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We study a bifurcation mechanism of quantum annealing. Using spins with quantum number S = 1, we construct a

simple model to make a bifurcation. The qutrit can be composed by nesting two qubits. We numerically solve the

Schrödinger equation to confirm that the bifurcation-based quantum annealing (BQA) works well and the ground state

can be found efficiently. The result is compared with that by the standard quantum annealing (QA) using qubits. We find

that the performance of the BQA is comparable to the standard QA, or gives better results in some cases.

1. Introduction

Quantum annealing (QA) is a heuristic method for solving

optimization problems.1,2) It is a kind of adiabatic quantum

optimization algorithms3–6) and is used for a device

manufactured by D-Wave Systems.7,8)

In the standard QA, the problem part of the Hamiltonian is

represented by an Ising-spin model and the quantum

fluctuations are induced by a transverse-field term. The

corresponding Hamiltonian is familiar in statistical mechan-

ics and is used as a standard model for quantum phase

transitions.9)

The transverse field is not the only possible way of

controlling the adiabatic state and we can find many other

choices in principle. In fact, it has been recognized that

“nonstoquastic” effect improves the performance.10–13)

Although it is an interesting problem to find an efficient

driver term from a theoretical point of view, the implemen-

tation of the complicated form of the Hamiltonian in

laboratory is a difficult problem.

It is also an interesting problem to study other possible

mechanisms utilizing quantum effects. In this paper, we

propose and study a bifurcation-based QA (BQA) by using

a spin model. The bifurcation mechanism was proposed

in a parametrically driven Kerr nonlinear oscillator as a

method of adiabatic quantum optimization.14) The perform-

ance and properties of the mechanism were studied in

subsequent studies.15–20) The model is described by bosonic

operators and has continuous degrees of freedom. It is an

interesting problem to find the corresponding mechanism

in discrete spin models, which is the main aim of this

study.

The qubit operations are described by Pauli operators of

spin-1=2. Since the operators are too simple to make a

bifurcation, we consider a higher spin system. By referring to

the standard form of the QA, we construct a spin model as a

possible realization of the BQA. We show that the system can

be realized in the present technology and study the perform-

ance numerically in the present work.

The organization of this paper is as follows. In Sect. 2, we

introduce a spin model realizing a bifurcation and discuss a

possible implementation. In Sect. 3, we numerically study

the bifurcation mechanism by using a noninteracting

Hamiltonian. The interactions are introduced in Sect. 4 and

we compare the result with that from the standard QA. The

last Sect. 5 is devoted to conclusion.

2. Bifurcation-Based Quantum Annealing

2.1 Bifurcation mechanism

The main aim of the QA is to find the ground state of the

Hamiltonian

Hp ¼ �
X

hi; ji
Jij�i�j �

X

N

i¼1
hi�i; ð1Þ

for a given set of fJijg and fhig. f�igi¼1;2;...;N represents

Ising-spin variables and each spin �i takes +1 or −1. The

solution, the ground-state configuration, is specified by a set

of values of f�ig.
In the bifurcation mechanism, we start the time evolution

from a symmetric state “j0i” and find degenerate states

“j�1i” at the end of the evolution. The degenerate states

represent qubit states. In the standard QA with Ising-spin

variables, the degenerate states represent Ising-spin states and

the initial state is given by a superposition of the Ising-spin

states: j0i ¼ ðjþ1i þ j�1iÞ=
ffiffiffi

2
p

. To make the bifurcation, we

need a bifurcation operator that gives the same eigenvalue

when it acts on j�1i. Since we cannot construct such an

operator in Ising-spin systems, we extend the state space.

We consider the spin-1 operators Ŝ ¼ ðŜx; Ŝy; ŜzÞ. These
operators obey the standard commutation relations such as

½Ŝx; Ŝy� ¼ iŜz, and have the quantum number S ¼ 1 when the

eigenvalue of Ŝ
2 is denoted as SðS þ 1Þ. We use the

eigenstates of Ŝz, jmi, as

Ŝzjmi ¼ mjmi; ð2Þ

with m ¼ þ1; 0;�1. In this basis, each operator can be

represented as

Ŝz ¼
1 0 0

0 0 0

0 0 �1

0

B

@

1

C

A
; Ŝx ¼ 1

ffiffiffi

2
p

0 1 0

1 0 1

0 1 0

0

B

@

1

C

A
: ð3Þ

Since we do not use Ŝy in the following analysis, it is omitted

here. A crucial difference from the Pauli operators is that the

square of each operator is not proportional to the identity

operator and gives a new kind of operators:

ðŜzÞ2 ¼
1 0 0

0 0 0

0 0 1

0

B

@

1

C

A
; ðŜxÞ2 ¼ 1

2

1 0 1

0 2 0

1 0 1

0

B

@

1

C

A
: ð4Þ

For a qutrit system described by the spin-1 operators, the

symmetric state j0i is assigned to the state with Ŝzj0i ¼ 0

and the degenerate states j�1i with Ŝzj�1i ¼ �j�1i. We
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note that ðŜzÞ2j0i ¼ 0 and ðŜzÞ2j�1i ¼ j�1i. Then, for a

single qutrit i, we consider the Hamiltonian

ĤiðtÞ ¼ �AðtÞŜxi � BðtÞðŜzi Þ2: ð5Þ

We change BðtÞ slowly from a negative large value to a

positive large one. AðtÞ is taken to be small but finite values at

intermediate times so that it induces energy-level mixing. By

evolving the system adiabatically with this Hamiltonian, we

find that the ground state is changed from j0i to j�1i. In the

following, we refer to the first term of Eq. (5) as driver part

and the second term as bifurcation part.

We set the total Hamiltonian for N qutrits as

ĤðtÞ ¼
X

N

i¼1
ĤiðtÞ þ Ĥp; ð6Þ

where Ĥp represents the problem part replaced f�ig in

Eq. (1) with fŜzi g. We set jBð0Þj � jBðtfÞj � jJijj � jhij
where tf represents the annealing time. Then, each qutrit

basically changes from j0i to j�1i. The degeneracy of the

final state is lifted by the presence of Ĥp and we can solve the

optimization problem.

We note that the problem part, Ĥp, is independent of t.

When Bð0Þ is a negative large number and Að0Þ is negligible,
the initial state is given by the eigenstate of Ŝzi with the

eigenvalue 0. The problem part only gives a zero contribution

and does not affect the state even if we keep Ĥp from the

beginning. This is one of advantages of the present method.

The time dependence of the Hamiltonian is only on each

spin, ĤiðtÞ, and we do not need to change the intricate

problem part, Ĥp. Then, it is expected that the dynamical

property is basically determined by the driver and bifurcation

parts and is insensitive to the problem part. This property is

basically the same as that in the Kerr parametric oscillator

model.14) By using the Hamiltonian in Eq. (6), we can study

the bifurcation mechanism in systems with finite Hilbert

space.

2.2 Spin coupling by nesting

One of promising methods realizing the qutrit is to use spin

nesting. The sum of two qubits gives

Ŝi ¼
1

2
ð�̂i1 þ �̂i2 Þ; ð7Þ

where �̂ ¼ ð�̂ x; �̂ y; �̂ zÞ represents the set of Pauli operators.

As described in a standard text book on quantum mechanics,

the set of operators Ŝi ¼ ðŜxi ; Ŝ
y

i ; Ŝ
z
i Þ satisfies the standard

commutation relations such as ½Ŝxi ; Ŝ
y

i � ¼ iŜzi and the

eigenvalues of the operator Ŝ
2
i are denoted by SðS þ 1Þ

with S ¼ 0 or 1. Ŝ
2
i commutes with each component of

Ŝi, which means that the Hamiltonian with the operators

Ŝi is block-diagonalized in the eigenstate basis of Ŝ
2
i and

Ŝzi . When we set the initial state as an eigenstate with S ¼ 1,

the state of the system is described by qutrit, three of four

states.

The connectivity of two qutrits is specified in Fig. 1. A

single logical qutrit is made from two physical qubits. The

driving represented by B is achieved by operating the

interaction between physical qubits within a single qutrit. The

interaction between two qutrits, Jij, is represented by four

bonds. In the case of Fig. 1, the total Hamiltonian is given

by

ĤðtÞ ¼ � AðtÞ
2

ð�̂ xi1 þ �̂ xi2 þ �̂ xj1 þ �̂ xj2Þ

� BðtÞ
4

½ð�̂zi1 þ �̂ zi2Þ2 þ ð�̂ zj1 þ �̂ zj2Þ2�

� Jij

4
ð�̂ zi1 þ �̂ zi2Þð�̂ zj1 þ �̂ zj2Þ

� hi

2
ð�̂ zi1 þ �̂ zi2Þ �

hj

2
ð�̂ zj1 þ �̂ zj2Þ: ð8Þ

It is interesting to find that the present method is equivalent

to nesting for an error-proofing procedure.21–23) It is expected

that the nested qubit can be robust against noise due to the

ferromagnetic coupling between the physical qubits. In our

choice of the Hamiltonian in Eq. (6), Ŝxi changes the states

j�1ii to j0ii and there is no direct transition between jþ1ii
and j�1ii. Since the energy level of the state j0ii becomes

large at large t, quantum fluctuations represented by virtual

transitions to different levels are suppressed, which might

be related to an error-proofing property. We note that the

behavior can be changed by introducing additional driver

terms. For example, ðŜxi Þ2 gives a direct coupling between

jþ1ii and j�1ii. We see from Eq. (4) that ðŜxÞ2 is equivalent
to �̂ x if the Hilbert space is effectively restricted to m ¼ �1.

We note that the initial state for each qutrit is given by j0ii
with Ŝzi j0ii ¼ 0. It can be written by qubit states as

j0ii ¼
1
ffiffiffi

2
p ðjþ1=2ii1 � j�1=2ii2 þ j�1=2ii1 � jþ1=2ii2Þ:

ð9Þ
j�1=2i represent two qubit states. Although this is an

entangled state and cannot be obtained by a single qubit

operation, the manipulation is only for two qubits and can

be obtained, e.g., by the standard QA procedure. We know

various ways of controlling systems with a small number of

spins and it is expected that the state can be prepared

efficiently.

3. Noninteracting Systems

We study the performance of the BQA by solving the

Schrödinger equation numerically. In this section, we treat

noninteracting systems to confirm that the bifurcation

mechanism works efficiently. Each qutrit can be treated

independently and the mechanism can be studied by the

single qutrit Hamiltonian

Fig. 1. The connectivity graph of two logical qutrits by four physical

qubits. Logical qutrit i is made from physical qubits i1 and i2, and qutrit j

from qubits j1 and j2. Two physical qubits within a single qutrit interact with

each other and the interaction is controlled by BðtÞ. The interaction between

two qutrits in the problem Hamiltonian, Jij, is represented by four bonds. We

also need additional single-qubit operations as represented by AðtÞ (for
P

i �̂
x
i ) and hi (for �̂

z
i1
þ �̂zi2 ).
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ĤðtÞ ¼ �AðtÞŜx � BðtÞðŜzÞ2: ð10Þ

We use the linear protocol for BðtÞ:

BðtÞ ¼ B0 2
t

tf
� 1

� �

; ð11Þ

where B0 is a positive constant much larger than AðtÞ. Since
our method is based on adiabaticity, we take tf to be a large

value. As we mentioned in the previous section, AðtÞ takes
small but finite values at intermediate times. We use the

Gaussian protocol

AðtÞ ¼ A0 exp � 1

2�2
2
t

tf
� 1

� �2
" #

; ð12Þ

with �2 ¼ 0:1. The instantaneous energy levels of the

Hamiltonian in Eq. (10) are plotted in Fig. 2. The energy

gap between the ground state and the excited state at t ¼ 0 is

very large. After passing through avoided-crossing region

around t=tf ¼ 0:5, the system has the ground state with two-

fold degeneracy.

There is no guiding principle on the choice of AðtÞ. In
the following, we also examine the case when AðtÞ takes

a constant value because the time-independent protocol is

practically convenient. Although Að0Þ must be zero so that

the state becomes an eigenstate of Ŝz at t ¼ 0, it is enough

provided jBð0Þj � jAð0Þj is satisfied.
We numerically solve the Schrödinger equation with the

Hamiltonian in Eq. (10) to obtain the time-evolved state

j ðtÞi. We first use the Gaussian protocol in Eq. (12).

In Fig. 3, we plot the time dependence of probabilities

jhmj ðtÞij2 with m ¼ þ1; 0;�1 for a given tf , and the

annealing-time dependence of jhmj ðtfÞij2. We see that the

bifurcation mechanism works very well if the annealing time

is not considerably small. The final state is given by

ðjþ1i þ j�1iÞ=
ffiffiffi

2
p

and has components of m ¼ �1 with

equal probability.

We consider the case where AðtÞ is constant: AðtÞ ¼ A0.

We plot the result in Fig. 4. Although we see small

oscillations, the performance is almost the same as that in

Fig. 3. We also examined several other cases and found

similar results. This implies robustness of the bifurcation

mechanism.

Next, we incorporate the noninteracting part of Ĥp. We put

Jij ¼ 0, which means that we still have a noninteracting

system and the single qutrit Hamiltonian is given by

ĤðtÞ ¼ �AðtÞŜx � BðtÞðŜzÞ2 � hŜz; ð13Þ
where h represents the magnetic field. The final result is

determined by the sign of h.

The result is plotted in Fig. 5. We see that that the proper

state, m ¼ þ1 or −1, is selected as a function of h, if jhj is not
too small.

Fig. 2. (Color online) The instantaneous energy levels of the Hamiltonian

in Eq. (10). We use Eqs. (11) and (12), and take B0=A0 ¼ 20. The energy

levels are plotted in unit of A0.

Fig. 3. (Color online) The solution of the Schrödinger equation with the

Hamiltonian in Eq. (10). We use the protocol in Eqs. (11) and (12), and take

B0=A0 ¼ 20. Top: The probability distributions of the time-evolved state at

each t. We take the annealing time as A0tf ¼ 100. Bottom: The annealing-

time dependence of the final state. Here, tf is plotted in unit of A0.

Fig. 4. (Color online) The solution of the Schrödinger equation with the

Hamiltonian in Eq. (10). We take AðtÞ ¼ A0 ¼ const: The other parameters

are the same as those in Fig. 3.
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4. Interacting Systems

Having confirmed that the bifurcation mechanism works

well for a single qutrit, we study multi qutrit systems with

interactions.

4.1 Ferromagnetic interactions

We first consider ferromagnetic interactions for a one-

dimensional arrangement of spins with periodic boundary

condition. Each spin interacts with the neighboring spins and

we set J1;2 ¼ J2;3 ¼ � � � ¼ JN;1 ¼ J > 0 and hi=J ¼ 0:1. Here,

we introduce a finite hi to avoid degenerate ground states.

The effect of degeneracy is discussed in the next subsection.

To assess the performance of the BQA, we compare the

result with that of the standard QA:

ĤðtÞ ¼ 1 � t

tf

� �

��
X

N

i¼1
�̂ xi

 !

þ t

tf
�
X

hi; ji
Jij�̂

z
i �̂

z
j �

X

N

i¼1
hi�̂

z
i

 !

: ð14Þ

Each element is represented by qubit and the standard linear

protocol is used to control the system.

The numerical result is plotted in Fig. 6. We see that, in

our choice of the parameters, the computation works very

well. In contrast to the standard QA, the initial state with

m ¼ 0 is changed to the final one abruptly after t exceeds

tf=2. When t is much smaller than tf=2, the bifurcation part is

the dominant contribution and the state remains the zero

state. After passing through the region where the driver part

is dominant, the state is changed to the ground state of Ĥp.

Comparison between the QA and the BQA in the bottom

panel of Fig. 6 shows that a large annealing time is required

to obtain the ideal result in the case of the BQA. In the

present implementation of the QA,7,8) the scale of the

Hamiltonian is of the order of GHz, and the annealing time

is of the order of µs. This corresponds to Jtf � 1000 in our

unit, which is large enough to find the ideal result.

4.2 (Un-)Fair sampling property

In the previous example, we used a problem Hamiltonian

with no ground-state degeneracy. The standard QA is known

to give a biased sampling among the degenerate ground

states24,25) and we study this property in the BQA.

We use a five spin model used in a previous work24) which

is denoted in the inset of Fig. 7. This system has six ground

states. Half of them are due to spin-flip symmetry and we plot

three levels in Fig. 7. We see that the result of the BQA is

very similar to that of the QA. Two of three levels are equally

sampled and the other single level is suppressed. We checked

that this property is unchanged when we use several different

protocols.

As discussed in the original study,24) we can improve

the result by introducing additional driver terms to the

Hamiltonian. Since the present model has a larger Hilbert

Fig. 5. (Color online) The performance with the Hamiltonian in Eq. (13).

We use Eqs. (11) and (12) with B0=A0 ¼ 20, and take the annealing time as

A0tf ¼ 200. Each curve represents the probability of the component m at

t ¼ tf . Here, h is plotted in unit of A0.

Fig. 6. (Color online) The performance with the ferromagnetic problem

Hamiltonian specified in the text. For the BQA, we use the protocol in

Eqs. (11) and (12) with B0=J ¼ 20 and A0=J ¼ 2. For the QA, we use

Eq. (14) with �=J ¼ 1. Top: The time dependence of the ground-state

probability. We plot the results at N ¼ 2 (thin line), 4, and 6 (thick line), each

being distinguished by the thickness of the line. We take the annealing time

as Jtf ¼ 300. Bottom: The annealing-time dependence. Here, tf is plotted in

unit of J.

Fig. 7. (Color online) (Un-)Fair sampling properties of the QA and BQA.

We use a five spin model with six degenerate ground states. The connectivity

is specified in the inset where solid lines represent ferromagnetic interaction

(Jij ¼ J > 0) and dashed lines antiferromagnetic interaction (�J < 0). We

plot three of six states. Two of them are plotted by solid lines and the other is

plotted by dotted line. The blue lines are for QA and the red for BQA. We

take the annealing time as Jtf ¼ 300.
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space, we have many choices to improve the result, in

principle. It is an interesting problem, but is beyond the scope

of the present study.

4.3 Random interactions

We study random systems where Jij and hi are chosen

randomly. We treat a fully-connected model with Jij ¼ rij=N

(i ≠ j), and rij and hi are sampled from uniform distribution

½�J; J�.
We show the result in Fig. 8. We see that the BQA

outperforms the QA, though we cannot find a drastic change.

We checked in the result of the BQA that the obtained state

does not include the zero state j0ii, which means that the

bifurcation works well.

To see that the method works even if the solution of the

problem is nontrivial, we plot in Fig. 9 the result for samples

in which the ground-state configurations fSigi¼1;...;N are not

equal to fsignðhiÞgi¼1;...;N. We still find that the BQA gives a

better result than the QA.

4.4 First-order phase transition for large systems

It is hard to obtain numerical results for large values of N

in the present method. Instead, we study statistical properties

at thermodynamic limit N ! 1 by using the mean-field

approximation.

The statistical mechanical model of the present type of the

Hamiltonian has been discussed in various works as a model

to describe λ transition in mixtures of He3 and He4.26–29)

In the mean-field approximation for ferromagnetic systems

without magnetic field, the system is described by effective

Hamiltonian

ĤeffðmsÞ ¼ �AŜx � BðŜzÞ2 � JzmsŜ
z; ð15Þ

where z represents the coordination number, the number of

couplings of a single spin to the other spins, and ms is the

magnetization determined selfconsistently. The selfconsistent

equation is written as

ms ¼ h GSðmsÞjŜzj GSðmsÞi; ð16Þ

where j GSðmsÞi is the ground state of ĤeffðmsÞ.

The selfconsistent equation always has the paramagnetic

solution ms ¼ 0. The ferromagnetic solutions with ms > 0 are

obtained in a certain range of parameters as we show in

Fig. 10. Those two phases are separated by a phase

transition. It is of second order when the order parameter

ms changes continuously and of first order when ms changes

discontinuously. The first-order phase transitions occur when

jAj is small and B is negative. At the first-order transition, the

zero state m ¼ 0 is changed discontinuously to the qubit

states. We note that the paramagnetic phase with ms ¼ 0 does

not distinguish between the zero state m ¼ 0 and the Ising

paramagnetic state, mixtures of m ¼ �1. The zero state is

dominant when B is negative and the Ising paramagnetic state

is dominant when B is positive.

Since the first-order transition is between the zero state and

the qubit states, this property is mainly determined by

competing effects between the driver part and the bifurcation

part and is insensitive on the details of the problem part. In

fact, we can also find a similar behavior when we treat

random systems.29) We still find a first-order transition at

small jAj and negative B with the ferromagnetic phase

replaced by the spin-glass phase.

It is known that the QA fails when the system goes across

the first-order phase boundary.30) To avoid the first-order

Fig. 8. (Color online) Histograms for the success probability for random

Hamiltonians with N ¼ 4. We compare the results of the BQA and QA. We

take the annealing time as Jtf ¼ 300 and the number of samples is 1600. The

bin width of the histogram is 0.05.

Fig. 9. (Color online) The result for the case where the ground-state

configuration is nontrivial. The calculation conditions are the same as those

in Fig. 8. The number of samples is 545.

Fig. 10. The phase diagram of the ferromagnetic model in the mean-field

approximation. The paramagnetic phase (ms ¼ 0) and ferromagnetic phase

(ms > 0) are separated by first-order and second-order phase-transition lines.

The dashed line with arrow represents the protocol ðAðtÞ; BðtÞÞ used in this

study.
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transition in the BQA, A must be taken to be a large value.

We study a ferromagnetic model to see how the result is

dependent on the choice of A0. The result is plotted in

Fig. 11. The computation fails when A0 is small as we expect

from the phase diagram in Fig. 10. The statistical mechanical

analysis shows that the failure at small A0 is restricted to a

finite range of the parameter even if we consider large N.

5. Conclusion

We have discussed the bifurcation mechanism by using a

spin model. The model can be constructed from the standard

qubit system by nesting. We found in our numerical

calculation that the performance of the BQA is better than

that of the QA. Although we did not find a drastic change, the

result can be further improved by optimizing protocols,

driver part, and some other parameters.

Compared with the standard QA, our method has

several different properties. First, the problem part of the

Hamiltonian is independent of time and is convenient for

implementations. We can only control the driver and

bifurcation parts which are common to any process. Since

the dynamics is mainly determined by those parts, we can

study optimizations of the protocol by using the single qutrit

Hamiltonian.

Second, our Hamiltonian forbids direct transition between

qubit states m ¼ �1. Their states are only interchanged by

way of the zero state. It is considered to give an error-

proofing property.

Third, the model uses an extended Hilbert space and we

can in principle introduce different types of operators to

enhance the performance. We must be careful when we

introduce a new operator since it can affect the second

property we mentioned above.

Admittedly, the present study is limited to small spin

systems and it is difficult to draw firm conclusions on the

performance of the BQA. However, we stress that studying

a different mechanism of adiabatic quantum optimization

algorithms is an important problem to obtain a better

understanding of quantum computations. We expect that

the mechanism discussed in this paper brings a new direction

of research.
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