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Gravitational-wave detectors are able to measure extremely small changes in the distances be-
tween two freely-falling test masses. This article describes the principle and the structure of laser
interferometer gravitational-wave detectors, including their sensitivities and the various types of
noises that could hinder measurements. We also describe a new type of terrestrial gravitational-
wave detector for low frequencies (0.01 ~ 10 Hz) based on recently-proposed superconducting in-
strumentation. Some preliminary results and ideas to mitigate Newtonian and seismic noises at
low frequencies in order to achieve sufficient sensitivity to observe astrophysical sources with this
detector are briefly reviewed. Finally, we describe the on-going effort by Korean scientists to sup-
port the Japanese gravitational-wave detector which is currently under construction, the Kamioka
Gravitational-wave detector (KAGRA).
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Fig. 1. Schematic illustration of Michelson interferome-
ter
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Fig. 2. Schematic illustrations of (a) Fabry-Perot res-
onator and (b) the resonator with PRM.
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ometer coupled with Fabry-Perot interferometer and
PRM/SRM.
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Fig. 4. (Color online) Test mass configuration for
SOGRO. Six magnetically levitated test masses are com-
bined to measure all six components of the curvature
tensor.
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Table 1. Detector parameters and expected sensitivities
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of SOGRO and aSOGRO.

Parameter SOGRO aSOGRO Method employed (/aSOGRO)
Each test mass M 5 ton 10 ton Nb square tube

Arm-length L 30 m 100 m Over “rigid” platform

Antenna temperature T' 1.5 K 0.1 K Superfluid helium/dilution refrigerator
Platform temperature T}, 15 K 1.5 K Qp =5 x 10°/107

DM frequency fp 0.01 Hz 0.01 Hz Magnetic levitation

DM quality factor Qp 5 x 108 10° Surface polished pure Nb

Signal frequency f 0.1 - 10 Hz 0.1 - 10 Hz

Pump frequency f, 50 kHz 50 kHz Tuned capacitor bridge transducer
Amplifier noise number n 20 2 Nearly quantum-limited dc SQUID
Detector noise 5}11/2 () 2x1072° Hz /2 2x 1072 Hz /2 Computed at 1 Hz
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optical lever for initial mirror alignment in KAGRA.
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