
π0 ELECTROPRODUCTION OF THE ∆(1232)
RESONANCE AT HIGH MOMENTUM TRANSFERRED

By

Maurizio Ungaro

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Physics

Approved by the
Examining Committee:

Paul Stoler, Thesis Adviser

Gary Adams, Member

James Napolitano, Member

Daniel Sperber, Member

Rensselaer Polytechnic Institute
Troy, New York

November 2003
(For Graduation December 2003)



π0 ELECTROPRODUCTION OF THE ∆(1232)
RESONANCE AT HIGH MOMENTUM TRANSFERRED

By

Maurizio Ungaro

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Physics

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Paul Stoler, Thesis Adviser

Gary Adams, Member

James Napolitano, Member

Daniel Sperber, Member

Rensselaer Polytechnic Institute
Troy, New York

November 2003
(For Graduation December 2003)



c© Copyright 2003

by

Maurizio Ungaro

All Rights Reserved

ii



CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. Single pion electroproduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The unpolarized cross section formalism . . . . . . . . . . . . . . . . 1

2. Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 CEBAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The CLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The torus magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Drift Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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CHAPTER 1

Single pion electroproduction

1.1 The unpolarized cross section formalism

The cross section for the unpolarized one-photon-exchange process, illustrated

in Fig.1.1, can be written as

dσ

dWdQ2dΩ∗

π0

= Γ
dσ

dΩ∗

π0

where Γ is the virtual photon flux factor, and dσ
dΩ∗

π0

is the π0 differential cross section

due to virtual photons.

e

e’

π0

P’
P

γ∗

θ

H

z φ

θ*

*

π

P

0

e
e’

γ*

Figure 1.1: Schematics of π0 electroproduction. The z − axis is oriented
along the beam line. On the right the definitions of the angles
φ∗ and θ∗.

The relevant 4-vectors are:

eµ : incident electron, eµ = (E, 0, 0, E). The beam energy for this experiment was

E = 5.754 GeV.

e′µ : scattered electron

1



1.1 The unpolarized cross section formalism

Pµ : target (incident proton)1, Pµ = (Mp, 0, 0, 0)

P ′

µ : scattered proton

qµ : virtual photon, qµ = eµ − e′µ

Hµ : outgoing hadrons mass, Hµ = qµ + Pµ

xµ : missing particle, xµ = Hµ − P ′

µ

so that

W =
√

H2 ← hadron invariant mass

Q2 = −q2 ← mass square of the virtual photon

ǫ = (1 + 2
|~q|2
Q2 tan2 θ

2)−1 ← polarization of the virtual photon

Γ is the virtual photon flux

Γ(W, Q2) = J(W, Q2)
α

2π2

E ′

e

Ee

W 2 −M2

p

2Mp

1

Q2

1

1− ǫ
(1.1)

J is the Jacobian for the variables transformation (Ee′ , Ωe′)→ (W , Q2)

J(W, Q2) =
∂(W, Q2)

∂(Ee′ , Ωe′)
=

W

2EeEe′Mp

For unpolarized beam and target dσ
dΩ∗

π0

can be factorized as follows:

dσ

dΩ∗

π0

=
2Wp∗π0

W 2 −m2

P

(

σT + ǫLσL + ǫσTT sin2θ∗π0cos2φ∗

π0 + σLT

√

2ǫL(ǫ + 1)sinθ∗π0cosφ∗

π0

)

where ∗ refers to c.m. quantities (i.e. p∗
π0 is the momentum of π0 in the center of

mass).

1Mp is the mass of the proton.

2 Maurizio Ungaro, RPI



CHAPTER 2

Experimental apparatus

The e1-6 experiment took place in the Hall-B of the Thomas Jefferson National

Accelerator Facilit (TJNAF). The Continuous Eelectron Beam Accelerator Facility

(CEBAF) provides an electron beam to three end stations (experimenta Hall A, B

and C). The schematics of the accelerator and the experimental halls is illustrated

in Figure 2.1.

A
B

C

Beam Switchyard
Separator

South LINAC

North LINAC

Injector

   End
Stations

       He
Refrigerator

Recirculation
      Arcs

Figure 2.1: The CEBAF accelerator and the three experimental halls.

What follows is a description of the accelerator and the detector used in Hall-B.

2.1 CEBAF

CEBAF is composed (see Figure 2.1) by two identical linear accelerators

(LINAC) and nine bending arcs, so that the beam is recirculated five times (2.8

miles) before being delivered to the halls.

3



2.1 CEBAF

The main characteristics of the accelerator are:

• Maximum energy of electron beam: ∼ 6 GeV.

• duty-cicle: 100%

• geometric emittance: < 10−9 mrad.

• momentum spread ∆p/p (4σ): 10−4

• maximum beam current: 200 mA

• beam polarization: ∼ 70%.

• size of beam at the target: < 0.5 mm.

A 45 MeV electron beam is delivered in the accelerator by a superconductive

RF injector. The beam is then accelerated in the LINAC by 20 superconducting

radiofrequency cavities (SRF), each one composed by five cells whose average accel-

eration gradient of 10 Mev/meter.

Figure 2.2: The beam delivery structure. Each hall get an electron bunch
every 2 ns.

CEBAF can deliver to each hall an integer multiple of 1/4 of the final energy,

because the beam can be extracted at each pass. The RF structure of the cavities
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2.2 The CLAS detector

is 1.5 GHz and allows simltaneous electron bunches in all the halls in 2 ns intervals

illustrated in Figure 2.2.

2.2 The CLAS detector

Inside Hall-B there is the CEBAF Large Acceptance Spectometer (CLAS)

shown in Figure 2.3. CLAS is divided in six identical and independent sectors. The

azimuthal coverage of CLAS is nearly 4π while the polar acceptance ranges from 80

to 1400 for charged particles and 80 to 450 for neutral particles.

Figure 2.3: Section of Hall-B. The beam is represented by the red line.
The hall diameter is 20 meters.

In Figure 2.4 are shown various components of CLAS. Charged particles are

bent by a toroidal magnetic field which acts only on the polar angle, leaving the

azimuthal angle unchanged.

In the e1-6 configuration Each sector was composed by:

• Three layers of Drift Chambers (DC), from 80 to 1400, determine the trajec-
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2.2 The CLAS detector

Figure 2.4: Section of Hall-B. The beam is represented by the red line.
The hall diameter is 20 meters.

tories of charged particle, therefore their momentum using the curvature ρ in

a known magnetic field:

Bρ =
p

q
(2.1)

• A Čerenkov counter (CC), from 80 to 450, provide electrons/pions separation.

• A system of scintillator counters, 80 to 1400, measure the Time Of Flight

(TOF) of charged particles.

• An Electromagnetic Calorimeter (EC), from 80 to 450, is used for identifying

electrons and neutral particles.

• A minitorus is used to direct the Møller electrons into the beam dump.

Each components is discussed below.
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2.3 The torus magnet

2.3 The torus magnet

The torus magnetic field allows momentum reconstruction by deflecting the

charged particles according to (2.1). The toroidal configuration presents advantages

illustrated in Table 2.1 if compared with the soleinoidal one (often used in e+e−

colliders) or the dipolar one.

CONFIGURATION SOLENOIDAL DIPOLAR TOROIDAL

θ range + + ++

φ range +++ - - -

p resolution - - ++ ++

Particle identification + ++ ++

Zero field on target - - - ++

Open structure - - + ++

Table 2.1: Pro and con of three types of magnet configuration. The red
line represents the beam.

The toroidal configuration can generate a magnetic field stronger in the for-

ward region where the most energetic particles are detected, so that the momentum
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2.3 The torus magnet

resolution results homogeneous. It leaves a considerable amount of space (with zero

magnetic field) around the target, which is important when the target comes with its

own magnetic field structure. The particles are deflected only in θ. The acceptance

in φ is limited by the coils.

The magnet (see Figure 2.5) is made of six groups of 80 superconducting coils

each, with a corrent of 10 kA capable of producing a 2 Tesla magnetic field.

Figure 2.5: The torus magne

The coils technology is based on Cable In Circuit Conductor, or CICC. Inside

the coil the cable is made by 30% of liquid helium, which main advantages are the

stability against temperature variations and the relatevily small helium reservoir

(compared to systems that refrigerates by thermal immersion). The cryogenic sys-

tem circulates with a 2.8 athmosphere pressure, with a refrigerating power of 200

Watts.

The metal infrastructure has to support the weight of the coils (around 6 tons)

and the force between two neighbor coils (attractive or repulsive) which can reach

dozen of tons per meter.
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2.4 Drift Chambers

2.4 Drift Chambers

To calculate the momentum from (2.1) the curvature ρ must be measured. In

CLAS there are three regions of Drift Chambers for this measurement.

The first region, shown in Figure 2.6, is located inside the torus coils. Its radius

is about 0.5 meters. The second region is between the coils (inside the magnetic

field), and the third region external to them.

Figure 2.6: The torus magne

Each region is organized in two superlayers. The first superlayer (axial) has

the wires along the magnetic field lines and the other one (stereo) at an angle of 60

with them. The angle is chosen to optimize the φ measurement. The superlayers in

region 1 are divided in 4 layers each, the superlayers in region 2 and 3 are divided

in 6 layers each.

Each layer consist in sense wires, each surrounded by six field wires to form an

hexagonal cell as in Figure 2.7, where the field inside one cell (in region three) [13] is

9 Maurizio Ungaro, RPI



2.4 Drift Chambers

also shown. A layer of guard wires surrounding each superlayer, tuned to simulated

an infinite grid of cell like the one inside the layers, insures that the electric field is

homogeneous.

Figure 2.7: The “honeycomb” pattern of the drift chamber layers. Left:
the sense wire ◦ surrounded by the field wires ×. Right: the
field configuration inside one cel of region three (solid lines).
The dashed lines are isochrones, or track positions with same
drift time.

The sense wires are made of tungsten, 20 µm in diameter, and are plated

with gold. The field wires are made of aluminum, 140 µm in diameter, to minimize

multiple scattering. The gas used inside the chambers is a 90% − 10% mixture of

argon and CO2. The argon is chosen for its drift velocity (at least 4 cm/µsec), while

the carbon dioxide defend the system against ionization avalanches up to several

hundreds volts.

The track reconstruction is made in two stages. In the first step, called Hit

Based Tracking, the hits within a superlayer are recognized as belonging to a track

segment (see Figure 2.8). Different track segments from different supelayers are then

linked to form a track. The linking is made by a comparison with a lookup table

resulted from simulations.

In the second step, called Time Based Tracking, the drift time measured in

each cell is converted into distance from the center, therefore the position around the

sense wire is calculated. The trajectory is fitted to these positions as in Figure 2.8
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2.4 Drift Chambers

[22] and this fit gives the momentum of the track. Figure 2.9 shows an example of

track reconstruction.

Figure 2.8: The torus magne

Figure 2.9: The torus magne
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2.5 The Čerenkov detector

2.5 The Čerenkov detector

When the negative pions are not relativistic it is possible to distinguish between

electrons and pions by measuring the time of flight, but for larger momenta the

Čerenkov is necessary to do the separation. This separation is needed at a trigger

level.

In CLAS there is a Čerenkov (CC) detector for each sector [1]. Each one,

illustrated in Figure 2.10, cover the polar angle up to 450 and consists of 36 optical

modules. The optic of each module was design to focus the Čerenkov light into a

Winston collector cone leading into a PMT as shown in Figure 2.11. The 36 PMTs

are located in the shadow of the torus coils, so that the acceptance is not affected by

them. The gas chosen for the system was the perfluorobutane C4F10, which has a

Figure 2.10: The torus magnet

refraction index of 1.00153. With the C4F10, electrons release Čerenkov light when

their momentum is larger than 9 MeV (i.e. always in CLAS) while the threshold for

pions is ∼ 2.5 GeV.
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2.5 The Čerenkov detector

Figure 2.12 shows the single photoelectron peak position for one of the PMTs.

PMT

Magnetic Shield
Sector Centerline

Radiation
Cerenkov

Elliptical Mirror Light Collection
Cone

Hyperbolic Mirror

Cone
Light Collection

PMT

Hyperbolic Mirror

Elliptical Mirror

Cylindrical
Mirror

Cylindrical
Mirror

Electron Track

Magnetic Shield

Window

Figure 2.11: The torus magnasdasssssssssssssssssssssssssssss
sssssssssssssssssssssssssssssssssse

Figure 2.12: The torus magne
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2.6 The Time of Flight system

2.6 The Time of Flight system

The time of flight (TOF) information is used for the identification of the

charged particles, as described in Section 3.5. The average time resolution of the

TOF is σ ∼ 160 psec [30], and it allows the separation of pions and kaons up to

momenta of ∼ 2 GeV (see Figure 3.6).

The TOF structure for each sector is illustrated in Figure 2.13. It consists four

panels of scintillators bars (for a total of 57 scintillators in each sectors) varying in

length from 32 to 450 cm. The PMTs, light collectors, voltage dividers and cables

are placed in the torus coils shadow, so that the acceptance is not affected by them.

The active region covers the polar angle from 80 to 1420, for a total area of 206 m2.

Beam

Figure 2.13: The torus magne

The light is collected by the guide illustrated in Figure 2.14. The readout

electronics is crucial for the time resolution. The TDC chosen to perform the time
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2.6 The Time of Flight system

to digital conversion was the Lecroy 1872A Mod 100. The Lecroy was set to a 50

psec/count, which allows a range up to 200 nsec.

Figure 2.14: The torus magne

In Figure 2.15 the schematics for a single scintillator bar is shown.

Figure 2.15: The torus magne
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2.7 The forward calorimeter

2.7 The forward calorimeter

The forward electromagnetic calorimeter (EC) [3] covers in each sector the

polar angle from 80 to 450. It is composed by 39 layers of scintillator bars alternated

with lead sheets. The bars are rotated by 1200 in each successive layer (see Fig-

ure 2.16). There is a total of 40 cm of scintillator and 8 cm of lead for each module,

so that the energy shower of an electron deposited in the scintillator amount to

∼ 1/3 of the total energy. The total thickness is 16 radiation lengths.

Figure 2.16: The torus magne

The bars make three groups (of 13 layers each) of bars with the same direc-

tion. Each group is divided in INNER and OUTER parts, whose scintillator signals

are summed together and collected with light guides in two PMTs as described in

Figure 2.17.
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2.7 The forward calorimeter

Figure 2.17: The torus magne

The EC is used for the following tasks:

• Detection and triggering of electrons. The analog sum from one sector is used

(usually in coincidence with the Čerenkov) as trigger for CLAS.

• Separation of electrons and pions above momenta of ∼ 2.5 GeV. See Figure 3.2

for an example of such separation.

• Detection of photons with energy above 200 MeV. This allows DVCS mea-

surement, and π0 and η detection via their 2γ decay.

• Neutron detection. The timing information of the EC allows γ−N separation

with an efficiency > 50%.

Figure 2.18 show a GEANT simulation of the EC response to a 2.4 GeV

electron [3]. Figure 2.19 shows a real event in the EC.
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2.7 The forward calorimeter

Figure 2.18: The torus magne

Figure 2.19: The torus magne
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CHAPTER 3

Data processing

3.1 Data format

3.1.1 Bos Banks

3.1.2 Reconstruction Code

3.1.3 SEB and PID

3.1.4 Binary DST

3.2 Calibrations

3.2.1 RF correction

3.3 Cooking
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3.4 Electron identification

3.4 Electron identification

Only 1/3 of the triggers during the initial data processing have reconstructed

negative tracks, and out of these only 1/3 are identified as containing an electron.

In this identification, there is still a pion contamination problem mainly due to

Čerenkov inefficiencies. The candidate electron of this analysis is:

• Any reconstructed PART bank electron1.

• Any reconstructed EVNT bank electron.

• Any negative unknown PART bank particle if there is no PART bank electron.

• Any negative unknown EVNT bank particle if there is no EVNT bank electron.

There are 6 ID cuts defining a good electron starting from a candidate electron

based on its momentum p, its signal in the Čerenkov nphe, its signals in the forward

calorimeter (total energy ECtot, inner energy ECin, outer energy ECout) and its

position on the EC (x, y):

• Čerenkov cut

• minimum p cut

• ECtot/p versus p cut

• ECout/p vs ECin/p cut

• ECin / ECtot cut

• x
EC

vs y
EC

cut

3.4.1 Čerenkov signal cut

A threshold for the signal in the Čerenkov detector is necessary to eliminate

electronic noise and the fact that pions produce Čerenkov light when their momen-

tum is above 2.4 GeV.
1See section 3.1.3 for the meaning of PART and EVNT bank
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3.4 Electron identification

The signal is turned in number of photoelectrons (nphe) and then multiplied

by 10 by the reconstruction code. Fig.3.1 shows the cut used:

nphe > 2.5

10  nphe

0 50 100 150 200 250 300 350 400

10  nphe

0 50 100 150 200 250 300 350 400

410

510

610

710

     a         
     b         
     c       
     d           

Figure 3.1: The CC signal threshold cut: 10 nphe.
(a) all electrons. (b) electrons with all other ID cuts (aside
from Čerenkov cut) applied. One can see that the signal at
100 (∼ 10 nphe) is enhanced. (c) electrons with all other
ID anti cuts (aside from Čerenkov cut) applied. This events
corresponds to the pions and the noise. (d) electrons with all
ID cuts applied.

3.4.2 Total energy in the calorimeter

In the momentum range detected at CLAS, when going through the forward

calorimeter charged pions are minimum ionizing particles, while electrons shower

with a total energy deposition Etot proportional to their momentum P . Hence Etot/P
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3.4 Electron identification

should be constant. In reality this ratio shows a slight momentum dependance as it

is illustrated in Figure 3.2 where the Etot/P distribution is plotted versus P . This

distribution was sliced along P and each slice is fitted with a gaussian distribution,

giving the mean and sigma as a function of p:

p̄ = p̄(p)

σ = σ(p)

A second order polynomial is fitted to those distributions and events are accepted

if they occur within 3 σ around p̄, i.e. if

p̄− 3σ ≤ Etot/P ≤ p̄ + 3σ

The cut is shown in Figure 3.2 as dotted red lines. See Appendix A.1.2 for the

numerical values of the parameters.

3.4.3 Minimum p cut

A study [12] of the inclusive cross section at various beam energies in CLAS

results in a low momentum cut pmin depending on the calorimeter low total threshold

(in millivolt) of the trigger discriminator:

pmin (MeV) = 214 + 2.47× ECthreshold(mV)

Such a threshold was 172 mV for e1-6 therefore the minimum momentum cut is

fixed at:

pmin = 0.64 GeV

The cut is shown in Figure 3.2 as a vertical line.
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3.4 Electron identification
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Figure 3.2: Etot and pmin cut. For minimum ionizing particles Etot is
constant so they show as an hyperbole. The vertical line rep-
resents the pmin cut. The remaining two dashed lines are the
p̄ ± 3σ cuts. (a) all electrons. (b) electrons with all other ID
cuts (aside from Etot and pmin cuts) applied. The band cor-
responding to minimum ionizing particles disappear almost
completely. (c) electrons with all other ID anti cuts (aside
from Etot and pmin cuts) applied. This events corresponds
to minimum ionizing particles and background. (d) electrons
with all ID cuts applied.
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3.4 Electron identification

3.4.4 ECout/p vs ECin/p cut

The outer EC is 5/3 times bigger than the inner EC therefore pions, which do

not shower and are minimum ionizing, release a small quantity of energy in the outer

and inner part in the ratio 5 : 3. On the other hand electrons release a lot more

more energy because they shower. Moreover, due to showering, electrons release

more energy in the inner part than in the outer part.

The quantity Ein/p is plotted versus Eout/p in Figure 3.3. One can see the

pions along the cyan line y = 5
3 x and the electrons on the right part of the red line,

which represents the cut and assumes the form

y = 0.19− x

A bug in the reconstruction code sometimes gives a wrong (zero) values for

Ein, Eout. For those events, this cut was not applied.

3.4.5 Ein/Eout cut

Electrons release more energy in the inner part of the calorimeter than in the

outer part because of the shower conformation. This can be seen in Figure 3.4 where

Ein/Eout is plotted against p.

By looking at the plot, a low threshold cut on Ein/Eout is introduced at 40%:

Ein/Eout ≥ 0.4

The cut is shown in the figure as an horizontal red line.

3.4.6 Track position cut

Electrons that shower near the edges of the calorimeter will not loose all their

energy in the detector because the shower is truncated. Hence their energy cannot

be properly reconstructed.

For this reason a fiducial cut is introduced on the track coordinates x, y of the

electrons at the EC plane. The cut is illustrated in Figure 3.5.
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3.4 Electron identification
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Figure 3.3: ECout/p vs ECin/p cut. (a) all electrons. (b) electrons with
all other ID cuts (aside from ECout/p vs ECin/p cut) applied.
The band corresponding to minimum ionizing particles disap-
pear almost completely. (c) electrons with all other ID anti
cuts (aside from ECout/p vs ECin/p cut) applied. This events
corresponds to minimum ionizing particles and background.
(d) electrons with all ID cuts applied.
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3.4 Electron identification
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Figure 3.4: The Ein/Etot cut. Particles that are stopped in the inner part
(hence have small energy) have Ein = Etot so they show up at
Ein/Etot = 1. Most of these are cut out with the ID cuts. (a)
all electrons. (b) electrons with all other ID cuts (aside from
Ein/Etot cut) applied. (c) electrons with all other ID anti
cuts (aside from Ein/Etot cut) applied. Minimum ionizing
particles are enhanced here. They release comparable energy
in the inner and outer part. Since the inner part is 3/8 of the
total calorimeter, they peaks in this plot at 3/8 = 0.375%.
(d) electrons with all ID cuts applied.
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3.4 Electron identification
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Figure 3.5: x, y cut. (a) all electrons. (b) electrons with all other ID
cuts (aside from Ein/Etot cut) applied. The x, y cut is chosen
so that it encompass the electrons in this plot. (c) electrons
with all other ID anti cuts (aside from Ein/Etot cut) applied.
(d) electrons with all ID cuts applied.
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3.5 Proton Identification

3.5 Proton Identification

During the event reconstruction tracks are labelled by particle type depending

on their speed, their momentum and how they bend in the magnetic field.

The momentum of the track is calculated during the event reconstruction with

a tracking procedure [22]. To determine the speed of the track, a start time T0 is

calculated as follows:

T0 = Tel −
ℓ

c
− z − z0

c

where Tel is the RF corrected (see section 3.2.1) electron time from TOF measure-

ment, z is the vertex position of the electron track, ℓ is the pathlength of the electron

track from its vertex to its TOF hit, z0 is the z position of the center of the target2

and c is the speed of light. The startime is used as the reference for all the remaining

tracks in the event.

The speed β for each track with pathlength ℓ and TOF time T is therefore

calculated as

β =
v

c
=

ℓ

T − T0

In Figure 3.6 is plotted beta versus momentum for all particles after the electron

particle ID. One can clearly see bands corresponding to pions, kaons, protons, even

deuterons.

The calculation of the mass of the track M (referred as TOF Mass) is straight-

forward from β and p:

M2 =
p2(1− β2)

β2

M is quantity upon which the software reconstruction is based to determine the

particle ID.

In the main torus configuration of e1-6 running period negative particles bend

toward the beam line and positive particles bend away from it. Every outbending

EVNT or PART track in each event is considered a proton candidate.

M is plotted for the candidates in Figure 3.7 where the y-axis is logarithmic.

One can see a well defined proton peak.

2For this experiment z0 = −4 cm.
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3.5 Proton Identification

For the proton, the default cut is 0.8 ≤ M ≤ 1.2.

p                     [Gev]
0 0.5 1 1.5 2 2.5 3 3.5 4
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Protons

Deuterons

Kaons
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Figure 3.6: β versus momentum for all particles in e1-6 running period.
Bands corresponding to pions, kaons, protons and deuterons
are visible. Electrons have β = 1 by definition.

The proton ID has been redone relaxing the default cut. Kinematic constrains

will get rid of possible ambiguities between protons and other particles and back-

ground.

The cut used in this analysis, illustrated in Figure 3.7, is simply:

0.6 ≤ M ≤ 1.6

and it is illustrated in Figure 3.7.
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3.5 Proton Identification

M                  [Gev]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

210

310

410

510

610

Proton identification

Figure 3.7: TOF mass spectra for CLAS. Starting from massless particles
are visible: electrons (zero mass), pions, kaons, protons and
finally deuterons.
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3.6 Vertex correction and cut

3.6 Vertex correction and cut

For each track found with the reconstruction code, a vertex (x, y, z) is calcu-

lated from the intersection of that track with the midplane3 of the corresponding

sector. If during the experiment the beam was note centered at (0, 0) an offset is

introduced in the vertex calculation.

This happened [19] during the e1-6 running period as one can see in Figure 3.8,

where the events on the window4 downstream of the target were selected to fix the

z position as reference.

Figure 3.8: Top: y versus x position of the vertex at the window. Upper
right: same as upper left, except plotted logarithmically. One
can see that the beam spot was slightly shifted from (0, 0).
Bottom: the x (left) and y (right) distributions which leaded
to the x0 and y0 calculation.

3The midplane of a sector is defined by the plane that divide that sector in half and contains
the beamline (0, 0, z).

4A window was placed at z = 0 to help these kind of studies and to be a z-position reference.
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3.6 Vertex correction and cut

The obtained values for the beam position are:

x0 = 0.090 cm

y0 = −0.345 cm

To correct the vertex position it is sufficient to shift the midplanes so that

they contain the correct beamline (0.09,−0.345, z) and recalculate the intersection

of the tracks with the new planes. This is illustrated in Figure 3.9.

v

v’

p

Figure 3.9: The vertex correction. The dashed plane is the original mid-
plane containing the wrong beamline (0, 0, 0). The point v is
the intersection of the track (straight line along momentum
~p) with this plane. The solid blue plane represents the cor-
rected midplane containing (0.09, −0.345, z). The correction
algorithm simply intersect the same track with the corrected
midplane.
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3.6 Vertex correction and cut

The effect of the correction on the electron z position sector by sector is shown in

Figure 3.10.
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Figure 3.10: The vertex correction effect on electron z distributions for
each sector. Black: before correction. Blue: after correc-
tion. Similar effects on the other particles are observed.

The vertex resolution at this point is good enough to introduce a cut on the

z vertex of electron and protons in order to select events inside the target cell as

follows:

−8 cm ≤ z ≤ −0.8 cm (3.1)

Furthermore the electron and proton vertices are required to be coincident

along the z axis within the reconstruction resolution, so an additional cut on ∆z =

zelectron − zproton ensures that the electron and proton z vertex positions lie within
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3.6 Vertex correction and cut

1.6 cms:

|∆z| < 1.6 cm (3.2)

Figure 3.11 illustrates the effect of the vertex correction on ∆z integrated over

all sectors and both the 3.1 and 3.2 cuts.
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Figure 3.11: ∆z versus zelectron uncorrected (top) and corrected (bottom)
for all sectors. The distortions disappear with the correction
and the resolution improves.
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3.7 Electron Fiducial cuts

3.7 Electron Fiducial cuts

A fiducial cut on electrons is introduced to constrain regions of phase space

where CLAS response peaks at its maximum and remains rather smooth. The

Čerenkov detector presents a drop in optical efficiency (see Figure 3.12) which is

not simulated by the Montecarlo, therefore these regions have to be removed.
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Figure 3.12: φ versus θ for sector 1 electrons before the electron parti-
cle ID. The Čerenkov optical inefficiencies (denoted by the
arrows) are clearly visible.

Drift chamber and time of flight inefficiencies (dead or inefficient wires, dead photo-

tubes) cause holes and depletions in the acceptance. While most of these symptoms

appears in the GSIM simulation, some do not. Furthermore the boundaries of all

these regions differ when comparing actual data and simulation.
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3.7 Electron Fiducial cuts

3.7.1 φ boundaries

For each sector, an empirical cut on φ is introduced as a function of theta and

momentum:

φ ≤ ∆φ (θ, p)

which is aimed to define regions of phase space whose distributions are flat in φ.

After careful study [24], the mathematical form of the cut depends on 6 parameters

Ci and assumes the form:

∆φ = C4 (sin(θ − θcut))
E

E = C3 p C5

θcut = C1 + C2

p + C6

A φ vs θ distribution was plotted for 10 different momentum bins from 1.6 to 4.6

GeV. Figure 3.13 shows one example (p = 2.2− 2.5 GeV) of such distributions.
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Figure 3.13: φ versus θ for sector 1 and p = 2.2 − 2.5 GeV. Left: before
fiducial cut. Right: after fiducial cut (contour).
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3.7 Electron Fiducial cuts

The φ distributions are also plotted for θ slices one degree wide as in Figure 3.14

and the Ci parameters are adjusted empirically.
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Figure 3.14: φ distributions (sector 3) for different θ and p = 1.9 − 2.2
GeV. Black: before fiducial cut. Red: after fiducial cut.
Čerenkov inefficiency (section 3.11) is responsible for some
irregularities at φ = 0 (for example at θ = 35.50 − 36.50)
while drift chamber and time of flight inefficiency (section
4.2.3) causes φ asymmetry (for example at θ = 42.50−43.50).
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3.7 Electron Fiducial cuts

Table 3.1 shows the 6 parameters obtained. Figure 3.15 shows the fiducial cut as a

function of p, θ and φ for sector 1.

Sector C1 C2 C3 C4 C5 C6

1 12.0 20.0 0.32 32.0 0.416667 0.14
2 // 20.7 0.36 34.0 // //
3 // 20.2 0.32 32.0 // //
4 // 20.5 0.32 32.0 // //
5 // 20.5 0.29 32.0 // //
6 // 20.0 0.32 32.0 // //

Table 3.1: The 6 parameters for electron fiducial cut for each of the 6
sectors. Only C2, C3, C4 are sector dependent.
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Figure 3.15: The electron fiducial cut for sector 1. The cut starting point
moves back as the momentum increases (and θ decreases).
This causes the cut to narrow up with momemtum because
electrons are detected near the lower edges of the detectors.
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3.7 Electron Fiducial cuts

3.7.2 θ versus momentum cuts

Sector 2, 5 and 6 present holes and depletions (mainly because of dead time

of flight paddles) which are taken care of with the cuts shown in Figure 3.16 where

θ is plotted versus p.
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Figure 3.16: θ versus p for sector 5. Two depletions are clearly visible
and cut out.

A summary of all the cuts used for the electron fiducial cut can be found in Appendix

A.1.4. Figure 3.17 shows the effects of the fiducial cuts on sector 6 φ versus θ

distribution.
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3.7 Electron Fiducial cuts
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Figure 3.17: φ versus θ distribution for sector 6 after fiducial cuts. The
θ versus p cuts are reflected on this plane as vertical bands.
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3.8 Proton Fiducial cuts

3.8 Proton Fiducial cuts

Protons present low efficiency regions as well as electrons. Their detection and

reconstruction close to boundaries or dead channels is not well understood.

The holes and depletions are treated with the same way as it was done for

the electrons. The depletions present as curved bands in φ versus θ plots shown

below (Figure 3.18 and Figure 3.21) because they are function of momentum and

the binning chosen (which is correct for determine the φ boundaries) is not fine

enough to exploit this dependance in the plots.

Unlike the electron case, the φ boundaries are asymmetric, as shown in Fig-

ure 3.18.
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Figure 3.18: φ versus θ for sector 5. The momentum ranges from 0.9
to 1.6 GeV. The distribution is φ-asymmetric. Depletions
along φ similar to the electron case are visible.

3.8.1 φ boundaries

In order to evaluate φ boundaries the momentum has been divided into five

bins equally spaced from 0.9 to 4.4 GeV. The momentum dependance of the fiducial

cut is not as strong as it was for the electrons, so a fewer number of bins are necessary.
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3.8 Proton Fiducial cuts

For each momentum bin the φ distributions were divided in θ intervals of 1

degree and fitted with a trapezoid function [23]. The fit gives as output the φ lower

and upper limits in which the φ distribution is flat. See Figure 3.20. These limits

will determine the fiducial cut.

The trapezoid function is shown in Figure 3.19 and assumes the form

y =




















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









0 if x ≤ p1 − p0

p4(x− p1 + p0)/p0 if p1 − p0 < x ≤ p1

p4 if p1 < x ≤ p2

p4(−x + p2 + p3)/p3 if p2 < x ≤ p2 + p3

0 if p2 + p3 < x

p4 p1

p2

p3p0

φ

Figure 3.19: The trapezoid function used for the φ fit. The parameters
p1 and p2 determine the fiducial cut lower and upper limits.

The trapezoid fit gives the parameters p1 and p2 described above for each θ

considered in each momentum bin. These parameters are respectively the φMIN and

φMAX wanted and form a φ(θ) distribution.
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3.8 Proton Fiducial cuts
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Figure 3.20: Trapezoid fit for sector 5. The limits of the flat φ region of
each fit will determine the fiducial cut.
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3.8 Proton Fiducial cuts

In order to parametrize such a function, the parameters are fitted as a function

of θ with a fourth order polynomial

φMIN = a0 + a1θ + a2θ
2 + a3θ

3 + a4θ
4

φMAX = b0 + b1θ + b2θ
2 + b3θ

3 + b4θ
4

Figure 3.21 shows the calculated φMIN and φMAX and the resulting fit for

sector 5 and momentum range 0.9 to 1.6 GeV.
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Figure 3.21: Result of the trapezoid fit for sector 5. The proton momen-
tum ranges from 0.9 to 1.6 GeV. The black points are the
parameters p1 (negative φs) and p2 (positive φs) for each θ
slice considered as shown in Figure 3.20. The white line is a
fourth order polynomial fit to the black points.
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3.8 Proton Fiducial cuts

The parameters just found are momentum dependent, since a fit is made for each

momentum bin.

ai = ai(p)

bi = bi(p)
i = 0..5

In order to exploit the momentum dependance each of these parameters is fitted as

a function of p with a second order polynomial as shown in Figure 3.22.
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Figure 3.22: Sector 5 parameters fit. Each of the parameters is fitted
as a function of the proton momentum with a second order
polynomial.

45 Maurizio Ungaro, RPI



3.8 Proton Fiducial cuts

The overall fiducial (shown for sector 5 in Figure 3.23) cut is finally determined, in

each sector, by the limits:

φMIN =

5
∑

i=0

ai(p) θi

φMAX =
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Figure 3.23: Sector 5 ∆φ fiducial cut as a function of θ and φ.
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3.8 Proton Fiducial cuts

3.8.2 θ versus momentum cuts

Sector 2, 3, 5 and 6 presents holes and depletions which are taken care of with

the cuts shown on Figure 3.16 where θ is plotted against the momentum p.
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Figure 3.24: θ versus p for protons sector 5. A depletion is clearly visible
and cut out.

A summary of all parameters can be found in Appendix A.1.5.

The effect of the fiducial cut on sector 5 is shown in Figure 3.25.
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3.8 Proton Fiducial cuts
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Figure 3.25: Sector 5 φ versus θ after fiducial cut. The empty bands in
this sector are unfortunate because the forward ones occur
where many protons interested to us are expected. Compare
with Figure 3.18 or Figure 3.21 to appreciate the cutoff of
the depletions. Notice the momentum dependance of
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3.9 Kinematic corrections

The kinematic corrections presented here are based on the elastic kinematics

and the incident electrons beam energy value. Both these matters are important

therefore discussed below.

After selecting elastic events, systematics are found on electron and proton

angles and on electron momentum. No significant error is found on proton momem-

tum.

3.9.1 Beam Energy measurement

The beam energy value chosen for this analysis is the result of measurements

from Hall A, which has two means of computing the beam energy:

• e, P method: it is based on the angle measurement in the two bodies

1H(e, e′P ) kinematics.

• “arc” method: it is based on the use of a section of the beam transport line

as a magnetic spectometer.

Both these method are used during Hall-A experiments.

During e1-6 data acquisition time such a measurement was taken on 2/11/2002

(during this experiment) and it gave as results:

e, P 5754.41± 1.76 GeV

ARC 5754.4± 1 GeV

Based on the above, the beam energy value chosen for this analysis is:

E = 5.7544 GeV

3.9.2 Elastic selection

The eP → e′ P ′ elastic reaction is useful for many purposes. The constraint

allows one to determine systematic errors and corrections, on one or more variables.
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3.9 Kinematic corrections

The hadronic mass of the P π0 system is close to MP , so one can assume that

those corrections hold for the ∆(1232) kinematics as well as they do for the elastic

kinematics. Furthermore the elastic cross section is helpful to address eventual

normalization issues.

The Bethe Heitler (B.H.) process eP → ePγ discussed in 3.10 is included in

elastic eP events, and cuts are determined to select only low energy (soft) photons.

I present here a series of cuts for e1-6 data to achieve exclusive elastic selection

after electron and proton particle ID.

W cut

The first cut, illustrated in Figure 3.27 a), is on W , the outgoing hadron mass,

which for elastic scattering is the mass of the proton. A gaussian is fitted to the W

distribution for each sector and 3 σ around the mean determine the W cut.

Mx(eP ) cut

The second cut is on the missing mass of the outgoing e P system. See Fig-

ure 3.27 b). No particles except B.H. photons are produced during elastic scattering,

therefore the missing mass must be zero. A gaussian is fitted to the Mx(P ) distri-

bution for each sector and 3 σ around the mean represents the Mx(EP ) cut.

∆θ cut

The elastic constraint allow us to determine the proton angle in the lab θP
calc

using only the outgoing electron angle and energy. This calculation is independent

of the incident electron energy and therefore it is independent of pre-radiative effects

shown on the Figure 3.26 a). The third cut is on ∆θ = θP
meas − θP

calc (Figure 3.27 c)

where

tan θP
calc =

1

(1 +
E ′

MP

) tan
θe′

2
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Figure 3.26: Radiative elastic events. a) pre-radiation. A photon is emit-
ted by the incoming electron. b) post-radiation. A photon
is emitted by the outgoing electron.

A gaussian is fitted to the ∆θ distribution for each sector and 2 σ around the mean

represents the ∆θ cut.

∆θ2 cut

The elastic constraint allow us to determine the proton angle in the lab θP
calc2

using only the incident electron energy and the outgoing electron angle. Assuming

that the scattered electron doesn’t change direction when it emits a photon (peaking

approximation), this calculation is independent of the outgoing electron energy and

therefore it is independent of post-radiative effects shown on Figure 3.26 b).
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3.9 Kinematic corrections

The fourth cut is on ∆θ2 = θP
meas − θP

calc2 (Figure 3.27 d) where

tan θP
calc2 =

1

(1 +
E

MP −E + E cos θe′
) tan

θe′

2

A gaussian is fitted to the ∆θ2 distribution for each sector and 2 σ around the mean

represents the ∆θ2 cut.

∆φ cut

The fifth and final cut is on the difference between the electron and proton azimuthal

angle ∆φ (Figure 3.27 e). Both electrons and protons, in the peaking approximation

and for elastic events, lie in the same plane therefore ∆φ must be equal to π.

A gaussian is fitted to the ∆φ distribution for each sector and two σs around

the mean represents the ∆φ cut.
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Figure 3.27: The cuts for elastic selection for sector 2. (a) W mass cut.
(b) Missing (eP ) mass cut. (c) ∆θ cut. (d) ∆θ2 cut. (e)
Coplanarity cut.
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3.9 Kinematic corrections

3.9.3 Angle corrections

The θ angles of electrons and protons present an incorrect φ dependence due

mainly to misalignments of the drift chambers. This error can be easily seen by

looking at elastic events. In particular one can calculate the predicted beam energy

Ecalc using the angles of electron and proton with the formula

Ecalc = MP −
MP

tan(θe/2) tanθP

(3.3)

and look at the difference between Ecalc and the nominal beam energy ∆E = Enom−
Ecalc as a function of φ (see Figure 3.28).
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Figure 3.28: ∆E as a function of φ for electrons in sector3. One can see
distortions as big as 30 MeV.

It turns out that the distortion is small, averaged around 0.4 mrad (0.02 de-

grees) and peaking at 1 mrad (0.06 degrees). However the momentum correction

is based on the angle measurement. Furthermore, the boost in the ∆+(1232) c.m.

system amplifies small deviations, so the angles measurement have to be as precise

as possible.

One can use (3.3) to calculate a correction. For example, one can assume that
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3.9 Kinematic corrections

the electron angle reconstruction is correct and calculate a correction for the proton.

Or vice versa.

In the present work, it was assumed that the angle distortion comes from a DC

misalignment, therefore gives similar effect on all particles. Under this assumption,

all particles have (the same) systematic error on their angle measurement,

In order to calculate the correction, the theoretical correlation (3.3) between

the lab angles of the electron and proton is used. Such correlation is shown in

Figure 3.29.
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Figure 3.29: The constraint of elastic scattering: proton θ versus electron
θ for elastic scattering for a 5.754 GeV beam energy.

During the experiment, the measured angle P deviates from this curve as

indicate in Figure 3.30 which is a zoom of Figure 3.29. To calculate the corrections

∆θe and ∆θp the point C of the curve closest to P is found with an algorithm that

minimize the radius of a circle with center in P intersecting the curve.

The corrections ∆θe and ∆θp for electron and proton found with this algorithm

are then combined together and plotted for different θ slices in Figure 3.31. Notice

that, since the correction is the same for all particles, at this point electron and

proton loose their identities and “θ” is θe or θp.
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Figure 3.30: The angle correction algorithm. A measured angles of elec-
tron and protons (red point P ) does not lie in the theoreti-
cal curve. The circle with center in P intersecting the curve
and with minimum radius is found. Its intersection with the
curve is the point C, the point of the curve closest to P .
Notice that the x and y scales are different so that the circle
looks like an ellipse.
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Figure 3.31: The combined angle correction ∆θ for electron and proton
for different θ slices. Each slice is fitted with a second order
polynomial (black curve).

57 Maurizio Ungaro, RPI



3.9 Kinematic corrections

The correction is fitted with a second order polynomial, yielding three parameters

for each θ slice considered:

a = a(θ) , b = b(θ) , c = c(θ)

Each of the three parameters is then plotted as a function of θ in Figure 3.32.

When calculating the parameters for a given θ an interpolation is used, shown in

the figure in red.
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Figure 3.32: Angle correction parameters as a function of θ for sector 1.
The red line is the linear interpolation of the points.
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3.9 Kinematic corrections

The overall angles correction ∆θ is

∆θ = a(θ) + b(θ) φ + c(θ) φ2

To check to quality of the correction the ∆E distribution (like the one in

Figure 3.28) is plotted against φ before and after the correction for each sector.

Figure 3.33 show the mean of the ∆E distribution.
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Figure 3.33: ∆E as a function of φ for each sector. Black: before correc-
tion. Red: after correction.
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3.9 Kinematic corrections

3.9.4 Momentum corrections

Drift chamber misalignment and an inaccurate magnetic field map are the

main reasons why the reconstruction of the momentum is sligtly incorrect. This is

reflected on quantities like W or missing mass. For example for elastic events the

W distribution is distorted as seen in Figure 3.34 where it is plotted against the

electron azimuthal angle in the laboratory system after angle corrections.
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Figure 3.34: W distribution as a function of electron φ for elastic events
after angle corrections. The red line is the mass of the pro-
ton.

The distortion turns out to depend upon φ and θ of the electron (and not on

its momentum). Recall that for elastic events the θ and the momentum p are highly

correlated5. Such distortion is sector dependant and needs to be corrected.

The empirical correction discussed below is based upon the elastic kinematics

The mass of the ∆(1232) is close enough to the one of the proton to fairly justify

applying the correction for pion electroproduction in the ∆ region because the phase

spaces do not differ a lot.

5This is not true for other reactions, where the distortion is also momentum dependent.
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3.9 Kinematic corrections

The quantity

∆p = pmeas − pcalc = pmeas −
E

(1 + E(1− cos θ)/MP )

where E is the beam energy, is extracted and plotted versus φ for different θ slices

in Figure 3.36 for sector 3. ∆p is the wanted correction. Notice that ∆p depends

only upon the scattered electron angle.

Each ∆p distribution is fitted with a third order polynomial, giving the pa-

rameters as a function of θ:

a = a(θ) , b = b(θ) , c = c(θ) , d = d(θ) (3.4)

Each parameter is then fitted with a 10th order polynomial to exploit the θ depen-

dance. The fits for sector 3 are shown in Figure 3.35.
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Figure 3.35: Fits of the third order polynomial parameters as a function
of θ for sector 3.

The overall correction is

∆p = a(θ) + b(θ) φ + c(θ) φ2 + d(θ) φ3
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Figure 3.36: Fits of the ∆p distributions for different θ slices as a function
of φ. The black curve is the local fit to the distribution
while the red one is the function coming from the global
parameters 3.4. The procedures make sure that these two
curves are close to each other.
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The result of the correction for sector 1 is shown in Figure 3.37. One can see

that the distortion disappeared and the W distribution is now centered at the mass

of the proton. Similar effects are seen for all sectors.
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Figure 3.37: The W versus φ distribution for electrons in sector 1 before
(left) and after (right) momentum correction. The bottom
plots are the means of the top distributions sliced along W .
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3.10 Bethe Heitler processes

Figure 3.38 shows the (e, P ) missing mass M2
X versus W distribution for the

whole e1-6 period after particle ID, vertex fiducial cuts and kinematic corrections.

The elastic and Bethe Heitler (B.H.) events, illustrated in Figure 3.39, are clearly

seen at M2
X = 0, with the characteristic increase of the cross section at high W . Also

shown are the S11(1535) resonance decaying in η, the P13(1720) resonance decaying

in ρ and the subject of this analysis, the ∆33(1232) resonance decaying in π0.
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Figure 3.38: Missing mass M2
X

versus W after particle ID, vertex fidu-
cial cuts and kinematic corrections for the whole e1-6 data.
Clearly visible are the elastic and B.H. events, the S11 → η,
the P13 → ρ and of course the ∆33 → π0 events.

To isolate the p(e, e′p)π0 reaction a missing mass technique alone cannot sep-

arate the B.H. processes from the π0 events efficiently because of the limited reso-

lution. What follow is the investigation of the kinematic cuts used to remove the

B.H. events from the inelastic data.
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An important assumption used to identify B.H. events is the so called peaking

approximation. It means that the direction of the emitted photon in reaction like

the ones shown in Figure 3.39 a) and b) is the same as the electron. Therefore the

electron does not change direction when radiating a photon, although it can change

energy. This approximation describes well most electron B.H. events [21].
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Figure 3.39: Bethe Heitler events contributing to the (eP) final state leak-
ing into the π0 missing mass.

The variables used for the separation are:

• Mx: missing mass squared of the final state (eP).

• ∆θ = θP

meas
−θP

calc
: θP

meas is the measured proton angle and θP
calc is the proton

angle calculated from the outgoing electron energy and angle (see Section

3.9.2). In the peaking approximation, ∆θ is independent of pre-radiation

processes line the ones in Figure 3.39 a) and it assumes the value zero for

elastic and B.H. events.

• ∆θ2 = θP

meas
− θP

calc2
: θP

meas is the measured proton angle and θP
calc2 is

the proton angle calculated from the incoming electron energy and outgoing

electron angle (see Section 3.9.2). In the peaking approximation, ∆θ2 is in-

dependent of post-radiation processes line the ones in Figure 3.39 b) and it

assumes the value zero for elastic and B.H. events.
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3.10 Bethe Heitler processes

• φc.m.

P
: the azimuthal angle of the proton in the resonance center of mass,

equal to π for B.H. events in the peaking approximation.

The contamination is W dependent, so eight bins in W have been considered from

1.08 to 1.48 GeV. Three cuts have been used in series as described below.

The φc.m.
P of the elastic events narrows in φ and broadens in M2

x as W increases

as it is shown in Figure 3.40 where it is plotted against the missing mass M2
x . The

first cut, represented by the black curve in Figure 3.40, is composed by:

• A circle whose radius and center vary with W .

• A hyperbole y = π ± a
x− x0

whose a and x0 vary with W .

Figure 3.40: φc.m.

P
versus missing mass M2

x
for different W values.
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3.10 Bethe Heitler processes

One can immediately notice that the cut used eliminate some π0 around φc.m.
P =

1800. These events (and the ones eliminated with the second and third cut below)

will be recovered with the MonteCarlo simulation because the exact same cut will

be applied (see section 4.3). The closer to data the model used for the simulation,

the more accurate will be this recovery.

In Figure 3.41 is plot the missing mass M2
x versus ∆θ distribution. One can see

the pre-radiative events showing at x = 0 and leaking in the π0 events (horizontal

band at M2
x ≃ M2

π0 = 0.0182GeV2. The (moving with W ) spot on the left refers to

post radiation events.

Figure 3.41: missing mass M2
x

versus ∆θ for different W values before the
φc.m.

P
versus missing mass M2

x
cut. The pre-radiative elastic

events peak at x = 0, while the other spot on the left refers
to post radiation. The horizontal line is at the π0 mass.
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3.10 Bethe Heitler processes

Figure 3.42: missing mass M2
x

versus ∆θ for different W values after the
φc.m.

P
versus missing mass M2

x
cut. The horizontal line is at

the π0 mass.

Figure 3.42 shows the effect of the first cut on the missing mass M2
x versus

∆θ distribution. Most of the pre and post radiative events are eliminated but some

residual pre-radiative B.H. events at low W survives at low W

For this reason a second cut is introduced:

|∆θ| < 0.01 rad when W < 1.21 GeV (3.5)
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3.10 Bethe Heitler processes

Some residual post radiative B.H. events survive the first and second cut. This can

be seen in Figure 3.43 where missing mass M2
x is plotted versus ∆θ2: a small band

shows up at ∆θ2 ≃ 0, particularly at low W .

The third cut considered, involving missing mass M2
x versus ∆θ2, is:

M2

x < a + b ∆θ2

where a, b vary with W .

Figure 3.43: missing mass M2
x

versus ∆θ2 after the first two B.H. cuts.
Residual post-radiative events are cut out with a straight
line y = a + bx whose parameters a and b vary with W .
This plot shows also the effect of the second cut (3.5): at
low W events with ∆θ ≃ 0 ≡ ∆θ2 ≃ 0.025 disappeared.
The horizontal line is at the π0 mass.
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3.11 Čerenkov efficiency

After the three cuts described above a “clean” sample of π0 events is ready for

analysis. This is shown in Figure 3.44 where W and missing mass M2
x are plotted

in blue for the events surviving the cuts.
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Figure 3.44: The effect of all the cuts on the W and missing mass M2
x

distributions. Black line: before any cut. Red line: B.H
events. Blue line: final π0 events.

3.11 Čerenkov efficiency
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CHAPTER 4

Acceptance

4.1 Geometrical acceptance

A geometrical acceptance is calculated using a Monte Carlo technique. Events

are generated flat in the variables W , Q2, cos θ∗, φ∗, φe, then the following quantities

are calculated (see section 1.1 for the meaning of the quantities)

ν = q0 =
W 2 + Q2 −M2

P

2MP
⇒ E ′ = E − ν

θe′ = acos(1− Q2

2EE ′ )

p∗
π0 = p∗P =

√

(W 2 − (MP + Mπ0)2)(W 2 − (MP −Mπ0)2)
2W

so that the proton four momentum in c.m. and the electron four momentum in the

lab e′µ are obtained. A Lorentz transformation from the resonance system to the lab

system gives the proton four momentum in the lab P ′

µ.

The e′µ and P ′

µ four vectors are then submitted to the same cut applied for real

data that make use of four vector momentums, which are the fiducial cuts (sections

3.7 and 3.8) and the B.H. cuts (section 3.10) and the acceptance A is calculated for

each bin described in 5.1:

A = A(W, Q2, cos θ∗, φ∗) =
# accepted events

# thrown events
(W, Q2, cos θ∗, φ∗)

This method is convenient because it is very fast: billions of events can be

processed in only a few hours. However it doesn’t take into account the detector

response. Effects like bin migration, multiple scattering, finite momentum resolu-

tion, etc do not enter in this model. Yet, the geometrical acceptance could be a

good approximation for a real acceptance calculation. Figure 4.1 show an example

of acceptance distribution as a function of cos θ∗ and φ∗.
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4.1 Geometrical acceptance
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Figure 4.1: Geometrical acceptance for W = 1.25 ± 0.01 GeV and Q2

from 3.79 to 4.52 GeV2 as a function of cos θ∗ and φ∗. The
B.H. cut affects the distributions at φ∗

π0 extremes (00 and
3600) because it cuts out events with φ∗

P
∼ 1800 (the pions

and the proton have opposite momentum in the c.m.).
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4.2 MonteCarlo simulation

4.2 MonteCarlo simulation

A realistic acceptance calculation must take in account the CLAS detector

geometry, efficiency and resolution. A program that simulate the response of CLAS

is GSIM (GEANT Simulation) based on the GEANT 3 libraries developed at

CERN. What follows are the steps to achieve the desired simulation.

4.2.1 Drift Chamber smearing
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4.2 MonteCarlo simulation

4.2.2 Time of flight smearing

The GSIM simulation of the Time of Flight detector presents finer resolution

than for real data. This is shown in Figure 4.2 where the TOF proton mass M

calculated as in Section 3.5 is plotted for real data and MonteCarlo events. Since the

proton identification is based on M , it is important that the simulation reproduces

this quantity precisely.

It turns out that the mean position of M differs from data and simulation due

to a not perfect calibration. This is not important because the cuts can be shifted

as well. However the simulation should show the same resolution if one wants to

 / ndf 2χ   1057 / 19

Constant  66± 3.346e+04 
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Figure 4.2: Time of flight mass M2. Left: real data π0 events. Right:
MonteCarlo maid 2000 simulation. The mean position is dif-
ferent due to not perfect calibration. The MonteCarlo show
a finer resolution: σREAL = 0.085 GeV2 while σGSIM = 0.047
GeV2.

make sure that the background is handled in the same way as the real data. In

order to smear the GSIM TOF a realistic σ from a calibration study [30] shown in
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4.2 MonteCarlo simulation

Figure 4.3 was used. The function shown in the plot makes sure that the response

of the MonteCarlo TOF resembles the real data case.
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Figure 4.3: The timing resolution as determined from cosmic ray tests
(see [30] for details). The curve represent the resolution (for
two different paddle sizes) used to smear the MonteCarlo TOF
response.

In order to perfectly match the real data and MonteCarlo TOF resolution 11

simulations of 20,000 events each were performed. In each simulation the function

in Figure 4.3 was multiplied by a trial number f (from 0.5 to 1.4) and used to smear

the TOF signal. In each case the resulting TOF mass was fitted with a gaussian and

the obtained σ are plotted versus the multiplicative number f in Figure 4.4 where

the real data σ is also plotted. One can clearly see that σ is proportional to f .

The value f = 1.35 matches the real data resolution and that is the value used

throughout all the GSIM simulation.
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4.2 MonteCarlo simulation
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Figure 4.4: σ as a function of the smearing factor f . The first point is the
real data resolution (red line). The real resolution is matched
when f = 1.35.
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4.2 MonteCarlo simulation

4.2.3 Drift chamber inefficiencies

The Drift chamber present inefficiencies whose the MonteCarlo simulation

must properly take into account for a correct acceptance calculation. As the D.C.

is repaired or fails with time, each experiment have a different drift chamber phe-

nomenology. Actually even during the same experiment a new “hole” may appear

in the middle of the run. What follow is the description of the work apt to exploit

at once the D.C. inefficiency and its time dependency: the calculation of a global

D.C. efficiency.

Each CLAS sector has the same drift chamber configuration, shown in table

4.1: 3 separate regions containing a total of 34 layers of sense wires. Region 1 has

four layers, region 2 and 3 have six layers each.

Layer 1 2 3 4 5 6 7 8 9 10 11 12
Region 1 130 130 130 130 0 0 142 142 142 126 121 120
Region 2 184 185 186 187 188 189 189 189 190 191 192 192
Region 3 192 192 192 192 192 192 192 192 192 192 192 192

Table 4.1: Number of wires in each layer. Region 1 has only 4 layers, so
layers 5 and 6 are phantom.

Figure 4.5 show the occupancy of the drift chamber in sector 6 for the e1-6 experi-

ment. There are nearly no counts in layers 34-35-36 and wire number ≈ 150. This

is an example of a “hole”. During tracking, a hole could affect track reconstruction

because a minimum number of wires are required to define a track.

Wires that count significantly more than neighboring ones are “hot”. Track

reconstruction is basically undisturbed by them1. A third pathology is represented

by wires that count less than neighboring ones but not substantially less. For exam-

ple, a wire can count an average of 70% relative to its neighbours. Such wires can

1This is an empirical statement.
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4.2 MonteCarlo simulation
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Figure 4.5: Drift chamber occupancy distribution for sector 6. A hole is
visible in layers 34-35-36 and wire number ≈ 150.

be considered “warm” wires. Warm wires could be correlated due to common elec-

tronics. For example they could be attached to the same (defective) ADB board2,

so that all wires in that board have the same efficiency at the same time. Corre-

lated wires affect tracking in that a group of wires might miss at the same moment,

preventing the creation of a track segment. Treating warm wires systematically as

holes results in the loss of particle tracks. Another pathology is represented by wires

that are alive during part of the run and dead during another part of the run.

In order to calculate the efficiency of a wire, the whole e1-6 period has been

considered. If a wire results having 50% efficiency it could mean that

• its efficiency is 50%.

• the wire was alive for hald the experiment and dead for the other half.

so that the time dependancy problem of the D.C. has been been solved.

For each w(i, S) of the 36, 000 wires, i being the wire index and S its sector,

a sample of 18 wires have been considered: its next neighbors in the same sector

2An ADB board is a power supply unit. With a 60Hz varying gain of threshold it might give
a correlated efficiency.
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4.2 MonteCarlo simulation

w(i − 1, S) and w(i + 1, S) and the corresponding wires in all the other sectors

w(i, S ′), w(i− 1, S ′), w(i + 1, S ′). Table 4.2 shows one example of such a sample.

Layer Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
io 670080 674517 681877 678828 676214 2207

io − 1 736412 734450 738558 746698 739865 5281
io + 1 678419 665103 685710 105299 410887 677456

Table 4.2: Example of 18 wires sample from real CLAS data. For each of
the 36,000 wires a similar sample is taken.

For each wire wj in the sample, Buddies is the number of wires in the same

sample whose occupancy is within 8% of wj , as illustrated in Figure 4.6. Since usu-

Wire index j
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B
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Figure 4.6: The next neighbor technique: the buddies histogram. Wire
3 has the maximum number of Buddies.

ally there are ∼ 5, 000 defective wires among the 36, 000, the probability that they

maximize buddies is negligible. Therefore the sub-sample that maximize buddies is

formed by good wires, whose averaged occupancy A represents a good expectation

value for w(i, S). In the example of table 4.2 and Figure 4.6 A = 695191.

The efficiency of w(i, S) is in this case

E = Occupancy/Expectation = 670080/695191 = 0.96387
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4.3 Bethe Heitler events

An efficiency table is incorporated in clas database and the GSIM MonteCarlo

output is processed so that the simulated wire occupancy is a good representation

of the real one [31]. Figure 4.7 shows the comparison of real and simulated efficiency

for sector 5.

Figure 4.7: Comparison between real and simulated efficiency for sector
5. (a) simulation. (b) real data. The hole ()

4.3 Bethe Heitler events
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CHAPTER 5

Analysis

5.1 Bins size

The choice of bins size in the variables W , Q2, cos θ∗, φ∗ is illustrated in Fig.

5.1 and Fig. 5.2. The bin sizes were chosen to uniformly agree with the parallel

analysis by Park of π+ production.

W is divided in 15 bins from 1.1 GeV to 1.4 GeV centered in 1.11, 1.13, ..., 1.39

having ∆W = 0.02. ∆Q2 is variable and such that ∆Q2/Q2 ≃ 0.18. The values are

in table 5.1.
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Figure 5.1: W and Q2 binning for π0 events. Notice the increasing ∆Q2

size with Q2.

Q2 2.0 2.4 3.0 3.5 4.2 5.0 6.0
Q2

min 1.87 2.23 2.66 3.17 3.79 4.52 5.40
Q2

max 2.23 2.66 3.17 3.79 4.52 5.40 6.45

Table 5.1: The 6 parameter for each of the 6 sectors
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5.2 Bin averaging correction

∆ cos θ∗ = 0.1 and ∆φ∗ = 300 so that there are 10 bins in cos θ∗ and 12 in φ∗

as shown in Fig. 5.2.
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Figure 5.2: cos θ∗ and φ∗ binning for π0 events.

5.2 Bin averaging correction

When calculating the cross section an average in each bin occurs (see Fig-

ure 5.3. If the cross section distribution is linear in all variables inside that bin

then the value at center is also the value obtained. This is not the case in the more

realistic situation when the data distribution has some structure inside the bin.

To take in account this effect it is necessary to divide each bin in subdivisions,

calculate the cross section in each subdivisions using a model, calculate the average

A in that bin and compare A with the value at the center of the bin C. The resulting

correction is

R =
C = value at center

A = average
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5.2 Bin averaging correction

y

x

C

A

Figure 5.3: The bin correction. C is the value of the cross section at the
center of the bin, while A is its average in that bin. The
correction is R = A/C.

The model maid 2000 extended [11] is used to calculate the correction.

Each of the 15× 7× 12× 10 = 12600 bins is divided into 154 = 50625 subdivisions

(15 for each of the variables W , Q2, cos θ, φ). This gives a total of ∼ 600 million

cross section points. The program used to calculate the cross section is spp int e1.

The correction in each bin is

Rw, q2, cos θ, φ =
Cw, q2, cos θ, φ

Aw, q2, cos θ, φ

Figure 5.4 illustrates the correction as a function of cos θ, φ for different Q2 bins at

the top of the ∆(1232) resonance.
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5.2 Bin averaging correction
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Figure 5.4: Bin averaging correction.
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5.3 Radiative correction

5.3 Radiative correction

In addition to the Born process in Figure 5.5 a) the following radiative pro-

cesses contribute to the electroproduction cross section:

• the Bremsstrahlung, Figure 5.5 b) and c) where a photon is emitted by the

incoming or outgoing electron.

• the vertex correction, Figure 5.5 d), where a photon is emitted by the incoming

electron and absorbed by the outgoing electron.

• the vacuum polarization, Figure 5.5 e), where a e+e− pair is produced and

annihilated by the virtual photon.

a)
b)

e)

d)

c)

p
i

f
p

kf

ik

Figure 5.5: Feynman diagrams for the Born and radiative processes. a)
Born electroproduction, b) and c) Bremsstrahlung d) vertex
correction, e) vacuum polarization.
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5.3 Radiative correction

To account for the radiative processes the approach [2] is used which is based

on a covariant method for infrared cancellation [5]. This method is preferred to the

Mo and Tsai procedure [21] because:

1) It address exclusive electroproduction rather than inclusive, involving all four

unpolarized structure functions. The Mo and Tsai formalism accounts only

for two structure functions and it is independent from outgoing hadron angles.

2) The infrared cancellation is independent of the unphysical parameter ∆ (en-

ergy of soft photons) necessary in the Mo and Tsai procedure.

The matrix element of the unradiative process Figure 5.5 a) can be written as

M2 =
e4

Q4
LµνW

µν (5.1)

where Lµν and W µν are the leptonic and hadronic tensors:

Lµν =
1

2
Tr (/kf + m)γµ(/ki + m)(1 + iγ5ξ)γν (5.2)

W µν = ηµνH1 + p̃µ
i p̃

ν
i H2 + p̃µ

f p̃
ν
fH2 + (p̃µ

i p̃
ν
f + p̃µ

f p̃
ν
i )H4 + (p̃µ

i p̃
ν
f − p̃µ

f p̃
ν
i )H5 (5.3)

In (5.2) and (5.3) ξ is the electron polarization vector, the index i (f) refers to

incoming (outgoing) particles and the transformation ãµ → aµ − aq
q2 qµ ensures elec-

tromagnetic gauge invariance. The contraction (5.1) can be written as

LµνW
µν = 2

5
∑

i=0

θiHi (5.4)

where the θi are linears combination of the usual Lorents invariants defined from

the electrons 4-momenta and the Hi are linear combinations of the unpolarized (σT ,

σL, σLT , σTT ) and polarized (σLT ′) structure functions.

The leptonic tensor for the radiative processes illustrated in Figure 5.5 b), c),

d) and e) is

LR
µν =

1

2
Tr (kf + m)Γµα(ki + m)(1 + iγ5ξ)Γ̂αν (5.5)
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5.3 Radiative correction

where the tensor Γµα contains the photon information kµ
γ and Γ̂(k) = Γ(/k).

The contraction of LR
µν with W µν gives the matrix element for the radiative

processes:

M2

R = −2e6

Q̃4
LR

µνW
µν = − 2e6

Q̃4Rw

5
∑

i=0

θiHi (5.6)

where Q̃2 = −(q − kγ)
2 and Rw = W 2− (p + q− kγ)

2. One can see the involvement

of all the structure functions.
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Figure 5.6: Radiative correction as a function of cos θ∗ and φ∗ for W =
1.23 GeV and Q2 = 3 GeV2.
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5.4 Absolute normalization of the cross section

A program named exclurad has been developed to calculate the matrix element

(5.6) using existing models (lime MAID or DMT) for the structure functions. This

program gives the radiative correction C as the ratio of the radiative and unradiative

four fold cross section:

C(W, Q2, cos θ∗, φ∗) =
σRAD

σUNRAD

and its output has been used as the radiative correction in this analysis. Figure 5.6

shows the correction as a function of cos θ∗ and φ∗ for W = 1.23 GeV and Q2 = 3

GeV2.

5.4 Absolute normalization of the cross section

During the data acquisition the electric charge impinging on the target was

saved in the data stream as accumulated charge corrected for live-time by a Faraday

cup reading located in the beam dump. This is a particular event in the data stream

called scaler event. It consist of a counter which output FCUP is proportional to the

accumulated charge by the relation:

Q(Coulomb) =
FCUP

9264.0 · 109

Since one run was typically divided in several files, it is possible that the

last Faraday cup reading does not correspond to the accumulated charge for the run

because of corrupted i/o (for example one file can be lost). This is a rare eventuality

but must be taken into account.

To calculate the Faraday cup for a run the difference between one scaler reading

and the next is calculated and saved

∆FCUP = F i′

CUP − F i
CUP

only when i′ = i+1 (otherwise ∆FCUP = 0 ). The ∆FCUP obtained is then summed

over all scaler events.
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5.4 Absolute normalization of the cross section

For the e1-6 running period the total Faraday cup reading was FCUP =

2.06816e + 11 for a total charge

Q = 0.022325 Coulomb

Assuming a constant current c = 7 nA this gives a running time t = Q/c ∼
3.2Msec ∼ 37 days. The number of accelerated electrons was

ne = Q/e = 1.3934 · 1017

where e is the electron charge. The number of target nuclei per cm2 can be calculated

with the formula:

nP =
L ρ NA

a.m.u.

where L = 5 cm is the length of the target, ρ = 0.0708 g/cm3 is the density of H2 at

20K, A = 6.022 · 1023 mol−1 is the Avogadro number and a.m.u. = 1.00794 g/mol

is the atomic mass unit of the hydrogen. This gives

nP = 2.115 · 1023cm−2

So the integrated luminosity for the e1-6 period was

Lint = 2.95 · 1040cm−2
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5.5 Extraction of the structure functions

5.5 Extraction of the structure functions

As explained in Section 1.1 the π0 differential cross section in the resonance

center of mass assume the form

dσ

dΩ∗

π0

=
2Wp∗π0

W 2 −m2

P

(

σT + ǫσL + ǫσTT sin2θcos2φ + σLT

√

2ǫL(ǫ + 1)sinθcosφ
)

where φ and θ are the azimuthal and polar angle of the π0 in the c.m. frame. π0.

The φ distributions are modulated only by the terms cosφ and cos 2φ while all the

other terms vary with W , Q2 and cos θ (but not with φ). Therefore the structure

functions can be extracted with a φ fit.

For each W , Q2 and cos θ bin the quantity in parenthesis is fitted with the

functional form

y = a + b cos φ + c cos 2φ

The structure functions are then calculated with the formulas:

σT + ǫσL = a

σLT = b
sin θ

√

2ǫ(ǫT + 1)

σLT = c
sin2 θǫT

Figure 5.7 show the φ fits for W = 1.1 ± 0.01 GeV and Q2 = 2.4 GeV2.

Figure 5.8 shows the χ2/ν distribution for all the fits at different Q2 values

(black points) along with the expected χ2/ν distribution (red line). There are 12

bins in φ and there are 3 fit paramters therefore

ν = N − constrains = 9.
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5.5 Extraction of the structure functions

Figure 5.9 shows σL + ǫσT resulting from the fit at Q2 = 2.4 GeV2.
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Figure 5.7: φ fits of the cross section for different cos θ values. The func-
tion used for the fit is y = a + b cos φ + c cos 2φ and the
structure functions follow from the paramters a, b, c.

91 Maurizio Ungaro, RPI



5.6 Legendre expansion
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Figure 5.8: Reduced χ2 distribution of the φ fits. The distributions show
consistency with the expected χ2 distribution for 150 fits (15
W bins and 10 cos θ bins) and 9 degrees of freedom.

5.6 Legendre expansion

In order to extract the multipoles, the structure functions were fitted with

orthogonal Legendre polynomials with ℓ up to d-waves:

σT + ǫσL = A0 + A1P0(cosθ) + A2P2(cosθ) + A2P3(cosθ) + A3P4(cosθ)

σTT = C0 + C1P0(cosθ)

σLT = D0 + D1P0(cosθ) + D2P2(cosθ)

Figures 5.9, 5.10 and 5.11 show the fits for σL + ǫσT , σTT and σLT for different W at

Q2 = 2.4 GeV2. Figure 5.12 shows the obtained and the expected χ2/ν distributions

for the various response functions.
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5.6 Legendre expansion
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Figure 5.9: σL + ǫσT for different W at Q2 = 2.4 GeV2. The shaded his-
tograms refer to ones used to extract REM and RSM. The leg-
endre expansion (red line fit) is: σT +ǫσL = A0+A1P0(cosθ)+
A2P2(cosθ) + A2P3(cosθ) + A3P4(cosθ).
The shaded histograms refer to the ∆ region.
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5.6 Legendre expansion
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Figure 5.10: σTT for different W at Q2 = 2.4 GeV2. The legendre expan-
sion (red line fit) is: σTT = C0 + C1P0(cosθ).
The shaded histograms refer to the ∆ region.
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5.6 Legendre expansion
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Figure 5.11: σLT for different W at Q2 = 2.4 GeV2. The legendre expan-
sion (red line fit) is: σLT = D0 + D1P0(cosθ) + D2P2(cosθ).
The shaded histograms refer to the ∆ region.

95 Maurizio Ungaro, RPI



5.6 Legendre expansion
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Figure 5.12: Reduced χ2 distribution of the Legendre fits. The σL + ǫσT ,
σTT and σLT have respectively 5, 8, and 7 degrees of freedom.
Each plot has only 15 points (there are 15 W bins) so the
statistic of the χ2/ν distributions is poor. The red line is
the expected χ2 distribution.
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5.6 Legendre expansion

Figure 5.13 shows the coefficients of the Legendre expansion for Q2 = 2.4 GeV2.

The coefficient A0, proportional to M1+ and to the total c.m. cross section, shows

the characteristic resonance behaviour at the peak of the ∆.
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Figure 5.13: Legendre coefficients at Q2 = 2.4 GeV2. The green arrow
shows the ∆ mass position. The coefficient A0 is propor-
tional to M1+ and to the total c.m. cross section.
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5.7 M1+ dominance.

5.7 M1+ dominance.

The approximation made above of ℓ up to d-waves is a good approximation:

one can see from Figure 5.13 that A4, C1, D2 are rather small around the ∆ compared

to their respectives coefficients with smaller ℓ. In order to make a model independent

extraction of the multipoles a further approximation is needed.

A large known signal A can be used to enhance and measure a small signal

B by considering the product AB. Previous measurements (at Q2 up to 4 GeV2)

confirmed that E1+ and S1+ are small compared to M1+. Furthermore all models

that apply in this range of Q2 show that M1+ is the multipole that has the greatest

strength.

The M1+ dominance approximation consists in considering only the multipoles

that interfere with M1+. With this approximation the relation between the Legendre

coefficients and the electromagnetic multipoles is [25]:

|M1+|2 = A0/2

Re(E1+M∗

1+) = (A2 − 2B0/3)/8

Re(S1+M∗

1+) = D1/6

Re(E0+M∗

1+) = A1/2

Re(S0+M∗

1+) = D0

Re(M1−M∗

1+) = −(A2 + 2(A0 + C0))/8

(5.7)

The multipoles are considered at W = 1.21, 1.23, 1.25 and the average of these values

is used as the final result.

5.8 Effect of M1+ dominance and ℓ ≤ 2 approximation

The M1+ dominance assumption and the limited order (ℓ ≤ 2) in the Legendre

expansion of the structure functions introduce an uncertainty in the extraction of

the multipoles. In order to evaluate such uncertainty two models (MAID, DMT)

were used to generate the cross sections σMAID and σDMT . These models provide

the multipoles Eℓ±, Sℓ±, Mℓ± with ℓ up tp 5.

The generated cross section were fitted as described in Section 5.5 to extract
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5.8 Effect of M1+ dominance and ℓ ≤ 2 approximation

the structure functions. The structure functions were fitted with orthogonal Legen-

dre polynomials with ℓ up to d-waves as in Section 5.6. The approximation (5.7)

was used in order to extract the multipoles.

Figure 5.14 and Figure 5.15 show the model and extracted multipole ratios for

Q2 = 3.5 GeV2. See Appendix D for the plots at different value of Q2.

One can see that DMT prescribes in the ∆ region a smaller value of S1+ then

MAID. E1+ remains negative and constant for MAID while it becomes positive in

DMT between Q2 of 3 and 4 GeV2.
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5.8 Effect of M1+ dominance and ℓ ≤ 2 approximation
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Figure 5.14: Comparison between the model and extracted multipole ra-
tios for MAID 2000 at Q2 = 3.5 GeV2.

100 Maurizio Ungaro, RPI



5.8 Effect of M1+ dominance and ℓ ≤ 2 approximation
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Figure 5.15: Comparison between the model and extracted multipole ra-
tios for DMT 2001 at Q2 = 3.5 GeV2.
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5.8 Effect of M1+ dominance and ℓ ≤ 2 approximation

The extracted multipoles were averaged over the W = 1.21, 1.23, 1.25 bins and the

difference with the model prediction at the ∆ peak is illustrated in Figure 5.16 for

E1+/M1+ and in Figure 5.17 for S1+/M1+.
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Figure 5.16: Model and extracted E1+/M1+ as a function of Q2. Top: the
points are the value from the fit and the approximations de-
scribed in the text. The lines are the model prediction. Bot-
tom: absolute difference between between extracted value
and model prediction.

When MAID is used the ratio E1+/M1+ is always underestimated, starting at

∼ 0.2% at Q2 = 2 GeV2 and up to ∼ 1.2% at Q2 = 5 GeV2. When DMT is used
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5.8 Effect of M1+ dominance and ℓ ≤ 2 approximation

a rather constant overestimation by ∼ 0.5% of E1+/M1+ up to Q2 = 3.5 GeV2 is

obtained. At Q2 = 4.2 the value extracted is the same as in the model but at Q2 = 5

E1+/M1+ seems underestimated by ∼ 0.8%.

As regarding S1+/M1+, the extraction from both models yelds a rather signif-

icant overestimation increasing in value with Q2.
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Figure 5.17: Model and extracted S1+/M1+ as a function of Q2. Top: the
points are the value from the fit and the approximations de-
scribed in the text. The lines are the model prediction. Bot-
tom: absolute difference between between extracted value
and model prediction.

We can conclude that the extraction of ratio E1+/M1+ is not affected signif-
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5.9 for REM and RSM

icantly except at Q2 = 5 GeV2 where it could be underestimated by ∼ 1%. On

the other hand the ratio S1+/M1+ is always overestimated by a significant value

increasing with Q2.

5.9 for REM and RSM

The result for the ratios REM and RSM are shown in Table 5.2

Q2 (GeV2) REM (%) RSM (%)

2.0 −1.2± 0.8 −8.4± 0.8
2.4 −0.4± 0.4 −8.7± 0.5
3.0 0.8± 0.5 −8.1± 0.5
3.5 0.7± 0.6 −6.6± 0.7
4.2 1.5± 0.8 −8.8± 1.1
5.0 5.2± 1.3 −12.3± 1.8
6.0 4.0± 2.5 −10.3± 4.1

Table 5.2: The 6 parameter for each of the 6 sectors

REM is shown in Figure 5.18 along with the prediction from DMT 2001 and

MAID 2000 models. Previous data from CLAS and Hall C are also plotted.
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5.9 for REM and RSM
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Figure 5.18: Result for REM as a function of Q2.
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5.9 for REM and RSM
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Figure 5.19: Result for RSM as a function of Q2.
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5.10 Result for G∗

M

5.10 Result for G∗M
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Figure 5.20: Result for RSM as a function of Q2.
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APPENDIX A

Summary of cuts used

A.1 Electron particle id cuts

A.1.1 Čerenkov signal cut

Denoting with nphe the ECPB variable, i.e. 10x number of photoelectrons:

nphe > 25

A.1.2 Total energy in calorimeter and lower momentum cut

Denoting with p the momentum of the candidates and with E their total

energy released in the calorimeter:

Y min ≤ E/p ≤ Y max

where

Y max = 0.395332− 0.044357p + 0.0193197p2 − 0.00272412p3

Y min = 0.137908 + 0.084991p− 0.0245721p2 + 0.00276102p3

These cuts comes from [18].

Furthermore

p >= 0.63884

from [12].

A.1.3 Inner - Outer energy in calorimeter cut

A.1.4 Electron fiducial cuts

A.1.5 Proton fiducial cuts
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APPENDIX B

Plots of data processing

B.1 Vertex corrections

B.2 Angle corrections
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APPENDIX C

Structure functions

112



APPENDIX D

Effects of M1+ dominance and ℓ ≤ 2 approximation
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Figure D.1: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 2.0 GeV2.
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Figure D.2: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 2.4 GeV2.
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Figure D.3: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 3.0 GeV2.
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Figure D.4: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 3.5 GeV2.
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Figure D.5: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 4.2 GeV2.
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Figure D.6: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 5.0 GeV2.
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Figure D.7: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 2.0 GeV2.
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Figure D.8: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 2.4 GeV2.
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Figure D.9: Comparison between the model / extracted multipoles ratios
for maid 2000 at Q2 = 3.0 GeV2.
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Figure D.10: Comparison between the model / extracted multipoles ra-
tios for maid 2000 at Q2 = 3.5 GeV2.
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Figure D.11: Comparison between the model / extracted multipoles ra-
tios for maid 2000 at Q2 = 4.2 GeV2.
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Figure D.12: Comparison between the model / extracted multipoles ra-
tios for maid 2000 at Q2 = 5.0 GeV2.


