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Abstract In this letter, we will focus on the Klein–Gordon
equation with rotating axially symmetric black hole solu-
tion of the Einstein–Bumblebee theory, so called the Kerr–
Bumblebee black hole, as its 3 + 1 background space-time.
We start with constructing the covariant Klein–Gordon equa-
tion component by component and with the help of the ansatz
of separation of variables, we successfully separate the polar
part and found the exact solution in terms of Spheroidal
Harmonics while the radial exact solution is discovered in
terms of the Confluent Heun function. The quantization of
the quasibound state is done by applying the polynomial con-
dition of the Confluent Heun function that is resulted in a
complex-valued energy levels expression for a massive scalar
field, where the real part is the scalar particle’s energy while
the imaginary part represents the quasibound stats’s decay.
And for a massless scalar, a pure imaginary energy levels is
obtained. The quasibound states, thus, describe the decay-
ing nature of the relativistic scalar field bound in the curved
Kerr–Bumblebee space-time. We also investigate the Hawk-
ing radiation of the Kerr–Bumblebee black hole’s apparent
horizon via the Damour–Ruffini method by making use the
obtained exact scalar’s wave functions. The radiation distri-
bution function and the Hawking temperature are success-
fully obtained.

1 Introduction

The first black hole solution of the Einstein’s general theory
of relativity (1915) became available shortly after the work
by Schwarzschild in 1916. Shortly afterwards, the first slowly
rotating metric was developed in 1918 by [1,2]. The devel-
opment of the rotating black hole solution was slow moving
since then. However, almost all astrophysically significant
bodies in nature are rotating and as the rotating body col-
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lapses, the conservation of the constant angular momentum
will cause the rotation to speed up. It took 45 years for Roy
Kerr, [3] to find the rigorous solution of the only possible sta-
tionary, axially symmetric and asymptotically flat solution of
the Einstein theory of gravity, In recent years, the effect of
the frame dragging caused by a rotating gravitational cen-
tral body has received special interest and importance again
as after more than 85 years of the theoretical predictions, it
has become possible to directly measure this particular effect
[4–6].

Despite of the Einstein theory of gravity is the most suc-
cessful theory of gravitation in the level of solar system, one
of the major challenges in theoretical gravitational physics
is to integrate the Einstein theory with the standard model
of particle physics, which accommodate many other inter-
actions. A possible guide to this problem is the spontaneous
symmetry breaking, which plays a key role in the elementary
particle physics. The symmetry breaking in the early universe
is very likely to happen since the temperature may have been
high enough to set it off. One of the possible symmetry break-
ing that could happen in the quest of quantization of general
relativity is the of Lorentz symmetry breaking [7]. The pri-
mary Lorentz-violating coupling in the gravitational sector
of the Standard Model Extension takes the form sμνRμν,

where sμν is a tensor coupling with a non-zero background
configuration while the Rμν is the Ricci tensor. The preferred
frames of the background configuration is defined by sμν that
makes, this coupling violates the Lorentz symmetry.

One of the modified theories of gravity that incorporate
such effect is the Bumblebee theory of gravity where theory
starts with this following integral of action [7],

S =
∫ [

c4

16πG

(
R + ζ BμBνRμν

)

−1

4
BμνBμν − V

]√−gd4x, (1)
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where Bμ is a dynamical vector field called the Bumble-
bee field. It induces a spontaneous breaking of the Lorentz
symmetry by causing a non-zero vacuum expectation value
[8]. The ζ is a real valued coupling constant controlling the
non-minimal curvature (gravity)-coupling and the Bumble-
bee vector fields. The Bμν corresponds to the Bumblebee
vector field, which is a generalization of the Maxwell tensor
as follows,

Bμν = ∂μBν − ∂νBμ, (2)

and the potential, V, is driving the Lorentz violation. It is
chosen to have a minimum at,

BμBμ ± b2 = 0. (3)

Three years ago, [7] has successfully found the novel rotat-
ing black hole solution, called the Kerr–Bumblebee black
hole, of the Bumblebee theory gravity and becomes the inter-
est of our scalar quasibound states and apparent horizon’s
Hawking radiation investigation.

In 14 September 2015, the gravitational wave signal of a
binary black hole merger was directly detected for the first
time [9]. Together with the quite recent Hawking radiation
of the optical black hole analog [10], make the investiga-
tion of black hole spectroscopy a new emerging interest.
The quasibound states, quasinormal modes, and shadows of
black holes are among the most interesting characteristics of
such an astrophysical objects in the observational measurable
spectra that is generated as particles crossing into the black
hole [11]. The quasibound states, that is also known as qua-
sistationary resonance, are relativistic bound states outside
the black hole’s event horizon. The states are localized in the
black hole’s finite gravitational potential well. Thus, the qua-
sibound states is leaking, crossing into the black hole causing
the spectrum to have complex valued frequencies where the
real part is associated as the scalar’s energy while the imagi-
nary part determines the stability of the system. It is possible,
in principle, to extract some information about the physics of
black holes as well as to validate some alternative/modified
theories of gravity from these quasibound states [11]. Anal-
ogously to atomic transitions emitting photons, level transi-
tions of axions around black holes emit gravitons [12].

The spectroscopy of black hole is also a new emerging
interest in condensed matter physics as many different kinds
of analogue models has been proposed after Unruh’s predic-
tion, for example Bose–Einstein condensates, electromag-
netic wave guides, graphene, optical black hole, sonic black
hole and ion rings [13–17]. In optical domain, [18] proposed
the idea of an optical black hole for the first time in the year
of 2000. The idea is that propagation of light in a moving
medium resembles many features of a motion in a curved
space-time background.

However, due to the complexity of the equations involved,
especially the radial equation, analytical methods were used

less often and only for certain problems. The vast majority
of these studies made use of numerical techniques such as
the asymptotical analysis, WKB, and continued fraction to
investigate the specific task at hand. In recent years, thanks to
the development of a special functions, so-called the Conflu-
ent Heun functions, several authors have successfully worked
out and presented novel exact scalar quasibound states solu-
tions respectively in the analog Schwarzschild black hole,
the charged and chargeless Lense–Thirring black hole, the
Reissner–Nordström black hole, the magnetic Ernst black
hole and for the case of f (R) theory’s static spherically
symmetric black hole background [19–25]. The importance
of this particular special function in black hole physics was
mentioned in [26]. Despite of the complexity, the radial equa-
tions of the governing relativistic Klein–Gordon equations
are successfully solved in terms of the Confluent Heun and
the General Heun functions. The polynomial condition of the
Confluent Heun and the General Heun functions are found
to be directly related to the quasibound states’ energy quan-
tization.

In this present work, we are going to show in detail the
analytical derivation of both massive and massless scalar qua-
sibound states’ exact solutions in a rotating Kerr–Bumblebee
black hole background. The exact wave function comprises
of a harmonic temporal part, the Spheroidal Harmonics as
the angular part and the Confluent Heun function as the
radial part. The energy levels expression is obtained from
the polynomial condition of the Confluent Heun function
(see Appendix B) and further investigation of the wave func-
tion shows us that a quasibound states behave like an ingoing
wave close to the black hole horizon and vanishing far away
of the horizon. In the last section, using exact wave solution,
the Hawking radiation of the apparent black hole’s horizon
is investigated and the Hawking temperature is obtained.

2 The Kerr–Bumblebee metric

2.1 The metric

In the Boyer–Lindquist coordinate, the line element of the
Kerr–Bumblebee space-time that is generated by a rotating
massive object in Bumblebee gravity, with mass M, real pos-
itive parameter b, Bumblebee parameter L = 1 + lB and
angular momentum per unit mass a is given by [7],

ds2 = −
(

1 − rsr

ρ2

)
c2dt2 − 2rsr Lasin θ

ρ2 cdtdφ + ρ2

	
dr2

+ρ2dθ2 + Asin2θ

ρ2 dφ2, (4)

where,

ρ2 = r (r + b) + La2cos2θ , (5)
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L	 = r (r + b) − rsr + La2, (6)

Asin2θ

ρ2 =
[
r (r + b)+La2+ 2rsr La2

ρ2 sin2θ

]
sin2θ . (7)

It is possible to express the metric in the Cartesian coor-
dinate by this following relation,

x =
√
r (r + b) + La2sin θcos φ , (8)

y =
√
r (r + b) + La2sin θsin φ , (9)

z = √
r (r + b)cos θ . (10)

The Kerr–Bumblebee space-time is singular when ρ2 = 0
and 	 = 0. The first condition, ρ2 = 0 = r (r + b) +
La2cos2θ happens at θ = π

2 and as x2 + y2 = r (r + b) +
La2, we get,

r (r + b) = 0 ↔ x2 + y2 = La2. (11)

The singularity forms a ring singularity lying on x − y
plane with radius a

√
L from the Cartesian coordinate’s ori-

gin.
The black hole horizons are found by solving the second

condition, i.e.	 = 0 = r (r + b)−rsr+La2.The solution of
the quadratic equation represent the outer and inner horizons
respectively r+, r− as follows,

r± = rs
2

− b

2
±
√

(b − rs)2

4
− La2. (12)

And in the case of a = 0, the static spherically symmetric
Schwarzschild–Bumblebee black hole is recovered and set-
ting b = 0 and L = 1, the regular Schwarzschild black hole
is recovered. Moreover, without nulling the spin parameter
but setting b = 0 and L = 1, we obtain the regular Kerr
black hole.

Before working with the Klein–Gordon equation in the
Kerr–Bumblebee black hole background, we are going to
find the Kerr–Bumblebee metric inverse as the first step. Let
us rewrite line element (4) we can write the charged Lense–
Thirring metric as follows,

[gμν =

⎛
⎜⎜⎜⎜⎝

−
(

1 − rsr
ρ2

)
0 0 − rsr

√
Lasin2θ

ρ2

0 ρ2

	
0 0

0 0 ρ2 0

− rsr
√
Lasin2θ

ρ2 0 0 Asin2θ
ρ2

⎞
⎟⎟⎟⎟⎠ (13)

and as we need to calculate the metric tensor determinant,
the metric must be modified and written as a block matrix as
follows,

gμν =

⎛
⎜⎜⎜⎜⎝

ρ2

	
0 0 0

0 ρ2 0 0

0 0 −
(

1 − rsr
ρ2

)
− rsr

√
Lasin2θ

ρ2

0 0 − rsr
√
Lasin2θ

ρ2
Asin2θ

ρ2

⎞
⎟⎟⎟⎟⎠ (14)

=
(
Ã 0
0 B̃

)
. (15)

The determinant of the block matrix can be calculated
using this following formula,

det
(
gμν

) = g =
∣∣∣ Ã
∣∣∣
∣∣∣B̃
∣∣∣ , (16)

and after some algebra, we obtain,

g = Lρ4sin2θ . (17)

2.2 The metric inverse

The metric inverse is then calculated by making use of the
special property of the block matrix as follows,

gμν =
(
Ã 0
0 B̃

)
−→ gμν =

(
Ã−1 0

0 B̃−1

)
, (18)

Ã−1 =
(

	
ρ2 0

0 1
ρ2

)
, (19)

B̃−1 = 1∣∣∣B̃
∣∣∣

⎛
⎝ Asin2θ

ρ2
rsr

√
Lasin2θ

ρ2

rsr
√
Lasin2θ

ρ2 −
(

1 − rsr
ρ2

)
⎞
⎠ , (20)

∣∣∣B̃
∣∣∣ = g(

ρ4

	

) = −L	sin2θ . (21)

The inverse of the metric tensor is as follows,

gμν =

⎛
⎜⎜⎜⎜⎜⎝

− 1
L	

fφφ 0 0 − 1
L	

rsr
√
L

ρ2 a

0 	
ρ2 0 0

0 0 1
ρ2 0

− 1
L	

rsr
√
L

ρ2 a 0 0 1
L	sin2θ

(
1 − rsr

ρ2

)

⎞
⎟⎟⎟⎟⎟⎠

, (22)

where,

fφφ = r (r + b) + La2 + rsr La2

ρ2 sin2θ . (23)

3 The Klein–Gordon equation

3.1 Construction

A relativistic scalar field in a curved space-time, regardless
massive or massless, is represented by the covariant Klein–
Gordon equation. The quantum relativistic matter wave equa-
tion reads as follows,

− h̄2∇μ∇μψ + k2c2 = 0, (24)

where ∇μ is the covariant derivative.
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Operating the covariant derivatives, we proceed as fol-
lows,

∇μ∇μψ = ∇μ∂μψ = ∂μ∂μψ + �μ
μν∂

νψ, (25)

where, we also can derive this following identity,

�α
αβ = gαγ

2

(
∂αgβγ + ∂βgαγ − ∂γ gαβ

) = 1

2
gαγ ∂βgαγ

= 1

2
gαγ ∂gαγ

∂xβ
= 1

2
gαγ

(
2√−ggαγ

∂
√−g

∂xβ

)

= 1√−g

∂
√−g

∂xβ
, (26)

so, with the help of this property of the Christoffel symbol,
we get,

∇μ∇μψ = ∂μ∂μψ +
(

1√−g
∂ν

√−g

)
∂νψ

= 1√−g
∂μ

(√−g∂μψ
)

= 1√−g
∂μ

(√−ggμν∂νψ
)
, (27)

and finally, we can express the Klein–Gordon equation in the
terms of partial derivatives and the metric tensor components
as follows,
{
−h̄2

[
1√−g

∂μ

√−ggμν∂ν

]
+ k2c2

}
ψ = 0, (28)

where E0 = kc2 is the scalar’s rest energy per unit mass. So,
we have k = 1 for massive scalars and k = 0 for massless
scalars.

As we have obtained the metric determinant and the metric
inverse, the Laplace–Beltrami operator of the Klein–Gordon
equation can be found component per component as follows,

1√−g
∂0

√−gg00∂0

= −
{(

r (r + b) + La2
)2 − L2	a2sin2θ

}
∂2
ct

	ρ2 , (29)

1√−g
∂0

√−gg03∂3 = − 1

L	

rsr

ρ2

√
La∂ct∂φ, (30)

1√−g
∂1

√−gg11∂1 = 1

r2 ∂r (	∂r ) , (31)

1√−g
∂2

√−gg22∂2 = 1

r2sin θ
∂θ (sin θ∂θ ) , (32)

1√−g
∂3

√−gg30∂0 = − 1

L	

rsr

ρ2

√
La∂ct∂φ, (33)

1√−g
∂3

√−gg33∂3 = L	 − a2sin2θ

L	sin2θ ρ2
∂2
φ. (34)

Combining all of the components, we obtain the full
Klein–Gordon equation in Kerr–Bumblebee black hole back-
ground as follows,
[{

− 1

	ρ2

{(
r (r + b) + La2

)2 − L2	a2sin2θ

}
∂2
ct

−2
1

L	

rsr

ρ2

√
La∂ct∂φ + 1

ρ2 ∂r (	∂r )

+ 1

ρ2sin θ
∂θ (sin θ ∂θ )

+ L	 − a2sin2θ

L	sin2θ ρ2
∂2
φ

}
− k2c2

h̄2

]
ψ = 0. (35)

Due to the present temporal and azimuthal symmetry, we
can use this following separation ansatz [27],

ψ (t, r, θ, φ) = ei
E
c ct−imlφR (r) T (θ) . (36)

3.2 The polar equation

Substituting the separation ansatz into the Eq. (35) and multi-
plying the whole by r2

ψ(t,r,θ,φ)
, also defining these following

dimensionless variables, i.e. �2 = ω2r2
s

c2 and �2
0 = E2

0r
2
s

h̄2c2

where E0 = kc2, to get,

{
− 1

	ρ2

{(
r (r + b) + La2

)2 − L2	a2sin2θ

}(
−ω2

c2

)

−2
1

L	

rsr

ρ2

√
La
(ωml

c

)
+ 1

Rρ2 ∂r (	∂r R)

+ 1

ρ2sin θ
∂θ (sin θ ∂θ )

+ L	 − a2sin2θ

L	sin2θ ρ2

(
−m2

l

)}
− k2c2

h̄2 = 0. (37)

Let us define these two dimensionless energy parameters,

� = Ers
h̄c

,�0 = E0rs
h̄c

. (38)

Multiplying the whole wave equation by ρ2 and using the
identity sin2θ = 1 − cos2θ , we obtain a full radial-polar
equation as follows,
[

1

sin θ
∂θ (sin θ ∂θ ) − m2

l

sin2θ

−
(

�2
0La

2

r2
s

− �2L2a2

r2
s

)
cos2θ

]

+
[

1

R
∂r (	∂r R) + �2

r2
s

(
r (r + b) + La2

)2
	

+�2L2a2

r2
s

+ m2
l a

2

L	
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−2

(
r (r + b) + L(a2 − 	)

)
a√

L	

(
�ml

rs

)

−�2
0

r2
s
r (r + b)

]
= 0, (39)

and the polar part can be separated as follows,

1

sin θ
∂θ (sin θ ∂θ ) − m2

l

sin2θ

−
(

�2
0La

2

r2
s

− �2L2a2

r2
s

)
cos2θ + λ

ml
l = 0. (40)

In the case of L = 1 and a = 0, it’s clear that the separa-
tion constant λ

ml
l = l (l + 1) and the polar wave solution

is the Legendre polynomial, Pml
l (cos θ). But, for in gen-

eral case with non zero L and a, the polar solution is the
Spheroidal Function, Sml

l , as follows [28],

T (θ)=Sml
l (c, cos θ ) =

∞∑
r=−∞

dlml
r (c) Pml

l+r (cos θ ), (41)

where,

c = �2
0La

2

r2
s

− �2L2a2

r2
s

. (42)

3.3 The radial equation

Having found the exact solution of the polar part, we are left
with this following lengthy radial equation,

∂r (	∂r R) +
[

�2

r2
s

(
r (r + b) + La2

)2
	

+ �2L2a2

r2
s

−2

(
r (r + b) + La2 − L	

)
a√

L	

(
�ml

rs

)
+ m2

l a
2

L	

−�2
0

r2
s
r (r + b) − λ

ml
l

]
R = 0. (43)

Due to the issue of complexity, the radial equation must
be treated carefully. As the condition of 	 = 0 leads to two
solutions, it can be expressed in this following form,

	 = (r − r−)(r − r+), (44)

∂r (	∂r R) = (r − r−)∂r R + (r − r+)∂r R

+(r − r−)(r − r+)∂2
r R, (45)

r+ − r−
	

= δr

	
= 1

r − r+
− 1

r − r−
. (46)

We can now rearrange the radial equation (43) as follows,

∂r (	∂r R) +
[

1

	

{
O

rs

(
r (r + b) + La2

)
− mla√

L

}2

−
{

�2
0

r2
s

(
r (r + b) + La2

)
+ Kml

l

}]
R = 0, (47)

where we have defined a constant, Kml
l , to shorten the equa-

tion as follows,

Kml
l = −�2

r2
s
L2a2 − �2

0

r2
s
La2 − 2

√
L

�mla

rs
+ λ

ml
l . (48)

Now operating the differential respect to the r in the first
term of the radial equation (47) followed by multiplying the
whole by δ2

r , we obtain this following expression,

δ2
r ∂2

r R +
{

1

r − r+
+ 1

r − r−

}
δ2
r ∂r R

+
[(

1

r − r+
− 1

r − r−

)2{�

rs

(
r (r + b) + La2

)
− mla√

L

}2

−δr

(
1

r − r+
− 1

r − r−

)

×
{

�2
0

r2
s

(
r (r + b) + La2

)
+ Kml

l

}]
R = 0. (49)

As the region of interest is outside the outer horizon, i.e.
r+ ≤ r < ∞, let us use these following new variables,

x = r − r+ = δr y → dx = dr = δr dy, (50)

r − r− = x + r+ − r− = δr y + δr = δr (y + 1 ) , (51)

that shift the region of interest to be 0 ≤ y < ∞. In the terms
of y, the radial equation becomes as the following,

∂2
y R +

{
1

y
+ 1

y + 1

}
∂y R + [F.T . + S.T .] R = 0. (52)

where,

F.T . =
[

1

δr

(
1

y
− 1

y + 1

)

×
{

�

rs

(
(δr y + r+)2 + b (δr y + r+) + La2

)
− mla√

L

}]2

,

(53)

and,

S.T . =
(

1

y
− 1

y + 1

)

×
{

�2
0

r2
s

(
(δr y + r+)2+b (δr y + r+) + La2

)
+ Kml

l

}
.(54)

Let us consider the F.T .,

F.T . = 1

δr

1

y (y + 1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

rs

(
δ2
r y

2 + 2yδr

(
r+ + b

2

))

+ �

rs

(
r+ (r+ + b) + La2

)
− mla√

L︸ ︷︷ ︸
K1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (55)
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Using the fractional decomposition, y
y+1 = 1 − 1

y+1 , we
can proceed as follows,

F.T . =

⎡
⎢⎢⎢⎣

�

rs
δr + 1

y

K1

δr
+ 1

y + 1

{
(r+ + r− + b)

�

rs
− K1

δr

}

︸ ︷︷ ︸
K3

⎤
⎥⎥⎥⎦

2

,

(56)

or, in the expanded form, we have,

f irst term = �2

r2
s

δ2
r + K 2

1

δ2
r y

2 + K 2
3

(y + 1)2 + 2�K1

rs y

+ 2�δr K3

rs (y + 1)
+ 2K1K3

δr

(
1

y
− 1

y + 1

)
.

(57)

Now let us proceed the S.T .,

S.T . = − 1

y (y + 1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2
0

r2
s

(
δ2
r y

2 + 2δr y

(
r+ + b

2

))

+ �2
0

r2
s

(
r+ (r+ + b) + La2

)
+ Kml

l︸ ︷︷ ︸
K2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (58)

and again, making use the fractional decomposition, y
y+1 =

1 − 1
y+1 again, we obtain,

S.T . = −�2
0

r2
s

δ2
r

+ 1

y + 1

⎛
⎜⎜⎜⎜⎝

�2
0

r2
s

δ2
r − 2δr

(
r+ + b

2

)
�2

0

r2
s

+ K2

︸ ︷︷ ︸
K4

⎞
⎟⎟⎟⎟⎠− K2

y
.

(59)

The F.T . and S.T . have successfully been expressed in the
terms of 1

y+1 and 1
y and now, we are going to convert the radial

equation into its normal form following the Appendix A as
follows,

∂2
y R +

{
1

y
+ 1

y + 1

}
∂y R +

[
�2

r2
s

δ2
r + K 2

1

δ2
r y

2 + K 2
3

(y + 1)2

+2�K1

rs y
+ 2�δr K3

rs (y + 1)
+ 2K1K3

δr

(
1

y
− 1

y + 1

)

−�2
0

r2
s

δ2
r + K4

y + 1
− K2

y

]
R = 0. (60)

Here we identify,

p = 1

y
+ 1

y + 1
, (61)

q = �2

r2
s

δ2
r + K 2

1

δ2
r y

2 + K 2
3

(y + 1)2 + 2�K1

rs y
+ 2�δr K3

rs (y + 1)

+2K1K3

δr

(
1

y
− 1

y + 1

)
− �2

0

r2
s

δ2
r + K4

y + 1
− K2

y
.

(62)

Doing the algebra carefully and grouping the coefficients
of 1

y and 1
y+1 , we finally obtain this following normal form

of the radial equation,

d2Y (y)

dy2 + K (y)Y (y) = 0, (63)

where,

K (y) = −1

2

dp

dx
− 1

4
p2 + q =

(
�2

r2
s

δ2
r − �2

0

r2
s

δ2
r

)

+ 1

y

(
−1

2
+ 2�K1

rs
+ 2K1K3

δr
− K2

)
+ 1

y2

(
1

4
+ K 2

1

δ2
r

)

+ 1

y + 1

(
1

2
+ 2�δr K3

rs
− 2K1K3

δr
+ K4

)

+ 1

(y + 1)2

(
1

4
+ K 2

3

)
, (64)

and the Y (y) is interconnected with the R(y) by,

Y (y) = √(y(y + 1)R(y). (65)

And comparing with the K (x) = − 1
2
dp
dx − 1

4 p
2 + q of

Confluent Heun’s differential equation (see Appendix B), the
Confluent Heun’s parameters we can be solved as follows,

y = −x, (66)

α = 2
δr

rs

√
�2

0 − �2, (67)

β = 2i

δr

[
�

rs

(
r+ (r+ + b) + La2

)
− mla√

L

]
, (68)

γ = 2i

δr

[
�

rs

(
r− (r− + b) + La2

)
− mla√

L

]
, (69)

δ = (r+ − r−)

r2
s

[
�2

0 (r++r−+2b)−2�2 (r++r−+b)
]
, (70)

η =
(
r+ (r+ + b) + La2

)(2�2 − �2
0

r2
s

)
− 2�aml

rs
√
L

− Kml
l

− 2

δ2
r

(
�

rs

(
r+ (r+ + b) + La2

)
− mla√

L

)

×
(

�

rs

(
r− (r− + b) + La2

)
− mla√

L

)
. (71)

After finding all of the Confluent Heun’s parameters, we
can present the complete exact radial solution of the Klein–
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Gordon equation in the Kerr–Bumblebee black hole back-
ground as follows,

R = e− 1
2 αy
[
Ay

1
2 β(y + 1)

1
2 γ HeunC(−y)

]
, (72)

y = r − r+
δr

. (73)

And the complete exact wave function is as the following,

ψ = ei
E
h̄c ctYml

� (θ, φ) e
− 1

2 α
(
r−r+

δr

)(
r − r−

δr

) 1
2 γ

×
[
A

(
r − r+

δr

) 1
2 β

HeunC

(
r − r+

δr

)

+B

(
r − r+

δr

)− 1
2 β

HeunC′
(
r − r+

δr

)]
. (74)

3.4 Energy quantization

The radial quantization condition is related to the number of
zeros of the radial wave. The Confluent Heun function will
have n zeros if it this following polynomial condition to make
it a function with degree of n (see Appendix B) is fulfilled,

δ

α
+ β + γ

2
= −n, (75)

or explicitly,

(
r2+−r2−

)
r2
s

[
�2

0 − 2�2 − 2b
r++r−

(
�2 − �2

0

)]

2 δr
rs

√
�2

0 − �2

+ i

δr

{
�

rs

(
r+ (r+ + b) + r− (r− + b) + 2La2)− 2mla√

L

}
= −n.

(76)

and by cancelling out some pairs of rs, we obtain,

(
r2+ − r2−

)
δr

E0rs
h̄c

{
1 + 2b

r++r− −
(

2 + 2b
r++r−

)
E2

E2
0

}

2

(
1 − E2

E2
0

) 1
2

+ i

δr

{
�

rs

(
r+ (r+ + b) + r− (r− + b) + 2La2)− 2mla√

L

}

= −n. (77)

Notice that the scalar energy levels have a dependence on
the azimuthal quantum number ml that is directly coupled
to the black hole’s spin parameter a. This is similar with the
Zeeman effect when a Hydrogenic atom is immersed in a
magnetized space. The existence of the term can be under-
stood as an interaction between the orbiting scalar field with
magnetic state ml , with the black hole’s angular momentum
a.

It is also interesting to investigate the energy levels in the
limit Ers → 0. Here we obtain,

E = E0

√√√√√1 −
⎡
⎣ E0rs

h̄c

(
r2+ − r2−

)
2δr

(
i 2mla√

Lδr
+ n
)
⎤
⎦

2

, (78)

E − E0 ≈ − E0

2

⎡
⎣ E0rs

h̄c

(
r2+ − r2−

)
2δr

(
i 2mla√

Ldr
+ n
)
⎤
⎦

2

. (79)

Contrary to the case of static black holes’ weak field limit,
where the energy levels are purely real [21–23], which can
easily be reproduce by setting a = 0. For a rotating black
holes, the energy levels are complex valued anyway. This is
expected as, classically, the calculation show that an astro-
physical rotating black hole with a = 0.998 rs

2 has 32%
effectivity in converting the mass of its accretion disc to be
radiation. The value is 5× greater than of the non rotating
Schwarzschild black hole [29].

For the case of the massless scalar particle, by setting
E0 = 0, purely imaginary energy levels expression is found
as follows,

En =
h̄c
(
inδr + 2mla√

L

)

r+ (r+ + b) + r− (r− + b) + 2La2 . (80)

So, any massless particle can quickly be absorbed by the
Kerr–Bumblebee black hole.

It is important to mention that when we take rQ = 0,

this makes r+ → rs and r− → 0 which recovers the energy
levels (79) in chargeless Lense–Thirring black hole,

E − E0 ≈ E0

2

⎡
⎣ E0rs

�c r2
s

2
(
i 2mla

δr
+ n
)
⎤
⎦

2

. (81)

In [30], there is mention the so-called “second polyno-
mial condition” of the Confluent Heun function, i.e. the 	n

condition. One can work out the algebra and find out that
the second polynomial condition does not change the energy
equation. Instead, it limits the value of l for states with main
quantum number n, i.e. l ≤ n − 1.

3.5 Quasibound states in extreme regions

Now, we are going to investigate the behaviour of the exact
quasibound states solution in two extreme regions, i.e. very
near to the black hole’s outer horizon, r → r+ and asymptotic
behaviour far away from the black hole’s horizon r → ∞.

Remember that the quasibound states are quantized states.
Thus, the Confluent Heun functions are always polynomial
functions.

Let us first consider how the quasibound states behave very
near to the apparent horizon by taking the limit r → r+. We
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investigate as follows, as x = r−rs
δr

is approaching x = 0,

the Confluent Heun functions, HeunC(0) = HeunC′(0) ≈
1. Also the exponential e

− 1
2 α
(
r−rs
δr

)
≈ 1. Thus, we get this

following expression very near to the horizon,

ψ→rs = ei
E
h̄c ct Yml

� (θ, φ)

[
A

(
r − rs

δr

) 1
2 β

+ B

(
r − rs

δr

)− 1
2 β
]

.

(82)

Now, let us define a new radial variable r−rs
δr

= ζr − ζ0

and expressing the Heun’s β parameter following (68) or
equivalently, β = i |β| to get this following expression,

ψ→rs = ei
E
h̄c ct Yml

� (θ, φ)
[
A(ζr − ζ0)

i |β|
2 + B(ζr − ζ0)

− i |β|
2

]
,

(83)

and using the complex identity,

zi = e1 ln(z), (84)

together with,

cos z = 1

2

(
eiz + e−i z

)
, (85)

we get,

ψ→rs = ei
E
h̄c ctYml

� (θ, φ) [Ccos (ζr − ζ0)] , (86)

which represent a purely ingoing cosine wave. So, the quasi-
bound states are purely ingoing waves very close to black
hole’s horizon and as r → ∞, the exponential function

e
− 1

2 α
(
r−rs
rs

)
≈ 1 is definitely suppressing the Heun polyno-

mials quenching the whole wave at the asymptotic infinity.

4 Hawking radiation

In the previous section, the complete expression of the polar
and radial waves in terms of the Spheroidal Harmonics and
the Confluent Heun functions have been presented in detail.
In this section, we are going to investigate the Hawking radi-
ation of the Kerr–Bumblebee black hole’s apparent horizon.
We start with this following exact radial solution of the wave
function,

R = e
− 1

2 α
(
r−r+

δr

)(
r − r−

δr

) 1
2 γ
[
A

(
r − r+

δr

) 1
2 β

HeunC

(
r − r+

δr

)

+B

(
r − r+

δr

)− 1
2 β

HeunC′
(
r − r+

δr

)]
. (87)

Very close to the event horizon r+, the radial wave is to
be expanded in the lowest order of r and the Heun functions
can be approximated as,

HeunC(0) = HeunC′(0) = 1, (88)

also the exponential, e
− 1

2 α
(
r−r+

δr

)
= 1,

R =
(
r+ − r−

δr

) 1
2 γ
[
B

(
r − r+

δr

)− 1
2 β

+ A

(
r − r+

δr

) 1
2 β
]

,

(89)

β = 2i

δr

[
�

rs

(
r+ (r+ + b) + La2)− mla√

L

]
. (90)

The radial wave consists of two independent parts as fol-
lows,

R =

⎧⎪⎨
⎪⎩

ψ+in = A
(
r+−r−

δr

) 1
2 γ ( r−r+

δr

) 1
2 β

ingoing

ψ+out = B
(
r+−r−

δr

) 1
2 γ ( r−r+

δr

)− 1
2 β

outgoing.
(91)

Suppose there is an ingoing wave hitting the apparent hori-
zon r+. This will induce a particle-antiparticle pair where
the particle part will be reflected and the antiparticle will be
transmitted, going through the horizon, reaching r = 0. The

analytical continuation of the wave function ψ
(
r−r+

δr

)
can

be calculated as follows,

(
r − r+

δr

)λ

=
(
r+
δr

)λ( r

r+
− 1

)λ

→
(
r+
δr

)λ [( r

r+
− 1

)
+ iε

]λ

=

⎧⎪⎨
⎪⎩

(
r+
δr

)λ( r−r+
δr

)λ

, r > r+(
r+
δr

)λ∣∣∣ r−r+
δr

∣∣∣λeiλπ , r < r+.

(92)

This analytical continuation enable us to obtain the

ψ−out = ψ+out

((
r−r+

δr

)
→
(
r−r+

δr

)
eiπ
)

simply by replac-

ing
(
r−r+

δr

)
→ −

(
r−r+

δr

)
=
(
r−r+

δr

)
eiπ as follows,

ψ−out = B

(
r+ − r−

δr

) 1
2 γ((r − r+

δr

)
eiπ
)− 1

2 β

,

= ψ+out e
− 1

2 iπβ (93)∣∣∣∣ψ−out

ψ+in

∣∣∣∣
2

=
∣∣∣∣ψ+out

ψ+in

∣∣∣∣
2

e−i2πβ (94)

=
∣∣∣∣ψ+out

ψ+in

∣∣∣∣
2

e
4π
δr

[
E
�c

(
r+(r++b)+La2

)−ml a√
L

]
(95)

=
∣∣∣∣ψ+out

ψ+in

∣∣∣∣
2

e
−4π

Ers
h̄c

(
r+(r++b)+La2

)−ml a√
L = eζ .

(96)

The exponent eζ is called the radiation relative probability.
The amplitude of the pair productions to occur is described
by that function. As the observer stays outside the black hole
horizon, the absolute probability of the process to occur out-
side the horizon needs to be found by exploiting the summing
of all probabilities to create no pair, 1 pair, 2 pairs and so on
as follows,

Cω

(
1 + eζ + (eζ

)2 + · · ·
)

= 1 → Cω = 1 − eζ . (97)
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The probability to create j pairs of particle-anti-particle
is given by,

Cω

(
eζ
) j = (1 − eζ

)
e− jζ . (98)

So, the normalized distribution function of the all the pos-
sible pair production that may occur is obtained as follows,

n (ω) =
∞∑
n=0

n
(
1 − eζ

)
e−nζ = 1

eζ − 1
. (99)

From the analysis above, the number of particles emitted
out of the Kerr–Bumblebee even horizon is represented by
this following distribution function,

〈
ψout

ψin

∣∣∣ψout

ψin

〉
= 1 =

∣∣∣∣ BA
∣∣∣∣
2 ∣∣1 − eζ

∣∣ , (100)

∣∣∣∣ BA
∣∣∣∣
2

= 1

eζ − 1
. (101)

The Hawking temperature, TH , is then obtained from this
following modification,

4π

δr

[
E

�c

(
r+ (r+ + b) + La2

)
− mla√

L

]

= 4π

δr

[
ω

c

(
r+ (r+ + b) + La2

)
− mla√

L

]

= � (ω − ωJ )[
δr c�

4π(r+(r++b)+La2)

] , (102)

ωJ = mla√
Lc
(
r+ (r+ + b) + La2

) . (103)

Finally, we obtain the apparent horizon’s temperature as
follows,

TH = δr c�

4πkB
(
r+ (r+ + b) + La2

) . (104)

By setting a = b = 0 and L = 1, δr → rs and r+ → rs
and we obtain the Schwarzschild’s Hawking radiation,

TH = c�

4πkBrs
. (105)

5 Conclusions

In this work, we successfully solve the Klein–Gordon wave
equation in the Kerr–Bumblebee black hole space-time back-
ground. The exact analytical massive and massless scalar
quasibound states’ quantized energy levels (77), (80) and
their wave functions (74) are obtained. It is important to men-
tion that since the obtained solutions are exact, the are valid

for all region of interest, i.e. r+ ≤ r < ∞. This is a remark-
able improvement of the asymptotical method whose solu-
tions solve only for either very close to the horizon region of
very far away from the horizon.

By nulling the spin a and taking L = 1, in the small black
hole limit, we reproduce the real valued energy levels of the
Schwarzschild massive quasibound state’s as,

En

E0
≈ 1 − κ2

2n2 , κ =
(
E0rs
h̄c

)2

. (106)

The result that resembles the Hydrogenic atom energy
expression 1

n2 is also sound in many previously published
works [31–36].

Moreover, we also investigate the behaviour of the exact
wave solutions in the two extreme regions, i.e. the near hori-
zon and at infinity. Near the Kerr–Bumblebee black hole’s
horizon, the quasibound states behave like a purely ingoing
wave (82) and become vanishing states at infinity.

With exact relativistic Klein–Gordon solutions in hand,
the [37] method is applied to investigate the Hawking tem-
perature of the black hole’s apparent horizon. The method
uses the Klein pair production scenario where the pair pro-
duction occurring at the horizon is induced by an incom-
ing particle. The induced particle goes to infinity while the
induced anti-particle goes towards the black hole. From there,
we make a summation of all possible pair productions and
obtain the radiation distribution function (99). Comparing it
with the bosonic distribution function, the Hawking temper-
ature of the Kerr–Bumblebee black hole’s apparent horizon
is obtained (104).
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Appendix A: Normal form

An ordinary differential equation is said to be in the normal
form if is solved explicitly for the highest derivative [28].
One may start with a general form of the linear second order
ordinary differential equation as follows,

d2y

dx2 + p(x)
dy

dx
+ q(x)y = 0. (107)

In order to bring the linear second order ordinary differ-
ential equation above to its normal form, we express the y(x)
in this particular form, which is specially designed to remove
the first order derivative terms [38],

y = Y (x)e− 1
2

∫
p(x)dx , (108)

dy

dx
= dY

dx
e− 1

2

∫
p(x)dx − 1

2
Y pe− ∫ p(x)dx , (109)

d2y

dx2 = d2Y

dx2 e
− 1

2

∫
p(x)dx − 1

2

dY

dx
pe− 1

2

∫
p(x)dx

−1

2
Y
dp

dx
e− 1

2

∫
p(x)dx + 1

4
Y p2e− 1

2

∫
p(x)dx . (110)

Substituting the expressions to (107), a lot of things cancel
out and it resulted in this following equation where the first
order derivative term has been removed,

d2Y

dx2 +
(

−1

2

dp

dx
− 1

4
p2 + q

)
Y = 0, (111)

Y = ye
1
2

∫
p(x)dx . (112)

It is important to mention that if Q(x) = − 1
2
dp
dx − 1

4 p
2 +

q < 0 and Y (x) is a nontrivial solution of (112), then Y (x)
does not oscillate at all and has at most one zero. And if
Q(x) = − 1

2
dp
dx − 1

4 p
2 + q > 0 and

∫∞
1 Q(x)dx = ∞, then

Y (x) has infinitely many zeros on the positive x-axis [38].

Appendix B: Normal form of confluent Heun equation

Let us consider the Confluent Heun differential equation [30],

d2y

dx2 +
(

α + β + 1

x
+ γ + 1

x − 1

)
dy

dx

+
(

μ

x
+ ν

x − 1

)
y = 0, (113)

ν = 1

2
(α + β + γ + αβ + βγ ) + δ + η, (114)

y = AHeunC (α, β, γ, δ, η, x) + Bx−β

HeunC (α,−β, γ, δ, η, x) , (115)

y = AHeunC(x) + Bx−β HeunC′(x), (116)
δ

α
+ β + γ

2
+ 1 = −nr , nr ∈ Z. (117)

Now, let us express Confluent Heun’s differential equation
in its the normal form by recognizing p and q function (see

Appendix A). First, we recognize,

p = α + β + 1

x
+ γ + 1

x − 1
, q = μ

x
+ ν

x − 1
, (118)

y = HeunC = Y (x)e− 1
2 αx x− 1

2 (β+1)(x − 1)−
1
2 (γ+1), (119)

and this leads to,

−1

2

dp

dx
= 1

x2

(
β + 1

2

)
+ 1

(x − 1)2

(
γ + 1

2

)
, (120)

−1

4
p2 = −α2

4
− 1

x2

(
β2 + 1 + 2β

4

)

− 1

(x − 1)2

(
γ 2 + 1 + 2γ

4

)
− 2

x

(
αβ + α

4

)

− 2

x − 1

(
αγ + α

4

)
− 2

x (x − 1)

(
βγ + 1 + β + γ

4

)
,

(121)

−1

2

dp

dx
− 1

4
p2 + q = −α2

4
+

1
2 − η

x
+

1
4 − β2

4

x2

+− 1
2 + δ + η

x − 1
+

1
4 − γ 2

4

(x − 1)2 .

(122)

Combining everything, we get the Confluent Heun equa-
tion’s normal form,

d2Y

dx2 +
(

−α2

4
+

1
2 − η

x
+

1
4 − β2

4

x2 + − 1
2 + δ + η

x − 1

+
1
4 − γ 2

4

(x − 1)2

)
Y = 0, (123)

Y = e
1
2 αx x

1
2 (β+1)(x − 1)

1
2 (γ+1) HeunC . (124)
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