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Fig. 1. Technical roadmap of the cosmic rays component

identification model.
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Table 1.  Optimal hyperparameters of decision tree identifying different components.
FIARM Y
S N
By A% AR Bk B
criterion Entropy Entropy Entropy Entropy Entropy
max_ depth 21 29 40 28 19
min_samples_ split 2 4 7 2 4
min_weight fraction leaf 0 0 0 0 0
min_samples_ leaf 1 1 1 1 1
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Fig. 2. Flow chart of random forest algorithm modeling.
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Table 2.  Optimal hyperparameters of random forest identifying different components.
- HpRA
By A% AR Bk Bt
criterion Gini Gini Entropy Entropy Entropy
n_ estimators 48 88 30 15 21
max_ depth 20 26 30 27 23
min_samples_ split 2 2 1 2
min_samples_leaf 1 1 1 1

140202-4



#) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023)

140202

HINZ

Hbrisy
KIifA
BT
P
HPT
—
oy
—_—

K3 AR BP & M 2K L5 R B K

Fig. 3. Structure diagram of BP neural network in this paper.
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Table 3. BP neural network (identifying helium

hidden layer nodes verification results.

— (ST RN
5 6 7 9 10 11 12 13
AL 20000 20000 20000 25000 27000 20000 20000 20000 20000
HHEAUCH 0.5503 0.5045 0.5293 0.5593 0.6329 0.6276 0.6177 0.6142 0.6418
Qi JTTA ¥ 0.82 0.29 0.58 1.26 1.25 1.22 1.26 1.34
F# 4 BP MEMSKEGIAFBR BB S R G
Table 4.  Optimal hyperparameters of BP neural network identifying different components.
s EE7N %
BT AR Bk Btz
B2 5 R AR 13 13 13 11
WIRF 2% 0.01 0.01 0.01 0.01
AL 20000 20000 20000 20000
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Fig. 4. Results of three cosmic rays identification models identifying helium using 10-fold cross validation method.
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fication models identifying helium.
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Table 5.  Efficiency and purity of three cosmic rays identification models identifying different components.
_ B/ % 4lE /%
SRy Wix - : - :
BPHIZ 4 PR Rl AL AR BPHIZ M 4% PR RifAL AR
P 64.9 74.8 75.7 74.4 77.6 91.1
A% 36.0 83.3 79.3 52.8 80.1 95.7
AR 10.3 93.4 81.5 64.5 94.8 99.4
BERRRE 16.9 91.8 78.7 69.9 92.1 95.8
R 82.8 88.1 91.1 87.5 88.7 93.5
F 6  CRFEHERR LRSI S AUC K Q fJi T
Table 6. AUC and @ quality factor values of three cosmic rays identification models identifying different components.
_ AUC Q AT
EE7NWix - - - :
BPHIZ M 45 PR RfATLAR A BP#IZ: M4 P FEHLARAR
e 0.7962 0.8555 0.9247 2.71 3.15 5.42
A% 0.6418 0.8805 0.9537 1.34 3.75 8.38
AR 0.5444 0.9612 0.9739 0.87 7.55 20.1
BERRRE 0.5754 0.9504 0.9531 1.25 6.54 8.39
Btz 0.8751 0.8952 0.9380 2.96 2.97 4.40
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Abstract

Machine learning algorithms can learn the rules and patterns of big data through computers, excavate
potential information hidden behind the data, and be widely used to solve classification, regression, clustering,
and other problems. Firstly, this paper uses CORSIKA software to simulate the process of cosmic ray cascade
shower in the atmosphere, generating information such as the initial energy, zenith angle, azimuth angle of
cosmic ray particles. Then, this paper uses the Geant4 toolkit to conduct thermal neutron detector response
simulation, generating 4000 particles in each of proton, helium, CNO, MgAlSi and iron. Based on the
experimental simulation data of thermal neutron detector, this paper constructs machine learning models for
identifying cosmic ray particles by using decision tree (DT), random forest (RF) and BP neural network (BP
NN) respectively. For each particle, all the machine learning algorithms are used for model training based on
the simulation data. The cross grid search method is used to adjust the hyper parameters of each machine
learning algorithm. The AUC value and @ quality factor value of each algorithm are used as evaluation indexes
for particle composition identification. The AUC wvalue is a general indicator for evaluating algorithm
performance in machine learning and the @ quality factor value is an evaluation index commonly used in the
field of high energy physics. The Experimental results show that different machine learning models have great
influence on particle prediction accuracy, and the random forest cosmic ray particle identification model has
sufficient accuracy and generalization capability. In the test, the decision tree algorithm adjusted by cross grid
search method is sensitive to the medium components (CNO and MgAlSi). The AUC values of the algorithm
are all above 0.95 and the @ quality factor values are all above 6. The random forest algorithm adjusted by the
cross grid search method has the best effect on the identification of cosmic ray particles. The AUC values of the
algorithm are all more than 0.92 and the @ quality factor values are all more than 4. The BP neural network
algorithm is only sensitive to proton and iron. This study provides a new method and selection for identifying
and screening the cosmic ray particles and it also provides a new idea for the following measurement of cosmic

ray energy spectrum by thermal neutron detector.
Keywords: cosmic rays, particle identification, machine learning, random forest
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