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Abstract A local classification of spacelike surfaces in Minkowski 4-space, which
are invariant under spacelike rotations, and with mean curvature vector either van-
ishing or lightlike, is obtained. Furthermore, the existence of such surfaces with
prescribed Gaussian curvature is shown. A procedure is presented to glue several
of these surfaces with intermediate parts where the mean curvature vector field
vanishes. In particular, a local description of marginally trapped surfaces invariant
under spacelike rotations is exhibited.
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1 Introduction

In General Relativity, a spacelike surface in a four-dimensional Lorentzian man-
ifold is called marginally trapped if its mean curvature vector is proportional to
one of the null normals, by an either positive or negative function. When such
function is arbitrary, the surface is called marginally outer trapped, or MOTS, for
short. The study of these families of surfaces has been quite active in recent years
(see for instance [[1;[7 [11]).

In general, it is customary to ask these surfaces to be closed, i. e., compact and
without boundary. However, some results concerning the non-existence of closed
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MOTS can be found in the literature. Among the classical ones, a result due to
R. Penrose, [9]] (see also [8]), implies the non-existence of closed MOTS in the
Minkowski spacetime when it bounds a compact domain. Moreover, in [7], it is
proved that in any strictly static spacetime, no marginally trapped surface which is
not globally extremal (i. e., its mean curvature vector is not zero at least in a point)
can exist. Also, A. Carrasco and M. Mars, [2]], have shown the non-existence of
MOTS bounding a domain and entering a region of a static spacetime where the
Killing vector field is timelike, and with the additional assumptions of dominant
energy condition and an outer untrapped barrier. Thus, some authors are beginning
to relax the definition, letting the surface to be non-compact.

In order to gain some idea of the properties of marginally trapped surfaces in
particular spacetimes, classification results were obtained for marginally trapped
surfaces with positive relative nullity in Lorentzian space forms [3]] and in Robertson-
Walker spaces [4]. In [6] marginally trapped surfaces which are invariant under a
boost transformation in four-dimensional Minkowski space were studied.

We consider the Minkowski 4-space L* endowed with its standard metric
—dx? +
dx%—i—dx%—i—dxﬁ. In this paper, we are interested in studying marginally trapped
surfaces in Minkowski 4-space which are invariant under the following group of
isometries:

1 0 0 0
0 1 0 0 .

Gs = Bo= 0 0 cos(6) sin(6) |- Ok
0 0 —sin(0) cos(0)

Due to the previous non-existence results, we relax the definition of these sur-
faces, in the sense that we consider non-closed marginally trapped surfaces (i. e.
either non-compact or with boundary). However, with little more efforts, it is
possible to study a more general family of surfaces, namely, those whose mean
curvature vector is either lightlike or zero, and invariant under G;. Thus, the
main result of this paper is
Theorem [T} where a local classification of such surfaces is obtained. In particu-
lar, this classification includes marginally trapped surfaces and those surfaces with
vanishing mean curvature vector, which are invariant by Gy. For the sake of sim-
plicity, we say that a surface is extremal at a point p if its mean curvature vector
field is zero at p. Needless to say, an extremal surface has everywhere vanishing
mean curvature vector field.

Further, a gluing procedure is presented to construct Gy-invariant spacelike
surfaces for which the mean curvature vector is lightlike or zero on certain parts.
This allows to obtain examples of various surfaces occurring in the classification
given in [12]. The point is that the examples constructed using this method have
up to infinitely many regions where the mean curvature vector of each such region
can be chosen to be future or past-pointing as desired, and among two consecutive
regions, there is an extremal subset.

In the final section, it is shown that it is possible to construct surfaces which
are invariant by G, whose mean curvature vector is lightlike or zero, and with pre-
scribed Gaussian curvature. In particular, those with constant Gaussian curvature
are given explicitly.
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The main mathematical tool consist of the local theory of surfaces. Its origins
go back almost two centuries ago, when C. F. Gauss [5] and other authors started
its development for surfaces in the Euclidean 3-space. Since then, this power-
ful theory has been used successfully in an overwhelming number of situations.
Nowadays, this is the standard technique to study surfaces in Mathematics. At the
end of the day, it can be summarized in a small collection of formulae, bringing to
light interesting geometric properties of surfaces in Physics.

Finally, the authors would like to thank the referees and the editors for many
useful comments, which helped to improve this paper.

2 Preliminaries

Let (L*,g) be the four-dimensional Lorentz-Minkowski space with the flat metric
given in local coordinates by

g = —dx? +dx3 +dxj + daj.

For a connected immersed surface S in 4, we denote by g the induced metric
on S. We will assume that this metric g is positive-definite, i.e., the surface is
spacelike. Let V and V denote the Levi-Civita connections on (L*,2) and (S, g),
respectively. Then, if X and Y are two smooth vector fields tangent to S, the Gauss
formula gives the decomposition of the vector %XY into its tangential and normal
parts, i.e.,

Vx¥ = Vy¥ +K(X,Y),

where K : X(8) x X(S) — X*(S) is called the shape tensor or second fundamental
form of S in IL*. If ) is a normal vector to the surface, the Weingarten formula gives

the decomposition of the vector %Xn into its tangential and normal parts, i.e.,
Vxn = —Ap(X) + Vg,

where V- is the normal connection in the normal bundle of S and the endomor-
phism Ay on X(S) is called the shape operator associated with 1. The shape
tensor and shape operator are related by g(K(X,Y),n) = g(Ay(X),Y). The mean
curvature vector H is defined as the normalized trace of the shape tensor,

1
H=uKe xH(S).

The component of H along a given normal direction 1, denoted by hy, is called
the expansion along 1, i.e., hy = g(H,n) = try(Ay)/2.

Let us consider a local orthonormal basis {11, 1, } of the normal bundle of the
spacelike surface S in L%, where 1; is future-pointing timelike and 1, is spacelike.
If we denote by A; the shape operator associated with 1;, i = 1,2, the shape tensor
can be written as

K(X,Y) = *g(Al(X%Y)nl +g(A2(X)vY)n2a
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for any tangent vector fields X,Y to S. Assume that X (u,v) is a local parametriza-
tion on the surface S. Then, from the classical theory of surfaces (see, e.g. [13]),
with the notation 24; = try(A;) and

E= g(XmXu)aF = g(Xquv)yc = g(X\MXV)a

e = §(qu, ni),fi = g(qu ni)agi = §(va, 771'),
we obtain
_ eG-2fiF +gE
~ EG-F?
Another useful local basis {k,1} of the normal bundle of S can be chosen such
that both vectors are null, future-pointing and satisfy the normalization condition
g(k,1) = —1. In the following, we choose

1 1
k= \ﬁ(m —12) and 1= \ﬁ(m +1M2).

2h; i=1,2.

With respect to this normal basis the mean curvature vector field H becomes

H= _?Oll +ho )k — ?(hl — )l

In particular, the expansions along k and 1 are given by

V2 V2
@k = 7(}1] —hz) and @l = T(hl +h2)
Besides the extrinsic mean curvature, also the intrinsic Gaussian curvature K
of the surface can be expressed in terms of the coefficients of the first and second
fundamental forms as (see, e.g. [[13])),

_ —det(A;) +det(Ay) —eig1+erga+fP— 17

det(g) EG—F2

A spacelike surface S in IL* is called invariant under spacelike rotations if it is
invariant under the following group G; of linear isometries of IL*:

1 0 0 0
0 1 0 0
0 0 «cos(B) sin(6) | - OeR
0 0 —sin(8) cos(0)

i.e., if BgS =S, for any 6 € R.

Since we regard these surfaces as geometric objects, the main tool to study
them consist of introducing natural (local) parameterizations, which can be achieved
by making use of the action of the group and finding a suitable profile curve. It is
worth pointing out that when we let a surface be only of class C* and not analyti-
cal, we might get a very complicated curve. More problems arise when the surface
is immersed, but not imbedded. Even worse, since the codimension is two, the sur-
face does not need to be orientable. As a consequence, we will restrict our study
to a local setting.

G; = Bg =
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Note that the set of fixed points of Gy is {(x1,x2,%3,%4) € L* : x3 = x4 = 0},
so we need the following subset
P = {(X],XQ,X3,)C4) S L4 X4 = O,X3 > 0}.

With the help of &2, we can introduce a parametrization X (¢,60) of S as follows.
Given a smooth curve ¢ : I CR — 2, 1t — a(t) = (04 (2),00(r),a3(t),0), the
parametrization can be written as

X(t,0) = (04 (t),00(t),a3(t)cos(0),a3(¢)sin(0)), t€l,0cR.

We denote by X, the parameterized surface associated with a, as a subset of L4,

Xa=1{X(#,0)=a(t)-Bg:tcl,0 cR} CS.
We recall that X, might not cover the whole original surface S, but it would be
a big enough open subset. Next, without loss of generality we can assume that
the spacelike curve o is arc-length parameterized, i.e., g(a'(¢),a’(¢)) = 1. The
derivatives of X (t,0) are

X, = (0 (1), 04 (1), 0} (¢) cos(8), &} (1) sin(6) ) and

Xo = (0,0,—0i3(1)sin(8), a3 (1) cos(6)).
The Riemannian metric of the surface reads

g=dr* + a3de>.

A globally defined orthonormal tangent frame on Xy is u; = X; and up = Xg /033,
and a globally defined orthonormal basis of the normal bundle of X is given by

1
= ——— (14 (a})?, o o, o] s cos(0), ol o} sin(0)),
m 1+(06{)2( ()", o0y, oy a3 cos(6), & a5 sin(6))

1

RVIERCHE

with 1; future-pointing timelike and 7, spacelike. A straightforward computation
shows that the components of the second fundamental form are given by

(0, — a3, 05 cos(6), ay sin()),

" ! !
elz—L,ﬁ:O,glz—M, (1)
V14 (eg)? V1 (ap)?

" !/ !/
— 0y sfon o, 03

=20 BE p 0 g =20
I+ (o)? VI (og)?

Hence the shape operators associated with 17y and 1, are simultaneously diago-
nalizable, i.e., the normal curvature R of the normal bundle vanishes identically.
The expansions along 1; and 1), are

! ! " / i !yl
o 0,4+ 030 o, +os(o, 0, — O, O
2h] :—71 3 1 and 2]’12 = — 2 ( 2 3 2 3)

o3/1+ (af)? as\/1+(af)?

The Gaussian curvature of a spacelike surface which is invariant under a spacelike
rotation is

2

1
5
o3

K= 3)
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3 Classification theorem and a gluing procedure

The following classification is local, i. e., a surface S which is invariant by G; will
be locally congruent to the surfaces in the next theorem.

Theorem 1 Let Xy be a surface in L* which is invariant under spacelike rota-
tions. Assume that its mean curvature vector satisfies ||H|| = 0. Then, the generat-
ing curve a(t) = (o4 (1), 00(t),a3(t),0) is locally described by one of the follow-
ing cases:

(A) Given a smooth function T : I C (0,00) — R, choose a function € : [ —
{1,—1} such that €7 is also smooth. Define the coordinate functions 0 :
1 — R, i=1,2,3, as follows

at) = / e(N)e()dr, an(t) = / w(0)dr,  oa(r) =1, )
Moreover, the mean curvature vector of Xy, is

He T+17 (e )
T Tt m—"1n2).

(B) Given a smooth positive function oz : I C R — R, and two constants €1,& =
41, define the functions

s0)= [ @l =e [ {sih(E0) - o) cosh(EW)} ar, 5)

a3(1)’

and
o(t) = & / {cosh(& (1)) — (1) sinh(€ (1)) } dr. ©)
Moreover, the mean curvature vector of Xy, is

_cosh(&(r)) (1—a5(1)* — 03(r) & (1)) B
H= OV 0L (&1m1 —&m).

In addition, in Case B, given two unit curves a(t) = (o (f), (), 03(t),0) and

B)=(Bi(r),Ba(2), B3(),0), such that o3(t) = B3(t), there exists an affine isom-
etry F of L* satisfying F(Zq) = Zg.

Proof We recall the generating spacelike unit curve o: J — 22, a(t) = (o (1), o (2),
03(1),0) of Xq, with a3(r) > 0. Now, we consider two subsets Jo = {t € J : 04 (1) =
+1} and J; = {r € J : 0§(¢) # £1}, which are not intervals in general. Since ¢}

is continuous, J; is an open subset of J, i. e., it is either the empty set or made
of countable many open intervals. From a topological point of view, J; might be
empty or a mixture of intervals, accumulation points and isolated points. To make
some progress, we need to work on open intervals included in Jy and J;.

Case A. We assume that there exists an open interval I C Jy where o} ()2 =1.By

a change of parameter, we can assume without loss of generality that I C (0,0)
and 03(t) =t on I. From now on, we work on /. Since ¢ is unit, we know that
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] (t)? = a}(t)?. Thus, there exists a function € : I — {—1,1} such that € &] () =
o5 (1). Now, (4) are trivially satisfied.

Case B. We assume that there exists an open interval I C J, so we work on /.
Since @ is arc-length parameterized, we have (—a + o) (o + &) = 1 — (¢4)>.
By shrinking 7 if necessary, we can introduce an angle function & (¢) and a constant
€ = %1, such that

—aj(1)+op(t) =& (1+a3(r) exp(E(1)), o1 (t)+aa(r) =& (1—05(t)) exp(—E (1))

In this way, we obtain the following expressions:
/! 1 / !/
(1) = 5 {e(1—a5() exp(§ (1)) —e (1 +a5(1)) exp(=§ (1))}, (7)

(1) = %{8(1 —a5(1)) exp(E(1)) +e(1+a5()) exp(—E (1)} (8)

Since we are assuming |H|| = 0, there exists a function & : / — {1,—1} such
that h; = & hy. Bearing in mind (7) and (8], we substitute this in (2)), obtaining

(14+8(t)) o3(t) (1—a3(r)&'(r)) sinh(& (1))
+{a5(1)? (8(1)as ()€ (1) — 1) +as(t) (§'(e) +(8(r) = 1) & (1)) — 8 (1) }
x cosh(&(t)) = 0. ©)
Now, two cases arise naturally.

1. We suppose that there exists an open interval I such that §(z) = 1 for any
t € I'". We work in this interval. Equation @]) becomes

0 = (cosh(&(t)) a4 ()® — 2sinh(& (1)) &4 (£) +cosh(£(¢))) (a()E' () —1).

Now, we suppose that there exists afy € I'* such that 0= cosh(& (o)) a4 (f0)* —
2sinh(&(f9)) o} (to) + cosh(&(19)). However, from this equation, we obtain
a3 (7o) =
tanh(&(9)) £v/—1sech(& (1)), which is impossible. Thus, on the whole I

(at least), we obtain
dr
s0= | i

Inserting this in (7) and (8) gives the expressions (5) and (6) for the case
& =& =E.

2. We suppose that there exists an open interval 7~ such that §(¢) = —1 for any
t € I”. We work in this interval. Equation @I) becomes

—a4(t)* (aa(t)&' (1) +1) +aa(t) (§'(t) -2 (t)) +1=0.

’ ] 206"'(1‘) .
From here, we compute &’(¢) = Ob W. Now, we obtain
dr o5(t)—1
E()=— / | % .
as(t) og(t)+1
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When inserting this in and , one cannot forget the signs, i.e., (1+ 043)
of —

1+

it is possible to deal with both at the same time by choosing suitable constants

£€1,& = =£1, obtaining again expressions @ and @ Thus, there is no loss of

generality if we redefine the angle function as &(r) = [(1/a(z))dr.

exp(In | |) = £(0 — 1). Bearing this in mind, two cases arise. However,

Let (z) be another arc-length parameterized spacelike curve, with B3(r) = o3 (z).
Then, we have

dr dr
Bs() :/W)”O’

with ¢ an integration constant. A straightforward computation shows

g = oo (52 ) (i) b)),

& sinh(cp) cosh(cp)

with €1,& = +1. If the integration constants of (5)) and (6)) are denoted by (x? and

o), we callv = (o, ,0,0). The affine isometry F : L* — L%,

g 0 0 O cosh(cg) sinh(cg) 00

0 & 0 0 inh h(co) 00
F(x1,x2,x3,X4) = (x1,X2,X3,%4) 0 02 1 0 o O(CO) COSO(CO) 1o ]V

0 0 01 0 0 01

satisfies F o o = B and thus F(Zy) = Xg. O

In Cases A and B of the previous theorem, the domain of the curve & might
not be connected. If we ask the domain 7 of ¢ to be an interval, we will say that
the surface X is of type A or type B, according to Cases A or B, respectively.
In particular, surfaces of type A and B have to be connected, orientable, and any
normal lightlike vector can be globally defined.

Corollary 1 1. A surface of type A is a MOTS if, and only if, the function € is a
global constant. In addition, a surface of type A is marginally trapped if, and
only if, the function € is a global constant and ©(t) +17'(t) is globally positive
or negative.

2. Any surface of type B is a MOTS. In addition, a surface of type B is marginally
trapped if, and only if, the function 1 — (a})* — o3 is globally positive or
negative.

By a result in [9] (see also [8]]), a closed surface of type A or B bounding a
domain cannot exist. Thus, a good second alternative is completeness.

Corollary 2 Let X4 be a surface of type B in L*. If az : R — R is a smooth
function such that oz (t) > ag > 0 for some real constant ay, then the surface Xy
is complete.
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Proof The metric of the surface X, of type B satisfies
g > d?® +a3de?,
and it is defined for any 7, 0 € R. This means that X, is complete. O

From the proof of Theorem|[I] we find a characterization of the extremal space-
like surfaces which are invariant under a spacelike rotation.

Corollary 3 A spacelike surface in L* is extremal and invariant under a spacelike

rotation if, and only if, it is locally congruent to a surface Xy whose profile curve

0:1C(0,00) = 2, a(t) = (ai(t), 0a(t),05(1),0), is given by one of the following

cases:

1. oy(t) =ag n(t)+b, op(t) =aeln(t)+c, as(t) =t witha >0, b,c € R and
£,6 ==1.

2. a(t) = §(a*>+1-D) ln’a+t+\/t2+2at+b, () = %(a*>—1-b)In

a+t+Vi2+2at+b|, o3(t) = Vi2+2at+b, where €,6 = +1, and
a,beR.

Remark 1 Surfaces of type A and B are not excluding. Indeed, by considering
a3(t) =t in Theorem [I] we obtain Case [1] of Corollary [3| which is a description
of all curves generating surfaces which are simultaneously of type A and B.

Remark 2 All surfaces of type A are flat, i.e., their Gaussian curvature K = 0.

Remark 3 Given a surface of type A, if the mean curvature vector is future-pointing,
by considering the function —&, we obtain a surface with past-pointing mean cur-
vature vector, and viceversa. A similar situation holds for surfaces of type B by
changing € by —¢;.

Remark 4 Given a surface of type A, with the very same function 7 (and same
function €) it is possible to construct infinitely many curves, and thus surfaces of
type A. However, two of them are related by the translation defined by consider-
ing different integration constants in the expressions of functions @; and . In
addition, if we change € by —¢&, the reflection by a suitable hyperplane links both
surfaces.

Remark 5 For a surface of type A, with the function 7(r) = ¢ € R, both shape
operators A; and A, are of rank 1. Such a surface is called pseudo-isotropic. See,
e.g. [10] for properties of such surfaces.

Remark 6 Surfaces of type A as graphs, locally. Given a surface S of type A, with
the function € locally constant. We restrict this remark to an interval J where € is
constant. Then, the surface is included in the null hyperplane .72° = {(x1,x2,x3,%4) €
L*:x = €xy }. From a Set Theory point of view, one can identify .7 with RS,
where the surface is parameterized as Y (¢,0) = ([ 7(z)dz,zcos 0,2sin0). We just

call T(¢) = [ 7(r)dr, so we can identify a region of S with the set { (T (1/y? +z2),y,2) :
\/y?+ 72 € J}. Conversely, any surface of type A can be locally seen as a graph
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over an annulus centered at the origin of R2. Furthermore, given a real con-
stant a > 0, a disk D(a) = {(y,z) € R? : y* + 72 < a?} and a smooth function
T : D(a) — R, such that T is invariant by transformations of the form (y,z) —
(ycos@ —zsinB,ysin0+zcos 6), 6 € R, then the graph S = {(T (y,2),¥,2) : (¥,2) €
D(a)} can be imbedded in IL* as a surface whose mean curvature vector field sat-
isfies |H|| = 0, and admitting a parametrization of a surface of type A except in
the point touching the plane of fixed points of G.

We consider two bounded spacelike surfaces of type A and B, and suppose
that the mean curvature vector of a surface of type A is constantly either past or
future-pointing near one of its boundaries. In such case, we describe a method to
glue them in one new spacelike surface which is invariant by a spacelike rotation
with an intermediate region satisfying H = 0.

Proposition 1 Ler Xy and Xg be two surfaces of type A and B as in Theorem
with generating curves o : (a,b) — &, B : (¢,d) — P, with0<a<b<c<
d < oo, Assume that there is a constant @ > 0 such that the function € is constant
on the interval (b — @,b). Then, there exists an affine isometry F : L% — L%
a real number v > 0 and a unit spacelike curve y: (a,d) — P, satisfying
that the surface X, is invariant by a spacelike rotation, 7|(a,b—v) = (X|(a7b_v>,
F(Z, (v, d)) = X (c+vd) and the mean curvature of the region Xy ) vanishes
identically.

Proof Because the function € is constant on the interval (b — ®,b), there is no loss
of generality if we assume (1) = €&, for any b — @ < < b (by changing €;). In
such case, the surface Xg is unique up to an affine isometry as in Theorem

We choose v € R such that 0 < v < min{(d —c¢)/4,(b—a)/4, ®} and consider
two smooth functions f; : (a,d) — R, i = 1,2, satisfying
. 0<fi<l,i=12;
2. fi(t)=0and f5(¢t) =1 forany t € (a,c);
3. filt)=1and fo(r) =0foranyt € (c+Vv,d).
Note that f{ = f5 = 0 on the intervals (a,c) and (¢ + v,d). We define the smooth
function ¥ : (a,d) — (0,0), given by y3(t) =t f>(¢) + B3(¢) f1(¢). It is straight-
forward to check that y3(¢) = ¢ for any ¢ € (a,c) and y3(¢) = B3(¢) for any ¢z €
(¢+v,d). In particular, y3(¢) = a3(t) on the interval (a,b).

s d s
We define &(r) = / yi(tt)’ with the additional condition &(r) = &(¢) for any
3

t € (c+Vv,d), which can be achieved by choosing a suitable integration constant.
Bearing in mind Case B in Theorem we define B, : (a,d) — 22, satisfying
Bi(t) = Bi(¢) and Bo(r) = Ba(¢) forany ¢ € (c+v,d).

Next, we consider two smooth functions f3, f4 : (a,d) — R such that
1. 0<fi<1,i=3,4
2. f3(t)=1and fa(t) =0foranyt € (a,b—v);
3. f3(t)=0and f4(tr) = 1 forany t € (b,d).
Let 7(¢) be the function in the definition of the curve a. Next, we define the smooth
functions %; : (a,d) — R, i= 1,2, given by

1= [ (070 AO+BIOAO)dr, 1= [ (70 AO+B) £20) .
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but satisfying 71 (¢) = ot (¢) and % (t) = o (¢) for any ¢ € (a,b — V). As above,
it is only necessary to choose suitable integration constants. Indeed, given 7 €
(@,b—v), 71(1) = €(t) f3(t) T(1) + fa(t) B{ (1) = (1) (1), and Y (2) = f3(1) T(1) +
fa(t) B3(t) = ©(¢). Next, given 1 € (b,d), v/(t) = P} (t), fori = 1,2, and () =
Note that by Corollary I the surface Zﬂ satisﬁes H = 0. Now, bearing in

mind Remarkl givent € (b—v,b), we see [3 (¢ ) =2¢g exp(&o)t, i =1,2. Thus,
since 0 < v <, Yj(r) = &(t) (f3(1) 7(t) + fa(r) 7y exp(&o) 1) = €(t) (f3(1) (1) +

fa(t) &
exp(&o)1) = &(t) Y4 (¢). Finally, we define the curve

y:(a,d)—n@, }/(I)Z(’)/1([),’)/2([),’)/3(t),0),

and its associated surface Xy. From the above computations, it is easy to check
that ||| = 1. Needless to say, X4 is an open subset of Zy. It only remains to point
out that the open subset Z,, v of Xy might not be the original Xg, civa)’ but they

will be congruent by an affine isometry, as in Theorem[I} O

Corollary 4 Let Xy and Xg two surfaces of type A, whose generating curves Ty
(a,b) — Rand 15 : (c,d) — Rsatisfy 0 < a < b < ¢ <d < oo. Then, there exists
a unit spacelike curve v: (a,d) — &, a real number v > 0 and two translations
Fo, Fp : L* — LL* such that Xy is a surface of type A, Fo(Z abv) ) = Eal(a.b—v)’

Fﬁ( Mierva) ) = Eﬁl (ev.d) and the mean curvature of the region Ey‘ ) vanishes
identically.

Corollary 5 Let Xy and Xg two surfaces of type B, with profile curves o : (a,b) —
P and B : (c,d) — P, —0o < a<b<c<d< . Then, there exists a unit
spacelike curve y: (a,d) — &, a real number v > 0 and two dffine isometries
Fo, Fp : L* — LL* such that Xy is a surface of type B, Fo(Z asv) ) = 2a|(a.bfv),

Fg(X Tiesva) ) = 2By @nd the mean curvature of the region Ly, = vanishes
identically..

All necessary ideas to prove these two corollaries are contained in the proof of
Proposition[T]and in Remark 4]

Remark 7 The methods explained in Proposition|[I]and its two corollaries give the
possibility to construct surfaces S satisfying the following conditions:

1. Sis invariant under a spacelike rotation group.

2. The mean curvature vector of S satisfies ||[H|| = 0, with (infinitely many count-
able) regions {S, : n € N C N} where its mean curvature vector H # 0.

3. Eachregion S, can be either of type A or B.

4. The mean curvature vector of each region S, can be set either future or past-
pointing, as desired.

5. Among two adjacent regions S, and Sy, there is an open subset which is
extremal, i.e., H=0.

In particular, it is possible to construct examples of several of the types given in
the classification introduced in [[12].
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4 The Gaussian curvature

We show that there exist surfaces in L* invariant by G;, whose mean curvature
vector field satisfies ||H|| = 0 and with prescribed Gaussian curvature. As an appli-
cation, we compute all such surfaces which have constant Gaussian curvature.

Corollary 6 Let k: 1 C R — R be a smooth function and ty € I. There exist § >0
and a unit curve o, : (ty — 0,19+ 0) C R — P, such that a is a profile curve of a
spacelike surface Xy (t,0) of type B and whose Gaussian curvature at every point
(t,0) is k(t). Moreover, if k(t) a3 (t)> — a4 (t)* + 1 never vanishes on (ty — 8,1y +
0), the surface Xy is marginally trapped.

Proof Given a smooth function k: I CR — Rand let o3 : (tp — 0,290+ 0) — &
be a positive solution of the differential equation o (1) = —k(z) o3(z) [see (B)].
The result then follows from Theorem[Il O

Corollary 7 There do not exist extremal spacelike surfaces of type B with constant
Gaussian curvature in L*.

Proof If we take k constant in the previous Corollary, the solution of the differ-
ential equation k o3(t)% + a4(¢)> — 1 = 0 is either a3(t) = €//—k if kK < 0 or
o5(t) = esinh((t — ¢)\/k)/V/x if K > 0, with € = +1 and ¢ € R. By (3, using
these expressions in the differential equation off (t) = —x a3(¢) gives a contradic-
tion in both cases. 0O

Example 1 A surface of type B is flat if and only if a profile curve @ : (—b/a,+e0) C
R — &, witha,b € R, |a|# 0,1, is given by

1- a 1
o (1) = 8{ % ar )"+

(ater)% )
2 | 1+a 1—a

efl—-a a1 14a a1
own(t) = 2{H_a(aH-b) a —1_a(at—|—b) a },

o3(t) = at+b,

or a profile curve a : I C R — & is given by
t t
alt) = <81b cosh (Z> &b sinh (5) ,b,o),

with b € Ry

Example 2 Given K > 0, we compute the profile curve & of a surface of type B
with constant Gaussian curvature K2. By , we need to solve the differential
equation off (t) = —K?as(t), whose general solution is

03(t) = cycos(Kt+¢), withep,cp ER, ¢ #0.

As a5(1) has to be positive, we can choose I = (— 2522, T 22) if ¢; > 0 or I =

(2522, 329 if ¢ < 0, as the domain of as(t). According to Theorem |1} we
need to compute a primitive of 1/0(¢), which is

(1) =

1 1+sin(Kt+c
‘(2> +§0;

1 —sin(Kt +¢3)

1
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being &) € R. This way, by taking €, & = =1, the coordinate functions of o/(¢) =
(ay(t),00(t),0a(1),0) are

oy (1) = & (sinh(&(2)) + ¢y sin(Kt + ¢;) cosh(&E(2))),

o (t) = & (cosh(&(t)) + ¢y sin(Kt + ¢3) sinh(& (7)),

oi3(t) = cjcos(Kt+c).

Finally, the mean curvature vector of Xy is

_cosh(&(7)) (1+c3K*cos(2(Kt +¢2)))

H= &N — & .
2ercos(Ki+ea) /T (@ e

Example 3 Given K > 0, we compute the profile curve o of a surface of type B
with constant Gaussian curvature —K?2. By , we need to solve the differential
equation o (t) = K?0;3(t), whose general solution is
os(t) = crexp(Kt) + caexp(—Kt), withep,ca €R, 2 +¢3 > 0.

We choose an interval I where a;3(z) is positive. We discuss some cases.

Case cicp > 0. Given &y € R, the angle function is

1 c1exp(Kr)
E(r) = arctan < +&p.
®) K./cico N3t

Case cic < 0. Given &y € R, the angle function is

Er) = 1 In 2¢1exp(Kt) —2y/—cica
~ 2K\/—cica  |2crexp(Kt) +2v/—cica 0-
Case ¢ = 0. Given & € R, the angle function is
1
= ——"——+6&.
@) Kcyexp(Kt) 0
Case ¢; = 0. Given &) € R, the angle function is
exp(Kt)
1) = ——2 )
(1) Ko +&o

It only remains to compute «; (¢) and o (¢). To do so, we choose €, & = +1, and
then

0 (t) = & (sinh(§ (1)) — K (crexp(§ (1)) — caexp(§(2))) cosh(G (1)),

(1) = & (cosh(§ (1)) — K (c1exp(§(2)) — c2exp(§(2))) sinh(G (7))
Finally, the mean curvature vector of Xy is

_ cosh(§()) (1—2K?(cexp(2Kt) + c3 exp(—2K1)))

205(1)\/1+ ] (1)?) (e1m —&m).

Corollary 8 Let S be a spatial surface in L* invariant by Gy satisfying ||H|| =
0 with constant Gaussian curvature K. Then, S is locally congruent to either a
surface of type A or one among Examples|1] 2] and 3]
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5 Conclusions

In this paper, we have studied spacelike surfaces in Minkowski 4-space which
are invariant by a rotation group of isometries and whose mean curvature vector
field is lightlike or zero. Our main result is the classification of such surfaces in
Theorem |1} from which it follows that there are two types of surfaces, that we
call of type A and B, which are not excluding. As a consequence, a long list of
corollaries is exhibited. Among them, we locally describe MOTS and marginally
trapped surfaces. Furthermore, given up to countable infinitely many surfaces of
either type A or B whose mean curvature vector might be either future or past-
pointing, (and some reasonable conditions), we describe a method to glue them
in just one surface whose mean curvature vector is null, which are invariant by
a spacelike rotation group, and having intermediate extremal regions among two
regions of type A or B. Also, we pay attention to the Gaussian curvature, showing
the possibility to construct surfaces of type B with prescribed Gaussian curvature
(at least, theoretically). Among them, the list of surfaces with constant Gaussian
curvature is exhibited.

These constructions may lead to the study of generalized horizons in Minkowski
4-space as well as in other spacetimes, since they are foliated by marginally trapped
surfaces.
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