, ÊP,in, ÊP,E,
ÊM,E, Ê†S,in, Ê

†

S,E, Ê†P,in, Ê
†

P,E, Ê†M,E]
T , where ÊS,in, ÊP,in are input

fields at signal and probe frequencies, respectively,
ÊS,E, ÊP,E, ÊM,E are environment fields at signal, probe, and
mediating frequencies, respectively; and similarly output field
operator vector Êout ≡ [ÊS,out, ÊP,out, Ê†S,out, Ê

†

P,out]
T ; also the cavity

mode annihilation operator vector â ≡ [âS, âP, âM , â†S, â
†

P, â†M]T .
With strong pumps, the Langevin equation is linearized
as

d
dt

â(t) = Aâ(t) + BÊin(t), Êout(t) = Câ(t) + DÊin(t),
(A.34)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
ΓS

2
+ i∆S 0 iGS 0 0 iGS

0 −
ΓP

2
+ i∆P iGP 0 0 iGP

iGS iGP −
ΓM

2
− iωM iGS iGP 0

0 0 −iGS −
ΓS

2
− i∆S 0 −iGS

0 0 −iGP 0 −
ΓP

2
− i∆P −iGP

−iGS −iGP 0 −iGS −iGP −
ΓM

2
+ iωM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
γS,c

√
γS,0 0 0 0 0 0 0 0 0

0 0 √
γP,c

√
γP,0 0 0 0 0 0 0

0 0 0 0
√
ΓM 0 0 0 0 0

0 0 0 0 0 √
γS,c

√
γS,0 0 0 0

0 0 0 0 0 0 0 √
γP,c

√
γP,0 0

0 0 0 0 0 0 0 0 0
√
ΓM

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

C =
⎛⎜⎜⎜⎝
√
γS,c 0 0 0 0 0
0 √

γP,c 0 0 0 0
0 0 0 √

γS,c 0 0
0 0 0 0 √

γP,c 0

⎞⎟⎟⎟⎠ , D =
⎛⎜⎜⎜⎝
−1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0

⎞⎟⎟⎟⎠ ,

(A.35)

where γS,0, γS,c are the intrinsic loss rate and the coupling rate of
the signal cavity, similar for γP,0, γP,c of the probe cavity, total
linewidth ΓS = γS,0 + γS,c, ΓP = γP,0 + γP,c, ∆S,∆P are the detun-
ings of the pumps from the resonance frequencies for signal
and probe cavities, respectively. We define the coupling ratios
ζP ≡ γP,c/ΓP, ζS ≡ γS,c/ΓS. In the steady-state limit, it is conve-
nient to consider the frequency spectrum of the input–output
relation. Fourier transform of the Langevin equation gives

Êout(ω) = S(ω)Êin(ω) (A.36)

whereω is the frequency at the frame rotating with the pump fre-
quencies of signal and probe (stationary frame for the mediating
mode), the spectral transfer matrix S(ω) = C(−iωI6 − A)−1B +
D, I6 is a 6 × 6 identity matrix. Note that here ω is in a dif-
ferent rotating frame from the electro-optics model in main
text.

Now consider the red sideband detuning ∆S = ∆P = −ωM

to maximize the noiseless beam-splitter-type conversion and

suppress the noisy blue sideband squeezing-type conversion
[30,61]. From Eq. (A.36), we obtain the intrinsic conversion effi-
ciency of electro-optomechanical transduction at the frequency
resolved limit ΓS, ΓP ≪ ωM ,

ηemo(ω)

≡ |S13(ω)|
2
|︁|︁|︁
∆S=∆P=−ωM ;ΓS ,ΓP≪ωM

=
64GP

2
GS

2
ΓPζPΓSζS

4∆ω2
(︁
4GP

2 + 4GS
2 + ΓMΓP + ΓMΓS + ΓPΓS − 4∆ω2

)︁
2

+
(︁
4GS

2
ΓP + 4GP

2
ΓS − 4∆ω2 (ΓM + ΓP + ΓS) + ΓMΓPΓS

)︁2

(A.37)
where ∆ω ≡ ω − ωM .

b. The EBP

The transduction efficiency, Eq. (A.37), has six pure imaginary
poles in three pairs p1, p2, p3, p4 = −p1, p5 = −p2, p6 = −p3, of
which the formulas are too lengthy to be shown here. Thus, the
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spectral integral gives the EBP

Bemo ≡

∫ ∞

−∞

ηemo(ω)dω =
iπ (p1 + p2 + p3) GP

2
GS

2
ΓPΓSζPζS

(p1 + p2) (p1 + p3) (p2 + p3) p1p2p3
.

(A.38)

Here Bemo is always real as the imaginary sign in the numerator
cancels with the imaginary signs of the poles. We find that
Bemo is maximized at ΓM → 0, given finite cooperativity CS =

4GS
2
/ΓSΓm, CP = 4GP

2
/ΓPΓm. In this case, p1 ≃ i ΓM (CP+CS+1)

2 , p2 ≃
iΓP
2 , p3 ≃

iΓS
2 , which gives

Bemo |ΓM→0 ≃
8πGP

2
GS

2
Γ2

PζPΓ
2
S ζS

(︁
4GP

2
ΓS + 4GS

2
ΓP + ΓPΓS (ΓP + ΓS)

)︁
(ΓP + ΓS)

(︁
GP

2
ΓS + GS

2
ΓP
)︁ (︁

4GP
2
ΓS + ΓP

(︁
4GS

2 + ΓPΓS
)︁ )︁ (︁

4GP
2
ΓS + ΓP

(︁
4GS

2 + Γ2
S

)︁ )︁ . (A.39)

In the symmetric case of GP = GS = G, we can obtain the
maximum analytically

Bemo
max =

√︁
107 + 51

√
17

32
πζPζSG ≃ 1.749ζPζSG. (A.40)

In the general case of GP ≠ GS, exact maximization is in general
challenging. By eliminating terms in the denominator, we find
the EBP is upper-bounded by

Bemo |ΓM→0 ≤ πζPζS
[︁
4GP

2
ΓS + 4GS

2
ΓP + ΓPΓS (ΓP + ΓS)

]︁
·min

{︃
GS

2
Γ2

P

2GP
4
Γ2

S

,
GP

2
Γ2

S

2GS
4
Γ2

P

,
8GS

2

Γ3
SΓP

}︃
≡ Bemo

UB ,

(A.41)
which is maximized to a finite value over any cavity linewidth
ΓS, ΓP

Bemo
UB,max =

4π 8
√
GPζPζS

(︂
(GPGS)

3/4 +
4
√︁
GPGS

5 + GP
3/2 + GS

3/2
)︂

GS
5/8

(A.42)
at ΓS →

2GS
9/8

8√GP
, ΓP →

2GP
11/8

GS
3/8 , where the coupling ratios ζP, ζS ≤ 1.

As a reminder, here GP,GS are analogous to |gα | of electro-
optical coupling which are independent on cavity quality
factor or coupling rate. Hence, similar to the electro-optical
transducers, the EBP of electro-optomechanical transducers is
fundamentally limited regardless of any cavity engineering.

We note that our result of Bemo
UB,max is not symmetric about

S, P since we arbitrarily chose the terms in the denominator
of Bemo |ΓM→0 to eliminate, which leads to a loose upper bound
Bemo

UB . More careful choices are likely to offer a tighter upper
bound.
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