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 Introduction 3.1.1

A ``ground-up'' CEPC Higgs Factory design methodology is described. The goals 
are to find: (i) optimal parameters, (ii) improved understanding (iii) a tentative lattice 
design. As illustration of the method, six chromaticity-corrected lattices, with cell 
lengths ranging from 45 m to 280 m, all with identical βy=2 mm or βy=10 mm 
intersection region optics, are designed and their properties compared. For simplicity 
only a single ``toy ring'', circumference (76 km), with one interaction point, and a single 
beam energy (120 GeV) is considered. For the cell-length optimization a figure of merit 
FOM (essentially integrated luminosity) is maximized consistent with a dimensionless 
fine tuning penalty function'' or figure of demerit FOD, not being allowed to exceed a 
conservatively chosen upper limit. The tentative recommendation from this 
investigation is that the optimal route is (except for obvious changes) to simply copy 
LEP: 80 m cell length and two-in-one single-ring operation. 

 A new circular e+e- Higgs factory can have significant luminosity advantages 
relative to LEP. One LEP parameter that CEPC must not copy is the luminosity of 
1032/cm2/s. Some guaranteed improvements (with their improvement factors) are: 
increased ring-radius x RF power product (3x5≈15); non-interleaved sextupoles (2); 
full-energy, top-off injection (5); more bunches (110/6≈15); improved intersection 
region optics (2). It would be double counting to simply multiply these factors. But, 
barring unforced errors, more than two orders of magnitude improvement is 
conservatively available. So, with these changes, luminosity in excess of 1034/cm2/s is 
assured, with little uncertainty or risk. 

Possible unforced errors'' that could jeopardize these luminosity improvement 
factors include too-short cell length, which causes excessively large fine tuning penalty, 
and local chromatic compensation, which requires strong bends adjacent to the 
intersection regions (IR). At the high Higgs factory energy the synchrotron radiation 
from these bends contains hundreds of kilowatts of hard x-rays. 
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 Two results from my 2015 IAS Higgs factory white paper 3.1.1.1

For my 2015 IAS Higgs Factory white paper [1] I determined a universal scaling 
relation for radiation dominated colliding storage rings shown in Figure 1. This graph 
was introduced primarily in reference to the choice of ring circumference.  As such it is 
not very important for the present paper, which concentrates on optimizing the cell 
length for constant circumference. In fact, the present paper investigates moving away 
from this nominal (constant dispersion) behavior (primarily by reducing cell length) to 
optimize the luminosity. 

 

Figure 1. Dependence of circumference on beam energy for radiation-dominated 
colliders. i.e. GeV-scale electron colliders, and TeV-scale proton colliders of magnetic 
field 12 T or 15 T. 

Of much greater importance for the present paper, also copied from my 2015 white 
paper, is Table 1, which compares past and future colliding beam rings on the basis of 
FOD=βy[max]/(l_c<D>) a ``figure of demerit'' introduced in that paper; here βy[max] is 
the maximum vertical beta function anywhere in the ring, l_c is the arc cell length, and 
<D> is the average dispersion. This formula is justified more fully later in this paper. 
Though having physical dimension 1/m, this FOD becomes dimensionless after 
multiplication by an (unknown) positioning length uncertainty, that reflects state-of-the-
art construction, positioning, and stabilization precision. The FOD figure of demerit is 
based on the assumption that construction, positioning, and stabilization uncertainties 
are comparable in all rings---though possibly improving due to improved technology 
over time. To the extent this is valid, the degree of conservatism of diverse storage rings 
can be compared just on the basis of dimensional analysis. The vindication for applying 
dimensional analysis comes from the degree of constancy exhibited by the entries in the 
last column of Table 1. The actually-measured values in the upper six rows vary from 
5.1 to 49, which can hardly be said to represent constancy. But both electron and proton 
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rings are represented, and the particle energies range over a much greater three orders of 
magnitude range. 

In preparing the present paper I came to realize that an appropriate name for this 
measure of ring sensitivity is ``fine tuning penalty''.  Having heard theorists 
emphasizing their disapproval of theories that required ``fine tuning'' for many years, it 
came to me that accelerator physicists have been facing up to fine tuning difficulties 
during the same era. Surely there are few instruments more finely tuned than a colliding 
beam.  My ``fine tuning'' epiphany reminded me of a line in the Moliere play, ``Le 
Bourgeois Gentilhomme''. Monsieur Jourdain, during a discussion of poetry and prose 
announces, ``Good heavens, you mean that for more than forty years I have been 
speaking prose without knowing it.'' So, as already stated, for parameter optimization, 
the fine tuning penalty provides a quantitative constraint on the storage ring sensitivity. 
Tentatively, based on measured values in the table, I have adopted FOD<50 as the 
maximum allowable fine tuning penalty. It will be easy, later, to haggle about the 
validity of the fine tuning penalty, for example replacing it by some other ring 
sensitivity measure. 

Table 1. Sampling of collider FOD's ("Fine Tuning Penalties") for previous and 
planned colliding rings, both p,p and e+e-, low and high energy. 

 

In describing the ``ground up'' optimization methodology, the ``fine tuning 
penalty'' will also be referred to as a ``figure of demerit'' (FOD) where, numerically, 
FOD is given by βy[max]/(l_c<D>). Hands-on experience with any particular ring 
suggests that increased βy[max] correlates well with increased tuning sensitivity. (A 
positional uncertainty at a βy=βy[max] quadrupole location produces a positional 
uncertainty proportional √(βy[max]) elsewhere in the ring, and proportional to βy[max] 
at all high βy locations.) The previously introduced transverse position uncertainty 
introduces another length.  

With the unknown position uncertainty being a length, the FOD itself has to have 
inverse length dimensionality. To cancel length-squared, a natural further factor, with 
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dimensions of inverse-length-squared, is the typical sextupole strength S needed to 
cancel the ring chromaticities. (This is why sextupoles are present in the ring, with their 
undesirable nonlinear aperture-limiting effects). Since sextupole strengths are not 
routinely available, it is convenient to replace S by the 1/(l_c<D>) factor, which scales 
proportionally. (This is because quadrupole q induced chromaticity q δ is cancelled by 
sextupole induced chromatic compensation -S<D>δ, where δ is fractional momentum 
offset, and q scales as 1/l_c. The ground-up methodology I recommend includes the 
following design principles for CEPC and FCC-ee: 

• Luminosity is a dependent variable, not an input parameter. 
• The ``ground-up'' methodology is incompatible with ``defined parameter''  

colliding beam ring design. For example, luminosity is treated as output,  
not input. 
• Circular colliders and linear colliders are not the same. This is not 
inconsequential; currently, by adopting linear-collider-like intersection region optics, 
neither CEPC nor FCC-ee intersection region designs have adequately appreciated 
this. 

• Transverse sensitivity, upper limit on fine tuning penalty; FOD< 50/m. 
(This may be too conservative. If so, it can be relaxed later.) 

• The Higgs Factory design problem is not chromatic mismatch of IR and 
arcs; it is the loss of off-momentum particles, for example due to the Telnov[2] 
effect.  

Though not exactly a ``design principle'' my preliminary ground-up design 
calculations suggest that local chromatic correction (with its strong bends, large 
dispersion, and hard x-rays aimed toward the detectors) are unnecessary. (Another 
quotation from a different Moliere play, ``Nearly all men die of their remedies, and not 
of their maladies.'' ) To understand this analogy it is necessary to think of chromaticity 
as the malady, and sextupoles as remedy. In this case the potentially lethal side effects 
of the sextupole medicine include both reduced dynamic aperture and hard x-rays 
incident on the IP detector. 

 Optimization variables 3.1.1.2

It is important to distinguish between independent and dependent variables. The 
main independent variables are: 

• l* =  (1/2) free length for detector [m] 

• l_c = lattice cell length [m] 

• *
y = vertical beta function at IP [m] 

• δ = fractional momentum offset [%] 
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•  The main dependent variables are: 

• L = actual luminosity [in units of 1034/cm2/s] 

• L'0 = luminosity per momentum acceptance 

• Δδ[max] = δ[max] – δ[min] 

• figure of merit,  

   FOM = l* x Δδ[max]/√(\ε_x ε_y) 

Rationale for this figure of merit: FOM encapsulates the most important lattice-
dependent ``useful'' (i.e. including l* factor) luminosity factors (other than β*

y). 

 

Figure 2. Qualitative luminosity dependencies. Luminosity vs momentum acceptance 
of the left, luminosity vs IR half-length l* on the right. 

Qualitative luminosity dependencies are sketched in Table 2. Standard luminosity 
formulas (which ignore momentum acceptance) yield the luminosity labeled L_ideal in 
the figure on the left. It has always been known that actual luminosity also depends on 
momentum acceptance.  As the figure indicates, the actual luminosity initially increases 
linearly with momentum acceptance, with slope L'0. As noted in the figure, it was 
Telnov[2] who first emphasized that the increasing importance of beamstrahlung with 
increasing beam energy places increasing demands on the momentum acceptance. 

The target for the optimization is to maximize FOM, consistent with limiting FOD. 
The strategy is to perform multiple scans varying one input parameters while holding 
constant the other input parameters, including β*

y. Successive scans establish ``best so 
far'' values of detector half-length l* and cell length l_c, without exceeding FOD=50/m.  

Major variables held constant for this preliminary study have been: 
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• Ring circumference C ≈ 75 km (midway between CEPC and FCC-ee). 

• Beam energy E0=120 GeV. 

• All lattices investigated are ``toy'' lattices consisting of just one intersection 
region, inert straight-section opposite, and two dispersion-suppressed arcs. 

• Just two sextupole families, tuned to cancel both horizontal and vertical 
chromaticities. Since there are no other nonlinear elements there are no 
sextupole strengths to be optimized. 

• Any benefit from more sophisticated optics, such as more sextupole families or 
local chromaticity compensation, will necessarily increase the luminosity. 
Parameter scan policies include: 

• When scanning input variables, hold β*
y constant, but not necessarily small (to 

avoid lattice tune-up difficulties). β*
y can be optimized later. This is opposite to 

the ``defined parameter'' approach, which obstinately fixes β*
y to a very small 

value, such as 1 mm, thought to be necessary to produce a specified luminosity. 

• When scanning cell length l_c, the intersection region optics are held constant. 
The number of arc cells is adjusted to hold circumference C (more or less) 
constant. 

• When scanning free length l* the arcs are held constant, except for tweaking 
phase advance per cell to adjust β*

y and sextupole strengths to cancel 
chromaticities. 

One aspect of ground-up design is probing to find favorable and unfavorable 
dependencies. Inferences gleaned so far include: 

• One may as well have the game as the name; high beta points in every arc cell 
can be exploited without doing more harm than one, or a few, points with the 
same high beta values; e.g. in local chromaticity-correction sectors. 

•  It is not necessary to ``match'' the arc beta functions. Systematic βy ``beats'' are 
found to be harmless. This is the only radical deviation from orthodoxy 
suggested in this paper. 

• Also suggested, though not proved in general, is the observation, with best-so-
far parameters, that β*

y can be changed over a substantial range without much 
change in momentum acceptance. 
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 Six storage ring designs with varied cell length 3.1.2

 Chromatic correction in the arcs.  3.1.2.1

Non-interleaved sextupole, arc-only chromatic compensation has been based 
entirely on arcs consisting of repetition of enough identical five-cell sectors having the 
following fivecell pattern to make two arcs of the proper length: 

   fivecell:line=( 

         .0   quadhf,sext1,bend,quadvf,  

         .125 quadvf,      bend,quadhf,  

        ------------------------------------- 

         .25  quadhf,      bend,quadvf,  

         .375 quadvf,      bend,quadhf, 

        ------------------------------------- 

         .50  quadhf,sext1,bend,quadvf,  

         .625 quadvf,sext2,bend,quadhf, 

        -------------------------------------  

         .75  quadhf,      bend,quadvf,  

         .875 quadvf,      bend,quadhf, 

        -------------------------------------  

        1.00  quadhf,      bend,quadvf,  

        1.125 quadvf,sext2,bend,quadhf ) 1.25 

The numbers listed in the margins are tune advances to that location, from the 
beginning of fivecell.  All phase advances per cell are very close to π/2$, but tweaked to 
control beta functions at the IP. There are just two sextupole families, with strengths 
sext1 and sext2. Phase advances between matched sextupoles are very close to π, as 
required to cancel on-momentum sextupole kicks.  

Zooming of ring sectors for tuning the six ``toy lattices'' for this study has been 
possible using the following simple ring design. 

 arc : line = ( dsin, 35*fivecell, dsout )  
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 irtoarc : line = ( dr01p,qir1p,dr12p,qir2p,dr23p,qir3p, 

                    qir1, dr12, qir2, dr23, qir3) 

arctoir : line = ( -irtoarc ) 

ring : line = ( irtoarc, arc, farstraight, arc, arctoir ) 

The ``35'' entry in arc is appropriate for lattice CEPC4.0. The corresponding 
entries for other lattices are given in a later table. Here dsin and dsout are dispersion 
suppression, while other elements starting with ``d'', such as dr01p, dr12p etc. are drifts. 
Elements qir1p, qir2p, etc. are quadrupoles. To change cell-length (for this 
investigation) all arc element lengths (including dispersion suppression and far straight) 
are scaled proportionally, with all quads varying inversely (to hold phase advance per 
cell almost constant). Optically this resembles zooming a telephoto lens. But (also like 
the final stage of a zooming telephoto lens) the intersection region optics are held fixed. 

 Scans leading to best performance (so far) 3.1.2.2

My preliminary parameter scans have been organized as illustrated in 

Figure 3, and described in the following list. Qualitative observations made during these 
runs are indicated by circled numbers. 

• Scan I, is made ``easy to tune'' in spite of the low value β*
y =2 mm, by the small 

free length l*=0.8 m (circled 1).  Even so, with lattice tune-up routines not yet 
developed, the tunes were not carefully controlled. 

• Scan II becomes ``hard to tune'' for large l*. To relieve this β*
y is increased to 10 

mm. (circled 2).  A surprise during this scan was that momentum acceptance 
increased (or, at least, did not decrease) with increasing l*. 

• Scan III is to find best case so far; l_c=85 m, l*=2.0 m.  (circled 3). To make 
tuning easier β*

y was increased to 10 mm. 

• Scan IV is to adjust β*
y (circled 4) surprisingly, momentum acceptance is nearly 

independent of β*
y. But (obviously) FOD increases strongly above its maximum 

allowable value, as β*
y is reduced towards 1 mm. 
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Figure 3. Parameter scans performed so far. Qualitative comment points mentioned in 
the text are tagged by circled numbers. 

 Parameters of the six test lattices 3.1.2.3

Parameters for lattices used in Scan I are given, above the double line, in Table 2. 
The shaded row represents nominal ``constant dispersion'' radiation-dominated 
extrapolation from LEP. Fixed Scan I parameters are β*

y =2 mm, l*=0.8 m. Parameters 
for Scan IV, varying β*

y with l*=2.0 m fixed, are given below the double line in Table 2. 

In column 4, num5 is the total number of five-cell chromatic modules in each of 
the two main ring arcs; values of num5 were adjusted to keep the total ring 
circumference (more or less) constant for all lattices. Vertical β*

y, ring and (nominally 
90 degree) phase advance per cell, were held constant by tweaking the phase advance 
per cell, as the cell length was changed. Both integer and fractional parts of the Q_x and 
Q_y tunes were established in the process.  Ideally, for this study, the fractional parts 
would have been held fixed, but there was no fine tuning provision for this. 

In all cases the two sextupole currents, for the sext1 and sext2 families were 
adjusted for zero chromaticity in both planes.  
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Table 2. Parameters for Scan I and, below the double line, for scan IV.  The shading in 
the CEPC5.0 row, in this and some subsequent tables, indicates that this row is the 
result of “nominal”, constant dispersion, extrapolation from LEP. 

 

 Nonlinear ring optics 3.1.2.4

Sextupole strength dependent parameters for Scan I, with β*
y =2 mm are plotted in 

Figure 4. 

Figure 4. Parameter depemdencies imposed by chromatic correction for β*
y =2 mm. 

The ring vertical beta function could not be reduced below 0.004 m for 42 m cell 
length. Note that the achromatic sextupole strengths are independent of β*

y. This means 
the chromaticity due to IR optics is relatively unimportant. This permits β*

y to be made 
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``arbitrarily'' small, without much detuning the ring optics. (It can be observed that) 
sextupole strengths vary inversely with horizontal emittance. As a result the dynamic 
aperture tends to ``track'' the emittance. This dependence limits the ability to increase 
luminosity by decreasing the cell length---increasing the luminosity necessarily 
decreases the dynamic aperture.  

 Ring emittance and acceptance performance 3.1.3

Acceptance and emittance are directly commensurate. Emittance must be less than 
acceptance for an injected beam to be stored without loss. Raw acceptance plots 
(irrespective of beam emittances) for the six test lattices are shown in Figure 5. 

 

Figure 5. Raw acceptance plots (irrespective of beam emittances) for the six toy lattices. 
``Cartoon'' annotations are mnemonics indicating the challenges of ``putting things'' in 
small containers. 

The dynamic x, y product aperture is many orders of magnitude greater with 282 m 
cell length than 42 m cell length. For a large ε^(emittance) beam, for example for a 
muon collider, the cell length would be chosen as large as possible. This plot shows, 
however, and it is born out by tuning experience, that decreasing l_c causes the lattice 
to be harder to tune. This is reflected in the fine tuning penalty FOD increasing strongly 
as l_c is reduced. This is easily understandible in terms of lattice dispersion, which 
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scales as l_c^2. Since the sextupole strengths needed for chromatic correction scale 
inversely with dispersion, the dynamic aperture decreases strongly with decreasing l_c. 

But radiation damping shrinks our electron beams to micron scale transverse size 
at the IP, mm scale elsewhere, allowing our acceptance to be much smaller. To account 
for this it is conventional to plot the acceptances in units of the equilibrium beam 
sigmas, which is done in Figure 6. (This is made risky, especially as regards vertical 
aperture, by the fact that the vertical emittance itself is the least reliably known beam 
parameter.) 

It can be seen that large cell length is still strongly favored. But the values of σ_x 
and σ_y are different for the six test lattices. To maximize the luminosity we need to 
minimize σ_x and σ_y (by reducing the cell-length) consistent with maintaining  

acceptably small fine tuning penalty FOD.  Acceptances are plotted in units of beam 
sigmas for the six toy lattices in Figure 6. 

 

Figure 6. Acceptances plotted in units of beam sigmas for the six toy lattices. 

Emittance and acceptance parameters for the six lattices are tabulated in Table 3. 
CEPC20.0 approximates the August 2015 CEPC design. (As indicated by the shaded 
row).  CEPC5.0 approximates to constant dispersion scaling from LEP and the linear fit 
in Figure 1. The emittance ratio in these tables, ε_y/ε_x=0.068 is determined from the 
beam-beam saturated-tuneshift model. (Not by ad hoc assignement of a numerical value, 
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such as m=0.003, to a ``coupling coefficient'' which, in theory, scales as 1/γ, and should 
be completely negligible.) 

As explained previously (and in greater detail in my earlier CEPC white paper[1], 
for conservative transverse insensitivity, the fine tuning penalty FOD should be less 
than 50. Values of FOD for the six test lattices are evaluated in Table 4. 

Table 3. Emittance and acceptance parameters for the six test lattices; above the double 
line for Scan I, below for Scan IV. 

 

Table 4. Factors entering the fine tuning penalty function FOD for the six test lattices; 
above the double line for Scan I, below for Scan IV. 

 

 Scan I cell length optimization 3.1.3.1

Scan I results are plotted in Figure 7. This plot is shown more as an example than 
as a definitive result. It shows how maximizing the luminosity while limiting FOD is 
supposed to work. Superficially the maximum luminosity is for the CEPC10.0 case. But 
the maximum fine tuning penalty is badly exceeded in this case. The nominal optimum 
is where the green dashed FOD curve crosses the black dotted FOD=50/m constant line. 
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Table 5. FOMs, FODs, luminosities and other parameters for the six test lattices, six 
test lattices; above the double line for Scan I, below for Scan IV. 

 

 

Figure 7. Plot of luminosity (data points) and fine tuning penalty function FOD 
(smooth dashed green curve) for Scan I. The maximum value of luminosity, consistent 
with keeping FOD below its limiting value is given by the point where the dashed green 
curve crosses the black dotted line. 

 Scan IV dependence of momentum acceptance on β*
y. 3.1.3.2

Figure 8 shows, as expected, comfortably large acceptances for βy
* =10 mm. This 

is promising for ``top-off'' injection. More surprising is Figure 9, which shows 
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acceptances for the same lattice, but with β*
y =2 mm. The jagged contours are indicative 

of nearby nonlinear resonances. But the range of momenta for which the aperture is 
acceptably large is as great as the β*

y =10 mm range shown in the previous figure. This 
means one can reduce β*

y almost arbitrarily without seriously harming the momentum 
acceptance. Of course βy^(max) α 1/βy

*, which ``blows''  the ``fine tuning penalty'' 
budget for small β*

y. 

 

 

Figure 8. Dynamic aperture plots for lattice CEPC10.0 with β*
y =10 mm for a range of 

beam momentum offsets. 
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Figure 9. Dynamic aperture plots for lattice CEPC10.0 with β*
y =2 mm for a range of 

beam momentum offsets. Though jagged, indicating nearby nonlinear resonances, the 
momentum acceptance is as good as in the previous β*

y =10 mm case. 

 Best so far lattice functions; l_c = 85 m, l*=2.0 m 3.1.3.3

Lattice functions for the CEPC10.0 lattice with β*
y=10 mm are shown in Figure 

10.For increased luminosity β*
y would need to be decreased from this value. But the 

FOD value is 1800/(85 x 0.278)=76 m which already exceeds the nominal 50/m 
maximum. If the FOD=50/m limit is too conservative, then the luminosity can be 
increased by reducing β*

y. 

The left column of graphs in Figure 10 show a short lattice section starting at the 
IP. The graphs on the right show the entire ring. The middle figure on the right indicates 
the beta function mismatch mentioned earlier. This mismatch has seemed to be 
harmless in tracking studies. This has been the basis for my phrase ``we may as well 
have the game as the name'', meaning that having large beta functions at locations in 
every cell is not essentially worse than having large beta functions at just a few 
locations (for example in a local chromatic correction section). 

 Predicted CEPC10.0 Luminosities: Single Ring Optics 3.1.4

Luminosity predictions for the CEPC10.0 lattice are shown in Table 6. The entries 
in this (and following) tables ignore the FOD fine tuning penalty by assuming that β*

y 
can be reduced arbitrarily. As such they are appropriate for comparisons with 
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luminosity predictions that assume the FOM<50/m fine tuning penalty limit is too 
conservative (perhaps simply replacing this FOM by βy(max)). Seemingly favorable 
choices (e.g. because the number of bunches is not too large) are indicated by shaded 
rows. Two beams in one ring is assumed. Also the possibility of bunch separation tricks, 
such as bunch trains with crossing angle, is not exploited.  Pretzel beam separation 
requires the number of bunches N_b not to exceed half of the horizontal tune, which is 
223/2=110 for CEPC10.0. For the Higgs energy (120 GeV) and above, this excludes 
entries with β*

y <2 mm (at the top of the table). Since the fine tuning penalty function 
FOD limit is not respected for many entries in this table, some luminosities are overly 
optimistic. 

Table 7 is a less busy table, showing only luminosities with the number of bunches 
required to not exceed 110. Where appropriate the luminosities are de-rated to account 
for the reduced number of bunches. 

 Low energy luminosities 3.1.4.1

Luminosity at energies below the Higgs energy are given in Table 8. Contrary to 
common lore, two-beams-in-one-ring operation at the Z0 pole, can yield very large 
luminosity, such as L=4.3 x 1035/cm2/s. 
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Figure 10. Lattice functions βx, βy, and dispersion D plots for the CEPC10.0 lattice. 
Short ranges starting at the IP are on the left, full ring plots are on the right. For these 
plots β*

y =10 mm, which is undesirably large for maximizing luminosity, but 
comfortably small for limiting the fine tuning penalty function. 

 

 

 

 



 
 

 

36 

Table 6. Luminosity predictions for the CEPC10.0 lattice. Beam energy increases from 
row to row between the horizontal lines, between which the IP beta function β*

y is held 
fixed.   Ideally tuned, the entries in the three luminosity columns (corresponding to RF 
power (LRF ) beam-beam tune shift (L bb), and beamstrahlung ( Lbs_(trans) limits) would 
be equal.  When unequal, the lowest of the three values has to be accepted as the actual 
luminosity. 

 

Table 7. Stripped down version of Table 6, with bunch number limit imposed. 
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Table 8. Luminosities at low energies. 

 

 Recapitulation 3.1.5

 Qualifications 3.1.5.1

• A ring with only one IR has been investigated (to make tuning easier). 
Luminosities per IP are likely to be about twenty percent smaller with two IP's. 
Also tuning will be more difficult with two IP's. 

• Only zero length quadrupoles have been used. This is an issue only for l*=0.8, 
which is too small for a practical detector in any case. 

• A major uncertainty concerns the fine tuning penalty FOD figure of demerit. 
The FOD<50/m used in this study has been very conservative. If it were valid to 
simply use an 10,000 m upper limit on βy^(max) as FOD (which is what existing 
CEPC and FCC-ee designs seem to assume) then luminosity approaching 
1035/cm2/s would be predicted.  

• The parameters in this study are not entirely self-consistent. The worst 
discrepancy is a factor of 3 difference between β*

x used in calculating the 
luminosity and the value actually provided by the lattice optimization procedure. 
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• Though pretzel separation of the two beams in one ring has been assumed, the 
simulations have not, in fact, had pretzel orbits.  

 Conclusions 3.1.6

The original intent of this white paper was to develop a ``ground up'' design 
methodology. The mere testing of this methodology has led to significantly improved 
understanding and the following tentative conclusions: 

• Local chromaticity compensation is unnecessary. Two families of non-
interleaved sextupoles in the arcs are sufficient to correct both IR and arc 
chromaticity while keeping acceptably large momentum acceptance. 

• With proper choice of vertical tune, momentum acceptances in excess of 3 
percent are achievable. 

• Optimal values of vertical tune Q_y are close to half integers. Improved 
momentum acceptance there seems to be due to the detuning of off-momentum 
particles of pulling Q_y(δ) away from (rather than accross) the necessarily- 
nearby |cos(μ_y)|>1 precipice, as δ deviates from zero with either sign. 

• With no need for local chromaticity compensation there is no need for finite 
dispersion nor bends near the IP, vastly reducing synchrotron radiation incident 
on the detector. 

• The optimal cell length so far is 82\,m. 
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