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Conclusions Not Yet Drawn from the Unsolved
4/3-Problem—How to Get a Stable Classical Electron

Manfried Faber

Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Wien, Austria; faber@kph.tuwien.ac.at

Abstract: It has been known for over 100 years that there is a discrepancy between

Maxwell’s electrodynamics and the idea of a classical electron as the “atom” of electricity.

This incompatibility is known under the terms 4/3 problem of the classical electron and

radiation reaction force and was circumvented in the currently most successful theories,

the quantum field theories, by limit value considerations, by the mutual subtraction of

infinities, i.e., by purely mathematical methods that eliminate obvious contradictions but

are not really based on an intuitive understanding of its physical causes. The actual origin

of the problems mentioned lies in the instability of the classical electron. Stabilization

cannot be achieved within the framework of Maxwell’s electrodynamics. This raises the

question of what a minimal change to the fundamentals of electrodynamics should look

like, which contains Maxwell’s theory as a limiting case. A detailed analysis of the 4/3

problem points to models that fulfill these requirements.

Keywords: classical electron; Maxwell equation; special relativity; energy–momentum

tensor

1. Introduction

The discussion about the origin of the problems of the classical electron is essentially

about the concept of particles. The question is whether the idea of assuming atoms of

electricity to describe electrodynamic phenomena, as Helmholtz had already suggested,

is expedient. Stoney suggested the name “electron” for these “atoms”. In formulating

this description, classical electrodynamics encountered two unsolvable problems, the

4/3 problem and the problem of radiation reaction force [1,2]. In this article, we focus in

particular on the cause of the 4/3 problem and examine what conclusions can be drawn

from the form of the discrepancy and what kind of models can solve both problems of

classical electrodynamics.

Early on in the formulation of the dynamics of electrons, an idea emerged that is still

generally accepted today: a distinction is made between the dynamics of electromagnetic

fields, the dynamics of electrons and the interaction between particles and fields. According

to the special theory of relativity, the mass of particles is expected to increase with velocity

according to the well-known Equation (4) with the γ factor. It is a characteristic of moving

particles that are described in a “stationary” three-dimensional Euclidean reference system

Σ, see Section 2 and Figure 1, that the velocity vector uµ (A8)
= γ(c, v⃗) does not have to be

orthogonal to the position vectors xµ := (0, x⃗), i.e., the scalar product 1

uµxµ := −γv⃗x⃗ ≤ 0. (1)

does not have to vanish. The equal sign only applies to particles at rest.
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For electrons, which are described by electromagnetic fields, such a particle behavior

was already expected by Lorentz and Abraham [2,3]. Rohrlich clearly demonstrated in [4,5]

that the formalism of special relativity only guarantees that the four-momentum of a field

distribution behaves Lorentz-covariantly. However, the 4/3 problem already established

by Abraham [1] shows that it was not possible to consistently represent electrons moving

in Σ by fields. The reason lies in the instability of the classical electron. To discuss the 4/3

problem, it is sufficient to consider electrons moving at constant speed. The result of such a

field description of the classical electron is given in Section 2 in order to be able to discuss

in Section 3 which minimal changes lead to a stable model of classical electrons, so that the

energy–momentum relationships also apply in reference systems that are not orthogonal to

uµ, as the inequality (1) allows. In such a model, which allows a stable classical electron

to be formulated, no divergences occur. Maxwell’s electrodynamics would thus no longer

contradict Millikan’s famous experiment, which proved the quantization of the electric

charge before quantum mechanics moved quantization to the center of scientific interest, as

explained in Section 3.

2. Particle and Field Description of the Classical Electron

Particles are lumps of matter that remain undestroyed when scattered with sufficiently

low energies. Such particles can be assigned an invariant mass m0 and the concepts of

kinematics can be applied without contradiction. To understand what this means, it is

helpful to look at the definitions and relationships of relativistic kinematics and their

relationship to the non-relativistic terms, see Appendix A.

From the assignment of the space–time coordinates xµ to time t and the position

vector x⃗

x := (c0t, x⃗) (2)

and the four-momentum pµ to the energy E and the spatial momentum p⃗

p := (
E

c0
, p⃗) (3)

it follows that the mass m of the particles depends on the ratio of their velocity v to the

speed of light c0

m(β)
(A12)
= γm0 with γ :=

1
√

1 − β2
and β :=

v

c0
(4)

so the four-momentum results in

p
(A12)
= γm0(c0, v⃗). (5)

A closer look shows that definition (3) follows from definition (2) if a suitable action

function for a free particle is defined and the momentum is derived from it as the temporal

component of the energy–momentum tensor

pµ (A32)
=

∫

Σ

Θ
µ0(x)d3σ. (6)

The integration here takes place over that three-dimensional space-like volume Σ in which

the velocities v⃗ are determined, i.e., in principle over any three-dimensional space-like

volume. Precisely this arbitrariness of Σ is obviously one of the characteristics of a particle,

see Figure 1.
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Figure 1. We describe an electron in the laboratory system Σ and in the comoving system
◦
Σ according

to the rules of special relativity, as shown in this Minkowski diagram. Note that the points A and
◦
A

connected by dashed lines have the same spatial coordinates
◦
x and only differ in time

◦
t. Since the

electron is at rest in the comoving system, the field strengths measured in the comoving system are

the same at A as in
◦
A. To determine the field strength measured in Σ at A, the coordinates x and t

at A must be taken into account and the field strength tensor must be transformed according to the

transformation rules of a tensor. The relationships valid for A apply accordingly for B.

In the field description, we assume, like Abraham [1], that the mass of the electron is

purely electromagnetic in nature, see Appendix B, and calculate energy and momentum

according to Equation (6) for the field of a charge e = −e0 from the symmetric energy–

momentum tensor

Θ
µν (A35)

= −
1

µ0
ηµκ FκλFνλ +

1

4µ0
ηµνFκλFκλ. (7)

In a reference frame Σ, in which the electron moves at a speed v⃗ = cβ⃗, see Figure 1, the field

strengths transform according to the Lorentz transformation of the field strength tensor

Fµν to

E⃗(β⃗)
(A46)
= E⃗∥(0) + γE⃗⊥(0) with E⃗∥ :=

β⃗(β⃗E⃗)

β2
, E⃗⊥ := E⃗ − E⃗∥,

cB⃗(β⃗)
(A46)
= γβ⃗ × E⃗(0).

(8)

For a charge at rest, each of the three electric field components contributes to the energy

density (A36) with one third of the rest energy density E0 (⃗r). This leads to an energy of the

moving charge e

Ee(β)
(A49)
= Ee(0)

4γ2 − 1

3γ
, (9)

that does not have the form expected for particles (5), Ee(β) = γEe(0). The momentum

P⃗e(β⃗)
(A51)
=

ε0

c0

∫

◦
Σ

d3 ◦
σ
[

−E⃗⊥(0)
(

E⃗∥(0)β⃗
)

+ γβ⃗E⃗2
⊥(0)

]
(A52)
= β⃗γ

4

3

Ee(0)

c0
(10)

shows momentum densities normal to the velocity

−
ε0

c0
E⃗⊥(0)

(

E⃗∥(0)β⃗
)

(11)

and thus internal stresses in the classical electron, which cancel each other out and therefore

do not contribute to the total momentum. The factor 4/3 in P⃗e(β⃗) means a discrepancy

between the gravitational mass Ee(0)/c2
0 and the inertial mass 4

3 Ee(0)/c2
0 of the classical

electron, which can be read from expression (10). This is in obvious contrast to the particle
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description of a classical electron according to Equation (5). The cause of this contradiction

lies in the instability of the classical electron described by the electromagnetic fields of

Maxwell’s electrodynamics, as has been known for over 100 years [6] and is explained in

detail in Section 3. Furthermore, conclusions are drawn in this section as to how a model of

a stable classical electron can be formulated.

The fact that the discrepancy discussed in this paper, which is over 100 years old, is

not a violation of the rules of special relativity is confirmed by the calculation of the four-

momentum of the moving electron, if the coordinates (c0t, x⃗) are used for the calculation,

but integrated over the space-like volume
◦
Σ, which are simultaneous for the electron at

rest. This integration leads to

Pµ(β⃗)
(A53)
=

Ee(0)

c0
(γ, β⃗γ), (12)

and relates to the four-momentum of the electron at rest as expected. That the rules of

special relativity also apply to the unstable classical electron was emphasized by Rohrlich

with his calculations in Ref. [5].

3. Conclusions from the Problems

An interpretation of the frustrating result (9) for the energy of the moving electron is

facilitated by a comparison with the Sine–Gordon model, a Lorentz-invariant, topologically

interesting, field model in one space and one time dimension, which is illustrated very

clearly in Ref. [7]. According to Equation (6.23) of Ref. [7] the rest energy ESG(0) of a

Sine–Gordon soliton increases for a moving soliton to

ESG(β) = ESG(0)
γ2 +

γ2

︷ ︸︸ ︷

1 + γ2β2

2γ
= γESG(0). (13)

The stress energy ∝ γ, the potential energy ∝ 1/γ and the kinetic energy ∝ γβ2 are listed

here in sequence. This result, ESG(β) = γESG(0), for the energy of the Sine–Gordon soliton

fulfills the expectations of a particle that is subject to the laws of relativistic kinematics.

It is also stable because the stress term broadening a particle ≡ Sine–Gordon soliton and

the compressing potential energy keep each other in equilibrium. In the soliton at rest,

these two energy contributions must be equal in order for stability to occur according to

the Hobart–Derrick theorem [8,9]. This results from the one-dimensional integration over

the real axis and the number of derivatives, as the stress term contains two derivatives and

the potential term contains no derivative. The stress energy is therefore proportional and

the potential energy indirectly proportional to the diameter of the soliton.

When comparing the energy expressions (9) and (13), it is noticeable that adding

an energy contribution of one third of the rest energy and with a 1/γ behavior, i.e., of
Ee(0)

3γ , to the energy Ee(β) in Equation (9) leads to the behavior expected for a stabilized

classical electron

Ee(β) → Estab(β) := Ee(β) +
Ee(0)

3γ

(9)
=

4

3
γEe(0). (14)

The addition of this contribution thus leads to the energy value required by the momentum

calculation (10) of the moving classical electron. The added energy
Ee(0)

3γ is obviously the

energy contribution required for stabilization. After taking it into account, the energy Ee(0)

of the electric field is only 3/4th of the rest energy of a stable classical electron. The size of

the added contribution, one third of the electromagnetic field energy for a particle at rest,
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shows that this contribution must not have any Lorentz indices, i.e., it must be a potential

energy. This is because only such a contribution

Epot(0) :=
∫

d3r Epot (⃗r) (15)

to the energy of a particle at rest scales under the substitution r → λr as one third of the

electric field energy of a particle at rest, Epot(0)
(16)
= Ee(0)/3,

d

dλ

[∫

d3(λr) E0(λr)

]

λ=1

+
d

dλ

[∫

d3(λr) Epot(λr)

]

λ=1

= −Ee(0) + 3Epot(0) = 0, (16)

if the total energy Estab(β) = Ee(β) + Epot(β) has a minimum at λ = 1. Such an energy

contribution Epot(β) also contributes nothing to the momentum P⃗e(β⃗) of a moving electron.

We conclude from this comparison with the Sine–Gordon model that the solution

of the 4/3 problem requires a formulation of the degrees of freedom of an electron that

allows the field values that occur in the center of the electron to have a high potential

energy density and thus prevent an unlimited increase in the size of the central region.

This is only possible with a formulation of electrodynamics in which the vector fields Aµ

are not the fundamental fields, but with vector fields based on a scalar field (Higgs field)

Q(x), with which a suitable potential energy density Epot(0) can be formulated, which

disappears sufficiently quickly at infinity. The trick is to find a formulation in which the

dynamics of the scalar field is formulated by the vector field Aµ in the usual form with four

Lorentz indices.

We can draw another important conclusion from the internal stresses that we have

determined in connection with the calculation of the momentum of a moving classical

electron in Equation (10). These stresses are formulated in the first term in the square

brackets in Equation (10). Although they cancel each other out in the calculation of the

total momentum, they reflect the instability of the classical electron. These stresses only

disappear if the field strength components E⃗∥(0) and E⃗⊥(0) are everywhere orthogonal to

each other in some additional, internal space. This can be achieved in non-abelian formu-

lations, when the field strength tensors take values in the Lie algebra of some nonabelian

group, as they occur in quantum chromodynamics or in the su(2) algebra, in which such

field components can belong to orthogonal directions in the algebra.

The 4/3 problem shows that within the Maxwell-Lorentz theory it is impossible to

describe electrons as particles localized in a small volume with a quantized charge whose

field extends to infinity or to oppositely charged particles. It therefore follows that a

modification of the theory is absolutely necessary. This modification should lead to a

simple model, but what does simple mean? A simple description is characterized by its

intuitiveness, i.e., its direct comprehensibility resulting from an idea or a comparison. The

fewer defining fields a description contains, the fewer relations between these fields need

to be chosen. As far as electrodynamics and the description of electrons are concerned,

there are four scales invented by humans: time, length, mass and charge. Since 2019 they

have been formulated in the SI by the numerical values of c0, e0, h̄ and ∆ν of Cs. The

conversion between the four associated natural scales of a model and the SI scales can

only be obtained by comparison with the experiment. These four scale parameters are not

free parameters. A simple model should require as few adjustable parameters as possible.

As Einstein’s description of gravitation shows, a simple model does not necessarily lead

to simple calculations. Due to possible non-linearity, even a simple model may require

complicated calculations.

As a result of the above analyses, I would like to set the following requirements for a

simple modified classic model of the electron and electrodynamics:
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1. There is no division of the field degrees of freedom between degrees of freedom

for electrons and degrees of freedom for electromagnetic fields, no division of the

Lagrangian function into a dynamics of free fields, a dynamics of free particles and an

interaction term between these free fields, as exemplified by the Sine–Gordon model.

In experiments, electrons are inseparable from their fields. There are no electrons

without fields. This is also how electrons should be described.

2. Electrons should be purely electromagnetic in nature, so their dynamics should

be describable by a maximum of three field degrees of freedom as in Maxwell’s

electrodynamics. Of the four Aµ fields, one of the degrees of freedom is only a gauge

degree of freedom and is therefore described as unphysical. The Maxwell-Diracian

description uses four fields for the photon field Aµ and 8-1 degrees of freedom for the

complex, normalized four-component Dirac spinors.

3. As was concluded in connection with Equation (14), the Lagrangian density sought

should contain, in addition to the dynamic term with four derivatives that seeks to

smear electrons, a potential term without derivatives that holds the electron together.

The field itself, which describes the electrons, is uncharged. The problem of the

instability of the classical electron, which has remained unsolved for 100 years, cannot

be attributed to the repulsion of charged regions inside the electron, as is often

assumed [10]. The topological structure of the field of charges should lead to attraction

or repulsion and quantization of the charges due to the terms in the Lagrangian.

4. The dynamic term with four derivatives should asymptotically transform the field

into the structure of the field of a point charge e, i.e., into a field that can be described

in Abelian terms. The potential term should only have a short-range effect and modify

the Coulomb law at small distances, i.e., cause the charge to run due to the geometry.

5. The description of electrons following from the Lagrangian should bosonize Maxwell-

Dirac’s formulation of electrodynamics.

In addition to the stabilization of electrons, a potential term in the Lagrangian would

allow further interesting conclusions to be drawn. It already classically leads to a non-

vanishing trace of the energy–momentum tensor [11]. The “trace anomaly” of QED would

thus find an explanation. Anomalies are symmetries of the Lagrangian, i.e., of the classical

description, which are lost in quantum theory. Scale transformations lead to the vanishing

of this trace in the classical description of electrodynamics for massless electrons. In QED,

however, this trace remains non-zero even for vanishing fermion mass, as explained in

more detail in section 19.5 of Peskin-Schröder [12] with reference to the original work [13].

The trace anomaly can therefore be seen as an indication of the absence of the potential

term in classical electrodynamics.

QED suffers from the serious problem that it cannot explain the vacuum energy

density of the universe. From the measurements of the Planck Collaboration [14], its value

is 0.69 ρcrit, whereby the critical energy density is 4.9 GeV
m3 . The many fluctuations of the

quantum fields could in principle contribute to the vacuum energy density. However, if

they are taken into account, they result in a value that is dozens of powers of ten too high.

There is no consensus on the value, but factors of up to 120 powers of ten are mentioned.

The usual alternative in quantum field theory of subtracting vacuum expectation values

leads to an error at least as large, namely the disappearance of the value. This is known as

the “cosmological constant problem”. With a potential term in the Lagrangian of nonlinear

electrodynamics, each particle would contribute directly to the vacuum energy density and

Einstein’s cosmological constant should result as the spatial average of these contributions.

There are many papers on the 4/3 problem [4–6,10,15–38], as well as other studies

cited in these works. Some of them also deal with the second problem of classical electro-

dynamics, the radiation reaction problem. For a formulation of electrodynamics with only
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one non-Abelian field, following the above conditions, this second problem is irrelevant.

A single fundamental non-Abelian field with a suitable Lagrangian function as proposed

above cannot have a reaction on itself, but can only follow its dynamics as formulated in

the Lorentz invariant Lagrangian. As far as the Lagrangian is a Lorentz scalar, no contra-

diction with special relativity can occur due to the consistency of the theory. Each scientist

will form their own image and decide for themselves which image is most likely to be

developed further. The above considerations show what minimal changes sould be made

to Maxwell’s electrodynamics in order to eliminate the inconsistencies, which are more

than a hundred years old. Maxwell’s electrodynamics should then turn out to be a clever

linear approximation to this nonlinear theory. It should be interesting to investigate models

with such properties [39,40].

We can then ask ourselves how fundamental theoretical physics would have developed

if a stable field configuration for an electron had been found soon after the investigations

of Abraham and Lorentz, for a model of a classical electron whose far field corresponds to

the Coulomb field of classical electrodynamics for a point-shaped electron, as suggested

by Equation (A42). There would then have been no singularity that would have had to be

regularized. I think it is quite unlikely that the path proposed by Kramers at the Shelter

Island Conference in 1947 would have been taken. As Veltman put it in a lecture [41],

Kramers said: “Well, let’s do it like follows: Let’s not try to understand everything. Let’s

just say the experimental mass, that’s something we can measure and God knows what

goes on in the electron at small distances and the like. Why don’t we just skip that part of

the problem?” I also don’t assume that the great physicists of the past and present would

not have come up with anything to explain the experiments in such a model.

Funding: This research received no external funding.
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article. Further inquiries can be directed to the corresponding author.
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the classical electron, and Christoph Adam and Martin Suda for suggesting corrections to the first

version of the manuscript.
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Appendix A. Kinematics of Point Particles

A relativistic description of the motion of point particles requires that from the knowl-

edge of the kinematic quantities in one inertial system, their values can be calculated in

other inertial systems. It is therefore useful to formulate kinematic quantities as scalars,

vectors and tensors. This allows for a simple transformation of these quantities between

the reference systems and an easy check of whether the principle of relativity is fulfilled,

i.e., whether the same physical laws apply in all reference systems.

The transformation

xµ′ := Λ
µ′

νxν ⇔ x′ := Λx, (A1)

of the coordinates xµ (2)
= (ct, x⃗) defines a Lorentz transformation from the laboratory system

Σ to the moving system Σ′. The condition

Λ
TηΛ

!
= η with η := diag(1,−1,−1,−1) (A2)
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on the Lorentz transformations Λ guarantees the invariance

xµxµ

(A1)

=
(A2)

xµ′xµ′ with xµ = ηµνxν (A3)

and the invariance of the proper time τ by the differential

dτ :=
1

c

√

dxµdxµ (2)
= dt

√

1 −
(dx⃗

dt

)2
. (A4)

The gradients transform “contragrediently” with the matrix Λ̄

∂µ′
(A1)
= Λ̄

ν
µ′ ∂ν ⇔ ∂′ = Λ̄∂ with Λ̄ := ηΛη

(A2)
= Λ

T−1
. (A5)

Using the non-relativistic definitions of velocity and acceleration

v⃗ :=
dx⃗

dt
, a⃗ :=

dv⃗

dt
, (A6)

and the abbreviations

β⃗ :=
v⃗

c0
, γ :=

1
√

1 − β2
, dt

(A4)

=
(A6)

γ dτ, (A7)

we obtain the four-velocity

u := (u0, u⃗) :=
dx

dτ
=

dx

dt

dt

dτ

(2)

=
(A7)

γ(c0, v⃗)
(A7)
= c0γ(1, β⃗), (A8)

and the four-acceleration, 2

b = (b0, b⃗) :=
du

dτ

(A7)
=

du

dvi

dvi

dt
γ

(A8)

=
(A6)

d

dvi
[γ(c0, v⃗)]aiγ =

(A58)
=

(

γ4 a⃗β⃗, γ2 a⃗ + γ4 (⃗aβ⃗)β⃗
)

,

(A9)

which for rectilinear motion is simplified to the space-like four-vector

b
(A9)

=
(A7)

γ4a
(

β, 1⃗
)

(A10)

Including the invariant rest mass m0, we define the four-vectors for the momentum pµ

and the force vector Kµ

p := (
E

c0
, p⃗) := m0u, K := (K0, K⃗) :=

dp

dτ

(A9)
= m0b. (A11)

The following applies to the four-momentum

p
(A11)
= m0u

(A8)
= γm0(c0, v⃗) =: m(β)(c0, v⃗) (A12)

and the four-force

K
(A11)
= m0b

(A9)
= m0

(

γ4 a⃗β⃗, γ2 a⃗ + γ4 (⃗aβ⃗)β⃗
)

. (A13)

It is noteworthy that for the derivation of the relations of the relativistic to the non-

relativistic quantities of particle kinematics, in addition to the four-vector (2) of the coordi-
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nates xµ, we have also identified the four-momentum pµ directly with the non-relativistic

quantities, energy E and momentum p⃗, see Equations (3) and (A11). We will elaborate on

this after Equation (A25).

From expression (A12) for the four-momentum p, it follows that the mass contributing

to energy and momentum increases proportionally to γ,

E
(A11)

=
(A12)

γm0c2
0, p⃗

(A11)

=
(A12)

γm0v⃗. (A14)

Since we retain the definitions for the power P and the force F⃗

P :=
dE

dt
, F⃗ :=

dp⃗

dt
(A15)

known from non-relativistic mechanics, it follows that

K
(A11)
= m0b

(A9)
= m0

(

γ4 a⃗β⃗, γ2 a⃗ + γ4 (⃗aβ⃗)β⃗
) (A11)

=
(A7)

γ

(
1

c0
P, F⃗

)

, (A16)

i.e.,

F⃗
(A16)
= m0[γ⃗a + γ3 (⃗aβ⃗)β⃗] und P = v⃗F⃗. (A17)

For rectilinear motion, it follows that the inertial mass that must be accelerated increases

with γ3

F⃗
(A17)
= γ3m0⃗a. (A18)

We will now calculate invariants and draw conclusions from them. Vectors xµ are

denoted by

xµxµ =







ρ2 > 0 timelike vectors,

0 lightlike vectors,

−ρ2 < 0 spacelike vectors.

(A19)

xµxµ is a Lorentz invariant but not an invariant of motion. In contrast, however,

uµuµ (A8)
= c2

0γ2(1 − β⃗2)
(A7)
= c2

0 (A20)

pµ pµ
(A11)

=
(A20)

m2
0c2

0 (A21)

are also invariants of motion. From the vanishing of the differential of these invariants

follows the relativistic energy conservation law 3

dE
(A14)
= dγm0c2

0

(A59)
= dx⃗

d(γm0v⃗)

dt

(A12)
= dx⃗

dp⃗

dt

(A15)
= F⃗dx⃗, (A22)

which expresses that mechanical work
∫

F⃗dx⃗ contributes to the energy. If Equation (A22) is

divided by dt, it turns out that energy conservation was already included in Equation (A17)

P
(A15)
=

dE

dt

(A22)

=
(A6)

v⃗F⃗. (A23)
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The two Equations (A11) and (A21) show that the energy of a moving mass, in addition

to the kinetic energy and its relativistic corrections, also contains an additional contribution,

the rest energy m0c2
0

(p0)2 − p⃗ 2 (A21)
= m2

0c2
0 ⇔ E2 (A11)

= m2
0c4

0 + p⃗ 2c2
0,

E
(A14)
= γm0c2

0

(A7)
=

1
√

1 − β2
m0c2

0 ≈ m0c2
0 +

m0v⃗ 2

2
+O(β4).

(A24)

Interestingly, by transferring the law of conservation of energy from classical mechan-

ics to relativity theory, it has emerged naturally that for the two canonically conjugated

quantities x and p, the spatial components coincide with the three-quantities. However,

for their derivatives u, b and K, we had to introduce separate letters to prevent confusion

between their spatial components and the non-relativistic quantities v⃗, a⃗ and F⃗.

We will now show that it is sufficient to define the relationship (2) between three- and

four-quantities. The relationship (3) between the momenta follows from a suitably chosen

Lagrange density and the energy–momentum tensor derived from it, see Equation (A32).

Free particles move on geodesics, on extremal paths between events. It is therefore

obvious that paths with extreme (minimal) proper time

∫ 1

0

dτ(λ)

dλ
dλ =

∫ τ2

τ1

dτ (A25)

are proportional to a suitable action function for free particles. The proper time decreases

as the speed of the particles increases. The proportionality factor between extreme time and

extreme action has the dimension of energy, obviously the rest energy of the free particle

S := −m0c2
0

∫ τ2

τ1

dτ
(A25)
= −m0c2

0

∫ t2

t1

dτ(t)

dt
dt (A26)

The sign was chosen negative so that the Lagrange function

L := −m0c2
0

dτ(t)

dt

(A7)
= −

m0c2
0

γ

(A7)
= −m0c2

0

√

1 − β2 = −m0γc2
0(1 − β2) (A27)

increases with increasing momentum of the particle. The components of the canonically

conjugated momentum follow in the Lagrange description to

pi :=
∂L

∂vi

(A27)
= m0γ vi. (A28)

The Hamiltonian results in

H := p⃗ v⃗ − L
(A28)

=
(A27)

m0γc2
0. (A29)

For point-like electrons with the world line x⃗e(t), the Lagrange density L, energy density E

and momentum density π⃗ are

L(x)
(A27)
= −

m0c2
0

γ
δ3(x⃗ − x⃗e(t)),

E(x)
(A29)
= m0γ c2

0δ3(x⃗ − x⃗e(t)),

π⃗(x)
(A28)
= m0γ v⃗ δ3(x⃗ − x⃗e(t))

(A30)
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The energy–momentum tensor, which contains the energy density E := Θ00(x) and

momentum density π⃗ := 1
c0

Θ0i(x), is

Θ
µν(x)

(A30)

=
(A8)

m0

γ
uµ(x)uν(x) δ3(x⃗ − x⃗e(t)). (A31)

The momentum of the particle consequently results as a spatial integral over the space–time

components of Θµ0(x) = Θ0µ(x)

pµ
(A31)

=
(A30)

1

c0

∫

Σ

Θ
µ0(x)d3σ. (A32)

As can be seen from the transition from the integrated quantities in Equations (A27)–(A29)

to the densities (A30), the integration takes place over the three-dimensional space Σ

in which the velocities v⃗ are determined, i.e., in principle, over any three-dimensional

space-like volume Σ. Precisely this arbitrariness is obviously one of the characteristics of

a particle.

Appendix B. Electrons in Maxwell’s Field Model

We calculate energy and momentum for an extended classical electron of charge

e = −e0 and describe it from different reference systems, in a reference system
◦
Σ in which

the electron is at rest and in a reference system Σ in which the electron moves with a velocity

v⃗ = cβ⃗, see Figure 1.

Like Abraham [1], we start from the idea that the mass of the electron is purely

electromagnetic in nature. The electron at rest is described solely by an electric field E⃗,

which is measured in V/m, and a moving electron additionally by a magnetic field B⃗ in

T = Vs/m2. In relativistic notation, electric and magnetic fields can be combined to form

the field strength tensor in SI notation

Fµν =









0 − Ex
c0

−
Ey

c0
− Ez

c0
Ex
c0

0 −Bz By
Ey

c0
Bz 0 −Bx

Ez
c0

−By Bx 0









(A33)

where c0 is the speed of light in the vacuum, which results from the dielectric constant ε0

and the permeability constant µ0 of the vacuum by c2
0 ε0 µ0 = 1. We therefore use the usual

Lagrangian density of electrodynamics

L := −
1

4µ0
FµνFµν (A33)

=
1

2

(

ε0E⃗2 −
1

µ0
B⃗2

)

(A34)

and the metric tensor ηµν = diag(1,−1,−1,−1). Due to the translation symmetry and after

adding a four-divergence term, this leads to the symmetric energy–momentum tensor

Θ
µν = −

1

µ0
ηµκ FκλFνλ +

1

4µ0
ηµνFκλFκλ, (A35)

see Equation (8.185) of Ref. [42]. Its elements are in detail

Θ
00 =: E

(A35)
=

ε0

2
(E⃗2 + c2

0B⃗2), (A36)

Θ
0i = Θ

i0 (A35)
= c0ε0 E⃗ × B⃗, (A37)
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Θ
ij (A35)

= −ε0 (EiEj + c2
0BiBj) + δij

ε0

2
(E⃗2 + c2

0B⃗2). (A38)

The four-momentum of a field distribution generally depends on the reference system

Σ in which the field strengths are determined. A reference system can be defined in a

Lorentz covariant manner as the three-dimensional Euclidean space that is orthogonal to a

velocity vector uµ and is usually written as

dσµ :=
uµ

c0
d3σ (A39)

A Lorentz covariant definition of the four-momentum is obtained by

Pµ :=
1

c0

∫

Σ

Θ
µν dσν. (A40)

In his 1903 paper, Abraham describes electrons on a purely electromagnetic basis with

a homogeneous spherically symmetrical charge distribution ρ(r) for electrons at rest. He

poses the question: Can the inertia of the electron be completely described by the dynamic

effect of its electromagnetic field? It turns out through the 4/3 problem that this question

must ultimately be answered in the negative. We will draw conclusions from this failure.

Appendix B.1. Self-Energy of the Classical Electron

The electric field of a point charge e at rest at the origin results in the SI according to

Gauss’s law to

E⃗∞ =
e

4πε0

e⃗r

r2
. (A41)

As Equation (A44) will show for the limiting case r0 → 0, such a field strength is unrealistic,

since it leads to an infinite self-energy Ee(0) of the charge e at rest, i.e., an energy that

is infinitely greater than the electron mass requires. The more realistic assumption that

the electron charge is distributed on a homogeneously charged sphere of radius r0 or the

surface charge of a conducting sphere, as used by Abraham in 1902 on page 147 of Ref. [1],

leads to a finite self-energy. In the following, we prefer a regularized form of the electric

field strength E⃗(0) for a resting classical electron, which does not result in a kink or jump

in the density of an extended charge distribution,

E⃗(0) :=
e

4πε0

e⃗r

r2 + r2
0

, (A42)

as proposed by Schwinger in Ref. [10]. In Equation (A42) it may be irritating that the field

strength at the origin has no defined direction. However, this only shows that the electric

field strength is defined as the electric flux density on space–time surfaces, which can have

different directions starting from the origin. As required, expression (A42) results in a finite

energy density everywhere in the system at rest

E0 (⃗r)
(A36)
=

ε0

2
E⃗2(0)

(A42)
=

α f h̄c0

8πr4
0

1

(1 + ρ2)2
with α f :=

e2
0

4πε0h̄c0
, ρ :=

r

r0
. (A43)

with a total energy, the so-called self-energy, of the charge e that results from integration

over the three-dimenional space,

Ee(0)
(A40)
= 4π

∫
∞

0
r2E0 (⃗r)dr

(A43)
=

α f h̄c0

r0

∫
∞

0

ρ2

2(1 + ρ2)2
dρ =

α f h̄c0

r0

π

8
=: msc2

0, (A44)
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and gives the self-energy msc2
0 of the classical electron as a function of r0. Adjusting this

self-energy to the physical value leads to r0 = 1.1066 fm.

From Equation (A44), the known instability of the classical electron can be seen. Its

mass decreases with 1/r0, it dissolves, its radius parameter r0 increases indefinitely. The

reason for this expansion of the core region is easy to detect. Because of the four Lorentz

indices in FµνFµν, the energy density is proportional to r−4
0 , the spatial integral only grows

with r3
0, so overall the r−1

0 behavior of Equation (A44) results.

Appendix B.2. Energy of the Moving Electron

To describe an electron moving in Σ, we start from the transformation of the coordi-

nates
◦
x:= (c0

◦
t,

◦
r⃗) in the comoving frame

◦
Σ and transform to Σ in which the electron moves

with β⃗

c0
◦
t = γc0t − γβ⃗⃗r,

◦
r⃗ = γ⃗r∥ + r⃗⊥ − γβ⃗c0t,

(A45)

The Lorentz transformation of the field strength tensor Fµν is

E⃗(β⃗) = E⃗∥(0) + γE⃗⊥(0) with E⃗∥ :=
β⃗(β⃗E⃗)

β2
, E⃗⊥ := E⃗ − E⃗∥,

c0B⃗(β⃗) = γβ⃗ × E⃗(0).

(A46)

We can interpret the evaluation of the energy in Equation (A44) in such a way that the

energy of the electron at rest regularized according to Equation (A42) takes place in the 3D

space
◦
Σ, which is orthogonal to the velocity vector u = γ(c, β⃗), see Figure 1. We note for

further calculations that in
◦
Σ, each of the three electric field components contributes to the

energy density (A36) with one-third of E0 (⃗r), which is due to the spherical symmetry of the

field. Now, however, we consider the energy densities E
β⃗
(⃗r) in the 3D space Σ, which is

orthogonal to (1, 0⃗) and contains other space–time points than
◦
Σ, see Figure 1. We list the

contributions of the field components E⃗∥, E⃗⊥, B⃗∥, B⃗⊥ according to Equation (A46) in order 4.

Ee(β)
(A40)
=

∫

Σ

d3σΘ
00(β)

(A36)
=

∫

Σ

d3σE
β⃗
(⃗r)

(A36)

=
(A46)

∫

Σ

d3σ
E0(

◦
r⃗)

3
(1+ 2γ2 + 0+ 2γ2β2). (A47)

In this calculation, we have used that E⃗∥ contributes unchanged with one third of the

energy density of the electron at rest. The contributions of the two orthogonal electric field

components are given a factor γ2. B⃗∥ and consequently its contribution vanishes. The two

orthogonal magnetic field components are proportional β2γ2 according to Equation (A46).

From an expansion up to the order β2, i.e., γ2 ≈ 1 + β2, Abraham read in Equation (15e) of

Ref. [1] that the “kinetic” magnetic energy contributions proportional to β2, Wm ∝ 2γ2β2 ≈

2β2, is related to the “static” electrical energy contributions of a Lorentz-contracted electron

We ∝ 1 + 2γ2 ≈ 3 + 2β2 by

Wm
(A47)
= ≈

2β2

3 + 2β2
We ≈

2β2

3
We ≈

4

3

β2

2
We, (A48)

and thus the factor 4/3 appeared for the first time.

Due to the time independence of the electric field strength in the comoving system, it

was possible in Equation (A47) to read off the field values in the comoving reference system
◦
Σ instead of in Σ, see Figure 1. Since we have already integrated in Equation (A44) over the
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energy density in the comoving system
◦
Σ, it makes sense to carry out the integration in

Equation (A47) via
◦
Σ, whereby we take into account the Lorentz contraction of the moving

electron according to Equation (A45). The total energy of the moving classical electron thus

results in

Ee(β)
(A47)

=
(A45)

1

γ

∫

◦
Σ

d3 ◦
σ
E0(

◦
r⃗)

3
(1 + 2γ2 + 0 + 2 γ2β2

︸︷︷︸

γ2−1

)
(A44)
=

Ee(0)

3γ
(4γ2 − 1), (A49)

which does not have the form (A12) expected for particles. For γ = 1 the expression is

correct, but for γ → ∞ the energy increases to 4/3 of the expected value.

Appendix B.3. Momentum of the Moving Electron

According to the particle interpretation, the momentum of the uniformly moving

classical electron results from the Σ integration via the stress tensor or the Poynting vector

P⃗e(β⃗) :=
1

c0

∫

Σ

d3σ Θ
0i(β⃗)

(A37)
= ε0

∫

Σ

d3σE⃗(β⃗)× B⃗(β⃗) =

(A46)
=

ε0

c0
γ
∫

Σ

d3σ
[

E⃗∥(0) + γE⃗⊥(0)
]

×
[

β⃗ × E⃗⊥(0)
]

.

(A50)

In the transformation to
◦
Σ, we again take into account the Lorentz contraction

P⃗e(β⃗)
(A50)

=
(A45)

ε0

c0

∫

◦
Σ

d3 ◦
σ
[

E⃗∥(0) + γE⃗⊥(0)
]

×
[

β⃗ × E⃗⊥(0)
]

=

=
ε0

c0

∫

◦
Σ

d3 ◦
σ
[

−E⃗⊥(0)
(

E⃗∥(0)β⃗
)

+ γβ⃗E⃗2
⊥(0)

]

.

(A51)

The first summand in the integrand of the last expression shows momentum densities

normal to the velocity and thus internal stresses in the classical electron. At points that are

mirror-symmetrical to the velocity vector β⃗, E⊥(0) points in the opposite directions, so their

contributions cancel each other out and do not contribute to the total momentum P⃗e(β⃗).

Since the two orthogonal field components E⃗⊥(0) in the resting electron each contribute

one-third of the field energy, the second contribution provides the 4/3 factor already known

from Equation (A48)

P⃗e(β⃗)
(A51)
= β⃗γ

4

3

ε0

c0

∫

◦
Σ

d3 ◦
σ

E⃗2(0)

2

(A44)
= β⃗γ

4

3

Ee(0)

c0

(A44)
= v⃗γ

4

3
ms. (A52)

Both calculations, (A48) and (A52), thus show that the mass of the electron contributing to

the momentum and the kinetic energy is greater by a factor of 4/3 than results from the

electrical field energy Ee(0) for the electron at rest in Equation (A49). This would mean

a discrepancy between inertial and gravitational mass. To eliminate this contradiction,

Poincaré introduced a negative pressure [6], which has to balance the exploding tendency

of the electron.

Appendix B.4. Lorentz Transformed Four-Momentum of the Electron at Rest

The situation is different for the four-momentum of the electron at rest in
◦
Σ when its

four-momentum Pµ(β⃗) is expressed in coordinates of Σ. As Rohrlich [4] has clearly shown,

the correct expression results due to the consistency of special relativity

Pµ(β⃗)
(A40)

=
(A39)

1

c0

∫

◦
Σ

d3 ◦
σ Θ

µν
Σ

βν

(A54)

=
(A56)

Ee(0)

c0
(γ, β⃗γ), (A53)
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whereby it should be noted that the field values calculated in the laboratory system Σ are

integrated over the comoving world volume
◦
Σ.

In detail, this results in

P0(β⃗)
(A53)
=

γ

c0

∫

◦
Σ

d3 ◦
σ (Θ00

Σ
− βiΘ

0i
Σ
)
(A45)
=

γ2

c0

∫

Σ

d3σ(Θ00
Σ
− βiΘ

0i
Σ
) =

(A47)

=
(A50)

γ2 Ee(β)

c0
− γ2 β⃗P⃗e(β⃗)

(A49)

=
(A52)

γ(4γ2 − 1)
Ee(0)

3c0
− β2γ3 4Ee(0)

3c0
= γEe(0)

(A54)

Pi(β⃗)
(A53)
=

γ

c0

∫

◦
Σ

d3 ◦
σ (Θi0

Σ
− β jΘ

ij
Σ
) =

(A38)

=
(A50)

γ2Pi
e(β⃗)−

γ

c0
β j

∫

◦
Σ

d3 ◦
σ {−ε0 [Ei(0)Ej(0) + c2

0Bi(0)Bj(0)]+

+ δij
ε0

2
[E⃗2(0) + c2

0B⃗2(0)]}

(A46)
= γ2Pi

e(β⃗) +
γ

c0
βε0

∫

◦
Σ

d3 ◦
σ [Ei(0)E∥(0) + c2

0Bi(0) B∥(0)
︸ ︷︷ ︸

0

]−

−
γ

c0
βi

ε0

2

∫

◦
Σ

d3 ◦
σ [E⃗2(0) + c2

0B⃗2(0)]

(A55)

i.e.,

P∥(β⃗)
(A55)
= γ2P

∥
e (β⃗) +

γ

c0
β

ε0

2

∫

◦
Σ

d3 ◦
σ [E2

∥(0)− 2E2
⊥(0)− 2c2

0B⃗2
⊥(0)] =

(A52)

=
(A46)

βγ3 4

3

Ee(0)

c0
+

γ

c0
β

Ee(0)

3
[1 − 2γ2 − 2β2γ2] = βγ

Ee(0)

c0
.

(A56)

and

P⊥(β⃗)
(A55)
=

γ

c0
βε0

∫

◦
Σ

d3 ◦
σ E∥(0)E⊥(0) = 0. (A57)

The result (A53) has nothing to do with the 4/3 problem. It only shows that the four-vector

(1, 0⃗) Ee(0)/c0 in
◦
Σ can be transformed by a Lorentz transformation to (γ, β⃗γ) Ee(0)/c0 in

Σ. It is important that the space-like volume that is integrated is also correctly transformed.

Notes

1 We use the metric ηµν := diag(1,−1,−1,−1) here, i.e., uµxµ := u0x0 − u⃗x⃗.
2

dγ

dvi

(A7)
=

1

c0

dγ

dβi
,

dγ

dβi

(A7)
=

βi

(1 − β2)3/2
= βiγ

3, (A58)

3

u0du0 (A20)
= u⃗ du⃗

(A8)
⇔ c2

0dγ = v⃗ d(γv⃗)
(A6)
=

dx⃗

dt
d(γv⃗) = dx⃗

d(γv⃗)

dt
(A59)

4 We point out that this calculation, which was carried out in analogy to Abraham [1], is an exact calculation according to

definition (A40) of the four-momentum and not, as Rohrlich [5] writes before his Equation (16): “We can summarize this

discussion by saying that definition (5) is incorrect”. With definition (5), Rohrlich refers to the Abraham-Lorentz definition of the

energy of a moving electron, which corresponds to Equation (A47)
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