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ABSTRACT

The Rice–Mele model has been a seminal prototypical model for the study
of topological phenomena such as Thouless pumping. Here we implement
the  interacting  Rice–Mele  model  using  a  superconducting  quantum
processor comprising a one-dimensional array of 36 qutrits. By adiabatically
cycling  the  qutrit  frequencies  and  hopping  strengths  in  the  parametric
space,  we  emulate  the  Thouless  pumping  of  single  and  two  bounded
microwave  photons  along  the  qutrit  chain.  Furthermore,  with  strong
Hubbard interaction inherent in the qutrits we also emulate the intriguing
phenomena of resonant tunneling and asymmetric edge-state transport of
two  interacting  photons.  Utilizing  the  interactions  and  higher  energy
levels in such fully controlled synthetic quantum simulators, these results
demonstrate  new  opportunities  for  exploring  exotic  topological  phases
and  quantum  transport  phenomena  using  superconducting  quantum
circuits.
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Following the discovery of quantum Hall effects (QHEs)
[1]  and  topological  insulators  [2],  topological  states  of

matter have become one of the most active and productive
research areas in modern physics. Thouless pumping [3,
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4]  is  one  of  the  simplest  manifestations  of  topology  in
periodically  driven  quantum  systems,  which  shares  the
same  origin  of  integer  QHE  and  supports  quantized
transport  of  noninteracting  particles  in  one  dimension.
The  topological  nature  of  Thouless  pumping  makes  it
robust against modest perturbations such as disorder [5]
or interaction [6], and has generated widespread interest
for  its  potential  applications,  such as  current standards
[7, 8]  and  quantum  state  transfer  [9].  While  Thouless
pumping  remains  elusive  in  electron-based  condensed
matter systems, it has been recently realized in synthetic
systems featuring versatility and controllability, including
ultracold  atoms  [10–15],  photonic  waveguides  [16–19],
and  acoustic  waveguides  [20, 21],  and  has  also  been
extended  to  higher  dimensions  [22, 23]  and  momentum
space  [24].  Recently,  Thouless  pumping  in  interacting
quantum  many-body  systems  has  garnered  significant
interest [25–33], followed by pioneering experiments with
nonlinear  photonic  waveguides  [16, 19]  and  ultracold
atoms  with  tunable  Hubbard  interactions  [34, 35].
However,  the  interplay  between  topology  and  multi-
particle correlations remains hardly explored experimen-
tally,  partly  because  of  the  challenge  in  creating  and
probing site-resolved multi-particle correlations.

In  recent  years,  superconducting  quantum  circuits
have emerged as a promising platform for simulating the
phenomena  with  interaction  effects,  such  as  synthetic
many-body interactions [36], strongly correlated quantum
walks [37, 38], chiral ground-state currents [39], antisym-
metric  spin  exchange  [40],  and  multi-particle  bound
states [41]. Here we present an experiment of emulating
Thouless  pumping  in  the  interacting  Rice–Mele  model
using  a  one-dimensional  (1D)  array  of  superconducting
qutrits (three-level systems). By adiabatically cyling the
qutrit  frequencies  and  hopping  strengths,  we  emulate
the characteristic dynamics of Thouless pumping for the
single  and  two  bounded  microwave  photons.  Further-
more,  with  strong  Hubbard  interaction  inherent  in  the
qutrits,  we  also  observe  the  intriguing  phenomena  of
resonant tunneling and asymmetric edge-state transport
of two interacting photons under certain circumstances.
These  emergent  behaviors  in  the  interacting  system
enrich  the  physics  of  the  noninteracting  counterparts.
Utilizing  the  interactions  and  higher  energy  levels  in
such fully controlled synthetic quantum simulator, these
results  demonstrate  new  opportunities  for  exploring
exotic  topological  phases  and  quantum  transport
phenomena using superconducting quantum circuits.

36

We implement the experiments on a superconducting
quantum processor shown in Fig. 1(a), comprising a 1D
array  of  tunably  coupled  transmon  qutrits  of  the
Xmon variety [42] [see Fig. 1(b)]. Each qutrit in the 1D
array can be individually addressed and driven into the
higher  excited  state  by  applying  microwave  pulse
through  its  dedicated  XY  drive  line.  The  qutrit
frequency  and  the  nearest-neighbour  coupling  strength
can be controlled by applying external flux through the

dedicated  Z  line  or  C  line  of  the  corresponding  qutrit
and  coupler  respectively  [43],  which  correspond  to  the
lattice  site  potential  and  nearest-neighbour  hopping
strength in a lattice model.  The physical  system in our
experiments can be described by the Hamiltonian [44]: 

H/ℏ =
N−1∑
j=1

(
gj,j+1a

†
jaj+1 + H.c.

)

+
N∑
j=1

(
ωja

†
jaj +

U

2
a†ja

†
jajaj

)
, (1)

aj j

gj,j+1 ωj

U = −EC

EC

H.c.

−J ± δ ±∆

gj,j+1 =

−J + (−1)jδ ωj = ω + (−1)j∆

where  is the annihilation operator for qutrit on site ,
 is  the  nearest-neighbour  coupling  strength,  is

the  qutrit  angular  frequency,  is  the  qutrit
anharmonicity,  is the charging energy of the qutrit,
and  is Hermitian conjugate. Here, we configure the
system  as  a  dimerized  chain  with  alternating  hopping
amplitudes  and staggered potential energies ,
as shown in Fig. 1(c),  which are realized by tuning the
coupling  strengths  and  qutrit  frequencies  as 

, . The physics of this system
is captured by the Rice–Mele Hamiltonian [45] with on-
site interactions, 

HRM/ℏ =
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j=1
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+
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|ψm,k(t)⟩ = eikx|um,k(t)⟩ m

k

k t

Cm = 1/(2π)
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0
dt

∫ π/d

−π/d
dkΩm(k, t), Ωm(k, t) =

where  is  the  photon  number  operator, 
is the nearest-neighbour hopping strength determined by
the tunable couplers,  is the staggered on-site energy
determined  by  the  qutrit  frequencies,  and 
–190  MHz  is  the  on-site  Hubbard  interaction  strength
determined  by  the  anharmonicity  of  the  qutrits  [see
Fig.  1(c)].  A  pair  of  neighbouring  qutrits  constitutes  a
unit  cell  with  a  lattice  constant  of  mm.  When

,  this  Hamiltonian  reduces  to  the  Su–Schrieffer–
Heeger  (SSH)  model  [46]  with  on-site  interactions.  By
adiabatically  cycling  the  qutrit  frequencies  and  the
coupling  strengths  as  and ,
we realize the time-varying phase , where
 is  the  evolution  time  and the  pump cycle  is  given  as

.  The  time-evolution  can  be  described  as  a
closed trajectory  in the –  parameter plane with the
varying phase , which allows the emulated photon shift
from  one  sublattice  to  the  other  in  Thouless  pumping,
see Fig.  1(d).  Because  the  lattice  potential  is  periodic
both in space and time, under periodic boundary condi-
tion,  one  can  define  the  Bloch  wavefunction

 in  the -th  Bloch  band  with
quasimomentum ,  and  the  corresponding  topological
invariant  known  as  Chern  number  in  a –  Brillouin
zone  where 
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i(⟨∂tum,k|∂kum,k⟩ − ⟨∂kum,k|∂tum,k⟩)
T

E/J

k t

 is the Berry curvature
(see  the  Supplementary  Information)  and  is  the
pumping  period. Figure  1(e)  shows  a  representative
instantaneous  spectrum  of  the  Hamiltonian  in  the
–  Brillouin  zone,  with  a  lower  band  and  an  upper

band.  As  long  as  the  bandgap  never  closes,  ideally  the
microwave  photons  will  stay  within  the  same  band
during  the  adiabatic  pumping  process.  Since  the  time-
reversal  symmetry  is  broken  by  the  phase  sweep,  the
lower  and  upper  bands  have  nontrivial  Chern  numbers

C1 = 1 C2 = −1

δx ≡ x(t)− x(0) = Cmd

x = d/2(
∑
jnj/

∑
nj)

∆0/(2π) = 80 δ0/(2π) = J/(2π) = 8

T = 0.4

⟨nj⟩ = |⟨ψ(t)|nj⟩|2 n = 1

|1j=18,19⟩ j

of  and  respectively.  The  center-of-mass
shift  of  the  microwave  photons  in  such  topologically
nontrivial bands after one pumping cycle is simply given
by ,  where  the  position  operator

. In Figs. 1(f) and (g), given param-
eters  MHz,  MHz,

 μs,  we  emulate  the  forward  (backward)  pump-
ing,  where  the  population  for  is
measured,  and  the  system  is  initially  prepared  as

. The initial state localized at site  is prepared
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Fig. 1  Emulating Thouless pumping in an array of superconducting qutrits. (a) Photograph of the quantum chip (qutrits
are  marked  by  red  dots). (b) Zoomed in  micrograph of  (a),  showing  the  X-shaped qutrits  (light  blue)  connected  with  T-
shaped tunable couplers (light purple), with their associated control/readout wirings. (c) Potential landscape of the interacting
Rice–Mele  model  emulated  by  the  qutrits  array. (d) Adiabatic  cyclic  evolution  of  the  Hamiltonian  in  the –  parameter
space around the degeneracy point at the origin with a varying phase . (e) Two energy bands in the –  Brillouin zone
with Chern numbers  and  respectively. (f–g) Forward (backward) pumping where the system is initialized in
the  lower  (upper)  band  localized  at  site  ( ).  Inset:  Evolution  of  the  lattice  potential  and  single-particle  state
during  one  cycle. (h)  extracted  from  (f)  and  (g),  with  and  respectively  in  a  pumping  cycle,
consistent with the Chern number.
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π

|1j⟩ = a†j |0⊗N ⟩
δx

δx/d = 0.971(5) −0.990(3)

T = 0.4

by  applying  a  pulse  to  excite  the  qutrit  from  the
ground  state  to  the  first  excited  state .
Figure  1(h)  shows  the  center-of-mass  displacement 
extracted  from Figs.  1(f)  and  (g),  yielding

 and  in a pumping cycle respec-
tively,  consistent  with  the  Chern  numbers  of  the  lower
and  upper  bands.  We  note  that  the  pumping  of
microwave photon is only valid as long as the potential
is varied adiabatically, as this phenomenon is not generi-
cally robust to non-adiabatic effects despite its topological
nature  [47].  The  pumping  period  of  μs  chosen
here is a balance between adiabaticity and qutrit coherence
(see details in the Supplementary Information). Leakage
into the couplers is also a dissipation source during the
pumping  process  (see  details  in  the  Supplementary

Information).

|ψm,K(t)⟩ K

j

|2j⟩ = (a†j)
2|0⊗N ⟩

j |2j⟩

ωd = ω20/2
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|U | ≫ |−J ± δ|

2|∆0| < |U |

U

2[−J + (−1)jδ]2/U
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∆0/(2π) = 8 δ0/(2π) = J/(2π) = 12

T = 0.4

|2j=19⟩

|nj⟩ nj =

j

|1j⟩

Γij = ⟨a†ia
†
jaiaj⟩ i j

t

|nj⟩ nj = 0

Γij = ⟨2i0j⟩ ⟨1i1j⟩ i = j i ̸= j

i j

Γij/Γ
max
ij

When  the  on-site  interaction  is  involved,  we  need  to
generalize  Thouless  pumping  from  single-particle  to
multi-particle  cases,  where  the  Bloch  wave-function  is
replaced  with  multi-particle  Bloch  wave-function

 with  being  center-of-mass  quasimomentum
[26]. The initial two-particle Wannier state approximates
to two particles at site  whose preparation requires the
second excited state  of the qutrit at site
.  To experimentally prepare the state ,  we apply a

microwave drive pulse through the XY line of the qutrit
with  the  driving  frequency  to  perform  two-
photon  excitation  [48],  where 

,  is  the  energy  difference  between  states 
and .  See  Supplementary Information for  the  experi-
mental calibration of the two-photon excitation process.
We  focus  on  the  strong  interaction  regime  where

,  and vary the double-well  bias to explore
the  transport  behavior  in  different  regimes.  If

,  the  interaction  dominates  and  protects  two
bounded  microwave  photons  in  the  same  site.  In  this
case,  the  on-site  interaction  induces  an  effective
hopping  strength  of  between  the
bounded  microwave  photons  at  the -th  and -th
sites  [26],  and  the  two  photons  in  the  same  site  are
shifted  unidirectionally  as  a  whole  [26, 29],  see  the
schematic in Fig. 2(a). To emulate the Thouless pumping
of  two  bounded  microwave  photons,  we  perform  the
quantum simulation of the interacting Rice–Mele model
with  MHz,  MHz, and a
pumping  period  of  μs.  Limited  by  the  qutrit
decoherence  and  non-adiabatic  effects,  we  are  not  able
to  emulate  the  Thouless  pumping  of  two  bounded
microwave photons on the full chain. Instead we choose
a subset  of  the qutrits  with index 18–26 and prepare a
second  excited  state  that  largely  overlap  with
two-particle  Wannier  state  to  emulate  this  pumping.
The population of the Fock states  for  0, 1 and
2 of each site  are simultaneously measured and shown
in Fig. 2(b), where the  state of each site is unpopu-
lated. The corresponding theoretical results are shown in
Fig. 2(c), see the Supplementary Information for details.
To  manifest  the  nature  of  bounded  photons  more
clearly,  we  measure  the  density–density  correlations

 of site  and  [37, 49] at different evolution
times  within a pumping period, as shown in Fig. 2(d).
For the Fock states  for , 1 and 2, the correlation

 ( ) when  ( ). The probability of
finding microwave photons at sites  and  are concentrated
along  the  diagonal  of  the  normalized  correlation,

, indicating that the two photons always appear
at the same site.

2|∆0| > |U | 2∆

U

If ,  the  double-well  bias  balances  the
interaction  four  times  in  each  pumping  cycle,  where
single-photon  resonant  tunneling  happens  and  the
bounded  photons  are  destroyed  [26].  In  this  case,  the
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Fig. 2  Emulation  of  the  Thouless  pumping  for  two
bounded  microwave  photons. (a) Schematic  showing  two
bounded  microwave  photons  unidirectionally  transported
through  the  barriers. (b,  c) Experimental  data  (b)  and
numerical simulation (c) of the populations of the  states
for ,  and  of each site  during the pumping process,
where the  state is unpopulated. (d) The normalized two-
site correlations  of site  and  during the pumping
at different evolution times , , , .
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∆0/(2π) = 150

δ0/(2π) = J/(2π) = 12

T = 0.4

2|∆0|/(2π) = 300

|U |/(2π) = 190

|nj⟩
|1j⟩|1j+1⟩

|2j⟩|0j+1⟩ |0j⟩|2j+1⟩
Γij t

two  microwave  photons  in  one  site  are  unidirectionally
transported  through  the  barriers  one  by  the  other,  see
Fig.  3(a),  which  is  a  different  kind  of  pumping  process
for the microwave photons in the interacting Rice–Mele
model.  In Fig.  3(b),  we emulate the resonant tunneling
with  MHz,  an  order  of  magnitude  larger
than that in Fig.  2(b),  while  MHz
and  μs  remain  unchanged.  The  corresponding
theoretical  results  are  shown  in Fig.  3(c).  In  this  case,
the  MHz  is  clearly  larger  than

 MHz.  Similarly,  the  population  of  the
Fock  states  of  each  site  are  simultaneously
measured. Different from that in Fig. 2(b), the 
state  is  populated  during  the  transition  between

 and . We measure the density–density
correlations  at  different  evolution  times  within  a
period,  see Fig.  3(d),  where  the  strong  correlations
observed  in  diagonal  elements  suggest  the  two  photons
appear at the same site. Furthermore, strong correlations
are  also  observed  in  off-diagonal  elements  at  specific
times,  suggesting  the  phenomena  that  two  bounded
microwave  photons  are  destroyed  and  split  into  single
photon in two sites.

∆ = ∆0 sin (2πt/Te) δ = −δ0 cos (2πt/Te)
Te

Finally, we explore the interaction effects to the transport
of  edge  states  [50, 51].  The  edge-state  pumping  can  be
realized by adiabatically modulating the hopping ampli-
tudes  and  on-site  energy  in  the  Rice–Mele  model
[Eq. (2)] as , , where

 is  the  pumping  period  for  the  edge  states.  In  the
dimerized  chain  with  even  sites  configured  as  noninter-
acting  Rice–Mele  model,  the  system  has  a  symmetric
energy  spectrum  respective  to  zero  energy,  benefiting
from  the  generalized  chiral  symmetry  [52, 53],  which
provides reversible channels of edge-state transport from
left  to  right  edge  or  vice  versa  (see  the  Supplementary
Information for details). When the on-site interaction is
involved,  the  energy  spectrum  becomes  asymmetric  as
shown  in Fig.  4(a),  which  gives  a  flat  (steep)  energy
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Fig. 3  Emulation of the resonant tunneling for interacting
photons. (a) Schematic  showing  interacting  photons  trans-
ported unidirectionally through the barriers one by the other.
(b, c) Experimental data (b) and numerical simulation (c) of
the  populations  during  the  pumping  process,  where  the

 state  is  populated  during  the  transition  between
 and . (d) The  normalized  correlations

 during  the  pumping  at  different  evolution  times
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Fig. 4  Emulation of asymmetric edge-state transport. (a) The evolution of the left and right edge states in the potential
well  and the corresponding energy band. (b, c) Experimental data (b) and numerical simulation (c) of the left edge state
transport. (d, e) Experimental data (d) and numerical simulation (e) of the right edge state transport. The colors in (b)–(e)
denote  the  Fock  state  populations,  whereas  the  colors  in  the  energy  band  in  (a)  denote  the  probability  of  instantaneous
states occupying the eigenstates.
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Te

∆0/(2π) =

δ0/(2π) = J/(2π) = 12 Te = 4
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band for the pumping starting from the left (right) edge,
and thus the non-adiabatic effects of right-to-left pumping
are  stronger  than  left-to-right  pumping  for  a  given
period .  We  perform  the  quantum simulation  of  this
edge-state  transport  in  a  subset  of  qutrits  with  index
19–24  isolated  from  other  qutrits,  with 
0.5  MHz,  MHz  and  μs,  an
order of magnitude larger than . In Figs. 4(b) and (d),
the population of the Fock states  for , 1 and 2
of  each  site  are  simultaneously  measured,  where  the
state  ( ) is prepared at . The initial left
(right)  edge  state  is  transported  into  the  right  (left)
edge of  site  ( )  at ,  with a population
of  ( ). The corresponding
theoretical results are shown in Figs. 4(c) and (e), where
the  transported  population  into  the  right  (left)  edge

 ( ) at , mainly limited by
the non-adiabatic effect for a finite evolution time.

In  conclusion,  we  have  simulated  the  phenomena  of
Thouless  pumping  in  the  interacting  Rice–Mele  model
using  a  1D  array  of  superconducting  qutrits.  Utilizing
the  interactions  and  higher  energy  levels  in  such  fully
controlled  synthetic  quantum  simulator,  these  results
demonstrate new opportunities for exploring exotic topo-
logical  phases  and  quantum  transport  phenomena.
Forthcoming  efforts  could  be  made  to  extend  to  two-
dimension  using  flip-chip  packaged  superconducting
processors  [54–56]  and  the  realization  of  an  analogy  of
the 4D integer quantum Hall effect [22, 23]. 
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