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Abstract

Coherent synchrotron radiation (CSR) has a significant
impact on electron storage rings and bunch compressors,
inducing energy spread and emittance growth in a bunch.
Calculating the effects of CSR is computationally expensive,
severally limiting the use of simulations. Here, we explore
utilizing neural networks (NNs) to model the 3D wakefields
of electrons in circular orbit in the steady state condition.
NN models were trained on both Gaussian and more general
bunch distributions, which evaluate much faster than physics-
based simulations. Here, we explore how well the models
generalize, by testing their ability to: 1) extrapolate to Gaus-
sians with smaller/larger widths 2) predict on distributions
never encountered before (out of distribution generalization)
using smoothed uniform cubes. We see the models are able
to generalize, which makes them potentially useful in the de-
sign and optimization of accelerator apparatuses by enabling
rapid searches through parameter space.

INTRODUCTION

Coherent Synchrotron Radiation (CSR) can significantly
alter the distribution of electrons moving in circular orbit,
such as in an electron storage ring or a bunch compressor.
For emitted wavelengths, 4, much larger than the bunch
size, then at A-resolution the bunch looks point-like, and the
N, electrons look like they’re all undergoing nearly identi-
cal motion. Consequentially, the radiation emitted by these
electrons are approximately in phase and adds up coher-
ently, resulting in an intensity of © (N2). This can signif-
icantly distort the bunch phase space distribution. In the
ultra-relativistic limit, this primarily causes the tail and cen-
ter of the bunch to lose energy while the head gains, leading
to an increase in emittance.

The electromagnetic (EM) field produced by a charged
point particle in motion is given by the well-known Liénard-
Wiechart (LW) fields [1-3]:
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where the ret. signifies that the expression must be evaluated
at the retarded time to ensure causality.
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The total force an electron experiences due to the radiation
emitted by other electrons in the past is called the wakefield,
Wi(r,¢). To find it, one must integrate the Lorentz force,
F(r, 1), generated by the LW fields in Egs. (1) and (2) along
the past light cone:

W(r) = fA S aq, OHFE,Y)| , 3)

ret.

where A signifies the past light cone, time in the integrand
is the retarded time and A (r’,¢’) is the number density. The
computational storage needed to do the evaluations at the
retarded times and the computational expense of © (N2)
interactions, with typical bunch sizes of N, ~ 1019, for
each time step makes designing practical software for CSR
calculations a formidable task. To deal with the complexities,
many approximations are commonly used, such as the 1D
approximation [4]. Even in the specific case of circular
motion in the 1D approximation, though, the incorporation
of CSR effects in a simulation can increase the running
time of the simulation by an order of magnitude [5]. This
makes many conventional simulations far too slow for some
applications, such as a thorough exploration of parameter
space to optimize accelerator component design. With the
production of smaller bunch sizes in accelerator facilities,
the need for a fast and accurate account of 3D CSR has
become important.

Machine learning (ML) can speed up simulations to pro-
vide real-time virtual diagnostics which can be used for
real-time adaptive beam control. For example, in [6] the
first approach to adaptive ML was demonstrated combining
a deep learning with adaptive feedback [7] for automatic
control of the longitudinal phase space of the LCLS FEL
electron beam. They can also be used to speed up accelera-
tor simulations [8, 9]. Convolutional neural network (CNN)
computations utilize matrix multiplications and several par-
allelized operations and with modern GPU’s, which are
optimized for such tasks, can be performed rapidly. Hence,
a CNN trained on CSR simulations data can lead to very fast
computations.

Previous work has investigated the use of ML surrogate
models to speed up CSR calculations. Mayes and Edelen
used a dense neural network in the 1D case to speed up CSR
calculations [10]. CNN’s in particular have been utilized in
the 2D transient case [11].

Here, we take previous CNN models trained to predict
the fully 3D wakefields generated by electrons at steady-
state [12] and see their generalization ability. Specifically,
we investigate at how well it performs at extrapolating to
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Gaussians widths beyond their training data. In addition,
we test how well it performs on out of distribution (OOD)
generalization, using smoothed uniform cubes as the elec-
tron distribution, of which the model has never encountered
before.

DATA

The data used here comes from the conventional (i.e, non-
ML) software PyCSR3D, whose physics formulation is based
on the Hamiltonian approach in Synder-Courant theory de-
veloped by Cai and Ding [13—15]. It is assumed the bunch
is in a steady state condition (i.e, not transient) and that the
shielding suppression of lower frequencies from the metallic
cavity is negligible.

The Frenet-Serret coordinates with the reference path of
circular motion in the horizontal plane is used. Here, the
longitudinal component s is the arc length, the horizontal x
is the radial outward distance from the circle, while y is the
vertical distance from the horizontal plane.

For training, two datasets of distributions and wakefields
were constructed, the first being referred to as the Gaussian
Dataset, which consisted of 500 Gaussians distribution and
their wakes. The second one, the General Dataset, was de-
signed to be more varied with each electron distribution
being a normalized sum of 2-25 Gaussians, with means
near the center and the standard deviations with the same
range as the Gaussian Dataset (see Table 1). Approximat-
ing a distribution as a sum of Gaussians is used in kernel
density estimation. This General Dataset contained 500 in-
stances. For both datasets, an 85/15 % train/test split was
done. All field configurations were represented as 3D arrays
of dimensions 128 x 128 x 256, with the final index being
the s component. It was given twice the resolution as the
transverse components as it is usually the most important
component of the three. For all sets, the bending radius is
p =1mand y = 500.

Two more sets were used to evaluate generalization ability
of the models. The first was a dataset of Gaussians, with
fixed 0, = 0, = 6 um and going from o, = 1 pm to 18 um,
with 100 examples. This will be used to test how well the
models extrapolate.

The second set tests the OOD generalization. Let’s con-
sider the probability density function (PDF) for a 1D uniform
distribution between two points, @ and b. It can be expressed
as the difference of two step functions, each centered at a
and b. This can be smoothed by replacing the step functions
with sigmoids: f(x) = h]fa lﬂlﬁ - ﬁ) We call a
‘smoothed uniform cubical distribution’ one that uses has
independent PDFs of f (x) for all 3 components of i = x,y, s,
and all have the same widths. (Note: the use of curvilinear
coordinates means even without smoothing it’s only approx-
imately a cube in physical space). The smoothing was done
to improve the numerics of the simulation. In addition, a
smooth drop-off in density is a more realistic description of
actual particle beams. A dataset of 100 examples with side
lengths of / = 4 pym to / = 50 um.
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Table 1: Trainin/Test Dataset Characteristics

Gaussian General
Dataset Dataset
Physical x; € (—48,48) ym  Same as
Range i=8Xxy Gaussian Dataset
Sum of 2 to 25
Distribution 7’_€S (xZ,y12) Hm Gaussians
Attributes Centered at 0 #; € (—-12,12) um
o; € (2,12) pm

MODELS
The models considered here will be labelled A-NN, which:

A-NN: A(r) - W(r) “4)
In terms of arrays, (128, 128,256,1) — (128, 128,256, 3).
This followed a U-Net architecture [16].

We first trained A-NN on the Gaussian Dataset, which
we’ll refer to as A-NN-Gauss. We then looked to see how
well what it learned transferred to the General Dataset. It
was then taken as a pre-trained model and then trained on
the General Dataset, with the final resulting model labelled
A-NN-Gen.

All the simulations, ML training and evaluations were per-
formed using a workstation with an Intel Xenon Plantinum
8268 CPU with 24 cores and an NVIDIA RTX A6000 with
48 GB RAM for its GPU.

RESULTS

To evaluate the models, we used the relative weighted
mean average error (RW-MAE) for each component i =
5, X,y

JPODIW] g (1) = Wiy (1)]
f d3rA(r) |Wtirue (r)]

RW-MAE, = , (B

where W;,.,,. (r)/WPfre 4 (1) is the true/predicted values for the
wakefield. The idea behind this is that we care most about
being correct where there are more particles, since W (r) is
being used to update the phase space. Moreover, this metric
differs quite a bit from the mean squared error loss (MSE)
used in training, thus providing a complementary measure
to the optimized MSE.

Gaussian Extrapolation

As can be seen in Fig. 1, the 1-NN-Gen model was good
at extrapolating to larger o ; with the RW-MAE error for each
component rising only slightly rising outside training/test
data. In contrast, the predictions for smaller ¢ did much
worse and rose rapidly as it was decreased. The lattice length
is 0.75 um (0.375 um) for the transverse (longitudinal) direc-
tion, thus it shouldn’t be surprising that when o ; approaches
this value the model ceases to be accurate.
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Gaussian Extrapolation - A-NN-Gen
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Figure 1: Gaussian Extrapolation - the performance of A-
NN-Gen with varying o .
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Figure 2: Smooth Uniform Cube - 1-NN-Gen predictions
for wakefield at y = 24.57 um.

Smoothed Uniform Cubical Distribution

Fits can be seen in Figs. 2 and 3, while the RW-MAE
for each component can be seen in Fig. 4. The results are
similar to the Gaussian case, where the models fail at small
widths, but become almost level at larger ones, rising only
slowly. Based on this and the previous results, it seems the
A-NN-Gen should only be used on distributions with widths
larger than ~ 10 pm.

CONCLUSION

We have developed surrogate ML models that can ac-
curately predict 3D wakefields of electrons in the steady
state condition. We investigated the generalization ability
of the models, specifically with the extrapolation ability on
Gaussian widths smaller/larger than encountered before and
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Figure 3: Smooth Uniform Cube - The 1D plots along the
x =0um, y = 24.57 um line.
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Figure 4: Smooth Uniform Cube - RW-MAE error as a
function of side lengh, .

the OOD distribution of smoothed uniform cubical distribu-
tion. These models offer the possibility of accelerator design
optimization through wide parameter searches.

Future work can incorporate physics information into the
networks, as previous work has shown this can lead to im-
proved predictions and better generalization [17, 18]. In-
creasing the variety of distributions in the training set can
increase the robustness of the 1-NN model. Finally, the
energy of the beam here has been kept fixed, but in future
work it can be included as an input to the networks.
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