FERMILAB-SLIDES-24-0063-CSAID

% U.S. DEPARTMENT OF Office of

ENERGY Science

The DUNE-DAQ Application Framework

Eric Flumerfelt, on behalf of the DUNE DAQ Consortium In partnership with:
IEEE Real-Time Conference 2024
Day Month Year This document was prepared by the DUNE-DAQ Collaboration using the resources of the Fermi National Accelerator

Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, Office of High Energy Physics HEP User Facility. (\ 7
Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

2

Introduction

The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino
oscillation experiment. It will receive neutrinos sent from the Fermilab accelerator campus
to a set of detectors located at the Sanford Underground Research Facility (SURF) in
Lead, South Dakota. It will also act as a neutrino observatory in the case of a nearby

supernova event.

Sanford Underground

Research Facility Fermilab

2% Fermilab

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework [-.Q =

DUNE DAQ Requirements

Due to the dual nature of the experiment as both beamline detector and astronomical
observatory, there are very strict requirements on the DAQ system

« >99.5% uptime requirement for SNB physics g BimiiAieutchon Ehaditi

South Dakota Site Neutrinos from

— Less than 2 days per year total downtime

— Includes maintenance of detector elements
and computing

support systems

 Ability to stream ~100s of raw detector data to tape

One of four

detector modules of the
Deep Underground
Neutrino Experiment

— SNB event requires collecting all relevant data
— Must maintain normal beamline operations during this time Resoa Fatty
» Support different trigger streams, including data-driven ones

— Allow for in-situ calibrations and additional physics studies

2% Fermilab

3 4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework [-.Q =

DUNE DAQ Architecture

* The DAQ consists of a number of application components which communicate with
one another

Timing session 1\ & . maker

i P, [Moduetevel
X ") Timing HW : Trigger activities T r trigger
¢ (—m)—\ maker ‘Trigger Activity ‘
z ‘) HSI (CTB) 4 Inhibit
y HW ata Requ: i
ragm.

« Readout applications receive and buffer
data from detector electronics

« Data Selection applications create

trigger decisions based on configurable %J I rl.,...,.w

Data Request/
Fragment

algorithms

!

« Data Flow applications receive
decisions, request data from the readout
applications, and build Trigger Records [sgaemsssseme

configuration and monitoring

which are saved to disk

Permanent
Storage :> storage
(CERN/FNAL)

2% Fermilab

N

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework A l{\;‘:

Framework Architecture
The Application Framework provides a common base for all DUNE-DAQ applications

« Initially conceived and designed at a DUNE DAQ workshop at CERN in February 2020.

« Applications are built up from “DAQ Modules”,
which implement application logic

Application Layer

« Framework provides the API for modules - :
and a message-passing interface for Pootcaton Famevor
inter-module communication

Management

Framewark

« External interfaces for control, configuration, AN : '

and monitoring are provided by the framework |, v V. V. Az

and managed on the modules’ behalf corbuaon || Mot s
& Fermilab

5 4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework [u? =

6

Service Interfaces

The Application Framework provides a plug-in interface for these external interfaces, allowing for both

custom and commercial off-the-shelf implementations to be used

» Application state and command validation occur in Control interface, which can use a REST or

gRPC-based communication implementation

— Commands are dispatched through the
framework to the DAQModule instances

» Configuration information is provided to the
application at startup using the OKS system
adapted from ATLAS DAQ

* Monitoring is implemented via Kafka, influxDB,
and Grafana dashboards

* Log messages are handled using the ERS
package, also adapted from ATLAS

— Fermilab’s TRACE package provides high-speed
low-level debug printouts

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework

Application Layer

listrev Example

Data Selection

\,
N

Timing

7

\,
N

Framewark

|
J
NS

,/’\\.
|

J0

N

T
J
NS

Application Framework

DAQ Module
Management

Messaging

Senvices

-

4> i
V. V.

‘Control

Configuration Monitoring

Logging

2% Fermilab

7

DAQ Module API

Each DAQ Module is responsible for implementing a single piece of the overall DUNE-
DAQ functionality.

« During module construction, the application
fram eWork prOVideS a handle to the Co nfiguration -m_commands: std::map<std::string, std::paircstd::selcstd::sii:g:::‘:l:l:mctioncvoid(oonstdata_t&)>>>

+DAQModule(name:std::string)

so that the module can retrieve its parameters [-ouawoaeo

+init(mefg: std::shared_ptr<ModuleConfiguration>): void
+execute_command(name:const std::string&, state:const std::string&, data: const nlohmann::jsen&): void
+get_commands(): sm::vsclor<sld:;smng> const

* Methods which implement module reSpoNSE 10 [cmmsiramesmersa:sing. s cont ss:sgsy soctcons

+get_i |nicx(c :opmonlib: InioCo\Iecl r& Iev I: int): v od

Com mands are reg iste red by Com mand name #register_command(name: co.nsl.s.ld :string&, ivcld(consl data t:&) :\:alwd sixfnsl ?td set<sld(stnng>& { "ANY" }): void

— The DAQModuleManager component of the framework finds modules with registered methods for a given
command, when that command is received from the Control interface

« Monitoring information is collected from DAQ Modules by the application and forwarded
to the monitoring backend

2% Fermilab

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework

g
T

Messaging API
One of the core functionalities of the Application Framework is its messaging APl

 DAQ Modules send and receive strongly-typed
messages

« API is agnostic for whether messages are
internal to an application or sent over the N N
| |

listrev Example Data Flow Data Selection Readout Timing

Application Layer

7

1 \ ar | 4
network ¥ Y. <L <5 Y.

Application Framework

DAQ Module

Management LERELTE

— Network transport and serialization are also
plug-in, currently implemented via ZMQ and

Framewark

MsgPack gy | |
V. v V.

Control Configuration Monitoring Logging

-

« This system allows for application composition
to be changed as needed

Senvices

« A“connection service” is used to register
network links for automatic reconnection

2% Fermilab

8 4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework [u? =

9

Applications

« DAQ Modules are grouped into applications, which are controlled and configured as a
single unit

4/8/2024

Legend

Data/Dataflow Messages

Operational Monitoring/Metrics

Commands

Log Messages

(Links shown are examples only)

AN

Application

//

DACGModule

QUEL.IE

% DAQModule = *

Queue .

‘ | Network | ‘ | | Network ‘ |

ffif.‘.’_“f_% DACModule

2]

[T e []

Eric Flumerfelt | The DUNE-DAQ Application Framework

4,
% |CManager |1
)

2% Fermilab

10

Threading and Utilities

Several utility classes are provided by the Application Framework

Most notable are the WorkerThread and
ReusableThread interfaces, which provide
long-lived tasks and a thread pool
implementation, respectively.

The framework provides a naming hierarchy
which is used for monitoring and logging

DNS resolution utilities are used in the
network messaging implementation and
have the ability to interface with the
Kubernetes DNS for service-based
endpoint resolution.

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework

WorkerThread

-m_thread_running: sid::atomic<bool>
-m_working_thread: std:'unique_pir<std:thread>
-m_do_work: std:-function=veid(std: atomic<bool>&)=

+ihread_running(): bool const

+WorkerThread(do_work:std: function<void(std::atomic<bool>&)>)
+start_working_thread(name: const std::string&="noname): void
+stop_working_thread(): void

ERS Issues

ServiceNotFound(string service)
NameNotFound(string name, string error)
InvalidUri(string uri)
IThreadinglssue(string err)

Resolver

+get_ips_from_hostname(hostname:std: string): std:vector<std:'string=
+resolve_url_hostname(uri:sid::string): std::vector<std:string>

+get_service_addresses(service_name:std:siring, hostname:std::siring="

"). std:.veclor<sid::siring=

ReusableThread Named
-m_thread_id: int +get_name(): const std-string& const
-m_task_executed: sid::atomic<bool= J_Lgﬁ
-m_task_assigned: sid::atomic=bool> i
-m_thread_quit: std:-atomic<bool> H
-m_worker_done: std:‘atomic<bool> NamedObject

-m_task: std:function<void()>
-m_mtx: std::mutex

-m_cv: std::condition_variable
-m_thread: sid::thread

+ReusableThread(ihreadid:int)
+~ReusableThread()

+set_thread_id(tid:int): void

+get_thread_id(): int const
+set_name(name:const std::string&, tid-int): void
+get_readiness(). bool const
+set_work(f.Function&&,args:Args&a....): bool

-thread_worker(): void

-m_name: std:string

+NamedObject(nameconst std:string&)
+~NamedObiject()

+!€I name(): const std SIHI'IE& const

2% Fermilab

E
1T

Deployments

11

The DUNE DAQ Application
Framework has been used as the basis
for the DAQ system for ProtoDUNE
horizontal and vertical drift, as well as
the ICEBERG prototype detector at
Fermilab and the TOAD Near Detector
prototype.

The system has evolved with each
iteration, with different DAQ Modules
being used in different configurations.
Readout has transitioned from Proto-
WIBs to DUNE-WIBs and from FELIX-
based readout to WIBEth Ethernet-
based readout.

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework

Current Status & Outlook

« The DUNE-DAQ Application Framework is being
deployed at ProtoDUNE Il for data-taking activities

— Support general readout of the detector for hardware
debugging

— Run framework and CCM tests to validate requirements
— Develop system layouts for full DUNE
« The Framework is in the final stages of development

— As the backbone of the DUNE DAQ, any changes in
the framework API require large amounts of effort to
reconcile with module implementations

— We are reviewing and finalizing functionality to move the
framework into “maintenance mode” as a complete product

12 4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework

Participants of the Application Framework Review
Workshop held at CERN, February, 2024. In the
background is the ProtoDUNE Vertical Drift
prototype detector

3¢ Fermilab
DRVE

13

Acknowledgement & Disclaimer

This work was produced by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science,
Office of High Energy Physics. Publisher acknowledges the U.S. Government
license to provide public access under the DOE Public Access Plan DOE Public
Access Plan

Neither the United States nor the United States Department of Energy, nor any
of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of
any data, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights.

Fermilab report number: FERMILAB-SLIDES-24-0063-CSAID

2% Fermilab

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework

E
1T

https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan

Backup

2= Fermilab

14 4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework s .? =

15

Why make a new Framework?

The first DUNE prototype detector, DUNE 35T, used the artdaq data acquisition
framework.

« artdaqg has a rather strict system layout
and did not support the desired topology s o o |
for DUNE DAQ = = . e

« The existing command & control system in
artdag did not support dynamic reconfiguration
of applications, which would be needed to —
meet the uptime requirement Diagram of the artdaq data flow

« Other frameworks were either too task-specific or did not provide suitable flexibility for
implementing the DUNE DAQ.

2% Fermilab

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework [1?«‘;:

16

More about the Messaging API

Applications can be of arbitrary complexity, with many links between modules both internal

and external o) (Ejj

» Messaging connections come in two main flavors, —————
point-to-point and broadcast)

« Broadcast connections are used for multi-app o f‘xfi\\f{f
synchronization and replicating messages to P T o 8 [

multiple interested receivers

» Point-to-point connections are used for data flow
« Connections are indexed by name and data type o _ 3 -
and can be retrieved from the connectivity service

using regular expression lookup

Schematic representation of a readout application

2% Fermilab

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework [u? =

17

The listrev Application Framework Functional Demonstration

The listrev example configuration consists of several applications, each with one or more
DAQModules. It demonstrates the use of the DAQModule API, several flavors of
messaging, and how the configuration, control, monitoring and logging interfaces interact
with DAQ Applications

The ReversedListValidator module sends T e —> wtom
“« . P b RandomDataLlistGenerator —) List Requests
a “CreateList” message to the Generators A G
. . ‘; Ri .iSIVaIidaIm I
The Generators create a list of integers, |
using information in the CreatelList (#, T
-k ListReverser

pattern) and wait for requests weies |

B RandomDatal istGenerator

The ReversedListValidator requests a list
with a given index from the Generators and Schematic of the “listrev” example configuration
the ListReverser(s)

Upon receiving a request from the Validator, the Reverser sends a request to the

Generators, reverses the order of the list, and sends it to the validator e .
3¢ Fermilab

4/8/2024 Eric Flumerfelt | The DUNE-DAQ Application Framework [lﬁ) =

	Slide 1
	Slide 2: Introduction
	Slide 3: DUNE DAQ Requirements
	Slide 4: DUNE DAQ Architecture
	Slide 5: Framework Architecture
	Slide 6: Service Interfaces
	Slide 7: DAQ Module API
	Slide 8: Messaging API
	Slide 9: Applications
	Slide 10: Threading and Utilities
	Slide 11: Deployments
	Slide 12: Current Status & Outlook
	Slide 13: Acknowledgement & Disclaimer
	Slide 14: Backup
	Slide 15: Why make a new Framework?
	Slide 16: More about the Messaging API
	Slide 17: The listrev Application Framework Functional Demonstration

