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Abstract: A theorem on higer-order derivative theories of gravity is proved. We find that the de

Sitter/anti-de Sitter metric is always a solution of any generally covariant theory of gravity. With this

theorem and a general form of entropy function for de Sitter spacetimes, we show how to calculate

the entropy of de Sitter spacetime in a generally covariant theory of gravity without knowing the

details of the modified metric. As an example, a general formula of dS entropy in Lovelock gravity

is obtained.
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1. Introduction

One of the main challenges of General Relativity (GR) is the ultraviolet (UV) divergent
problem. This problem emerges in cosmological or black-hole type singularities at the
classical level. Over the last decades, a large number of attempts have been made to
resolve these divergences. Among them, the following attempts are widely accepted:
(i) construct a UV-complete theory of gravity by the replacement of spacetime metric with
more fundamental approaches such as string theory or loop quantum gravity; (ii) keep the
framework of GR and instead modify the matter stress energy tensor sourcing the gravity;
(iii) a case somewhere in between. The metric theory is still adopted, but modifications
of Einstein’s equations at the UV scale are suggested. This leads to a general approach
called higher derivative theories, which have been of great interest in the last decades since
these theories are renormalizable, and their study might include vital clues as to how to
quantize gravity.

On the other hand, recently, there has been increasing interest in the study of de
Sitter (dS) spacetime, partially because recent cosmological observations, particularly those
of type Ia supernovae [1,2], suggest that our universe is expanding at an accelerating rate.
This means that our universe is asymptotically de Sitter spacetime. The other motivation
comes from the well-known (A)dS/CFT correspondence [3,4], which argues that physics
in the bulk is equivalent to the CFT on the boundary. This is closely related to an issue
of particular interest, which is the finite entropy of the de Sitter horizon, which was first
explored by Gibbons and Hawking in [5], following the pioneering works by Bekenstein
and Hawking [6–10]. It is useful to know what we mean by entropy, or equivalently, how
to understand the de Sitter entropy from the view point of statistics (or microstates). This
issue has been explored by Maldacena and Strominger [11] for 2 + 1 dimensions. A clue
may be found by studying what would happen if we consider dS entropy at very high
energies close to the Planck scale, where Einstein’s theory breaks down and the higher-order
curvature corrections to the Einstein–Hilbert action become important. It is often believed
that the corrections of higher-order terms might provide hints for the understanding of the
microscopic origin of dS entropy.
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By now, it is well-known that for a special class of black holes, known as BPS black
holes, the microscopic origin of black hole entropy can be understood in the framework
of string theory [12]. Recently, an elegant method has been proposed by Sen [13] for
calculating the BPS entropy even in the presence of higher-order curvature terms in the
gravity action. This method is generally called the entropy function method (see [14] and
its recent progress [15–29]), which can give the BPS entropy without knowing the details
of the space-time geometry. An important question that immediately comes to our mind
is why the entropy function method can know the BPS entropy without knowing the
modified geometry.

Our work probes along this line by exploring the entropy of dS space in higher
derivative theories of gravity and showing a remarkable feature of dS space with which
one can obtain the dS entropy without knowing the details of the modified dS geometry.
This property is based on an important theorem that states that the dS (and the AdS) space
is always a solution of any generally covariant theories of gravity. We start by giving a full
proof of this theorem.

Let us consider generally covariant higher derivative gravity theories with cosmologi-
cal constant Λ:

I =
∫

dDx
√

−det gL(Λ, gµν, Rµνρσ,∇α1
Rµνρσ, · · · ∇(α1···∇αm)Rµνρσ). (1)

Variation over the metric gµν yields the equations of motion [30]:

∂L
∂gµν + Eµ

ρσκ Rνρσκ − 2∇ρ∇σEµρσν −
1

2
gµνL+

{

∇L̃
}

µν
= 0, (2)

where Eµ
ρσκ is defined as

Eµνρσ ≡ ∂L
∂Rµνρσ

−∇α1

∂L
∂∇α1

Rµνρσ
+ · · ·+ (−1)m∇(α1···αm)

∂L
∂∇(α1···∇αm)Rµνρσ

(3)

and L̃ stands for a sum of terms constructed with Λ, gµν, Rµνρσ and its covariant derivatives.
Without loss of generality, we can divide the terms in L into three types: Li (i = 1, 2, 3).
L1 is a sum of terms containing contractions of Rµνρσ only, without any of its covariant
derivatives; L2 are those of Rµνρσ and its covariant derivatives; and L3 are those of only
covariant derivatives of Rµνρσ. By doing so, the equations of motion (2) can be rewritten as

∂L
∂gµν + gµλ

∂L1

∂Rλρσκ
Rνρσκ + gµλ

∂L2

∂Rλρσκ
Rνρσκ −

1

2
gµνL+

{

∇L̂
}

µν
= 0, (4)

where L̂ stand for terms constructed with Λ, gµν, Rµνρσ and the associated covariant derivatives.
We now proceed to prove that the following metric is always a solution of the field

Equation (4):
ds2 = −(1 − λr2)dt2 + (1 − λr2)−1dr2 + r2dΩ2

D−2, (5)

where λ is a constant to be determined by Λ and coefficients of all higher curvature terms
in the action. A concrete example is the dS metric in Einstein’s theory, with λ = Λ/3. For
the background (5), the nonvanishing components of the Riemann curvature tensor are

Rαβγδ = λ(gαγgβδ − gαδgβγ), Rijkℓ = λ(gikgjℓ − giℓgjk), Rαiβj = βgαβgij, (6)

where α, β, γ, δ = r, t and i, j, k, ℓ = θ, φ, . . .. Using these properties it is not difficult to show
that the Lagrangian density L is a function of λ and Λ only, i.e., L(λ, Λ). Since the curvature
tensor can be expressed simply by the metric tensor, whose covariant derivatives are all zero,
the covariant derivatives of the curvature tensor therefore all vanish. As a consequence, the
last term in the left hand side of (4) vanishes identically. For the same reason, the third term
in (4) disappears since every term in L2 contains the covariant derivatives of the Riemann
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tensor. Moreover, the above properties also imply that the first and second terms in the
left-hand side of (4) take the form f (λ, Λ)gµν and g(λ, Λ)gµν, respectively, with both f and
g functions of λ and Λ only. To prove this, we note that the metric (5) is a solution of the
equation of motion (4), as long as f (λ, Λ) + g(λ, Λ)− 1

2L(λ, Λ) = 0 is satisfied. This leads
to the following theorem:

Theorem 1. For any generally covariant, purely metrical theory of gravity, the dS (or AdS)
metric is always a solution, with the higher-order curvature terms in the action changing only the
space-time curvature.

2. Entropy for De Sitter Space in Higher Derivative Theories of Gravity

In this section, we calculate the entropy of dS space in higher derivative theories of
gravity. In Einstein gravity, the entropy is proportional to one quarter the event horizon area,
AH . This, however, has been proved to be no longer true in higher derivative theories of
gravity. In [31], it is shown that the entropy should take the form of a geometric expression
evaluated at the event horizon. Several methods were developed to calculate the entropy of
the higher derivative gravity: One was proposed by Wald [30,32], leading to the so-called
Wald’s formula [33]. Another is related to the Euclidean entropy of the space as shown in
[34]. The dS entropy can be also obtained by assuming that space-time satisfies the first
law of thermodynamics as shown in [35]. One of the authors of [36] has suggested an
essentially thermodynamic argument that generalizes the entropy function method to dS
space, and thus one can in principle calculate the entropy of dS space with higher order
curvature corrections without knowing the details of the modified metric. This is due to the
observation that the contribution from the modified temperature due to higher curvature
corrections is the same in magnitude as that from the change in the entropy function due to
the modified horizon, and the two are exactly canceled [36]. In this section, we firstly give
a brief review of these related works. Then, we apply it to the calculation of dS entropy in
higher derivative theories of gravity.

2.1. Brief Review of Noetherian Entropy and Entropy Function

In this subsection, we briefly review some important results made in the previous
works [13,30,32], following the framework of Lagrangian field theories developed by Wald
and viewing the Lagrangian as an n-form L(ψ), where ψ = {gab, Rabcd, Φs, FI

ab, · · · } denotes
the dynamical fields considered. Under this definition, the variation of L is

δL = Eψδψ + dΘ, (7)

where Θ is an (n − 1)-form, which is called the symplectic potential form, and Eψ denotes
equations of motion for the dynamical fields. Now, suppose ξ be any smooth vector field
on the space-time manifold; one can then define a Noether current

J[ξ] = Θ(ψ,Lξ ψ)− ξ · L. (8)

It was shown that dJ[ξ] = 0 when the equations of motion are satisfied; therefore, an
(n − 2)-form Q[ξ] can be introduced and an “on shell” formula can be obtained:

J[ξ] = dQ[ξ]. (9)

Based on the first law of black hole thermodynamics, Wald [30,32] showed that for
general stationary black holes, the black hole entropy is a kind of Noether charge at horizon,

SBH = 2π
∫

H
Q[ξ] , (10)

where ξ denotes the Kklling field on the horizon, and H is the bifurcation surface of
the horizon.
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The Noether charge Q[ξ] can be also extended to the “off shell” form, as done in [37]

J[ξ] = dQ[ξ] + ξaCa , (11)

where Ca is locally constructed out of the dynamical fields in a covariant manner and
Ca = 0 reduces to the previous definition (9) “on shell”. The Noether charge defined in (11)
can be written as

Q = QF + Qg + · · · (12)

with

QF
a1···an−2

=
∂L

∂FI
ab

ξc AI
cǫaba1···an−2

, (13)

Q
g
a1···an−2

= − ∂L
∂Rabcd

∇[cξd]ǫaba1···an−2
. (14)

The “ · · · ” terms are not important for our following discussion, and L is the La-
grangian density.

On the other hand, it was shown that the entropy of a kind of extremal black holes that
have the near horizon geometry AdS2 × Sn−2 can be obtained by extremizing the so-called
“entropy function” F with respect to the moduli on the horizon [13]:

SBH = 2πF = 2π(eiqi − f (~u,~v,~e,~p)), (15)

where f is defined as

f (~u,~v,~e,~p) =
∫

dx2 · · · dxn−1
√

−detgL. (16)

Now, let Lλ̂ be a deformation of L in which we rescale all factors of Riemann tensor

Rαβγδ by λ̂Rαβγδ and define fλ̂ =
√

−detgLλ̂; then, the following relation holds:

∂ fλ̂

∂λ̂

∣

∣

∣

∣

λ̂=1

=
∫

H

√

−detgRαβγδ
∂L

∂Rαβγδ
dx1 · · · dxn−2 = f − ei

∂ f

∂ei
, (17)

where α, β, γ, δ are summed over the coordinates r and t.
Let us consider a specific example: an n–dimensional spherically symmetric black hole

in asymptotically flat space-time. Since Θ = 0, if ξ is a killing vector, we find by integrating
over a Cauchy surface C on Equation (9)

∫

C
J = −

∫

C
ξ · L =

∫

C
dQ[ξ] =

∫

∞
Q −

∫

H
Q, (18)

where H denotes the interior boundary, and we have used the Stokes theorem. For
an asymptotically flat, static spherically symmetric black hole, one can simply choose
ξ = ∂t =

∂
∂t ; then, the free energy of the system is shown to be [36]

F = E −
∫

H
Q[ξa], (19)

where E is the “canonical energy”, and F = TIE, with T and IE the temperature and
Euclidean action of the system, respectively. Variation of Equation (19) leads to

δF = δE − δ
∫

H
Q[ξa]. (20)

Let us consider a stretched region near the horizon ranged from rH to rH + δr, com-
bining (12); then,

δ
∫

H
Q[ξ] =

∫ rH+δr

rH

(

QF[ξ] + Qg[ξ]
)

. (21)



Universe 2023, 9, 116 5 of 10

Together with the killing equation ∇[aξb] = 2κǫab (where κ is the surface gravity of
the hole), one gets [38]

∫ rH+δr

rH

Qg[∂t] = δr
[

κ′E + κE′]
rH

+O(δr2) , (22)

∫ rH+δr

rH

QF[∂t] = qIeIδr + eIq
′
Iδr +O(δr2). (23)

where

E(r) ≡ −
∫

H
∂L

∂Rabcd
ǫabǫcddx1 · · · dxn−2. (24)

The above formula is exactly the Wald formula for entropy up to a factor of 2π [30].
According to the definition of entropy function in (4.4) of [38], we find E(r) is related to the
entropy by 2πE(rH) = S.

On the other hand, for the free energy, we also find that

δF = −
∫ rH+δr

rH

f dr = − f (rH)δr +O(△r2). (25)

Substituting Equations (22), (23) and (25) into Equation (20), we obtain

Fδr = −SδT, (26)

where F = (− f (rH) + qIeI) is the entropy function for extremal black hole as shown in (15),
and we have used the relation δE = TδS − eIq

′
Iδr. In the limit δr → 0, we obtain an

equation which governs the entropy function for non-extremal black holes

ST′ = −F, (27)

where prime denotes derivative with respect to r.
The asymptotically dS or AdS cases, however, are slightly different due to the definition

of the Hamiltonian. Our previous work [36] shows that the following relation holds,
given by

(TS)′ − E ′ + eIq
′
I = −FBH +





(

gBH
tt

gAdS
tt

)1/2




r=R

FdS, (28)

where FBH = eIqI − fBH and FdS = − fdS denote the entropy functions of the black hole
and AdS, respectively, and R is a cutoff of the dS (AdS) space, which is usually chosen as
dS (AdS) radius. The integration form of Equation (28) gives the free energy

F =
∫ R

rH

FBH −





(

gBH
tt

gAdS
tt

)1/2




r=R

∫ R

0
FdS. (29)

The entropy then can be evaluated by using the formula S = − ∂F
∂T . Special attention

has been paid to pure dS (AdS) case with higher curvature corrections in our previous
work [39], where we have shown that the entropy of dS space in any higher derivative
gravity theories can be computed by

S = S0 + γS1 =
1

T(0)

∫ r
(0)
H

0
(F0 + γF1)dr, (30)

where script (0) denotes the variables computed by using the non-perturbative metric,
and F0 and F1 represent entropy functions with and without higher derivative corrections,
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respectively. Both F0 and F1 are calculated by using the non-perturbative metric. γ is a
small quanta showing the coupling strength. This implies that one can obtain the entropy
of dS spacetime in any higher derivative gravity theories without knowing the corrected
metric. Equation (30) can be also rewritten as

S =
1

T(0)

∫ l

0
Fdr, (31)

where the cosmological radius l and the temperature T(0) are calculated by using the
non-perturbative metric, namely, the dS metric in Einstein gravity. All higher derivative
corrections are contained in the entropy function F. In what follows, we calculate the
explicit form of dS entropy for higher derivative theories of gravity.

2.2. Ds Entropy Function for Higher Derivative Gravity

Combining Equation (31) with the theorem in the first section, we show that the metric
of the form (5) can be used to quickly derive the dS entropy, without knowing the exact
form of λ. To demonstrate the validity of this statement, in this subsection, we show a
concrete example. In the framework of string theory, the higher-order curvature terms are
generated by the slope expansion. Although such terms may introduce graviton ghosts
and violate unitarity, it was shown in [40,41] that ghosts can be avoided if the modified
field equations induced by the stringy corrections remain in second order. One of the
important second-order gravity theories in higher dimensional spaceötimes is known as the
Lovelock gravity [42]. The Lagrangian density for the Lovelock gravity in D dimensions is

L = ∑
[D/2]
m=0 cm Lm, where Lm is given by

Lm =
1

2m
δ

a1b1 ...ambm

c1d1 ...cmdm
Ra1b1

c1d1 . . . Rambm
cmdm , (32)

αm is the m’th order coupling constant, [D/2] denotes the integer part of D/2 and the
Latin indices a, b, c and d run from 0 to D − 1. The δ symbol is a totally antisymmetric
product of 2m Kronecker deltas normalized to take the values of ±1. The term L0 = 1

is the cosmological term, while L1 = δ
a1b1
c1d1

Ra1b1
c1d1 /2 is the Einstein term. In general Lm

is the Euler class of a 2m dimensional manifold. Let us first consider a static, spherically
symmetric space-time. The metric of interest is of the form

ds2 = −e2ε(r)dt2 + e−2ε(r)dr2 + r2
D−2

∑
i,j

hijdxidxj, (33)

where ε(r) is a function of r only, and hijdxidxj stands for the line element of a (D −
2)-dimensional Einstein space, with VD−2 =

∫

dD−2
√

h the volume of this (D − 2)-
dimensional hypersurface at the horizon. With this metric ansatz, we have Rijkl =
k(hikhjl − hilhjk), Rij = k(D − 3)hij and R = k(D − 2)(D − 3), with k the curvature
constant, whose value determines the geometry of the horizon. Without loss of generality,
one may take the constant curvature k = 1, 0, and −1, with the (D − 2)-dimensional
hypersurface being spherical, flat and hyperbolic space, respectively. For simplicity, we set
k = 1 in the following.

Following [43], for general static geometries, the action is expected to be of the form

I → I(s) =
1

16πGD

∫

dD−1xN
√

g(s)

[D/2]

∑
m=0

cmL(s)
m , (34)
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where N =
√−g00, and the subscript (s) denotes the spatial section and GD is the Newton’s

constant in D dimension. The action principle yields the equation of motion of the form [44]

n

∑
m=0

c̃mψm =
2GD M

rD−1
, (35)

where ψ = r−2(1 − e2ε). Here 0 < n ≤ [D/2], M is an integration constant, and c̃m ≡
(D−3)!

(D−2m−1)!
cm. Equation (35) incorporates all information concerning the static spherically

symmetric spacetimes in the Lovelock gravity. One special solution to the equation of
motion (35), which is of great interest in this letter, is the pure dS/AdS solution (with no black
holes in it), corresponding to M = 0 in Equation (35). In this case, Equation (35) becomes

n

∑
m=0

c̃mψm = 0, (36)

indicating that ψ is a function of the constants ci and is independent of r:

ψ = λ(c0, c1, · · · , cn). (37)

From the definition of ψ, one finds that e2ε = 1 − λr2. In other words, the modified
metric of dS/AdS space is of the following form:

ds2 = −(1 − λr2)dt2 +
dr2

1 − λr2
+ r2

D−2

∑
i,j

hijdxidxj. (38)

This confirms our statement that higher-order curvature terms only change the co-
efficient of r2 in dS/AdS space. In particular, if we consider the case with n = 2, which
corresponds to the Gauss–Bonnet term, the equation of motion gives the value of λ:

λ =
−c̃1 ±

√

c̃2
1 − 4c̃0 c̃2

2c̃2
. (39)

Without loss of generality, we can choose c̃0 = ∓1/l2 (l denotes the cosmological
radius) and c̃1 = 1 for dS/AdS, respectively. By doing so, we find that (39) is exactly the
solution given in [43] when there is no black hole inside the dS/AdS space. In [38], it is
also shown that only the solution taking “+” sign is reliable, since the solution with “−”
is unstable.

In the following, we focus on the dS spacetime. The temperature associated with a
cosmological horizon rc =

√
1/λ is given by

T =

√
αk

2π
. (40)

Since λ is a constant determined by c̃m(m = 0, 1, . . . , n) through (36) and (37). Analyti-
cally, it becomes difficult to find λ once we consider the Lovelock gravity with n > 4.

To go around this difficulty, we apply Equation (31), which allows us to obtain the
dS entropy without knowing many details of the modified geometry. The key is to find
the entropy function. For simplicity, we choose c̃0 = −1/l2 and c̃1 = 1 (hence c0 = −(D −
1)(D − 2)/l2 and c1 = 1), reproducing the standard action without higher-order terms.
With this choice, the dS line-element is the standard one e2ε =

(

1 − r2/l2
)

. Generalizing
Sen’s definition, the entropy function of dS space is given by

F =
1

16πGD

∫

dD−2x
√

−g
n

∑
m=0

cmLm, (41)
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where 0 < n ≤ [(D − 1)/2] and Lm computed by the line element (38) in its non-
perturbative form with λ = l−2 is given by

Lm =
D!

(D − 2m)!

1

l2m
. (42)

It is straightforward to give the entropy function of dS space in Lovelock gravity:

F =
VD−2rD−2

16πGD

n

∑
m=0

cm

l2m

D!

(D − 2m)!
. (43)

On the other hand, (40) tells us that the temperature of dS space in Einstein gravity
reads T(0) =

1
2πl . Combining (31) and (43) one directly obtain

S =
VD−2lD

8GD(D − 1)

n

∑
m=0

cm

l2m

D!

(D − 2m)!
. (44)

It is not difficult to check that this formula reproduces the correct entropy of dS
space; for instance, the n = 2 case, which corresponds to the Gauss–Bonnet gravity. Using
Equation (44), we obtain

S =
VD−2lD−2

4GD

(

1 +
D(D − 2)(D − 3)c2

2l2

)

,

exactly the entropy of Guass-Bonnet gravity [36].
What we should emphasize here is that entropy formula (44) is valid for any Lovelock

gravity. During our calculation, we do not need the modified metric at all. In other
words, one can get the dS entropy in any Lovelock gravity without knowing the modified
metric. Moreover, a remarkable feature of (44) is that we express the dS entropy in arbitrary

order Lovelock gravity in terms of l (or r
(0)
c = l)—a cosmological radius calculated in the

framework of Einstein’s gravity. Under this consideration, our result is different from a
previous work made by Cai in [45], where the author derived the entropy of a spherically
symmetric black hole in Lovelock gravity by assuming that space-time satisfies the first law
of thermodynamics. When it is applied to dS space, [45] shows that the entropy is given by

S =
VD−2rD−2

c

4GD

n

∑
m=1

m(D − 2)

(D − 2m)
c̃m(r

−2
c )m−1. (45)

where rc =
√

1/λ is the cosmological radius of Lovelock gravity and λ is given by (37)
(here, we have re-expressed the formula in terms of our language). Obviously, λ 6= 1/l2 in
most cases. To express the entropy of dS space in terms of l, one has to solve the equation
of motion (36). This, however, becomes impossible once n ≥ 5. In this sense, we say that
one cannot have an explicit expression for dS entropy in terms of (45). Therefore, one of the
advantages of our result is that we can express the dS entropy in an explicit way. Although
(45) fails to give an explicit expression for dS entropy in some cases, it can be applied to
check the validity of our result. To do this, we have to find a perturbative solution to the
equation of motion (36) by assuming λ = (1 + λ1)/l2 with λ1 a small term compared to 1.
Then, we insert it into the equation of motion (36) and expand the formula to the first order,
i.e., neglecting all the terms higher than c̃i. By doing so, the expression of λ1 turns out to be

λ1 = −l2
n

∑
m=2

c̃m

l2m
+O(c̃m).

The expression of λ is then obtained. Substituting the formula of λ obtained in this
way into (45), one quickly recovers the formula (44).
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3. Conclusions

We conclude with some remarks about Sen’s entropy function method. We wish that
the approach addressed here concerning the computation of dS entropy may shed a light
on understanding the nature of the entropy function. From Sen’s remarkable paper [13], we
learn that the most distinguished feature of the entropy function method is the powerful
ability to obtain the entropy of a specific class of extremal black holes in higher derivative
gravity with little knowledge about the space-time geometry. To ensure the method works
well, we requires a hypothesis, which is addressed by Sen in [14]:

In any generally covariant theory of gravity coupled to matter fields, the near
horizon geometry of a spherically symmetric extremal black hole in D dimensions
has SO(2, 1)× SO(D − 1) isometry.

This is to assume that in any generally covariant theory of gravity, a spherically
symmetric extremal black hole has the near horizon geometry AdS2 × SD−2. The validity of
this postulate has been proved in the 4 and 5-dimensional cases, as shown in [46]. However,
with this postulate, we are still lacking knowledge to understand the entropy function
method. Our results obtained in this letter may provide a possible understanding of the
entropy function method as follows:

(i) De Sitter space has a geometry structure that is similar to the near horizon geometry

AdS2 × SD−2 of a spherically symmetric extremal black hole and has an analogue
symmetry SO(1, 2)× SO(D − 1).

(ii) De Sitter geometry and the entropy function method share the same property, namely,
the entropy can be calculated without knowing the exact metric form.

With these common grounds, we may expect that the crucial point for the entropy
function method to be valid is the near horizon geometry structure. However, a full
understanding of the relationship between our analysis and the entropy function method
remains an outstanding challenge.
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