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Abstract
Blind millionaire (BM) problem is an extended version of the initial millionaire
problem required to compare the sum of the participants’ secrets between different
groups. As a new topic of quantum secure multiparty computing, existing protocols
with some special entangled states may not be easily achieved in practice. This study
proposes a non-entangled method of solving the quantum blind millionaire (QBM)
problem with special d-level single-particle states for the first time. To protect the
confidentiality of transmission secrets, this protocol exploits the property of randomly
generated d-level single-particle states. Furthermore, simple shift operations are used
to encode the respective secrets. Detailed security analysis demonstrates that this
protocol is impervious to internal and external threats. The presented methods can
not only be used to solve the blind millionaire problem but also be used as a basic
module to solve other secure multiparty computing problems.

Keywords: Quantum blind millionaire problem; Quantum security multiparty
summation; Quantum private comparison; Single-particle states

1 Introduction
With the rapid development of information technology, multiparty collaboration to
achieve established task goals has become an important way of information exchange.
However, due to the sensitivity of personal privacy data, it is necessary to fully protect the
data from being leaked during the above process. As a critical area of cryptography, the
Secure Multiparty Computing (SMC) technique has been widely used to solve this prob-
lem. The SMC originated from the millionaire problem by Yao [1], where two millionaires
want to find out who richer without sharing any information about their financial situ-
ation. The millionaire problem has received a lot of attention in SMC. In 2001, Boudot
et al. proposed a protocol to compare whether two millionaires have the same value of
wealth [2]. In 2009, Li et al. presented symmetric cryptographic protocols for the extended
millionaire problem [3].

Through the extensive research on the millionaire problem, a new issue called the blind
millionaire (BM) problem is proposed. The BM problem has a wide range of applica-
tion scenarios, covering many domains such as smart auctions in financial cooperative
unions [4], smart medical outcome assessment [5], smart cities [6], smart grids [7] and
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more. The BM problem provides a secure way to compare multiple sets of data while pro-
tecting data privacy. It promotes industry research and information exchange. In the sim-
plest BM problem, Alice, Bob, and Charlie are three participants with wealth of a, b, and
c. They want to calculate the difference between a + b and c without revealing their true
assets. The blind millionaire problem extends Yao’s definition by introducing a new ap-
plication scenario for the traditional millionaire problem. In 2020, Li et al. introduced the
first secret shift addition method to address the blind millionaire problem, leveraging shift
register concepts and probabilistic encryption techniques [8].

With the rapid development of quantum technologies and the significant improvement
of quantum computing capabilities, there is a severe challenge to classical SMC proto-
cols designed based on large integer factorization and discrete logarithm problems. Since
the security of these classical protocols relies on computational complexity assumptions,
they may become vulnerable in a quantum computing environment. Therefore, construct-
ing quantum SMC using quantum technologies [9–12] is of paramount importance. In
terms of describing them, some new issues of quantum SMC protocols have been ex-
plored, such as quantum multiparty summation [13–19], quantum private set intersection
[20–25], quantum private comparison [26–31] and quantum anonymous ranking [32–34],
etc. However, the research of quantum solutions to the blind millionaire problem is still
in the stage of starting. In order to simplify the expression, the corresponding problem
is named the quantum blind millionaire (QBM) problem. Intuitively, the solution to the
QBM problem divides into two parts: quantum private summation (QPS) and quantum
private comparison (QPC). However, directly applying the existing QPC and QPS meth-
ods will result in an excessively complex QBM protocol process, while making private
messages more prone to leakage. In response to this set of problems, research has emerged
on the QBM problem.

In 2023, Zhang et al. proposed a solution to the QBM problem with the special entangled
states for the first time [35]. In this case, the parties in two distinct groups can compare the
sum of their secrets. However, the solution of Zhang et al. can only achieve comparisons in
cases where the total number of participants in two groups is equal. Then Yao et al. used d-
level Bell states to solve the QBM problem with any amount of participants in two distinct
groups [36]. As the preparation of entangled states is difficult and costly, it is very urgent
to propose a more practical scheme for the QBM problem without entangled states. In
recent years, d-level single-particle states have received extensive attention in the field of
quantum information. Compared with entangled states, single-particle states are simpler
to prepare and more stable in laboratory environments. The cost of using single-particle
states for quantum communication or quantum computation is usually lower than that
of using entangled states. Single-particle states are relatively easy to control and can be
operated and measured more flexibly.

In this work, inspired by the relative simplicity of making single-particle states and their
low consumption of quantum resources [37–39], under the assumption of no noise losses,
we propose a new approach to solving the QBM problem using single-particle states com-
bined with summation and comparison ideas. To facilitate the participants’ comparison
of the extent of their secrets, a semi-honest party (TP) is presented. Two groups of partic-
ipants can achieve an overall comparison. Furthermore, the security analysis shows that
there are no internal or external risks that can harm our solution.

In general, our contributions to this paper are summarized as follows.
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(1) We solve the QBM problem using only d-level single particles for the first time. Com-
pared with entangled states, the preparation of single-particle states is relatively simple
and does not require complex experimental setups or significant resource investment.

(2) We give a new solution to the BM problem for any participant with higher quantum
efficiency compared to the recent ones.

(3) We simulate the core processes of the proposed protocol with the IBM cloud plat-
form to verify its correctness and feasibility.

The remainder of this paper is structured as follows. In Sect. 2, some preliminary knowl-
edge is introduced. In Sect. 3, a new quantum solution to the QBM problem is described
in detail. In Sect. 4, an example is provided to help understand the protocol process. In
Sects. 5, 6, 7, and 8, the correctness, comparison and discussion, simulation, and security
of this protocol are examined. Finally, Sect. 9 provides a brief discussion and conclusion.

2 Preliminary knowledge
In this section, we first describe the particular structure and characteristics of the d-level
single-particle states used in the following protocols. Then the applied shift operation is
expressed.

2.1 d-Level single quantum states
In a d-level quantum system, single particles have two common conjugate groups. It can
be respectively described as

G1 = {|0⟩, |1⟩, . . . , |d – 1⟩} (1)

and

G2 = {F|0⟩, F|1⟩, . . . , F|d – 1⟩}. (2)

Here, F is the d-level discrete quantum Fourier transform, and F|t⟩ = 1√
d

∑d–1
δ=0 e

2π iδt
d |δ⟩,

t = 0, 1, . . . , d – 1. It is not difficult to see that G1 and G2 constitute mutually unbiased
bases.

2.2 Shift operation
For the d-level computational basis states, the form of shift operation Ur is shown as fol-
lows:

Ur =
∑d–1

h=0
|h ⊕ r⟩⟨h|, (3)

where ⊕ also defines the modulo d, and h ∈ {0, 1, . . . , d – 1}. In the matrix representation,
Ur is expressed as a d × d permutation matrix, where the elements are defined as:

[Ur]i,j =

⎧
⎨

⎩

1, if i = j ⊕ r;

0, otherwise.
(4)

Apparently, for a d-level computational basis state |w⟩ (w ∈ {0, 1, . . . , d – 1}), after the
operation Ur is performed on it, the result will be

Ur|w⟩ = |w ⊕ r⟩. (5)
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3 The proposed solution to QBM problem
In this section, we present a new method for solving the QBM problem, an extension of the
classical millionaire problem. The QBM problem is designed within a secure framework to
compare the sums of two secret sets without revealing the individual elements of the sets.
Our proposed method utilizes only single-particle states and includes three main phases:
the initialization phase, the transmission phase, and the comparison phase. Previously,
some specific assumptions are seen as follows:

1. There are two groups of participants, group A and group B, who want to compare
the sum of their private data. Each group has some participants, Alicei and Bobj, where
i ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . , m} and m ≠ n.

2. The parties Alicei and Bobj possess the secret integers Xi and Yj, respectively, where
Xi and Yj ∈ {0, 1, . . . , d – 1}.

3. A semi-honest third party (TP) [40, 41] is introduced, capable of conducting only
individual attacks, without colluding with participants in groups A and B.

4. With the help of TP, the participants in any group will carry out the subsequent stages
to fulfill the size relation comparison’s objective.

3.1 Initialization phase
Step I1 (Selecting Random Numbers): For each participant in any group, Alicei and Bobj

prepare random number sequences as Rai = {R1
ai, R2

ai, . . . , RL
ai} and Rbj = {R1

bj, R2
bj, . . . , RL

bj},
where the numbers are chosen randomly from the set {0, 1, . . . , d – 1}.

Step I2 (Secret Encoding): According to the Equation (6), the secrets Xi and Yj are repre-
sented as sequences Ai and Bj. Here Ai = {a0

i , a1
i , . . . , ad–1

i } and Bj = {b0
j , b1

j , . . . , bd–1
j }, where

at
i , bt

j ∈ {0, 1}, t ∈ {0, 1, . . . , d – 1}.

at
i =

⎧
⎨

⎩

0, t ≤ Xi – 1

1, t > Xi – 1
, bt

j =

⎧
⎨

⎩

0, t ≤ Yj – 1

1, t > Yj – 1
. (6)

Step I3 (Secrets Dividing): The encoded sequences Ai and Bj are divided into parts d/w
by Alicei and Bobj as

P1
ai, P2

ai, . . . , Pd/w
ai ,

P1
bj, P2

bj, . . . , Pd/w
bj , (7)

where d is an even multiple of w, each part has w bits, and w denotes a positive integer
less than d (1 ≤ w ≤ d). Let d/w = L; in this case, L is also a positive integer (see Fig. 1).

3.2 Transmission phase
Step T1 (Quantum States Selecting): TP prepares two single-particle strings Sa and
Sb of length L randomly from G1 and G2, where Sa = {|S1

a⟩, |S2
a⟩, . . . , |SL

a⟩} and Sb =
{|S1

b⟩, |S2
b⟩, . . . , |SL

b⟩}. Then, some decoy states are inserted to form the new sequences M1

and N1, where the decoy states are chosen randomly from G1 and G2. Then, the sequences
M1 and N1 are sent to Alice1 and Bob1, respectively.

Step T2 (Eavesdropping Detection): After confirming that Alice1 and Bob1 have received
the sequence M1 and N1, the location and measurement basis of every decoy state are
released by TP in M1 and N1.
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Figure 1 Protocol Flowchart. The first part represents the process of secret coding by the participants of
Group A. The second part represents the secret coding process for Group B participants. The third part
represents the quantum state transmission process. The participants encode the quantum state by shift
operation

According to the measurement results, they carry out eavesdropping checks. The pro-
cedure will end and resume at Step T1 if the error rate exceeds the threshold value; if not,
it will move on to the following step. After passing the eavesdropping check successfully,
Alice1 and Bob1 recover the sequences Sa and Sb.

Step T3 (Secret Transmission): For Alice1, she firstly computes the sum of w bits in Pk
a1

and gets the results denoted by Tk
a1, here k ∈ {1, . . . , L}. Similarly, Bob1 computes the sum

of w bits in Pk
b1 and gets the results Tk

b1. Then, each of them respectively executes the shift
operation UTk

a1+Rk
a1

, UTk
b1+Rk

b1
on the corresponding |Sk

a⟩, |Sk
b⟩ of Sa and Sb.

In this case, Tk
a1 + Rk

a1 is encoded in the k-th particle |Sk
a⟩ of Sa. Alice1 repeats the above

process, and the corresponding TL
a1 + RL

a1 is encoded on the particle |SL
a⟩. Meanwhile, Bob1

performs the same operation as Alice1, and encodes Tk
b1 + Rk

b1 on |Sk
b⟩ of Sb. Hence, the

result sequences Sa1 = {|S1
a1⟩, |S2

a1⟩, . . . , |SL
a1⟩} and Sb1 = {|S1

b1⟩, |S2
b1⟩, . . . , |SL

b1⟩} are generated.
Then, Alice1 and Bob1 send the sequences Sa1 and Sb1 with the decoy states to Alice2 and
Bob2.

After passing the detection of eavesdropping, Alice2 and Bob2 recover the sequences and
execute the shift operation UTk

a2+Rk
a2

and UTk
b2+Rk

b2
on the corresponding k-th particle of the

quantum sequences and get Sa2 = {|S1
a2⟩, |S2

a2⟩, . . . , |SL
a2⟩} and Sb2 = {|S1

b2⟩, |S2
b2⟩, . . . , |SL

b2⟩}.
Similarly, Alice2 and Bob2 send the sequences Sa2 and Sb2 with the decoy states to Alice3

and Bob3. After that, move on to the following participants, until the last participants
Alicen and Bobm perform the operations UTk

an+Rk
an

and UTk
bm+Rk

bm
on the corresponding

quantum sequences, and send San = {|S1
an⟩, |S2

an⟩, . . . , |SL
an⟩} and Sbm = {|S1

bm⟩, |S2
bm⟩, . . . ,

|SL
bm⟩} with the decoy states back to TP securely.
Step T4 (Quantum State Measurement): TP performs eavesdropping checks for all par-

ticles received. After passing the eavesdropping check successfully, TP measures the quan-



Hou et al. EPJ Quantum Technology           (2025) 12:10 Page 6 of 17

tum states San and Sbm and obtains the sum of 2l secret groups and random numbers,

Mk
a =

n∑

i=1

(
Tk

ai + Rk
ai
)

,

Mk
b =

m∑

j=1

(
Tk

bj + Rk
bj

)
,

(8)

here, k ∈ {1, 2, . . . , L}.

3.3 Comparison phase
Step C1 (Data Publication): Each participant Alicei and Bobj has prepared a sequence of
random numbers Rai = {R1

ai, R2
ai, . . . , RL

ai} and Rbj = {R1
bj, R2

bj, . . . , RL
bj} in Step I1. Each partic-

ipant Alicei and Bobj sums all elements in their random number sequences,

Rai =
L∑

k=1
Rk

ai,

Rbj =
L∑

k=1
Rk

bj,
(9)

and sends Rai and Rbj to TP. Meanwhile, the number of participants in Group A, the num-
ber of participants in Group B, and the encoded secret bits are announced as n, m and d.

Step C2 (Compare Size): With the received sequences, TP firstly computes

Ca =
L∑

k=1
Mk

a,

Cb =
L∑

k=1
Mk

b .
(10)

After that, TP deducts the corresponding random numbers to obtain

C′
a = Ca –

n∑

i=1
Rai,

C′
b = Cb –

m∑

j=1
Rbj.

(11)

Finally, TP calculates

H = (n – m)d –
(
C′

a – C′
b
)

. (12)

With the value of H , the size relationship between X and Y can be compared according to
the following rule

⎧
⎪⎨

⎪⎩

H > 0, X > Y
H = 0, X = Y
H < 0, X < Y

, X =
n∑

i=1
Xi, Y =

m∑

j=1
Yj (13)

Here, X represents the secret sum of group A and Y represents the secret sum of group
B. The exact proof process will be shown in the correct analysis.
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Table 1 relevant data for groups A and B

Participant Size Encoding Sum

Alice1 2 0 0 1 1 1 1 1 1 6
Alice2 1 0 1 1 1 1 1 1 1 7
Alice3 2 0 0 1 1 1 1 1 1 6
Bob1 1 0 1 1 1 1 1 1 1 7
Bob2 5 0 0 0 0 0 1 1 1 3

In the above protocol, although the security of participants’ secret information can be
ensured, TP can still obtain the sum of the two groups’ secrets. To further enhance se-
curity and prevent TP from gaining access to the true sum of the two groups’ secrets, the
technology of quantum key distribution (QKD) can be introduced, if possible. The specific
steps are as follows:

1. Alice1 from group A and Bob1 from group B securely share a key y during the initial
phase of the protocol through QKD.

2. In Step T3, the original shift operations of Alice1 and Bob1 are updated to execute the
shift operation UTk

a1+Rk
a1+y, UTk

b1+Rk
b1+y.

3. Even if TP subtracts the random number during calculations, it cannot recover the
true sum of the two groups’ secrets, thereby ensuring a higher level of security.

This approach effectively prevents TP from obtaining the true sum of the two groups’
secrets during interactions, further strengthening the security of the protocol.

4 Example
We give the following example to show the execution of the protocol. For groups A and
B with participants Alicei and Bobj, Alicei and Bobj have respective private secrets Xi and
Yj, where i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}. They encode their secrets according to the rules
of the above protocol

Ai = {a0
i , a1

i , . . . , ad–1
i } = {00, 01, . . . , 0Xi–1, 1Xi+1, . . . , 1d–1},

Bj = {b0
j , b1

j , . . . , bd–1
j } = {00, 01, . . . , 0Yj–1, 1Yj+1, . . . , 1d–1}. (14)

Since random numbers are subtracted in the final stage, their effect is not considered here.

After completing step C2, TP will get the results of
n∑

i=1

d–1∑

t=1
at

i and
m∑

j=1

d–1∑

t=1
bt

j as C′
a, C′

b. Then,

TP will be able to compare the size of group A secrets with group B secrets by the value
of H .

In order to simplify the description, the detection of eavesdropping is ignored. Suppose
group A has 3 participants, group B has 2 participants, and the length of the sequence is
8, that is, n = 3, m = 2, and d = 8. The secrets of Alice1, Alice2, and Alice3 are 2, 1, 2. The
secrets of Bob1 and Bob2 are 1, 5. The comprehensive analysis is displayed in Table 1.

A1 = (0, 0, 1, 1, 1, 1, 1, 1)

A2 = (0, 1, 1, 1, 1, 1, 1, 1)

A3 = (0, 0, 1, 1, 1, 1, 1, 1)

B1 = (0, 1, 1, 1, 1, 1, 1, 1)

B2 = (0, 0, 0, 0, 0, 1, 1, 1)

(15)
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Hence,

C′
a =

3∑

i=1

d–1∑

t=1

at
i = 19, (16)

C′
b =

2∑

j=1

d–1∑

t=1

bt
j = 10. (17)

According to the Equation (12), TP calculates H = 8 – 9 = –1 < 0. The rule for H shows the
secret sum of Alice1, Alice2, and Alice3 is smaller than the secret sum of Bob1 and Bob2.

5 Correctness analysis
In this section, we present a rigorous mathematical analysis to establish the correctness
of the protocol, proving its verifiability. TP can accurately compare the secret sums of any
two groups of participants based on the values taken by H .

Theorem 1 The proposed performance in Sect. 3 can solve the QBM problem correctly.

Proof In this protocol, it can be seen that the value of H is used to compare the size of the
secret sum of Group A and Group B, i.e.

H = (n – m)d –
(
C′

a – C′
b
)

=
n∑

i=1

Xi –
m∑

j=1

Yj. (18)

The procedure for proving Equation (18) is as follows: In the initialization phase, it
is established that the secrets of Alicei and Bobj are represented by the sequences Ai =
{a0

i , a1
i , . . . , ad–1

i } and Bj = {b0
j , b1

j , . . . , bd–1
j }, where at

i , bt
j ∈ {0, 1}, t ∈ {0, 1, . . . , d – 1}. Accord-

ing to the encoding rules, there are

Xi +
d–1∑

t=0
at

i = d, i = 1, 2, . . . , n,

Yj +
d–1∑

t=0
bt

j = d, j = 1, 2, . . . , m.
(19)

Summing the two sets of equations in Equation (18) yields the following equation

n∑

i=1
Xi +

n∑

i=1

d–1∑

t=0
at

i = nd,
m∑

j=1
Yj +

m∑

j=1

d–1∑

t=0
bt

j = md.
(20)

Then the equations in Equation (20) are subtracted correspondingly to obtain the follow-
ing Equation (21)

⎛

⎝
n∑

i=1

Xi –
m∑

j=1

Yj

⎞

⎠ +

⎛

⎝
n∑

i=1

d–1∑

t=0

at
i –

m∑

j=1

d–1∑

t=0

bt
j

⎞

⎠ = (n – m)d. (21)
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According to the summation process of TP in the comparison phase, it can be obtained
that

C′
a =

L∑

k=1

n∑

i=1

(
Tk

ai + Rk
ai
)

–
n∑

i=1

Rai =
n∑

i=1

L∑

k=1

Tk
ai,

C′
B =

L∑

k=1

m∑

j=1

(
Tk

bj + Rk
bj

)
–

m∑

j=1

Rbj =
m∑

j=1

L∑

k=1

Tk
bj.

(22)

Due to Tk
ai =

w–1∑

p=0
ap

i and Tk
bj =

w–1∑

p=0
bp

j , k ∈ {1, 2, . . . , L},

C′
a =

n∑

i=1

d–1∑

t=0

at
i ; C′

b =
m∑

j=1

d–1∑

t=0

bt
j . (23)

Substituting into Equation (20), the collation yields

H = (n – m)d –
(
C′

a – C′
b
)

=
n∑

i=1

Xi –
m∑

j=1

Yj. (24)

This shows that the value of H determines the size of the sum of the secret values of Group
A and Group B. □

6 Comparison and discussion
Recently, a series of new QBM protocols have been proposed [42–45]. All of them make
positive developments in this new topic. In this section, we analyze the performance of
this protocol and compare it with existing QBM protocols in terms of quantum resources,
quantum operations, number of participants, and quantum efficiency in Table 2.

Here the quantum efficiency is previously defined as:

η =
c

q + b

where b represents the number of classical bits exchanged to decode the message, c repre-
sents the total number of bits in the classical plaintext message, and q represents the total
number of quantum bits used in the protocol.

Compared to the two-party protocol in Ref. [42], our protocol supports a larger number
of participants by introducing a QBM protocol designed for n-party participation. This
enhanced scalability significantly improves the practicality and flexibility of our protocol.
Moreover, our protocol also demonstrates superior quantum efficiency compared to Ref.
[42], further highlighting its practical value.

Compared with the protocols in Ref. [43], Ref. [44] and Ref. [45], our protocol exhibits
a clear advantage in quantum efficiency. In particular, compared to Ref. [43], our protocol
also supports a broader range of functions. That is Ref. [43] only enables equality compar-
isons, whereas our protocol is capable of both size comparisons, making it more versatile
and applicable in various scenarios.
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Table 2 Comparison of Protocols

Protocol Name Our Protocol Ref. [42] Ref. [43] Ref. [44] Ref. [45]

Participants
numbers

n 2 n n n

Quantum
Operations

Shift Operation H, I Rotation, Swap Shift Operation Phase Shift, CNOT

Quantum
Resources

d-level single
particle states

single-photon
states

d-level Bell
states

d-level
two-particle
entangled
states

d-level n-particle
entangled states

Efficiency 1
2L
l+n

≤ 1
n+2 ,

L ≤ l

1
n+λ , when
λ > 1

1
n+2

1
2n+2 ≥ 1

2n ,
when n≥ 1

1
n(2n+2) ≥ 1

3n+2 ,
when n ≥ l

In summary, our protocol demonstrates significant advantages in terms of participant
scalability, quantum efficiency, and functional versatility. These features highlight the pro-
tocol’s technical innovation and its high potential for practical applications.

7 Simulation
In order to verify the underlying principles of the protocols, we use the IBM Quantum
Simulator (IBMQS) to simulate the experiment of encoding and measurement for d-level
single-particle quantum states, omitting the eavesdropping check steps and disregarding
random numbers. The following simulation of the test procedure is carried out.

Briefly, we suppose that TP generates two quantum states F|18⟩ and |21⟩, and sends
them to two groups of participants, respectively. Firstly, the quantum state F|18⟩ is sent
to Group A, which represents it in binary form as q[0], q[1], q[2], q[3], q[4]. Here, Group
A has participants Alice1 and Alice2. According to the shift operation Um|w⟩ = |w ⊕ r⟩,
the quantum state F|18⟩ is shifted 5 bits for the first time by Alice1, that is, UmF|18⟩ =
F|18 ⊕ 5⟩ = F|23⟩ and then 6 bits by Alice2, i.e., UmF|23⟩ = F|23 ⊕ 6⟩ = F|29⟩. Similarly, TP
generates the second quantum state, |21⟩, which is also represented in binary form as q[0],
q[1], q[2], q[3], q[4] and sent to Group B, consisting of participants Bob1 and Bob2. The
quantum state |21⟩ is shifted 3 bits for the first time by Bob1, that is, Um|21⟩ = |21 ⊕ 3⟩ =
|24⟩ and 7 bits by Bob2, i.e. Um|24⟩ = |24 ⊕ 7⟩ = |31⟩. The simulation encoding process is
shown in Fig. 2 and Fig. 3.

Then, the final two quantum states are returned to the TP. After 20,000 simulations, TP
measures the quantum states as shown in Fig. 4. According to the principle of decimal to
binary conversion, 29 = 11101 and 31 = 11111. The measurement frequencies of the two

Figure 2 The line diagram of quantum evolution for the summation of Group A. In the image, q[0], q[1], q[2],
q[3], q[4] represent the process of shifting the quantum state of the binary form of F|18⟩. The classical bits c[5]
will reflect the measurement results of TP
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Figure 3 The line diagram of quantum evolution for the summation of Group B. In the image, q[0], q[1], q[2],
q[3], q[4] represent the process of shifting the quantum state of the binary form of |21⟩. The classical bits c[5]
will reflect the measurement results of TP

Figure 4 Quantum state measurements of group A is on the left and Quantum state measurements of group
B is on the right

sets of experimental results are 17,991 and 17,551, respectively. Although there are minor
errors due to qubit noise and measurement inaccuracies, the overall results are highly
consistent with the theoretical expectations.

Based on the analysis above, it can be seen that the measurement results are consistent
with the results of our protocol. It means that the proposed protocol conforms to the
underlying logic and can be achieved in the practical equipment.

8 Security analysis
In this section, we will show that the developed protocol can withstand both internal and
external attacks. Here, it should be noted that the internal attack mainly comes from the
semi-honest TP and malicious participants. As TP is not directly involved in the secret
transmission process, it may obtain the secrets by entangle-measure attack and intercept-
resend attack. Malicious participants may obtain secrets through independent participant
attacks and collusion attacks. The external attack comes from external attackers. Since



Hou et al. EPJ Quantum Technology           (2025) 12:10 Page 12 of 17

TP and participants are involved in the protocol process, they can gather some private
messages more successfully than outside attackers. That is, external attacks will not be
feasible if internal attacks are preventable. The security analysis of this protocol is shown
below.

8.1 Intercept-resend attack from the semi-honest TP
Without loss of generality, TP intends to get the secret of Alicei without working with any-
body else. However, since TP and Alicei do not directly transfer particles in the protocol, it
may perform an intercept-resend attack to realize his goal. In the transmission phase, TP
first finds a way to intercept the quantum bits when the qubits are transferred from Alicei

to Alicei+1. Then it replaces them with fake ones and sends them to Alicei+1. However,
because of the existence of decoy states, it is impossible to determine which bits contain
secrets in the sequence. In this sense, for every decoy state, TP must select the appropriate
measurement basis. We assume that δ is the number of decoy states and there is a particle
that carries the secret in the sequence. If TP intercepts one of the particles passing from
Alicei to Alicei+1, the successful detection probability of TP will be

P1 = 1 – ( 1
2 )1+δ . (25)

It can be seen that P1 will approach 1 with the increment of δ (see Fig. 5). Therefore, TP
will not be able to get Alicei’s secret without being caught.

8.2 Entangle-measure attack from the semi-honest TP
In addition to that, TP may also perform entangle-measure attack to obtain Alicei’s secret.
In this sense, TP performs a unitary operation UE to intercept the particle sequence that
is transferred from Alicei–1 to Alicei and entangles it with an auxiliary particle |e⟩ in order
to extract additional information, which is designated as

U|0⟩|e⟩ = μ|0⟩|e00⟩ + δ|1⟩|e01⟩ = μ|0⟩|e00⟩,
U|1⟩|e⟩ = ω|0⟩|e10⟩ + λ|1⟩|e11⟩ = λ|1⟩|e11⟩. (26)

Figure 5 The probability of being detected when TP carries out Intercept-resend attack
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It should be mentioned that the four distinct quantum states are |e00⟩, |e01⟩, |e10⟩, |e11⟩,
and the coefficient relationships are ||μ||2 + ||δ||2 = 1 and ||ω||2 + ||λ||2 = 1. The decoy states
are taken from {|0⟩, |1⟩, |+⟩, |–⟩}. The corresponding operations can be seen as follows:

U|+⟩|e⟩ = 1√
2 (μ|0⟩|e00⟩ + δ|1⟩|e01⟩) + 1√

2 (ω|0⟩|e10⟩ + λ|1⟩|e11⟩)
= 1

2 (|+⟩(μ|e00⟩ + δ|e01⟩)) + 1
2 (|+⟩(ω|e10⟩ + λ|e11⟩))

+ 1
2 (|–⟩(μ|e00⟩ – δ|e01⟩)) + 1

2 (|–⟩(ω|e10⟩ – λ|e11⟩)),
(27)

U|–⟩|e⟩ = 1√
2 (μ|0⟩|e00⟩ + δ|1⟩|e01⟩) – 1√

2 (ω|0⟩|e10⟩ + λ|1⟩|e11⟩)
= 1

2 (|+⟩(μ|e00⟩ + δ|e01⟩)) – 1
2 (|+⟩(ω|e10⟩ + λ|e11⟩))

+ 1
2 (|–⟩(μ|e00⟩ – δ|e01⟩)) – 1

2 (|–⟩(ω|e10⟩ – λ|e11⟩)).
(28)

The equation needs to meet these requirements in order to avoid errors and pass eaves-
dropping detection. Hence, the result will be

(1) δ = ω = 0 occurs when the decoy particles are selected from |0⟩ and |1⟩.
(2) After selecting the fictitious particles from |+⟩ and |–⟩, it will become

μ|e00⟩ – δ|e01⟩ + ω|e10⟩ – λ|e11⟩ = 0,
μ|e00⟩ + δ|e01⟩ – ω|e10⟩ – λ|e11⟩ = 0.

(29)

Based on the above conclusions, we can derive

μ|e00⟩ = λ|e11⟩. (30)

Thus, TP is unable to discriminate between μ|e00⟩ and λ|e11⟩. It is evident that the en-
tanglement measurement assault is unsuccessful since the measurement of the auxiliary
particles yields no useful information.

8.3 Independent attack by the participant in each group
In the proposed protocol, Alice in Group A and Bob in Group B participate in similar
actions. Without loss of generality, Alicei+1 is taken to be dishonest, and Alicei+1 wants
to acquire Alicei’s secret from Group A as an example to analyze the security. Here, it is
necessary to obtain the random number Ri

A and each part of the secret sum of Alicei. The
difference from TP is that Alicei+1 can have secret transfers directly with Alicei.

With the particle received by Alicei+1, Alicei+1 can know the particle state after Alicei

performs the shift operation. Therefore, in order to obtain the shift operation of Alicei,
Alicei+1 only needs to guess the initial state of Alicei. However, due to the presence of
random numbers, he is unable to gather any knowledge about Alicei’s secret. As the prob-
ability of guessing each secret correctly is 1

d , the probability that Alicei+1 correctly guesses
the secret of Alicei is P2. (see Fig. 6).

P2 = 1
d × 1

d · · · × 1
d = ( 1

d )L (31)

8.4 Internal attack by the participants collusion
As we know, the most serious attack is the collusion attack. In particular, the most pow-
erful case is that the n – 1 parties are dishonest in total. Collusion attacks fall into two
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Figure 6 The possibility of participants having access to others’ secrets

categories: inter-group collusions, in which certain members of the group have the desire
to steal another member’s secret; cross-group collusions, in which a few members from
one group team up with some members from the other group to obtain a member’s secret.

(1) Inter-group collusive attack
We assume that Alice1, Alice3 to Alicen are dishonest participants conspiring to obtain

the secret of Alice2. According to the secret transmission process, Alicen can collect all
participants’ secret sum with random numbers. Since Alice1, Alice3 to Alicen–1 publish
the secret with random numbers, they will get

Ca –
L∑

k=1

[
(
Tk

a1 + Rk
a1

)
+

n∑

i=3

(
Tk

ai + Rk
ai
)
]

=
L∑

k=1

(
Tk

a2 + Rk
a2

)
. (32)

Since the participants only published the sum of the random numbers Rai, they do not
have access to the secret information of Alice2. Thus, they can only achieve their goal by
guessing Alice2’s random number. The probability that they will obtain Alice2’s secret is
P3 as

P3 = (
1
d

)L. (33)

(2) Cross-group collusive attack
We suppose Alice1, Alice2 to Alicen conspires with Bob1, Bob3 to Bobm and want to steal

Bob2’s secret. In this instance, there is a simultaneous external and internal attack since
we can view Alice1, Alice2 to Alicen as external attackers and Bob1, Bob2 to Bobm as the
collusion of inside attackers. However, these two attacks are ineffective according to our
analysis above. Here, P4 is the probability of accurately guessing the secret, and P5 is the
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probability that they will be discovered, where δ is the number of decoy states.

P4 = (
1
d

)L (34)

P5 = 1 – (
1
2

)1+δ (35)

In all, internal attackers cannot get the private secrets of legal participants. In addition,
for outside attackers, their abilities are limited. It seems that only the entangle-measure
and intercept-resend attacks may be performed since they do not take part in the partici-
pant’s secret transmission process. According to the analysis above, the attacks are invalid.
Therefore, the presented protocol can effectively resist these attacks.

8.5 External attack
In the analysis, we assume that the external eavesdropper, Eve, attempts to steal confiden-
tial information from the participants. Since Eve is not involved in the process of secret
transmission between participants, Eve is limited to employing entangle-measure attacks
and intercept-resend attacks. However, the unique role of TP in the protocol grants TP ac-
cess to significantly more information than Eve. Based on the prior security analysis, the
protocol has been shown to effectively resist both intercept-resend attacks and entangle-
measure attacks. Consequently, Eve is unable to successfully compromise the participants’
confidential information.

9 Conclusion
In this paper, for two groups A and B each with a different number of n and m partici-
pants, a private comparison of the secret sum of Group A and Group B can be obtained.
During it, the new vector coding method for d-level single-particle states is used to pro-
tect the participant’s secret. Meanwhile, the chosen random numbers and decoy states
are also included. Additionally, the protocol can effectively reduce the number of particle
transmissions by not requiring shared keys or entangled states. In the future, we hope that
more efficient and universal solutions will be provided to the QBM problem without TP,
and the present attempts could lead to positive developments in QSMC.

Abbreviations
BM, blind millionaire; QBM, quantum blind millionaire; SMC, secure Multiparty Computing; QPS, quantum private
summation; QPC, quantum private comparison..
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