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We study a bifurcation mechanism of quantum annealing. Using spins with quantum number S = 1, we construct a
simple model to make a bifurcation. The qutrit can be composed by nesting two qubits. We numerically solve the
Schrodinger equation to confirm that the bifurcation-based quantum annealing (BQA) works well and the ground state
can be found efficiently. The result is compared with that by the standard quantum annealing (QA) using qubits. We find
that the performance of the BQA is comparable to the standard QA, or gives better results in some cases.

1. Introduction

Quantum annealing (QA) is a heuristic method for solving
optimization problems.'? It is a kind of adiabatic quantum
optimization algorithms®>® and is used for a device
manufactured by D-Wave Systems.”®

In the standard QA, the problem part of the Hamiltonian is
represented by an Ising-spin model and the quantum
fluctuations are induced by a transverse-field term. The
corresponding Hamiltonian is familiar in statistical mechan-
ics and is used as a standard model for quantum phase
transitions.”

The transverse field is not the only possible way of
controlling the adiabatic state and we can find many other
choices in principle. In fact, it has been recognized that
“nonstoquastic” effect improves the performance.!*"!?
Although it is an interesting problem to find an efficient
driver term from a theoretical point of view, the implemen-
tation of the complicated form of the Hamiltonian in
laboratory is a difficult problem.

It is also an interesting problem to study other possible
mechanisms utilizing quantum effects. In this paper, we
propose and study a bifurcation-based QA (BQA) by using
a spin model. The bifurcation mechanism was proposed
in a parametrically driven Kerr nonlinear oscillator as a
method of adiabatic quantum optimization.'* The perform-
ance and properties of the mechanism were studied in
subsequent studies.'>” The model is described by bosonic
operators and has continuous degrees of freedom. It is an
interesting problem to find the corresponding mechanism
in discrete spin models, which is the main aim of this
study.

The qubit operations are described by Pauli operators of
spin-1/2. Since the operators are too simple to make a
bifurcation, we consider a higher spin system. By referring to
the standard form of the QA, we construct a spin model as a
possible realization of the BQA. We show that the system can
be realized in the present technology and study the perform-
ance numerically in the present work.

The organization of this paper is as follows. In Sect. 2, we
introduce a spin model realizing a bifurcation and discuss a
possible implementation. In Sect. 3, we numerically study
the bifurcation mechanism by using a noninteracting
Hamiltonian. The interactions are introduced in Sect. 4 and
we compare the result with that from the standard QA. The
last Sect. 5 is devoted to conclusion.
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2. Bifurcation-Based Quantum Annealing

2.1 Bifurcation mechanism
The main aim of the QA is to find the ground state of the
Hamiltonian

N
Hp = —Z‘][jﬂiﬁj—Zh,’Gi, (l)
(i) i=1
for a given set of {J;} and {h;}. {0;};=1, N TEpresents
Ising-spin variables and each spin o; takes +1 or —1. The
solution, the ground-state configuration, is specified by a set

of values of {c;}.

In the bifurcation mechanism, we start the time evolution
from a symmetric state “|0)” and find degenerate states
“|+1)” at the end of the evolution. The degenerate states
represent qubit states. In the standard QA with Ising-spin
variables, the degenerate states represent Ising-spin states and
the initial state is given by a superposition of the Ising-spin
states: |0) = (]+1) + |—1))/+/2. To make the bifurcation, we
need a bifurcation operator that gives the same eigenvalue
when it acts on |+1). Since we cannot construct such an
operator in Ising-spin systems, we extend the state space.

We consider the spin-1 operators S= (S”‘,S‘y,g‘z). These
operators obey the standard commutation relations such as
[S‘x, S’y] = iS‘Z, and have the quantum number S = 1 when the
eigenvalue of $2 is denoted as S(S+1). We use the
eigenstates of S’Z, |m), as

$%|m) = m|m), (2)

with m = +1,0,—1. In this basis, each operator can be
represented as

1 0 O 010
A A 1
=10 0 0|, S =—]|1 0 1] 3
NG 3)
0 0 -1 01 0

Since we do not use $¥ in the following analysis, it is omitted
here. A crucial difference from the Pauli operators is that the
square of each operator is not proportional to the identity
operator and gives a new kind of operators:

1 00 1 0 1
. 1
000,(Sx)2=§020. 4)

0 0 1 1 0 1
For a qutrit system described by the spin-1 operators, the
symmetric state |0) is assigned to the state with $¢|0) = 0
and the degenerate states |+1) with $%|+1) = +|+1). We

¢ =
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note that (8)2|0) = 0 and ($%)%|«1) = |«1). Then, for a
single qutrit i/, we consider the Hamiltonian

Hi(t) = —A0S; — B1)(S)™. (5)

We change B(r) slowly from a negative large value to a
positive large one. A(t) is taken to be small but finite values at
intermediate times so that it induces energy-level mixing. By
evolving the system adiabatically with this Hamiltonian, we
find that the ground state is changed from |0) to |+1). In the
following, we refer to the first term of Eq. (5) as driver part
and the second term as bifurcation part.
We set the total Hamiltonian for N qutrits as

N
A =Y H(t) + H,, (6)
i=1

where flp represents the problem part replaced {o;} in
Eq. (1) with {§f}. We set [B(0)| ~ |B(t)| > |/ ~ |hil
where #; represents the annealing time. Then, each qutrit
basically changes from |0) to |+1). The degeneracy of the
final state is lifted by the presence of Flp and we can solve the
optimization problem.

We note that the problem part, I:Ip, is independent of .
When B(0) is a negative large number and A(0) is negligible,
the initial state is given by the eigenstate of S'f with the
eigenvalue 0. The problem part only gives a zero contribution
and does not affect the state even if we keep Flp from the
beginning. This is one of advantages of the present method.
The time dependence of the Hamiltonian is only on each
spin, I:Ii(t), and we do not need to change the intricate
problem part, I:Ip. Then, it is expected that the dynamical
property is basically determined by the driver and bifurcation
parts and is insensitive to the problem part. This property is
basically the same as that in the Kerr parametric oscillator
model.'* By using the Hamiltonian in Eq. (6), we can study
the bifurcation mechanism in systems with finite Hilbert
space.

2.2 Spin coupling by nesting
One of promising methods realizing the qutrit is to use spin
nesting. The sum of two qubits gives

~ 1 . .
S = E(O'il +6;,), @)

where 6 = (67,67, 6%) represents the set of Pauli operators.
As described in a standard text book on quantum mechanics,
the set of operators S; = (§%,57,87) satisfies the standard
commutation relations such as [S7, Sl‘ 1=iS? and the
eigenvalues of the operator Slz are denoted by S(S+ 1)
with =0 or 1. S'lz commutes with each component of
Si, which means that the Hamiltonian with the operators
S, is block-diagonalized in the eigenstate basis of Slz and
§Z. When we set the initial state as an eigenstate with § = 1,
the state of the system is described by qutrit, three of four
states.

The connectivity of two qutrits is specified in Fig. 1. A
single logical qutrit is made from two physical qubits. The
driving represented by B is achieved by operating the
interaction between physical qubits within a single qutrit. The
interaction between two qutrits, J;;, is represented by four
bonds. In the case of Fig. 1, the total Hamiltonian is given
by

044003-2

Fig. 1. The connectivity graph of two logical qutrits by four physical
qubits. Logical qutrit i is made from physical qubits i; and ip, and qutrit j
from qubits j; and j,. Two physical qubits within a single qutrit interact with
each other and the interaction is controlled by B(r). The interaction between
two qutrits in the problem Hamiltonian, Jj;, is represented by four bonds. We
also need additional single-qubit operations as represented by A(r) (for
2.6 and h; (for 6] + 67,).

A1)
2

B

0165 4 657 + 65 + )

H(i) = - (61 + 65 + 67y + 65)

- % 6 +6,)(6; +65)
- %(5571 +65) — %(‘9_/'11 +65). ®)
It is interesting to find that the present method is equivalent
to nesting for an error-proofing procedure.?'>% It is expected
that the nested qubit can be robust against noise due to the
ferromagnetic coupling between the physical qubits. In our
choice of the Hamiltonian in Eq. (6), S’f changes the states
|£1); to |0); and there is no direct transition between |+1);
and |—1);. Since the energy level of the state |0); becomes
large at large f, quantum fluctuations represented by virtual
transitions to different levels are suppressed, which might
be related to an error-proofing property. We note that the
behavior can be changed by introducing additional driver
terms. For example, (§;‘)2 gives a direct coupling between
|[4+1); and |- 1);. We see from Eq. (4) that (§)? is equivalent
to 6* if the Hilbert space is effectively restricted to m = +1.
We note that the initial state for each qutrit is given by |0);
with S’flO) ; = 0. It can be written by qubit states as

1

|0>l = \/5

(1+1/2); ® |-1/2);, +|-1/2);, & [+1/2);,).

©)
|£1/2) represent two qubit states. Although this is an
entangled state and cannot be obtained by a single qubit
operation, the manipulation is only for two qubits and can
be obtained, e.g., by the standard QA procedure. We know
various ways of controlling systems with a small number of
spins and it is expected that the state can be prepared
efficiently.

3. Noninteracting Systems

We study the performance of the BQA by solving the
Schrodinger equation numerically. In this section, we treat
noninteracting systems to confirm that the bifurcation
mechanism works efficiently. Each qutrit can be treated
independently and the mechanism can be studied by the
single qutrit Hamiltonian

©2022 The Author(s)
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Fig. 2. (Color online) The instantaneous energy levels of the Hamiltonian
in Eq. (10). We use Egs. (11) and (12), and take By/A( = 20. The energy
levels are plotted in unit of Ag.

H(t) = —A()S™ = B(1)($9). (10)
We use the linear protocol for B(?):
B(t)=BO(2;—1), (11)
f

where By is a positive constant much larger than A(#). Since
our method is based on adiabaticity, we take #; to be a large
value. As we mentioned in the previous section, A(?) takes
small but finite values at intermediate times. We use the
Gaussian protocol

1 (1 g

with 62 =0.1. The instantaneous energy levels of the
Hamiltonian in Eq. (10) are plotted in Fig. 2. The energy
gap between the ground state and the excited state at = 0 is
very large. After passing through avoided-crossing region
around ¢/t; = 0.5, the system has the ground state with two-
fold degeneracy.

There is no guiding principle on the choice of A(f). In
the following, we also examine the case when A(r) takes
a constant value because the time-independent protocol is
practically convenient. Although A(0) must be zero so that
the state becomes an eigenstate of S at =0, it is enough
provided |B(0)| > |A(0)| is satisfied.

We numerically solve the Schrodinger equation with the
Hamiltonian in Eq. (10) to obtain the time-evolved state
lwp(1)). We first use the Gaussian protocol in Eq. (12).
In Fig. 3, we plot the time dependence of probabilities
[(m|y(£))|* with m = +1,0,—1 for a given f, and the
annealing-time dependence of |(m|y(t;))|>. We see that the
bifurcation mechanism works very well if the annealing time
is not considerably small. The final state is given by
(J4+1) +|-1))/+/2 and has components of m = +1 with
equal probability.

We consider the case where A(f) is constant: A(f) = Ay.
We plot the result in Fig. 4. Although we see small
oscillations, the performance is almost the same as that in
Fig. 3. We also examined several other cases and found
similar results. This implies robustness of the bifurcation
mechanism.

Next, we incorporate the noninteracting part of I:Ip. We put
Jij =0, which means that we still have a noninteracting
system and the single qutrit Hamiltonian is given by

(12)
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Fig. 3. (Color online) The solution of the Schrodinger equation with the
Hamiltonian in Eq. (10). We use the protocol in Egs. (11) and (12), and take
By /Ao = 20. Top: The probability distributions of the time-evolved state at
each 7. We take the annealing time as Ag#; = 100. Bottom: The annealing-
time dependence of the final state. Here, # is plotted in unit of Ag.
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Fig. 4. (Color online) The solution of the Schrodinger equation with the
Hamiltonian in Eq. (10). We take A(#) = Ay = const. The other parameters
are the same as those in Fig. 3.

H(@) = —A(NS* — B(1)(5%)* — hS?, (13)
where h represents the magnetic field. The final result is
determined by the sign of .

The result is plotted in Fig. 5. We see that that the proper
state, m = +1 or —1, is selected as a function of 4, if | k| is not
too small.

©2022 The Author(s)
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Fig. 5. (Color online) The performance with the Hamiltonian in Eq. (13).
We use Egs. (11) and (12) with By /Ao = 20, and take the annealing time as
Aoty = 200. Each curve represents the probability of the component m at
t = tr. Here, h is plotted in unit of Ay.

4. Interacting Systems

Having confirmed that the bifurcation mechanism works
well for a single qutrit, we study multi qutrit systems with
interactions.

4.1 Ferromagnetic interactions

We first consider ferromagnetic interactions for a one-
dimensional arrangement of spins with periodic boundary
condition. Each spin interacts with the neighboring spins and
wesetJi, =Jo3=---=Jy1 =J>0andh;/J =0.1. Here,
we introduce a finite 4; to avoid degenerate ground states.
The effect of degeneracy is discussed in the next subsection.

To assess the performance of the BQA, we compare the
result with that of the standard QA:

. t N
A@) = (1 - 7) —F;q

f

+£ - ZJU&;&; = _hid (14)

(i) i
Each element is represented by qubit and the standard linear
protocol is used to control the system.

The numerical result is plotted in Fig. 6. We see that, in
our choice of the parameters, the computation works very
well. In contrast to the standard QA, the initial state with
m = 0 is changed to the final one abruptly after r exceeds
t¢/2. When ¢ is much smaller than #;/2, the bifurcation part is
the dominant contribution and the state remains the zero
state. After passing through the region where the driver part
is dominant, the state is changed to the ground state of ﬁp.

Comparison between the QA and the BQA in the bottom
panel of Fig. 6 shows that a large annealing time is required
to obtain the ideal result in the case of the BQA. In the
present implementation of the QA,”® the scale of the
Hamiltonian is of the order of GHz, and the annealing time
is of the order of ps. This corresponds to J# ~ 1000 in our
unit, which is large enough to find the ideal result.

N
=1

4.2 (Un-)Fair sampling property

In the previous example, we used a problem Hamiltonian
with no ground-state degeneracy. The standard QA is known
to give a biased sampling among the degenerate ground
states”*?> and we study this property in the BQA.
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Fig. 6. (Color online) The performance with the ferromagnetic problem
Hamiltonian specified in the text. For the BQA, we use the protocol in
Eqgs. (11) and (12) with By/J =20 and Ay/J = 2. For the QA, we use
Eq. (14) with T'/J = 1. Top: The time dependence of the ground-state
probability. We plot the results at N = 2 (thin line), 4, and 6 (thick line), each
being distinguished by the thickness of the line. We take the annealing time
as Jty = 300. Bottom: The annealing-time dependence. Here, # is plotted in
unit of J.
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Fig. 7. (Color online) (Un-)Fair sampling properties of the QA and BQA.
We use a five spin model with six degenerate ground states. The connectivity
is specified in the inset where solid lines represent ferromagnetic interaction
(Jij =J > 0) and dashed lines antiferromagnetic interaction (—J < 0). We
plot three of six states. Two of them are plotted by solid lines and the other is
plotted by dotted line. The blue lines are for QA and the red for BQA. We
take the annealing time as Jt#; = 300.

We use a five spin model used in a previous work>® which
is denoted in the inset of Fig. 7. This system has six ground
states. Half of them are due to spin-flip symmetry and we plot
three levels in Fig. 7. We see that the result of the BQA is
very similar to that of the QA. Two of three levels are equally
sampled and the other single level is suppressed. We checked
that this property is unchanged when we use several different
protocols.

As discussed in the original study,?” we can improve
the result by introducing additional driver terms to the
Hamiltonian. Since the present model has a larger Hilbert

©2022 The Author(s)
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Fig. 8. (Color online) Histograms for the success probability for random

Hamiltonians with N = 4. We compare the results of the BQA and QA. We
take the annealing time as J#; = 300 and the number of samples is 1600. The
bin width of the histogram is 0.05.

space, we have many choices to improve the result, in
principle. It is an interesting problem, but is beyond the scope
of the present study.

4.3 Random interactions

We study random systems where J;; and h; are chosen
randomly. We treat a fully-connected model with J;; = r;;/N
(i #J), and r;; and h; are sampled from uniform distribution
[-J,J].

We show the result in Fig. 8. We see that the BQA
outperforms the QA, though we cannot find a drastic change.
We checked in the result of the BQA that the obtained state
does not include the zero state |0);, which means that the
bifurcation works well.

To see that the method works even if the solution of the
problem is nontrivial, we plot in Fig. 9 the result for samples
in which the ground-state configurations {S;},_;
equal to {sign(h;)};=;.
better result than the QA.

4.4 First-order phase transition for large systems

It is hard to obtain numerical results for large values of N
in the present method. Instead, we study statistical properties
at thermodynamic limit N — oo by using the mean-field
approximation.

The statistical mechanical model of the present type of the
Hamiltonian has been discussed in various works as a model
to describe A transition in mixtures of He® and He*?6-2%
In the mean-field approximation for ferromagnetic systems
without magnetic field, the system is described by effective
Hamiltonian

He(mg) = —AS* — B($%)* — JzmS*, (15)

where z represents the coordination number, the number of
couplings of a single spin to the other spins, and my is the
magnetization determined selfconsistently. The selfconsistent
equation is written as

400 —————
BQA mmmm
| QA C—D ]
»
m | .
o
c
© L |
|7}
£
5 200 t+ 1
—
[ L 4
e!
S
= L |
z
0 L - | |
0.25 0.50 0.75 1.00
probability
Fig. 9. (Color online) The result for the case where the ground-state

configuration is nontrivial. The calculation conditions are the same as those
in Fig. 8. The number of samples is 545.

AlJz
7] B S e
Paramagnetic .~ 2nd order
il .
Ferromagnetic
1st order
0 . . . . .
-1 0 B/Jz 1 2

Fig. 10. The phase diagram of the ferromagnetic model in the mean-field
approximation. The paramagnetic phase (ms = 0) and ferromagnetic phase
(ms > 0) are separated by first-order and second-order phase-transition lines.
The dashed line with arrow represents the protocol (A(?), B(f)) used in this
study.

The selfconsistent equation always has the paramagnetic
solution my = 0. The ferromagnetic solutions with mg > 0 are
obtained in a certain range of parameters as we show in
Fig. 10. Those two phases are separated by a phase
transition. It is of second order when the order parameter
mg changes continuously and of first order when mg changes
discontinuously. The first-order phase transitions occur when
|A| is small and B is negative. At the first-order transition, the
zero state m = 0 is changed discontinuously to the qubit
states. We note that the paramagnetic phase with mg = 0 does
not distinguish between the zero state m = 0 and the Ising
paramagnetic state, mixtures of m = +1. The zero state is
dominant when B is negative and the Ising paramagnetic state
is dominant when B is positive.

Since the first-order transition is between the zero state and
the qubit states, this property is mainly determined by
competing effects between the driver part and the bifurcation
part and is insensitive on the details of the problem part. In
fact, we can also find a similar behavior when we treat
random systems.”” We still find a first-order transition at
small |A| and negative B with the ferromagnetic phase
replaced by the spin-glass phase.

— qz
ms = (Yos(mo)IS wes (ms), (16) It is known that the QA fails when the system goes across
where |pGs(ms)) is the ground state of He(ms). the first-order phase boundary.3°) To avoid the first-order
044003-5
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Fig. 11. (Color online) Ay dependence of the result. We study the
ferromagnetic model treated in Fig. 6. “Gauss” represents the protocol A(f)
in Eq. (12) and “Const” represents A(f) = Ag. Ao is plotted in unit of J.

transition in the BQA, A must be taken to be a large value.
We study a ferromagnetic model to see how the result is
dependent on the choice of Ay. The result is plotted in
Fig. 11. The computation fails when A is small as we expect
from the phase diagram in Fig. 10. The statistical mechanical
analysis shows that the failure at small Ay is restricted to a
finite range of the parameter even if we consider large N.

5. Conclusion

We have discussed the bifurcation mechanism by using a
spin model. The model can be constructed from the standard
qubit system by nesting. We found in our numerical
calculation that the performance of the BQA is better than
that of the QA. Although we did not find a drastic change, the
result can be further improved by optimizing protocols,
driver part, and some other parameters.

Compared with the standard QA, our method has
several different properties. First, the problem part of the
Hamiltonian is independent of time and is convenient for
implementations. We can only control the driver and
bifurcation parts which are common to any process. Since
the dynamics is mainly determined by those parts, we can
study optimizations of the protocol by using the single qutrit
Hamiltonian.

Second, our Hamiltonian forbids direct transition between
qubit states m = +1. Their states are only interchanged by
way of the zero state. It is considered to give an error-
proofing property.

Third, the model uses an extended Hilbert space and we
can in principle introduce different types of operators to
enhance the performance. We must be careful when we
introduce a new operator since it can affect the second
property we mentioned above.

Admittedly, the present study is limited to small spin
systems and it is difficult to draw firm conclusions on the
performance of the BQA. However, we stress that studying
a different mechanism of adiabatic quantum optimization

044003-6

algorithms is an important problem to obtain a better
understanding of quantum computations. We expect that
the mechanism discussed in this paper brings a new direction
of research.
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