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Мне представляется существенным преимуществом выступления 
перед столь квалифицированной аудиторией отсутствие необходимо-
сти обоснования важности дальнейшего продвижения в область сверхвы-
соких энергий. Это было очень убедительно показано на совещаниях 
весьма компетентных ученых Советского Союза, США и Западной Ев-
ропы. Более того, хотя сейчас и не все можно предвидеть из того, что 
будет открыто при энергиях 200, 300, 400 и 1000 Гэв, уже намечены 
большие и достаточно ясные программы экспериментальных исследова-
ний, которые базируются как на продолжении проводимых в настоящее 
время работ, так и на научной экстраполяции и на прогнозе, если не бу-
дущих результатов, то хотя бы направлений будущих исследований. 

В 1961 г., когда шла реализация проекта 70 Гэв-ного протонного 
синхротрона для Серпухова, группа советских ученых приступила к по-
искам способа создания ускорителя протонов существенно больших 
энергий1,2. 

В 1963 г. на Международной конференции по ускорителям в Дуб-
не было сделано сообщение о разработке протонного ускорителя на 
1000 Гэв, который мы назвали кибернетическим3. Одновременно в 
Дубне были доложены какой, представлялась структура этого ускори-

теля, основные параметры его модели, теоретические основы дальней-
шей разработки 1000 Гэв-ного ускорителя и т. д . 4 - 1 2 . На ряде по-
следующих международных и национальных конференций были сдела-
ны сообщения о работах Радиотехнического института Академии наук 
СССР, посвященных разработке этой большой проблемы13 25. 

Кроме настоящего обобщающего доклада некоторые работы будут 
представлены и на этой конференции. 

Два тома, выпущенные Радиотехническим институтом и посвящен-
ные эскизному проекту этого ускорителя и последующей программе экс-
периментальных исследований на этой установке, переведены на ан-
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глийский язык Комиссией по атомной энергии США. Все это свидетель-
ствует об известном интересе к этому проекту. Организационный Ко-
митет конференции предложил выступить с настоящим докладом на-
ряду с сообщениями о сооружении ускорителей на 2 0 0 - 4 0 0 Гэв в Бата-
вии (Иллинойс, США) и на 300 Гэв в Западной Европе под эгидой 
Ц Е Р Н а * . 

Естeственно возникает вопрос, будут ли выделены необходимые 
средства для реализации этого крупнейшего проекта, не следует ли по-
думать о сооружении 1000 Гэв-ного ускорителя на международной ос-
нове? Мне представляется весьма желательным проведение предвари-
тельного обмена мнениями по этому вопросу здесь, в Ереване, между 
учеными различных стран, либо на специальном совещании, либо в ку-
луарах нашей Международной конференции. 

Оставив в стороне этот финансовый и организационно-политический 
обмен мнениями, разрешите перейти к научной и технической стороне 
моего доклада. 

При разработке проекта 1000 Гэв-ного ускорителя глубоко прин-
ципиальным является выбор его системы. Это особенно существенно 
потому, что за 20 лет успешного применения протонных синхротронов 
сначала со слабой, а затем и с сильной фокусировкой, появлялись и 
появляются новые предложения, которые на первый взгляд представля-
ются более экономичными, чем ставшая классической система кольцево-
го протонного синхротрона с неподвижной мишенью. 

В течение последних лет в некоторых институтах в СССР, США и 
Европы проведен ряд теоретических и экспериментальных исследований 
систем со встречными пучками заряженных частиц. Столкновение про-
тонов, имеющих энергию всего около 25 Гэв, BO встречных пучках со-
ответствует получению протонов, обладающих энергией свыше 1000 
Гэв. Однако далеко не вся программа экспериментальных исследова-
ний может быть проведена на встречных пучках. Интенсивные пучки 
вторичных короткоживущих частиц - антипротонов, мезонов, гиперо-
нов, а также нейтральных частиц, обладающих высокими энергиями, 
могут быть получены только в ускорителях, где протоны бомбардиру-
ют неподвижные мишени. 

С другой стороны, применение встречных пучков целесообразно 
для расширения некоторых возможностей существующих и проектируе-
мых ускорителей на сверхвысокие энергии. В частности, сооружение на-
копительных колец предусмотрено в проекте Радиотехнического инсти-
тута. 

За последние годы существенное продвижение и усовершенствова-
ние получили так называемые методы коллективного ускорения, пред-
ложенные В. И. Векслером и продолженные В. П. Саранцевым в 
СССР2 6 ,-7 . Разработке этих методов посвящено большое количество ра-
бот, проводимых в различных странах2 8 . На пути разработки та-

* Доклад Дж. Адамса не был представлен на конференцию.-Прим. ред. 



ких ускорителей имеется не мало принципиальных и технических труд-
ностей, как в осуществлении ускорения, так и в эффективном исполь-
зовании таких ускорителей для физических экспериментов. Я не буду 
приводить дополнительных аргументов в пользу сосуществования про-
тонных синхротронов с неподвижными мишенями, установок со встреч-
ными пучками и ускорителей, в которых применяются коллективные ме-
тоды ускорения. Я хотел бы только подчеркнуть тот факт, что хотя эти 
новые методы ускорения широко изучаются и частично реализуются, - 
ни один проект ускорителя классического типа, ни на 2 0 0 - 4 0 0 Гэв, ни 
на 300 Гэв не отвергнут. 

Также поступили и мы продолжая разработку, усовершенствова-
ние, моделирование и проектирование нашей 1000 Гэв-ной машины. На-
ши усилия направлены на повышение эффективности, снижение затрат 
на сооружение, облегчение жестких допусков для параметров магнитно-
го поля. Одновременно мы стали беспокоиться о далеком будущем 
этой машины и принимаем меры, чтобы ее проект допустил впоследст-
вии повышение энергии ускоренных частиц до 4 0 0 0 - 5 0 0 0 Гэв. 

Мы уже указывали в предыдущих работах, что при разработке 
проекта 1000 Гэв-ного ускорителя мы приняли систему с линейным ус-
корителем-инжектором на 0,8 Гэв и бустером на 18 Гэв. Далее, после 
проведения исследований ряда магнитных блоков, мы пришли к вы-
воду о возможности поднять напряженность поля в зазоре электромаг-
нита до 16 килоэрстед. Это позволило уменьшить радиус кривизны ор-
биты до 2080 м, а следовательно довести ее длину с 20,0 км до 17,0 км. 

Так как сооружение ускорителя на энергию 1000 Гэв является 
весьма дорогостоящим мероприятием, то, подобно тому, как это пред-
полагается делать при сооружении ускорителя под Чикаго, мы также 
предусматриваем несколько этапов в сооружении ускорителя: первый 
этап - достижение (при увеличении времени, отводимого для ускоре-
ния, до 2,5 сек) 500 Гэв и последующий э т а п - 1 0 0 0 Гэв при времени 
ускорения 1 сек. 

Предполагается, что на первом этапе предыдущие каскады уско-
рителя будут также работать в облегченном режиме - кольцевой бу-
стер будет работать до энергии лишь 6 Гэв, а в линейном ускорителе 
будет использоваться лишь первая его ч а с т ь - д о 200 Мэв. 

Значительный экспериментальный опыт, накопленный на модели 
ускорителя с малой апертурой вакуумной камеры ( 2 2 × 1 6 мм2) убедил 
нас в том, что при коррекции магнитного поля по данным электронно-
вычислительной машины удается иметь малые смещения пучка от оси 
камеры. В результате для 1000 Гэв-ной машины выбрана камера эл-
липтического сечения с радиальной протяженностью 66 мм при высо-
те 40 мм. 

Прирост энергии частиц за оборот в главном (большом) кольце 
ускорителя принят равным 56 Мэв. Переход к энергии инжекции в глав-
ное кольцо в 18 Гэв позволяет иметь очень скромное значение модуля-
ции частоты ускоряющего напряжения f / f = 0 , 1 2 % . Длительность цик-



л а у с к о р е н и я - 1 сек при 20 циклах ускорения 6 минуту. Суммарная в. ч. 
мощность, потребляемая ускоряющей системой, ~ 2 3 Мвт. 

Как известно, в кибернетическом ускорителе предусмотрено уст-
ройство системы автоматического регулирования положения орбиты. 
Эта система призвана осуществлять автоматическую коррекцию маг-
нитного поля ускорителя для обеспечения надежного прохождения пуч-
ка частиц вблизи оси вакуумной камеры. Принцип действия системы 
заключается в обработке сигналов датчиков поперечных координат 
пучка и в использовании полученной информации о состоянии магнит-
ного поля для его коррекции. 

В кибернетическом ускорителе существенную роль играет выбор 
метода компенсации искажений конфигурации магнитного поля. Д л я 
этой цели предусматривается система корректирующих магнитных линз, 
расположенных в промежутках между блоками основного электро-
магнита. 

Регулирование смещений орбиты предполагается производить в 
два этапа: поперечные отклонения пучка частиц в период инжекции и 
поперечные отклонения мгновенной равновесной орбиты в течение пе-
риода ускорения. 

Система автоматического регулирования положения орбиты со-
держит 264 датчика отклонения пучка (конденсаторного типа) и 528 
корректирующих устройств с усилителями, питающими их обмотки. 
Специальное вычислительное устройство определяет необходимые ве-
личины токов в обмотках корректирующих линз по данным сигналов, 
вырабатываемых датчиками отклонения пучка. 

Д л я регулирования частоты бетатронных колебаний ускоряемых 
частиц при помощи специального возбудителя создаются бетатрон-
ные колебания. На расстоянии от возбудителя, равном целому числу 
полуволн бетатронных колебаний плюс одна четверть длины волны, 
устанавливаются сигнальные электроды, напряжение на которых про-
порционально смещению центра тяжести сгустка. Из напряжения, воз-
никающего на сигнальных электродах, выделяется некоторая спек-
тральная составляющая. Частота этой составляющей сравнивается с 
величиной, принятой по расчетам. Сигнал рассогласования управляет 
током в магнитных линзах, корректирующих градиент управляющего 
магнитного поля ускорителя. Возмущающее действие, которое возбуж-
дает бетатронные колебания центра тяжести сгустка, должно быть та-
ким, чтобы, с одной стороны, эти колебания существовали в моменты 
измерения частоты в течение всего времени ускорения и, с другой сто-
роны, чтобы поперечные размеры пучка к концу цикла ускорения су-
щественно не увеличивались. 

Предусмотрены и другие системы автоматического регулирования, 
поддерживающие резонанс между ускоряющим в. ч. электрическим по-
лем и частотой обращения частиц и обеспечивающие формирование 
нужного числа пучков вторичных частиц. 



Ha модели ускорителя сопоставлялись результаты многочислен-
ных теоретических исследований и расчетов с данными эксперимента. 

Остановимся более подробно на описании модели кибернетическо-
го ускорителя и результатах, полученных во время экспериментов (рис. 

1 и 2) . 
Кольцевой магнит модели состоит из 100 магнитных блоков, обра-

зующих сильнофокусирующую систему типа ФОДО. Блоки расположе-
ны поочередно внутри и вне орбиты. В магнитной структуре ускори-
теля 10 суперпериодов, в каждый из которых входит пять магнитных 
периодов (фокусирующий магнит, промежуток, дефокусирующий маг-
нит, промежуток). Полюсные башмаки имеют весьма крутой профиль 

с показателем спада магнитного поля n = -
r dB 

= 191. Поперечная с показателем спада магнитного поля n = - B 
dr 

= 191. Поперечная 

фокусирующая сила магнитной системы характеризуется числом бетат-
ронных колебаний за оборот Q = 6,25. Д л я ускорителя с диаметром элек-
тромагнита, равным 17 м, это соответствует очень большой фокусиру-
ющей силе. Благодаря этому при весьма скромной энергии инжекции 
в один Мэв максимальный размер пучка в вакуумной камере менее 
8 мм (без учета синхротронных колебаний). Размеры сечения вакуум-
ной камеры лишь немного больше апертуры, занимаемой свободными 
бетатронными и синхротронными колебаниями. 

Из-за малых поперечных размеров вакуумной камеры откачка ее 
до необходимого рабочего давления в 5.10-7 мм рт. ст. производится 
при помощи вакуумной системы, состоящей из кольцевой трубы, имею-
щей сечение, во много раз превышающее сечение вакуумной камеры. 
Эта труба (коллектор) подсоединена в 20 равноотстоящих точках к ка-
мере. Она выполнена из нержавеющей стали и откачивается пятью ти-
тановыми насосами. Все уплотнения между элементами вакуумной ка-
меры выполнены из индия. 

Электромагнит имеет несколько больший зазор (24 мм на оси ка-
меры), чем это необходимо для размещения вакуумной камеры и до-
пускает использование корректирующих полюсных обмоток. Наличие, 
наряду с 40 корректирующими линзами, расположенными между маг-
нитными блоками, корректирующих полюсных обмоток позволяет про-
водить большой комплекс исследований движения частиц в магнитном 
поле с различной зависимостью напряженности магнитного поля от 
радиуса. Корректирующие полюсные обмотки и корректирующие лин-
зы питаются системой, состоящей из 28 реверсных тиристорных усилите-
лей и 88 реверсных транзисторных усилителей. Входы усилителей могут 
соединяться с многоканальным функциональным генератором, на вход 
которого от интегратора подводится напряжение, пропорциональное 
напряженности магнитного поля, или с аналоговыми выходами управ-
ляющей электронно-вычислительной машины типа «Днепр-1». 

Д л я того чтобы в процессе эксперимента вводить в магнитную си-
стему контролируемые возмущения и изучать их влияние на поведение 
пучка, блоки электромагнита были выполнены с возможно большей 



точностью. Д л я получения жестких геометрических допусков при изго-
товлении пластин сердечника блоков электромагнита применялась по-
следовательная штамповка тремя штампами (последний штамп пре-
цезионный твердосплавный). Кроме того, применялись контролируемая 
прецезионная. термообработка и перемешивание пластин, общее число 
которых достигало 120 тыс. Н а каждый из 100 блоков составлялся ин-
дивидуальный магнитный паспорт, данные которого вводились в элек-
тронно-вычислительную машину М-20; по результатам расчета этой ма-
шины блоки расставлялись по периметру ускорителя оптимальным об-
разом. По измерениям отклонения пучка было найдено, что эквивалент-
ная геометрическая погрешность, включая и разброс магнитных ха-
рактеристик железа, соответствовала 30 мк. Все магнитные измерения 
производились при помощи специально разработанных прецезионных 
полуавтоматических магнитометров, в которых сравнивались напря-
женность и градиент магнитного поля в измеряемом блоке с этими ж е 
величинами в блоке, принятом за эталон. 

В модели ускорителя предусмотрены 2 режима инжекции: 
а) протоны инжектируются при постоянном магнитном поле в 

кольцевом магните; возрастание магнитного поля начинается после 
процесса циркуляции частиц в вакуумной камере в течение нескольких 
сотен микросекунд. Этот режим характерен для каскадного протонно-
го синхротрона при постоянном магнитном поле с накоплением частиц, 
ускоренных в течение ряда последовательных циклов предыдущим кас-
кадом ускорителя; 

б) протоны инжектируются при растущем магнитном поле, как 
это делается в 76 Гэв-ной машине в Серпухове. Инжекция частиц в 
модели производится от электростатического генератора Ван-де-Граа-
фа. При помощи специально принятых мер удается обеспечить посто-
янство энергии инжектируемых сгустков частиц с точностью 0,1%. 

В модели ускорителя установлены 15 в.ч. ускоряющих станций, 
частота напряжения которых в 5 раз больше частоты обращения ча-
стиц. Это соответствует диапазону частот 1,25 ÷ 15,0 Мгц. 

Подавление когерентных синхротронных колебаний производится 
обычными методами с использованием данных о радиальном положении 
пучка и датчика фазы пучка относительно фазы в.ч. ускоряющего на-
пряжения. В качестве датчиков смещения пучка от оси камеры приме-
нены электростатические электроды, расположенные в 20 точках по пе-
риметру ускорителя. 

Наведенные на электростатические пластины сигналы усиливаются 
широкополосными электронными усилителями и после детектирования 
превращаются в сигналы, величины и знаки которых характеризуют 
величины и знаки смещения пучка от оси камеры в 20 точках. Путем 
обработки выходных сигналов получают информацию о возмущениях, 
приведших к этому сдвигу орбиты. 

Можно разложить измеренное возмущение орбиты по системе ор-
тогональных функций, характеризующих данную магнитную структуру, 

5 - 1 7 6 



и осуществлять регулирование так, чтобы амплитуды наиболее опас-
ных компонент были существенно уменьшены. Д л я случая, когда пери-
од бетатронных колебаний много больше периода магнитной структу-
ры ускорителя, система ортогональных функций близка к тригономет-
рической системе, в которой наиболее существенны гармоники, близкие 
к частоте бетатронных колебаний Q. При инжекции пучка в ускори-
тель с малоапертурной вакуумной камерой может оказаться, что пучок 
до попадания на стенку камеры пройдет лишь часть периметра уско-
рителя, В этом случае не будет получена необходимая для указанно-
го метода информация о поведении по всему периметру ускорителя. 
Поэтому в качестве системы регулирования положения пучка при от-
работке «первого оборота» следует применить систему регулирования 
по участкам. 

При данном методе измеряется отклонение пучка от оси камеры 
в конце каждого из многих участков, на которые разбита магнитная 
структура ускорителя, и это отклонение сводится при помощи коррек-
тирующего магнита к нулю. Сигналом для усилителя, регулирующего 
ток в обмотке корректирующего магнита, является усиленный сигнал 
от датчика положения. Сводя к нулю отклонения пучка от оси вакуум-
ной камеры в последовательно расположенных по периметру ускорите-
ля точках, можно осуществить проводку пучка через всю камеру ус-
корителя. Вычисления показывают, что число таких участков регули-
рования может быть не очень велико. Так для ускорителя на 1000 Гэв с 
периметром равным 17 км при возможных погрешностях в магнитном 
поле требуется всего 250 участков. 

В модели кибернетического ускорителя периметр кольцево-
го магнита разбит на 20 участков. Таким образом в пределах каждого 
периода бетатронных колебаний орбита частиц корректируется пример-
но в трех точках. 

Из всего комплекса экспериментов на модели кибернетического ус-
корителя наибольший интерес представляют те, которые должны про-
вeрить правильность расчетов основных параметров ускорителя и воз-
можность ускорения протонов в малоапертурной вакуумной камере. Не 
менее важны также эксперименты по проверке работоспособности ре-
альной системы автоматического регулирования совместно с пучком 
протонов. 

Как показали проведенные эксперименты, параметры фокусирую-
щей системы обеспечивают такую фокусировку пучка от инжектора 
(при токе 1 ма) , что весь пучок, инжектированный в ускоритель, со-
вершает первый оборот без потерь. Д л я проводки пучка использова-
лись датчики положения и интенсивности, расположенные вдоль ионо-
провода и кольца ускорителя. Включение системы автоматического ре-
гулирования по участкам на «первом обороте» привело после преодоле-
ния трудностей (связанных с помехами от прямого попадания пучка на 
электроды датчиков) приблизительно к пятикратному уменьшению пер-
воначального отклонения пучка от оси камеры. 



Первоначальныe отклонения пучка от оси вакуумной камеры, обу-
словленные неточностью расстановки магнитых блоков и нейдеально-
стью их магнитных характеристик, достигали 3-4 мм. Включение си-
стемы регулирования «по участкам» сокращалo эти отклонения до ве-
личины меньшей 1 мм. Д л я получения значительно большего первона-
чального отклонения напряженность магнитного поля в одном из маг-
нитных блоков была снижена приблизительно на 10% путем замыкания 
части обмотки. Включение системы регулирования позволило автома,-
тически выправить также и это возмущение. Величина подавления от-
клонений определялась выбранным, коэффициентом усиления в зам-
кнутом кольце регулирования. 

Н а модели кибернетического ускорителя в настоящее время осу-
ществлено ускорение протонов до энергии 700 Мэв, т. е. до энер-
гии, которая могла быть еще получена без системы коррекции насыще-
ния электромагнита. Инжекция протонов производилась при постоян-
ном магнитном поле; после циркуляции в течение нескольких сотен мик-
росекунд начинался рост магнитного поля. 

Значительный интерес представляет факт ускорения протонов в 
ускорителе с электромагнитом, и м е ю щ и м сравнительно большую нели-
нейность магнитного поля, характерную для электромагнита с высоким 
градиентом. 

На модели кибернетического ускорителя предполагается дополни-
тельно осуществить широкую программу исследований. Однако, уже 
проведенные эксперименты подтвердили возможность ускорения пуч-
ков протонов в ускорителях с малоапертурными камерами, а также реа-
лизуемость работы систем автоматического регулирования параметров, 
определяющих бетатронные колебания, по данным о положении пучка 
частиц в ускорителе (рис. 3). 

Вопросам регулирования положения пучка частйц в модели уско-
рителя на 1 Гэв при помощи управляющей вычислительной машины 
типа «Днепр» будет посвящен на настоящей конференции отдельный 
доклад группы сотрудников Радиотехнического института АН СССР, 
возглавляемой А. А. Васильевым. Поэтому мы ограничимся лишь за-
мечанием, что эти исследования привели к вполне удовлетворительным 
результатам при очень скромных параметрах ЭВМ «Днепр». Эта ма-
шина имеет среднее быстродействие всего 8 - 1 0 тысяч операций в се-
кунду и емкость оперативного запоминающего устройства до 4096 
слов. 

Основные параметры большого кибернетического ускорителя, со-
ответствующие трем Этапам, приведены в следующей таблице: 



Таблица 1 

Параметры ускорителя I этап II этап III этап 

1 Энергия эжекции (Гэв) 500 1000 4000-5000 
2 Интенсивность (прот/сек) 2.1012 3.1013 1013 

3 Диаметр (м) 5435 5435 5435 
4 Максимальное магнитное поле (кгс) 8 16 6 0 - 8 0 
5 Апертура 40×66 мм2 40×66 мм2 Ø66 мм 
6 Вес электромагнита (т) 18000 18000 60 тн 

сверхпр 
7 Частота повторений (имп/мин) 10 20 5 
8 
9 

Прирост энергии за оборот (Мэв) 12 56 60 8 
9 Энергия инжекции в главном кольце (Гэв) 6 18 18 

10 Число бетатронных колебаний 34,25 34,25 34,25 11 
Число сигнальных электродов 264 264 264 

12 Число корректирующих магнитных линз 528 528 528 
13 Частота ускоряющего напряжения (Мгц) ~120 ~120 ~120 

Очевидно, в первую очередь надо будет сосредоточить усилия на 
создании сильнофокусирующего электромагнита с железным сердечни-
ком с максимальной напряженностью магнитного поля в 16 килоэстед. 
Однако, все проектирование должно вестись так, чтобы впоследствии, 
когда возможности нашей криогенной техники существенно возрастут, 
можно было бы, после соответствующей подготовки, к которой мы уже 
приступили, магнитные блоки обычного типа заменить на сверхпроводя-
щие устройства, которые позволили бы в той ж е вакуумной камере 
получить максимальные напряженности магнитного поля до 6 0 - 8 0 ки-
лоэрстед и, таким образом, получить пучки ускоренных частиц с энер-
гией до 4 0 0 0 - 5 0 0 0 Гэв. 

Естественно, что наличие криогенных установок сделает целесооб-
разным рассмотрение вопроса и о снижении в.ч. потерь в ускоряющих 
станциях. 

Собственно говоря, еще до начала реализации «железного» вари-
анта электромагнита надо сделать проекты трех этапов сооружения 
ускорителя на 500 Гэв, 1000 Гэв и 4 0 0 0 - 5 0 0 0 Гэв для того, чтобы 
впоследствии переход к большому ускорителю потребовал минимум вре-
мени и затрат. 

В заключение разрешите познакомить Вас с несколькими рисунка-
ми, дающими представление о проекте кибернетического протонного 
синхротрона на 1000 Гэв (рис. 4, 5, 6). Изучение этого вопроса с технико-
экономической стороны привело нас к выводу, что наиболее целесооб-
разным будет размещение главного кольца в подземном туннеле, выпол-
ненном по методам, разработанным и реализованным при строительстве 
Московского метрополитена глубокого заложения. Имеется в виду ис-
пользовать проходческие «щиты» с кольцевыми железобетонными эле-
ментами, являющимися стенками цилиндрической части туннеля. При-
мерная стоимость погонного километра туннеля составляет около 1 млн. 
рублей. 

Если будут приняты соответствующие решения, то, я полагаю, что 



у с к о р т е л ь на 1000 Гэв мог бы быть реализован к концу семидесяты годов, а на 5000 Гэв - примерно десятью годами позже. 

От всей души желаю всем присутствующим на этой конференцин быть либо участниками, либо свидетелями этих событий. 
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Рис. 1. Общий вид модели кибернетического ускорителя. 

Рис, 2. Вид участка модели кибернетического ускорителя, 



Рис. 3. Область (по радиусу), в которой может перемещаться пучек (не заштрихо-
вана), до (а) и после (б) регулирования, Пучек смещается по обе стороны от оси ка-
меры до достижения границ (пропадание пучка). Буквой Д обозначена точка посереди-

не между границами. 

Рис, 4, Схема трех этапов проектирования ускорителя. 



Рис. 5. План кибернетического ускорителя. 

Рис. 6t Сечение тоннеля большого кольца, 


