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1. Introduction

The Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB) solution [1,2] is a static black hole solu-
tion to the Einstein-conformal scalar system in four dimensions.1 A natural question to be asked is
whether this solution exhausts all the static black holes in this theory. The original uniqueness proof
[6,7] of static black holes in vacuum general relativity demonstrates the uniqueness of the boundary
value problem of the elliptic system between the event horizon and spatial infinity. In the BBMB
solution, the photon surface composed of (unstable) closed circular orbits of photons appears at
the points where the coefficient of the Ricci tensor vanishes in the Einstein equation. This feature
prevents us applying the global boundary value problem outside the event horizon. Nevertheless, the
uniqueness property of the static region outside the photon surface has been properly addressed in
Refs. [8,9], where it has been shown to be isometric to the BBMB solution.2

To prove the uniqueness theorem, two technically and conceptually distinct methods are currently
available. The BBMB uniqueness has been demonstrated in Ref. [8] by a way similar to Refs. [6,
7], relying on certain divergence identities. The other proof, in Ref. [9], follows the argument in
Ref. [13] based on the conformal transformation and positive mass theorem [14]. Meanwhile, for the
uniqueness of black holes in vacuum Einstein, Einstein–Maxwell, and Einstein–Maxwell–dilaton
systems, the argument by Robinson [7], which is regarded as a simplification of Israel’s proof, has
been reexamined in Ref. [15]. A significant achievement in Ref. [15] is to provide a systematic
way to derive the divergence identities exploiting the proper deviation from the Schwarzschild
metric. The obstruction tensors are of great use in finding a series of divergence identities even in

1 Assuming analyticity at the photon surface, it has been shown that a higher-dimensional counterpart fails
to admit a regular event horizon [3–5].

2 See Refs. [10,11] for similar arguments under an additional strong assumption on the photon surface, and
Ref. [12] for perturbative analysis in the vacuum Einstein system.
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stationary metrics [16]. Then, it is natural to ask if the procedure developed in Ref. [15] works in the
Einstein-conformal scalar system and also for the uniqueness proof of photon surfaces.

In this paper we apply the procedure of Ref. [15] to the Einstein-conformal scalar system. We
shall see that it indeed works, and find a new divergence identity with three parameters. Since the
derivation for the divergence identities found in Ref. [8] was rather non-trivial, the systematic way
to derive the identity will be of some help in similar situations for other systems. Finally, we shall
prove the uniqueness of the static photon surface again.

The rest of the paper is organized as follows. In Sect. 2 we describe the Einstein-conformal scalar
system and the setup of the current paper. In Sect. 3, we develop the procedure of Ref. [15] to the
Einstein-conformal scalar system. Finally, we will give a summary in Sect. 4. In the Appendix, we
present the relation to Ref. [8] in detail.

2. The BBMB black hole and setup

In this section we describe the Einstein-conformal scalar system and the basic equations for static
spacetimes. The action for the Einstein-conformal scalar system is represented by

S =
∫

d4x
√−g

(
1

2κ
R − 1

2
(∇φ)2 − 1

12
Rφ2

)
, (1)

where κ = 8πG is a gravitational constant. The field equations are given by(
1 − κ

6
φ2
)(

Rμν − 1

2
Rgμν

)
=κ

(
∇μφ∇νφ − 1

2
gμν(∇φ)2 + 1

6
(gμν∇2 − ∇μ∇ν)φ

2
)

(2)

and

∇2φ − 1

6
Rφ = 0. (3)

Taking the trace of Eq. (2), one finds R = 0, so that the field equations are simplified to(
1 − κ

6
φ2
)

Rμν = κ

(
2

3
∇μφ∇νφ − 1

6
gμν(∇φ)2 − 1

3
φ∇μ∇νφ

)
(4)

and

∇2φ = 0. (5)

This theory admits a static black hole solution (the BBMB solution) [1,2]. Its metric and scalar
field are

ds2 = −
(

1 − m

r

)2
dt2 +

(
1 − m

r

)−2
dr2 + r2d�2

2 (6)

and

φ = ±
√

6

κ

m

r − m
, (7)

where d�2
2 is the metric of the unit two-sphere and m is the mass, which is supposed to be positive.

The event horizon is located at r = m.
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One important feature of the Einstein-conformal scalar system is that it may admit points satisfying
φ = ±√

6/κ , where the prefactor of the Ricci tensor in Eq. (4) vanishes. This means that the effective
gravitational constant diverges. For the BBMB solution, this occurs precisely at the photon surface
r = 2m. As far as the outside region of the photon surface is concerned, the uniqueness property has
been settled to be affirmative [8,9]. As stated in Sect. 1, we will reexamine the proof of Ref. [8] and
then present an elegant way to find the divergence identities used in the proof.

The generic form of a static metric is written as

ds2 = −V 2(xk)dt2 + gij(x
k)dxidxj, (8)

where V is the norm of the static Killing vector. The event horizon is located at V = 0. We also
assume that the conformal scalar field is also static, φ = φ(xi). The Einstein equation becomes(

1 − κ

6
φ2
)

VD2V = κ

6

[
V 2(Dφ)2 + 2φVDiVDiφ

]
(9)

and (
1 − κ

6
φ2
)(

(3)Rij − V −1DiDjV
)

= κ

(
2

3
DiφDjφ − 1

6
gij(Dφ)2 − 1

3
φDiDjφ

)
, (10)

where Di and (3)Rij are the covariant derivative and the Ricci tensor with respect to the three-
dimensional metric gij, respectively. Note here that the front factors on the left-hand side of Eqs. (9)
and (10) vanish at the surface Sp determined by φ = ±√

6/κ =: φp.3 The equation for the scalar
field is written as

Di(VDiφ) = 0. (11)

The asymptotic conditions at infinity are given as

V = 1 − m

r
+ O

(
1

r2

)
, (12)

gij =
(

1 + 2m

r

)
δij + O

(
1

r2

)
, (13)

φ = O
(

1

r

)
. (14)

Equations (9) and (11) give us

Di[(1 − ϕ)Di	] = 0, (15)

where 	 := (1 + ϕ)V and ϕ := ±√
κ/6φ. Then, one considers �, the region bounded by Sp and

the two-sphere S∞ at spatial infinity. The volume integration of Eq. (15) over 
 shows the relation
between V and φ as [8]

φ = ±
√

6

κ
(V −1 − 1). (16)

3 After our proof is completed, one realizes that Sp coincides with the photon surface due to the uniqueness.
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Through Eq. (16), we see that V = 1/2 at Sp.
Using the relation in Eq. (16), the Einstein equation implies

D2v = 0, (17)

where v := ln V . Henceforth, we can regard v as a kind of radial coordinate. It allows us to decompose
the t = constant hypersurface 
 into the radial direction and the foliation of the v = constant surfaces
Sv. As a consequence, the (i, j)-component of the Einstein equation becomes

(2V − 1)(3)Rij = DiDjv + (4V + 1)DivDjv − gij(Dv)2. (18)

The curvature invariant is expressed in terms of geometrical quantities associated with Sv as

RμνRμν = 1

(2V − 1)2ρ2

[(
2(1 − V )kij − 1

ρ
hij

)2

+
(

−2(1 − V )k + 1 + 2V

ρ

)2

+ 8(1 − V )2

ρ2 (Dρ)2
]

+ 1

ρ4 , (19)

where hij is the induced metric of Sv, Di is the covariant derivative with respect to hij, and ρ is
the lapse function, ρ := (DivDiv)−1/2. Moreover, kij is the extrinsic curvature of Sv defined by
kij := hk

i Dknj, where ni is the unit normal vector to Sv on 
, and k is the trace part of kij. Using the
lapse function, ni is expressed by ni = ρDiv. From Eq. (19), at V = 1/2 we have to impose

Diρ|Sp = 0, kij|Sp = 1

ρp
hij|Sp , (20)

otherwise the curvature invariant diverges. The first equation of Eq. (20) shows that ρ is constant on
Sp. We write the constant as ρp := ρ|Sp . The second condition of Eq. (20) implies that the surface
Sp is totally umbilic. We can see that, under the conditions of Eq. (20), the Kretschmann invariant,
Rμνρσ Rμνρσ , is also finite at Sp [8].

In the proof of uniqueness in Ref. [8] the following divergence identities are presented without
any explanation:

Di

(
ni

ρ

)
= 0, (21)

Di

[
(ρk − 2)ni

(2V − 1)ρ
3
2

]
= − 1

2V − 1
ρ− 1

2 (k̃ij k̃
ij + ρ−1D2ρ), (22)

Di((kξ + η)ni) = −(k̃ij k̃
ij + ρ−1D2ρ)ξ , (23)

where ξ := (2V − 1)ρ− 1
2 , η := 2(2V + 1)ρ− 3

2 , and k̃ij is the traceless part of kij. By the volume
integration of these equations over � and the use of Stokes’ theorem, one gets one equality and two
inequalities. These inequalities are consistent with each other only when the equalities hold in both.
This gives the result that � is spherically symmetric. Finally, Ref. [17] shows that � is unique as the
BBMB solution.

Compared to Eq. (21), the derivation of Eqs. (22) and (23) is far from trivial. In the following we
will discuss a systematic way to derive them by applying the argument of Ref. [15].
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3. Generalization of the divergence equations and uniqueness

In this section we develop the systematic derivation of the divergence equations following Ref. [15].
The obtained divergence equation allows us to show the uniqueness of the photon surface of the
BBMB solution.

First, we wish to find a current J i satisfying

DiJ
i = (terms with a definite sign). (24)

The right-hand side is required to have a definite sign and to consist of a sum of tensors which vanish
if and only if the spacetime is the BBMB solution. A candidate for such a set of tensors is

Hij = DiDjv + 3V

1 − V
DivDjv − V

ρ2(1 − V )
gij. (25)

Note that this is a symmetric and traceless tensor. A simple calculation shows that Hij vanishes for
the BBMB solution. The expression for Hij in terms of geometric quantities on Sv is useful for later
discussions:

Hij = 1

ρ
k̃ij − 2

ρ2 n(iDj)ρ + 1

2ρ
(hij − 2ninj)

(
k − 2V

ρ(1 − V )

)
, (26)

where we used the Einstein equation. Using Hij, we can also construct a vector Hi which vanishes
for the BBMB solution as

Hi = −ρ2HijD
jv. (27)

Here we suppose that Ji has the form

Ji = f1(v)g1(ρ)Diρ + f2(v)g2(ρ)Div. (28)

The divergence of Eq. (28) is written by

DiJ
i = (f ′

1g1 + f2g′
2)DivDiρ + f1g′

1(Dρ)2 + f ′
2g2(Dv)2 + f1g1D2ρ

= −ρ3f1g1

[
|Hij|2 −

(
g′

1

ρg1
+ 3

ρ2

)
|Hi|2

]
+ ρf1g1DivHiS1 + 1

ρ2 f1g2S2, (29)

where

S1 := f ′
1

f1
+ f2

f1

g′
2

g1
+ (4V − 1)(3V − 1)

(2V − 1)(1 − V )
+ 4ρV

1 − V

g′
1

g1
, (30)

S2 := 2ρV

1 − V

g1

g2
S1 − 4ρV 2

(1 − V )2

g1

g2

[
ρ

g′
1

g1
+ 8V 2 − 7V + 2

2V (2V − 1)

]
+ f ′

2

f1
. (31)

The prime denotes differentiation with respect to each argument of the functions. In the second
equality of Eq. (29) we used4

D2ρ = −ρ3|DiDjv|2 + 3

ρ
(Dρ)2 + 1

2V − 1

(
DiρDiv − 4V

ρ

)
. (32)

4 With the aid of Eq. (18), direct calculation from the definition of ρ gives this.
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To control the sign of the right-hand side of Eq. (29) we require S1 = S2 = 0. Following Ref. [15],
to have decoupled equations we suppose that g1 and g2 have the form

g1 = −cρ−(c+1), g2 = ρ−c, (33)

where c is an integration constant. Then, we have two ordinary differential equations for f1 and f2:

f2 + f ′
1 +

[
(4V − 1)(3V − 1)

(2V − 1)(1 − V )
− 4V (1 + c)

1 − V

]
f1 = 0, (34)

f ′
2 + 4cV 2

(1 − V )2

[
8V 2 − 7V + 2

2V (2V − 1)
− (c + 1)

]
f1 = 0. (35)

The solutions are given by

f1 = 1

4
(2V − 1)−1(1 − V )1−2c(a + b(2V − 1)2), (36)

f2 = 1

4
(2V − 1)−1(1 − V )−2c [(a + b)(2cV − 2V + 1) − 8bcV 2(1 − V )

]
, (37)

where a and b are integration constants. Using the fact that

1

2

∣∣2ρ2Hi[jDk]v − gi[jHk]
∣∣2 = ρ2|Hij|2 − 3

2
|Hi|2, (38)

the divergence equation is rearranged as

DiJ
i = cf1

2ρc

[∣∣2ρ2Hi[jDk]v − gi[jHk]
∣∣2 + (2c − 1)|Hi|2

]
. (39)

To fix the sign of the right-hand side in Eq. (39), we require

f1 ≥ 0, c ≥ 1

2
. (40)

With 1
2 ≤ V < 1, it is easy to see that the former is guaranteed by

a ≥ 0, a + b ≥ 0. (41)

Now, let us integrate Eq. (39) over �. Using Stokes’ theorem, we have∫
�

DiJ
id
 =

∫
S∞

Jin
idS −

∫
Sp

Jin
idS ≥ 0. (42)

Using the asymptotic behaviors near the spatial infinity (ρ 	 |∂rV |−1 	 r2/m, k 	 2/r), the first
term of the right-hand side is estimated as∫

S∞
Jin

idS = −π(a + b)m1−c. (43)

The second term has to be carefully estimated. First, we have∫
Sp

Jin
idS = −ac

4

(1

2

)1−2c 1

ρc+1
p

∫
Sp

kρp − 2

2V − 1
dS − 1

4

(1

2

)−2c
(a + b − 2ac)

1

ρc+1
p

Ap, (44)
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where Ap is the area of the surface Sp. Here, note that the Gauss equation with the Einstein equation
gives

(2)R = 2

ρ2 + k2 − kijk
ij + 2(ρk − 4V )

(2V − 1)ρ2 , (45)

and then

lim
V→1/2

(2)R = lim
V→1/2

2(ρk − 2)

(2V − 1)ρ2 (46)

holds, where we used Eq. (20). Using this and the Gauss–Bonnet theorem for the first term on the
right-hand side of Eq. (44), we arrive at∫

Sp

Jin
idS = −πac

2

(1

2

)1−2c 1

ρc−1
p

χ − 1

4

(1

2

)−2c
(a + b − 2ac)

1

ρc+1
p

Ap, (47)

where χ is the Euler characteristic. As a consequence, Eq. (42) implies

(a + b)

(
Ap − πρ2

p

(
4m

ρp

)1−c
)

+ ac
(
πρ2

pχ − 2Ap

)
≥ 0. (48)

Under the parameter range in Eqs. (40) and (41), we get the pair of inequalities

πρ2
p

(
4m

ρp

)1−c

≤ Ap ≤ 1

2
πρ2

pχ . (49)

Setting c = 1 gives χ ≥ 2, meaning that the only allowed topology of Sp is spherical (χ = 2).
Setting χ = 2 implies that the equality holds, and it occurs if and only if Hij vanishes. This is the
case that the spacetime is spherically symmetric. According to Ref. [17], the spacetime is unique as
the BBMB solution.

Before closing this section, we comment on the relation to the divergence identities in Ref. [8].
For b = 0 and c = 1/2, Eq. (39) coincides with Eq. (22), and for a = 0 and c = 1/2, Eq. (23). See
the Appendix for the details.

4. Summary

In this paper we reexmined the Israel-type proof for the uniqueness of the photon surface in the
Einstein-conformal scalar system. Following Ref. [15], we derived a new divergence identity with
three parameters and gave a new proof of the uniqueness. In Ref. [15], vacuum Einstein, Einstein–
Maxwell, and Einstein–Maxwell–dilaton systems were addressed. Therefore, the current study
indicates the power of the systematic procedure presented there. The deep physical/mathematical
reason is expected to be hidden behind the presence of such a procedure.
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Appendix A. Relation of Eq. (39) to Eqs. (22) and (23)

Using Eq. (21), or the equivalent equality

kρ = niDiρ, (A.50)

we have

Ji = −cf1ρk + f2
ρc+1 ni − cf1

Diρ

ρc+1 . (A.51)

Using

Di
( Diρ

ρc+1

)
= D2ρ

ρc+1 − c
(Dρ)2

ρc+2 , (A.52)

the left-hand side of Eq. (39) becomes

DiJi = Di
(−cf1ρk + f2

ρc+1 ni

)
− cf1

D2ρ

ρc+1 + c2f1
(Dρ)2

ρc+2 . (A.53)

The right-hand side of Eq. (39) is expressed as

c
f1
ρc

[
k̃ij k̃

ij + c

ρ2 (Dρ)2 + 2c − 1

2

(
k − 2V

ρ(1 − V )

)2
]

. (A.54)

Thus, we have

Di
(−cf1ρk + f2

ρc+1 ni

)
= c

f1
ρc

[
k̃ij k̃

ij + 2c − 1

2

(
k − 2V

ρ(1 − V )

)2]
+ cf1

D2ρ

ρc+1 . (A.55)

Now we consider the c = 1/2 case; then, f1 = (1/4)(2V − 1)−1[a + b(2V − 1)2] and f2 =
(1/4)(2V − 1)−1[a + b(1 − 2V )(1 + 2V )]. Setting b = 0 (a = 0), we can see that Eq. (A.55)
becomes Eq. (22) (Eq. (23)).
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