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Abstract A local classification of spacelike surfaces in Minkowski 4-space, which
are invariant under spacelike rotations, and with mean curvature vector either van-
ishing or lightlike, is obtained. Furthermore, the existence of such surfaces with
prescribed Gaussian curvature is shown. A procedure is presented to glue several
of these surfaces with intermediate parts where the mean curvature vector field
vanishes. In particular, a local description of marginally trapped surfaces invariant
under spacelike rotations is exhibited.
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Lorentz group

1 Introduction

In General Relativity, a spacelike surface in a four-dimensional Lorentzian man-
ifold is called marginally trapped if its mean curvature vector is proportional to
one of the null normals, by an either positive or negative function. When such
function is arbitrary, the surface is called marginally outer trapped, or MOTS, for
short. The study of these families of surfaces has been quite active in recent years
(see for instance [1; 7; 11]).

In general, it is customary to ask these surfaces to be closed, i. e., compact and
without boundary. However, some results concerning the non-existence of closed
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MOTS can be found in the literature. Among the classical ones, a result due to
R. Penrose, [9] (see also [8]), implies the non-existence of closed MOTS in the
Minkowski spacetime when it bounds a compact domain. Moreover, in [7], it is
proved that in any strictly static spacetime, no marginally trapped surface which is
not globally extremal (i. e., its mean curvature vector is not zero at least in a point)
can exist. Also, A. Carrasco and M. Mars, [2], have shown the non-existence of
MOTS bounding a domain and entering a region of a static spacetime where the
Killing vector field is timelike, and with the additional assumptions of dominant
energy condition and an outer untrapped barrier. Thus, some authors are beginning
to relax the definition, letting the surface to be non-compact.

In order to gain some idea of the properties of marginally trapped surfaces in
particular spacetimes, classification results were obtained for marginally trapped
surfaces with positive relative nullity in Lorentzian space forms [3] and in Robertson-
Walker spaces [4]. In [6] marginally trapped surfaces which are invariant under a
boost transformation in four-dimensional Minkowski space were studied.

We consider the Minkowski 4-space L4 endowed with its standard metric
−dx2

1 +
dx2

2 +dx2
3 +dx2

4. In this paper, we are interested in studying marginally trapped
surfaces in Minkowski 4-space which are invariant under the following group of
isometries:

Gs =

Bθ =

 1 0 0 0
0 1 0 0
0 0 cos(θ) sin(θ)
0 0 −sin(θ) cos(θ)

 : θ ∈ R

 .

Due to the previous non-existence results, we relax the definition of these sur-
faces, in the sense that we consider non-closed marginally trapped surfaces (i. e.
either non-compact or with boundary). However, with little more efforts, it is
possible to study a more general family of surfaces, namely, those whose mean
curvature vector is either lightlike or zero, and invariant under Gs. Thus, the
main result of this paper is
Theorem 1, where a local classification of such surfaces is obtained. In particu-
lar, this classification includes marginally trapped surfaces and those surfaces with
vanishing mean curvature vector, which are invariant by Gs. For the sake of sim-
plicity, we say that a surface is extremal at a point p if its mean curvature vector
field is zero at p. Needless to say, an extremal surface has everywhere vanishing
mean curvature vector field.

Further, a gluing procedure is presented to construct Gs-invariant spacelike
surfaces for which the mean curvature vector is lightlike or zero on certain parts.
This allows to obtain examples of various surfaces occurring in the classification
given in [12]. The point is that the examples constructed using this method have
up to infinitely many regions where the mean curvature vector of each such region
can be chosen to be future or past-pointing as desired, and among two consecutive
regions, there is an extremal subset.

In the final section, it is shown that it is possible to construct surfaces which
are invariant by Gs, whose mean curvature vector is lightlike or zero, and with pre-
scribed Gaussian curvature. In particular, those with constant Gaussian curvature
are given explicitly.
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The main mathematical tool consist of the local theory of surfaces. Its origins
go back almost two centuries ago, when C. F. Gauss [5] and other authors started
its development for surfaces in the Euclidean 3-space. Since then, this power-
ful theory has been used successfully in an overwhelming number of situations.
Nowadays, this is the standard technique to study surfaces in Mathematics. At the
end of the day, it can be summarized in a small collection of formulae, bringing to
light interesting geometric properties of surfaces in Physics.

Finally, the authors would like to thank the referees and the editors for many
useful comments, which helped to improve this paper.

2 Preliminaries

Let (L4, g̃) be the four-dimensional Lorentz-Minkowski space with the flat metric
given in local coordinates by

g̃ =−dx2
1 +dx2

2 +dx2
3 +dx2

4.

For a connected immersed surface S in L4, we denote by g the induced metric
on S. We will assume that this metric g is positive-definite, i.e., the surface is
spacelike. Let ∇̃ and ∇ denote the Levi-Civita connections on (L4, g̃) and (S,g),
respectively. Then, if X and Y are two smooth vector fields tangent to S, the Gauss
formula gives the decomposition of the vector ∇̃XY into its tangential and normal
parts, i.e.,

∇̃XY = ∇XY +K(X ,Y ),

where K : X(S)×X(S)→X⊥(S) is called the shape tensor or second fundamental
form of S in L4. If η is a normal vector to the surface, the Weingarten formula gives
the decomposition of the vector ∇̃X η into its tangential and normal parts, i.e.,

∇̃X η =−Aη(X)+∇
⊥
X η ,

where ∇⊥ is the normal connection in the normal bundle of S and the endomor-
phism Aη on X(S) is called the shape operator associated with η . The shape
tensor and shape operator are related by g̃(K(X ,Y ),η) = g(Aη(X),Y ). The mean
curvature vector H is defined as the normalized trace of the shape tensor,

H =
1
2

trgK ∈ X⊥(S).

The component of H along a given normal direction η , denoted by hη , is called
the expansion along η , i.e., hη = g̃(H,η) = trg(Aη)/2.

Let us consider a local orthonormal basis {η1,η2} of the normal bundle of the
spacelike surface S in L4, where η1 is future-pointing timelike and η2 is spacelike.
If we denote by Ai the shape operator associated with ηi, i = 1,2, the shape tensor
can be written as

K(X ,Y ) =−g(A1(X),Y )η1 +g(A2(X),Y )η2,
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for any tangent vector fields X ,Y to S. Assume that X(u,v) is a local parametriza-
tion on the surface S. Then, from the classical theory of surfaces (see, e.g. [13]),
with the notation 2hi = trg(Ai) and

E = g̃(Xu,Xu),F = g̃(Xu,Xv),G = g̃(Xv,Xv),
ei = g̃(Xuu,ηi), fi = g̃(Xuv,ηi),gi = g̃(Xvv,ηi),

we obtain

2hi =
eiG−2 fiF +giE

EG−F2 , i = 1,2.

Another useful local basis {k, l} of the normal bundle of S can be chosen such
that both vectors are null, future-pointing and satisfy the normalization condition
g̃(k, l) =−1. In the following, we choose

k =
1√
2
(η1−η2) and l =

1√
2
(η1 +η2).

With respect to this normal basis the mean curvature vector field H becomes

H =−
√

2
2

(h1 +h2)k−
√

2
2

(h1−h2)l.

In particular, the expansions along k and l are given by

Θk =
√

2
2

(h1−h2) and Θl =
√

2
2

(h1 +h2).

Besides the extrinsic mean curvature, also the intrinsic Gaussian curvature K
of the surface can be expressed in terms of the coefficients of the first and second
fundamental forms as (see, e.g. [13]),

K =
−det(A1)+det(A2)

det(g)
=
−e1g1 + e2g2 + f 2

1 − f 2
2

EG−F2 .

A spacelike surface S in L4 is called invariant under spacelike rotations if it is
invariant under the following group Gs of linear isometries of L4:

Gs =

Bθ =

 1 0 0 0
0 1 0 0
0 0 cos(θ) sin(θ)
0 0 −sin(θ) cos(θ)

 : θ ∈ R

,

i.e., if Bθ S = S, for any θ ∈ R.
Since we regard these surfaces as geometric objects, the main tool to study

them consist of introducing natural (local) parameterizations, which can be achieved
by making use of the action of the group and finding a suitable profile curve. It is
worth pointing out that when we let a surface be only of class C∞ and not analyti-
cal, we might get a very complicated curve. More problems arise when the surface
is immersed, but not imbedded. Even worse, since the codimension is two, the sur-
face does not need to be orientable. As a consequence, we will restrict our study
to a local setting.
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Note that the set of fixed points of Gs is {(x1,x2,x3,x4) ∈ L4 : x3 = x4 = 0},
so we need the following subset

P = {(x1,x2,x3,x4) ∈ L4 : x4 = 0,x3 > 0}.
With the help of P , we can introduce a parametrization X(t,θ) of S as follows.
Given a smooth curve α : I ⊂ R → P , t 7→ α(t) = (α1(t),α2(t),α3(t),0), the
parametrization can be written as

X(t,θ) = (α1(t),α2(t),α3(t)cos(θ),α3(t)sin(θ)) , t ∈ I,θ ∈ R.

We denote by Σα the parameterized surface associated with α , as a subset of L4,

Σα = {X(t,θ) = α(t) ·Bθ : t ∈ I,θ ∈ R} ⊂ S.

We recall that Σα might not cover the whole original surface S, but it would be
a big enough open subset. Next, without loss of generality we can assume that
the spacelike curve α is arc-length parameterized, i.e., g̃(α ′(t),α ′(t)) = 1. The
derivatives of X(t,θ) are

Xt =
(
α
′
1(t),α

′
2(t),α

′
3(t)cos(θ),α ′

3(t)sin(θ)
)

and
Xθ = (0,0,−α3(t)sin(θ),α3(t)cos(θ)).

The Riemannian metric of the surface reads

g = dt2 +α
2
3 dθ

2.

A globally defined orthonormal tangent frame on Σα is u1 = Xt and u2 = Xθ /α3,
and a globally defined orthonormal basis of the normal bundle of Σα is given by

η1 =
1√

1+(α ′
1)2

(
1+(α ′

1)
2,α ′

1α
′
2,α

′
1α

′
3 cos(θ),α ′

1α
′
3 sin(θ)

)
,

η2 =
1√

1+(α ′
1)2

(
0,−α

′
3,α

′
2 cos(θ),α ′

2 sin(θ)
)
,

with η1 future-pointing timelike and η2 spacelike. A straightforward computation
shows that the components of the second fundamental form are given by

e1 =− α ′′
1√

1+(α ′
1)2

, f1 = 0, g1 =−
α ′

1 α3 α ′
3√

1+(α ′
1)2

, (1)

e2 =
α ′

2 α ′′
3 −α ′′

2 s f α ′
3√

1+(α ′
1)2

, f2 = 0, g2 =− α ′
2 α3√

1+(α ′
1)2

.

Hence the shape operators associated with η1 and η2 are simultaneously diago-
nalizable, i.e., the normal curvature R⊥ of the normal bundle vanishes identically.
The expansions along η1 and η2 are

2h1 =−
α ′

1 α ′
3 +α3 α ′′

1

α3
√

1+(α ′
1)2

and 2h2 =−
α ′

2 +α3(α ′′
2 α ′

3−α ′
2 α ′′

3 )
α3

√
1+(α ′

1)2
. (2)

The Gaussian curvature of a spacelike surface which is invariant under a spacelike
rotation is

K =−
α ′′

3
α3

. (3)
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3 Classification theorem and a gluing procedure

The following classification is local, i. e., a surface S which is invariant by Gs will
be locally congruent to the surfaces in the next theorem.

Theorem 1 Let Σα be a surface in L4 which is invariant under spacelike rota-
tions. Assume that its mean curvature vector satisfies ‖H‖= 0. Then, the generat-
ing curve α(t) = (α1(t),α2(t),α3(t),0) is locally described by one of the follow-
ing cases:

(A) Given a smooth function τ : I ⊂ (0,∞) −→ R, choose a function ε : I −→
{1,−1} such that ετ is also smooth. Define the coordinate functions αi :
I −→ R, i = 1,2,3, as follows

α1(t) =
∫

ε(t)τ(t)dt, α2(t) =
∫

τ(t)dt, α3(t) = t. (4)

Moreover, the mean curvature vector of Σα is

H =
τ + tτ ′

2t
√

1+ τ2
(εη1−η2).

(B) Given a smooth positive function α3 : I ⊂R→ R, and two constants ε1,ε2 =
±1, define the functions

ξ (t) =
∫ dt

α3(t)
, α1(t) = ε1

∫ {
sinh(ξ (t))−α

′
3(t) cosh(ξ (t))

}
dt, (5)

and

α2(t) = ε2

∫ {
cosh(ξ (t))−α

′
3(t) sinh(ξ (t))

}
dt. (6)

Moreover, the mean curvature vector of Σα is

H =
cosh(ξ (t))

(
1−α ′

3(t)
2−α3(t)α ′′

3 (t)
)

2α3(t)
√

1+α ′
1(t)2

(ε1η1− ε2η2) .

In addition, in Case B, given two unit curves α(t) = (α1(t),α2(t),α3(t),0) and
β (t) = (β1(t),β2(t), β3(t),0), such that α3(t) = β3(t), there exists an affine isom-
etry F of L4 satisfying F(Σα) = Σβ .

Proof We recall the generating spacelike unit curve α: J−→P , α(t)= (α1(t),α2(t),
α3(t),0) of Σα , with α3(t) > 0. Now, we consider two subsets J0 = {t ∈ J : α ′

3(t) =
±1} and J1 = {t ∈ J : α ′

3(t) 6= ±1}, which are not intervals in general. Since α ′
3

is continuous, J1 is an open subset of J, i. e., it is either the empty set or made
of countable many open intervals. From a topological point of view, J1 might be
empty or a mixture of intervals, accumulation points and isolated points. To make
some progress, we need to work on open intervals included in J0 and J1.
Case A. We assume that there exists an open interval I ⊂ J0 where α ′

3(t)
2 = 1. By

a change of parameter, we can assume without loss of generality that I ⊂ (0,∞)
and α3(t) = t on I. From now on, we work on I. Since α is unit, we know that
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α ′
1(t)

2 = α ′
2(t)

2. Thus, there exists a function ε : I −→{−1,1} such that ε α ′
1(t) =

α ′
2(t). Now, (4) are trivially satisfied.

Case B. We assume that there exists an open interval I ⊂ J1, so we work on I.
Since α is arc-length parameterized, we have (−α ′

1 + α ′
2)(α

′
1 + α ′

2) = 1− (α ′
3)

2.
By shrinking I if necessary, we can introduce an angle function ξ (t) and a constant
ε =±1, such that

−α
′
1(t)+α

′
2(t) = ε (1+α

′
3(t)) exp(ξ (t)), α

′
1(t)+α

′
2(t) = ε (1−α

′
3(t)) exp(−ξ (t)).

In this way, we obtain the following expressions:

α
′
1(t) =

1
2

{
ε (1−α

′
3(t)) exp(ξ (t))− ε (1+α

′
3(t)) exp(−ξ (t))

}
, (7)

α
′
2(t) =

1
2

{
ε (1−α

′
3(t)) exp(ξ (t))+ ε (1+α

′
3(t)) exp(−ξ (t))

}
. (8)

Since we are assuming ‖H‖ = 0, there exists a function δ : I −→ {1,−1} such
that h1 = δ h2. Bearing in mind (7) and (8), we substitute this in (2), obtaining

(1+δ (t))α
′
3(t)

(
1−α3(t)ξ

′(t)
)

sinh(ξ (t))

+
{

α
′
3(t)

2 (
δ (t)α3(t)ξ ′(t)−1

)
+α3(t)

(
ξ
′(t)+(δ (t)−1)α

′′
3 (t)

)
−δ (t)

}
×cosh(ξ (t)) = 0. (9)

Now, two cases arise naturally.

1. We suppose that there exists an open interval I+ such that δ (t) = 1 for any
t ∈ I+. We work in this interval. Equation (9) becomes

0 =
(
cosh(ξ (t))α

′
3(t)

2−2sinh(ξ (t))α
′
3(t)+ cosh(ξ (t))

) (
α3(t)ξ ′(t)−1

)
.

Now, we suppose that there exists a t0 ∈ I+ such that 0 = cosh(ξ (t0))α ′
3(t0)

2−
2sinh(ξ (t0))α ′

3(t0) + cosh(ξ (t0)). However, from this equation, we obtain
α ′

3(t0) =
tanh(ξ (t0)) ±

√
−1sech(ξ (t0)), which is impossible. Thus, on the whole I+

(at least), we obtain

ξ (t) =
∫ dt

α3(t)
.

Inserting this in (7) and (8) gives the expressions (5) and (6) for the case
ε1 = ε2 = ε .

2. We suppose that there exists an open interval I− such that δ (t) =−1 for any
t ∈ I−. We work in this interval. Equation (9) becomes

−α
′
3(t)

2 (
α3(t)ξ ′(t)+1

)
+α3(t)

(
ξ
′(t)−2α

′′
3 (t)

)
+1 = 0.

From here, we compute ξ ′(t) = −1
α3(t) −

2α ′′
3 (t)

α ′
3(t)2−1 . Now, we obtain

ξ (t) =−
∫ dt

α3(t)
− ln

∣∣∣∣α ′
3(t)−1

α ′
3(t)+1

∣∣∣∣ .
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When inserting this in (7) and (8), one cannot forget the signs, i.e., (1 + α
′
3)

exp(ln |
α ′

3−1
1+α ′

3
|) =±(α ′

3−1). Bearing this in mind, two cases arise. However,

it is possible to deal with both at the same time by choosing suitable constants
ε1,ε2 =±1, obtaining again expressions (5) and (6). Thus, there is no loss of
generality if we redefine the angle function as ξ (t) =

∫
(1/α3(t))dt.

Let β (t) be another arc-length parameterized spacelike curve, with β3(t) = α3(t).
Then, we have ∫ dt

β3(t)
=

∫ dt
α3(t)

+ c0,

with c0 an integration constant. A straightforward computation shows

(β ′
1,β

′
2) = (α ′

1,α
′
2)

(
ε̃1 0
0 ε̃2

)(
cosh(c0) sinh(c0)
sinh(c0) cosh(c0)

)
,

with ε̃1, ε̃2 =±1. If the integration constants of (5) and (6) are denoted by α0
1 and

α0
2 , we call v = (α0

1 ,α0
2 ,0,0). The affine isometry F : L4 → L4,

F(x1,x2,x3,x4)=(x1,x2,x3,x4)

 ε̃1 0 0 0
0 ε̃2 0 0
0 0 1 0
0 0 0 1


 cosh(c0) sinh(c0) 0 0

sinh(c0) cosh(c0) 0 0
0 0 1 0
0 0 0 1

+ v,

satisfies F ◦α = β and thus F(Σα) = Σβ . ut

In Cases A and B of the previous theorem, the domain of the curve α might
not be connected. If we ask the domain I of α to be an interval, we will say that
the surface Σα is of type A or type B, according to Cases A or B, respectively.
In particular, surfaces of type A and B have to be connected, orientable, and any
normal lightlike vector can be globally defined.

Corollary 1 1. A surface of type A is a MOTS if, and only if, the function ε is a
global constant. In addition, a surface of type A is marginally trapped if, and
only if, the function ε is a global constant and τ(t)+ tτ ′(t) is globally positive
or negative.

2. Any surface of type B is a MOTS. In addition, a surface of type B is marginally
trapped if, and only if, the function 1− (α ′

3)
2 −α3α ′′

3 is globally positive or
negative.

By a result in [9] (see also [8]), a closed surface of type A or B bounding a
domain cannot exist. Thus, a good second alternative is completeness.

Corollary 2 Let Σα be a surface of type B in L4. If α3 : R −→ R is a smooth
function such that α3(t) ≥ a0 > 0 for some real constant a0, then the surface Σα

is complete.
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Proof The metric of the surface Σα of type B satisfies

g ≥ dt2 +a2
0dθ

2,

and it is defined for any t,θ ∈ R. This means that Σα is complete. ut

From the proof of Theorem 1, we find a characterization of the extremal space-
like surfaces which are invariant under a spacelike rotation.

Corollary 3 A spacelike surface in L4 is extremal and invariant under a spacelike
rotation if, and only if, it is locally congruent to a surface Σα whose profile curve
α : I⊂ (0,∞)→P , α(t) = (α1(t),α2(t),α3(t), 0), is given by one of the following
cases:

1. α1(t) = aε1 ln(t)+b, α2(t) = aε2 ln(t)+c, α3(t) = t, with a > 0, b,c ∈R and
ε1,ε2 =±1.

2. α1(t) = ε1
2 (a2 + 1 − b) ln

∣∣∣a+ t +
√

t2 +2at +b
∣∣∣, α2(t) = ε2

2 (a2 − 1 − b) ln∣∣∣a+ t +
√

t2 +2at +b
∣∣∣, α3(t) =

√
t2 +2at +b, where ε1,ε2 = ±1, and

a,b ∈ R.

Remark 1 Surfaces of type A and B are not excluding. Indeed, by considering
α3(t) = t in Theorem 1, we obtain Case 1 of Corollary 3, which is a description
of all curves generating surfaces which are simultaneously of type A and B.

Remark 2 All surfaces of type A are flat, i.e., their Gaussian curvature K = 0.

Remark 3 Given a surface of type A, if the mean curvature vector is future-pointing,
by considering the function −ε , we obtain a surface with past-pointing mean cur-
vature vector, and viceversa. A similar situation holds for surfaces of type B by
changing ε1 by −ε1.

Remark 4 Given a surface of type A, with the very same function τ (and same
function ε) it is possible to construct infinitely many curves, and thus surfaces of
type A. However, two of them are related by the translation defined by consider-
ing different integration constants in the expressions of functions α1 and α2. In
addition, if we change ε by −ε , the reflection by a suitable hyperplane links both
surfaces.

Remark 5 For a surface of type A, with the function τ(t) = c ∈ R, both shape
operators A1 and A2 are of rank 1. Such a surface is called pseudo-isotropic. See,
e.g. [10] for properties of such surfaces.

Remark 6 Surfaces of type A as graphs, locally. Given a surface S of type A, with
the function ε locally constant. We restrict this remark to an interval J where ε is
constant. Then, the surface is included in the null hyperplane H = {(x1,x2,x3,x4)∈
L4 : x1 = εx2}. From a Set Theory point of view, one can identify H with R3,
where the surface is parameterized as Y (t,θ) = (

∫
τ(t)dt, t cosθ , t sinθ). We just

call T (t)=
∫

τ(t)dt, so we can identify a region of S with the set {(T (
√

y2 + z2),y,z) :√
y2 + z2 ∈ J}. Conversely, any surface of type A can be locally seen as a graph
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over an annulus centered at the origin of R2. Furthermore, given a real con-
stant a > 0, a disk D(a) = {(y,z) ∈ R2 : y2 + z2 < a2} and a smooth function
T : D(a) −→ R, such that T is invariant by transformations of the form (y,z) 7→
(ycosθ−zsinθ ,ysinθ +zcosθ), θ ∈R, then the graph S = {(T (y,z),y,z) : (y,z)∈
D(a)} can be imbedded in L4 as a surface whose mean curvature vector field sat-
isfies ‖H‖ = 0, and admitting a parametrization of a surface of type A except in
the point touching the plane of fixed points of Gs.

We consider two bounded spacelike surfaces of type A and B, and suppose
that the mean curvature vector of a surface of type A is constantly either past or
future-pointing near one of its boundaries. In such case, we describe a method to
glue them in one new spacelike surface which is invariant by a spacelike rotation
with an intermediate region satisfying H = 0.

Proposition 1 Let Σα and Σβ be two surfaces of type A and B as in Theorem 1
with generating curves α : (a,b)−→P , β : (c,d)−→P , with 0 ≤ a < b < c <
d ≤ ∞. Assume that there is a constant ω > 0 such that the function ε is constant
on the interval (b−ω,b). Then, there exists an affine isometry F : L4 −→ L4,
a real number ν > 0 and a unit spacelike curve γ : (a,d) −→ P , satisfying
that the surface Σγ is invariant by a spacelike rotation, γ|(a,b−ν) = α|(a,b−ν),
F(Σγ|(c+ν ,d)

) = Σβ |(c+ν ,d)
and the mean curvature of the region Σγ|(b,c)

vanishes
identically.

Proof Because the function ε is constant on the interval (b−ω,b), there is no loss
of generality if we assume ε(t) = ε1ε2 for any b−ω < t < b (by changing ε1). In
such case, the surface Σβ is unique up to an affine isometry as in Theorem 1.

We choose ν ∈R such that 0 < ν < min{(d−c)/4,(b−a)/4,ω} and consider
two smooth functions fi : (a,d)−→ R, i = 1,2, satisfying
1. 0 ≤ fi ≤ 1, i = 1,2;
2. f1(t) = 0 and f2(t) = 1 for any t ∈ (a,c);
3. f1(t) = 1 and f2(t) = 0 for any t ∈ (c+ν ,d).
Note that f ′1 = f ′2 = 0 on the intervals (a,c) and (c+ν ,d). We define the smooth
function γ3 : (a,d) −→ (0,∞), given by γ3(t) = t f2(t)+ β3(t) f1(t). It is straight-
forward to check that γ3(t) = t for any t ∈ (a,c) and γ3(t) = β3(t) for any t ∈
(c+ν ,d). In particular, γ3(t) = α3(t) on the interval (a,b).

We define ξ̃ (t) =
∫ dt

γ3(t)
, with the additional condition ξ̃ (t) = ξ (t) for any

t ∈ (c+ν ,d), which can be achieved by choosing a suitable integration constant.
Bearing in mind Case B in Theorem 1, we define β̃1, β̃2 : (a,d)−→P , satisfying
β̃1(t) = β1(t) and β̃2(t) = β2(t) for any t ∈ (c+ν ,d).

Next, we consider two smooth functions f3, f4 : (a,d)−→ R such that
1. 0 ≤ fi ≤ 1, i = 3,4;
2. f3(t) = 1 and f4(t) = 0 for any t ∈ (a,b−ν);
3. f3(t) = 0 and f4(t) = 1 for any t ∈ (b,d).
Let τ(t) be the function in the definition of the curve α . Next, we define the smooth
functions γi : (a,d)−→ R, i = 1,2, given by

γ1(t)=
∫ (

ε(t)τ(t) f3(t)+β̃
′
1(t) f4(t)

)
dt, γ2(t)=

∫ (
τ(t) f3(t)+β̃

′
2(t) f4(t)

)
dt,
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but satisfying γ1(t) = α1(t) and γ2(t) = α2(t) for any t ∈ (a,b− ν). As above,
it is only necessary to choose suitable integration constants. Indeed, given t ∈
(a,b−ν), γ ′1(t) = ε(t) f3(t)τ(t)+ f4(t) β̃ ′

1(t) = ε(t)τ(t), and γ ′2(t) = f3(t)τ(t)+
f4(t) β̃ ′

2(t) = τ(t). Next, given t ∈ (b,d), γ ′i (t) = β̃ ′
i (t), for i = 1,2, and γ3(t) = t.

Note that by Corollary 3, the surface Σγ|(b,c)
satisfies H = 0. Now, bearing in

mind Remark 1, given t ∈ (b−ν ,b), we see β̃ ′
i (t) = 2εi exp(ξ0) t, i = 1,2. Thus,

since 0 < ν < ω , γ ′1(t) = ε(t)( f3(t)τ(t)+ f4(t) ε1
ε(t) exp(ξ0) t) = ε(t)

(
f3(t)τ(t)+

f4(t)ε2
exp(ξ0) t

)
= ε(t)γ ′2(t). Finally, we define the curve

γ : (a,d)−→P, γ(t) = (γ1(t),γ2(t),γ3(t),0),

and its associated surface Σγ . From the above computations, it is easy to check
that ‖γ ′‖= 1. Needless to say, Σα is an open subset of Σγ . It only remains to point
out that the open subset Σγ|(c+ν ,d)

of Σγ might not be the original Σβ |(c+ν ,d)
, but they

will be congruent by an affine isometry, as in Theorem 1. ut

Corollary 4 Let Σα and Σβ two surfaces of type A, whose generating curves τα :
(a,b)−→R and τβ : (c,d)−→R satisfy 0 < a < b < c < d ≤∞. Then, there exists
a unit spacelike curve γ : (a,d)−→P , a real number ν > 0 and two translations
Fα ,Fβ : L4 −→ L4 such that Σγ is a surface of type A, Fα(Σγ|(a,b−ν)

) = Σα|(a,b−ν)
,

Fβ (Σγ|(c+ν ,d)
) = Σβ |(c+ν ,d)

and the mean curvature of the region Σγ|(b,c)
vanishes

identically.

Corollary 5 Let Σα and Σβ two surfaces of type B, with profile curves α : (a,b)−→
P and β : (c,d) −→ P , −∞ ≤ a < b < c < d ≤ ∞. Then, there exists a unit
spacelike curve γ : (a,d) −→ P , a real number ν > 0 and two affine isometries
Fα ,Fβ : L4 −→ L4 such that Σγ is a surface of type B, Fα(Σγ|(a,b−ν)

) = Σα|(a,b−ν)
,

Fβ (Σγ|(c+ν ,d)
) = Σβ |(c+ν ,d)

and the mean curvature of the region Σγ|(b,c)
vanishes

identically..

All necessary ideas to prove these two corollaries are contained in the proof of
Proposition 1 and in Remark 4.

Remark 7 The methods explained in Proposition 1 and its two corollaries give the
possibility to construct surfaces S satisfying the following conditions:

1. S is invariant under a spacelike rotation group.
2. The mean curvature vector of S satisfies ‖H‖= 0, with (infinitely many count-

able) regions {Sn : n ∈ N ⊂ N} where its mean curvature vector H 6= 0.
3. Each region Sn can be either of type A or B.
4. The mean curvature vector of each region Sn can be set either future or past-

pointing, as desired.
5. Among two adjacent regions Sn and Sn+1, there is an open subset which is

extremal, i.e., H = 0.

In particular, it is possible to construct examples of several of the types given in
the classification introduced in [12].
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4 The Gaussian curvature

We show that there exist surfaces in L4 invariant by Gs, whose mean curvature
vector field satisfies ‖H‖= 0 and with prescribed Gaussian curvature. As an appli-
cation, we compute all such surfaces which have constant Gaussian curvature.

Corollary 6 Let κ : I ⊂R→R be a smooth function and t0 ∈ I. There exist δ > 0
and a unit curve α : (t0−δ , t0 +δ )⊂ R→P , such that α is a profile curve of a
spacelike surface Σα(t,θ) of type B and whose Gaussian curvature at every point
(t,θ) is κ(t). Moreover, if κ(t)α3(t)2−α ′

3(t)
2 +1 never vanishes on (t0−δ , t0 +

δ ), the surface Σα is marginally trapped.

Proof Given a smooth function κ : I ⊂ R → R and let α3 : (t0− δ , t0 + δ )→P
be a positive solution of the differential equation α ′′

3 (t) = −κ(t)α3(t) [see (3)].
The result then follows from Theorem 1. ut

Corollary 7 There do not exist extremal spacelike surfaces of type B with constant
Gaussian curvature in L4.

Proof If we take κ constant in the previous Corollary, the solution of the differ-
ential equation κ α3(t)2 + α ′

3(t)
2 − 1 = 0 is either α3(t) = ε/

√
−κ if κ < 0 or

α3(t) = ε sinh((t − c)
√

κ)/
√

κ if κ > 0, with ε = ±1 and c ∈ R. By (3), using
these expressions in the differential equation α ′′

3 (t) =−κ α3(t) gives a contradic-
tion in both cases. ut

Example 1 A surface of type B is flat if and only if a profile curve α : (−b/a,+∞)⊂
R→P , with a,b ∈ R, |a |6= 0,1, is given by

α1(t) =
ε

2

{
1−a
1+a

(at +b)
a+1

a +
1+a
1−a

(at +b)
a−1

a

}
,

α2(t) =
ε

2

{
1−a
1+a

(at +b)
a+1

a − 1+a
1−a

(at +b)
a−1

a

}
,

α3(t) = at +b,

or a profile curve α : I ⊂ R→P is given by

α(t) =
(

ε1 b cosh
( t

b

)
,ε2 b sinh

( t
b

)
,b,0

)
,

with b ∈ R+
0 .

Example 2 Given K > 0, we compute the profile curve α of a surface of type B
with constant Gaussian curvature K2. By (3), we need to solve the differential
equation α ′′

3 (t) =−K2α3(t), whose general solution is

α3(t) = c1 cos(Kt + c2), with c1,c2 ∈ R, c1 6= 0.

As α3(t) has to be positive, we can choose I = (−π+2c2
2K , π−2c2

2K ) if c1 > 0 or I =
(π−2c2

2K , 3π−2c2
2K ) if c1 < 0, as the domain of α3(t). According to Theorem 1, we

need to compute a primitive of 1/α3(t), which is

ξ (t) =
1
c1

ln
∣∣∣∣1+ sin(Kt + c2)
1− sin(Kt + c2)

∣∣∣∣+ξ0,
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being ξ0 ∈R. This way, by taking ε1, ε2 =±1, the coordinate functions of α(t) =
(α1(t),α2(t),α3(t),0) are

α1(t) = ε1 (sinh(ξ (t))+ c1 sin(Kt + c2)cosh(ξ (t))),
α2(t) = ε2 (cosh(ξ (t))+ c1 sin(Kt + c2)sinh(ξ (t))),
α3(t) = c1 cos(Kt + c2).

Finally, the mean curvature vector of Σα is

H =
cosh(ξ (t))

(
1+ c2

1K2 cos(2(Kt + c2))
)

2c1 cos(Kt + c2)
√

1+(α ′
1(t))2

(ε1η1− ε2η2).

Example 3 Given K > 0, we compute the profile curve α of a surface of type B
with constant Gaussian curvature −K2. By (3), we need to solve the differential
equation α ′′

3 (t) = K2α3(t), whose general solution is

α3(t) = c1 exp(Kt)+ c2 exp(−Kt), with c1,c2 ∈ R, c2
1 + c2

2 > 0.

We choose an interval I where α3(t) is positive. We discuss some cases.

Case c1c2 > 0. Given ξ0 ∈ R, the angle function is

ξ (t) =
1

K
√

c1c2
arctan

(
c1 exp(Kt)
√

c1c2

)
+ξ0.

Case c1c2 < 0. Given ξ0 ∈ R, the angle function is

ξ (t) =
1

2K
√
−c1c2

ln
∣∣∣∣2c1 exp(Kt)−2

√
−c1c2

2c1 exp(Kt)+2
√
−c1c2

∣∣∣∣ξ0.

Case c2 = 0. Given ξ0 ∈ R, the angle function is

ξ (t) = − 1
Kc1 exp(Kt)

+ξ0.

Case c1 = 0. Given ξ0 ∈ R, the angle function is

ξ (t) =
exp(Kt)

Kc2
+ξ0.

It only remains to compute α1(t) and α2(t). To do so, we choose ε1, ε2 =±1, and
then

α1(t) = ε1 (sinh(ξ (t))−K (c1 exp(ξ (t))− c2 exp(ξ (t)))cosh(ξ (t))),
α2(t) = ε2 (cosh(ξ (t))−K (c1 exp(ξ (t))− c2 exp(ξ (t)))sinh(ξ (t))).

Finally, the mean curvature vector of Σα is

H =
cosh(ξ (t))

(
1−2K2(c2

1 exp(2Kt)+ c2
2 exp(−2Kt))

)
2α3(t)

√
1+α ′

1(t)2)
(ε1η1− ε2η2).

Corollary 8 Let S be a spatial surface in L4 invariant by Gs satisfying ‖H‖ =
0 with constant Gaussian curvature K. Then, S is locally congruent to either a
surface of type A or one among Examples 1, 2 and 3.



14 S. Haesen, M. Ortega

5 Conclusions

In this paper, we have studied spacelike surfaces in Minkowski 4-space which
are invariant by a rotation group of isometries and whose mean curvature vector
field is lightlike or zero. Our main result is the classification of such surfaces in
Theorem 1, from which it follows that there are two types of surfaces, that we
call of type A and B, which are not excluding. As a consequence, a long list of
corollaries is exhibited. Among them, we locally describe MOTS and marginally
trapped surfaces. Furthermore, given up to countable infinitely many surfaces of
either type A or B whose mean curvature vector might be either future or past-
pointing, (and some reasonable conditions), we describe a method to glue them
in just one surface whose mean curvature vector is null, which are invariant by
a spacelike rotation group, and having intermediate extremal regions among two
regions of type A or B. Also, we pay attention to the Gaussian curvature, showing
the possibility to construct surfaces of type B with prescribed Gaussian curvature
(at least, theoretically). Among them, the list of surfaces with constant Gaussian
curvature is exhibited.

These constructions may lead to the study of generalized horizons in Minkowski
4-space as well as in other spacetimes, since they are foliated by marginally trapped
surfaces.
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