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Abstract

This dissertation examines two different subjects within the study of instantons: the
construction of Nahm transforms for instantons invariant under certain group actions;

and a generalization of the proof that Yang—Mills minimizers are instantons.

The first Nahm transform examined is the ADHM construction for S!-invariant
instantons on S*, which correspond to singular monopoles on R3. In this case, there
is a decomposition of the ADHM data in terms of S!-subrepresentations of ker D.
The moduli spaces of S'-invariant SU(2)-instantons are given up to charge 3, and

examples of ADHM data for instantons of charge 4 are also provided.

The second Nahm transform considered is for instantons on a certain flat quotient
of R* with nonabelian fundamental group. Equivalently, one can consider these to be
Zo-invariant instantons on 7%, and the Nahm transform yields instantons invariant

under a crystallographic action.

In our study of minimal Yang—Mills connections, we extend results of Bourguignon—
Lawson-Simons and Stern, who showed that connections that minimize || Fy||* on ho-
mogeneous manifolds must be instantons or have instanton subbundles. We extend
the previous arguments by considering variations constructed using conformal vector
fields, and also allow these vector fields to be incomplete. We prove a minimality

result over a half-cylinder.
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Chapter 1

Introduction

An instanton is a connection V on a hermitian vector bundle E over a four-manifold
M such that the curvature is self-dual or anti-self-dual, Fy = +% Fy. Instantons form
a special case of Yang—Mills connections, which are critical points of the Yang—Mills
Lagrangian ;| Fy||2.. The study of Yang-Mills connections, as well as critical points
of other similar Lagrangians, constitutes gauge theory. The Yang—Mills equations
originated in physics, where they were proposed as a non-abelian generalization of
Maxwell’s Equations. Indeed, one can obtain Maxwell’'s Equations as a special case

of Yang—Mills by letting E be a line bundle over Minkowski space.

From a mathematical viewpoint, instantons are a natural object to study when
considering vector bundles. The curvature of a connection measures an inherent non-
flatness in the bundle F, generalizing Riemannian curvature on the tangent bundle.
As such, minimizing ||Fy||3. can be interpreted as finding a connection on E that
is as close to flat as possible. That the minimal curvature may be nonzero is due
to topological obstructions. The study of the space of instantons has led to many
interesting advances in geometry, including notably being used to prove Donaldson’s
Theorem regarding the topology of differential four-manifolds. Gauge theory contin-
ues to be an active area of research at the intersection of geometry, analysis, topology,
and physics.

An important foundational piece in gauge theory is the ADHM construction,
which parametrizes SU(n)-instantons on S* by linear algebraic data satisfying cer-

tain quadratic equations. A generalization of this construction yielded the Nahm



transform, often described as a Fourier transform for instantons. The transform
gives a correspondence between instanton-like objects on two spaces that are dual to
each other in some sense. In its various forms, the transform has proved very suc-
cessful in studying various gauge-theoretic objects, such as monopoles, solutions to
Hitchin’s equations, and instantons with various periodic conditions. For this work,
we concern ourselves in particular with Nahm transforms for instantons invariant
under certain group actions.

In Chapter 2, we introduce notation and provide some background information on
instantons. We describe the process of dimensional reduction, with an emphasis on
monopoles as a reduction of instantons to R3. We end the chapter by collecting facts
about spinor bundles and Dirac operators that will be necessary for our descriptions
of the Nahm transform.

In Chapter 3, we describe the Nahm transform in varying levels of generality. We
begin with a broad and intuitive look at the Nahm transform over general manifolds,
following the viewpoint of [Jar02]. We then specialize to instantons on R* satisfying
various invariance and periodicity conditions, giving a general heuristic for construct-
ing a Nahm transform in these conditions. The bulk of the chapter is then devoted to
the details of constructing the Nahm transform in two specific cases: instantons on a
torus 7%, and the ADHM construction on R*. The first provides a useful foundation
for considering the Nahm transform on crystallographic quotients of R* in Chapter
5, while the second is directly relevant to the construction in Chapter 4.

In Chapter 4, we describe a correspondence between singular monopoles on R?
and S'-invariant instantons on R*, viewed away from 0 as a non-trivial S*-fibration.
We decompose the ADHM data in terms of S'-subrepresentations of ker D, and write
the corresponding decomposition of the ADHM equations. We evaluate the character
of the S'-representation, first for structure group SU(2) and then more generally for
SU(n). We provide a description of moduli spaces of S'-invariant SU(2)-instantons
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of charge up to 3, and also give examples of S'-invariant ADHM data in charge
4. Some of the work for this chapter was completed in collaboration with Benoit

Charbonneau.

In Chapter 5, we provide a brief introduction crystallographic groups and Bieber-
bach groups, which are cocompact discrete subgroups of isometries on R". We then
give an example of such a group B, yielding a flat compact manifold M = R*/B with
nonabelian fundamental group. A Nahm transform on M is constructed, with the
transformed connection being an instanton on R* that is invariant under a crystallo-

graphic action.

Chapter 6 is independent of the preceeding chapters. We consider the converse to
the statement that instantons are minimizers of the Yang-Mills energy. In [BLS79,
BL81] it was shown that stable Yang—Mills connections over compact homogeneous
spaces and with structure group G = SU(2), U(2), or SU(3) are instantons. In
[Stel0] it was shown that upon passing to certain subbundles of the adjoint bundle,
the statement is true for arbitrary compact structure group and for complete (but not
necessarily compact) homogeneous spaces. We generalize the argument from [Stel0],
allowing variations defined with conformal and incomplete vector fields. We then

prove a minimality result for Yang—Mills connections on a half-cylinder.



Chapter 2

Preliminaries

2.1 Yang—Mills connections

Let G be a Lie group and let P — M be a principal G-bundle. For a representation
p: G — GL(V), we define the bundle associated to P by p to be

Px,V=(PxV)/~ (2.1.1)

where ~ denotes the equivalence relation (p,v) ~ (pg, p(g')v) for any g € G. We
then say a vector bundle E has a G-structure (or equivalently, call E a G-vector
bundle) if it is an associated bundle to some principal G-bundle. We shall always

assume that G is compact.

When G = U(n) or SU(n), and absent any additional qualification, we will take p
to be the standard representation on C™. With this assumption, a U(n)-vector bundle
is a hermitian bundle of rank n. An SU(n)-vector bundle is a hermitian bundle of

rank n equipped with a complex volume form v € det(FE).

A local section ¢ of P, defined over some open set U, defines a local trivialization

of E by

(z,v) — [o(x),v].
If we fix a basis {v;} for V', we then obtain a local frame for E given by the sections
si(x) = [o(x),v;]. A frame of E corresponding to a section of P is called a gauge. A
different choice of gauge over U is given by a different section &, which is related to

the original frame by ¢ = og for some g = g(x) a G-valued function. We call g a

4



gauge transformation. Since

[0, v] = [og, 0] = [0, p(g)v], (2.1.3)

change of gauge from ¢’ to o corresponds to acting by p(g) on V.

Remark. In the literature, there is inconsistency in the use of the term ‘gauge group.’
Depending on the author, it can mean either the group G or the group G of G-valued
functions defining gauge transformations. In this work the issue will be avoided by

referring to G as the structure group, and to G as the group of gauge transformations.

For a G-vector bundle E, we define its adjoint bundle ad(E) to be the vector

bundle associated to the frame bundle P by the adjoint representation of G,
ad(E) = P Xaq 0. (2.1.4)

For z in the base manifold M, an element ®(x) € ad(FE), defines an endomorphism
of the fibre F, via the induced representation dp of g on E,. That is, for o a section

of P and ®(z) € g, we have an End(E)-valued function given by

[o(2), ®]([o(), v]) = [o(x), dp(®(x))v]. (2.1.5)

We view ®(z) as a locally g-valued function such that a gauge transformation acts
as & — ad(g)®. Since we will commonly take G to be a matrix Lie group, we write
ad(g)® = gPg .

A connection V on E is called a G-connection if, with respect to a local gauge,
parallel transport by V is a g-valued function. Equivalently, G-connections are ob-
tained from a connection on P by the associated bundle construction. In the case
G = U(n), such connections are precisely those that are compatible with the hermi-

tian inner product on fibres, in the sense that

VX<81, 82> = <VX51, 82> —+ <51, VX32> (216)
)



for all X € I'(T'M) and s1,s2 € I'(E). An SU(n)-connection is compatible with the

hermitian inner product, and additionally has Vxv = 0, where v € det(F) is the

complex volume form, and where V is taken as the induced connection on det(E).
Recall that for a connection V, we define the connection 1-form with respect to

a local frame s = {s;} to be the matrix-valued 1-form A such that

If V is a G-connection, then parallel transport by V is G-valued, and hence with
respect to a local gauge A is g-valued. Conversely, if A is locally g-valued, then V
is a G-connection. Recall that a connection on P is given as a g-valued 1-form w on
TP. Given a section o € I'(P), the pullback o*w defines the connection form A of
the corresponding connection on E from the associated bundle construction.

Note that we refrain from saying the connection form is ad(F)-valued since it
does not transform appropriately under change of gauge. Connections transform as

V + gVg~!, which in terms of connection form A is the transformation
A gAg +gdg™. (2.1.8)

We say two connections V! and V? are gauge equivalent if there is a gauge transfor-
mation such that V! = gV2g~!. In this case, we view the two connections as differing
only in choice of local trivialization. We study the connections on E modulo gauge
equivalence.

Yang—Mills theory is the study of a special class of connections, to be defined
below. The gdg~! term in the transformation of the connection form makes it difficult
to study a connection directly in terms its behaviour with respect to a local frame. In
particular, even if the connection form vanishes with respect to one gauge, applying
a non-constant gauge transformation ¢ yields non-zero connection form gdg—!.

As with connections on the tangent bundle, we study a connection on E by

its curvature, generalizing Riemannian curvature. We define the exterior covariant
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derivative dg on QP(E) = I'(A’ TM®FE) such that dy (w®s) = (dw)®s+(—1)Pw@Vs.
Unlike the exterior derivative, d% is in general non-vanishing. We define the curvature

of V to be Fy € Q*(ad(F)), given by
Fys = dys, (2.1.9)

It can be checked that under change of gauge the curvature transforms as Fy —
gFvg™!, so Fy is indeed ad(FE)-valued. With respect to a local gauge in which V has

connection form A, we have the expression for Fy as
1
Fg=dA+ JANA (2.1.10)

Here, exterior product of g-valued forms is the tensor product of the Lie bracket
on g with the exterior product on forms. Note that the anticommutativity of the
Lie bracket combined with graded commutativity for forms means that for A, B €
OY(M, g) we have AANB = BAA. In particular, we do not have the usual vanishing of
AN A like we do for usual differential 1-forms. In coordinates x; with the connection

form A = A;dz", the curvature Fy = Fj;dz' A da? is given by
Fij = 0;A; — 0;Ai + [Ai, Ay, (2.1.11)

Since we are assuming G to be compact, ad(E) inherits an ad-invariant inner
product on fibres from the ad-invariant inner product on g. In the SU(n)-case, this

is given by (A, B) = — trace(AB).

We define the Yang-Mills Lagrangian on the space of connections to be
1 9 1 9
Y(V)=z|Fyli: =z | |Fv|*dvoly . (2.1.12)
2 2 Jus

Note that ad-invariance of the inner product on fibres implies that |gFyg™!| = | Fy|,

and so ) is invariant under gauge transformation. We are interested in critical



points of this Lagrangian. Solving the Euler-Lagrange equations gives the Yang—
Mills equation,

dyFy = 0. (2.1.13)
Here d& = (—1)"PH)+ s dox : QP(ad(E)) — QP (ad(E)) is the L*-adjoint of dy. A
solution to the Yang—Mills equation is called a Yang—M:ulls connection.

The Yang-Mills equation is a second order non-linear PDE in the components of

V. Coupled with the Bianchi identity
dyFy =0, (2.1.14)

which is true for all connections, the Yang—Mills equation is elliptic.
We can also consider a Lagrangian for pairs (V, ®) consisting of a connection V

and section of ad(E). We define the Yang—Mills—Higgs Lagrangian to be

1
V(V,®) = §/M |Fy|? + |dy®|* dvol . (2.1.15)

The Yang—Mills-Higgs Lagrangian is sometimes taken to include a potential function
U(®) in the integrand, but for our current purposes we take U = 0. We call ¢ the

Higgs field. The Euler—Lagrange equations give the Yang—Mills—Higgs equations

doFy = [dy®, 3], (2.1.16)

d5dy® = 0. (2.1.17)

2.2 Instantons

In dimension four, there is a special class of solution to the Yang—Mills equation.

Definition 2.2.1. A connection V is said to be an instanton if its curvature satisfies
the self-duality or anti-self-duality equation,

8



Observe that because *x: (2 — Q" P and because Fy is a 2-form, this equation
is specific to dimension four. In most of what follows, we will take instantons to
have anti-self-dual curvature, the self-dual case being given by changing orientation.
The exception is in Chapter 6, where we consider both self-dual and anti-self-dual
curvature.

The Yang-Mills equation (2.1.12) and the Bianchi identity (2.1.14) together show
that an instanton is always Yang—Mills. Furthermore, on compact manifolds, in-
stantons are minimizers of the Yang—Mills Lagrangian. To see this, note that the

(1£x%)Fy are orthogonal to each other,

(anti)-self-dual parts of the curvature Fg = 1

and so

1Fl* = 1511 + 1 Fe (2.2.3)

On the other hand,

/ trace(Fy A Fy) = / trace(Fg A Fd) —|—/ trace(Fg A Fy)
M M M

= |FSII* = 175 1* (2.24)
Recall by Chern—Weil theory that

52 trace(Fy A Fy) = co(E) — ¢1(E)? (2.2.5)
M

is a topological invariant of the bundle, where ¢;(E) and c3(E) denote the first and
second Chern classes of E/, and we omit evaluation on M from the notation. There-

fore, by (2.2.3), (2.2.4), and (2.2.5) we have that
1P| = 87°(c2(E) — e1(E)*) + 2| Fg |* = =87 (c2(E) — ea(E)*) + 2| FE|I°, (2:2.6)

and thus || Fy||? is minimized if either F& or Fg vanishes. Note that the converse to

the statement does not a priori hold, and indeed is the subject of Chapter 6.

Returning to the convention that instantons have anti-self-dual curvature, a closer

k

3.7, Where k =

look at the above argument shows that instantons satisfy ||Fy||? =

9



—(ca(E) — ¢1(F)?) is an integer. We call k the charge of the instanton. The first
Chern class is obtained by taking the trace of the curvature, suitably normalized. If
the structure group is SU(n), then Fy is su(n)-valued and hence traceless. Therefore,
SU (n)-vector bundles E have ¢;(E) = 0, and for an SU(n)-instanton the charge is

simply —co(F).

2.3 Dimensional reduction

From the anti-self-duality equation, we can obtain other gauge theoretic equations of
interest on spaces of lower dimension by the process of dimensional reduction. We
describe this process over R*, on which we fix Euclidean coordinates x;. Moreover,
by contractibility we may fix a global frame for £. Let V be an instanton on R*,
and suppose that V is constant in the last 4 — m directions x,,,1,..., x4 for some
0 < m < 4, by which we mean that the connection form A = A;dz’ with respect
to the global frame is constant in these directions. We can then define a connection
V5 with connection form B = Y A;dz’ on R™ C R*. The leftover components
of A define endomorphisms of the bundle, ®; = A; for m + 1 < ¢ < 4. Writing the
instanton equation for A then gives equations in terms of B, dg®;, and commutators
of ®; on R’71. We call these equations the dimensional reduction of the instanton

equation to R™.

As an example, consider an instanton that is constant in one variable z,. Then
we let B = Ajdat + Asdx? + Asda® give a connection on R?, and let ® = A,. Since

04A; = 0, the curvature of Iy in coordinates is then

(Fa)ij = (FB)ij if 4,7 # 4, (2.3.1)

The anti-self-duality equations in coordinates pair terms that do not involve the

10



index 4 with terms that do. Using equations (2.3.1) and (2.3.2), the anti-self-duality
equations become

(Fp)ij = —(Vp)ir® (2.3.3)

for cyclic permutations (i, 7, k) of (1,2,3). These equations are expressed succinctly
by the Bogomolny Equation

Definition 2.3.5. A pair V, ® is called a monopole if it satisfies the Bogomolny
Equation (2.3.4).

The above discussion shows that translation-invariant instantons on R* have a cor-
responding monopole on R®. From a monopole, constructing a translation-invariant

instanton by V = Vg + ® ® dz?, shows the correspondence is one-to-one.

Remark. The framework given for dimensional reduction worked because we could fix
a global frame for | with respect to which it made sense to say that the connection
was constant in certain directions. When the manifold M is not contractible, it may
not be possible to fix a global frame (or, as in Chapter 4, we may have reasons to
choose other frames), and so we instead use the language of invariant connections.
Let H be a group of isometries of M with a lift to an action on the bundle E. Since
this action identifies the fibres F, = Ej,,., we can then identify the bundles h*F = E.
Therefore, we may consider the pullback connection A*V as a connection on E, and

we say V is H-invariant if h*V =V for all h € H.

A monopole is a solution to the Yang—Mills—Higgs equations. Indeed, to see it

11



satisfies (2.1.16), note that if (V, ®) is a monopole

d*VFV = *dv * FV
= — % dQVCID
= —[*Fv,(b}

= [dvy®, D].
To see it solves (2.1.17),

d*vdvq) = — %k dv * dvq)
= *dvFv

=0.

Remark. We could also define monopoles to be solutions to Fy = *dy®. This corre-

sponds to self-dual instantons rather than anti-self-dual.

As a final observation, note that a translation-invariant instanton has constant
curvature in the x4 direction. Therefore, either Fy = 0 identically, or ||Fy|| 2 = oc.
To obtain non-flat finite-energy instantons, by which we mean ||Fyl/;2 < oo, one
could replace the direction x4 with a copy of S! so that the integral of a constant
function is no longer infinite. This process can be generalized: monopoles on a
manifold M correspond to S'-invariant instantons on M x S!'. In Chapter 4, we
consider a situation where monopoles correspond to finite-energy instantons on R*

as a non-trivial S! fibration over R3, at the cost of introducing a singularity at 0.

2.4 Dirac operators

Constructing Nahm transforms in Chapters 3 and 4 will necessitate the use of Dirac

operators, and so we recall some important facts. For a more in-depth treatment,
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readers are directed to [LM89] (especially for a thorough treatment of Clifford al-
gebras and spin representations), [BGV04], and [Roe98] (which the author of this
dissertation found to be a very accessible introduction to the subject). We assume
some familiarity with spin groups, spin structures on manifolds, and the spin repre-
sentation. As all of our applications will be in dimension 4, we restrict attention to
this case.

Let A be the spin representation of Spin(4), which is a 4-dimensional represen-
tation. Note that A is not irreducible as a Spin(4)-representation, but instead de-
composes as discussed below. With the standard embedding of Spin(4) C CI(R?), A
extends to a left Clifford module. For e; an orthonormal basis of R?, let ¢; denote Clif-
ford multiplication by ¢(e;), and let multiple indices denote Clifford multiplication by
the product ¢;,4,..4, = ¢i,Ciy - - . ;. We will continue using this notation throughout,
where more generally e; will be an orthonormal frame on T'M. There is a hermitian
inner product on A for which Clifford multiplication by ¢; is skew-hermitian.

We define a linear map A" R* — C1(R*) on basis elements by c(e;, Aej, A- - -Ae;, ) =

Civiy..ip,- Because ¢; and c¢; anticommute for 7 # j, this map is well-defined regardless

of the ordering of the indices iy,...,7; in the exterior product. This map is not
an algebra homomorphism, however, as can be seen by noting c(e;)*> = —1, while
cle; Ney) = 0.

Define a volume element on R* by vol = e; A es A es A es. Then note that
c(vol)? = 253, = 1, and so the eigenvalues of c(vol) acting on A must be 1 or —1.
Let A* denote the F1-eigenspaces of ¢(vol) (note the sign convention).

Since ¢; anticommutes with c(vol), if v € A% then c;o € AT, Since 2 = —1,
and hence ¢; defines an isomorphism AT S A~ In particular, since dim(A) = 4
and as an eigendecomposition A = AT & A~, both A" and A~ must be nonempty
and have dimension 2. In general, multiplication by odd elements of C1(R*) maps

A* — AT while multiplication by even elements preserves the decomposition. Since
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Spin(n) lies inside the even part of the Clifford algebra, each A* define Spin(n)-
subrepresentations of A. In fact, AT are irreducible subrepresentations.

We now consider the multiplication by self-dual and anti-self-dual forms on A*.
It can be checked by direct computation that c(vol)c(e! Ae?) = —c(xe' Ael) for i # j.

Therefore, if v € AT,
c(e" A ehv = —c(vol)e(e! A e )v = c(xe A e )v. (2.4.1)

In particular, this shows that c(e’ A e/ — ¢’ Ae?) = 0 on AT. A similar argument

shows that c(e’ A e/ + e’ Ael) =0 on A™.

c(/\)la+ =0,

C(/\)’A_ =0,

where A = AT @ A\~ denotes the decomposition into self-dual and anti-self-dual

(2.4.2)

forms.
Recall the definition of a spin structure on M as a principal Spin(n)-bundle P,
with a map from P to the orthonormal frame bundle of M given by conjugation in

CHT'M). We then define the bundle of spinors to be the associated vector bundle
S=P XSpin(n) A. (2.4.3)

The vector bundles associated to A* then give subbundles ST, called the positive
and negative spinor bundles. Clifford multiplication by X € I'(T'M) gives a bundle
map ¢(X) : ST — SF. Moreover, the bundle S inherits a hermitian inner product
from A, with respect to which Clifford multiplication is skew-hermitian.

The Levi-Civita connection on M lifts to a connection on the spin structure P,
which then induces a connection V on S. This connection is compatible with the

hermitian structure on S, as well as with Clifford multiplication in the sense that

Vxe(Y)s =¢(VxY)s+c¢(Y)Vxs (2.4.4)

14



for X, Y € I'(T'M) and s € I'(5).

Given a local orthonormal frame e;, we define the Dirac operator D : I'(S) — I'(.S)
locally to be

Ds = ¢;V,,s. (2.4.5)

This definition does not depend on choice of frame e;, and so extends to a well-defined
global operator.

More generally, let E be a hermitian vector bundle with metric-compatible connec-
tion Vg. Then tensoring with the spin connection Vg on .S, we obtain the connection
Vegs = Vp®1+1® Vg. Clifford multiplication acts on £ ® S by ¢; = 1 ® ¢;, and

we define the Dirac operator on £ ® S by

Dggs = ¢i(VEgs)e,- (2.4.6)

Henceforth, we will only be considering the Dirac operator on bundles of the form
E ® S, and as such we simplify notation by writing D = Dgggs.

Let D* = D|ggs=. The spin connection Vg preserves the decomposition S =
St @ S, while Clifford multiplication maps S* — ST. As such, taken together in
the definition of the Dirac operator, we have that D™ : T'(F® ST) - I'(E® S™) and
D :T(EF®S)=>T(E®ST).

We end our background on Dirac operators by proving the Lichnerowicz formula
1
D? = V*V + ¢(Fy) + ZR’ (2.4.7)

where ¢(Fy) = >,_; Fijei; € End(E ® S), and where R denotes the scalar curvature
on M. By looking at its restriction to ST, we may begin to see the relation of this

formula to the study of instantons. Since ¢(/\~) = 0 on ST, we have that
1
D™Dt =V*'V+c(Fd)+ ZR. (2.4.8)

If Fi& = 0 and if M is flat, then we have D~ Dt = V*V. This fact will be very

important to our discussion of the Nahm transforms in Chapters 3, 4, and 5.
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We prove (2.4.7) at a fixed point p. Let e; be an orthonormal frame for T'M near
p such that (V;),e; = 0 for all 4, j. Evaluating the lefthand side,

2
D*s = ¢;Vic;Vs

=ViVi+ > (Vi V)] (2.4.9)

i<j
The term ¢?V,;V; = —V,;V, is the local coordinate expression for V*V. The term
[V;,V,] gives curvature on £ ® S, which decomposes on the tensor product. We
write the curvature on £ ® S as Fj; ® 1 + 1 ® K;;, where Fj; is the curvature on

and K;; is the curvature on S. Then ) F;j = ¢(Fy), and we are left only to

i<j Cij
evaluate ¢;; K;;.

Since the spin connection on S is obtained from an equivariant lift of the Levi-
Civita connection to the spin bundle, its curvature also lifts. Written in terms of the
Riemann curvature tensor Rij;f , the curvature on T'M is given by

R(0;,0;) = Rij'es @ " = Ripl(es@ e —ep @), (2.4.10)

k<t
The element e, ® e* — e @ e* € s0(T,M) lifts to an element of the Lie algebra of
Spin(n), viewed as the even part of Cl(T'M). We obtain this lift explicitly by first

exponentiating

exp(t(ee ® ¢ — e @ ¢'))

= cost(er @ e + ey @e’) +sint(e, @ e — ey ®@€') € SO(T,M). (2.4.11)

This then lifts to (cos £ + sin £cye) € Spin(n), which upon differentiating shows that
e ® e* — e @ ef corresponds to the action %Ckg on the spinors.
Therefore, the curvature Kj;; acting on spinors is given by
1 1
Kij = 2 Z Rijp' e = ZRz‘ijCkZ (2.4.12)
k<t
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where the second equality above is obtained using the skew-symmetry in k& and ¢ of
both Rij,f and cyy. Taking advantage of skew-symmetry in ¢ and j, we can write
1 ¢
Z%‘Kij = gRijk: Cijke- (2.4.13)
i<j
Note that if the indices 4, j, k& are all distinct, then c¢;;, = ciij = ¢jri. Such terms in-
volve (Rijke%—Rkije%—RjkiZ)qjk, which vanishes by the first Bianchi identity. Therefore,

the only nonvanishing terms in (2.4.13) are those where k =i or k = j, giving

1
¢
S Rijk cijre =

J4 4
3 (Riji cijie + Rijg' cijie)

1

8
1.

= _Z Rleg Cje. (2414)

Note that Ricj, is symmetric in 7, ¢, while ¢y is skew-symmetric when j # ¢. There-

fore, the only nonvanishing terms are when j = ¢, and so
1 1 1
_4_1 Ring Cjp = _Z RiC]’j Cjj = ZR (2415)

Substituting this back into (2.4.9) finishes the proof of the Lichnerowicz formula
(2.4.7).
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Chapter 3

The Nahm Transform and the ADHM

Construction

The Nahm transform is a powerful tool for studying the moduli space of instantons.
This is particularly true for quotients of R*, where it can be viewed as a generalization
of the ADHM construction and where Nahm proved his original transform between
monopoles and solutions to the Nahm equations [Nah82].

We begin this chapter with a general overview of the Nahm transform, following
the viewpoint in [Jar04]. We then specialize to two cases which will be of relevance
in following chapters, taking our base manifold to be R*/Z* or R*. The first is often
called a Fourier transform for instantons, while the second is the ADHM construction.
Both of these cases are covered in [DK90, Chapter 3], although our approach more
closely resembles those of [Cha04, Nye0O1].

3.1 General Nahm transform

Let M be a 4-manifold with spin structure. Let S denote the bundle of spinors,
with its usual decomposition S = ST @ S~ into +1-eigenbundles of ¢(vol), where vol
denotes the volume form of M. Let V be an instanton on some hermitian vector
bundle £ — M. We consider specifically instantons with anti-self-dual curvature,
the self-dual case being obtained by a change of orientation. We then form the Dirac

operator D: I'(E ® S) — I'(E ® S) associated to V by

18



where ¢; denotes Clifford multiplication by an element e; of an orthonormal frame
of TM and V; = V,,. Observe that D anticommutes with ¢(vol), so setting DPm =
D‘F(E@)Si) gives

D T(E® S*) = I'(E ® S¥). (3.1.2)

Let B be a vector bundle on M with a family of instantons {V Bg)}geT, parame-
trized by some manifold 7. In practice, we often take V(p,) to be flat connections.
We then define a corresponding family of twisted connections Ve on £ ® B by the
tensor product Ve = V® 14 1® Vp,. The twisted connection V¢ is again an
instanton, as seen by noting that the curvature is F¢e = Fy ® 1 + 1 ® Fi,.

Let D¢ denote the Dirac operator associated to V.. Recall the Lichnerowicz
formula (2.4.8)

D¢ Df = V'V 4 c(Frgp) + iR,
where IR denotes the scalar curvature of M. Since V, is an instanton, the anti-self-
duality of Figgp) simplifies the above equation. We see, for example, that if R is
greater than some positive constant, then ker D = 0. Even though M will be flat
in our cases of interest, we will use this fact in the R* case by taking the conformal
identification with S*. In the T* case, we will need to make additional assumptions
to ensure ker D = 0.

When ker Dg = 0, we define a bundle E over T by defining the fibre
E¢ =ker D (3.1.3)

We can consider the fibres Eg inside of product bundle T'x L*(M,E ® B ® S™).
If ker Dg = 0 for all £ € T" and if Dy is Fredholm, the index formula tells us that
dim(Fe) = —ind(Dg) is constant, and therefore £ is a bundle. Moreover, as a
subbundle of the product bundle, E inherits an induced connection from the product
connection via orthogonal projection. This bundle E and the induced connection are

called a Nahm transform of V.
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Remark. There are many constructions of Nahm transforms where D is not Fredholm
for every &, resulting in singularities in the transformed bundle E. In the cases we
consider here, we will have that D; is Fredholm or, as in the case of R*, related

conformally to a Fredholm operator.

Although the above construction is quite general, in certain applications the
transformed bundle has additional interesting properties. In particular, if T is 4-
dimensional, then under certain assumptions the transformed connection will also be
an instanton, discussed further in [Jar04, §2.2]. For our purposes, we focus on the

Nahm transform on quotients of R*.

3.2 Invariant and periodic instantons on R*

There is a particularly nice class of Nahm transforms defined for invariant and peri-
odic instantons on R%. The flatness and parallelizability of R* allows the definition
of a family of flat line bundles L, for which the projections onto ker D interact
well with differentiation in £. In many cases, the result is a correspondence between
instanton (or its dimensional reduction) on one quotient of R* to an instanton (or its
dimensional reduction) on a dual quotient of (R*)*. We now give a broad picture of
this class of Nahm transforms.

Consider an instanton V on R* that is invariant under a subgroup A of translations
of R*. Such subgroups are of the form R? x Z™ for m + d < 4. Such an instanton is
constant in the directions corresponding to R?, and we may equivalently consider a
dimensional reduction of the instanton to R*~?. For example, if A = R, the connection
V is equivalent to a monopole on R3, while if A = R3, the connection V is equivalent
to a solution of Nahm’s Equations. The Z™ part of A adds periodicity assumptions
to these various connections.

First consider the situation where the subgroup of translations is discrete, A =
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Z™. We define our twisting connections on a line bundle L — R* which by the
contractibility of R* are all topologically trivial. As such, we can choose a global frame
for L. For £ € (R*)* define the U(1)-connection Vp, to have constant connection
form 27§ with respect to the global frame. We let L¢ denote L equipped with the
connection V., which are thus parametrized by (R*)*. Since such a connection is
translation-invariant, it descends to the quotient by A, defining a flat connection on

the topologically trivial line bundle over M = R*/A.

Flat bundles are determined by their holonomy on m (M) = A. Since parallel
translation from the origin to a point € R? is given by e~ the line bundle Le¢

is determined by £ € (R*)* up to translation by the dual group
AN ={Ce®RY) |({(z)eZforall z € A}.

An equivalent perspective is to view L¢ — R* as the result of applying the gauge

—2m¢(2) o the product connection d. Such a gauge trans-

transformation g(z) = e
formation descends to the quotient R*/A if and only if £ € A*. Therefore, we may
consider L¢ as being parametrized by the dual quotient (R*)*/A*. Taking the twisted
Dirac operator D¢ on ¥ ® L¢ ® S then allows us to construct the Nahm transform as
in the previous section, defining a bundle £ — (R*)*/A* with Fe = ker D, .

In the case where A* contains a continuous subgroup, translation along these
directions in (R*)* yields equivalent fibres Eg. As such, identifying these fibres — as we
do when taking the quotient (R*)*/A* — involves the dimensional reduction procedure
for instantons. In particular, we obtain additional maps in End(E) corresponding to
the components of the connection in directions that collapse in the quotient. The
extreme example in this case is when A = 0, so that A* = (R*)*. More details about
interpreting the Nahm transform in this case, which yields the ADHM construction,
can be found in Section 3.4.3.

The case in which A D R? 2 span{v,...,v4} fits into the same framework with
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only some minor adaptations. On descending to the quotient, components of the
connection form in the directions v; are lost, but just as in the dimensional reduction
of instantons, we keep the information from the lost components in the form of maps
i2r€(v;) € End(L¢). Note that the maps i27&;(v;) and i27&(v;) are inequivalent for
&1(vi) # & (v;). Then multiplying by some constant gives (& —&;)(ev) ¢ Z. However,
ev € A, showing that {; — & ¢ A*. So we can still parametrize these bundles L¢ by
¢ € (R*)*/A*. The Dirac operator D; can then be defined by pulling back the spinor
bundle S on R* by an inclusion R*/R? — R*  and then defining D¢ = Dy — i27c(€).

In ideal settings, the curvature of the transformed bundle E satisfies the ASD
equation or an appropriate dimensional reduction. In Section 3.3, where we take
A = Z*, there are no complications, and we see that E is in fact an instanton bundle
on the dual torus. The argument for self-duality in the case of the torus should be
taken as a guiding heuristic for proving self-duality in other cases. By comparison,
in Section 3.4 we consider the ADHM construction, which can be thought of as the
case A = 0. Here, the argument for self-duality must be modified to account for
asymptotic complications, and the resulting ADHM equations can be thought of as

‘ASD + contributions from oco.’

With this framework, one can quickly conjecture correspondences between differ-
ent dimensional reductions of instantons. If A = R? @ Z™, then A* = R*~4™ @ Z™.
As such, one expects an m-fold periodic solution to a (4 — d)-dimensional reduction
of the instanton equation to correspond to an m-fold periodic solution to a (d + m)-
dimensional reduction. A thorough survey of these various cases is provided in [Jar(04,
§3.1 - §3.3]. Since the publication of that survey, more cases have been studied, such

as in [CH19].
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3.3 Nahm transform on 7*

The simplest case of the Nahm transform occurs when A = Z* is a full-rank lattice,
and so M = T%. This case is described in [DK90, 3.2] where it is called a Fourier
transform for instantons, and the viewpoint is rooted in the equivalent formulation
in terms of holomorphic structures. We repeat the description here, with a viewpoint
more centred on Dirac spinors, as it provides a template for Chapter 5. Also, as the
analysis is greatly simplified by the compactness of 7%, we can take the Nahm trans-
form in this case as a guiding heuristic for proving anti-self-duality of the transformed
connection in other cases.

First, we must make an additional assumption on E and V to ensure that that

ker D; =0.

Definition 3.3.1. An SU(n)-vector bundle F with connection V is said to be without
flat factors if there is no splitting £ = E’ & L that is compatible with V and with L

a flat line bundle.
Since T is flat and V is an instanton, the Licherowicz formula (2.4.8) becomes
Dg D¢ = ViVe. (3.3.2)

If there exists a non-zero ¢ € ker Dg, then Vep = 0. In particular, the pointwise
norm || must be constant. Therefore, ¢ is a nowhere vanishing parallel section of
E ® ST and thus defines a flat line subbundle of £ ® L,. Taking the tensor product
with the dual L_¢ then gives a flat factor of E. As such, if E is without flat factors
then ker D; = 0.

Moreover, by compactness Dg is Fredholm for all {&. We can then take the Nahm

transform E¢ = ker D , giving a bundle E over the dual torus 7% = (R*)*/A*.

Proposition 3.3.3. Let V be an SU(n)-instanton on a bundle E — T* that is

without flat factors. Then the transformed connection V on E — T is an instanton.
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Proof. Since E is without flat factors, we have ker Dgr — 0. Therefore, E, = ker D¢
has constant rank determined by ind D¢, and is thus a subbundle of the trivial bundle
L*(E ® S™). Moreover, V¢V is invertible, and we let G¢ = (V¢V¢)™" be its Green’s
operator. Note that by (3.3.2), Ge|s+ = (D D)~

Let P:: L*(E ® S™) — ker D, be orthogonal projection. Since T* is compact,

Dy is the adjoint of D, and we can express
Pe=1-— DgGng. (3.3.4)

The connection V on E is then given by P:dP:, where the exterior derivative is

o)

taken with respect to the coordinates of §. Let 0; := %
J

We have the following
commutator,

0;, D] = i2mc;. (3.3.5)

Using the fact that P:D/ and D, P both vanish,

= P:0;0,P; — P¢[0;, D¢ |G [D{, 0] P

= Pg(?jf)ka - 47T2P§CjG£CkP§. (336)

Note that Clifford multiplication by ¢; commutes with ViV, and so it also commutes

with G¢. Skew-symmetrizing (3.3.6) then gives
ij = [@ja @k] = —87T2P§CjCkG§P§. (337)

By (2.4.2), Clifford multiplication by self-dual forms vanishes on S~, we have from

this expression that the self-dual part of F vanishes. O
We can compute the rank of £ using via index theory. Indeed, since ker Dg“ =0,
dim B¢ = dim ker Dy =—indD = —c»(E), (3.3.8)
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where by ¢;(F) we mean the second Chern class of F integrated over T%. Recall
that because V is an SU(n)-instanton, c3(E) = g || Fy||* gives the charge of the
instanton.

Note that applying the Nahm transform to E — T* gives a new bundle with
connection Z% — T*. This second transformed bundle is in fact isomorphic to the
bundle E, showing that the Nahm transform is invertible. This is proved, for example,
in [BvB89], and is proved from the perspective of holomorphic structures in [DK90,
§3.2]. A proof of the analogous inversion in another construction of a Nahm transform
can be found in [Nak93].

Given that the correspondence is invertible, and from computing the indices of the
Dirac operators, we have that SU(n)-instantons of charge k on T are in one-to-one

correspondence with SU (k)-instantons of charge n on T

3.4 ADHM construction

We now turn to the ADHM Construction, first proved in [AHDM78|. This procedure
constructs SU(n)-instantons on R* from a given set of linear algebraic data satisfying
certain conditions. Moreover, the construction is invertible, showing that any SU(n)-
instanton can be produced in this way. The original proof relied on twistor theory,
and a very approachable resource describing the construction from this perspective

can be found in [Ati79)].

Our approach, however, will be from the Nahm transform perspective, and we

follow closely the descriptions in [DK90, §3.3] and [Cha04, Chapter 1].

3.4.1 Real ADHM data and equations

We begin by defining the data that will parametrize the instantons.
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Definition 3.4.1. ADHM data consist of a k-dimensional hermitian vector space V'
and an n-dimensional hermitian vector space W, equipped with hermitian endomor-

phisms a; € End(V) for i = 1,...,4, and a linear map ¢ : W — AT Q V.

Recall that AT is the positive spin representation of Spin(4), as discussed in
Section 2.4. Since the positive spinor bundle S* is trivial R*, fibres of ST can be
globally identified with A", and as a result it is common in discussions of the ADHM
construction to conflate ST with A™. In our approach, however, we will make use
of a conformal identification with the spinor bundle on S*, in which case S* is no
longer trivial, and can no longer make a global identification of fibres ST|, with A™.
We will therefore maintain the distinction between the two.

Consider Clifford multiplication ¢y, for j = 2, 3, 4 acting on A*. Note that (¢1;)? =

—1, and by using the fact that ¢(A~) =0 on AT, we have, for example,

C12C13| 5+ = Coz|a+ = Cra|a+- (3.4.2)

The same relation holds when we cyclically permute the indices 2, 3, and 4, and as
such this provides a quaternionic structure on S*. Since dim AT = 2, we see that

End(A™) is spanned by the identity and the elements cy;.

Observe that ¥¢* € End(AT @ V) = End(A") ® End(V'), and so we can write
4
VPt = (YY) @1+ Z(¢¢*)g & €y (3.4.3)
=2
With this notation, we write the ADHM equations
lar, ai] + [aj, ax] = (V)s, (3.4.4)

where (i, j, k) are cyclic permutations of (2,3,4). These equations also have a con-
venient expression in terms of self-dual forms acting on A™. Considering the 1-form

a = a;e', we can take (aAa)™ to be the self-dual part of a Aa. Then, letting (ww*)/\Jr
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be the ¢(A") part of (3.4.3), we can rewrite (3.4.4) as
c(@ana)™) = (Py)p+. (3.4.5)

We define an additional non-degeneracy condition on the data. For x € R?* let

Qe VAT -V @A™ ®W be the map

¢ @ (a; — x;

Rz = ( ) : (3.4.6)
¢*

Definition 3.4.7. The ADHM data (V, W, a;, ) are said to be valid if they satisfy

the ADHM equations (3.4.4) and if @, is injective for all x.

We can also define an equivalence relation on ADHM data, analogous to gauge

equivance.

Definition 3.4.8. The ADHM data (V,W,a;,v) and (V', W' al ¢’ are said to be
equivalent if there are there are isometries v : V' — V' and w : W — W’ such that

al = va;u~! and ' = vpw L.

3.4.2 Complex ADHM data and equations

We can also consider a complexified version of the ADHM data. Although for the
remainder of this chapter we will continue working with the real data described in
Section 3.4.1, the complex version is convenient for the description in Chapter 4, and

so we introduce it here.

Definition 3.4.9. Compler ADHM data consist of hermitian vector spaces V and
W, with linear maps o, 8 € End(V), 7: V - W, and o : W — V.

Given real ADHM data (V, W, a;, 1), we define the equivalent complex ADHM

data by taking the same hermitian vector spaces V and W. Let a = a; + tas and
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B = as + iay. Note that from these we can recover the endomorphisms a; by taking
hermitian and anti-hermitian parts of o and f.

Since (612)2 = —1, its eigenvalues are +i. Since c;3 anticommutes with cjo, it
maps the i-eigenspace of ¢ to the —i-eigenspace, and vice versa. In particular, the
+i-eigenspaces of ¢jp in A1 are non-empty, and we can choose a unit i-eigenvector g
and a unit —z-eigenvector p such that ¢3¢ = p. We can then choose a basis for A~
for which Clifford multiplication A* — A~ is given with respect to the basis (p, q)
by

- : (3.4.10)

C3 = ) Cy =

We obtain the maps 7 and o by expressing the map ¢: W — V® A* with respect

to the basis p, q as

Yp=m"®@p+o®q (3.4.11)
With respect to this basis,
'r mro*
Yy = : (3.4.12)
omr oc*

Since, for example, ¢;9 maps p — ip and ¢ — —iq, we see that (Yi*)y = in*m —
ioo*. Similarly, (Y1*)3 = —om + 7*c* and (Y*), = in*o* + iow. Expanding the
commutators [a, 8], [a, a*], and [5, 8*], we then have that the ADHM equations

(3.4.4) are equivalent to

o, B] + om =0, (3.4.13)

[, "] + [8, 8] + 00" — 71 = 0. (3.4.14)

For coordinates 21, zo on C?, let o, = o — 2z and 3, = B — 25, and define R,: V &
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VeW —=VaeV by

o B om

R, = : (3.4.15)
_Bz (6% o

*

With respect to the basis p, ¢ for AT, we can write V@ AT = (V@ p) & (V ® q),
and with respect to this decomposition, and the basis chosen for A™, the map R, is
simply )7 with complex coordinates z; = z1+ix2, 29 = x3+1x4. The non-degeneracy

condition is then equivalent to requiring R, to be full rank for all z € C2.

3.4.3 The ADHM construction as a Nahm transform

Before continuing on to the construction of the correspondence between ADHM data
and instantons, it may be helpful to see how the ADHM construction fits within
the Nahm transform framework. We can consider R* = R*/{0}, and since the dual
subgroup of {0} is all of (R%)*, we expect in the Nahm transform to construct a
bundle over (R*)*/(R*)* = {0}. A bundle over a single point is simply a vector space
V', and the remnants of the connection provide the maps a; € End(V).

To be more precise, we consider twisting by i27¢ for £ € (R*)* as usual. Defining
the Dirac operators Dy = D+142mc(€), we let the transformed bundle be Ef = ker D, .
Since (R*)* is contractible, we can identify all fibres of E. Indeed, e~ defines a
global U(1) gauge transformation over R* that identifies ker Dy =ker Dy .

The Nahm transformed connection is defined to be V; = Pg%Pf. Using the
gauge transformation e~ to identify fibres of E, we have Pr = ¢™2™ Pe~™ and
then V has constant connection form a; = i27 Pz, P. By rescaling, we can omit the
127. Since we have identified all fibres of Eg, from now on we only need consider Dj.

The curvature of this constant connection is F}; = [a;, a;], and so the left-hand side
of the ADHM equations (3.4.4) can be thought of as the self-dual part of F,. Since the

right-hand-side is not zero, the transformed connection is not an instanton, but still
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instanton-like in that it has prescribed self-dual curvature F+. The proof that the
transformed constant connection satisfies the ADHM equations proceeds in the same
spirit as the argument that the Nahm transform on the torus yields an instanton.
However, the non-compactness of R* means more care is required in the analysis,
and boundary terms in the argument yield the right-hand side of (3.4.4). The map
¥ thus captures asymptotic behaviour of the instanton, and can also be viewed as

evaluation of ¢ € ker D~ at the point at oo on S* via stereographic projection.

3.4.4 From instanton to ADHM data

We now formalize the previous discussion to show how to associate ADHM data
to an SU(n)-instanton on a bundle E — R*. Let D: T(E® S) — I'(F ® S) be
the associated Dirac operator. By stereographic projection, which preserves anti-
self-duality because it is conformal, we may consider V as a connection on S*\ {co}.
Uhlenbeck’s Removable Singularity Theorem [Uhl82], guarantees that the connection
extends smoothly at co. We then set the ADHM data W = E, the fibre at oo with

renormalized inner product (-, )y = 72(-, ) .. .

Dirac spinors on R* and 54

We canobtain some asymptotic information about Dirac spinors by comparing to the
Dirac operator Dgs on S*. Since S* and R* are conformal with gg: = mgw,
we can conformally identify SO(TR?) with SO(T'S?) away from co by mapping the
frame ¢; — ¢ = 3(1 + |z|*)e;. This identification lifts to an identification of the
spin structures on R* and S*\ {co}. The frame {e;} induces a trivialization of the
spinor bundle S = R* x A, while the frame {€;} induces a trivialization for the spinor
bundle S over S* away from oo, giving S|s1\0 = (S*\ 00) x A. Taking the conformal

identification of R* ¢ S* and identity on A then identifies S with S. Note that under
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this identification, the action of ¢; on S corresponds to the action of ¢; = ¢(é;) on
S. Given this identification of S with S, we will henceforth denote by S the spinor

bundle either on R* or on S%, as appropriate.

Forming the Dirac operator Dgs = Ein4 as usual, we have the following relation

to the Dirac operator on R,

po (2 N p(_ 2\ (3.4.16)
ST 2 1+ z2) - o

Motivated by the above equation, for ¢ € L*(R*, E ® S), let

N

5=01+zP)ip. (3.4.17)
Lemma 3.4.18. The map ¢ — ¢ = (1 + |z|2)2 gives an isomorphism
ker DN LA(R*, E® S) = ker Dga N L*(S*, E® S).

Proof. For notational simplicity, we omit the notation £ ® S and write only the
domain, taking for example L*(R*) = L*(R*, E ® S). Suppose ¢ € L*(R*). Since
volgs = O(]z|™®) volgs, we have that |p|?volgs = O(|x]72?)|p|* volgs. Since |p|? is
integrable, so is |p]?, showing that ¢ € L*(S%).

If moreover ¢ € ker D then (3.4.16) shows that Dgip = 0 as a distribution away
from oo on S*. That is,

(p Dsaw) p2(s1y = 0 (3.4.19)

for any test function w € Cg°(S*\ {oo}), the space of all smooth sections on S*
vanishing on a neighbourhood of co. To see that Dgs¢p = 0 distributionally on all
S* we must show (3.4.19) holds for all w € C°°(S5%), including when w(oc) # 0.

Let B, denote the geodesic ball with radius r centred at co € S%, and let 7, be a
smooth cutoff function supported on S*\ B such that 7, =1 on S\ Ba. Since the

distance between Bi1 and S\ B: is =, we can take v, to have |V7,| < 2k pointwise.
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Then

(@, Dgaw) p2(s14) = ]}g{)lo@, Y Dgaw) 121y

= lim ((@, Dga(ew)) r2(s4) — (8, &G(Vi)w) r2(s4)) (3.4.20)

k—o00

The first term above vanishes because yw € C5°(S*\ {oo0}). In the second term,

|Vi7k| is bounded by 2k and supported on B%, while w is bounded. Therefore, for

some constant C', the limit from (3.4.20) is bounded by

im [(2,&(Vhwhiaso] < Jim Ck [ 1]
—00

B2
k

< lim Ck ‘Bg
k—00 k

1@l L2 (s4). (3.4.21)

= O(k™*), we have that the limit (3.4.21) vanishes. Therefore

2
k

Since the volume ’B
Dg1p = 0 distributionally on all S*, and by elliptic regularity ¢ is in fact a smooth
solution.

We have thus shown that ¢ — @ gives a well-defined map ker D N L*(R?) —
ker Dga N L%(S*). To show this map is an isomorphism, we show that the inverse,
given by multiplying by (1 + ]az\Q)*%, is well-defined.

Since L2-solutions to Dgsp = 0 are smooth by elliptic regularity, in particular, ¢
is bounded. Therefore multiplying by (1 + |z[2)~% yields ¢ = O(|z|™3) as 2 — oo,
and hence ¢ € L*(R*). Moreover, since (1 + ]:C\Q)’% is smooth, ¢ is smooth, and so
Dy = 0 in the ordinary sense.

Therefore the inverse ¢ — ¢ is well-defined, completing the proof. n

We henceforth omit the intersection with L?, and assume that ker D denotes
the L? kernel unless otherwise specified. We therefore have that ker D = ker Dgu.
Since the conformal map preserves the decomposition S = ST & S~, we also have

ker D* 2 ker D§4.
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Since the scalar curvature on S* is constant and positive, and since Fg = 0, the

Lichnerowicz formula (2.4.8) implies that
5 5 R
||D;4¢||%2(54) = ||V<P||2L2(S4) + ZH@H%Q(S‘%’ (3.4.22)

In particular, ker D;l = 0, and so by our isomorphisms, ker DT = 0. Of course,
to show this, we could have kept our perspective on R* and noted that covariant
constant ¢ must be 0, otherwise the ||p||z2 = co.

We now turn our attention to ker D™. Since Dy, is Fredholm, we see that ker D~
is finite-dimensional. In the proof of of Lemma 3.4.18, we showed moreover that
elements of ker D~ are O(|z|™3). We define V = ker D~

The map ¢: W — V ® AT will be defined as an adjoint to evaluation at oo,
with the factor of AT arising from a trivialization of S~ near oo. To make a precise
definition of ¥, we must first set up trivializations of the spinor bundle S and describe
the change of trivialization map between them.

Consider the neighbourhoods Uy = S*\ {oo} and U, = S*\ {0}. Let the
coordinates z; on Uy = R* and the coordinates z, on Uy = R* both be obtained by

€T

stereographic projection to S%, so that z/ = R The Euclidean orthonormal frame

e; = % (which we have already been using above) then corresponds conformally to

the frame f; = 1(1+ |z|?)e;, which is orthonormal with respect to the round metric

2]

on Uy C S*. Similarly, the Euclidean orthonormal frame e} = 5.7 corresponds to the

orthonormal frame f/ = (1 + |2/|?)¢; with respect to the round metric on Uy C S*.
Note that the change of coordinates is orientation-reversing. We will take the
orientation on S* to be that given by Uy, as we have taken implicitly until now. The
local frame {f/} is then negatively-oriented.
These frames define trivializations of the spinor bundle S through the associated
bundle construction. Working first over Uy, the frame {f;} lifts to a section o of
the spin bundle P|y,. Recalling the definition of the spinor bundle as the associated
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bundle S = P Xgpina) A, where A = AT @ A~ is the spin representation as discussed

in Section 2.4, we can define a trivialization of S|y, by

TO:UOXAiS|UO
(3.4.23)
(z,v) — [o(z),v].
Because P is a double cover of the oriented orthonormal frame bundle, there is a
choice of sign in the lift o, and hence also in the trivialization of S|y,. We leave the
sign undetermined for the time being, and fix it later during the proof of Lemma
3.4.25.

The trivialization over U, is defined similarly, albeit with a slight complication.
Since the frame {f/} is negatively oriented, it does not lift to the spin bundle P.
We instead consider the principal Pin(4)-bundle P’ which is a double cover of the
orthonormal frame bundle. P’ can be constructed explicitly as a subbundle of the
Clifford bundle CI(T'S*). The Clifford module structure of the spin representation
A then restricts to an action by Pin(4), and as a result we may consider the spinor
bundle as the associated vector bundle S = P’ Xpi,4y A. Observe that an element
g € Pin(4) \ Spin(4) can be expressed as a Clifford product of an odd number of unit
vectors, and so Clifford multiplication by g defines a map A* — AT,

We can then lift the frame {f/} to a section ¢’ on P’. The corresponding trivial-

ization of S|y is then given, as in (3.4.23), by

7'00:Uoo><Ai>S|Uoo
(3.4.24)
(', v) = [0 (2)), v].
Because ¢’ is negatively oriented, it differs from a positively oriented frame by Clifford
multiplication by some element of Pin(4) \ Spin(4). Such a Clifford element reverses
the grading on the spin representation. Therefore, the trivialization induced by a

negatively oriented frame such as ¢’ associates elements of A™ to sections of S~, and

elements of A~ to sections of ST.
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The trivializations for S above are both for the spinor bundle on S*. We can define
a similar trivialization for the spinor bundle on R* using the orthonormal frame
{e;}. As discussed previously, with respect to these trivializations, the conformal

identification of spinor bundles on S* and R* is given by the identity on A.

Lemma 3.4.25. With respect to the trivializations 7o defined in (3.4.23) and T
defined in (3.4.24), the change of trivialization map 7, ' 0 Too| g+ acts on A by Fc(f,),

where f. denotes the radial geodesic vector field away from 0 in S*.

Remark. Let r = |x| on Uy, and denote the corresponding radial vector field 9,, so that
0, is the unit radial vector field with respect to the Euclidean metric. Multiplying
by the conformal factor gives the corresponding radial geodesic vector field f, =
$(1+17%)9, on S*.

When we conformally identify the spinor bundles S*|;; and S*|y;, with the spinor
bundles for the Euclidean metric on the respective copies of R*, Clifford multiplica-
tion is scaled by an appropriate conformal factor. The corresponding change of
trivialization of the spinor bundle with respect to the Euclidean metric is given by
Te(0,) = 752
Remark. The statement of Lemma 3.4.25 is slightly misleading in that the trivializa-
tions of the spinor bundle have so far only been determined up to sign. Therefore, the

sign of the change of trivialization is as yet undetermined. We will fix the appropriate

sign in the course of the proof.

Proof. Let p be the pointwise orthogonal transformation on 7'S* away from the points
0 and oo, defined by u(f;) = f{. At a point p, u lifts to some i € Pin(4) € C1(T,5%).
Then ofi = ¢’ in P’, and by the equivalence relation [pg, v] = [p, gv] in the associated
bundle construction, such a fi induces a transformation on A giving the change of
trivialization map for S. Our proof proceeds by obtaining an explicit lift ji at a point
.
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As remarked above, letting r = |z| on Uy with corresponding radial vector field
9y, we have f, = (14 r?)9,. Similarly, letting ' = |2/| on U, we have r’ = 1. For

the radial vector field 9,, and geodesic radial vector field f/, = (1 + (1')?)9,» on S*,

fr = %(1 + 7“2) (—%87«/)
= —f (3.4.26)

x/

On the other hand, f, = %fl and fl, = %fi’, and so also using that &t = @ we

.

have

“(fr) =7

_— (3.4.27)

We now turn our attention to how p acts on vectors orthogonal to f,.. Since f; is
a rescaling of the coordinate vector field 9,, and f; is a rescaling of d,/, we have that
p is a rescaling of the change of coordinate transformation mapping 9, — 9,,. Note
that the change of coordinates identifies the sphere S? C Uy with the sphere S% C U,
by a simple scaling factor, and so the change of coordinate transformation similarly
acts on vectors in TpSf(p) C T,5* by rescaling. The transformation p must then also
act on TpSf(p) as some rescaling. Since p is orthogonal, this ‘rescaling’ must in fact
fix the vectors in T, pSf(p), which are precisely all vectors orthogonal to f, in T,5%.
That is, i has the effect of mapping f, — —f,., and fixes all vectors orthogonal to f,,

and so geometrically, i can be viewed as reflection in the hyperplane 7, pSS’(p) C T,5*.

To lift p to an action on P’, we express it as conjugation by a Clifford element.
Let fp, be an orthonormal basis of 7,57 ) C T,,S", and define fi = c(fo, )c(fo,)c(fo,)-

The map p is then given on 7,5* C CI(T,5%) as conjugation by fi, which can be
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seen directly by jif.i~! = —f. and fifg,i"! = fs,. Note that we have a choice of
orientation for the basis fy,, corresponding to a choice of sign of ji. We choose the
sign such that ¢(volgs) = —c(f,)fi.

On the bundle P’, i acts by right multiplication, and so we have ¢’ = oji. Note
that this equality involved finally fixing signs of o and ¢’. In terms of the trivializa-

tions 79 and 7, of S, this gives for v € A and p € S*

70 0 Too(p,v) = 75 ' ([0"(p), v])

= (p, w). (3.4.28)

Therefore, the change of trivialization from S|y, to S|y, is given by multiplication by
fuon A. Since i = —c(f,)%ii = c(f,)c(volgs), and since S* are the F1-eigenbundles of

c(volgs) we then have that the change of trivialization for S* is given by multiplication

by Fe(fr). H

Remark. As observed previously, since { f/} is negatively oriented, the trivialization of
S over U, identifies fibres of S~ with A*. The trivialization over U, meanwhile iden-
tifies fibres of S~ with A™, and we have, as expected, that the change of trivialization

c(f;) maps AT to A~

We are now in a position to define the map ¢ : W — V ® AT, recalling that

we defined W = E,,. Consider ¢ € ker D™, with its corresponding lift ¢ € ker Dg,.

[oop)

Evaluating at oo gives ¢(00) € Ey ® S, which with respect to our trivialization
of the spin bundle can be expressed as ¢o, € Fo ® AT. Following the conventions
of [DK90] and [Cha04], let n be the skew-form on AT, given on the basis p, ¢ from

Section 3.4.2 by n(p, q) = 1. We then define ¢ by its adjoint,

V(e ®v) = n(Poo, V), (3.4.29)
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for o € V and v € A*. The adjoint is defined with respect to the renormalized inner
product (-, yw = 72(-, Vg

We can obtain asymptotic information about ¢ € V' in terms of ¢. Extending
Yoo to a section of £ ® S~ on a neighbourhood of oo by radial parallel translation,
we have in coordinates ' = iz near oo that ¢ = go + O(|2']) as 2" — 0.

We now shift our perspective back to Uy = S*\ {co}. Since our trivialization near
oo identifies S~ with A™, we can consider ¢ to be a section of F ® S*, and Lemma
3.4.25 gives us ¢ = c(f,)Poo + O(|2|7!) as 2 — .

Finally, we conformally identify S|y, with S™|g4, recalling that under this iden-
tification ¢( f,) becomes % by the remark following Lemma 3.4.25. Also multiplying
by (1 + |x|2)_% to get our expression for ¢, we have the asymptotic expansion as

T — 00

o(z) = 9P | oa4). (3.4.30)

|zt
Projection and Green’s operator

The last pieces of the ADHM data left to define are the endomorphisms a;. Let P

be orthogonal projection onto ker D™, and let

Multiplying an element ¢ € V by x; results in z;0 = O(]z|~2), which is in general
not in L2 It is therefore necessary to check that a; is in fact well-defined. Pairing
with another element ¢ € V gives the pointwise inner product (x;p,¢) = O(|x|™?),
which is integrable. For a basis {(} of V, we can define P = (; ® (}, and we then
have that Px;o = (x;p, ¥r) 20 is well-defined.

As in Section 3.3, we will be able to obtain commutation results for a; by writing
an expression for P in terms of a Green’s V*V, which we take with respect to the

Euclidean metric. Observe that the L2-kernel of V*V is 0, and we define G =
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(V*V)~L. As in [DK90, Proposition 3.3.21], G is an integral operator with kernel
k(z,y) = O(Jx — y|72). A special case of [DK90, Lemma 3.3.5] gives the following

lemma.
Lemma 3.4.32. If s is continuous and s = O(|x|™*) then Gs = O(|z|™2) as |z| — oo.

Proof. For large |z|, we estimate the integral

Gs(z) = /]1{4 k(z,y)s(y)dy (3.4.33)

by separating the domain of integration into the regions B (z), B (0), and their

2 2

complement B.

For y € By (0), we have [k(z, )| < Cly|2 and |s(y)] < C(1 + [y)~, so
/ Ik, y)s(y)| dy < C / (1+ )l dy
B%(ﬂv)
< Clz|™2 (3.4.34)

For y € B (), we have |k(z,y)| < C|z — y|™2, and since |y| > %‘, we also have
2

|s(y)] < Cly|~* < Clz|™". So,

/ k(2 y)s(y)| dy < Cla] ™ / 2 —y| 2 dy
B, (x) B%(r)

< Clz|™2 (3.4.35)

lz|
z

Lastly on the complement of the last two regions, we have |k(z,y)| < C|y|=2 and

|z|

so |y| > 5, so
[ pslay<c [ ey
B lyl>15!
< Clz| ™2 (3.4.36)
From (3.4.34), (3.4.35), and (3.4.36) we have that Gs(x) = O(|z|72). O
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For what follows, it will be necessary to have more precise information about the

asymptotic behaviour of elements in GV'.

Proposition 3.4.37. For ¢ € V, and with ¢, as in (3.4.30), for |x| large

Gy = C(jﬁ“ +O(|z|?). (3.4.38)

Proof. For this proof it will be convenient to work using the Euclidean metric on
both Uy = S§*\ {0} and U,, = S*\ {0}, obtained conformally from the round metric
by stereographic projection from oo and 0. Let x be coordinates on U, for which

the metric go = Y _,(dx;)?. Taking the coordinates =’ = a7 on Uso, We can express

the metric go = Y _;(dz})®. We then have the conformal relation gy = [2/|*¢s0.
We denote by (V*V)y and (V*V) the Laplacian with respect to the corresponding
metrics.

Recall that for a metric g, the conformal Laplacian in dimension 4 is given by
. 1
L,=(V*'V), + ER (3.4.39)

where R is the scalar curvature. If ¢ = f2g for some positive conformal factor f,
then the conformal Laplacians are related by L, = f~2L,f, the exponents of f here
being determined by the fact we are considering the dimension 4 case. Since gg and
Joo are both flat, their usual Laplacians are equal to their conformal Laplacians, and

since gp and g, are related by the conformal factor f = |2/|~2, we have
(V*V)o = |7|9(V*V) || 2. (3.4.40)

Since our coordinates are related by # = 2/, we have ‘C(’“;) = ¢(z’). We then
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evaluate

() Poo
|z

(V*V)o

= 21°(V"V)o|a’| 7 (e(2') fec )

. c(z')\ . c(') . . c(z’ .
1 (V) () o+ L9 — (9.0, L (T8 ).
/] |2/] |2/]
(3.4.41)
A straightforward computation gives the first term
c(z")  de(2)
Voo = —_——_=. 4.42
V¥t = o 3442
For the second term, since (V*V)s@oo is smooth, we have that as 2’ — 0,
@) ooy _
W(V V) @oo = O(|2'| 7). (3.4.43)

For the last term, note that (Veo)iPa is smooth and (Ve ); <22 = O(|2/|72), giving

v, )G = o() ). (3.4.44)

' P?
From (3.4.41), we then have (3.4.30),

Cw)En _ o (2@ o s
e (—|x,|4 L O(a! >)

= 4la’|*c(2) Pos + O(J2']")

(V*V)o

= 4% +O(|z|™) (3.4.45)

[t
as x — o0o. The asymptotic expansion (3.4.30) then tells us that (3.4.45) is ¢(z) +
O(|z|=*). Applying G to both sides gives

o C<x)95oo —2
Gy = PIE + GO(|z]7). (3.4.46)

Lemma 3.4.32 then gives the result. [
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Since D™Dt = V*V, we have that G|g+ = (D~D%)~!. Therefore, projection
onto V' = ker D™ is given by P = 1 — DTGD~. At first glance, this expression
appears to be valid only for sections in L?, but we would like to apply it to sections
of the form x;pp where ¢ € V. To see that it applies, let 7, be cutoff functions with

v, = 1 on B,, and the support of 7, contained in B, ;. Then

(Prncsos )1 = / (1~ D*GD )y, )

]R4
=/ <(1—D+GD‘)JJ¢<,0,¢>+/ (Ynip, )
n B7L+1\B7’L
- / (DYGD™ yuwitp, ). (3.4.47)
Bn+1\Bn

Since 1, ¢ = O(|z|™?), and the volume of B, \ B, is O(n?), we evaluate

/ (m@,@o,z@’ < / Cn=% = O(n"2). (3.4.48)
Bn+1\Bn Bn+1\Bn
Recall the following pointwise identity

<D+81, 82> = <81, D_82> + VZ'<CZ‘81, 82> (3449)
for sy e (E® ST) and s, € T'(F ® S7). Then, using that D™¢ = 0,

—/ (DYGD ™ xi0,0) =/ (c(0r)GD ™0, )
Bpni1\Bn S3

- /S {el@)Geip 0). (3.4.50)
Since ¢; commutes with G, and since Gy = O(|z|™!) by (3.4.38), we have the in-
tegrand above is O(|z|™*). Since the volume of S2 is O(n?), the integral (3.4.50) is
O(n™1).
We then see that in the limit n — oo in (3.4.47), the boundary terms vanish,
leaving
(Pxip, )2 = (1 — DYGD ™)z, ) 2. (3.4.51)
Therefore the expression P =1 — DTG D™ is valid also for z;p, where p € V.
With these definitions in place, we can show that we obtain valid ADHM data.
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Theorem 3.4.52. Given an instanton V on E — R*, the data V = ker D™,
W = Ew, a; as defined in (3.4.31), and ¢ as defined in (3.4.29) satisfy the ADHM
equations (3.4.4).

Proof. Let wy, be an L2-orthonormal basis for V = ker D~. For ¢ € V,

a;ajp = (x; Prjp, wy) 2wy

= lim ((zizjo,wi) + (DY GD ™z, wi) ) wy. (3.4.53)

=00
T

The first term inside the integral will vanish upon skew-symmetrizing, so we focus

on the second. By (3.4.49) the second term of (3.4.53) is
(c;Gejp,wk) 2wi + boundary term. (3.4.54)

Because Clifford multiplication commutes with V*V, it commutes with G, and hence
(ciGejp,wi) 2wy = PeijG.

By (3.4.49), the boundary term of (3.4.54) is the limit r — oo of

/<$i@GCjSO;Wk>Wk:/ <xi@CjGQO,wk>Wk. (3.4.55)
Sr || Sr ||

The lefthand term of the inner product is O(1) and the righthand term is O(|z|™?),

and so the only terms that do not vanish in the limit » — oo are the leading terms.

Evaluating these leading terms, we have Go = <9 5.+ O(|z]2) and w;, = “9G@=e

4fa? |=[*

Considering only these terms, (3.4.55) becomes

/T <ZEZ C\(:f!)cj C\;TZ) Peo: :y(gf\)‘l (@"3)0"> Wk = /S rip(xicjdx)@oo, (k) oo )k

1 ~ ~
:/ 5<xixkcjck90007 (Wk>oo>wk- (3456)
s, 4|

By symmetry on S, the integral vanishes unless ¢ = k, in which case z? can, again

by symmetry, be replaced by %. The above integral then becomes

1
oo (i | 3.4.57
/Sr 16|JJ|3 <CJC (10 (UJk-) >wk ( )
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Upon taking the limit, this becomes %(cﬁ@m, (Wk)oo) B wk- Taking the renormalized

inner product (-, ")y = 7(:, ) g, for i # j

1, . .
lai, a;lo = 2Pc;;Go + Z<Cji(poo, (Oh) so) WWE- (3.4.58)

Let n be the skew-form used in the definition of ¥ in (3.4.29). Note that

n(ci2p, q) = n(=ip, q) = —i = —n(p, c129). (3.4.59)

Similar computation shows that n(c;zv, w) = —n(v, c;pw) for all j # k and v, w € A*,

Using the basis p, g for AT, we can then expand the above inner product as

(¢jiPoor (Wk)oo)wr = (N(¢jiPoc: ), N((Dk)oo, ) + (N(CjitPoc, @) N((Wk)oo, )k
= (@00, €ijP), N((Dk) s, P)) + (1(Poos €ij4) N((Dk) oo, @) )0k
= (" (0 @ ciyp), ¥ (we @ p)) + (W7 (@ @ ¢i5q), ™ (wr @ q))w
= (YY" (0 @ cigp), wi @ p) + (PP (p @ ¢5q), Wi @ g)wi

= tracea+ (Y™ o (1 ® ¢;5))ep, (3.4.60)

where we denote tracepa+ = 1 ® trace on End(E ® A1) = End(F) ® End(A™). With

notation as in (3.4.3), we have that

4
Yo (1@ ciy) = (Yo @ cij + (" )keanis- (3.4.61)
k=2

If, say, i = 1, then cjx;; = cxj, which is trace-free on A* unless £ = j. Similarly, if
j = 1 then cyy;; = —cy; is trace-free unless k = 7. On the other hand, if £ = 7 then
Cikij = —c1j is trace-free unless j = 1, and if k = j then cx;; = cy; is trace-free unless
i = 1. If, however, the pairs {7, j} and {1, k} are disjoint, then cyx;; = £c(vol) = F1

on AT,

Summarizing, we have that ¢y, is trace-free unless the pairs {1, k} and {7, j} are
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either equal or disjoint, and we have

.

2¢r);  ifj=1,

tracea+ (Y9* o (1 ® ¢i5)) = —2(pu*); ifi=1, (3.4.62)

K$2(ww*)k if Clkij = :I:C(VOI).
Taking the self-dual part of a A a, (3.4.58) gives us
[al, CLZ'] + [Clj, ak] = QP(CM + Cjk)G - (Qﬂl/)*)z (3463)

for (1,7, k) cyclic permutations of (1,2,3). Since ¢(A") is 0 on S~, we have 2P (cy; +

¢jr)G = 0. The remaining terms give precisely the ADHM equations (3.4.4). O

Corollary 3.4.64. For V. W a;, % the ADHM data corresponding to an instanton V

on E, the dimension of V' is the charge of the instanton —co(E).

Proof. In the construction, V' = ker D~. Since ker D™ = 0, by the Atiyah-Singer
Index Theorem, dimV = —ind D = —cy(E). O

3.4.5 From ADHM data to instanton

Conversely, given ADHM data V, W, a;,1, we define an SU(n)-vector bundle £ and

an instanton V as follows. Recall the definition, first given in (3.4.6),

¢ ® (a; — ;)
w*

Qx:

By the non-degeneracy condition, (), has full rank for all x, and so has kernel of
dimension n everywhere. Thus E, = ker (), defines a rank n subbundle of the trivial
bundle V @ A~ @& W — R*. Define V to be the connection induced from the trivial

connection by orthogonal projection.
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Theorem 3.4.65. Given ADHM data V, W, a;, 1, the connection V defined above is

an instanton.

Proof. Evaluating Q*Q.: V @ AT -V @ AT,

Q:Qz = —(ci(ai — x))(¢j(a; — z5)) + Py~

-

(ai —:)* = ciilai, ag] + ¢y

i=1 1<J

(a; — x;)* — c((a Aa)) + ¢y

M-

1

2

(a;i — ;)" + (Wp*)o ® 1, (3.4.66)

-

=1

where we have used the ADHM equations 3.4.4 to obtain the final equality. By the
nondegeneracy condition, Q)5(), is invertible for all z, and so we can define I', =
(S (a; — )2 + (")) € Bnd(V). Writing T, © 1 € End(V) @ End(A), we
have that (T, ® 1)[a+ = (Q:Q.)'. Note in particular that Clifford multiplication

commutes with I',.

Projection onto E, = ker (), is given by
P, =1-Q.,I'Q;. (3.4.67)

The connection on F, is then V = P,dP,.
Computing the curvature gives
V.V; = P,0;(1 — Q,I'Q})0; P,

After skew-symmetrizing, the first term vanishes, leaving
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Note that the ¢;; are acting on A~, and so the self-dual part vanishes. Therefore, V

is an instanton. OJ

The process described above is the inverse of the process of generating ADHM data
from an instanton. Therefore, valid ADHM data are in one-to-one correspondence

with SU(n)-instantons on R?.
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Chapter 4

The S'-Invariant ADHM Construction

As discussed in §2.2, monopoles are the 3-dimensional reduction of instantons. As
such, monopoles on a space X correspond to instantons on X x R or X x S'. For
this chapter, we consider an identification of instantons and monopoles given by an
Sl-fibration that is not trivial, namely (up to orientation) the Hopf fibration S® — S?
extended radially. In this case, studied by Pauly [Pau96, Pau98], the monopoles will

be on R? with singularity at the origin.

Because of this correspondence, in order to study singular monopoles on R3, we
can instead consider the corresponding instanton on R%, in which case the powerful
tool of the ADHM construction (see §3.4) can be applied. Of course, most instantons
constructed via ADHM will not be S'-invariant, so it is necessary to see how the
Sl-invariance condition exhibits itself in terms of the ADHM data. In this chapter,
we give an S'-invariant ADHM construction by decomposing V = ker D~ into S'-

subrepresentations.

The approach taken is similar to that in [BA90]. In that case, they give an S’-
invariant ADHM construction for hyperbolic monopoles by considering the conformal

identification H® x S! = R* — R2 = §*4 — §2,
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4.1 Monopoles and S'-invariant instantons

Identifying R* = H, S! acts by multiplication on the right by ¢®. We consider the

map

7:H — ImH
(4.1.1)

q = qiq.
The map 7 is invariant under the S* action and so defines a quotient map.
We will work with this map using complex coordinates. Identifying H = C? by
q = 21 + 227, then € € S* acts by (21, e %2,). We can also identify C & R = SH

by (z,z) — xi — zk, in which case the quotient map (4.1.1) is written

7:C2>5CoeR
(4.1.2)

(21, 20) = (22129, |21)? — | 22]?).
Away from the fixed point 0, this defines an S! fibration over R?\ {0}. Indeed, up to
choice of orientation, fixed only for sign purposes, this is the Hopf fibration S3 — S?
extended radially.

We will also use real coordinates, given by (z1,22) = (21 + @29, x3 + ix4) where
convenient. In these real coordinates, the vector field dy in the direction of the action
is given by

Op = —x901 + 2109 + 1403 — x30;. (4.1.3)
Let & denote twice its metric dual,

€ = 2(—zodry + x1dxy + T4dxs — T3dTY). (4.1.4)

Letting y be the coordinates on R?, from (4.1.1) it is easy to see that |y| = |z|?.
Moreover, computing pullbacks gives that the forms 7*dy; are all orthogonal to each
other and orthogonal to &. Since |7*dy;| = |£| = 2|z|, we can express the metric on

R* as

de = 4|x|2 (Z(W*dyi)Q +§2> . (4.1.5)

1
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We can now describe the correspondence between instantons on R*\ {0} and
monopoles on R* \ {0}. Given an SU(n)-vector bundle E’ over R? \ {0} with a

monopole (V3, ®), we define a connection V* on the pullback bundle F = 7*E’ by
Vi=r'V+md®¢. (4.1.6)

Because the fibres of the pullback bundle E are naturally identified along S*-orbits,
for ¢ € S! viewed as a diffeomorphism of R we can identify (¢?)*E = E. As
such, we can view (€?)*V* as a connection on E. For connections V* obtained from
pairs (V3,®) as in (4.1.6), V* is Sl-invariant in the sense that (e??)*V* = V4. A
more in-depth discussion of the S' action on F is given later, when discussing the

extension to a bundle with action on S*.

Lemma 4.1.7. The pair (V3,®) is a monopole if and only if V* is an instanton.
Proof. Computing the curvature of V*,

Fygs = 1" Fgs + % (dgs®) A&+ 7D A dE. (4.1.8)
Observe that d§ = 4(dx; A dzy — dxs A dxy) is anti-self-dual, and so

FE = (" Fys 4+ *(dys®) AN €)™ . (4.1.9)

For a one-form on « on R3, the expression for the metric (4.1.5) shows clearly that
x4 (m*a A §) = m* (*3c). Then evaluating (4.1.9),

71“}‘*4

0=

T (Fys + #3dys®). (4.1.10)

Clearly if (V?, ®) satisfies the Bogomolny equation (2.3.4), then Fg, = 0.

Conversely, suppose Fg, = 0. For any 8 € Q*(R?) note that 473 = 7 %3 B A€,
again by (4.1.5). Note, however, that ¢ is orthogonal to all pullbacks from R3, and
so we have that if 7*f is self-dual then g = 0. Applying this to § = Fys + *3dys®
shows that (V3, ®) satisfies the Bogomolny equation. O
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Remark. Because only the self-dual part d¢ vanishes, we do not obtain a correspon-
dence for connections with self-dual curvature. This stands in contrast to the cor-

respondence between monopoles on M and S'-invariant instantons on M x ST (cf.

§2.3).

This correspondence is one-to-one: if V* is an instanton on £ = 7*E’ that is
Slinvariant and s € T'(E’), then V*7*s is Sl-invariant, and so is itself the pullback

of a section on E’. This allows us to define

* ]' 4 *
T (Ps) = 2|x|2v897r s, (4.1.11)
™ (Vis) = Vi s (4.1.12)

Here 7* X denotes the horizontal lift of X.

Remark. The correspondence between instantons and monopoles implicitly specifies
an S! action on the bundle E. If a connection is invariant with respect to multiple
actions on F, then it will correspond to multiple monopoles. This phenomenon can

be seen in §4.3.1.

Pauly [Pau98| studied such monopoles with conditions such that Fgs has finite
energy locally around 0, in which case V* extends to a smooth connection across the
origin by [UhlI82]. In particular, he enforced no conditions on the behaviour of Fya as
r — 0o. We study such monopoles under the assumption that V* has finite energy
over all R%,

By stereographic projection, we consider R* € S*. The finite energy condition
| Fg4||*> < oo then ensures that F and V* can also be extended smoothly over the
point co [Uhl82], and so we obtain a bundle E — S*.

Even though the finite energy condition on V* means that the instanton can be
extended smoothly across 0, in general the corresponding monopole will still be sin-
gular at 0. The finite energy assumption, however, does enforce a specific behaviour
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of ®, both at the singularity at 0 and as a decay condition at co. This behaviour of
® is described in Proposition 4.1.25, and is given in terms of the behaviour of the
Sl-action on E, which we describe now.

The S'-action extends to an action on S*, with the only fixed points being 0 and

oo. Recall the definition of the pullback bundle
E=mE={(pv) € (S'\{0,00}) X E" | v € E,}. (4.1.13)

With this description, we define a lift of the S action on S*\ {0,00} to E by
p(e?)(x,v) = (e?x,v). Equivalently, given a local frame s’ = {s/} on E', we can
define the pullback frame on E by s; = 7*s,. The lift of the S'-action is given with
respect to this frame by p(e?)s; = s;(e?z). Note that, although we have extended
the bundle £ over all of S*, the pullback structure, and hence the S'-action p, is
defined only away from the points 0 and oco. Corollary 4.1.23 will show that the
Sl-action can be extended to Ey and E.

Although a pullback frame like the above is convenient for the description of the
Sl-action, there are reasons to consider other frames on E. In particular, a singularity
of (V3,®) pulls back to a singularity in the connection form of V4 when written with
respect to an S'-invariant frame. However, since V* extends smoothly to S*, there
must be a change of frame that removes the apparent singularity in the connection
form. This new frame, however, will not in general be S'-invariant.

We therefore wish to describe the S'-action on E with respect to more general
choice of frames. For s = {s;} a local frame on E such that both z and and ez are

in the domain of s, we denote by [p,(¢”)], € C™*™ the frame-dependent expression

for p(e'), so that
p(e?)s;(x) = [pa ()]s (). (4.1.14)
Let us consider in particular a radially covariant constant frame s. Fix an or-

thonormal basis {e;} of Ey, and define §;(z) by parallel translation of e; along the
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radial geodesic from 0 to . This defines a trivialization of F|gs\ (~}. Given that this
frame is not Sl-invariant, we should expect [p.(e?)] # 1 in general. Moreover, the
expression [p,(e?)] could a priori vary with x. The following lemma shows this is not

the case.

Lemma 4.1.15. Let § be the radially covariant constant frame as defined above.

Then the local expression [p.(€?)]s is constant in x.

Proof. For a curve 7 : [0,1] — S*, let 7, : Ey© — E,) denote parallel transport
along v. Let fo € E,q and let f be a covariant constant section along v with
f((0)) = fo, and so 7, fo = f(7(1)). Because V is Sl-invariant, p(e)s is covariant
constant along the curve e, showing that .., p(e) fo = p(e?) f(v(1)) = p(e?)7, fo.
That is,

To,p(e") = p(e”)T,. (4.1.16)

For the rest of the proof we will work with the frame s and a fixed 6, so for ease
of notation we omit these in the local expression, writing [p.(¢?)]; = [p.]. Let [r,]
denote the local expression for 7, with respect to the frame 5. Then locally, (4.1.16)

becomes

[Tew’y] [p'y(())] = [p'y(l)“T'y]- (4117)

Consider radial geodesic coordinates x for S*\ {oo} centred at 0, and for A > 0
let Az denote scalar multiplication in these coordinates. If v is a radial geodesic,
then since § is radially covariant constant, [7,] = 1. Moreover, the curve e~ is also a
radial geodesic, and so [7.0,] = 1 also. Setting 7 in (4.1.17) to be the radial geodesic
from x to Ax then gives

0] = [paa]. (4.1.18)

Therefore, [p,] is radially constant.
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Since V is smooth, the connection form A of V with respect to the frame § is
bounded over compact subsets K C S*\ {oo}. Therefore, there is a constant C

depending only on the subset K such that
7] = 1] < Tkl (4.1.19)

where 7 is a curve in K and |y| denotes the length of .

Let z,y # 0, and let K C S*\ {oo} be a ball centred at 0 containing both x and
y. Let v, denote a length-minimizing geodesic from x to y. Since S*\ {0,00} is
connected, it is sufficent to show that [p,] is locally constant. We may thus assume
without loss of generality that =, , is contained in K and does not pass through 0.
The geodesic distance |7, .| between = and y is bounded by the Euclidean distance

|z —y| = /D> _(x; — y;)? in the geodesic coordinates, and so we obtain
73] = 1 < Cxlyel < Cklz —yl. (4.1.20)
Scaling by A > 0 gives |Az — A\y| = Mz — y|. Therefore, for fixed = and y,
[Tayoe) = 1O (4.1.21)

as A — 0. Since the S'-action preserves the lengths |z|, |y|, and |v,.|, we have

similarly that [0, ] =1+ O(}).
From (4.1.17),
[pM’] = [Teig'my,,\x]_l[p)\y][T’Y,\y,m]
= [pay] + O(N). (4.1.22)

From (4.1.18), however, [p),] and [py,] are both constant in A. Therefore [py,] — [pay]
is both constant in A and O(\), hence it must be 0. Therefore [p,] = [p,], and so [p,]

1s constant in x. O
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Because [p,] is constant in the frame 3, it can be extended continuously to the
fibre Ey. By defining a similar frame that is radially covariant constant from oo, we

can extend the action to F.,. This proves the following Corollary.

Corollary 4.1.23. The S*-action p(e”) on E|gn o0} extends continuously to an

Sl-action on E over all of S*.

Since 0 and oo are fixed points of the S! action, we have that p(e®?) maps Ej to
Ey and E to E.. Therefore, the fibres Ey and E., are representations of S'. Since
S! is abelian, these representations diagonalize, so that after some local changes of

trivialivization we have

eik‘le

p(eie)Eo =

61’1620

eiknﬁ

P(eie)Ew

eih@

ei@e

ei€n6

(4.1.24)
We will refer to the coefficients k; and ¢; of the exponents as the weights of the
representation. We henceforth assume the weights are ordered by k1 > ko > --- >k,
and ¢, > 5 > --- > {,. Since p preserves the SU(n)-structure of the vector bundle,

as can be seen by looking in an S'-invariant frame, we have
D k=2 =0
J J

Remark. Even though Lemma 4.1.15 shows that [p,]s is constant in a frame s defined
everywhere away from oo, note that this frame need not in general extend across oo,
and so the constant action need not extend across co. When we then choose a frame
s around oo with respect to which [p,|s is constant, it is not in general true that
[p2]s = [pz]s, and so the extensions of the ST action at 0 and oo will in general not be

isomorphic as S'-representations. In particular, we should not expect that k; = ¢;.
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The weights k; and ¢; can be obtained directly from the monopole as the eigen-
values of the leading term of ®, at 0 for the weights k; and at oo for the weight
l;.

Proposition 4.1.25. Let (V3,®) and V* be a monopole and instanton as in the

preceeding discussion, with ||Fy4||? < co. Then in some trivialization near 0,

1k
o = ! +O(1)
2Jy| ’
ik,
and in some trivialization near oo,
e
2= +O(y] )
2[y|
il
Proof. Let eq,...,e, be a basis for Ey with respect to which pg, is diagonal as in

(4.1.24). Let s be the frame on E|gu o} defined by parallel translation of e; along
radial geodesics from 0. By Lemma 4.1.15, we then have the frame-dependent ex-
pression [p,(e?)], is constant in z.

Let (21, 22) be complex coordinates for the stereographic projection C? = R* =

S4\ {oc}, and let U = {z; # 0}. Any element of U can be written as (z1,2;) =

e . (\,w), where ¢ = Ii_il € SU, X\ = |z| € Ry, and w = 22 € C. The slice

|21

R. x C then parametrizes all of the S'-orbits in U. Starting with the frame s
along the slice Ry x C, we can use the S'-action to extend to an S'-invariant frame

(t1,...,t,). More precisely, we define
B () = p(e?)s; (0, w) = e578(e - (A, w)). (4.1.26)
We can define a similar S'-invariant frame away from z; = 0.
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Let A be the connection form of V with respect to the frame s and A be the

connection form with respect to the frame ¢. Since the change of gauge from s to ¢ is
o—ik10
g(e” - (\w)) = :
o—iknd

we obtain

Aoy = 940,97 + 90sg™"
1k
= gAo,g ' + : (4.1.27)
1k,
Let r = |z|, and 9, give the unit radial vector field on C* = R*. Since the frame

s was obtained by radial parallel translation, we have Ay = 0 and A vanishes in all

directions at the origin. As such, since |0p| = r,
10, As,| = |Fw (0, 09)| < 7||Fy||Lee- (4.1.28)

Therefore |Ay,| < r?||Fy||r=. From (4.1.27) and the correspondence with ® given in

(4.1.11),
* L
TP = 2—7”2 9o
1k
1
= — O(1 4.1.29
o +o() (4129
1ky,
In coordinates on R?,
1k
1
d=— +0(1 4.1.30
o ) (1130
1k,
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as y — 0.

Performing a similar argument in the stereographic coordinates T near oo, in an

Sl-invariant trivialization we have

Wy
Ag, = + O(|Z]?) (4.1.31)
i,
as T — 0. Since |Z| = |z|~!, we can compute in the coordinates x
il
1
P = O(lz|™). 4.1.32
"= +0(l™) (1132
i,
In coordinates on R?,
il
1
d=_—— +O(ly| 2 (4.1.33)
o] (Iy1)
ily,
as y — o0. L]

4.2 Sl-invariant ADHM construction

In this section we specialize the ADHM construction from §3.4 to the case where V is
Slinvariant. We do this by decomposing the space V = ker D~ into subrepresenta-
tions of different weights. We can compute the dimensions of these subrepresentations

using equivariant index theory.

Proposition 4.2.1. The S'-action lifts to an action on the spinor bundle S over S*.

Moreover, this action preserves the decomposition S = S+ @ S™.
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Proof. Let pg: S* — S* denote the action by ¢ € S'. For an element of the frame
bundle s, € Fso(S%),, pushforward (j).s, gives a lift of pg(x). Choose an element
of the spin bundle p, € P, above s,. For small # there is a unique lift v of ()5, to P
such that v(0) = p,. Continuing in 6 then defines a section, and hence a trivialization
of P, along the curve pp(z). If v(27) = v(0), then there is a trivialization over the
entire S' orbit in S*, and hence a lift of the S* action. Note that since (par)«Sz = Sz,
the lift y(27) must be one of two elements in P, above s,. Contracting S' orbits in
5S4 to the fixed point 0, by homotopy it is then enough to exhibit a lift on the fibre
Fy. Note that we could instead contract to the fibre at co, and the construction of a
lift there would be similar to that described below.

We construct the lift explicitly on Spin(7pS*) € CI(TpS*). For an orthonormal
basis of TpS?, let ci,...,cs be the corresponding elements of C1(7pS*). We then

define

0 0

0 .0 )
~v(0) = (COS 5 + sin 50102> (cos 3~ sin 50304) . (4.2.2)

Note that, despite the presence of g, the above expression is unchanged on replacing
0 by 6 + 27, and therefore 7 is a well-defined map S* — Spin(7,5%).
We now verify that v(0) is a lift of (ug).. For ¢ = 1,2 note that ¢; commutes with

c3cy, but anticommutes with ¢;co. Therefore, v(6) acts on ¢; € Tp.S* by

Y(0)ery(0) ™ = (COSQ + sin gchg) i (COSQ — sin Q01C2>

2 2 9
e+ 0 2

= | cos — 4 s1n —cyc¢ C;
2 2 162

= (cosf + sinfcyer)c;.

It is a simple computation to show that 1y does indeed act on span{ci, c2} by multi-
plication by (cos @+ sinfcicy). A similar computation shows that (6) acts correctly
on ¢z and c4. Therefore v defines a lift at 0, and thus a lift everywhere on S*.

This action then gives an action on the spinor bundle S which respects the Clifford
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action on S in the sense that, for s € S, and X € T,,5*

1(0)c(X)s = c((po)- X)y(0)s. (4.2.3)

Recall that the decomposition S = St @S~ is the Fl-eigenvalue decomposition with
respect to c(vol), where vol is the volume form on S*. Since vol is invariant under

the Sl-action, this decomposition is also preserved under the action. O

We can compute the action on the fibres S5 and S%.

Lemma 4.2.4. The S action is trivial on Sy and ST, and has weights +1 on ST

and Sy .

Proof. At 0, the action is given explicitly by (4.2.2), and when expanded becomes
0 0 0 . 0

7(0) = C082 5 — Sin2 501234 + cos 5 sin 5(012 - 034)7 (425>

On S, the volume form cj934 acts as —1 while anti-self-dual forms such as c¢j5 — ¢34
act trivially. Thus, the S'-action on S* is simply 1. On S—, the volume form acts as

1 and ¢34 acts as —cy9, giving that
v(0)|s- = cos 8 + sin Oc;. (4.2.6)

Since ¢}, = —1, it diagonalizes on (the two-dimensional) S~ as =44, from which we

see that v(0)|s- diagonalizes as e*%.

Around oo, we note that the action appears the same in stereographic coordinates,
and so we obtain the same explicit expression for v(#)|s... The same argument as at
0 then applies, needing only to switch S™ and S~ because the map from coordinates

x near 0 to stereographic coordinates T near oo is orientation-reversing. L]

If V is an S'-invariant connection, then the associated Dirac operator D = ¢;V;
acting on F ® S is S'-equivariant. Likewise, the operators D*: ST @ E — ST® E
are S'-equivariant.

60



As a result, V = ker D~ carries an S'-action. We can then decompose V =
&P ; Vin;, where V,,,. is a subrepresentation on which S 1 acts as €?. Note that in
this notation, V,,; is not an irreducible representation (which are all one-dimensional)
but instead a collection of all the irreducible subrepresentations of the same weight.

Recall from Sections 3.4.2 and 3.4.4 that the ADHM data are given by maps
a = Pz and = Pz, where by z; we mean multiplication by z;, and P denotes

orthogonal projection to V. Since P is S'-equivariant, for ¢ € V}, we have
p(e®)(ag) = P(e"2)(em™¢) = 00, (4.2.7)

As such, a: V,, — V11, and similarly g: V,, — V,,_1. We then write a,,, = aly,,
and B, = Blv,,-

As part of the ADHM data, there was an additional vector space W and maps
7:V =W and o : W — V. We decompose these similarly, letting 7, = 7|y, and
Om = projy, 0. Restricting to the V,, — V,, part of the ADHM equations (3.4.13)
and (3.4.14) gives

am*lﬁm - BerlOém +OonTm = O, (428)

*

Q11 — Qi Oy + B 1 Bt — BB + 00y, — 7, T, = 0. (4.2.9)

On the other hand, for m # p, terms involving « and /3 vanish in the V,, — V}, part

of the ADHM equations, giving additional equations only for 7 and o,

opTm =0, (4.2.10)
Op0y, — TpTm = 0. (4.2.11)

These S'-invariant ADHM equations, together with the same non-degeneracy con-
dition that R, from (3.4.15) is full rank, can then be used to construct S'-invariant
instantons.

In order to construct examples, it remains only to see what decompositions of
V' are indeed possible. In the same way that the dimension of V' can be computed
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using index theory, the dimension of each V,, can be found using equivariant index
theory. For this purpose, it is necessary to introduce some concepts from equivariant
K-theory. It should be noted, however, that in the case of interest, because the fixed
points of the action are isolated points, many of the topological considerations do
not arise, and the index computation involves only the characters of certain repre-
sentations. The definitions below leading up to the Atiyah—Segal-Singer Fixed Point
Theorem follow mainly from Lawson—Michelson [LM89, §§ 111.9, I11.14].

Let M be a manifold equipped with an action by a compact Lie group G. In
a similar way to how K (M) is defined to be formal sums of equivalence classes of
vector bundles, we define K (M) to be formal sums of G-vector bundles, now where
equivalence is given by G-equivariant isomorphisms. We also define the representation
group R(G) to be the abelian group generated by irreducible representations of G,
or equivalently R(G) = Kq({pt}).

Our application of equivariant index theory will be on a fixed point set, and so it is
sufficient to consider the case where the G-action on M is trivial. Therefore each fibre
of a G-vector bundle is a representation of GG. Consider for a moment a representation
V of GG, and denote by V; the irreducible representations of G. Any finite-dimensional
representation of G can be decomposed into a sum of irreducible subrepresentations,
and by Schur’s Lemma Homg(V;, V) = C% where d; is the number of copies of V;

showing up in the decomposition. Therefore, we have that
V = @ Homg(V;, V) @ Vi
Applying this to each fibre of a G-vector bundle E and varying the base point,
E = (P Home(E;, E) ® E;, (4.2.12)

where FE; is the (topologically) trivial irreducible G-bundle E; = M x V;. Extending

this equivalence to formal sums of bundles, we then have for trivial G-actions on M
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that
Ka(M) = K(M) ® R(G). (4.2.13)

We define the equivariant Chern character che to be the R(G)-valued characteristic
class obtained by composing this isomorphism with ch ®1. For a representation V'
of G, there is a character (of the representation) yy: G — C defined by taking the

trace of g: V' — V. Composing this with chg gives a map
chy: Kg(M) — H®*(M). (4.2.14)

Also, given a G-bundle E, define A_;(E) = [A®"(E)] — [AY(E)] € Kg(M).
Given a G-invariant elliptic operator P : C*°(FE) — C*°(F'), we define the R(G)-

valued G-index to be

indg(P) = [ker P] — [coker P). (4.2.15)

As above, we can take the character of this representation to define
ind, (P) = trace(g|ker p) — trace(g|coker p)- (4.2.16)
Additionally, define the symbol class o(P) of P to be
o(P)=[r"E] - [r"F| € Kag(TM), (4.2.17)

where 7: T'M — M denotes projection.

Remark. The symbol class o(P) should more correctly be viewed as an element of
Ka(DM,0DM), classes of vector bundles that are equivalent on the boundary of the
disk bundle of M. By ellipticity, the symbol of P gives such an equivalence between
7" E and 7 F over 0DM. For the following, however, we will be pulling back o(P)

to a point, and so the distinction will be unimportant.

Let F, C M denote the fixed point set of an element g € G, and let i: T'F, — T'M

be inclusion, and let 7: T'F, — F} be projection. Let N, be the normal bundle of Fj,.
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With the notation above, we have the Atiyah—Singer—Segal Fixed Point Theorem,

ind, (P) = (—1)" (Chg : ﬁgﬁz’(f 38) C))A(Fg)2) 7). (4.2.18)

where d is the dimension of F}.

Proposition 4.2.19. Let V be an S'-invariant instanton on a bundle E where
ki,....k, and (1, ..., 0, are the weights of the S*-action on Ey and E.. Then the

character of the representation ker D™ 1is

Xker D= = (/2 — e=i6/2)2 :

(4.2.20)

Proof. Since, for 6 # 0, the fixed point set consists of two isolated points, Fy =
{0, 00}, the various vector bundles in (4.2.18) are all merely pairs of vector spaces.
As such, ch, is merely the character of the representation. Therefore, evaluating first
at 0 and making use of Lemma 4.2.4 to compute the character of the representations

of Sg and Sy,

Ch@(i*o')[) = XE()(X)SJ (0) - XE()@S(; (6)
= (X, - (ng - XSO—))(@)
= (M0 4 ... ) (e 12 — 7). (4.2.21)

Similarly, at oo
chy(i*0) oo = (€17 + -+ 4+ e) (e — 2+ 7). (4.2.22)
The denominator may be explicitly computed from the action on (Ng), = T,5* @ C

Ch@(A_lﬂ—* (N ® C)) — XAevenTpSZl@(C(e) - XAoddTpS4®(C(0)
— 6 + €2i9 + e—2i9 o 4619 o 46—i9

= (&2 — e /2)4, (4.2.23)
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Note also that A(pt) = 1.
Since ker DT = 0, assembling (4.2.21), (4.2.22), and (4.2.23) in (4.2.18) gives

Xker D— (0) = — indg(D+)

(ei0/2 _ e—i9/2)4 ’

Canceling by the common factor (¢?/2 — e=%/2)2 gives the result. O]

4.3 Structure group SU(2)

If the structure group of E is SU(2), then Ey and E,, are each 2-dimensional, and
so the St actions each have two weights. Since these weights must sum to 0, they
are k,—k at 0 and ¢, —¢ at oco. In this case, the character of the representation

V = ker D~ from (4.2.20) simplifies, giving the following proposition.

Proposition 4.3.1. Let V be an S'-invariant instanton with weights k on Ey and {

on Es. Then the character of the S'-representation on V is

(k—1) (£-1)
xv=>_ (k=lmpe™ — > (£—|m|)e™. (4.3.2)
m=—(k—1) m=—(¢{—1)

Proof. From (4.2.20), the character of the representation is

(k0 4 e=ik0) _ (et 4 o=ith)
Xv = (€072 — e=i0/2)2

(4.3.3)

Subtracting 2 from (e™*? 4 e~*%) and adding 2 to — ('Y +e~), these terms are then

squares. The above then evaluates to

(4.3.4)
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The proposition is then given by seeing that

(ez%e + ez’%e 4t 6—1%9)2
= =10 L 9pih=20 o (k— 1) + k

+(k—1e ™ 4+... 4 2e "1 k=200 | o—i(k—1)0

and recognizing that (4.3.2) is simply a more succinct expression for these coefficients.

]

The decomposition V' = @ V,, into subrepresentations V,, of weight m can be

obtained from the character, with dim(V},) given by the coefficient of ¢ in yy.. We

then have the following results about such instantons and their weights.
Corollary 4.3.5. If E admits an S*-invariant instanton, then k > (.
Proof. From (4.3.2), the dimension of Vj, which must be nonnegative, is k —¢. ]

We can write the dimensions a little more simply as

(

k—0  ifm| <,

dim(Vi) = Sk — |m| if0<|m|<k-—1, (4.3.6)

10 if |m| > k.

Corollary 4.3.7. An S'-invariant instanton on E has charge k* — (2.

Proof. By Corollary 3.4.64, the charge of an instanton is equal to dim(V"), which can

be found by summing dim(V},). O
Corollary 4.3.8. There are no S'-invariant SU (2)-instantons with charge 2 (mod 4).

Proof. By Corollary 4.3, the charge is a difference of squares, and so cannot be 2

(mod 4). O
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Before continuing on to computing examples with various different weights, which
will comprise the rest of this section, we prove a lemma that is helpful in verifying

the non-degeneracy of the ADHM data.

Lemma 4.3.9. The non-degeneracy condition for S*-invariant ADHM data to be
valid (see Definition 3.4.7) need only be verified at = = 0. Moreover, the non-

degeneracy condition holds if ker a Nker f Nkerm = 0.

Proof. Working with complex data, the non-degeneracy condition is that

R, = % A
_Bz (8 o

is full rank for all z. Equivalently, R, R} is invertible for all z. Evaluating and making

use of the ADHM equations,

o, + BB+ —alfE 4+ Bral + 1ot

R.R: =
| =B +uf.+om BB+ ool +oto
oo, + BB, + 0
_ (4.3.10)
0 B.0% + a4+ o¥o

The ADHM equations then also tell us that the two remaining submatrices are equal
to each other, and so it suffices to check the non-degeneracy of oo, + 5;3, + 7',
which as a sum of positive semi-definite matrices is itself positive semi-definite. More-
over, a vector is in the kernel of the sum if and only if it is in the kernel of each of
ooy, Bi 6., and 7 individually. This is equivalent to the vector being in the kernel
of a,, ., and ker 7 simultaneously.

Since «, and 3, are triangular, it is clear that «, is injective if z; # 0 and [,
is injective if 2o # 0. Therefore non-degeneracy holds everywhere away from 0, and
to check the condition at 0 it suffices to check that ker a, ker 5, and ker 7 share no

nonzero vectors. O
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4.3.1 k=/{

We begin with simplest example, where the S* action has equal weights at 0 and oco.
By Corollary 4.3, the charge is then 0, and so the instanton is trivial, asis £ = M xC?.

Since we have a global identification of fibres, we can take the S*-action to be globally

eik@
T =
e—zk@

Curiously, this does not mean that the monopole is trivial. Although the connec-
tion form with respect to the obvious trivialization on £ = M x C? vanishes, we note

that this trivialization is not S'-invariant. To obtain an S'-invariant trivialization,

consider the gauge transformation

sk
1 21

P "

9(2)

away from z; = 0. Away from 2z, = 0 we can use a similar gauge transformation
involving z,. We note that g(e? - 2)rgg(z) = 1 and so this trivialization is indeed

Sl-invariant. We can then compute the Higgs field,

1
- —_A
T T AR
= 8 -1
2|Z’29 09
1 ik
2|2 ik
In the coordinates y on R? we then have
1 |k
2[y| —ik

This example demonstrates that the correspondence between monopoles and S'-

invariant instantons implicitly takes into account the S' action under consideration.
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Since the trivial instanton on the trivial SU(2)-bundle is S'-invariant with respect

to many different S'-actions, it corresponds to many different monopoles.

432 k=1,0=0

The simplest case of a nontrivial instanton is with weights £ = 1 and ¢ = 0, which
must therefore have charge 1. In this case V = V{, and so a = f = 0. Up to gauge,

the ADHM data can be parametrized by A € R, giving

o= [O )\:| .

These data correspond to the charge 1 instantons centred at the origin in R*. That
these are all the charge S'-invariant instantons of charge 1 can be directly verified:
they are all S'-invariant as shown below, while no other instanton of charge 1 can be
St invariant since the charge density |Fy|* must be centred at a fixed point of the
Sl-action.

These instantons can be seen explicitly, following the description in [Ati79, Chap-
ter I1], using quaternionic coordinates and identifying the imaginary quaternions with

su(2). The connection form is then

zdx
A=1 — .
. (v n |x|2)

Note that pulling back by the S'-action does not result in the same form. This
is a result of the frame itself not being S!-invariant, and so we apply the gauge

transformation g = fa tO make it so. The new connection form is then

A=gAg~t +gdg™

I Ndx T
a 22PN+ |z]2) )
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Pulling back by the S' action shows that this connection form is S'-invariant, at the

cost of being singular at the origin.
We can then compute the Higgs field

1 -

=——A
22

B A\ (xiT)

"2t )

TP

Noting that (ziz) = m(x) under the identification of R*® with the imaginary quater-

nions, we thus have that
P = L
20y[> (A + [yl)”
where here y = y17 + y9j + ysk. Diagonalizing with the gauge transformation h =

lyli+y :
V2l O
& — hon ! = 2;2
2ly|(A% + [y])

433 k=2,0=1

Because of Corollary 4.3.8, the next simplest case arises for charge 3 instantons,
which occurs when £ = 2 and / = 1. In this case V =V}, & Vp, @ V_;. Each of
these subrepresentations is one-dimensional, and so we can think of «,,, 3,, as simply

complex numbers, and 7, and ¢}, as elements of £, = C2.

Proposition 4.3.11. S'-invariant instantons with weights k = 2, = 1 are parame-
trized by m,n2 € Ew satisfying m # +ny and (ny,n2) € R. Acting by SU(2) on n1,n2

gives gauge equivalent solutions.

The ADHM for these parameters are given by

7T:|:771 0 772:|7 g = 0f,
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w
where we take 8- to denote | | — [u_)g _u‘)l] The o and 8 are given by

Wa

1
Gom A= 5\/|771|2 —[ml® + \/(|?71!2 = [mal)? + 4z m[*

If ag = 0, which happens only if nym = 0 and |m2|> > |m|?, we take By = By =

€L
|772|2 _ |771|2; otherwise 5, = By = "i—gl

Proof. For such an S'-invariant instanton, the ADHM matrix R can be written

—Z1 -z B s
oy —Z -z B
R(z) = ot A TR T (4.3.12)
29 —Z1 O 01
Io %) —2Z1 Q_1 Oy
i Bo 22 21 0-1]

By Lemma 4.3.9, non-degeneracy need only be verified for R(0).
The proof then proceeds by successive claims.

aim . ecast one o1 7,0 iS non-zero, and at teast one or m_q1,0_ iS non-zero.
Claim 1. At least £y, 0% , and at least fr_y, 0%,

To verify this claim, note that if both m = o7 = 0, then by (4.2.9),
Jowl* =[]
On the other hand, by (4.2.8),
apf = oym =0,

and since oy, 31 € C'*!, these imply that g = 31 = 0. But then looking at the first

row of R(0), we see that the nondegeneracy condition is not satisfied.
A similar argument shows that at least one of 7_1,0_; is non-zero.
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Claim 2. At least one of my,7_1 is non-zero. Similarly, at least one of 01,01 is

110N-Zero.

Suppose to the contrary that m; = 7_; = 0. Then by Claim 1, both o; and o_;

are non-zero. By (4.2.11), we have
o0", =mn_1 =0,
and therefore oy and o_; are orthogonal in C%. By (4.2.10),
o1mg =0, o_1m9 = 0.

Therefore, 7 is a third orthogonal element of C2, and so must be 0.

Furthermore, from (4.2.8), we have

apB =0, a_18 = 0.

Therefore the first three rows of R(0) contain at most two nonzero entries, and so

the nondegeneracy condition is not satisfied. Therefore the claim is verified.

Claim 3.

o = 0y = 0.

We will show 7y = 0. The argument for oq is similar.

Suppose first that o1 = 0. Then by Claims 1 and 2, both m; and o_; are nonzero.
But then by 4.2.10 and 4.2.11,

mmy = 01045 =0, o_1my = 0.

Thus 7y is orthogonal to m; and o_;, which are themselves a pair of nonzero orthog-
onal elements of C?, and so my = 0.
A similar argument holds in the case 0_; = 0. Suppose then that ¢; and o_; are

both nonzero, and assume to the contrary that m is also nonzero. Since they are
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both orthogonal to 7, they must be colinear. Since 77 is orthogonal to o_; and 7*;

is orthogonal to o, then m; and m_; are als colinear. But then by 4.2.11,
TM_1 = 010",

and since the righthand side is nonzero, neither 7m; nor 7_; is zero. The equations
(4.2.10) for all m together then show that |m;| = |oy|.

Note however that (4.2.8) and (4.2.9), and the orthogonality of oy and 7, give
that

@ =0, |aol® = |Bol* = 0,

which imply that ag = 1 = 0, and so the first column of R(0) is 0, contradicting
nondegeneracy.

Thus, in any case, my = 0, verifying the claim..

Let us fix bases in V' and E., and write

w1 w3
T = ) T—1=
Wa Wy
By orthogonality, we then have
o=\ [@4 —@3] ) o_1= A [(IJQ —@1}

for some A, A\ # 0.
Claim 4. |)\1| = |>\_1| =1.

To verify the claim, first consider the case where o1m; # 0. Then since 7y and og

are both 0, summing up (4.2.8) over all m gives
o1, = —0_1T_1. (4.3.13)

Expanding this in coordinates shows that |A\;| = |[A_1]. Then summing up (4.2.9)
gives
P+ P = o P + o (4.3.14)
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which shows that |A;| = 1.

If, on the other hand, oy or m is 0, then the first statement can be trivially
satisfied, and the second statement is again obtained from (4.3.14).

Consider now the case where o;m; = 0 but neither oy nor 7 vanish. Then by
orthogonality, we must have that 7; and 7_; are colinear, and taking the absolute

value of (4.2.10) gives
|7Tl||7T_1| = |O'1||O'_1|. (4315)

When added to or subtracted from (4.3.14), which was valid independent of the

assumptions made prior to it, gives

(Imil + |7-a])? = (o1 ] + o1 ])?, (4.3.16)
(Imi] = [m-1)? = (Jou| = lo—1])%. (4.3.17)
Since |m| # |oy|, otherwise apf; = 0 would imply ay = f; = 0 violating non-
degeneracy, it must be the case that |m| = |o_i| and |7_1| = |o1], hence |\| =

A1 =1

Note that multiplying the basis vector for V_; by e? changes A\_; by e~* while
changes \; by €. So by fixing a basis vector for V_; we can assume that \; = A_; = 1.
Expanding shows that oym = —_17—_1, and so comparing with (4.3.13), which is
valid regardless of the assumptions prior to it, we see that o7 and o_;7m_; are real.

Expanding (4.2.11) shows that nf7_; = 0o _; are real.
Claim 5. |o;| and |f5;| are determined by 7, 7.

From above, o7 is determined by 7_1, and if 701 = 0, then one of ay, 51 is zero,
and the absolute value of the other is determined by |m|* — |o1|? using (4.2.9). If,

on the other hand, w07 # 0, then neither ag nor 51 vanish. We then have by (4.2.8)

and (4.2.9) that |ag|? satisfies the quadratic

lao|* + (lo1]* = |71 |aw)® — |owmi|* = 0. (4.3.18)
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Since the discriminant is positive, roots exist, and moreover the inequality |ag|? >
|71|> — |o1|* obtained from (4.2.9) determines which root is valid. Therefore |ag]| is
determined, and hence || is determined. By a similar argument |a_;| and |5y| are
also determined, finishing the claim.

From the equality g, = o171, we in fact have that oy and S, are determined up
to multiplication by e for ag and multiplication by e=* for /31, and similarly for a_;
and ;. Rotating the basis elements for V; and Vj shows that these give equivalent
data, and so «; and ; are in fact determined up to equivalence.

Setting m; = ny and m_; = 1, gives the desired parametrization. All other ADHM
data are then determined by the arguments above, and it can be checked that these
data satisfy the ADHM equations. It thus remains only to show that these data
satisfy the nondegeneracy condition.

Note that if 7, = 41, then moy = 0 and |m]? — |01]* = 0, s0 ag = B, = 0, which
does not satisfy non-degeneracy. If 1, # £ns, then the requirement that (n;,72) € R
then implies that either m;0; # 0 or |7;]* —|o;|* # 0, for each of the indices j = 1, —1.

If myo1 # 0 (and hence also m_10_1 # 0), then all of ag, 1, 1, By are nonzero.
The kernel of a and [ then clearly intersect only at 0, and so the nondegeneracy
condition is satisfied.

If, on the other hand, mo; = 0, in which case |m|> — |o1|*> # 0. Assume that
|71|> — |o1|* > 0. Then (4.2.9) implies that |ap|*> > 0, and so in particular ag # 0.
We also have that |7_1|> — |o_1|> = |o1]* — |m1|* < 0, and (4.2.9) then implies that
a_y # 0. Thus ker o = V4. On the other hand, |m;|*> — |o1|> > 0 implies 7 # 0, and
so Vi Nkerm; = 0. A similar argument applies in the case |m|* — |o]? < 0, showing

instead that 3; # 0. In either case, the nondegeneracy condition is satisfied. O
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434 k=2,0=0

When the weights are £k = 2 and ¢ = 0, we have a charge 4 instanton, and the
decomposition V =V, & Vo d V_q, with dimV; = dimV_; = 1 and dim V; = 2. This
gives our first example of a space with a subrepresentation V,, of dimension greater
than 1. Below we give the ADHM data for a one-parameter family of instantons with

such weights. In particular, the moduli space of such instantons is nonempty.

The ADHM data are given, for A € Ry by

Qp = [/\ 0] ; | = ;\
Bo = [0 )\} ) B = !
A (4.3.19)
|0 A B A0
ol T o

7'('1:0'1:7'(',1:0',1:0.
One can check then directly that the ADHM equations (3.4.13) and (3.4.14) are
satisfied. Moreover, since 7 is injective on Vy, a_; is injective on V_q, and [ is

injective on V;, by Lemma 4.3.9 these give nondegenerate data.

4.4 Structure group SU(n)

Consider now the general case of structure group SU(n).

Proposition 4.4.1. The character of the S* representation on V = ker D™ is

Xker - (0) = ) (Z (m—k)— > (m— &-)) em?. (4.4.2)

m ki<m l;<m

Before proving this proposition, we first note that there are finitely many nonzero

terms in this sum. Indeed, if m is smaller than all weights k; and ¢;, then the inner
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sums are empty. On the other hand, if m is larger than all weights, then the inner
sums are over all possible weights. The inner sums then evaluate to
Z(m—ki) —Z(m—&) :nm—Zki—nm+Z€i =0.
ki ‘ei
Therefore, the only nonzero coefficients occur between the smallest and largest of the

weights.

Proof. The result follows from (4.2.20) once we have the following equation for formal

Laurent series:

(x—2+4az7" ZZm k;)x Za: (4.4.3)

m k;<m

The coefficient of 2™ on the lefthand side of (4.4.3) is
Yom—1-k)=2) (m—k)+ Y (m+1—k). (4.4.4)
ki<m—1 ki<m ki<m—+1
When k; < m — 1 above, the three terms cancel. For k; = m — 1, the the first term

vanishes, leaving

> (=2m—k)+ (m+1—k)) =0,

ki=m—1

while for k; = m only the last term remains leaving

Z(m—i—l— Zl

ki =m

This establishes (4.4.3), and finishes the proof. O
Recall that we order the weights k1 > --- >k, and {1 > --- > /,,.
Corollary 4.4.5. If E admits an S'-invariant instanton, then ky > {1 and k,, < 0.

Proof. It k,, > {,,, then k; > ¢,, + 1 for all <. Then the dimension of V., is

St ) =k) = D (et 1) —l) == > 1<0.

k;<lp+1 ;<bp+1 bi=tn
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Since dimensions must be nonnegative, this shows k, < £,,.

If ky < ¢4, then k; < ¢; — 1 for all . Then the dimension of V,,_; is

(=1 —k)= D ((h=1)—)

ki<l1—1 £;<tl1—1
Note that if we add — >, _, ((¢1 — 1) — {;) to the above, we are now summing over

all of weights k; and ¢;, which evaluates to 0. Therefore, the dimension of V;, _; is

Y (-1 <0,

L=l

contradicting nonnegativity of the dimension. O

Corollary 4.4.6. An S'-invariant instanton on E has charge

= (4.4.7)
ki 4;

Proof. The charge of the instanton is the dimension of V', which can be computed by
summing the dimensions of V,,,. Alternatively, one can evaluate xy(0) using (4.2.20)

and L’Hopital’s Rule. O

Corollary 4.4.8. If E admits an S'-invariant instanton then

SN e
k; l;
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Chapter 5

The Nahm Transform on a Bieberbach
Manifold

In Section 3.3 we considered the Nahm transform on quotients of R* by a subgroup
of translations. In this chapter, we consider quotients more generally by subgroups
of the isometries on R* that include a rotational part. In Section 5.1 we define
crystallographic groups and Bieberbach groups. In Sections 5.2 and 5.3 we give an
example of a Bieberbach group B and construct a Nahm transform for instantons on

the quotient R*/B.

5.1 Crystallographic and Bieberbach groups

We begin with a brief description of Bieberbach groups in general, following [Cha86,
Chapter I]. Let M be the group of rigid motions on R™. These consist of rotation
by an element of r € O(n) followed by translation by some v € R™. Taking the
rotational part of a given rigid motion gives a homomorphism r: M — O(n).

We consider subgroups of G C M. We say G is uniform if the quotient R"/G is
compact. If G is discrete, then the orbits of G consist of discrete points. If G is both
discrete and uniform, we say G is crystallographic. If, in addition, G is torsionfree,
we say it is a Bieberbach subgroup of M. For discrete subgroups G, being torsion
free is equivalent to G acting freely on R™. Therefore, if G is Bieberbach, then R"/G

is a compact flat manifold with fundamental group G.

For a subgroup G, the rotational parts r(G) form a subgroup of O(n), while the
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kernel of r is the normal subgroup A C G consisting of pure translations. Note that
if 7(G) and A are both discrete — in which case r(G) is in fact finite, since O(n) is
compact — then G is discrete. If, moreover, A is a (full-rank) lattice, then R"/G is
a quotient of T™ and hence compact. These two properties together show that G
is crystallographic. Bieberbach’s First Theorem (see, e.g. [Cha86, p. 17]) gives the

converse.

Theorem 5.1.1 (Bieberbach’s First Theorem). Let G be a crystallographic subgroup
of M. Then r(G) is finite and A spans R".

As a result of Bieberbach’s First Theorem and the fact that A C G is normal, if
G is crystallographic then R"/G = T"/r(G).

5.2 A Bieberbach quotient of 7*

For the rest of the chapter, we focus on a specific example of a Bieberbach group.
Consider the coordinates z; on R* with orthonormal basis ¢; = a%-' Let u € O(n) be
given by p(xy1, o, x3,24) = (22, 21,24, 23). Fori=1,... 4, let g; = (i, e;) denote the
isometry given x — pux + e;. Let B denote the group generated by these g;.

Elements of B are then of the form (u*,v) for k = 0,1 and v € Z*. The ro-
tational part is r(B) = {1,u} = Zy C O(n). Let o(xz) = ) . x;, and note that
applying o to the translational part of a group element gives a homomorphism
o: B — Z. Since for each of the generators, o(g;) = 1, we see that the parity
of o(u*,v) matches the parity of k. Thus, the purely translational subgroup is
A = {(z1,79,23,74) € Z* | 0(x) € 2Z}. Since these are discrete and A spans R*,
B is a crystallographic subgroup of M.

Moreover, we can see that B is torsionfree (and hence Bieberbach) as follows.

Suppose (p*,v) has finite order. If & = 0, then v € A, and (1,v)™ = (1, mv), which
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is zero only if v = 0. On the other hand, if £ = 1 and (p, v)™ = (1,0), then m is even
and (p,v)™ = (1, (m/2)(v + pv)). Therefore v = —pw, and hence o(v) = 0. But the
parity of o must match the parity of £ providing a contradiction.

Therefore M = R*/B is a compact flat manifold. Moreover, recalling our homo-
morphism 7 : B — Zs,, since A = r7!(1) it is a normal subgroup of B. Therefore, M
is also a quotient of T* = R*/A by B/A = Z,. Let q: T* — M denote the quotient.
Furthermore M is oriented since p € SO(4). In fact, M is parallelizable, as can be

seen by considering the following vector fields

(01 + 0s),
(03 + 04),
cos(mo(x))(Or — O2) + sin(mwo(x)) (05 — Os),
—sin(ro(x)) (D) — 82) + cos(ma(x))(Ds — ).

Note that these vector fields are invariant under the action of B, and thus descend

to M. Moreover they are orthogonal.

5.3 Nahm transform on a Bieberbach manifold

To construct a Nahm Transform, we consider a space of flat bundles on M. As
in Section 3.2, we parametrize such bundles by elements of (R*)*. However, only
elements of (R*)* that are invariant under the action of B give well-defined 1-forms
on M. Ultimately, we will consider rank 2 twisting bundles parametrized by all of
(R*)*, but for now we consider line bundles parametrized by the elements of (R*)*
that do descend to M. Letting ¢’ € (R*)* be the dual basis to ¢;, it is convenient to

define a new basis for (R*)*,

1
vl = 5(61 + %), wh = —(e' —¢?),
. (5.3.1)
v? = §(e3+e4), w? = —(e® —e*).



Note that v' and v? are invariant under the action of B, and so give well-defined
constant 1-forms on the quotient M. On the other hand, w! and w? are not invariant

as acting by p introduces a sign change.

Let £ = &' € (RY)*, which as a combination of v’ is well-defined as a form on
M. Let V¢ be the connection on the trivial line bundle on R* with connection form
i2m€. Since V¢ descends to the quotient, it defines a flat connection on a topologically
trivial line bundle L on M. When equipped with the connection V¢, we shall denote
the line bundle L.

Recall that a flat line bundle on a manifold M is classified by the U(1)-represen-
tation of m (M) = B determined by its holonomy. A representative of the loop in
m1 (M) corresponding to the generator g; € B is given by the curve te;, for 0 <t < 1.

From the description V¢ = d+ 27 with respect to the given frame, parallel transport

—it2w&(e1) —itwéy

along, say, te; is given by e =e . Similar computations show that the

representation p of B corresponding to holonomy is given on generators by

p(gr) = plgz) = e,
A (5.3.2)
plgs) = plga) = e .
We see that the line bundle L is defined up to translation by 27 in either & or &.

Consider now the pullback ¢* L¢ on T*. Since the lattice A is generated by products
9igj, holonomy on ¢*L¢ is given by composition of the appropriate holonomies from
(5.3.2). All such holonomies are either of the form 2™ or e™™(¢1#¢2)  As such, in
addition to translation by 27 x 2Z, we have that the pullbacks are also invariant up to
translation by (k, k) for k € Z. That is, on T* the pullbacks satisfy ¢* Le = ¢* Ley 1 402.
As pullback bundles, however, we have a natural identification of the 2 fibres over a
Zo-orbit in 7%, and as such a natural lift of the Z, action to the pull-back bundle. It
is this choice of Z, action that distinguishes ¢*L¢ from ¢*L¢, 14,2 on T Let b € B,

and let sgn : B — {1,—1} = Zy = B/A be the quotient homomorphism. That is
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sgn(b) = 1 if b acts trivially on 7%, and is —1 otherwise. Let a(b) : ¢*L¢ — ¢*L¢
be the natural action on L induced by the pullback structure. Then under the
identification of ¢*L¢ = ¢* L4142 as line bundles on T, the action of B/A obtained
from the pullback structure of ¢*L¢ 14,2 is sgn(b)a(b).

Given these line bundles, we define a rank 2 vector bundle Ve = L@ Le 14,2 over
M. Since L¢ and Lgy,14,2 are topologically trivial for all £, all Ve are topologically
trivial rank 2-bundles. Even though we could define a global smooth frame on Vg, it
is instead convenient to use the following. Consider ¢*Ve = ¢*Le ® ¢*Le 11,2 on T4
Since ¢*L¢ = q"Leyy1402 0N T*, we can then choose a frame for ¢*V; such that the
connection form of the pullback connection ¢*(V¢ @ V) is i2r€ on each component.
The natural Zs-action on the fibres of ¢*V, obtained from the pullback structure is
then given by 1 @ sgn(b). This frame then pushes down to M, albeit not smoothly.
One advantage of this frame is the expression for the connection,

Ve ® Veppiq2 =d+i2m b . (5.3.3)
0 1

We define a further twisting of this bundle as follows. Let 7 = i27m;w’. As stated
above, 7 is not invariant under B but instead changes by a sign when multiplied by
generators. Viewed as a map with respect to the frame for ¢*V; described above,
multiplication by the form 7 then maps a section that is trivial under the Z, action
to one that changes sign under the action, and vice versa. Therefore, on M we can
view 7 as a Hom(L¢, Lejy1402) @ Hom(Lg 1442, Le)-valued form. With respect to the
direct sum definition of V¢, 7(0;) defines an off-diagonal element of End(V;). Adding

1277 to the connection on Vg then gives the connection

&7
Ver=d+i2m . (5.3.4)
T &
Observe that V¢ ; is a flat connection. Let V¢ . denote the bundle Vg equipped with
Ver
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Computing the holonomy along the curve te;, parallel transport is given by

LT . cos(mtT —isin(mtr

exp | —umt ) = e (wtm) (wtm) : (5.3.5)
GEES! —isin(wtT)  cos(wtm)

Note that upon reaching ¢ = 1, the fibre (V¢,)., is identified with the fibre at 0 in

our given frame by multiplication by —1 in the second direct summand. Therefore,

holonomy along the curve te; is given by

. cos(mT —isin(7mr
pl(é, 7') = ¢ ™ ( l) ( l) . (536)
isin(rr) — cos(mr)
Similarly, we can compute holonomy along the curve tes, giving

oalE7) = e cos(mry)  isin(mm) | (5.37)
—isin(wr) — cos(mTy)
and similar expressions can be computed for holonomy in the directions ez and ey.
From the holonomy computation, we can see that the bundles are invariant under
the shift of parameters &, 7 — & + 1,7 + 1. Together with the translations in each
variable by 2, this gives that the bundle V ; is defined up to translations A generated
by

A= spang {v' + w', o' —w', v? + w?, v? — w?}. (5.3.8)

We have an additional action on the parameters £ and 7 by Z,. Note that

0 1 0 —1 Lime, | T COSTT —isin
p1(§,7) =e ™
-1 0 1 0 1sinmm COS Ty
= p1(§ + (Ul + ’Uz), —T). (539)

Conjugation by the same matrix has the same effect on the other holonomies, showing
that the bundles Ve . and Vi¢y,14.2) - are equivalent up to a gauge transformation.

Indeed, let

4 0 1
go(x) = e2mlvrte2)(@) (5.3.10)

-1 0
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acting on ¢*Ve with respect to our given frame. Note that for b € B we have

go(bx) = ¢2r(vitv2)(b) 0!
-1 0
. 0 1
— sgn(b) 1E ® 612ﬂ(v1+v2)(x)
-1 0
1 0 1 0
= go(z) . (5.3.11)
0 sgn(b) 0 sgn(b)

Therefore, go(bx) is obtained from go(z) by conjugation by the Zs-action 1 & sgn(b)
on ¢*Vg, and so go(z) is well-defined gauge transformation on the quotient. Note
moreover that taking the gauge transformation of the connection form of Vg .,
‘ E T ) . & -7 _ vl + 02 0
go | 27 9o~ + godgy” =1i2m + 127
T & —r £ 0 vl + 02
(5.3.12)

which is the connection form for Vcy,i142) . We then have that the Z,-action
(&,7) — (& +v' + v —7) corresponds to the identification of the corresponding
bundles by the gauge transformation gg.

Although we will continue working with the parameters &, 7, let us return for a
moment to the coordinates of (R*)* with respect to the dual basis €' = dz*, and
let {#;} be coordinates with respect to this basis. In these coordinates, A is the
standard integer lattice @ Ze'. The map & + 7 + £ — 7 is expressed as the map p
from Section 5.2, given by (1, T, @3, 24) = (L2, 21, 24, 23). Writing a = v + 02 =
L(e'+e?+eP+e*), we have that the Z, action is given on 7* = (R*)*/A by & + pi+a.

Considering instead the universal cover (R*)*, where the isometry g : & — pi +a
and A generate a group B. Note that we only need g and three of the generators A to

generate B, as S~ e; = g*. While Bis a crystallographic group, it is not Bieberbach.
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Indeed, there are four 2-tori of fixed points in 7% given by translating the 2-torus
{t(e! + e?) + s(e® + e) | s,t € R} by each of the four elements

1 1
_(€1+63), 5(61—{—64),

: (5.3.13)

1
S+, (e +eh).
In order to avoid dealing with orbifolds, we maintain the viewpoint of having a Zs-

action on 7% rather than descending to the quotient.

We now use these V¢, to construct a Nahm transform. Consider an SU(2)-vector
bundle £ on M with an instanton V. Let Vggy, . be the twisted connection on
E ® V¢ ; obtained by tensoring with the flat connection V¢ ;. Suppose moreover that
E & Vg is without flat factors for all §,7. Note that Vggy,  is still an instanton.
Since M is parallelizable, SO(M) is trivial. Therefore M has a spin structure, and
hence a spinor bundle S. As usual, let Dét,T denote the S* — ST parts of the Dirac

operator associated to Vggy, -

By slight abuse of notation, we will take Clifford multiplication to be given on

Ver ® S by
10

c(v;) = ® c(v;),
01
(5.3.14)
01
c(w;) = ® c(w;)
1 0

Since the End(V ;) parts all commute with each other, we have the usual rules for
Clifford multiplication. Moreover, we can recover the End(Vg ;) parts by taking the
Zo-invariant and Zs-skew-invariant parts of the Clifford multiplication. That is, for

any n € \(R*")* we have

10 + u* 01 —
c(n) = ®c<77 ,un)+ ®c<77 ,un)‘ (5.3.15)
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Because u is orientation-preserving, if n is self-dual then p*n is also. Therefore, the
usual fact that ¢(A") = 0 on S~ still holds in our new notation. Also, with this
notation we have D¢, = D + i2mc(€ + 7).

Just as in the case of the Nahm Transform on the torus, we have ker D;T = 0.
Indeed, as before, the Lichnerowicz formula D~ DT = V*V + ¢(F™") tells us that an
element in the kernel of DgT would have to be parallel with respect to Vg ® V¢ -,

but such a section would provide a flat factor of the bundle £ ® V, ..

Let £ be the bundle over 7* given by E = ker D¢ ., with connection V induced

from orthogonal projection from L?*(E ® V¢, ® S7).

Proposition 5.3.16. The transformed connection V on E is an instanton. More-
over, E is equipped with a Zo bundle action that covers the action x — px +a on T4

described above.

Proof. Seeing that V is an instanton is completely analogous to the same result
for the Nahm transform on a torus in Proposition 3.3.3. As before, we let G¢, =
(V§,Ver)~ "t Since both End(V ) parts of the Clifford multiplication in (5.3.14) are
constant and commute with the connection form of V ., Clifford multiplication ¢(v;)
and c(w;) commute with V*V¢ ;. Therefore ¢(v;) and ¢(w;) commute with G¢ .. Let
P;r = 1= D} Ge,D;_ be projection onto ker D, . The same computation as for

the Nahm transform in Proprosition 3.3.3 then applies. Thus, as in (3.3.7)
Py = =87 P re(n)c(w)Ger Per, (5.3.17)

where 1 # w are any two of v!, v? w!, w?. Because Clifford multiplication by self-dual
forms is trivial on S—, we have that F' is anti-self-dual, hence V is an instanton.

We now show that the connection is invariant under the Z, action. Let go(z) be the
gauge transformation from (5.3.10), which we recall identifies V¢ ; = goVeipt 102, —r90 L
By tensoring with 15 and 1g, we consider gy to be a gauge transformation of EFQV ®S.
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We define lift of the Zs-action on T* to the trivial bundle 7% x L2(E ® V ® S) by
(Z,8) — (T + a, gos). (5.3.18)

Note that D¢, = 90(D§+v1+v2,7)90_1, and so gp defines a map taking ker D¢, to
ker(Dgyiiy2). Therefore Pe, = go(Pervtiv2,+)go - Since gy does not depend on

¢ or 7, it commutes with differentiation in £ and 7, and we have

PerdPer = 90(P5+v1+v2,77)9071d90(P£+v1+v2,77)9071

= gO(P£+v1+v2,77')d(P§+v1+v2,f‘r)9071 (5'3'19)

That is, V is invariant by the Z, action, up to conjugation by the Z, action on E. O
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Chapter 6

Minimal Energy Yang—Mills

As discussed in 2.2, instantons are global minimizers of the Yang—Mills energy || Fy ||*.
A natural question is then to ask whether the converse statement is true. In cer-
tain circumstances, the answer is yes. Bourguignon, Lawson, and Simons [BLS79,
BL8&1] used the second variational inequalities of V + t¢ XFVi to show that, for G =
SU(2),U(2), or SU(3), if V is a G-connection that is a stable critical point of the en-
ergy, then it is an instanton. Using a related variation involving the flow along X (of
which the Bourguignon-Lawson—Simons variation is the linear term), Stern [Stel0]
extended the result for higher rank structure group over complete (but not necessar-
ily compact) homogeneous spaces, in which case the adjoint bundle has an instanton

subbundle and an anti-instanton subbundle, and these subbundles commute.

In this chapter, we generalize this argument over certain manifolds of cohomo-
geneity one. This necessitates taking the Taylor expansion of the variation studied
by Stern, but the argument otherwise follows closely. In this chapter, we also allow
the use of conformal vector fields X, as opposed to simply Killing fields.

For this chapter we will consider connections that minimize |[F'~]|?. In the case
of a complete manifold, we have ||F'~||? = ||F||* + pi(E)[M] where p;(F)[M] is the
constant obtained by integrating the Pontrjagin form of E. Therefore, minimizing
|F~||? is equivalent to minimizing ||F||*>. Due to the presence of boundary terms,
this is no longer true in general for incomplete manifolds.

For the variation V +t1x Fd to be valid, we also make the assumption, for vector

fields X under consideration, that tx L% Fi¥ is in L? N L* for all F for all k.
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6.1 Conformal vector fields

A vector field X is called conformal if Lxg = o?g, where g is the metric on M.
Equivalently, the flow ¢ x; along the vector field is a conformal map for all ¢.

Let £ denote the Lie derivative extended to ad(FE)-valued forms using the par-
allel transport of V. This Lie derivative satisfies a generalization of Cartan’s magic
formula,

Lx =i1xdy +dytx. (6.1.1)

In dimension 4, the Hodge star x: Q2 — Q2 is conformally invariant, and therefore
[Lx,*] = 0. In particular, the decomposition Q* = QF @ Q= is preserved by Ly.
This leads to the following two propositions, which will be helpful in simplifying the

variations of the curvature.

Proposition 6.1.2. If X is conformal and V is Yang-Mills, then dyix FS is self-
dual.

Proof. By formula (6.1.1),
deXF%_ = L‘,XF%- + LxdvFé_.

By the Yang-Mills equation and the Bianchi identity, dyFo& = 0. Since X is confor-

mal, Lx preserves self-duality. n

We take the exterior product on ad(E)-valued forms to be the Lie bracket on
ad(E) tensored with exterior product on forms. For w € Q*(ad(F)) let e(w) denote

left exterior multiplication by w.

Proposition 6.1.3. For anyr > 1,

r—1
dy Ly P == Lhe(xFo) Ly 7R (6.1.4)

k=0
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Proof. We begin by noting that

[dv, ,CX] = dede + dQVLX - LXd2V — dvadv
= €<Fv)LX - LXe(Fv)

= —€(Lva> (615)
In the case r =1,
dvﬁxF+ = —C(Lva)F%— + ,devFé_

Since dg F¢ = 0, we have obtained the desired equality.
If the statement holds for r, then
dvﬁrx—i_lFé— = —€(LXFv)£TF$ + ﬁxdvﬁrXFv
= — Z E’;(G(Lva)ﬁr_kFé_.

k=0

Therefore the statement holds by induction. [

The following definition will be necessary for obtaining local information from L?

variational inequalities.

Definition 6.1.6. Let V' be a vector space of vector fields on M, and let V' be
equipped with an inner product. Evaluation at a point p gives a map P,: V — T,M.
Let ]5p be the restriction of P, to the orthogonal complement of its kernel. We say V'
is conformally spanning (with conformal factor o) if V' consists entirely of conformal

vector fields, and for all p the map ﬁp is a conformal map with conformal factor a(p).

Note that if V' is a conformally spanning set, then in particular the vector fields

in V span T,M for every p.

Remark. If M admits a conformally spanning set consisting entirely of vector fields

that are complete, meaning their flow is defined for all time, then M is in fact
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conformal to a homogeneous space. This can be seen using the following theorem of

Alekseevskil and Ferrand.

Theorem (Alekseevskii [Ale72], Ferrand [Fer96]). Let C(M) be the group of conformal
transformations of a Riemannian manifold M. If M is not conformal to S™ with the
round metric or R™ with the Euclidean metric, then C'(M) can be reduced to the group

of isometries by some conformal transformations.

In the case M is conformal to S™ or R", it is conformal to a homogeneous space,
and otherwise, the conformally spanning set V' generates the isometries needed to

show that M is homogeneous.

Note, however, that this argument fails in the case that the vector fields in M are
not complete, since in this case they do not generate diffeomorphisms of M. We study
here a particular example of where incomplete vector fields are natural to consider,

namely when the manifold M is itself incomplete.

6.2 Vanishing commutators

The goal is to prove a generalization of the minimality result of [Stel0], the precise
formulation of which is given in Section 6.3. To do this we consider variations of a

Yang—Mills connection V of the form

V™=V + B,(t), (6.2.1)
where
n tk -
B,(t) =) _ Hwﬁ’;( 'R (6.2.2)
k=1

Note that letting n = 1 gives the variation considered in [BLS79, BL81], while in
general this is simply the n-th Taylor expansion of the variation considered in [Stel0].

Using the Taylor expansion allows the consideration of vector fields X for which the
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flow is not defined for all time. These variations will be used to show the vanishing

of certain commutators of derivatives of F; and F%L .

The first step is to compute variational inequalities, beginning by computing the

curvature of V!, which we denote F"™!.
1
F™ = Fg 4+ dyB,(t) + 5Bn(t) A B,(t). (6.2.3)
Expanding the middle term using (6.1.1) and (6.1.4) gives

dy B ( Z k,dwck 'FE
k o+ k—1 o+
Z E F Z k'Ldeﬁ e

tk th § e
= Z E‘C’;(Fé_ + Z E Z Lxﬁé((Lva A ,C];{ ¢ 2F‘%’—)

k=1 k1'£0

= Z ]glﬁXF+ i Z Z ( )Lxﬁ?Fv A LX,CI;(_m_QFé_
k=1 " ¢=0 m=0
k—2 k—2

_Zk‘[,k 17+ Z ZZ ( )Lxﬁng/\Lxﬁ];(m2F$

'm =0/¢=m
SDIELES I 3 (4 Jmer s

The last step uses the identity >’ (Z) = (TH). Shifting the index m by 1,

q+1
n n k-1 tk
— k m— k—m—1 +
dy B, (t) = k|£ gus sz' — m_l)kLX£ YRy Aux LR
k=1

(6.2.4)
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Turning our attention to the last term of (6.2.3), we now have

1 (&t ~tt
§Bn(t) A B, (t) = 5 (Z mLXL‘X IFV+> A < ELX,Cg(lF%_)

m= /=1

E

n —1

1 tk m—1 p+ k—m—1 +
5 1mbx£)( FV /\LX,CX FV

2n n
1 tk m—1 p+ k—m—1 +
t3 2 2 R AT

k=n+1m=k—n

k=1

3
I

(6.2.5)
Using commutativity of ad(E)-valued 1-forms,
L —
i LYTFE Nx LIRS = (% + Tm) LY N LR
= LR Ax LR
kE—
+ LIRS Ay LR
In the sum k£ = 1,...,n in (6.2.5), the m and k& — m terms then combine, and we
obtain the sum
n k-1 tk
m—1 7+ k—m—1 +
kz:;mz:l m!(kz—m—l)!kaﬁX Fy Nixbx e

which cancels with part of the sum in (6.2.4). Assembling the terms from (6.2.4) and
(6.2.5),
t —~t"
P =Fg+ Y EFS
k=1 """
n k-1

tk m—1 p— k—m—1 o+
_sz!(k—m—l)!kaﬁx by NixLy ™ Fy (6.2.6)

k=1 m=1

2n n
1 tk m—1 4+ k—m—1 o+
+§ Z Z mbxﬁx FV /\LxﬁX FV'

k=n+1m=k—n
6.2.1 Zeroth order

We first consider the variation (6.2.1) with n = 1, which will eventually show us that

commutators of components of F* and F'~ must vanish.
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Proposition 6.2.7. Suppose M admits a conformally spanning space V. If V is a
minimizer of |[Fg||?, and if there is an orthonormal basis {Xy}¢_, of V for which

v, FS € L* N L2, then for each X € V,
<F§, LXF%r N LxF$>L2 = 0.

Proof. Consider the variation V% for some fixed conformal vector field X. Expanding

the curvature gives

1
Fl’t = FV + del(t) + §Bl(t) N Bl(t)

t2
= Fv + tdvaFé_ + beFé A LxF%— (628)

By Proposition 6.1.2, we have that dytx F is self-dual. Therefore, taking the ASD
part,
I 1P = 1Fe P + (P ixFé A Fdhie +O(). (6.2.9)

Since ||Fg||* is minimized, we must then have
<FV_,LXF$/\L)(F$>L2 Z 0 (6210)

Let {X;}%_, be an orthonormal basis for V. Inequality (6.2.10) holds for each X
since they are all conformal. To show equality in (6.2.10), fix a point p € M and

consider the sum of the pointwise inner products
d
s(p) =Y (Fg,ix, P A ix, FE),. (6.2.11)
j=1

The above sum is the trace of a quadratic form on V', and is thus invariant under
orthogonal transformations on V. In particular, for some conformal factor @ and

orthonormal basis {e;} for T,M,
4
S(p) = Z a2<FV_7 LeiFé_ A LeiF$>’P‘
i=1
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One can check that if ¢ € Q2(M) is self-dual, then 37 10,0 A 1o, is also self-dual.
Therefore, s(p) must vanish. Integrating s(p) then gives the vanishing of the sum of

the L? inner products,

<FV_’ LXjF%_ A\ LX],F%F)LZ =0. (6212)

d
=1

j
Since each term of the sum individually is nonnegative by (6.2.10), each term must

individually vanish. Since {X;} spans V, this gives the desired result. O]

Proposition 6.2.13. Suppose M and V satisfy the conditions of Proposition 6.2.7.

Then for all X in the conformally spanning space V,
e (ixFg)Fg = 0.

Proof. Consider a new variation V! = V + By(t) + t2¢) for ¢ € Q'(ad(E)) with

compact support. Then
Feo = Fy + dy By (t) + t2dytp + %Bl(t) A Bi(t) +t2Bi(t) Ay + §¢ A
Using Proposition 6.2.7 along with the fact that V is Yang-Mills, we obtain
IF |2 = | Fg [ + 263 (Fg, ix FE A )2+ O(E).
Then, since ||Fg ||* is minimized,
(Fg,ixFg A2 > 0.
Replacing v by —1 gives the opposite inequality, and thus
(Fg,ixFE N2 =0

for arbitrary . m
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Proposition 6.2.14. Suppose M and V satisfy the conditions of Proposition 6.2.7.
Then
[Fi FE-]1=0

Jk» T ml

for all indices j,k,m,¢.

Proof. From Proposition 6.2.13 we have that the commutator vanishes whenever
there is a repeated index, say K = m. Then applying self-duality and anti-self-duality

relations gives the vanishing of the commutator for other indices. O

As shown in [BLS79] and [BL81], the vanishing of the commutator in Proposition
6.2.14 is enough to show that the connection is an instanton in the case when G =
SU(2),U(2), or SU(3) and under certain additional boundary conditions. For higher
rank structure groups, we must also consider, as in [Stel0], commutators of derivatives

of ¥ and F~. We do this in the next section.

6.2.2 Higher order

We now establish the vanishing of commutators of the form [V¥Fd, V/Fg]. Proposi-
tions 6.2.15 and 6.2.18 below are analogous to Propositions 6.2.7 and 6.2.13 from the
previous section. Together, these will form an inductive argument, with Proposition

6.2.14 being the base case.

Proposition 6.2.15. Suppose M admits a conformally spanning space V. Let V is
a minimizer of |[Fg ||?, and suppose there is an orthonormal basis {X}i_, of V for

which kaﬁngé_ € L>NL* for 0 < m < n. Suppose moreover that
[VIFT VFT] =0
for g+ <n. Then for X € V,

(Fo,ixLLF A iy LLFE) = 0.
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Proof. As in the proof of Proposition 6.2.7, we first prove that the L?-inner product
is non-negative. We do so by considering the variation V"1 defined by (6.2.1) and
(6.2.2).

In the inductive hypothesis [V¥F*, V¢F~] = 0, we may replace the covariant
derivatives with Lie derivatives since their difference results in lower order terms that
also vanish. Therefore the terms ¢x Ly ' Fg Atx L5 ™' FY in the expansion of Fn+tt
vanish, and so by (6.2.6),

n+1
Fn+1,t — F _}_Zﬁﬁk F+
v P k" XtV
| 2 ot ik
m—1 o+ k—m—1 o+
) Z Z mbxﬁx Fg Nx Ly Fg.

k=n+2m=k—n—1

Furthermore, since the inner product is ad-invariant, we see that
(Fo,ix L ES N ix LS FS) =0

whenever either k& < n or ¢ < n. Moreover, L5 F3 is self-dual, and so expanding

ICF )71 gives

[(F 2712
2n+2

= |Fg I + m(

Fo ix LY Ed Nix L% ES) + O ). (6.2.16)
Then since || Fg || is minimized,

(Fo,ixLYFE N ux LY FE) > 0. (6.2.17)

For X € V, let S(X) = (Fg,ixL%Fd AN uxL%FY). Equality in (6.2.17) will
be obtained by taking the average of S over the unit sphere in V. Let X be an

orthonormal basis of V. Then S(y’X;) is a homogeneous polynomial of degree 2n + 2
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in the variables 4!, ..., y% Integrating over the unit sphere in R

/ S(y' X;)dsS™!
lyl=1

=/ vy Y (Fe ux, LY FE A ux, LAFE) dST
ly|=1

By symmetry of S' C R?, the above integral is a pairwise contraction in the indices
of y. The following demonstrates that all such contractions must vanish.

As noted earlier, we may replace Lie derivatives by covariant derivatives, and we
may also commute derivatives, since the remainders all involve lower order comm-
mutators of F* and F'~, which vanish by assumption. Thus, if m contracts with an
index in I, we may rearrange to obtain the term tx, Vx, F™ = doF* = 0. If, on the
other hand, m contracts with p, then ¢, L FE A vy, L5 FS is self-dual, and the inner
product vanishes.

We are then left only with the terms where m contracts with some index in J.
Let J’ be the indices in J other than m. Then, modulo lower order terms, all such

contractions of m with J involve £J/vamF$. Since dvFér =0,
Vme*,; = -V, — Vantp,

and 50 1, Vi FY = 17,V Iy —V(F,), modulo terms that vanish in the inner product.
The first term on the right side becomes the case m = p from before, and the inner

product vanishes. We are then left only with terms of the form

(Fii [C1E LN FEY = (LiFS,  [LoN e Fr Fro ),

m

where each of ki, ky contract with one of /1, ¢5. Note then that

(Vs Lo Frs Fii) = Vo [C5 o, Fiop ) = (L Fyy

mp>

VEQF’C:]CQ]'
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The first term on the righthand side vanishes since the commutator is of lower order,
while the second term vanishes since ¢, contracts with one of ki, ko, and dg F'~ = 0.

We have thus shown that the integral of S(X) over the sphere in V' vanishes. By
(6.2.17), however, we have S(X) > 0 for all X € V, and therefore it must be that
S(X) = 0 identically. O

Proposition 6.2.18. Suppose the conditions of Proposition 6.2.15 are satisfied.
Then
e (ixLYFS)Fg = 0.

Proof. Let ¢ be an arbitrary compactly supported ad(E)-valued 1-form. Similarly

to the proof of Proposition 6.2.13, consider a new variation

V= Vbt 2y, (6.2.19)
Then the curvature is
~ 2n+4
Ft = Pt P2 d o) + 5 P A . (6.2.20)
From Proposition 6.2.15 and its proof,
(F™IN™ = Fo + O(t"?) (6.2.21)
IE" 717 = | Fg I + o) (6.2.22)
Therefore,
[FH? = ||Fo || + 26" 2 (Fg , dyneret)) 12 4+ O£ H). (6.2.23)
Evaluating,
n+1 tk
(Fg,dymrn)pe = (Fg,dyt))pe + Y (e (bx LETYES) Aap) o (6.2.24)
k=1

The first term of (6.2.24) vanishes because V is Yang-Mills. Additionally, all terms in

(6.2.24) involving El)“{va* for k < n vanish by the inductive assumption. Therefore,
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(6.2.23) becomes

IE4? = | Fg |1 + (it?f)! (F5, (ix L FE) A ) + O, (6.2.25)

Since ||Fg ||* is minimized,
(Fg,(ixLYF)Y) = 0. (6.2.26)
Since 1 was arbitrary, e*(.x L% Fa)Fg = 0. O

Proposition 6.2.27. Suppose the conditions of Proposition 6.2.15 are satisfied.
Then
[VFFE, VFg] =0

forallk+¢<n+1.

Proof. Fom Proposition 6.2.18, we see

> [ViFE Fin] =0,

J

where k is not summed over. Combining this with the Yang—Mills equation, the
Bianchi identity, and the self-duality and anti-self-duality relations allows one to
algebraically deduce the result. The proof proceeds exactly as in Section 4.3 of

[Stel0], and so will not be repeated here. O

Proposition 6.2.27 forms the inductive step, and so along with the base case in

Proposition 6.2.14, we have proved the following theorem.

Theorem 6.2.28. Suppose M admits a conformally spanning space V. If V is a
minimizer of |[Fg||?, and if there is an orthonormal basis {Xy}¢_, of V for which
uxe L% Fg € L* N LY for all m, then

VIFS, VIFg] =0

for all j,¢.
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6.3 Instanton subbundles

As shown in [BLS79, BL81], in the case G = SU(2),U(2), or SU(3), if even the
zeroth order commutator from Proposition 6.2.14 vanishes, and assuming boundary
conditions to allow an integration by parts argument, then either FJ or Fg must
identically vanish, and so the connection must be an instanton (or anti-instanton).

Examples of this case are discussed in Sections 6.4 and 6.5.

For higher rank structure groups GG, however, this no longer need be the case as g
may be large enough to accommodate two nontrivial commuting algebras. Following
[Stel0], with the argument reproduced here for completion, we can show instead that

ad(F) has an instanton and an anti-instanton subbundle.

Theorem 6.3.1. Suppose M is an analytic manifold that admits a conformally span-
ning space V, and let V be a connection for which ||Fg |32 is minimized, and suppose
moreover that for an orthonormal basis { Xy}, of V, the interior products 1x, L F
are in L* and L* for all n. Then there exist subbundles K+, K~ of ad(E) that are
preserved by V and such that the restriction of V to Kt is an instanton and to K~

18 an anti-instanton. Moreover,
K+, K] =0.

Proof. Let K* be the subsheaf of ad(E) generated by the coordinate components of

Fvi and all its derivatives. We first want to show that K is in fact a subbundle.

Fix a point p € M and let fi,..., fi generate Kj. Since fi,..., fr are each
generated by Fé[ and its derivatives, each can be extended to a section of Kf. Thus
it remains only to verify that these sections generate K*. For some other section
fr+1, consider n = fi A+ A fi A\ fre1. By assumption n must vanish at p. Moreover,
derivatives of n are all also exterior products of k£ + 1 elements of Kf, and so must

also vanish at p. The Yang-Mills and Bianchi identity together show that Fé[ are
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solutions to an elliptic equation, and thus are analytic. Since 1 vanishes to all orders,
by analyticity it must identically vanish. Therefore, fy,; is generated by fi,..., fx,

and since fi; was arbitrary, we have that K¥ is a subbundle.

Next observe that K= is preserved by V by definition, and [K*, K~] = 0 by Theo-
rem 6.2.28. Moreover, as curvature acts on ad(E) by commutation, and [Fg, K+] = 0,
we have that the curvature on K7 is simply F¢. Therefore V on KV is self-dual,

and similarly V on K~ is anti-self-dual. O]

Remark. In the case where M is incomplete, it would be natural to impose conditions
on the behaviour of V near singular points or boundaries of M. One can then consider
connections that minimize ||Fg||? among a certain class of connections. As long as the
variations V™' defined in (6.2.1) remains within this class of connections, Theorem

6.3.1 may still be applied.

6.4 Minimal Yang—Mills on a compact manifold

As mentioned previously, when the structure group G = SU(2), U(2), or SU(3) we
can obtain vanishing results even with just the vanishing zeroth order commutator
given by Proposition 6.2.14. The essential idea is that for these structure groups the
Lie algebra is not large enough to accomodate the commuting subalgebras K,+ from

the proof of Theorem 6.3.1.

First assume M to be compact, a noncompact case being given in Section 6.5.
As discussed in Section 6.1, a compact M admitting a conformally spanning space V'
must be homogeneous, and so we do not obtain any new examples beyond what was
proved in [BLS79] and [BLS81].

We do observe, however, that the vector fields used in [BLS79] over S* were

conformal and not Killing, while those vector fields used in [Stel0] were Killing. The
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author hopes that a unified perspective considering all conformal vector fields may

yield improved stability results in the future.

Theorem 6.4.1. Let V be a G-connection on a compact homogeneous four-manifold
M with positive Ricci curvature, and suppose G = SU(2), U(2), or U(n). If V is a

minimizer for ||Fy||?, it is either an instanton or an anti-instanton.

Proof. As in the proof of Theorem 6.3.1 let K;E be the subalgebra of ad(£), generated
by the components of K.

Because M is compact, from the Chern—Weil argument in Section 2.2 we have
that ||Fy||? is minimized if and only if || F5 ||* is minimized. Since the Killing vector
fields on M are a conformally spanning space, by Proposition 6.2.14 we then obtain
that

K, K] =0. (6.4.2)
We now show that at least one of K;E must be abelian.

If g = su(2), and if, say K; has two non-commuting elements, then K;r must
be all of su(2). In this case K must be 0, which is abelian. Performing the same
argument with K~ shows that at least one of KpjE is abelian.

If g = su(3), and if, say, K, contains two non-commuting elements, then K
must contain su(2) as a subalgebra. Then the centralizer of K7, which contains K
is at most one-dimensional, and hence abelian. Replacing K; with K, above shows
that at least one of K is abelian.

Lastly, if g = u(2), we can embed it in su(3) and obtain the result from above.

Therefore, at every point p € M we have at least one of [K, K] or [K,, K]
must vanish. In particular, a zero set of at least one of them must be dense in some
open set. Because the generators of K;[ are solutions to an elliptic equation, they
must be analytic, and if the zero set [K;E, Kpﬂ is dense in an open set, it must vanish
everywhere.
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Suppose that it is [K7, K'] that vanishes everywhere. Because dyFy and di Fy

all vanish, a Bochner argument gives that (as in [BL81, Theorem 3.10])
0= V*VFS + (Ric Al +2R)FS +2FF¢ =0, (6.4.3)

where FFS = —[Fy;, Fijle? Aef. Note, however, that because [\, K] and (K, , K]
both vanish, then FFg = 0.

Note then that (6.4.3) tells us that
0=|VES|?+ ((Ric Al + 2R)FS, FY). (6.4.4)

Since M has positive Ricci curvature, we then have that Fg = 0, and hence V is an

anti-instanton.

The case where [K, K| vanishes is similar, and shows that V is an instanton. [

6.5 Minimal Yang—Mills on a cylindrical manifold

with bounded end

Consider M = Ry x N, where N is a homogeneous manifold of dimension 3 with
nonnegative Ricci curvature, where we take r to be the coordinate on R+. Equip M
with the product metric g = dr? + gy.

Since N is homogeneous, the set of Killing vector fields on NN restricted to a point
p span 1T,N. We can fix an inner product on the space Vy of Killing fields on N
for which restriction to a point is an isometry on the orthogonal complement to its
kernel. Let {X;}¢_, be an orthonormal basis for V. Let V = span{9,} U {X};,}¢_,,
and note that this is a conformally spanning set for M.

We will again consider the case G = SU(2), U(2), or SU(3). The case proceeds

similarly to Theorem 6.4.1, and note that the use of the Bochner formula necessitates
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integration by parts. As such we consider connections satisfying |Fy| = O(1) and

Vo, Fy| = O(r) as r — 0.

Proposition 6.5.1. Suppose M is as above and G = SU(2), U(2), or SU(3).
Suppose V is a connection such that Fy satisfies the condition |Fy| = O(1) and
Vo, Fy| = O(r) as r — 0. If V minimizes |[Fg|]?, then Fy is either self-dual or

anti-self-dual.

Proof. At a point p € M let KpjE be the subalgebra of g generated by the components
of Fé. Using the conformally spanning set V', by Proposition 6.2.14 we have that
(K, K] = 0. The argument from Theorem 6.4.1 shows that one of K;t is abelian,
and again by analyticity we have that one of [K, Kf] or [K, K] must vanish
identically on M.

Suppose that it is [K, K7] that vanishes everywhere. Because deFY and doFS

all vanish, we again have the Bochner Formula (6.4.3)
0=V*VFS + (Ric Al +2R)FT + 2FF¢ =0,
and once again F F$ =0. Then,
0= /M (V*VEE, FE) + (Ric +2R)Fe, FS)

= |VFS|I? + ((Ric +2R)Fd, FS) 2 + lim (V,.FE FE)dvoly.  (6.5.2)

m0 J{ryxN
By our decay assumptions, the boundary integral vanishes, while the remaining terms
are non-positive. In particular, we must have VFZ = 0, and so |FJ] is constant.
Therefore, F = 0, otherwise this would violate the finite L? condition. Therefore V

1S an anti-instanton.

The case where [K, K] vanishes is similar, and shows that V is an instanton. [
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Chapter 7

Conclusions

Here we summarize our results, and present potential future directions of research.

In Chapter 4, we adapted the ADHM construction for S'-invariant instantons
on S*. We proved that the ADHM data decomposes into S'-subrepresentations of
V = ker D, and this decomposition is given in terms of the weights of the S!-action
on the fibres at 0 and oco. Using this framework, we then found the moduli spaces of
Sloinvariant SU(2)-instantons of charge up to 3, and exhibited an example of charge
4 demonstrating that this moduli space is non-empty. One could extend this research

in different ways:

e One could compute the Higgs fields and connections of monopoles given their
corresponding ADHM data, and as such gain more explicit examples of singular

monopoles.

e The instanton-monopole correspondence examined here was a special case of a
correspondence between multi-monopoles and S'-invariant instantons on multi-
Taub-NUT spaces. The analogue of the ADHM construction in this case is given
in terms of bow diagrams, described in [Chell] and [CLHS16]. One might con-
sider whether one can decompose the bow diagrams as an S'-representation to

obtain a description of the S'-invariant instantons on multi-Taub-NUT spaces.

In Chapter 5, we constructed a Nahm transform on the quotient of R* by a specific
Bieberbach group B. This construction resulted in a transformed connection that
was invariant by a crystallographic action. This project was exploratory in nature,

and so leads to many possible questions for future research.
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e A first step in extending this work would be to determine if the construction

given is invertible, and if so construct the inverse.

e One might also attempt to construct similar Nahm transforms for quotients by
other Bieberbach groups, or more generally by crystallographic groups. One
could also consider similar constructions for dimensional reductions, and con-

struct a Nahm transform for, say, crystallographic-invariant monopoles.

e In addressing the previous question, one might wish to look for general proper-
ties of such Nahm transforms. A particular question in this regard would be to

determine the appropriate dual space for R*/B for a general Bieberbach group

B.

The final chapter consisted of extendinng the proof that minimal Yang—Mills

connections are instantons to a broader class of manifold.

e A direct question raised by this work is whether there is a natural boundary
condition for instantons which is preserved by the variations considered. In
that case, one would obtain a minimality result for instantons that are minimal

among those satisfying the boundary condition.

e One might try to weaken the assumptions on the conformal vector fields used

in order to generalize the result yet again.
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