
In partnership with:

The DUNE-DAQ Application Framework

Eric Flumerfelt, on behalf of the DUNE DAQ Consortium

IEEE Real-Time Conference 2024

Day Month Year

FERMILAB-SLIDES-24-0063-CSAID

This document was prepared by the DUNE-DAQ Collaboration using the resources of the Fermi National Accelerator
Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, Office of High Energy Physics HEP User Facility.
Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino

oscillation experiment. It will receive neutrinos sent from the Fermilab accelerator campus

to a set of detectors located at the Sanford Underground Research Facility (SURF) in

Lead, South Dakota. It will also act as a neutrino observatory in the case of a nearby

supernova event.

Introduction

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework2

Sanford Underground
Research Facility

Fermilab

Due to the dual nature of the experiment as both beamline detector and astronomical

observatory, there are very strict requirements on the DAQ system

• >99.5% uptime requirement for SNB physics

– Less than 2 days per year total downtime

– Includes maintenance of detector elements

and computing

• Ability to stream ~100s of raw detector data to tape

– SNB event requires collecting all relevant data

– Must maintain normal beamline operations during this time

• Support different trigger streams, including data-driven ones

– Allow for in-situ calibrations and additional physics studies

DUNE DAQ Requirements

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework3

Long-Baser South Dakota'~~eNeutrino Facility

Ross Shatt
1.5 km to surface

4850 Level of
~anford Underground

esearch Facility

Neutrinos from
Fermi National

~cl~:~~~=tor Laboratory

'------ One of four

Facility
and cryogenic
support systems

detector modul
Deep Und es of the

Neutrino ee:i:::nt

0Fermilab

• The DAQ consists of a number of application components which communicate with

one another

• Readout applications receive and buffer

data from detector electronics

• Data Selection applications create

trigger decisions based on configurable

algorithms

• Data Flow applications receive

decisions, request data from the readout

applications, and build Trigger Records

which are saved to disk

DUNE DAQ Architecture

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework4

Detector control.
~uratJon monitoring

Detector
electron ics

All applicatlons are supervised
by a distributed control.

configuration and monitoring
system.

Hardware
signals HSI Event------+I

HSl(CTB)
HW

l/f gg~;;~;;;1,~. i ll maker _FM~
Fragment J Data Request/

Tngger Pnm1twe Data Request /
Fragment

c_ __ +-_Oata Request/ ____ ~
Fragment l

Readout and

Trigger Gandidate

i
1ri9ffl

[

odu~level

Data Request/
Fragment

!tlgQ!Lprlml11ves "---□-•,-•-Request/
maker Fragment

I!fggt:r records
builder

Raw data

_tlgge...r.P-rlml11ves
writer

Permanent
storage

(CERNIFNAL)

0Fermilab

The Application Framework provides a common base for all DUNE-DAQ applications

• Initially conceived and designed at a DUNE DAQ workshop at CERN in February 2020.

• Applications are built up from “DAQ Modules”,

which implement application logic

• Framework provides the API for modules

and a message-passing interface for

inter-module communication

• External interfaces for control, configuration,

and monitoring are provided by the framework

and managed on the modules’ behalf

Framework Architecture

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework5
0Fermilab

The Application Framework provides a plug-in interface for these external interfaces, allowing for both

custom and commercial off-the-shelf implementations to be used

• Application state and command validation occur in Control interface, which can use a REST or

gRPC-based communication implementation

– Commands are dispatched through the

framework to the DAQModule instances

• Configuration information is provided to the

application at startup using the OKS system

adapted from ATLAS DAQ

• Monitoring is implemented via Kafka, influxDB,

and Grafana dashboards

• Log messages are handled using the ERS

package, also adapted from ATLAS

– Fermilab’s TRACE package provides high-speed

low-level debug printouts

Service Interfaces

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework6
0Fermilab

Each DAQ Module is responsible for implementing a single piece of the overall DUNE-

DAQ functionality.

• During module construction, the application

framework provides a handle to the configuration

so that the module can retrieve its parameters

• Methods which implement module response to

commands are registered by command name

– The DAQModuleManager component of the framework finds modules with registered methods for a given

command, when that command is received from the Control interface

• Monitoring information is collected from DAQ Modules by the application and forwarded

to the monitoring backend

DAQ Module API

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework7

DAQModule

-m_commands: std::map<std::string, std::pair<std::set<std::string>, std::function<void(const data_t&)>>>

+DAQModule(name:std::string)
+-DAQModule()

+init{mcfg: std::shared_ptr<ModuleConfiguralion>): void

+execute_command(name:const std::string&, state:const sld::string&, data: const nlohmann::json&): void

+get_commands(): std ::vector<std::string> canst

+has_command(name:consl std: :string&, state: cons! std::string&): bool cons!

+get_info(ci:opmonlib::lnfoCollector&, level: int): void

#register_command(name:const std::string&, f:void{const data_!&), va1id_states: const std: :set<std: :string>& = (ttANY" }): void

+make module(Qluain name:std: :slrina cons!& instance name:sld::slrina canst&): std::shared otr<DAQModule>

0Fermilab

One of the core functionalities of the Application Framework is its messaging API

• DAQ Modules send and receive strongly-typed

messages

• API is agnostic for whether messages are

internal to an application or sent over the

network

– Network transport and serialization are also

plug-in, currently implemented via ZMQ and

MsgPack

• This system allows for application composition

to be changed as needed

• A “connection service” is used to register

network links for automatic reconnection

Messaging API

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework8
0Fermilab

• DAQ Modules are grouped into applications, which are controlled and configured as a

single unit

Applications

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework9

Legend: ~

Dala/Dataftow Messages - XJ

tional Monltoling/Melrics ~
Opera (1/" ~
Commands 0
Log Messages

a':__:e:xa~m~p'.".le".'.s.:"o:::nl~y)~---­(Unks shown :_re

0Fermilab

Several utility classes are provided by the Application Framework

• Most notable are the WorkerThread and

ReusableThread interfaces, which provide

long-lived tasks and a thread pool

implementation, respectively.

• The framework provides a naming hierarchy

which is used for monitoring and logging

• DNS resolution utilities are used in the

network messaging implementation and

have the ability to interface with the

Kubernetes DNS for service-based

endpoint resolution.

Threading and Utilities

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework10

WorkerThread

-m_thread_running: std ::atomic<bool>

-m_working_lhread: std::unique_ptr-::.std::thread>

-m_do_work: std::function<void (std::atomiC<bOOI>&)>

+WorkerThread(do_work:std::function<void(std::atomic<bOol>&)>)

+start_working_thread(name: canst std: :string&="noname): void

+stop_working_thread(): void

+thread runnino0: bool canst

Resolver

+get_ips_from_hostname(hostname:std::string): std::vector<std ::string>

+resolve_urt_hostname(uri:std :: string): std ::vector<std::string>

ERS Issues
ServiceNolFound(string service)
NameNotFound(string name, string error)
lnvalidUrl(string uri)
Threadinglssue(strini;i err)

+oet service addresses{service name:std ::slrinq, hostname:std ::slrino=""): std: :vector<std::strino>

Reusable Thread

-m_thread_id: int

-m_task_executed: std::atomic<t>ool>

-m_task_assigned: std ::atomic<t>ool>

-m_thread_qu it: std::atomic<bool>

-m_worker_done: std::atomic<bool>

-m_task: std::funclion<void()>

-m_mtx: std ::mutex

-m_cv: std::condit ion_variable

-m_thread: std::thread

+ReusableThread{threadid :int)

+~ReusableThread{)

+set_lhread_id(tid: int): void

+get_thread_id{): int canst

+set_name(name:const std::string&, lid:int): void

+get_readiness() : bOol cons!

+set_work(f:Function&&,args:Args&& .): bOOI

-thread worker{): void

Named

canst std::strin & canst

Named Object

-m_name: std ::string

+NamedObject(name:const std::string&)

+-NamedObject()

+oet name{): canst std ::strinq& canst

0Fermilab

• The DUNE DAQ Application

Framework has been used as the basis

for the DAQ system for ProtoDUNE

horizontal and vertical drift, as well as

the ICEBERG prototype detector at

Fermilab and the TOAD Near Detector

prototype.

• The system has evolved with each

iteration, with different DAQ Modules

being used in different configurations.

Readout has transitioned from Proto-

WIBs to DUNE-WIBs and from FELIX-

based readout to WIBEth Ethernet-

based readout.

Deployments

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework11

• The DUNE-DAQ Application Framework is being

 deployed at ProtoDUNE II for data-taking activities

– Support general readout of the detector for hardware

debugging

– Run framework and CCM tests to validate requirements

– Develop system layouts for full DUNE

• The Framework is in the final stages of development

– As the backbone of the DUNE DAQ, any changes in

the framework API require large amounts of effort to

reconcile with module implementations

– We are reviewing and finalizing functionality to move the

framework into “maintenance mode” as a complete product

Current Status & Outlook

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework12

Participants of the Application Framework Review

Workshop held at CERN, February, 2024. In the

background is the ProtoDUNE Vertical Drift

prototype detector

0Fermilab

This work was produced by Fermi Research Alliance, LLC under Contract No.

DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science,

Office of High Energy Physics. Publisher acknowledges the U.S. Government

license to provide public access under the DOE Public Access Plan DOE Public

Access Plan

Neither the United States nor the United States Department of Energy, nor any

of their employees, makes any warranty, express or implied, or assumes any

legal liability or responsibility for the accuracy, completeness, or usefulness of

any data, apparatus, product, or process disclosed, or represents that its use

would not infringe privately owned rights.

Fermilab report number: FERMILAB-SLIDES-24-0063-CSAID

Acknowledgement & Disclaimer

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework13

https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan

Backup

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework14

The first DUNE prototype detector, DUNE 35T, used the artdaq data acquisition

framework.

• artdaq has a rather strict system layout

and did not support the desired topology

for DUNE DAQ

• The existing command & control system in

artdaq did not support dynamic reconfiguration

of applications, which would be needed to

meet the uptime requirement

• Other frameworks were either too task-specific or did not provide suitable flexibility for

implementing the DUNE DAQ.

Why make a new Framework?

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework15

Diagram of the artdaq data flow

Applications can be of arbitrary complexity, with many links between modules both internal

and external

• Messaging connections come in two main flavors,

point-to-point and broadcast

• Broadcast connections are used for multi-app

synchronization and replicating messages to

multiple interested receivers

• Point-to-point connections are used for data flow

• Connections are indexed by name and data type

and can be retrieved from the connectivity service

using regular expression lookup

More about the Messaging API

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework16

Schematic representation of a readout application

The listrev example configuration consists of several applications, each with one or more

DAQModules. It demonstrates the use of the DAQModule API, several flavors of

messaging, and how the configuration, control, monitoring and logging interfaces interact

with DAQ Applications

• The ReversedListValidator module sends

a “CreateList” message to the Generators

• The Generators create a list of integers,

using information in the CreateList (#,

pattern) and wait for requests

• The ReversedListValidator requests a list

with a given index from the Generators and

the ListReverser(s)

• Upon receiving a request from the Validator, the Reverser sends a request to the

Generators, reverses the order of the list, and sends it to the validator

The listrev Application Framework Functional Demonstration

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework17

Schematic of the “listrev” example configuration

	Slide 1
	Slide 2: Introduction
	Slide 3: DUNE DAQ Requirements
	Slide 4: DUNE DAQ Architecture
	Slide 5: Framework Architecture
	Slide 6: Service Interfaces
	Slide 7: DAQ Module API
	Slide 8: Messaging API
	Slide 9: Applications
	Slide 10: Threading and Utilities
	Slide 11: Deployments
	Slide 12: Current Status & Outlook
	Slide 13: Acknowledgement & Disclaimer
	Slide 14: Backup
	Slide 15: Why make a new Framework?
	Slide 16: More about the Messaging API
	Slide 17: The listrev Application Framework Functional Demonstration

