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Abstract

This dissertation examines two different subjects within the study of instantons: the

construction of Nahm transforms for instantons invariant under certain group actions;

and a generalization of the proof that Yang–Mills minimizers are instantons.

The first Nahm transform examined is the ADHM construction for S1-invariant

instantons on S4, which correspond to singular monopoles on R3. In this case, there

is a decomposition of the ADHM data in terms of S1-subrepresentations of kerD.

The moduli spaces of S1-invariant SU(2)-instantons are given up to charge 3, and

examples of ADHM data for instantons of charge 4 are also provided.

The second Nahm transform considered is for instantons on a certain flat quotient

of R4 with nonabelian fundamental group. Equivalently, one can consider these to be

Z2-invariant instantons on T 4, and the Nahm transform yields instantons invariant

under a crystallographic action.

In our study of minimal Yang–Mills connections, we extend results of Bourguignon–

Lawson–Simons and Stern, who showed that connections that minimize ‖F∇‖2 on ho-

mogeneous manifolds must be instantons or have instanton subbundles. We extend

the previous arguments by considering variations constructed using conformal vector

fields, and also allow these vector fields to be incomplete. We prove a minimality

result over a half-cylinder.
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Chapter 1

Introduction

An instanton is a connection ∇ on a hermitian vector bundle E over a four-manifold

M such that the curvature is self-dual or anti-self-dual, F∇ = ±∗F∇. Instantons form

a special case of Yang–Mills connections, which are critical points of the Yang–Mills

Lagrangian 1
2
‖F∇‖2

L2 . The study of Yang–Mills connections, as well as critical points

of other similar Lagrangians, constitutes gauge theory. The Yang–Mills equations

originated in physics, where they were proposed as a non-abelian generalization of

Maxwell’s Equations. Indeed, one can obtain Maxwell’s Equations as a special case

of Yang–Mills by letting E be a line bundle over Minkowski space.

From a mathematical viewpoint, instantons are a natural object to study when

considering vector bundles. The curvature of a connection measures an inherent non-

flatness in the bundle E, generalizing Riemannian curvature on the tangent bundle.

As such, minimizing ‖F∇‖2
L2 can be interpreted as finding a connection on E that

is as close to flat as possible. That the minimal curvature may be nonzero is due

to topological obstructions. The study of the space of instantons has led to many

interesting advances in geometry, including notably being used to prove Donaldson’s

Theorem regarding the topology of differential four-manifolds. Gauge theory contin-

ues to be an active area of research at the intersection of geometry, analysis, topology,

and physics.

An important foundational piece in gauge theory is the ADHM construction,

which parametrizes SU(n)-instantons on S4 by linear algebraic data satisfying cer-

tain quadratic equations. A generalization of this construction yielded the Nahm
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transform, often described as a Fourier transform for instantons. The transform

gives a correspondence between instanton-like objects on two spaces that are dual to

each other in some sense. In its various forms, the transform has proved very suc-

cessful in studying various gauge-theoretic objects, such as monopoles, solutions to

Hitchin’s equations, and instantons with various periodic conditions. For this work,

we concern ourselves in particular with Nahm transforms for instantons invariant

under certain group actions.

In Chapter 2, we introduce notation and provide some background information on

instantons. We describe the process of dimensional reduction, with an emphasis on

monopoles as a reduction of instantons to R3. We end the chapter by collecting facts

about spinor bundles and Dirac operators that will be necessary for our descriptions

of the Nahm transform.

In Chapter 3, we describe the Nahm transform in varying levels of generality. We

begin with a broad and intuitive look at the Nahm transform over general manifolds,

following the viewpoint of [Jar02]. We then specialize to instantons on R4 satisfying

various invariance and periodicity conditions, giving a general heuristic for construct-

ing a Nahm transform in these conditions. The bulk of the chapter is then devoted to

the details of constructing the Nahm transform in two specific cases: instantons on a

torus T 4, and the ADHM construction on R4. The first provides a useful foundation

for considering the Nahm transform on crystallographic quotients of R4 in Chapter

5, while the second is directly relevant to the construction in Chapter 4.

In Chapter 4, we describe a correspondence between singular monopoles on R3

and S1-invariant instantons on R4, viewed away from 0 as a non-trivial S1-fibration.

We decompose the ADHM data in terms of S1-subrepresentations of kerD, and write

the corresponding decomposition of the ADHM equations. We evaluate the character

of the S1-representation, first for structure group SU(2) and then more generally for

SU(n). We provide a description of moduli spaces of S1-invariant SU(2)-instantons
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of charge up to 3, and also give examples of S1-invariant ADHM data in charge

4. Some of the work for this chapter was completed in collaboration with Benoit

Charbonneau.

In Chapter 5, we provide a brief introduction crystallographic groups and Bieber-

bach groups, which are cocompact discrete subgroups of isometries on Rn. We then

give an example of such a group B, yielding a flat compact manifold M = R4/B with

nonabelian fundamental group. A Nahm transform on M is constructed, with the

transformed connection being an instanton on R4 that is invariant under a crystallo-

graphic action.

Chapter 6 is independent of the preceeding chapters. We consider the converse to

the statement that instantons are minimizers of the Yang–Mills energy. In [BLS79,

BL81] it was shown that stable Yang–Mills connections over compact homogeneous

spaces and with structure group G = SU(2), U(2), or SU(3) are instantons. In

[Ste10] it was shown that upon passing to certain subbundles of the adjoint bundle,

the statement is true for arbitrary compact structure group and for complete (but not

necessarily compact) homogeneous spaces. We generalize the argument from [Ste10],

allowing variations defined with conformal and incomplete vector fields. We then

prove a minimality result for Yang–Mills connections on a half-cylinder.
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Chapter 2

Preliminaries

2.1 Yang–Mills connections

Let G be a Lie group and let P →M be a principal G-bundle. For a representation

ρ : G→ GL(V ), we define the bundle associated to P by ρ to be

P ×ρ V = (P × V )/ ∼ (2.1.1)

where ∼ denotes the equivalence relation (p, v) ∼ (pg, ρ(g−1)v) for any g ∈ G. We

then say a vector bundle E has a G-structure (or equivalently, call E a G-vector

bundle) if it is an associated bundle to some principal G-bundle. We shall always

assume that G is compact.

When G = U(n) or SU(n), and absent any additional qualification, we will take ρ

to be the standard representation on Cn. With this assumption, a U(n)-vector bundle

is a hermitian bundle of rank n. An SU(n)-vector bundle is a hermitian bundle of

rank n equipped with a complex volume form ν ∈ det(E).

A local section σ of P , defined over some open set U , defines a local trivialization

of E by

U × V → E|U

(x, v) 7→ [σ(x), v].
(2.1.2)

If we fix a basis {vi} for V , we then obtain a local frame for E given by the sections

si(x) = [σ(x), vi]. A frame of E corresponding to a section of P is called a gauge. A

different choice of gauge over U is given by a different section σ̃, which is related to

the original frame by σ̃ = σg for some g = g(x) a G-valued function. We call g a
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gauge transformation. Since

[σ′, v] = [σg, v] = [σ, ρ(g)v], (2.1.3)

change of gauge from σ′ to σ corresponds to acting by ρ(g) on V .

Remark. In the literature, there is inconsistency in the use of the term ‘gauge group.’

Depending on the author, it can mean either the group G or the group G of G-valued

functions defining gauge transformations. In this work the issue will be avoided by

referring to G as the structure group, and to G as the group of gauge transformations.

For a G-vector bundle E, we define its adjoint bundle ad(E) to be the vector

bundle associated to the frame bundle P by the adjoint representation of G,

ad(E) = P ×ad g. (2.1.4)

For x in the base manifold M , an element Φ(x) ∈ ad(E)x defines an endomorphism

of the fibre Ex via the induced representation dρ of g on Ex. That is, for σ a section

of P and Φ(x) ∈ g, we have an End(E)-valued function given by

[σ(x),Φ]([σ(x), v]) = [σ(x), dρ(Φ(x))v]. (2.1.5)

We view Φ(x) as a locally g-valued function such that a gauge transformation acts

as Φ 7→ ad(g)Φ. Since we will commonly take G to be a matrix Lie group, we write

ad(g)Φ = gΦg−1.

A connection ∇ on E is called a G-connection if, with respect to a local gauge,

parallel transport by ∇ is a g-valued function. Equivalently, G-connections are ob-

tained from a connection on P by the associated bundle construction. In the case

G = U(n), such connections are precisely those that are compatible with the hermi-

tian inner product on fibres, in the sense that

∇X〈s1, s2〉 = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉 (2.1.6)
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for all X ∈ Γ(TM) and s1, s2 ∈ Γ(E). An SU(n)-connection is compatible with the

hermitian inner product, and additionally has ∇Xν = 0, where ν ∈ det(E) is the

complex volume form, and where ∇ is taken as the induced connection on det(E).

Recall that for a connection ∇, we define the connection 1-form with respect to

a local frame s = {si} to be the matrix-valued 1-form A such that

∇Xsi = [A(X)]jisj. (2.1.7)

If ∇ is a G-connection, then parallel transport by ∇ is G-valued, and hence with

respect to a local gauge A is g-valued. Conversely, if A is locally g-valued, then ∇

is a G-connection. Recall that a connection on P is given as a g-valued 1-form ω on

TP . Given a section σ ∈ Γ(P ), the pullback σ∗ω defines the connection form A of

the corresponding connection on E from the associated bundle construction.

Note that we refrain from saying the connection form is ad(E)-valued since it

does not transform appropriately under change of gauge. Connections transform as

∇ 7→ g∇g−1, which in terms of connection form A is the transformation

A 7→ gAg−1 + gdg−1. (2.1.8)

We say two connections ∇1 and ∇2 are gauge equivalent if there is a gauge transfor-

mation such that ∇1 = g∇2g−1. In this case, we view the two connections as differing

only in choice of local trivialization. We study the connections on E modulo gauge

equivalence.

Yang–Mills theory is the study of a special class of connections, to be defined

below. The gdg−1 term in the transformation of the connection form makes it difficult

to study a connection directly in terms its behaviour with respect to a local frame. In

particular, even if the connection form vanishes with respect to one gauge, applying

a non-constant gauge transformation g yields non-zero connection form gdg−1.

As with connections on the tangent bundle, we study a connection on E by

its curvature, generalizing Riemannian curvature. We define the exterior covariant
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derivative d∇ on Ωp(E) = Γ(
∧p TM⊗E) such that d∇(ω⊗s) = (dω)⊗s+(−1)pω⊗∇s.

Unlike the exterior derivative, d2
∇ is in general non-vanishing. We define the curvature

of ∇ to be F∇ ∈ Ω2(ad(E)), given by

F∇s = d2
∇s, (2.1.9)

It can be checked that under change of gauge the curvature transforms as F∇ →

gF∇g
−1, so F∇ is indeed ad(E)-valued. With respect to a local gauge in which ∇ has

connection form A, we have the expression for F∇ as

F∇ = dA+
1

2
A ∧ A. (2.1.10)

Here, exterior product of g-valued forms is the tensor product of the Lie bracket

on g with the exterior product on forms. Note that the anticommutativity of the

Lie bracket combined with graded commutativity for forms means that for A,B ∈

Ω1(M, g) we have A∧B = B∧A. In particular, we do not have the usual vanishing of

A∧A like we do for usual differential 1-forms. In coordinates xi with the connection

form A = Aidx
i, the curvature F∇ = Fijdx

i ∧ dxj is given by

Fij = ∂iAj − ∂jAi + [Ai, Aj]. (2.1.11)

Since we are assuming G to be compact, ad(E) inherits an ad-invariant inner

product on fibres from the ad-invariant inner product on g. In the SU(n)-case, this

is given by 〈A,B〉 = − trace(AB).

We define the Yang–Mills Lagrangian on the space of connections to be

Y(∇) =
1

2
‖F∇‖2

L2 =
1

2

∫
M

|F∇|2 d volM . (2.1.12)

Note that ad-invariance of the inner product on fibres implies that |gF∇g−1| = |F∇|,

and so Y is invariant under gauge transformation. We are interested in critical
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points of this Lagrangian. Solving the Euler-Lagrange equations gives the Yang–

Mills equation,

d∗∇F∇ = 0. (2.1.13)

Here d∗∇ = (−1)n(p+1)+1 ∗ d∇∗ : Ωp(ad(E))→ Ωp−1(ad(E)) is the L2-adjoint of d∇. A

solution to the Yang–Mills equation is called a Yang–Mills connection.

The Yang–Mills equation is a second order non-linear PDE in the components of

∇. Coupled with the Bianchi identity

d∇F∇ = 0, (2.1.14)

which is true for all connections, the Yang–Mills equation is elliptic.

We can also consider a Lagrangian for pairs (∇,Φ) consisting of a connection ∇

and section of ad(E). We define the Yang–Mills–Higgs Lagrangian to be

Ỹ(∇,Φ) =
1

2

∫
M

|F∇|2 + |d∇Φ|2 d vol . (2.1.15)

The Yang–Mills–Higgs Lagrangian is sometimes taken to include a potential function

U(Φ) in the integrand, but for our current purposes we take U = 0. We call Φ the

Higgs field. The Euler–Lagrange equations give the Yang–Mills–Higgs equations

d∗∇F∇ = [d∇Φ,Φ], (2.1.16)

d∗∇d∇Φ = 0. (2.1.17)

2.2 Instantons

In dimension four, there is a special class of solution to the Yang–Mills equation.

Definition 2.2.1. A connection ∇ is said to be an instanton if its curvature satisfies

the self-duality or anti-self-duality equation,

F∇ = ± ∗ F∇. (2.2.2)
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Observe that because ∗ : Ωp → Ωn−p, and because F∇ is a 2-form, this equation

is specific to dimension four. In most of what follows, we will take instantons to

have anti-self-dual curvature, the self-dual case being given by changing orientation.

The exception is in Chapter 6, where we consider both self-dual and anti-self-dual

curvature.

The Yang–Mills equation (2.1.12) and the Bianchi identity (2.1.14) together show

that an instanton is always Yang–Mills. Furthermore, on compact manifolds, in-

stantons are minimizers of the Yang–Mills Lagrangian. To see this, note that the

(anti)-self-dual parts of the curvature F±∇ = 1
2
(1±∗)F∇ are orthogonal to each other,

and so

‖F∇‖2 = ‖F+
∇‖

2 + ‖F−∇‖
2. (2.2.3)

On the other hand,∫
M

trace(F∇ ∧ F∇) =

∫
M

trace(F+
∇ ∧ F

+
∇ ) +

∫
M

trace(F−∇ ∧ F
−
∇ )

= ‖F+
∇‖

2 − ‖F−∇‖
2. (2.2.4)

Recall by Chern–Weil theory that

1

8π2

∫
M

trace(F∇ ∧ F∇) = c2(E)− c1(E)2 (2.2.5)

is a topological invariant of the bundle, where c1(E) and c2(E) denote the first and

second Chern classes of E, and we omit evaluation on M from the notation. There-

fore, by (2.2.3), (2.2.4), and (2.2.5) we have that

‖F∇‖2 = 8π2(c2(E)− c1(E)2) + 2‖F−∇‖
2 = −8π2(c2(E)− c1(E)2) + 2‖F+

∇‖
2, (2.2.6)

and thus ‖F∇‖2 is minimized if either F+
∇ or F−∇ vanishes. Note that the converse to

the statement does not a priori hold, and indeed is the subject of Chapter 6.

Returning to the convention that instantons have anti-self-dual curvature, a closer

look at the above argument shows that instantons satisfy ‖F∇‖2 = k
8π2 , where k =
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−(c2(E) − c1(E)2) is an integer. We call k the charge of the instanton. The first

Chern class is obtained by taking the trace of the curvature, suitably normalized. If

the structure group is SU(n), then F∇ is su(n)-valued and hence traceless. Therefore,

SU(n)-vector bundles E have c1(E) = 0, and for an SU(n)-instanton the charge is

simply −c2(E).

2.3 Dimensional reduction

From the anti-self-duality equation, we can obtain other gauge theoretic equations of

interest on spaces of lower dimension by the process of dimensional reduction. We

describe this process over R4, on which we fix Euclidean coordinates xi. Moreover,

by contractibility we may fix a global frame for E. Let ∇ be an instanton on R4,

and suppose that ∇ is constant in the last 4 − m directions xm+1, . . . , x4 for some

0 ≤ m < 4, by which we mean that the connection form A = Aidx
i with respect

to the global frame is constant in these directions. We can then define a connection

∇B with connection form B =
∑m

i=1 Aidx
i on Rm ⊂ R4. The leftover components

of A define endomorphisms of the bundle, Φi = Ai for m + 1 ≤ i ≤ 4. Writing the

instanton equation for A then gives equations in terms of B, dBΦi, and commutators

of Φi on Rj−1. We call these equations the dimensional reduction of the instanton

equation to Rm.

As an example, consider an instanton that is constant in one variable x4. Then

we let B = A1dx
1 + A2dx

2 + A3dx
3 give a connection on R3, and let Φ = A4. Since

∂4Ai = 0, the curvature of FA in coordinates is then

(FA)ij = (FB)ij if i, j 6= 4, (2.3.1)

(FA)i4 = ∂iΦ + [Ai,Φ] = (∇B)iΦ if i 6= 4. (2.3.2)

The anti-self-duality equations in coordinates pair terms that do not involve the
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index 4 with terms that do. Using equations (2.3.1) and (2.3.2), the anti-self-duality

equations become

(FB)ij = −(∇B)kΦ (2.3.3)

for cyclic permutations (i, j, k) of (1, 2, 3). These equations are expressed succinctly

by the Bogomolny Equation

F∇ = − ∗ d∇Φ. (2.3.4)

Definition 2.3.5. A pair ∇,Φ is called a monopole if it satisfies the Bogomolny

Equation (2.3.4).

The above discussion shows that translation-invariant instantons on R4 have a cor-

responding monopole on R3. From a monopole, constructing a translation-invariant

instanton by ∇ = ∇B + Φ⊗ dx4, shows the correspondence is one-to-one.

Remark. The framework given for dimensional reduction worked because we could fix

a global frame for E, with respect to which it made sense to say that the connection

was constant in certain directions. When the manifold M is not contractible, it may

not be possible to fix a global frame (or, as in Chapter 4, we may have reasons to

choose other frames), and so we instead use the language of invariant connections.

Let H be a group of isometries of M with a lift to an action on the bundle E. Since

this action identifies the fibres Ex ∼= Ehx, we can then identify the bundles h∗E ∼= E.

Therefore, we may consider the pullback connection h∗∇ as a connection on E, and

we say ∇ is H-invariant if h∗∇ = ∇ for all h ∈ H.

A monopole is a solution to the Yang–Mills–Higgs equations. Indeed, to see it
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satisfies (2.1.16), note that if (∇,Φ) is a monopole

d∗∇F∇ = ∗d∇ ∗ F∇

= − ∗ d2
∇Φ

= −[∗F∇,Φ]

= [d∇Φ,Φ].

To see it solves (2.1.17),

d∗∇d∇Φ = − ∗ d∇ ∗ d∇Φ

= ∗d∇F∇

= 0.

Remark. We could also define monopoles to be solutions to F∇ = ∗d∇Φ. This corre-

sponds to self-dual instantons rather than anti-self-dual.

As a final observation, note that a translation-invariant instanton has constant

curvature in the x4 direction. Therefore, either F∇ = 0 identically, or ‖F∇‖L2 = ∞.

To obtain non-flat finite-energy instantons, by which we mean ‖F∇‖L2 < ∞, one

could replace the direction x4 with a copy of S1 so that the integral of a constant

function is no longer infinite. This process can be generalized: monopoles on a

manifold M correspond to S1-invariant instantons on M × S1. In Chapter 4, we

consider a situation where monopoles correspond to finite-energy instantons on R4

as a non-trivial S1 fibration over R3, at the cost of introducing a singularity at 0.

2.4 Dirac operators

Constructing Nahm transforms in Chapters 3 and 4 will necessitate the use of Dirac

operators, and so we recall some important facts. For a more in-depth treatment,
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readers are directed to [LM89] (especially for a thorough treatment of Clifford al-

gebras and spin representations), [BGV04], and [Roe98] (which the author of this

dissertation found to be a very accessible introduction to the subject). We assume

some familiarity with spin groups, spin structures on manifolds, and the spin repre-

sentation. As all of our applications will be in dimension 4, we restrict attention to

this case.

Let ∆ be the spin representation of Spin(4), which is a 4-dimensional represen-

tation. Note that ∆ is not irreducible as a Spin(4)-representation, but instead de-

composes as discussed below. With the standard embedding of Spin(4) ⊂ Cl(R4), ∆

extends to a left Clifford module. For ei an orthonormal basis of R4, let ci denote Clif-

ford multiplication by c(ei), and let multiple indices denote Clifford multiplication by

the product ci1i2...ik = ci1ci2 . . . cik . We will continue using this notation throughout,

where more generally ei will be an orthonormal frame on TM . There is a hermitian

inner product on ∆ for which Clifford multiplication by ci is skew-hermitian.

We define a linear map
∧k R4 → Cl(R4) on basis elements by c(ei1∧ei2∧· · ·∧eik) =

ci1i2...ik . Because ci and cj anticommute for i 6= j, this map is well-defined regardless

of the ordering of the indices i1, . . . , ik in the exterior product. This map is not

an algebra homomorphism, however, as can be seen by noting c(ei)
2 = −1, while

c(ei ∧ ei) = 0.

Define a volume element on R4 by vol = e1 ∧ e2 ∧ e3 ∧ e4. Then note that

c(vol)2 = c2
1234 = 1, and so the eigenvalues of c(vol) acting on ∆ must be 1 or −1.

Let ∆± denote the ∓1-eigenspaces of c(vol) (note the sign convention).

Since ci anticommutes with c(vol), if v ∈ ∆± then civ ∈ ∆∓. Since c2
i = −1,

and hence ci defines an isomorphism ∆+
∼=−→ ∆−. In particular, since dim(∆) = 4

and as an eigendecomposition ∆ = ∆+ ⊕∆−, both ∆+ and ∆− must be nonempty

and have dimension 2. In general, multiplication by odd elements of Cl(R4) maps

∆± → ∆∓, while multiplication by even elements preserves the decomposition. Since
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Spin(n) lies inside the even part of the Clifford algebra, each ∆± define Spin(n)-

subrepresentations of ∆. In fact, ∆± are irreducible subrepresentations.

We now consider the multiplication by self-dual and anti-self-dual forms on ∆±.

It can be checked by direct computation that c(vol)c(ei∧ ej) = −c(∗ei∧ ej) for i 6= j.

Therefore, if v ∈ ∆+,

c(ei ∧ ej)v = −c(vol)c(ei ∧ ej)v = c(∗ei ∧ ej)v. (2.4.1)

In particular, this shows that c(ei ∧ ej − ∗ei ∧ ej) = 0 on ∆+. A similar argument

shows that c(ei ∧ ej + ∗ei ∧ ej) = 0 on ∆−.

c(
−∧

)|∆+ = 0,

c(
+∧

)|∆− = 0,

(2.4.2)

where
∧2 =

∧+⊕
∧− denotes the decomposition into self-dual and anti-self-dual

forms.

Recall the definition of a spin structure on M as a principal Spin(n)-bundle P ,

with a map from P to the orthonormal frame bundle of M given by conjugation in

Cl(TM). We then define the bundle of spinors to be the associated vector bundle

S = P ×Spin(n) ∆. (2.4.3)

The vector bundles associated to ∆± then give subbundles S±, called the positive

and negative spinor bundles. Clifford multiplication by X ∈ Γ(TM) gives a bundle

map c(X) : S± → S∓. Moreover, the bundle S inherits a hermitian inner product

from ∆, with respect to which Clifford multiplication is skew-hermitian.

The Levi-Civita connection on M lifts to a connection on the spin structure P ,

which then induces a connection ∇ on S. This connection is compatible with the

hermitian structure on S, as well as with Clifford multiplication in the sense that

∇Xc(Y )s = c(∇XY )s+ c(Y )∇Xs (2.4.4)
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for X, Y ∈ Γ(TM) and s ∈ Γ(S).

Given a local orthonormal frame ei, we define the Dirac operator D : Γ(S)→ Γ(S)

locally to be

Ds = ci∇eis. (2.4.5)

This definition does not depend on choice of frame ei, and so extends to a well-defined

global operator.

More generally, let E be a hermitian vector bundle with metric-compatible connec-

tion ∇E. Then tensoring with the spin connection ∇S on S, we obtain the connection

∇E⊗S = ∇E ⊗ 1 + 1⊗∇S. Clifford multiplication acts on E ⊗ S by ci = 1⊗ ci, and

we define the Dirac operator on E ⊗ S by

DE⊗S = ci(∇E⊗S)ei . (2.4.6)

Henceforth, we will only be considering the Dirac operator on bundles of the form

E ⊗ S, and as such we simplify notation by writing D = DE⊗S.

Let D± = D|E⊗S± . The spin connection ∇S preserves the decomposition S =

S+ ⊕ S−, while Clifford multiplication maps S± → S∓. As such, taken together in

the definition of the Dirac operator, we have that D+ : Γ(E⊗S+)→ Γ(E⊗S−) and

D− : Γ(E ⊗ S−)→ Γ(E ⊗ S+).

We end our background on Dirac operators by proving the Lichnerowicz formula

D2 = ∇∗∇+ c(F∇) +
1

4
R, (2.4.7)

where c(F∇) =
∑

i<j Fijcij ∈ End(E ⊗ S), and where R denotes the scalar curvature

on M . By looking at its restriction to S+, we may begin to see the relation of this

formula to the study of instantons. Since c(
∧−) = 0 on S+, we have that

D−D+ = ∇∗∇+ c(F+
∇ ) +

1

4
R. (2.4.8)

If F+
∇ = 0 and if M is flat, then we have D−D+ = ∇∗∇. This fact will be very

important to our discussion of the Nahm transforms in Chapters 3, 4, and 5.
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We prove (2.4.7) at a fixed point p. Let ei be an orthonormal frame for TM near

p such that (∇i)pej = 0 for all i, j. Evaluating the lefthand side,

D2s = ci∇icj∇js

= c2
i∇i∇i +

∑
i<j

cij[∇i,∇j] (2.4.9)

The term c2
i∇i∇i = −∇i∇i is the local coordinate expression for ∇∗∇. The term

[∇i,∇j] gives curvature on E ⊗ S, which decomposes on the tensor product. We

write the curvature on E ⊗ S as Fij ⊗ 1 + 1 ⊗Kij, where Fij is the curvature on E

and Kij is the curvature on S. Then
∑

i<j cijFij = c(F∇), and we are left only to

evaluate cijKij.

Since the spin connection on S is obtained from an equivariant lift of the Levi–

Civita connection to the spin bundle, its curvature also lifts. Written in terms of the

Riemann curvature tensor Rijk
`, the curvature on TM is given by

R(∂i, ∂j) = Rijk
`e` ⊗ ek =

∑
k<`

Rijk
`(e` ⊗ ek − ek ⊗ e`). (2.4.10)

The element e` ⊗ ek − ek ⊗ e` ∈ so(TpM) lifts to an element of the Lie algebra of

Spin(n), viewed as the even part of Cl(TM). We obtain this lift explicitly by first

exponentiating

exp(t(e` ⊗ ek − ek ⊗ e`))

= cos t(ek ⊗ ek + e` ⊗ e`) + sin t(e` ⊗ ek − ek ⊗ e`) ∈ SO(TpM). (2.4.11)

This then lifts to (cos t
2

+ sin t
2
ck`) ∈ Spin(n), which upon differentiating shows that

e` ⊗ ek − ek ⊗ e` corresponds to the action 1
2
ck` on the spinors.

Therefore, the curvature Kij acting on spinors is given by

Kij =
1

2

∑
k<`

Rijk
`ck` =

1

4
Rijk

`ck` (2.4.12)
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where the second equality above is obtained using the skew-symmetry in k and ` of

both Rijk
` and ck`. Taking advantage of skew-symmetry in i and j, we can write

∑
i<j

cijKij =
1

8
Rijk

`cijk`. (2.4.13)

Note that if the indices i, j, k are all distinct, then cijk = ckij = cjki. Such terms in-

volve (Rijk
`+Rkij

`+Rjki
`)cijk, which vanishes by the first Bianchi identity. Therefore,

the only nonvanishing terms in (2.4.13) are those where k = i or k = j, giving

1

8
Rijk

`cijk` =
1

8

(
Riji

`ciji` +Rijj
`cijj`

)
= −1

4
Ricj` cj`. (2.4.14)

Note that Ricj` is symmetric in j, `, while cj` is skew-symmetric when j 6= `. There-

fore, the only nonvanishing terms are when j = `, and so

−1

4
Ricj` cj` = −1

4
Ricjj cjj =

1

4
R. (2.4.15)

Substituting this back into (2.4.9) finishes the proof of the Lichnerowicz formula

(2.4.7).
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Chapter 3

The Nahm Transform and the ADHM

Construction

The Nahm transform is a powerful tool for studying the moduli space of instantons.

This is particularly true for quotients of R4, where it can be viewed as a generalization

of the ADHM construction and where Nahm proved his original transform between

monopoles and solutions to the Nahm equations [Nah82].

We begin this chapter with a general overview of the Nahm transform, following

the viewpoint in [Jar04]. We then specialize to two cases which will be of relevance

in following chapters, taking our base manifold to be R4/Z4 or R4. The first is often

called a Fourier transform for instantons, while the second is the ADHM construction.

Both of these cases are covered in [DK90, Chapter 3], although our approach more

closely resembles those of [Cha04, Nye01].

3.1 General Nahm transform

Let M be a 4-manifold with spin structure. Let S denote the bundle of spinors,

with its usual decomposition S = S+ ⊕ S− into ±1-eigenbundles of c(vol), where vol

denotes the volume form of M . Let ∇ be an instanton on some hermitian vector

bundle E → M . We consider specifically instantons with anti-self-dual curvature,

the self-dual case being obtained by a change of orientation. We then form the Dirac

operator D : Γ(E ⊗ S)→ Γ(E ⊗ S) associated to ∇ by

D = ci∇i, (3.1.1)
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where ci denotes Clifford multiplication by an element ei of an orthonormal frame

of TM and ∇i = ∇ei . Observe that D anticommutes with c(vol), so setting Dpm =

D|Γ(E⊗S±) gives

D± : Γ(E ⊗ S±)→ Γ(E ⊗ S∓). (3.1.2)

Let B be a vector bundle on M with a family of instantons {∇(Bξ)}ξ∈T , parame-

trized by some manifold T . In practice, we often take ∇(Bξ) to be flat connections.

We then define a corresponding family of twisted connections ∇ξ on E ⊗ B by the

tensor product ∇ξ = ∇ ⊗ 1 + 1 ⊗ ∇Bξ . The twisted connection ∇ξ is again an

instanton, as seen by noting that the curvature is Fξ = F∇ ⊗ 1 + 1⊗ FBξ .

Let Dξ denote the Dirac operator associated to ∇ξ. Recall the Lichnerowicz

formula (2.4.8)

D−ξ D
+
ξ = ∇∗∇+ c(F+

E⊗B) +
1

4
R,

where R denotes the scalar curvature of M . Since ∇ξ is an instanton, the anti-self-

duality of F(E⊗B) simplifies the above equation. We see, for example, that if R is

greater than some positive constant, then kerD+
ξ = 0. Even though M will be flat

in our cases of interest, we will use this fact in the R4 case by taking the conformal

identification with S4. In the T 4 case, we will need to make additional assumptions

to ensure kerD+
ξ = 0.

When kerD+
ξ = 0, we define a bundle Ê over T by defining the fibre

Êξ = kerD−ξ . (3.1.3)

We can consider the fibres Êξ inside of product bundle T × L2(M,E ⊗ B ⊗ S−).

If kerD+
ξ = 0 for all ξ ∈ T and if Dξ is Fredholm, the index formula tells us that

dim(Êξ) = − ind(Dξ) is constant, and therefore Ê is a bundle. Moreover, as a

subbundle of the product bundle, Ê inherits an induced connection from the product

connection via orthogonal projection. This bundle Ê and the induced connection are

called a Nahm transform of ∇.
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Remark. There are many constructions of Nahm transforms where Dξ is not Fredholm

for every ξ, resulting in singularities in the transformed bundle Ê. In the cases we

consider here, we will have that Dξ is Fredholm or, as in the case of R4, related

conformally to a Fredholm operator.

Although the above construction is quite general, in certain applications the

transformed bundle has additional interesting properties. In particular, if T is 4-

dimensional, then under certain assumptions the transformed connection will also be

an instanton, discussed further in [Jar04, §2.2]. For our purposes, we focus on the

Nahm transform on quotients of R4.

3.2 Invariant and periodic instantons on R4

There is a particularly nice class of Nahm transforms defined for invariant and peri-

odic instantons on R4. The flatness and parallelizability of R4 allows the definition

of a family of flat line bundles Lξ, for which the projections onto kerDξ interact

well with differentiation in ξ. In many cases, the result is a correspondence between

instanton (or its dimensional reduction) on one quotient of R4 to an instanton (or its

dimensional reduction) on a dual quotient of (R4)∗. We now give a broad picture of

this class of Nahm transforms.

Consider an instanton∇ on R4 that is invariant under a subgroup Λ of translations

of R4. Such subgroups are of the form Rd × Zm for m+ d ≤ 4. Such an instanton is

constant in the directions corresponding to Rd, and we may equivalently consider a

dimensional reduction of the instanton to R4−d. For example, if Λ = R, the connection

∇ is equivalent to a monopole on R3, while if Λ = R3, the connection ∇ is equivalent

to a solution of Nahm’s Equations. The Zm part of Λ adds periodicity assumptions

to these various connections.

First consider the situation where the subgroup of translations is discrete, Λ =
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Zm. We define our twisting connections on a line bundle L → R4, which by the

contractibility of R4 are all topologically trivial. As such, we can choose a global frame

for L. For ξ ∈ (R4)∗ define the U(1)-connection ∇Lξ to have constant connection

form i2πξ with respect to the global frame. We let Lξ denote L equipped with the

connection ∇Lξ , which are thus parametrized by (R4)∗. Since such a connection is

translation-invariant, it descends to the quotient by Λ, defining a flat connection on

the topologically trivial line bundle over M = R4/Λ.

Flat bundles are determined by their holonomy on π1(M) = Λ. Since parallel

translation from the origin to a point x ∈ R4 is given by e−i2πξ(x), the line bundle Lξ

is determined by ξ ∈ (R4)∗ up to translation by the dual group

Λ∗ =
{
ζ ∈ (R4)∗ | ζ(x) ∈ Z for all x ∈ Λ

}
.

An equivalent perspective is to view Lξ → R4 as the result of applying the gauge

transformation g(x) = e−i2πξ(x) to the product connection d. Such a gauge trans-

formation descends to the quotient R4/Λ if and only if ξ ∈ Λ∗. Therefore, we may

consider Lξ as being parametrized by the dual quotient (R4)∗/Λ∗. Taking the twisted

Dirac operator Dξ on E⊗Lξ⊗S then allows us to construct the Nahm transform as

in the previous section, defining a bundle Ê → (R4)∗/Λ∗ with Êξ = kerD−ξ .

In the case where Λ∗ contains a continuous subgroup, translation along these

directions in (R4)∗ yields equivalent fibres Êξ. As such, identifying these fibres – as we

do when taking the quotient (R4)∗/Λ∗ – involves the dimensional reduction procedure

for instantons. In particular, we obtain additional maps in End(Ê) corresponding to

the components of the connection in directions that collapse in the quotient. The

extreme example in this case is when Λ = 0, so that Λ∗ = (R4)∗. More details about

interpreting the Nahm transform in this case, which yields the ADHM construction,

can be found in Section 3.4.3.

The case in which Λ ⊃ Rd ∼= span{v1, . . . , vd} fits into the same framework with
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only some minor adaptations. On descending to the quotient, components of the

connection form in the directions vi are lost, but just as in the dimensional reduction

of instantons, we keep the information from the lost components in the form of maps

i2πξ(vi) ∈ End(Lξ). Note that the maps i2πξ1(vi) and i2πξ2(vi) are inequivalent for

ξ1(vi) 6= ξ2(vi). Then multiplying by some constant gives (ξ1− ξ2)(εv) /∈ Z. However,

εv ∈ Λ, showing that ξ1 − ξ2 /∈ Λ∗. So we can still parametrize these bundles Lξ by

ξ ∈ (R4)∗/Λ∗. The Dirac operator Dξ can then be defined by pulling back the spinor

bundle S on R4 by an inclusion R4/Rd ↪→ R4, and then defining Dξ = D0 − i2πc(ξ).

In ideal settings, the curvature of the transformed bundle Ê satisfies the ASD

equation or an appropriate dimensional reduction. In Section 3.3, where we take

Λ = Z4, there are no complications, and we see that Ê is in fact an instanton bundle

on the dual torus. The argument for self-duality in the case of the torus should be

taken as a guiding heuristic for proving self-duality in other cases. By comparison,

in Section 3.4 we consider the ADHM construction, which can be thought of as the

case Λ = 0. Here, the argument for self-duality must be modified to account for

asymptotic complications, and the resulting ADHM equations can be thought of as

‘ASD + contributions from ∞.’

With this framework, one can quickly conjecture correspondences between differ-

ent dimensional reductions of instantons. If Λ = Rd ⊗ Zm, then Λ∗ = R4−d−m ⊗ Zm.

As such, one expects an m-fold periodic solution to a (4− d)-dimensional reduction

of the instanton equation to correspond to an m-fold periodic solution to a (d+m)-

dimensional reduction. A thorough survey of these various cases is provided in [Jar04,

§3.1 - §3.3]. Since the publication of that survey, more cases have been studied, such

as in [CH19].
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3.3 Nahm transform on T 4

The simplest case of the Nahm transform occurs when Λ = Z4 is a full-rank lattice,

and so M = T 4. This case is described in [DK90, 3.2] where it is called a Fourier

transform for instantons, and the viewpoint is rooted in the equivalent formulation

in terms of holomorphic structures. We repeat the description here, with a viewpoint

more centred on Dirac spinors, as it provides a template for Chapter 5. Also, as the

analysis is greatly simplified by the compactness of T 4, we can take the Nahm trans-

form in this case as a guiding heuristic for proving anti-self-duality of the transformed

connection in other cases.

First, we must make an additional assumption on E and ∇ to ensure that that

kerD+
ξ = 0.

Definition 3.3.1. An SU(n)-vector bundle E with connection∇ is said to be without

flat factors if there is no splitting E = E ′⊕L that is compatible with ∇ and with L

a flat line bundle.

Since T 4 is flat and ∇ is an instanton, the Licherowicz formula (2.4.8) becomes

D−ξ D
+
ξ = ∇∗ξ∇ξ. (3.3.2)

If there exists a non-zero ϕ ∈ kerD+
ξ , then ∇ξϕ = 0. In particular, the pointwise

norm |ϕ| must be constant. Therefore, ϕ is a nowhere vanishing parallel section of

E ⊗ S+ and thus defines a flat line subbundle of E ⊗ Lξ. Taking the tensor product

with the dual L−ξ then gives a flat factor of E. As such, if E is without flat factors

then kerD+
ξ = 0.

Moreover, by compactness Dξ is Fredholm for all ξ. We can then take the Nahm

transform Êξ = kerD−ξ , giving a bundle Ê over the dual torus T̂ 4 = (R4)∗/Λ∗.

Proposition 3.3.3. Let ∇ be an SU(n)-instanton on a bundle E → T 4 that is

without flat factors. Then the transformed connection ∇̂ on Ê → T̂ is an instanton.
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Proof. Since E is without flat factors, we have kerD+
ξ = 0. Therefore, Ês = kerD−ξ

has constant rank determined by indDξ, and is thus a subbundle of the trivial bundle

L2(E⊗S−). Moreover, ∇∗ξ∇ξ is invertible, and we let Gξ = (∇∗ξ∇ξ)
−1 be its Green’s

operator. Note that by (3.3.2), Gξ|S+ = (D−ξ D
+
ξ )−1.

Let Pξ : L2(E ⊗ S−) → kerD−ξ be orthogonal projection. Since T 4 is compact,

D−ξ is the adjoint of D+
ξ , and we can express

Pξ = 1−D+
ξ GξD

−
ξ . (3.3.4)

The connection ∇̂ on Ê is then given by PξdPξ, where the exterior derivative is

taken with respect to the coordinates of ξ. Let ∂j := ∂
∂ξj

. We have the following

commutator, [
∂j, D

±
ξ

]
= i2πcj. (3.3.5)

Using the fact that PξD
+
ξ and D−ξ Pξ both vanish,

∇̂j∇̂k = Pξ∂jPξ∂kPξ

= Pξ∂j∂kPξ − Pξ[∂j, D−ξ ]Gξ[D
+
ξ , ∂k]Pξ

= Pξ∂j∂kPξ − 4π2PξcjGξckPξ. (3.3.6)

Note that Clifford multiplication by cj commutes with∇∗ξ∇ξ, and so it also commutes

with Gξ. Skew-symmetrizing (3.3.6) then gives

F̂jk = [∇̂j, ∇̂k] = −8π2PξcjckGξPξ. (3.3.7)

By (2.4.2), Clifford multiplication by self-dual forms vanishes on S−, we have from

this expression that the self-dual part of F̂ vanishes.

We can compute the rank of Ê using via index theory. Indeed, since kerD+
ξ = 0,

dim Êξ = dim kerD−ξ = − indD = −c2(E), (3.3.8)
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where by c2(E) we mean the second Chern class of E integrated over T 4. Recall

that because ∇ is an SU(n)-instanton, c2(E) = 1
8π2‖F∇‖2 gives the charge of the

instanton.

Note that applying the Nahm transform to Ê → T̂ 4 gives a new bundle with

connection
ˆ̂
E → T 4. This second transformed bundle is in fact isomorphic to the

bundle E, showing that the Nahm transform is invertible. This is proved, for example,

in [BvB89], and is proved from the perspective of holomorphic structures in [DK90,

§3.2]. A proof of the analogous inversion in another construction of a Nahm transform

can be found in [Nak93].

Given that the correspondence is invertible, and from computing the indices of the

Dirac operators, we have that SU(n)-instantons of charge k on T 4 are in one-to-one

correspondence with SU(k)-instantons of charge n on T̂ 4.

3.4 ADHM construction

We now turn to the ADHM Construction, first proved in [AHDM78]. This procedure

constructs SU(n)-instantons on R4 from a given set of linear algebraic data satisfying

certain conditions. Moreover, the construction is invertible, showing that any SU(n)-

instanton can be produced in this way. The original proof relied on twistor theory,

and a very approachable resource describing the construction from this perspective

can be found in [Ati79].

Our approach, however, will be from the Nahm transform perspective, and we

follow closely the descriptions in [DK90, §3.3] and [Cha04, Chapter 1].

3.4.1 Real ADHM data and equations

We begin by defining the data that will parametrize the instantons.
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Definition 3.4.1. ADHM data consist of a k-dimensional hermitian vector space V

and an n-dimensional hermitian vector space W , equipped with hermitian endomor-

phisms ai ∈ End(V ) for i = 1, . . . , 4, and a linear map ψ : W → ∆+ ⊗ V .

Recall that ∆+ is the positive spin representation of Spin(4), as discussed in

Section 2.4. Since the positive spinor bundle S+ is trivial R4, fibres of S+ can be

globally identified with ∆+, and as a result it is common in discussions of the ADHM

construction to conflate S+ with ∆+. In our approach, however, we will make use

of a conformal identification with the spinor bundle on S4, in which case S+ is no

longer trivial, and can no longer make a global identification of fibres S+|x with ∆+.

We will therefore maintain the distinction between the two.

Consider Clifford multiplication c1j for j = 2, 3, 4 acting on ∆+. Note that (c1j)
2 =

−1, and by using the fact that c(
∧−) = 0 on ∆+, we have, for example,

c12c13|S+ = c23|∆+ = c14|∆+ . (3.4.2)

The same relation holds when we cyclically permute the indices 2, 3, and 4, and as

such this provides a quaternionic structure on S+. Since dim ∆+ = 2, we see that

End(∆+) is spanned by the identity and the elements c1j.

Observe that ψψ∗ ∈ End(∆+ ⊗ V ) = End(∆+)⊗ End(V ), and so we can write

ψψ∗ = (ψψ∗)0 ⊗ 1 +
4∑
j=2

(ψψ∗)j ⊗ c1j. (3.4.3)

With this notation, we write the ADHM equations

[a1, ai] + [aj, ak] = (ψψ∗)i, (3.4.4)

where (i, j, k) are cyclic permutations of (2, 3, 4). These equations also have a con-

venient expression in terms of self-dual forms acting on ∆+. Considering the 1-form

a = aie
i, we can take (a∧a)+ to be the self-dual part of a∧a. Then, letting (ψψ∗)∧+
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be the c(
∧+) part of (3.4.3), we can rewrite (3.4.4) as

c((a ∧ a)+) = (ψψ∗)∧+ . (3.4.5)

We define an additional non-degeneracy condition on the data. For x ∈ R4 let

Qx : V ⊗∆+ → V ⊗∆− ⊕W be the map

Qx =

ci ⊗ (ai − xi)

ψ∗

 . (3.4.6)

Definition 3.4.7. The ADHM data (V,W, ai, ψ) are said to be valid if they satisfy

the ADHM equations (3.4.4) and if Qx is injective for all x.

We can also define an equivalence relation on ADHM data, analogous to gauge

equivance.

Definition 3.4.8. The ADHM data (V,W, ai, ψ) and (V ′,W ′, a′i, ψ
′ are said to be

equivalent if there are there are isometries v : V → V ′ and w : W → W ′ such that

a′i = vaiv
−1 and ψ′ = vψw−1.

3.4.2 Complex ADHM data and equations

We can also consider a complexified version of the ADHM data. Although for the

remainder of this chapter we will continue working with the real data described in

Section 3.4.1, the complex version is convenient for the description in Chapter 4, and

so we introduce it here.

Definition 3.4.9. Complex ADHM data consist of hermitian vector spaces V and

W , with linear maps α, β ∈ End(V ), π : V → W , and σ : W → V .

Given real ADHM data (V,W, ai, ψ), we define the equivalent complex ADHM

data by taking the same hermitian vector spaces V and W . Let α = a1 + ia2 and
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β = a3 + ia4. Note that from these we can recover the endomorphisms ai by taking

hermitian and anti-hermitian parts of α and β.

Since (c12)2 = −1, its eigenvalues are ±i. Since c13 anticommutes with c12, it

maps the i-eigenspace of c12 to the −i-eigenspace, and vice versa. In particular, the

±i-eigenspaces of c12 in ∆+ are non-empty, and we can choose a unit i-eigenvector q

and a unit −i-eigenvector p such that c13q = p. We can then choose a basis for ∆−

for which Clifford multiplication ∆+ → ∆− is given with respect to the basis (p, q)

by

c1 =

1

1

 , c2 =

i
−i

 ,
c3 =

 −1

1

 , c4 =

 i

i

 .
(3.4.10)

We obtain the maps π and σ by expressing the map ψ : W → V ⊗∆+ with respect

to the basis p, q as

ψ = π∗ ⊗ p+ σ ⊗ q (3.4.11)

With respect to this basis,

ψψ∗ =

π∗π π∗σ∗

σπ σσ∗

 . (3.4.12)

Since, for example, c12 maps p → ip and q → −iq, we see that (ψψ∗)2 = iπ∗π −

iσσ∗. Similarly, (ψψ∗)3 = −σπ + π∗σ∗ and (ψψ∗)4 = iπ∗σ∗ + iσπ. Expanding the

commutators [α, β], [α, α∗], and [β, β∗], we then have that the ADHM equations

(3.4.4) are equivalent to

[α, β] + σπ = 0, (3.4.13)

[α, α∗] + [β, β∗] + σσ∗ − π∗π = 0. (3.4.14)

For coordinates z1, z2 on C2, let αz = α− z1 and βz = β− z2, and define Rz : V ⊕
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V ⊕W → V ⊕ V by

Rz =

 α∗z β∗z π∗

−βz αz σ

 . (3.4.15)

With respect to the basis p, q for ∆+, we can write V ⊗ ∆+ = (V ⊗ p) ⊕ (V ⊗ q),

and with respect to this decomposition, and the basis chosen for ∆−, the map Rz is

simply Q∗x with complex coordinates z1 = x1 +ix2, z2 = x3 +ix4. The non-degeneracy

condition is then equivalent to requiring Rz to be full rank for all z ∈ C2.

3.4.3 The ADHM construction as a Nahm transform

Before continuing on to the construction of the correspondence between ADHM data

and instantons, it may be helpful to see how the ADHM construction fits within

the Nahm transform framework. We can consider R4 = R4/{0}, and since the dual

subgroup of {0} is all of (R4)∗, we expect in the Nahm transform to construct a

bundle over (R4)∗/(R4)∗ = {0}. A bundle over a single point is simply a vector space

V , and the remnants of the connection provide the maps ai ∈ End(V ).

To be more precise, we consider twisting by i2πξ for ξ ∈ (R4)∗ as usual. Defining

the Dirac operators Dξ = D+i2πc(ξ), we let the transformed bundle be Êξ = kerD−ξ .

Since (R4)∗ is contractible, we can identify all fibres of Ê. Indeed, e−i2πξ defines a

global U(1) gauge transformation over R4 that identifies kerD−ξ
∼= kerD−0 .

The Nahm transformed connection is defined to be ∇̂i = Pξ
∂
∂ξi
Pξ. Using the

gauge transformation e−2iπξ to identify fibres of Ê, we have Pξ = ei2πξPe−i2πξ, and

then ∇̂ has constant connection form ai = i2πPxiP . By rescaling, we can omit the

i2π. Since we have identified all fibres of Êξ, from now on we only need consider D0.

The curvature of this constant connection is F̂ij = [ai, aj], and so the left-hand side

of the ADHM equations (3.4.4) can be thought of as the self-dual part of F̂a. Since the

right-hand-side is not zero, the transformed connection is not an instanton, but still

29



instanton-like in that it has prescribed self-dual curvature F̂+. The proof that the

transformed constant connection satisfies the ADHM equations proceeds in the same

spirit as the argument that the Nahm transform on the torus yields an instanton.

However, the non-compactness of R4 means more care is required in the analysis,

and boundary terms in the argument yield the right-hand side of (3.4.4). The map

ψ thus captures asymptotic behaviour of the instanton, and can also be viewed as

evaluation of ϕ ∈ kerD− at the point at ∞ on S4 via stereographic projection.

3.4.4 From instanton to ADHM data

We now formalize the previous discussion to show how to associate ADHM data

to an SU(n)-instanton on a bundle E → R4. Let D : Γ(E ⊗ S) → Γ(E ⊗ S) be

the associated Dirac operator. By stereographic projection, which preserves anti-

self-duality because it is conformal, we may consider ∇ as a connection on S4 \ {∞}.

Uhlenbeck’s Removable Singularity Theorem [Uhl82], guarantees that the connection

extends smoothly at ∞. We then set the ADHM data W = E∞, the fibre at ∞ with

renormalized inner product 〈·, ·〉W = π2〈·, ·〉E∞ .

Dirac spinors on R4 and S4

We canobtain some asymptotic information about Dirac spinors by comparing to the

Dirac operator DS4 on S4. Since S4 and R4 are conformal with gS4 = 4
(1+|x|2)2

gR4 ,

we can conformally identify SO(TR4) with SO(TS4) away from ∞ by mapping the

frame ei 7→ ẽi = 1
2
(1 + |x|2)ei. This identification lifts to an identification of the

spin structures on R4 and S4 \ {∞}. The frame {ei} induces a trivialization of the

spinor bundle S ∼= R4×∆, while the frame {ẽi} induces a trivialization for the spinor

bundle S̃ over S4 away from∞, giving S̃|S4\∞ ∼= (S4 \∞)×∆. Taking the conformal

identification of R4 ⊂ S4 and identity on ∆ then identifies S with S̃. Note that under
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this identification, the action of ci on S corresponds to the action of c̃i = c(ẽi) on

S̃. Given this identification of S with S̃, we will henceforth denote by S the spinor

bundle either on R4 or on S4, as appropriate.

Forming the Dirac operator DS4 = c̃i∇S4

i as usual, we have the following relation

to the Dirac operator on R4,

DS4 =

(
2

1 + |x|2

)−1
2

D

(
2

1 + |x|2

) 3
2

. (3.4.16)

Motivated by the above equation, for ϕ ∈ L2(R4, E ⊗ S), let

ϕ̃ = (1 + |x|2)
3
2ϕ. (3.4.17)

Lemma 3.4.18. The map ϕ 7→ ϕ̃ = (1 + |x|2)
3
2 gives an isomorphism

kerD ∩ L2(R4, E ⊗ S)
∼=−→ kerDS4 ∩ L2(S4, E ⊗ S).

Proof. For notational simplicity, we omit the notation E ⊗ S and write only the

domain, taking for example L2(R4) = L2(R4, E ⊗ S). Suppose ϕ ∈ L2(R4). Since

volS4 = O(|x|−8) volR4 , we have that |ϕ̃|2 volS4 = O(|x|−2)|ϕ|2 volR4 . Since |ϕ|2 is

integrable, so is |ϕ̃|2, showing that ϕ̃ ∈ L2(S4).

If moreover ϕ ∈ kerD then (3.4.16) shows that DS4ϕ̃ = 0 as a distribution away

from ∞ on S4. That is,

〈ϕ̃, DS4ω〉L2(S4) = 0 (3.4.19)

for any test function ω ∈ C∞0 (S4 \ {∞}), the space of all smooth sections on S4

vanishing on a neighbourhood of ∞. To see that DS4ϕ̃ = 0 distributionally on all

S4, we must show (3.4.19) holds for all ω ∈ C∞(S4), including when ω(∞) 6= 0.

Let Br denote the geodesic ball with radius r centred at ∞ ∈ S4, and let γk be a

smooth cutoff function supported on S4 \B 1
k

such that γk = 1 on S4 \B 2
k
. Since the

distance between B 1
k

and S4 \B 2
k

is 1
k
, we can take γk to have |∇γk| ≤ 2k pointwise.
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Then

〈ϕ̃, DS4ω〉L2(S4) = lim
k→∞
〈ϕ̃, γkDS4ω〉L2(S4)

= lim
k→∞

(
〈ϕ̃, DS4(γkω)〉L2(S4) − 〈ϕ̃, c̃i(∇i)ω〉L2(S4)

)
(3.4.20)

The first term above vanishes because γkω ∈ C∞0 (S4 \ {∞}). In the second term,

|∇iγk| is bounded by 2k and supported on B 2
k
, while ω is bounded. Therefore, for

some constant C, the limit from (3.4.20) is bounded by

lim
k→∞
|〈ϕ̃, c̃i(∇i)ω〉L2(S4)| ≤ lim

k→∞
Ck

∫
B 2
k

|ϕ̃|

≤ lim
k→∞

Ck
∣∣∣B 2

k

∣∣∣ ‖ϕ̃‖L2(S4). (3.4.21)

Since the volume
∣∣∣B 2

k

∣∣∣ = O(k−4), we have that the limit (3.4.21) vanishes. Therefore

DS4ϕ̃ = 0 distributionally on all S4, and by elliptic regularity ϕ̃ is in fact a smooth

solution.

We have thus shown that ϕ 7→ ϕ̃ gives a well-defined map kerD ∩ L2(R4) →

kerDS4 ∩ L2(S4). To show this map is an isomorphism, we show that the inverse,

given by multiplying by (1 + |x|2)−
3
2 , is well-defined.

Since L2-solutions to DS4ϕ̃ = 0 are smooth by elliptic regularity, in particular, ϕ̃

is bounded. Therefore multiplying by (1 + |x|2)−
3
2 yields ϕ = O(|x|−3) as x → ∞,

and hence ϕ ∈ L2(R4). Moreover, since (1 + |x|2)−
3
2 is smooth, ϕ is smooth, and so

Dϕ = 0 in the ordinary sense.

Therefore the inverse ϕ̃→ ϕ is well-defined, completing the proof.

We henceforth omit the intersection with L2, and assume that kerD denotes

the L2 kernel unless otherwise specified. We therefore have that kerD ∼= kerDS4 .

Since the conformal map preserves the decomposition S = S+ ⊕ S−, we also have

kerD± ∼= kerD±S4 .
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Since the scalar curvature on S4 is constant and positive, and since F+
∇ = 0, the

Lichnerowicz formula (2.4.8) implies that

‖D+
S4ϕ̃‖2

L2(S4) = ‖∇ϕ̃‖2
L2(S4) +

R

4
‖ϕ̃‖2

L2(S4). (3.4.22)

In particular, kerD+
S4 = 0, and so by our isomorphisms, kerD+ = 0. Of course,

to show this, we could have kept our perspective on R4 and noted that covariant

constant ϕ must be 0, otherwise the ‖ϕ‖L2 =∞.

We now turn our attention to kerD−. Since D−S4 is Fredholm, we see that kerD−

is finite-dimensional. In the proof of of Lemma 3.4.18, we showed moreover that

elements of kerD− are O(|x|−3). We define V = kerD−.

The map ψ : W → V ⊗ ∆+ will be defined as an adjoint to evaluation at ∞,

with the factor of ∆+ arising from a trivialization of S− near ∞. To make a precise

definition of ψ, we must first set up trivializations of the spinor bundle S and describe

the change of trivialization map between them.

Consider the neighbourhoods U0 = S4 \ {∞} and U∞ = S4 \ {0}. Let the

coordinates xi on U0 = R4 and the coordinates x′i on U∞ = R4 both be obtained by

stereographic projection to S4, so that x′i = xi
|x|2 . The Euclidean orthonormal frame

ei = ∂
∂xi

(which we have already been using above) then corresponds conformally to

the frame fi = 1
2
(1 + |x|2)ei, which is orthonormal with respect to the round metric

on U0 ⊂ S4. Similarly, the Euclidean orthonormal frame e′i = ∂
∂x′i

corresponds to the

orthonormal frame f ′i = 1
2
(1 + |x′|2)e′i with respect to the round metric on U∞ ⊂ S4.

Note that the change of coordinates is orientation-reversing. We will take the

orientation on S4 to be that given by U0, as we have taken implicitly until now. The

local frame {f ′i} is then negatively-oriented.

These frames define trivializations of the spinor bundle S through the associated

bundle construction. Working first over U0, the frame {fi} lifts to a section σ of

the spin bundle P |U0 . Recalling the definition of the spinor bundle as the associated
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bundle S = P ×Spin(4) ∆, where ∆ = ∆+⊕∆− is the spin representation as discussed

in Section 2.4, we can define a trivialization of S|U0 by

τ0 : U0 ×∆
∼=−→ S|U0

(x, v) 7→ [σ(x), v].
(3.4.23)

Because P is a double cover of the oriented orthonormal frame bundle, there is a

choice of sign in the lift σ, and hence also in the trivialization of S|U0 . We leave the

sign undetermined for the time being, and fix it later during the proof of Lemma

3.4.25.

The trivialization over U∞ is defined similarly, albeit with a slight complication.

Since the frame {f ′i} is negatively oriented, it does not lift to the spin bundle P .

We instead consider the principal Pin(4)-bundle P ′ which is a double cover of the

orthonormal frame bundle. P ′ can be constructed explicitly as a subbundle of the

Clifford bundle Cl(TS4). The Clifford module structure of the spin representation

∆ then restricts to an action by Pin(4), and as a result we may consider the spinor

bundle as the associated vector bundle S = P ′ ×Pin(4) ∆. Observe that an element

g ∈ Pin(4) \ Spin(4) can be expressed as a Clifford product of an odd number of unit

vectors, and so Clifford multiplication by g defines a map ∆± → ∆∓.

We can then lift the frame {f ′i} to a section σ′ on P ′. The corresponding trivial-

ization of S|U∞ is then given, as in (3.4.23), by

τ∞ : U∞ ×∆
∼=−→ S|U∞

(x′, v) 7→ [σ′(x′), v].
(3.4.24)

Because σ′ is negatively oriented, it differs from a positively oriented frame by Clifford

multiplication by some element of Pin(4) \ Spin(4). Such a Clifford element reverses

the grading on the spin representation. Therefore, the trivialization induced by a

negatively oriented frame such as σ′ associates elements of ∆+ to sections of S−, and

elements of ∆− to sections of S+.

34



The trivializations for S above are both for the spinor bundle on S4. We can define

a similar trivialization for the spinor bundle on R4 using the orthonormal frame

{ei}. As discussed previously, with respect to these trivializations, the conformal

identification of spinor bundles on S4 and R4 is given by the identity on ∆.

Lemma 3.4.25. With respect to the trivializations τ0 defined in (3.4.23) and τ∞

defined in (3.4.24), the change of trivialization map τ−1
0 ◦τ∞|S± acts on ∆ by ∓c(fr),

where fr denotes the radial geodesic vector field away from 0 in S4.

Remark. Let r = |x| on U0, and denote the corresponding radial vector field ∂r, so that

∂r is the unit radial vector field with respect to the Euclidean metric. Multiplying

by the conformal factor gives the corresponding radial geodesic vector field fr =

1
2
(1 + r2)∂r on S4.

When we conformally identify the spinor bundles S±|U∞ and S±|U0 with the spinor

bundles for the Euclidean metric on the respective copies of R4, Clifford multiplica-

tion is scaled by an appropriate conformal factor. The corresponding change of

trivialization of the spinor bundle with respect to the Euclidean metric is given by

∓c(∂r) = ∓ c(x)
|x| .

Remark. The statement of Lemma 3.4.25 is slightly misleading in that the trivializa-

tions of the spinor bundle have so far only been determined up to sign. Therefore, the

sign of the change of trivialization is as yet undetermined. We will fix the appropriate

sign in the course of the proof.

Proof. Let µ be the pointwise orthogonal transformation on TS4 away from the points

0 and ∞, defined by µ(fi) = f ′i . At a point p, µ lifts to some µ̃ ∈ Pin(4) ⊂ Cl(TpS
4).

Then σµ̃ = σ′ in P ′, and by the equivalence relation [pg, v] = [p, gv] in the associated

bundle construction, such a µ̃ induces a transformation on ∆ giving the change of

trivialization map for S. Our proof proceeds by obtaining an explicit lift µ̃ at a point

p.
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As remarked above, letting r = |x| on U0 with corresponding radial vector field

∂r, we have fr = 1
2
(1 + r2)∂r. Similarly, letting r′ = |x′| on U∞, we have r′ = 1

r
. For

the radial vector field ∂r′ , and geodesic radial vector field f ′r′ = 1
2
(1 + (r′)2)∂r′ on S4,

fr =
1

2
(1 + r2)

(
− 1

r2
∂r′

)
= −f ′r′ . (3.4.26)

On the other hand, fr = xi
|x|fi and f ′r′ =

x′i
|x′|f

′
i , and so also using that xi

|x| =
x′i
|x′| , we

have

µ(fr) =
xi
|x|
µ(fi)

=
x′i
|x′|

f ′i

= f ′r′

= −fr. (3.4.27)

We now turn our attention to how µ acts on vectors orthogonal to fr. Since fi is

a rescaling of the coordinate vector field ∂xi and f ′i is a rescaling of ∂x′i , we have that

µ is a rescaling of the change of coordinate transformation mapping ∂xi 7→ ∂x′i . Note

that the change of coordinates identifies the sphere S3
r ⊂ U0 with the sphere S3

r′ ⊂ U∞

by a simple scaling factor, and so the change of coordinate transformation similarly

acts on vectors in TpS
3
r(p) ⊂ TpS

4 by rescaling. The transformation µ must then also

act on TpS
3
r(p) as some rescaling. Since µ is orthogonal, this ‘rescaling’ must in fact

fix the vectors in TpS
3
r(p), which are precisely all vectors orthogonal to fr in TpS

4.

That is, µ has the effect of mapping fr 7→ −fr, and fixes all vectors orthogonal to fr,

and so geometrically, µ can be viewed as reflection in the hyperplane TpS
3
r(p) ⊂ TpS

4.

To lift µ to an action on P ′, we express it as conjugation by a Clifford element.

Let fθi be an orthonormal basis of TpS
3
r(p) ⊂ TpS

4, and define µ̃ = c(fθ1)c(fθ2)c(fθ3).

The map µ is then given on TpS
4 ⊂ Cl(TpS

4) as conjugation by µ̃, which can be
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seen directly by µ̃frµ̃
−1 = −fr and µ̃fθiµ̃

−1 = fθi . Note that we have a choice of

orientation for the basis fθi , corresponding to a choice of sign of µ̃. We choose the

sign such that c(volS4) = −c(fr)µ̃.

On the bundle P ′, µ̃ acts by right multiplication, and so we have σ′ = σµ̃. Note

that this equality involved finally fixing signs of σ and σ′. In terms of the trivializa-

tions τ0 and τ∞ of S, this gives for v ∈ ∆ and p ∈ S4

τ−1
0 ◦ τ∞(p, v) = τ−1

0 ([σ′(p), v])

= τ−1
0 ([σ(p)µ̃, v])

= τ−1
0 ([σ(p), µ̃v])

= (p, µ̃v). (3.4.28)

Therefore, the change of trivialization from S|U∞ to S|U0 is given by multiplication by

µ̃ on ∆. Since µ̃ = −c(fr)2µ̃ = c(fr)c(volS4), and since S± are the ∓1-eigenbundles of

c(volS4) we then have that the change of trivialization for S± is given by multiplication

by ∓c(fr).

Remark. As observed previously, since {f ′i} is negatively oriented, the trivialization of

S over U∞ identifies fibres of S− with ∆+. The trivialization over U0 meanwhile iden-

tifies fibres of S− with ∆−, and we have, as expected, that the change of trivialization

c(fr) maps ∆+ to ∆−.

We are now in a position to define the map ψ : W → V ⊗ ∆+, recalling that

we defined W = E∞. Consider ϕ ∈ kerD−, with its corresponding lift ϕ̃ ∈ kerD−S4 .

Evaluating at ∞ gives ϕ̃(∞) ∈ E∞ ⊗ S−∞, which with respect to our trivialization

of the spin bundle can be expressed as ϕ̃∞ ∈ E∞ ⊗ ∆+. Following the conventions

of [DK90] and [Cha04], let η be the skew-form on ∆+, given on the basis p, q from

Section 3.4.2 by η(p, q) = 1. We then define ψ by its adjoint,

ψ∗(ϕ⊗ v) = η(ϕ̃∞, v), (3.4.29)
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for ϕ ∈ V and v ∈ ∆+. The adjoint is defined with respect to the renormalized inner

product 〈·, ·〉W = π2〈·, ·〉E∞ .

We can obtain asymptotic information about ϕ ∈ V in terms of ϕ̃∞. Extending

ϕ̃∞ to a section of E ⊗ S− on a neighbourhood of ∞ by radial parallel translation,

we have in coordinates x′ = x
|x|2 near ∞ that ϕ̃ = ϕ̃∞ +O(|x′|) as x′ → 0.

We now shift our perspective back to U0 = S4 \{∞}. Since our trivialization near

∞ identifies S− with ∆+, we can consider ϕ̃ to be a section of E ⊗ S+, and Lemma

3.4.25 gives us ϕ̃ = c(fr)ϕ̃∞ +O(|x|−1) as x→∞.

Finally, we conformally identify S−|U0 with S−|R4 , recalling that under this iden-

tification c(fr) becomes c(x)
|x| by the remark following Lemma 3.4.25. Also multiplying

by (1 + |x|2)−
3
2 to get our expression for ϕ, we have the asymptotic expansion as

x→∞

ϕ(x) =
c(x)ϕ̃∞
|x|4

+O(|x|−4). (3.4.30)

Projection and Green’s operator

The last pieces of the ADHM data left to define are the endomorphisms ai. Let P

be orthogonal projection onto kerD−, and let

ai = PxiP. (3.4.31)

Multiplying an element ϕ ∈ V by xi results in xiϕ = O(|x|−2), which is in general

not in L2. It is therefore necessary to check that ai is in fact well-defined. Pairing

with another element ζ ∈ V gives the pointwise inner product 〈xiϕ, ζ〉 = O(|x|−5),

which is integrable. For a basis {ζk} of V , we can define P = ζk ⊗ ζ∗k , and we then

have that Pxiϕ = 〈xiϕ, ψk〉L2ψk is well-defined.

As in Section 3.3, we will be able to obtain commutation results for ai by writing

an expression for P in terms of a Green’s ∇∗∇, which we take with respect to the

Euclidean metric. Observe that the L2-kernel of ∇∗∇ is 0, and we define G =
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(∇∗∇)−1. As in [DK90, Proposition 3.3.21], G is an integral operator with kernel

k(x, y) = O(|x − y|−2). A special case of [DK90, Lemma 3.3.5] gives the following

lemma.

Lemma 3.4.32. If s is continuous and s = O(|x|−4) then Gs = O(|x|−2) as |x| → ∞.

Proof. For large |x|, we estimate the integral

Gs(x) =

∫
R4

k(x, y)s(y) dy (3.4.33)

by separating the domain of integration into the regions B |x|
2

(x), B |x|
2

(0), and their

complement B̃.

For y ∈ B |x|
2

(0), we have |k(x, y)| ≤ C|y|−2 and |s(y)| ≤ C(1 + |y|)−4, so∫
B |x|

2

(x)

|k(x, y)s(y)| dy ≤ C

∫
B |x|

2

(x)

(1 + |y|)−4|y|−2 dy

≤ C̃|x|−2. (3.4.34)

For y ∈ B |x|
2

(x), we have |k(x, y)| ≤ C|x− y|−2, and since |y| > |x|
2

, we also have

|s(y)| ≤ C|y|−4 ≤ C|x|−4. So,∫
B |x|

2

(x)

|k(x, y)s(y)| dy ≤ C|x|−4

∫
B |x|

2

(x)

|x− y|−2 dy

≤ C̃|x|−2. (3.4.35)

Lastly on the complement of the last two regions, we have |k(x, y)| ≤ C|y|−2 and

so |y| > |x|
2

, so ∫
B̃

|k(x, y)s(y)| dy ≤ C

∫
|y|> |x|

2

|y|−6 dy

≤ C̃|x|−2. (3.4.36)

From (3.4.34), (3.4.35), and (3.4.36) we have that Gs(x) = O(|x|−2).
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For what follows, it will be necessary to have more precise information about the

asymptotic behaviour of elements in GV .

Proposition 3.4.37. For ϕ ∈ V , and with ϕ̃∞ as in (3.4.30), for |x| large

Gϕ =
c(x)ϕ̃∞

4|x|2
+O(|x|−2). (3.4.38)

Proof. For this proof it will be convenient to work using the Euclidean metric on

both U0 = S4 \{∞} and U∞ = S4 \{0}, obtained conformally from the round metric

by stereographic projection from ∞ and 0. Let x be coordinates on U0 for which

the metric g0 =
∑

i(dxi)
2. Taking the coordinates x′ = x

|x| on U∞, we can express

the metric g∞ =
∑

i(dx
′
i)

2. We then have the conformal relation g0 = |x′|−4g∞.

We denote by (∇∗∇)0 and (∇∗∇)∞ the Laplacian with respect to the corresponding

metrics.

Recall that for a metric g, the conformal Laplacian in dimension 4 is given by

Lg = (∇∗∇)g +
1

6
R (3.4.39)

where R is the scalar curvature. If g′ = f 2g for some positive conformal factor f ,

then the conformal Laplacians are related by Lg′ = f−3Lgf , the exponents of f here

being determined by the fact we are considering the dimension 4 case. Since g0 and

g∞ are both flat, their usual Laplacians are equal to their conformal Laplacians, and

since g0 and g∞ are related by the conformal factor f = |x′|−2, we have

(∇∗∇)0 = |x′|6(∇∗∇)∞|x′|−2. (3.4.40)

Since our coordinates are related by x
|x|2 = x′, we have c(x)

|x|2 = c(x′). We then
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evaluate

(∇∗∇)0
c(x)ϕ̃∞
|x|2

= |x′|6(∇∗∇)∞|x′|−2 (c(x′)ϕ̃∞ )

= |x′|6
(

(∇∗∇)∞

(
c(x′)

|x′|2

)
ϕ̃∞ +

c(x′)

|x′|2
(∇∗∇)∞ϕ̃∞ − (∇∞)i

c(x′)

|x′|2
(∇∞)iϕ̃∞

)
.

(3.4.41)

A straightforward computation gives the first term

(∇∗∇)∞
c(x′)

|x′|2
=

4c(x′)

|x′|4
. (3.4.42)

For the second term, since (∇∗∇)∞ϕ̃∞ is smooth, we have that as x′ → 0,

c(x′)

|x′|2
(∇∗∇)∞ϕ̃∞ = O(|x′|−1). (3.4.43)

For the last term, note that (∇∞)iϕ̃∞ is smooth and (∇∞)i
c(x′)
|x′|2 = O(|x′|−2), giving

−∇i
c(x′)

|x′|2
∇iϕ̃∞ = O(|x′|−2). (3.4.44)

From (3.4.41), we then have (3.4.30),

(∇∗∇)0
c(x)ϕ̃∞
|x|2

= |x′|6
(

4c(x′)ϕ̃∞
|x′|4

+O(|x′|−2)

)
= 4|x′|2c(x′)ϕ̃∞ +O(|x′|4)

= 4
c(x)ϕ̃∞
|x|4

+O(|x|−4) (3.4.45)

as x → ∞. The asymptotic expansion (3.4.30) then tells us that (3.4.45) is ϕ(x) +

O(|x|−4). Applying G to both sides gives

Gϕ =
c(x)ϕ̃∞

4|x|2
+GO(|x|−2). (3.4.46)

Lemma 3.4.32 then gives the result.
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Since D−D+ = ∇∗∇, we have that G|S+ = (D−D+)−1. Therefore, projection

onto V = kerD− is given by P = 1 − D+GD−. At first glance, this expression

appears to be valid only for sections in L2, but we would like to apply it to sections

of the form xiϕ where ϕ ∈ V . To see that it applies, let γn be cutoff functions with

γn = 1 on Bn and the support of γn contained in Bn+1. Then

〈Pγnxiϕ, ψ〉L2 =

∫
R4

〈(1−D+GD−)γnxiϕ, ψ〉

=

∫
Bn

〈(1−D+GD−)xiϕ, ψ〉+

∫
Bn+1\Bn

〈γnxiϕ, ψ〉

−
∫
Bn+1\Bn

〈D+GD−γnxiϕ, ψ〉. (3.4.47)

Since ψ, ϕ = O(|x|−3), and the volume of Bn+1 \Bn is O(n3), we evaluate∣∣∣∣∫
Bn+1\Bn

〈γnxiϕ, ψ〉
∣∣∣∣ ≤ ∫

Bn+1\Bn
Cn−5 = O(n−2). (3.4.48)

Recall the following pointwise identity

〈D+s1, s2〉 = 〈s1, D
−s2〉+∇i〈cis1, s2〉 (3.4.49)

for s1 ∈ Γ(E ⊗ S+) and s2 ∈ Γ(E ⊗ S−). Then, using that D−ψ = 0,

−
∫
Bn+1\Bn

〈D+GD−γnxiϕ, ψ〉 =

∫
S3
n

〈c(∂r)GD−xiϕ, ψ〉

=

∫
S3
n

〈c(∂r)Gciϕ, ψ〉. (3.4.50)

Since ci commutes with G, and since Gϕ = O(|x|−1) by (3.4.38), we have the in-

tegrand above is O(|x|−4). Since the volume of S3
n is O(n3), the integral (3.4.50) is

O(n−1).

We then see that in the limit n → ∞ in (3.4.47), the boundary terms vanish,

leaving

〈Pxiϕ, ψ〉L2 = 〈(1−D+GD−)xiϕ, ψ〉L2 . (3.4.51)

Therefore the expression P = 1−D+GD− is valid also for xiϕ, where ϕ ∈ V .

With these definitions in place, we can show that we obtain valid ADHM data.
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Theorem 3.4.52. Given an instanton ∇ on E → R4, the data V = kerD−,

W = E∞, ai as defined in (3.4.31), and ψ as defined in (3.4.29) satisfy the ADHM

equations (3.4.4).

Proof. Let ωk be an L2-orthonormal basis for V = kerD−. For ϕ ∈ V ,

aiajϕ = 〈xiPxjϕ, ωk〉L2ωk

= lim
r→∞

∫
Br

(
〈xixjϕ, ωk〉+ 〈xiD+GD−xjϕ, ωk〉

)
ωk. (3.4.53)

The first term inside the integral will vanish upon skew-symmetrizing, so we focus

on the second. By (3.4.49) the second term of (3.4.53) is

〈ciGcjϕ, ωk〉L2ωk + boundary term. (3.4.54)

Because Clifford multiplication commutes with ∇∗∇, it commutes with G, and hence

〈ciGcjϕ, ωk〉L2ωk = PcijGϕ.

By (3.4.49), the boundary term of (3.4.54) is the limit r →∞ of∫
Sr

〈
xi
c(x)

|x|
Gcjϕ, ωk

〉
ωk =

∫
Sr

〈
xi
c(x)

|x|
cjGϕ, ωk

〉
ωk. (3.4.55)

The lefthand term of the inner product is O(1) and the righthand term is O(|x|−3),

and so the only terms that do not vanish in the limit r →∞ are the leading terms.

Evaluating these leading terms, we have Gϕ = c(x)
4|x|2 ϕ̃∞+O(|x|−2) and ωk = c(x)(ω̃k)∞

|x|4 .

Considering only these terms, (3.4.55) becomes∫
Sr

〈
xi
c(x)

|x|
cj
c(x)

|x|2
ϕ̃∞,

c(x)

4|x|4
(ω̃k)∞

〉
ωk =

∫
Sr

1

4|x|5
〈xicjc(x)ϕ̃∞, (ω̃k)∞〉ωk

=

∫
Sr

1

4|x|5
〈xixkcjckϕ̃∞, (ω̃k)∞〉ωk. (3.4.56)

By symmetry on Sr, the integral vanishes unless i = k, in which case x2
i can, again

by symmetry, be replaced by |x|
2

4
. The above integral then becomes∫

Sr

1

16|x|3
〈cjciϕ̃∞, (ω̃k)∞〉ωk. (3.4.57)
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Upon taking the limit, this becomes π2

8
〈cjiϕ̃∞, (ω̃k)∞〉E∞ωk. Taking the renormalized

inner product 〈·, ·〉W = π2〈·, ·〉E∞ , for i 6= j

[ai, aj]ϕ = 2PcijGϕ+
1

4
〈cjiϕ̃∞, (ω̃k)∞〉Wωk. (3.4.58)

Let η be the skew-form used in the definition of Ψ in (3.4.29). Note that

η(c12p, q) = η(−ip, q) = −i = −η(p, c12q). (3.4.59)

Similar computation shows that η(cjkv, w) = −η(v, cjkw) for all j 6= k and v, w ∈ ∆+.

Using the basis p, q for ∆+, we can then expand the above inner product as

〈cjiϕ̃∞, (ω̃k)∞〉ωk = 〈η(cjiϕ̃∞, p), η((ω̃k)∞, p)〉+ 〈η(cjiϕ̃∞, q), η((ω̃k)∞, q)〉ωk

= 〈η(ϕ̃∞, cijp), η((ω̃k)∞, p)〉+ 〈η(ϕ̃∞, cijq), η((ω̃k)∞, q)〉ωk

= 〈ψ∗(ϕ⊗ cijp), ψ∗(ωk ⊗ p)〉+ 〈ψ∗(ϕ⊗ cijq), ψ∗(ωk ⊗ q)〉ωk

= 〈ψψ∗(ϕ⊗ cijp), ωk ⊗ p〉+ 〈ψψ∗(ϕ⊗ cijq), ωk ⊗ q〉ωk

= trace∆+(ψψ∗ ◦ (1⊗ cij))ϕ, (3.4.60)

where we denote trace∆+ = 1⊗ trace on End(E ⊗∆+) = End(E)⊗ End(∆+). With

notation as in (3.4.3), we have that

ψψ∗ ◦ (1⊗ cij) = (ψψ∗)0 ⊗ cij +
4∑

k=2

(ψψ∗)kc1kij. (3.4.61)

If, say, i = 1, then c1kij = ckj, which is trace-free on ∆+ unless k = j. Similarly, if

j = 1 then c1kij = −cki is trace-free unless k = i. On the other hand, if k = i then

c1kij = −c1j is trace-free unless j = 1, and if k = j then c1kij = c1i is trace-free unless

i = 1. If, however, the pairs {i, j} and {1, k} are disjoint, then c1kij = ±c(vol) = ∓1

on ∆+.

Summarizing, we have that c1kij is trace-free unless the pairs {1, k} and {i, j} are
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either equal or disjoint, and we have

trace∆+(ψψ∗ ◦ (1⊗ cij)) =


2(ψψ∗)i if j = 1,

−2(ψψ∗)j if i = 1,

∓2(ψψ∗)k if c1kij = ±c(vol).

(3.4.62)

Taking the self-dual part of a ∧ a, (3.4.58) gives us

[a1, ai] + [aj, ak] = 2P (c1i + cjk)G− (ψψ∗)i (3.4.63)

for (i, j, k) cyclic permutations of (1, 2, 3). Since c(
∧+) is 0 on S−, we have 2P (c1i +

cjk)G = 0. The remaining terms give precisely the ADHM equations (3.4.4).

Corollary 3.4.64. For V,W, ai, ψ the ADHM data corresponding to an instanton ∇

on E, the dimension of V is the charge of the instanton −c2(E).

Proof. In the construction, V = kerD−. Since kerD+ = 0, by the Atiyah–Singer

Index Theorem, dimV = − indD = −c2(E).

3.4.5 From ADHM data to instanton

Conversely, given ADHM data V,W, ai, ψ, we define an SU(n)-vector bundle E and

an instanton ∇ as follows. Recall the definition, first given in (3.4.6),

Qx =

ci ⊗ (ai − xi)

ψ∗

 .
By the non-degeneracy condition, Qx has full rank for all x, and so has kernel of

dimension n everywhere. Thus Ex = kerQx defines a rank n subbundle of the trivial

bundle V ⊗∆− ⊕W → R4. Define ∇ to be the connection induced from the trivial

connection by orthogonal projection.
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Theorem 3.4.65. Given ADHM data V,W, ai, ψ, the connection ∇ defined above is

an instanton.

Proof. Evaluating Q∗xQx : V ⊗∆+ → V ⊗∆+,

Q∗xQx = −(ci(ai − xi))(cj(aj − xj)) + ψψ∗

=
4∑
i=1

(ai − xi)2 −
∑
i<j

cij[ai, aj] + ψψ∗

=
4∑
i=1

(ai − xi)2 − c((a ∧ a)+) + ψψ∗

=
4∑
i=1

(ai − xi)2 + (ψψ∗)0 ⊗ 1, (3.4.66)

where we have used the ADHM equations 3.4.4 to obtain the final equality. By the

nondegeneracy condition, Q∗xQx is invertible for all x, and so we can define Γx =(∑4
i=1(ai − xi)2 + (ψψ∗)0

)−1 ∈ End(V ). Writing Γx ⊗ 1 ∈ End(V ) ⊗ End(∆), we

have that (Γx ⊗ 1)|∆+ = (Q∗xQx)
−1. Note in particular that Clifford multiplication

commutes with Γx.

Projection onto Ex = kerQx is given by

Px = 1−QxΓQ
∗
x. (3.4.67)

The connection on Ex is then ∇ = PxdPx.

Computing the curvature gives

∇i∇j = Px∂i(1−QxΓQ
∗
x)∂jPx

= Px∂i∂jPx + PxciΓcjPx

= Px∂i∂jPx + PxcicjΓPx. (3.4.68)

After skew-symmetrizing, the first term vanishes, leaving

[∇i,∇j] = 2PxcijΓPx. (3.4.69)
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Note that the cij are acting on ∆−, and so the self-dual part vanishes. Therefore, ∇

is an instanton.

The process described above is the inverse of the process of generating ADHM data

from an instanton. Therefore, valid ADHM data are in one-to-one correspondence

with SU(n)-instantons on R4.
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Chapter 4

The S1-Invariant ADHM Construction

As discussed in §2.2, monopoles are the 3-dimensional reduction of instantons. As

such, monopoles on a space X correspond to instantons on X × R or X × S1. For

this chapter, we consider an identification of instantons and monopoles given by an

S1-fibration that is not trivial, namely (up to orientation) the Hopf fibration S3 → S2

extended radially. In this case, studied by Pauly [Pau96, Pau98], the monopoles will

be on R3 with singularity at the origin.

Because of this correspondence, in order to study singular monopoles on R3, we

can instead consider the corresponding instanton on R4, in which case the powerful

tool of the ADHM construction (see §3.4) can be applied. Of course, most instantons

constructed via ADHM will not be S1-invariant, so it is necessary to see how the

S1-invariance condition exhibits itself in terms of the ADHM data. In this chapter,

we give an S1-invariant ADHM construction by decomposing V = kerD− into S1-

subrepresentations.

The approach taken is similar to that in [BA90]. In that case, they give an S1-

invariant ADHM construction for hyperbolic monopoles by considering the conformal

identification H3 × S1 = R4 − R2 = S4 − S2.
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4.1 Monopoles and S1-invariant instantons

Identifying R4 = H, S1 acts by multiplication on the right by eiθ. We consider the

map

π : H→ ImH

q 7→ qiq̄.
(4.1.1)

The map π is invariant under the S1 action and so defines a quotient map.

We will work with this map using complex coordinates. Identifying H = C2 by

q = z1 + z2j, then eiθ ∈ S1 acts by (eiθz1, e
−iθz2). We can also identify C⊕ R = =H

by (z, x) 7→ xi− zk, in which case the quotient map (4.1.1) is written

π : C2 → C⊕ R

(z1, z2) 7→ (2z1z2, |z1|2 − |z2|2).
(4.1.2)

Away from the fixed point 0, this defines an S1 fibration over R3 \{0}. Indeed, up to

choice of orientation, fixed only for sign purposes, this is the Hopf fibration S3 → S2

extended radially.

We will also use real coordinates, given by (z1, z2) = (x1 + ix2, x3 + ix4) where

convenient. In these real coordinates, the vector field ∂θ in the direction of the action

is given by

∂θ = −x2∂1 + x1∂2 + x4∂3 − x3∂4. (4.1.3)

Let ξ denote twice its metric dual,

ξ = 2(−x2dx1 + x1dx2 + x4dx3 − x3dx4). (4.1.4)

Letting y be the coordinates on R3, from (4.1.1) it is easy to see that |y| = |x|2.

Moreover, computing pullbacks gives that the forms π∗dyi are all orthogonal to each

other and orthogonal to ξ. Since |π∗dyi| = |ξ| = 2|x|, we can express the metric on

R4 as
4∑
i=1

dx2
i =

1

4|x|2

(
3∑
i=1

(π∗dyi)
2 + ξ2

)
. (4.1.5)
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We can now describe the correspondence between instantons on R4 \ {0} and

monopoles on R3 \ {0}. Given an SU(n)-vector bundle E ′ over R3 \ {0} with a

monopole (∇3,Φ), we define a connection ∇4 on the pullback bundle E = π∗E ′ by

∇4 = π∗∇3 + π∗Φ⊗ ξ. (4.1.6)

Because the fibres of the pullback bundle E are naturally identified along S1-orbits,

for eiθ ∈ S1 viewed as a diffeomorphism of R4, we can identify (eiθ)∗E = E. As

such, we can view (eiθ)∗∇4 as a connection on E. For connections ∇4 obtained from

pairs (∇3,Φ) as in (4.1.6), ∇4 is S1-invariant in the sense that (eiθ)∗∇4 = ∇4. A

more in-depth discussion of the S1 action on E is given later, when discussing the

extension to a bundle with action on S4.

Lemma 4.1.7. The pair (∇3,Φ) is a monopole if and only if ∇4 is an instanton.

Proof. Computing the curvature of ∇4,

F∇4 = π∗F∇3 + π∗(d∇3Φ) ∧ ξ + π∗Φ ∧ dξ. (4.1.8)

Observe that dξ = 4(dx1 ∧ dx2 − dx3 ∧ dx4) is anti-self-dual, and so

F+
∇4 = (π∗F∇3 + π∗(d∇3Φ) ∧ ξ)+ . (4.1.9)

For a one-form on α on R3, the expression for the metric (4.1.5) shows clearly that

∗4(π∗α ∧ ξ) = π∗(∗3α). Then evaluating (4.1.9),

0 =
1 + ∗4

2
π∗(F∇3 + ∗3d∇3Φ). (4.1.10)

Clearly if (∇3,Φ) satisfies the Bogomolny equation (2.3.4), then F+
∇4 = 0.

Conversely, suppose F+
∇4 = 0. For any β ∈ Ω2(R3) note that ∗4π

∗β = π∗ ∗3 β ∧ ξ,

again by (4.1.5). Note, however, that ξ is orthogonal to all pullbacks from R3, and

so we have that if π∗β is self-dual then β = 0. Applying this to β = F∇3 + ∗3d∇3Φ

shows that (∇3,Φ) satisfies the Bogomolny equation.
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Remark. Because only the self-dual part dξ vanishes, we do not obtain a correspon-

dence for connections with self-dual curvature. This stands in contrast to the cor-

respondence between monopoles on M and S1-invariant instantons on M × S1 (cf.

§2.3).

This correspondence is one-to-one: if ∇4 is an instanton on E = π∗E ′ that is

S1-invariant and s ∈ Γ(E ′), then ∇4π∗s is S1-invariant, and so is itself the pullback

of a section on E ′. This allows us to define

π∗(Φs) =
1

2|x|2
∇4
∂θ
π∗s, (4.1.11)

π∗(∇3
Xs) = ∇4

π∗Xπ
∗s. (4.1.12)

Here π∗X denotes the horizontal lift of X.

Remark. The correspondence between instantons and monopoles implicitly specifies

an S1 action on the bundle E. If a connection is invariant with respect to multiple

actions on E, then it will correspond to multiple monopoles. This phenomenon can

be seen in §4.3.1.

Pauly [Pau98] studied such monopoles with conditions such that F∇4 has finite

energy locally around 0, in which case ∇4 extends to a smooth connection across the

origin by [Uhl82]. In particular, he enforced no conditions on the behaviour of F∇4 as

x → ∞. We study such monopoles under the assumption that ∇4 has finite energy

over all R4.

By stereographic projection, we consider R4 ⊂ S4. The finite energy condition

‖F∇4‖2 < ∞ then ensures that E and ∇4 can also be extended smoothly over the

point ∞ [Uhl82], and so we obtain a bundle E → S4.

Even though the finite energy condition on ∇4 means that the instanton can be

extended smoothly across 0, in general the corresponding monopole will still be sin-

gular at 0. The finite energy assumption, however, does enforce a specific behaviour
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of Φ, both at the singularity at 0 and as a decay condition at ∞. This behaviour of

Φ is described in Proposition 4.1.25, and is given in terms of the behaviour of the

S1-action on E, which we describe now.

The S1-action extends to an action on S4, with the only fixed points being 0 and

∞. Recall the definition of the pullback bundle

E = π∗E ′ = {(p, v) ∈ (S4 \ {0,∞})× E ′ | v ∈ E ′π(p)}. (4.1.13)

With this description, we define a lift of the S1 action on S4 \ {0,∞} to E by

ρ(eiθ)(x, v) = (eiθx, v). Equivalently, given a local frame s′ = {s′i} on E ′, we can

define the pullback frame on E by si = π∗s′i. The lift of the S1-action is given with

respect to this frame by ρ(eiθ)si = si(e
iθx). Note that, although we have extended

the bundle E over all of S4, the pullback structure, and hence the S1-action ρ, is

defined only away from the points 0 and ∞. Corollary 4.1.23 will show that the

S1-action can be extended to E0 and E∞.

Although a pullback frame like the above is convenient for the description of the

S1-action, there are reasons to consider other frames on E. In particular, a singularity

of (∇3,Φ) pulls back to a singularity in the connection form of ∇4 when written with

respect to an S1-invariant frame. However, since ∇4 extends smoothly to S4, there

must be a change of frame that removes the apparent singularity in the connection

form. This new frame, however, will not in general be S1-invariant.

We therefore wish to describe the S1-action on E with respect to more general

choice of frames. For s = {si} a local frame on E such that both x and and eiθx are

in the domain of s, we denote by [ρx(e
iθ)]s ∈ Cn×n the frame-dependent expression

for ρ(eiθ), so that

ρ(eiθ)sj(x) = [ρx(e
iθ)]kjsk(x). (4.1.14)

Let us consider in particular a radially covariant constant frame s̃. Fix an or-

thonormal basis {ei} of E0, and define s̃i(x) by parallel translation of ei along the
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radial geodesic from 0 to x. This defines a trivialization of E|S4\{∞}. Given that this

frame is not S1-invariant, we should expect [ρx(e
iθ)] 6= 1 in general. Moreover, the

expression [ρx(e
iθ)] could a priori vary with x. The following lemma shows this is not

the case.

Lemma 4.1.15. Let s̃ be the radially covariant constant frame as defined above.

Then the local expression [ρx(e
iθ)]s̃ is constant in x.

Proof. For a curve γ : [0, 1] → S4, let τγ : Eγ(0) → Eγ(1) denote parallel transport

along γ. Let f0 ∈ Eγ(0) and let f be a covariant constant section along γ with

f(γ(0)) = f0, and so τγf0 = f(γ(1)). Because ∇ is S1-invariant, ρ(eiθ)s is covariant

constant along the curve eiθγ, showing that τeiθγρ(eiθ)f0 = ρ(eiθ)f(γ(1)) = ρ(eiθ)τγf0.

That is,

τeiθγρ(eiθ) = ρ(eiθ)τγ. (4.1.16)

For the rest of the proof we will work with the frame s̃ and a fixed θ, so for ease

of notation we omit these in the local expression, writing [ρx(e
iθ)]s̃ = [ρx]. Let [τγ]

denote the local expression for τγ with respect to the frame s̃. Then locally, (4.1.16)

becomes

[τeiθγ][ργ(0)] = [ργ(1)][τγ]. (4.1.17)

Consider radial geodesic coordinates x for S4 \ {∞} centred at 0, and for λ > 0

let λx denote scalar multiplication in these coordinates. If γ is a radial geodesic,

then since s̃ is radially covariant constant, [τγ] = 1. Moreover, the curve eiθγ is also a

radial geodesic, and so [τeiθγ] = 1 also. Setting γ in (4.1.17) to be the radial geodesic

from x to λx then gives

[ρx] = [ρλx]. (4.1.18)

Therefore, [ρx] is radially constant.
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Since ∇ is smooth, the connection form A of ∇ with respect to the frame s̃ is

bounded over compact subsets K ⊂ S4 \ {∞}. Therefore, there is a constant CK

depending only on the subset K such that

|[τγ]− 1| < CK |γ|, (4.1.19)

where γ is a curve in K and |γ| denotes the length of γ.

Let x, y 6= 0, and let K ⊂ S4 \ {∞} be a ball centred at 0 containing both x and

y. Let γy,x denote a length-minimizing geodesic from x to y. Since S4 \ {0,∞} is

connected, it is sufficent to show that [ρx] is locally constant. We may thus assume

without loss of generality that γy,x is contained in K and does not pass through 0.

The geodesic distance |γy,x| between x and y is bounded by the Euclidean distance

|x− y| =
√∑

(xi − yi)2 in the geodesic coordinates, and so we obtain

|[τγy,x ]− 1| < CK |γy,x| < CK |x− y|. (4.1.20)

Scaling by λ > 0 gives |λx− λy| = λ|x− y|. Therefore, for fixed x and y,

[τγλy,λx ] = 1 +O(λ) (4.1.21)

as λ → 0. Since the S1-action preserves the lengths |x|, |y|, and |γy,x|, we have

similarly that [τeiθγλy,λx ] = 1 +O(λ).

From (4.1.17),

[ρλx] = [τeiθγλy,λx ]
−1[ρλy][τγλy,λx ]

= [ρλy] +O(λ). (4.1.22)

From (4.1.18), however, [ρλx] and [ρλy] are both constant in λ. Therefore [ρλx]− [ρλy]

is both constant in λ and O(λ), hence it must be 0. Therefore [ρx] = [ρy], and so [ρx]

is constant in x.
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Because [ρx] is constant in the frame s̃, it can be extended continuously to the

fibre E0. By defining a similar frame that is radially covariant constant from ∞, we

can extend the action to E∞. This proves the following Corollary.

Corollary 4.1.23. The S1-action ρ(eiθ) on E|S4\{0,∞} extends continuously to an

S1-action on E over all of S4.

Since 0 and ∞ are fixed points of the S1 action, we have that ρ(eiθ) maps E0 to

E0 and E∞ to E∞. Therefore, the fibres E0 and E∞ are representations of S1. Since

S1 is abelian, these representations diagonalize, so that after some local changes of

trivialivization we have

ρ(eiθ)E0 =


eik1θ

eik2θ

. . .

eiknθ


, ρ(eiθ)E∞ =


ei`1θ

ei`2θ

. . .

ei`nθ


.

(4.1.24)

We will refer to the coefficients ki and `i of the exponents as the weights of the

representation. We henceforth assume the weights are ordered by k1 ≥ k2 ≥ · · · ≥ kn

and `1 ≥ `2 ≥ · · · ≥ `n. Since ρ preserves the SU(n)-structure of the vector bundle,

as can be seen by looking in an S1-invariant frame, we have

∑
j

kj =
∑
j

`j = 0.

Remark. Even though Lemma 4.1.15 shows that [ρx]s is constant in a frame s defined

everywhere away from ∞, note that this frame need not in general extend across ∞,

and so the constant action need not extend across ∞. When we then choose a frame

s′ around ∞ with respect to which [ρx]s′ is constant, it is not in general true that

[ρx]s = [ρx]s′ , and so the extensions of the S1 action at 0 and∞ will in general not be

isomorphic as S1-representations. In particular, we should not expect that kj = `j.
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The weights kj and `j can be obtained directly from the monopole as the eigen-

values of the leading term of Φ, at 0 for the weights kj and at ∞ for the weight

`j.

Proposition 4.1.25. Let (∇3,Φ) and ∇4 be a monopole and instanton as in the

preceeding discussion, with ‖F∇4‖2 <∞. Then in some trivialization near 0,

Φ =
1

2|y|


ik1

. . .

ikn

+O(1),

and in some trivialization near ∞,

Φ =
1

2|y|


i`1

. . .

i`n

+O(|y|−2).

Proof. Let e1, . . . , en be a basis for E0 with respect to which ρE0 is diagonal as in

(4.1.24). Let s be the frame on E|S4\{∞} defined by parallel translation of ei along

radial geodesics from 0. By Lemma 4.1.15, we then have the frame-dependent ex-

pression [ρx(e
iθ)]s is constant in x.

Let (z1, z2) be complex coordinates for the stereographic projection C2 = R4 =

S4 \ {∞}, and let U = {z1 6= 0}. Any element of U can be written as (z1, z2) =

eiθ · (λ,w), where eiθ = z1
|z1| ∈ S1, λ = |z1| ∈ R>0, and w = z1z2

|z1| ∈ C. The slice

R>0 × C then parametrizes all of the S1-orbits in U . Starting with the frame s

along the slice R>0×C, we can use the S1-action to extend to an S1-invariant frame

(t1, . . . , tn). More precisely, we define

tj(e
iθ · (λ,w)) = ρ(eiθ)sj(λ,w) = eikjθsj(e

iθ · (λ,w)). (4.1.26)

We can define a similar S1-invariant frame away from z2 = 0.
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Let A be the connection form of ∇ with respect to the frame s and Ã be the

connection form with respect to the frame t. Since the change of gauge from s to t is

g(eiθ · (λ,w)) =


e−ik1θ

. . .

e−iknθ

 ,
we obtain

Ã∂θ = gA∂θg
−1 + g∂θg

−1

= gA∂θg
−1 +


ik1

. . .

ikn

 . (4.1.27)

Let r = |z|, and ∂r give the unit radial vector field on C2 = R4. Since the frame

s was obtained by radial parallel translation, we have A∂r = 0 and A vanishes in all

directions at the origin. As such, since |∂θ| = r,

|∂rA∂θ | = |F∇(∂r, ∂θ)| ≤ r‖F∇‖L∞ . (4.1.28)

Therefore |A∂θ | ≤ r2‖F∇‖L∞ . From (4.1.27) and the correspondence with Φ given in

(4.1.11),

π∗Φ =
1

2r2
Ã∂θ

=
1

2r2


ik1

. . .

ikn

+O(1) (4.1.29)

In coordinates on R3,

Φ =
1

2|y|


ik1

. . .

ikn

+O(1) (4.1.30)
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as y → 0.

Performing a similar argument in the stereographic coordinates x̃ near ∞, in an

S1-invariant trivialization we have

A∂θ =


i`1

. . .

i`n

+O(|x̃|2) (4.1.31)

as x̃→ 0. Since |x̃| = |x|−1, we can compute in the coordinates x

π∗Φ =
1

2|x|2


i`1

. . .

i`n

+O(|x|−4). (4.1.32)

In coordinates on R3,

Φ =
1

2|y|


i`1

. . .

i`n

+O(|y|−2) (4.1.33)

as y →∞.

4.2 S1-invariant ADHM construction

In this section we specialize the ADHM construction from §3.4 to the case where ∇ is

S1-invariant. We do this by decomposing the space V = kerD− into subrepresenta-

tions of different weights. We can compute the dimensions of these subrepresentations

using equivariant index theory.

Proposition 4.2.1. The S1-action lifts to an action on the spinor bundle S over S4.

Moreover, this action preserves the decomposition S = S+ ⊕ S−.
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Proof. Let µθ : S4 → S4 denote the action by eiθ ∈ S1. For an element of the frame

bundle sx ∈ FSO(S4)x, pushforward (µθ)∗sx gives a lift of µθ(x). Choose an element

of the spin bundle px ∈ Px above sx. For small θ there is a unique lift γ of (µθ)∗sx to P

such that γ(0) = px. Continuing in θ then defines a section, and hence a trivialization

of P , along the curve µθ(x). If γ(2π) = γ(0), then there is a trivialization over the

entire S1 orbit in S4, and hence a lift of the S1 action. Note that since (µ2π)∗sx = sx,

the lift γ(2π) must be one of two elements in Px above sx. Contracting S1 orbits in

S4 to the fixed point 0, by homotopy it is then enough to exhibit a lift on the fibre

P0. Note that we could instead contract to the fibre at ∞, and the construction of a

lift there would be similar to that described below.

We construct the lift explicitly on Spin(T0S
4) ⊂ Cl(T0S

4). For an orthonormal

basis of T0S
4, let c1, . . . , c4 be the corresponding elements of Cl(T0S

4). We then

define

γ(θ) =

(
cos

θ

2
+ sin

θ

2
c1c2

)(
cos

θ

2
− sin

θ

2
c3c4

)
. (4.2.2)

Note that, despite the presence of θ
2
, the above expression is unchanged on replacing

θ by θ + 2π, and therefore γ is a well-defined map S1 → Spin(T0S
4).

We now verify that γ(θ) is a lift of (µθ)∗. For i = 1, 2 note that ci commutes with

c3c4, but anticommutes with c1c2. Therefore, γ(θ) acts on ci ∈ T0S
4 by

γ(θ)ciγ(θ)−1 =

(
cos

θ

2
+ sin

θ

2
c1c2

)
ci

(
cos

θ

2
− sin

θ

2
c1c2

)
=

(
cos

θ

2
+ sin

θ

2
c1c2

)2

ci

= (cos θ + sin θc1c2)ci.

It is a simple computation to show that µθ does indeed act on span{c1, c2} by multi-

plication by (cos θ+ sin θc1c2). A similar computation shows that γ(θ) acts correctly

on c3 and c4. Therefore γ defines a lift at 0, and thus a lift everywhere on S4.

This action then gives an action on the spinor bundle S which respects the Clifford
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action on S in the sense that, for s ∈ Sp and X ∈ TpS4

γ(θ)c(X)s = c((µθ)∗X)γ(θ)s. (4.2.3)

Recall that the decomposition S = S+⊕S− is the ∓1-eigenvalue decomposition with

respect to c(vol), where vol is the volume form on S4. Since vol is invariant under

the S1-action, this decomposition is also preserved under the action.

We can compute the action on the fibres S±0 and S±∞.

Lemma 4.2.4. The S1 action is trivial on S+
0 and S−∞, and has weights ±1 on S+

∞

and S−0 .

Proof. At 0, the action is given explicitly by (4.2.2), and when expanded becomes

γ(θ) = cos2 θ

2
− sin2 θ

2
c1234 + cos

θ

2
sin

θ

2
(c12 − c34), (4.2.5)

On S+, the volume form c1234 acts as −1 while anti-self-dual forms such as c12 − c34

act trivially. Thus, the S1-action on S+ is simply 1. On S−, the volume form acts as

1 and c34 acts as −c12, giving that

γ(θ)|S− = cos θ + sin θc12. (4.2.6)

Since c2
12 = −1, it diagonalizes on (the two-dimensional) S− as ±i, from which we

see that γ(θ)|S− diagonalizes as e±iθ.

Around∞, we note that the action appears the same in stereographic coordinates,

and so we obtain the same explicit expression for γ(θ)|S∞ . The same argument as at

0 then applies, needing only to switch S+ and S− because the map from coordinates

x near 0 to stereographic coordinates x̃ near ∞ is orientation-reversing.

If ∇ is an S1-invariant connection, then the associated Dirac operator D = ci∇i

acting on E ⊗ S is S1-equivariant. Likewise, the operators D± : S± ⊗ E → S∓ ⊗ E

are S1-equivariant.
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As a result, V = kerD− carries an S1-action. We can then decompose V =⊕
j Vmj , where Vmj is a subrepresentation on which S1 acts as eimjθ. Note that in

this notation, Vmj is not an irreducible representation (which are all one-dimensional)

but instead a collection of all the irreducible subrepresentations of the same weight.

Recall from Sections 3.4.2 and 3.4.4 that the ADHM data are given by maps

α = Pz1 and β = Pz2, where by zi we mean multiplication by zi, and P denotes

orthogonal projection to V . Since P is S1-equivariant, for φ ∈ Vm we have

ρ(eiθ)(αφ) = P (eiθz1)(eimθφ) = ei(m+1)θαφ. (4.2.7)

As such, α : Vm → Vm+1, and similarly β : Vm → Vm−1. We then write αm = α|Vm
and βm = β|Vm .

As part of the ADHM data, there was an additional vector space W and maps

π : V → W and σ : W → V . We decompose these similarly, letting πm = π|Vm , and

σm = projVm σ. Restricting to the Vm → Vm part of the ADHM equations (3.4.13)

and (3.4.14) gives

αm−1βm − βm+1αm + σmπm = 0, (4.2.8)

αm−1α
∗
m−1 − α∗mαm + βm+1β

∗
m+1 − β∗mβm + σmσ

∗
m − π∗mπm = 0. (4.2.9)

On the other hand, for m 6= p, terms involving α and β vanish in the Vm → Vp part

of the ADHM equations, giving additional equations only for π and σ,

σpπm = 0, (4.2.10)

σpσ
∗
m − π∗pπm = 0. (4.2.11)

These S1-invariant ADHM equations, together with the same non-degeneracy con-

dition that Rz from (3.4.15) is full rank, can then be used to construct S1-invariant

instantons.

In order to construct examples, it remains only to see what decompositions of

V are indeed possible. In the same way that the dimension of V can be computed
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using index theory, the dimension of each Vm can be found using equivariant index

theory. For this purpose, it is necessary to introduce some concepts from equivariant

K-theory. It should be noted, however, that in the case of interest, because the fixed

points of the action are isolated points, many of the topological considerations do

not arise, and the index computation involves only the characters of certain repre-

sentations. The definitions below leading up to the Atiyah–Segal–Singer Fixed Point

Theorem follow mainly from Lawson–Michelson [LM89, §§ III.9, III.14].

Let M be a manifold equipped with an action by a compact Lie group G. In

a similar way to how K(M) is defined to be formal sums of equivalence classes of

vector bundles, we define KG(M) to be formal sums of G-vector bundles, now where

equivalence is given byG-equivariant isomorphisms. We also define the representation

group R(G) to be the abelian group generated by irreducible representations of G,

or equivalently R(G) = KG({pt}).

Our application of equivariant index theory will be on a fixed point set, and so it is

sufficient to consider the case where the G-action on M is trivial. Therefore each fibre

of a G-vector bundle is a representation of G. Consider for a moment a representation

V of G, and denote by Vi the irreducible representations of G. Any finite-dimensional

representation of G can be decomposed into a sum of irreducible subrepresentations,

and by Schur’s Lemma HomG(Vi, V ) = Cdi where di is the number of copies of Vi

showing up in the decomposition. Therefore, we have that

V =
⊕
i

HomG(Vi, V )⊗ Vi.

Applying this to each fibre of a G-vector bundle E and varying the base point,

E =
⊕
i

HomG(Ei, E)⊗ Ei, (4.2.12)

where Ei is the (topologically) trivial irreducible G-bundle Ei = M × Vi. Extending

this equivalence to formal sums of bundles, we then have for trivial G-actions on M
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that

KG(M) ∼= K(M)⊗R(G). (4.2.13)

We define the equivariant Chern character chG to be the R(G)-valued characteristic

class obtained by composing this isomorphism with ch⊗1. For a representation V

of G, there is a character (of the representation) χV : G → C defined by taking the

trace of g : V → V . Composing this with chG gives a map

chg : KG(M)→ H•(M). (4.2.14)

Also, given a G-bundle E, define λ−1(E) = [Λeven(E)]− [Λodd(E)] ∈ KG(M).

Given a G-invariant elliptic operator P : C∞(E)→ C∞(F ), we define the R(G)-

valued G-index to be

indG(P ) = [kerP ]− [cokerP ]. (4.2.15)

As above, we can take the character of this representation to define

indg(P ) = trace(g|kerP )− trace(g|cokerP ). (4.2.16)

Additionally, define the symbol class σ(P ) of P to be

σ(P ) = [π∗E]− [π∗F ] ∈ KG(TM), (4.2.17)

where π : TM →M denotes projection.

Remark. The symbol class σ(P ) should more correctly be viewed as an element of

KG(DM, ∂DM), classes of vector bundles that are equivalent on the boundary of the

disk bundle of M . By ellipticity, the symbol of P gives such an equivalence between

π∗E and π∗F over ∂DM . For the following, however, we will be pulling back σ(P )

to a point, and so the distinction will be unimportant.

Let Fg ⊂M denote the fixed point set of an element g ∈ G, and let i : TFg ↪→ TM

be inclusion, and let π : TFg → Fg be projection. Let Ng be the normal bundle of Fg.
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With the notation above, we have the Atiyah–Singer–Segal Fixed Point Theorem,

indg(P ) = (−1)d
(

chg i
∗σ(P )

chg(λ−1π∗(Ng ⊗ C))
Â(Fg)

2

)
[Fg]. (4.2.18)

where d is the dimension of Fg.

Proposition 4.2.19. Let ∇ be an S1-invariant instanton on a bundle E where

k1, . . . , kn and `1, . . . , `n are the weights of the S1-action on E0 and E∞. Then the

character of the representation kerD− is

χkerD− =
(eik1θ + · · ·+ eiknθ)− (ei`1θ + · · ·+ ei`nθ)

(eiθ/2 − e−iθ/2)2
. (4.2.20)

Proof. Since, for θ 6= 0, the fixed point set consists of two isolated points, Fθ =

{0,∞}, the various vector bundles in (4.2.18) are all merely pairs of vector spaces.

As such, chg is merely the character of the representation. Therefore, evaluating first

at 0 and making use of Lemma 4.2.4 to compute the character of the representations

of S+
0 and S−0 ,

chθ(i
∗σ)0 = χE0⊗S+

0
(θ)− χE0⊗S−0

(θ)

= (χE0 · (χS+
0
− χS−0 ))(θ)

= (eik1θ + · · ·+ eiknθ)(−eiθ + 2− e−iθ). (4.2.21)

Similarly, at ∞

chθ(i
∗σ)∞ = (ei`1θ + · · ·+ ei`nθ)(eiθ − 2 + e−iθ). (4.2.22)

The denominator may be explicitly computed from the action on (Nθ)p = TpS
4 ⊗ C

chθ(λ−1π
∗(N ⊗ C)) = χΛevenTpS4⊗C(θ)− χΛoddTpS4⊗C(θ)

= 6 + e2iθ + e−2iθ − 4eiθ − 4e−iθ

= (eiθ/2 − e−iθ/2)4. (4.2.23)
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Note also that Â(pt) = 1.

Since kerD+ = 0, assembling (4.2.21), (4.2.22), and (4.2.23) in (4.2.18) gives

χkerD−(θ) = − indθ(D
+)

=
((eik1θ + · · ·+ e−iknθ)− (ei`1θ + · · ·+ ei`nθ))(eiθ − 2 + e−iθ)

(eiθ/2 − e−iθ/2)4
.

Canceling by the common factor (eiθ/2 − e−iθ/2)2 gives the result.

4.3 Structure group SU(2)

If the structure group of E is SU(2), then E0 and E∞ are each 2-dimensional, and

so the S1 actions each have two weights. Since these weights must sum to 0, they

are k,−k at 0 and `,−` at ∞. In this case, the character of the representation

V = kerD− from (4.2.20) simplifies, giving the following proposition.

Proposition 4.3.1. Let ∇ be an S1-invariant instanton with weights k on E0 and `

on E∞. Then the character of the S1-representation on V is

χV =

(k−1)∑
m=−(k−1)

(k − |m|)eimθ −
(`−1)∑

m=−(`−1)

(`− |m|)eimθ. (4.3.2)

Proof. From (4.2.20), the character of the representation is

χV =
(eikθ + e−ikθ)− (ei`θ + e−i`θ)

(eiθ/2 − e−iθ/2)2
. (4.3.3)

Subtracting 2 from (eikθ + e−ikθ) and adding 2 to −(ei`θ + e−i`θ), these terms are then

squares. The above then evaluates to

χV =

(
ei
k
2
θ − e− k2 θ

ei
θ
2 − e−i θ2

)2

−

(
ei
`
2
θ − e− `2 θ

ei
θ
2 − e−i θ2

)2

= (ei
k−1
2
θ + ei

k−2
2
θ + · · ·+ e−i

k−1
2
θ)2

− (ei
`−1
2
θ + ei

`−2
2
θ + · · ·+ e−i

`−1
2
θ)2

(4.3.4)
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The proposition is then given by seeing that

(ei
k−1
2
θ + ei

k−2
2
θ + · · ·+ e−i

k−1
2
θ)2

= ei(k−1)θ + 2ei(k−2)θ + · · ·+ (k − 1)eiθ + k

+ (k − 1)e−iθ + · · ·+ 2e−i(k−2)θ + e−i(k−1)θ,

and recognizing that (4.3.2) is simply a more succinct expression for these coefficients.

The decomposition V =
⊕

Vm into subrepresentations Vm of weight m can be

obtained from the character, with dim(Vm) given by the coefficient of eimθ in χV . We

then have the following results about such instantons and their weights.

Corollary 4.3.5. If E admits an S1-invariant instanton, then k ≥ `.

Proof. From (4.3.2), the dimension of V0, which must be nonnegative, is k − `.

We can write the dimensions a little more simply as

dim(Vm) =


k − ` if |m| ≤ `,

k − |m| if ` < |m| ≤ k − 1,

0 if |m| ≥ k.

(4.3.6)

Corollary 4.3.7. An S1-invariant instanton on E has charge k2 − `2.

Proof. By Corollary 3.4.64, the charge of an instanton is equal to dim(V ), which can

be found by summing dim(Vm).

Corollary 4.3.8. There are no S1-invariant SU(2)-instantons with charge 2 (mod 4).

Proof. By Corollary 4.3, the charge is a difference of squares, and so cannot be 2

(mod 4).
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Before continuing on to computing examples with various different weights, which

will comprise the rest of this section, we prove a lemma that is helpful in verifying

the non-degeneracy of the ADHM data.

Lemma 4.3.9. The non-degeneracy condition for S1-invariant ADHM data to be

valid (see Definition 3.4.7) need only be verified at z = 0. Moreover, the non-

degeneracy condition holds if kerα ∩ ker β ∩ kerπ = 0.

Proof. Working with complex data, the non-degeneracy condition is that

Rz =

 α∗z β∗z π∗

−βz αz σ


is full rank for all z. Equivalently, RzR

∗
z is invertible for all z. Evaluating and making

use of the ADHM equations,

RzR
∗
z =

α∗zαz + β∗zβz + π∗π −α∗zβ∗z + β∗zα
∗
z + π∗σ∗

−βzαz + αzβz + σπ βzβ
∗
z + αzα

∗
z + σ∗σ


=

α∗zαz + β∗zβz + π∗π 0

0 βzβ
∗
z + αzα

∗
z + σ∗σ

 (4.3.10)

The ADHM equations then also tell us that the two remaining submatrices are equal

to each other, and so it suffices to check the non-degeneracy of α∗zαz + β∗zβz + π∗π,

which as a sum of positive semi-definite matrices is itself positive semi-definite. More-

over, a vector is in the kernel of the sum if and only if it is in the kernel of each of

α∗zαz, β
∗
zβz, and π∗π individually. This is equivalent to the vector being in the kernel

of αz, βz, and ker π simultaneously.

Since αz and βz are triangular, it is clear that αz is injective if z1 6= 0 and βz

is injective if z2 6= 0. Therefore non-degeneracy holds everywhere away from 0, and

to check the condition at 0 it suffices to check that kerα, ker β, and ker π share no

nonzero vectors.
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4.3.1 k = `

We begin with simplest example, where the S1 action has equal weights at 0 and ∞.

By Corollary 4.3, the charge is then 0, and so the instanton is trivial, as is E = M×C2.

Since we have a global identification of fibres, we can take the S1-action to be globally

rθ =

eikθ
e−ikθ

 .
Curiously, this does not mean that the monopole is trivial. Although the connec-

tion form with respect to the obvious trivialization on E = M ×C2 vanishes, we note

that this trivialization is not S1-invariant. To obtain an S1-invariant trivialization,

consider the gauge transformation

g(z) =
1

|z1|k

z̄k1
zk1


away from z1 = 0. Away from z2 = 0 we can use a similar gauge transformation

involving z2. We note that g(eiθ · z)rθg(z) = 1 and so this trivialization is indeed

S1-invariant. We can then compute the Higgs field,

π∗Φ =
1

2|z|2
A∂θ

=
1

2|z|2
g∂θg

−1

=
1

2|z|2

ik
−ik

 .
In the coordinates y on R3 we then have

Φ =
1

2|y|

ik
−ik


This example demonstrates that the correspondence between monopoles and S1-

invariant instantons implicitly takes into account the S1 action under consideration.
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Since the trivial instanton on the trivial SU(2)-bundle is S1-invariant with respect

to many different S1-actions, it corresponds to many different monopoles.

4.3.2 k = 1, ` = 0

The simplest case of a nontrivial instanton is with weights k = 1 and ` = 0, which

must therefore have charge 1. In this case V = V0, and so α = β = 0. Up to gauge,

the ADHM data can be parametrized by λ ∈ R>0, giving

π =

λ
0

 ,
σ =

[
0 λ

]
.

These data correspond to the charge 1 instantons centred at the origin in R4. That

these are all the charge S1-invariant instantons of charge 1 can be directly verified:

they are all S1-invariant as shown below, while no other instanton of charge 1 can be

S1 invariant since the charge density |F∇|2 must be centred at a fixed point of the

S1-action.

These instantons can be seen explicitly, following the description in [Ati79, Chap-

ter II], using quaternionic coordinates and identifying the imaginary quaternions with

su(2). The connection form is then

A = Im

(
x̄dx

λ2 + |x|2

)
.

Note that pulling back by the S1-action does not result in the same form. This

is a result of the frame itself not being S1-invariant, and so we apply the gauge

transformation g = x
|x| to make it so. The new connection form is then

Ã = gAg−1 + gdg−1

= Im

(
λ2dx x̄

2|x|2(λ2 + |x|2)

)
.
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Pulling back by the S1 action shows that this connection form is S1-invariant, at the

cost of being singular at the origin.

We can then compute the Higgs field

π∗Φ =
1

2|x|2
Ã∂θ

=
λ2(xix̄)

2|x|4(λ2 + |x|2)
.

Noting that (xix̄) = π(x) under the identification of R3 with the imaginary quater-

nions, we thus have that

Φ =
λ2y

2|y|2(λ2 + |y|)
,

where here y = y1i + y2j + y3k. Diagonalizing with the gauge transformation h =

|y|i+y√
2|y|(|y|+y1)

gives

Φ̃ = hΦh−1 =
iλ2

2|y|(λ2 + |y|)
.

4.3.3 k = 2, ` = 1

Because of Corollary 4.3.8, the next simplest case arises for charge 3 instantons,

which occurs when k = 2 and ` = 1. In this case V = V1 ⊕ V0 ⊕ V−1. Each of

these subrepresentations is one-dimensional, and so we can think of αm, βm as simply

complex numbers, and πm and σ∗m as elements of E∞ = C2.

Proposition 4.3.11. S1-invariant instantons with weights k = 2, ` = 1 are parame-

trized by η1, η2 ∈ E∞ satisfying η1 6= ±η2 and 〈η1, η2〉 ∈ R. Acting by SU(2) on η1, η2

gives gauge equivalent solutions.

The ADHM for these parameters are given by

π =
[
η1 0 η2

]
, σ =


η⊥2

0

η⊥1

 ,
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where we take •⊥ to denote

w1

w2

 7→ [
w̄2 −w̄1

]
. The α and β are given by

α0 = α−1 =
1

2

√
|η1|2 − |η2|2 +

√
(|η1|2 − |η2|2)2 + 4|η⊥2 η1|2.

If α0 = 0, which happens only if η⊥2 η1 = 0 and |η2|2 > |η1|2, we take β1 = β0 =√
|η2|2 − |η1|2, otherwise β1 = β0 =

η⊥2 η1
α0

.

Proof. For such an S1-invariant instanton, the ADHM matrix R can be written

R(z) =



−z̄1 −z̄2 β∗1 π∗1

α∗0 −z̄1 −z̄2 β∗0 π∗0

α∗−1 −z̄1 −z̄2 π∗−1

z2 −z1 α0 σ1

β1 z2 −z1 α−1 σ0

β0 z2 −z1 σ−1


(4.3.12)

By Lemma 4.3.9, non-degeneracy need only be verified for R(0).

The proof then proceeds by successive claims.

Claim 1. At least one of π1, σ
∗
1 is non-zero, and at least one of π−1, σ

∗
−1 is non-zero.

To verify this claim, note that if both π1 = σ∗1 = 0, then by (4.2.9),

|α0|2 = |β1|2.

On the other hand, by (4.2.8),

α0β1 = σ1π1 = 0,

and since α0, β1 ∈ C1×1, these imply that α0 = β1 = 0. But then looking at the first

row of R(0), we see that the nondegeneracy condition is not satisfied.

A similar argument shows that at least one of π−1, σ−1 is non-zero.

71



Claim 2. At least one of π1, π−1 is non-zero. Similarly, at least one of σ1, σ−1 is

non-zero.

Suppose to the contrary that π1 = π−1 = 0. Then by Claim 1, both σ1 and σ−1

are non-zero. By (4.2.11), we have

σ1σ
∗
−1 = π∗1π−1 = 0,

and therefore σ1 and σ−1 are orthogonal in C2. By (4.2.10),

σ1π0 = 0, σ−1π0 = 0.

Therefore, π0 is a third orthogonal element of C2, and so must be 0.

Furthermore, from (4.2.8), we have

α0β1 = 0, α−1β0 = 0.

Therefore the first three rows of R(0) contain at most two nonzero entries, and so

the nondegeneracy condition is not satisfied. Therefore the claim is verified.

Claim 3.

π0 = σ∗0 = 0.

We will show π0 = 0. The argument for σ0 is similar.

Suppose first that σ1 = 0. Then by Claims 1 and 2, both π1 and σ−1 are nonzero.

But then by 4.2.10 and 4.2.11,

π∗1π0 = σ1σ
∗
0 = 0, σ−1π0 = 0.

Thus π0 is orthogonal to π1 and σ−1, which are themselves a pair of nonzero orthog-

onal elements of C2, and so π0 = 0.

A similar argument holds in the case σ−1 = 0. Suppose then that σ1 and σ−1 are

both nonzero, and assume to the contrary that π0 is also nonzero. Since they are
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both orthogonal to π∗0, they must be colinear. Since π∗1 is orthogonal to σ−1 and π∗−1

is orthogonal to σ1, then π1 and π−1 are als colinear. But then by 4.2.11,

π∗1π−1 = σ1σ
∗
−1,

and since the righthand side is nonzero, neither π1 nor π−1 is zero. The equations

(4.2.10) for all m together then show that |πi| = |σi|.

Note however that (4.2.8) and (4.2.9), and the orthogonality of σ1 and π1, give

that

α0β1 = 0, |α0|2 − |β0|2 = 0,

which imply that α0 = β1 = 0, and so the first column of R(0) is 0, contradicting

nondegeneracy.

Thus, in any case, π0 = 0, verifying the claim..

Let us fix bases in V and E∞ and write

π1 =

ω1

ω2

 , π−1 =

ω3

ω4

 .
By orthogonality, we then have

σ1 = λ1

[
ω̄4 −ω̄3

]
, σ−1 = λ−1

[
ω̄2 −ω̄1

]
for some λ1, λ−1 6= 0.

Claim 4. |λ1| = |λ−1| = 1.

To verify the claim, first consider the case where σ1π1 6= 0. Then since π0 and σ0

are both 0, summing up (4.2.8) over all m gives

σ1π1 = −σ−1π−1. (4.3.13)

Expanding this in coordinates shows that |λ1| = |λ−1|. Then summing up (4.2.9)

gives

|π1|2 + |π−1|2 = |σ1|2 + |σ−1|2, (4.3.14)
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which shows that |λ1| = 1.

If, on the other hand, σ1 or π1 is 0, then the first statement can be trivially

satisfied, and the second statement is again obtained from (4.3.14).

Consider now the case where σ1π1 = 0 but neither σ1 nor π1 vanish. Then by

orthogonality, we must have that π1 and π−1 are colinear, and taking the absolute

value of (4.2.10) gives

|π1||π−1| = |σ1||σ−1|. (4.3.15)

When added to or subtracted from (4.3.14), which was valid independent of the

assumptions made prior to it, gives

(|π1|+ |π−1|)2 = (|σ1|+ |σ−1|)2, (4.3.16)

(|π1| − |π−1|)2 = (|σ1| − |σ−1|)2. (4.3.17)

Since |π1| 6= |σ1|, otherwise α0β1 = 0 would imply α0 = β1 = 0 violating non-

degeneracy, it must be the case that |π1| = |σ−1| and |π−1| = |σ1|, hence |λ1| =

|λ−1| = 1.

Note that multiplying the basis vector for V−1 by eiθ changes λ−1 by e−iθ while

changes λ1 by eiθ. So by fixing a basis vector for V−1 we can assume that λ1 = λ−1 = 1.

Expanding shows that σ1π1 = −σ−1π−1, and so comparing with (4.3.13), which is

valid regardless of the assumptions prior to it, we see that σ1π1 and σ−1π−1 are real.

Expanding (4.2.11) shows that π∗1π−1 = σ∗1σ−1 are real.

Claim 5. |αi| and |βi| are determined by π1, π−1.

From above, σ1 is determined by π−1, and if π1σ1 = 0, then one of α0, β1 is zero,

and the absolute value of the other is determined by |π1|2 − |σ1|2 using (4.2.9). If,

on the other hand, π1σ1 6= 0, then neither α0 nor β1 vanish. We then have by (4.2.8)

and (4.2.9) that |α0|2 satisfies the quadratic

|α0|4 + (|σ1|2 − |π1|2)|α0|2 − |σ1π1|2 = 0. (4.3.18)

74



Since the discriminant is positive, roots exist, and moreover the inequality |α0|2 ≥

|π1|2 − |σ1|2 obtained from (4.2.9) determines which root is valid. Therefore |α0| is

determined, and hence |β1| is determined. By a similar argument |α−1| and |β0| are

also determined, finishing the claim.

From the equality α0β1 = σ1π1, we in fact have that α0 and β1 are determined up

to multiplication by eiθ for α0 and multiplication by e−iθ for β1, and similarly for α−1

and β0. Rotating the basis elements for V1 and V0 shows that these give equivalent

data, and so αi and βi are in fact determined up to equivalence.

Setting π1 = η1 and π−1 = η2 gives the desired parametrization. All other ADHM

data are then determined by the arguments above, and it can be checked that these

data satisfy the ADHM equations. It thus remains only to show that these data

satisfy the nondegeneracy condition.

Note that if η1 = ±η2, then π1σ1 = 0 and |π1|2− |σ1|2 = 0, so α0 = β1 = 0, which

does not satisfy non-degeneracy. If η1 6= ±η2, then the requirement that 〈η1, η2〉 ∈ R

then implies that either πjσj 6= 0 or |πj|2−|σj|2 6= 0, for each of the indices j = 1,−1.

If π1σ1 6= 0 (and hence also π−1σ−1 6= 0), then all of α0, α−1, β1, β0 are nonzero.

The kernel of α and β then clearly intersect only at 0, and so the nondegeneracy

condition is satisfied.

If, on the other hand, π1σ1 = 0, in which case |π1|2 − |σ1|2 6= 0. Assume that

|π1|2 − |σ1|2 > 0. Then (4.2.9) implies that |α0|2 > 0, and so in particular α0 6= 0.

We also have that |π−1|2 − |σ−1|2 = |σ1|2 − |π1|2 < 0, and (4.2.9) then implies that

α−1 6= 0. Thus kerα = V1. On the other hand, |π1|2 − |σ1|2 > 0 implies π1 6= 0, and

so V1 ∩ kerπ1 = 0. A similar argument applies in the case |π1|2 − |σ1|2 < 0, showing

instead that βi 6= 0. In either case, the nondegeneracy condition is satisfied.
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4.3.4 k = 2, ` = 0

When the weights are k = 2 and ` = 0, we have a charge 4 instanton, and the

decomposition V = V1 ⊕ V0 ⊕ V−1, with dimV1 = dimV−1 = 1 and dimV0 = 2. This

gives our first example of a space with a subrepresentation Vm of dimension greater

than 1. Below we give the ADHM data for a one-parameter family of instantons with

such weights. In particular, the moduli space of such instantons is nonempty.

The ADHM data are given, for λ ∈ R>0 by

α0 =
[
λ 0

]
, α−1 =

λ
0


β0 =

[
0 λ

]
, β1 =

0

λ


σ0 =

0 λ

λ 0

 , π0 =

λ 0

0 λ


π1 = σ1 = π−1 = σ−1 = 0.

(4.3.19)

One can check then directly that the ADHM equations (3.4.13) and (3.4.14) are

satisfied. Moreover, since π0 is injective on V0, α−1 is injective on V−1, and β1 is

injective on V1, by Lemma 4.3.9 these give nondegenerate data.

4.4 Structure group SU(n)

Consider now the general case of structure group SU(n).

Proposition 4.4.1. The character of the S1 representation on V = kerD− is

χkerD−(θ) =
∑
m

(∑
ki<m

(m− ki)−
∑
`i<m

(m− `i)

)
eimθ. (4.4.2)

Before proving this proposition, we first note that there are finitely many nonzero

terms in this sum. Indeed, if m is smaller than all weights ki and `i, then the inner
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sums are empty. On the other hand, if m is larger than all weights, then the inner

sums are over all possible weights. The inner sums then evaluate to

∑
ki

(m− ki)−
∑
`i

(m− `i) = nm−
∑

ki − nm+
∑

`i = 0.

Therefore, the only nonzero coefficients occur between the smallest and largest of the

weights.

Proof. The result follows from (4.2.20) once we have the following equation for formal

Laurent series:

(x− 2 + x−1)
∑
m

∑
ki<m

(m− ki)xm =
∑
ki

xki . (4.4.3)

The coefficient of xm on the lefthand side of (4.4.3) is

∑
ki<m−1

(m− 1− ki)− 2
∑
ki<m

(m− ki) +
∑

ki<m+1

(m+ 1− ki). (4.4.4)

When ki < m − 1 above, the three terms cancel. For ki = m − 1, the the first term

vanishes, leaving ∑
ki=m−1

(−2(m− ki) + (m+ 1− ki)) = 0,

while for ki = m only the last term remains leaving

∑
ki=m

(m+ 1− ki) =
∑
ki=m

1.

This establishes (4.4.3), and finishes the proof.

Recall that we order the weights k1 ≥ · · · ≥ kn and `1 ≥ · · · ≥ `n.

Corollary 4.4.5. If E admits an S1-invariant instanton, then k1 ≥ `1 and kn ≤ `n.

Proof. If kn > `n, then ki ≥ `n + 1 for all i. Then the dimension of V`n+1 is

∑
ki<`n+1

((`n + 1)− ki)−
∑

`i<`n+1

((`n + 1)− `i) = −
∑
`i=`n

1 < 0.
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Since dimensions must be nonnegative, this shows kn ≤ `n.

If k1 < `1, then ki ≤ `1 − 1 for all i. Then the dimension of V`1−1 is

∑
ki<`1−1

((`1 − 1)− ki)−
∑

`i<`1−1

((`1 − 1)− `i)

Note that if we add −
∑

`i=`1
((`1 − 1)− `i) to the above, we are now summing over

all of weights ki and `i, which evaluates to 0. Therefore, the dimension of V`1−1 is

∑
`i=`1

(−1) < 0,

contradicting nonnegativity of the dimension.

Corollary 4.4.6. An S1-invariant instanton on E has charge

∑
ki

k2
i −

∑
`i

`2
i . (4.4.7)

Proof. The charge of the instanton is the dimension of V , which can be computed by

summing the dimensions of Vm. Alternatively, one can evaluate χV (0) using (4.2.20)

and L’Hopital’s Rule.

Corollary 4.4.8. If E admits an S1-invariant instanton then

∑
ki

k2
i ≥

∑
`i

`2
i .
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Chapter 5

The Nahm Transform on a Bieberbach

Manifold

In Section 3.3 we considered the Nahm transform on quotients of R4 by a subgroup

of translations. In this chapter, we consider quotients more generally by subgroups

of the isometries on R4 that include a rotational part. In Section 5.1 we define

crystallographic groups and Bieberbach groups. In Sections 5.2 and 5.3 we give an

example of a Bieberbach group B and construct a Nahm transform for instantons on

the quotient R4/B.

5.1 Crystallographic and Bieberbach groups

We begin with a brief description of Bieberbach groups in general, following [Cha86,

Chapter I]. Let M be the group of rigid motions on Rn. These consist of rotation

by an element of r ∈ O(n) followed by translation by some v ∈ Rn. Taking the

rotational part of a given rigid motion gives a homomorphism r : M→ O(n).

We consider subgroups of G ⊂M. We say G is uniform if the quotient Rn/G is

compact. If G is discrete, then the orbits of G consist of discrete points. If G is both

discrete and uniform, we say G is crystallographic. If, in addition, G is torsionfree,

we say it is a Bieberbach subgroup of M. For discrete subgroups G, being torsion

free is equivalent to G acting freely on Rn. Therefore, if G is Bieberbach, then Rn/G

is a compact flat manifold with fundamental group G.

For a subgroup G, the rotational parts r(G) form a subgroup of O(n), while the
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kernel of r is the normal subgroup Λ ⊂ G consisting of pure translations. Note that

if r(G) and Λ are both discrete – in which case r(G) is in fact finite, since O(n) is

compact – then G is discrete. If, moreover, Λ is a (full-rank) lattice, then Rn/G is

a quotient of T n and hence compact. These two properties together show that G

is crystallographic. Bieberbach’s First Theorem (see, e.g. [Cha86, p. 17]) gives the

converse.

Theorem 5.1.1 (Bieberbach’s First Theorem). Let G be a crystallographic subgroup

of M. Then r(G) is finite and Λ spans Rn.

As a result of Bieberbach’s First Theorem and the fact that Λ ⊂ G is normal, if

G is crystallographic then Rn/G ∼= T n/r(G).

5.2 A Bieberbach quotient of T 4

For the rest of the chapter, we focus on a specific example of a Bieberbach group.

Consider the coordinates xi on R4 with orthonormal basis ei = ∂
∂i

. Let µ ∈ O(n) be

given by µ(x1, x2, x3, x4) = (x2, x1, x4, x3). For i = 1, . . . , 4, let gi = (µ, ei) denote the

isometry given x→ µx+ ei. Let B denote the group generated by these gi.

Elements of B are then of the form (µk, v) for k = 0, 1 and v ∈ Z4. The ro-

tational part is r(B) = {1, µ} = Z2 ⊂ O(n). Let σ(x) =
∑

i xi, and note that

applying σ to the translational part of a group element gives a homomorphism

σ : B → Z. Since for each of the generators, σ(gi) = 1, we see that the parity

of σ(µk, v) matches the parity of k. Thus, the purely translational subgroup is

Λ = {(x1, x2, x3, x4) ∈ Z4 | σ(x) ∈ 2Z}. Since these are discrete and Λ spans R4,

B is a crystallographic subgroup of M.

Moreover, we can see that B is torsionfree (and hence Bieberbach) as follows.

Suppose (µk, v) has finite order. If k = 0, then v ∈ Λ, and (1, v)m = (1,mv), which
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is zero only if v = 0. On the other hand, if k = 1 and (µ, v)m = (1, 0), then m is even

and (µ, v)m = (1, (m/2)(v + µv)). Therefore v = −µv, and hence σ(v) = 0. But the

parity of σ must match the parity of k providing a contradiction.

Therefore M = R4/B is a compact flat manifold. Moreover, recalling our homo-

morphism r : B → Z2, since Λ = r−1(1) it is a normal subgroup of B. Therefore, M

is also a quotient of T 4 = R4/Λ by B/Λ = Z2. Let q : T 4 → M denote the quotient.

Furthermore M is oriented since µ ∈ SO(4). In fact, M is parallelizable, as can be

seen by considering the following vector fields

(∂1 + ∂2),

(∂3 + ∂4),

cos(πσ(x))(∂1 − ∂2) + sin(πσ(x))(∂3 − ∂4),

− sin(πσ(x))(∂1 − ∂2) + cos(πσ(x))(∂3 − ∂4).

Note that these vector fields are invariant under the action of B, and thus descend

to M . Moreover they are orthogonal.

5.3 Nahm transform on a Bieberbach manifold

To construct a Nahm Transform, we consider a space of flat bundles on M . As

in Section 3.2, we parametrize such bundles by elements of (R4)∗. However, only

elements of (R4)∗ that are invariant under the action of B give well-defined 1-forms

on M . Ultimately, we will consider rank 2 twisting bundles parametrized by all of

(R4)∗, but for now we consider line bundles parametrized by the elements of (R4)∗

that do descend to M . Letting ei ∈ (R4)∗ be the dual basis to ei, it is convenient to

define a new basis for (R4)∗,

v1 =
1

2
(e1 + e2), w1 =

1

2
(e1 − e2),

v2 =
1

2
(e3 + e4), w2 =

1

2
(e3 − e4).

(5.3.1)
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Note that v1 and v2 are invariant under the action of B, and so give well-defined

constant 1-forms on the quotient M . On the other hand, w1 and w2 are not invariant

as acting by µ introduces a sign change.

Let ξ = ξiv
i ∈ (R4)∗, which as a combination of vi is well-defined as a form on

M . Let ∇ξ be the connection on the trivial line bundle on R4 with connection form

i2πξ. Since∇ξ descends to the quotient, it defines a flat connection on a topologically

trivial line bundle L on M . When equipped with the connection ∇ξ, we shall denote

the line bundle Lξ.

Recall that a flat line bundle on a manifold M is classified by the U(1)-represen-

tation of π1(M) = B determined by its holonomy. A representative of the loop in

π1(M) corresponding to the generator gi ∈ B is given by the curve tei, for 0 ≤ t ≤ 1.

From the description ∇ξ = d+ i2π with respect to the given frame, parallel transport

along, say, te1 is given by e−it2πξ(e1) = e−itπξ1 . Similar computations show that the

representation ρ of B corresponding to holonomy is given on generators by

ρ(g1) = ρ(g2) = e−iπξ1 ,

ρ(g3) = ρ(g4) = e−iπξ2 .
(5.3.2)

We see that the line bundle Lξ is defined up to translation by 2Z in either ξ1 or ξ2.

Consider now the pullback q∗Lξ on T 4. Since the lattice Λ is generated by products

gigj, holonomy on q∗Lξ is given by composition of the appropriate holonomies from

(5.3.2). All such holonomies are either of the form ei2πξi or eiπ(ξ1+ξ2). As such, in

addition to translation by 2Z×2Z, we have that the pullbacks are also invariant up to

translation by (k, k) for k ∈ Z. That is, on T 4 the pullbacks satisfy q∗Lξ ∼= q∗Lξ+v1+v2 .

As pullback bundles, however, we have a natural identification of the 2 fibres over a

Z2-orbit in T 4, and as such a natural lift of the Z2 action to the pull-back bundle. It

is this choice of Z2 action that distinguishes q∗Lξ from q∗Lξ+v1+v2 on T 4. Let b ∈ B,

and let sgn : B → {1,−1} = Z2
∼= B/Λ be the quotient homomorphism. That is
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sgn(b) = 1 if b acts trivially on T 4, and is −1 otherwise. Let α(b) : q∗Lξ → q∗Lξ

be the natural action on Lξ induced by the pullback structure. Then under the

identification of q∗Lξ = q∗Lξ+v1+v2 as line bundles on T 4, the action of B/Λ obtained

from the pullback structure of q∗Lξ+v1+v2 is sgn(b)α(b).

Given these line bundles, we define a rank 2 vector bundle Vξ = Lξ⊕Lξ+v1+v2 over

M . Since Lξ and Lξ+v1+v2 are topologically trivial for all ξ, all Vξ are topologically

trivial rank 2-bundles. Even though we could define a global smooth frame on Vξ, it

is instead convenient to use the following. Consider q∗Vξ = q∗Lξ ⊕ q∗Lξ+v1+v2 on T 4.

Since q∗Lξ ∼= q∗Lξ+v1+v2 on T 4, we can then choose a frame for q∗Vξ such that the

connection form of the pullback connection q∗(∇ξ ⊕∇ξ) is i2πξ on each component.

The natural Z2-action on the fibres of q∗Vξ obtained from the pullback structure is

then given by 1 ⊕ sgn(b). This frame then pushes down to M , albeit not smoothly.

One advantage of this frame is the expression for the connection,

∇ξ ⊕∇ξ+v1+v2 = d+ i2π

1 0

0 1

 . (5.3.3)

We define a further twisting of this bundle as follows. Let τ = i2πτiw
i. As stated

above, τ is not invariant under B but instead changes by a sign when multiplied by

generators. Viewed as a map with respect to the frame for q∗Vξ described above,

multiplication by the form τ then maps a section that is trivial under the Z2 action

to one that changes sign under the action, and vice versa. Therefore, on M we can

view τ as a Hom(Lξ, Lξ+v1+v2)⊕Hom(Lξ+v1+v2 , Lξ)-valued form. With respect to the

direct sum definition of Vξ, τ(∂i) defines an off-diagonal element of End(Vξ). Adding

i2πτ to the connection on Vξ then gives the connection

∇ξ,τ = d+ i2π

ξ τ

τ ξ

 . (5.3.4)

Observe that ∇ξ,τ is a flat connection. Let Vξ,τ denote the bundle Vξ equipped with

∇ξ,τ .
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Computing the holonomy along the curve te1, parallel transport is given by

exp

−iπt
ξ1 τ1

τ1 ξ1

 = e−iπtξ1

 cos(πtτ1) −i sin(πtτ1)

−i sin(πtτ1) cos(πtτ1)

 . (5.3.5)

Note that upon reaching t = 1, the fibre (Vξ,τ )e1 is identified with the fibre at 0 in

our given frame by multiplication by −1 in the second direct summand. Therefore,

holonomy along the curve te1 is given by

ρ1(ξ, τ) = e−iπξ1

 cos(πτ1) −i sin(πτ1)

i sin(πτ1) − cos(πτ1)

 . (5.3.6)

Similarly, we can compute holonomy along the curve te2, giving

ρ2(ξ, τ) = e−iπξ1

 cos(πτ1) i sin(πτ1)

−i sin(πτ1) − cos(πτ1)

 , (5.3.7)

and similar expressions can be computed for holonomy in the directions e3 and e4.

From the holonomy computation, we can see that the bundles are invariant under

the shift of parameters ξi, τi 7→ ξi + 1, τi + 1. Together with the translations in each

variable by 2, this gives that the bundle Vξ,τ is defined up to translations Λ̂ generated

by

Λ̂ = spanZ{v1 + w1, v1 − w1, v2 + w2, v2 − w2}. (5.3.8)

We have an additional action on the parameters ξ and τ by Z2. Note that 0 1

−1 0

 ρ1(ξ, τ)

0 −1

1 0

 = e−iπξ1

− cosπτ1 −i sin πτ1

i sin πτ1 cos πτ1


= ρ1(ξ + (v1 + v2),−τ). (5.3.9)

Conjugation by the same matrix has the same effect on the other holonomies, showing

that the bundles Vξ,τ and V(ξ+v1+v2),−τ are equivalent up to a gauge transformation.

Indeed, let

g0(x) = ei2π(v1+v2)(x)

 0 1

−1 0

 (5.3.10)
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acting on q∗Vξ with respect to our given frame. Note that for b ∈ B we have

g0(bx) = ei2π(v1+v2)(bx)

 0 1

−1 0


= sgn(b)

1E ⊗ ei2π(v1+v2)(x)

 0 1

−1 0


=

1 0

0 sgn(b)

 g0(x)

1 0

0 sgn(b)

 . (5.3.11)

Therefore, g0(bx) is obtained from g0(x) by conjugation by the Z2-action 1⊕ sgn(b)

on q∗Vξ, and so g0(x) is well-defined gauge transformation on the quotient. Note

moreover that taking the gauge transformation of the connection form of ∇ξ,τ ,

g0

i2π
ξ τ

τ ξ

 g−1
0 + g0dg

−1
0 = i2π

 ξ −τ

−τ ξ

+ i2π

v1 + v2 0

0 v1 + v2

 ,
(5.3.12)

which is the connection form for ∇(ξ+v1+v2),−τ . We then have that the Z2-action

(ξ, τ) 7→ (ξ + v1 + v2,−τ) corresponds to the identification of the corresponding

bundles by the gauge transformation g0.

Although we will continue working with the parameters ξ, τ , let us return for a

moment to the coordinates of (R4)∗ with respect to the dual basis ei = dxi, and

let {x̂i} be coordinates with respect to this basis. In these coordinates, Λ̂ is the

standard integer lattice
⊕

Zei. The map ξ + τ 7→ ξ − τ is expressed as the map µ

from Section 5.2, given by µ(x̂1, x̂2, x̂3, x̂4) = (x̂2, x̂1, x̂4, x̂3). Writing a = v1 + v2 =

1
2
(e1+e2+e3+e4), we have that the Z2 action is given on T̂ 4 = (R4)∗/Λ̂ by x̂ 7→ µx̂+a.

Considering instead the universal cover (R4)∗, where the isometry g : x̂ 7→ µx̂+ a

and Λ̂ generate a group B̂. Note that we only need g and three of the generators Λ to

generate B̂, as
∑
ei = g2. While B̂ is a crystallographic group, it is not Bieberbach.
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Indeed, there are four 2-tori of fixed points in T̂ 4 given by translating the 2-torus

{t(e1 + e2) + s(e3 + e4) | s, t ∈ R} by each of the four elements

1

2
(e1 + e3),

1

2
(e1 + e4),

1

2
(e2 + e3),

1

2
(e2 + e4).

(5.3.13)

In order to avoid dealing with orbifolds, we maintain the viewpoint of having a Z2-

action on T̂ 4 rather than descending to the quotient.

We now use these Vξ,τ to construct a Nahm transform. Consider an SU(2)-vector

bundle E on M with an instanton ∇. Let ∇E⊗Vξ,τ be the twisted connection on

E⊗Vξ,τ obtained by tensoring with the flat connection ∇ξ,τ . Suppose moreover that

E ⊗ Vξ,τ is without flat factors for all ξ, τ . Note that ∇E⊗Vξ,τ is still an instanton.

Since M is parallelizable, SO(M) is trivial. Therefore M has a spin structure, and

hence a spinor bundle S. As usual, let D±ξ,τ denote the S± → S∓ parts of the Dirac

operator associated to ∇E⊗Vξ,τ .

By slight abuse of notation, we will take Clifford multiplication to be given on

Vξ,τ ⊗ S by

c(vi) =

1 0

0 1

⊗ c(vi),
c(wi) =

0 1

1 0

⊗ c(wi)
(5.3.14)

Since the End(Vξ,τ ) parts all commute with each other, we have the usual rules for

Clifford multiplication. Moreover, we can recover the End(Vξ,τ ) parts by taking the

Z2-invariant and Z2-skew-invariant parts of the Clifford multiplication. That is, for

any η ∈
∧

(R4)∗ we have

c(η) =

1 0

0 1

⊗ c(η + µ∗η

2

)
+

0 1

1 0

⊗ c(η − µ∗η
2

)
. (5.3.15)
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Because µ is orientation-preserving, if η is self-dual then µ∗η is also. Therefore, the

usual fact that c(
∧+) = 0 on S− still holds in our new notation. Also, with this

notation we have Dξ,τ = D + i2πc(ξ + τ).

Just as in the case of the Nahm Transform on the torus, we have kerD+
ξ,τ = 0.

Indeed, as before, the Lichnerowicz formula D−D+ = ∇∗∇ + c(F+) tells us that an

element in the kernel of D+
ξ,τ would have to be parallel with respect to ∇E ⊗ ∇ξ,τ ,

but such a section would provide a flat factor of the bundle E ⊗ Vξ,τ .

Let Ê be the bundle over T̂ 4 given by Ê = kerD−ξ,τ , with connection ∇̂ induced

from orthogonal projection from L2(E ⊗ Vξ,τ ⊗ S−).

Proposition 5.3.16. The transformed connection ∇̂ on Ê is an instanton. More-

over, Ê is equipped with a Z2 bundle action that covers the action x 7→ µx+ a on T̂ 4

described above.

Proof. Seeing that ∇̂ is an instanton is completely analogous to the same result

for the Nahm transform on a torus in Proposition 3.3.3. As before, we let Gξ,τ =

(∇∗ξ,τ∇ξ,τ )
−1. Since both End(Vξ,τ ) parts of the Clifford multiplication in (5.3.14) are

constant and commute with the connection form of Vξ,τ , Clifford multiplication c(vi)

and c(wi) commute with ∇∗∇ξ,τ . Therefore c(vi) and c(wi) commute with Gξ,τ . Let

Pξ,τ = 1 − D+
ξ,τGξ,τD

−
ξ,τ be projection onto kerD−ξ,τ . The same computation as for

the Nahm transform in Proprosition 3.3.3 then applies. Thus, as in (3.3.7)

F̂η,ω = −8π2Pξ,τc(η)c(ω)Gξ,τPξ,τ , (5.3.17)

where η 6= ω are any two of v1, v2, w1, w2. Because Clifford multiplication by self-dual

forms is trivial on S−, we have that F̂ is anti-self-dual, hence ∇̂ is an instanton.

We now show that the connection is invariant under the Z2 action. Let g0(x) be the

gauge transformation from (5.3.10), which we recall identifies∇ξ,τ = g0∇ξ+v1+v2,−τg
−1
0 .

By tensoring with 1E and 1S, we consider g0 to be a gauge transformation of E⊗V ⊗S.
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We define lift of the Z2-action on T̂ 4 to the trivial bundle T̂ 4 × L2(E ⊗ V ⊗ S) by

(x̂, s) 7→ (µx̂+ a, g0s). (5.3.18)

Note that Dξ,τ = g0(Dξ+v1+v2,τ )g
−1
0 , and so g0 defines a map taking kerDξ,τ to

ker(Dξ+v1+v2). Therefore Pξ,τ = g0(Pξ+v1+v2,−τ )g
−1
0 . Since g0 does not depend on

ξ or τ , it commutes with differentiation in ξ and τ , and we have

Pξ,τdPξ,τ = g0(Pξ+v1+v2,−τ )g
−1
0 dg0(Pξ+v1+v2,−τ )g

−1
0

= g0(Pξ+v1+v2,−τ )d(Pξ+v1+v2,−τ )g
−1
0 (5.3.19)

That is, ∇̂ is invariant by the Z2 action, up to conjugation by the Z2 action on Ê.
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Chapter 6

Minimal Energy Yang–Mills

As discussed in 2.2, instantons are global minimizers of the Yang–Mills energy ‖F∇‖2.

A natural question is then to ask whether the converse statement is true. In cer-

tain circumstances, the answer is yes. Bourguignon, Lawson, and Simons [BLS79,

BL81] used the second variational inequalities of ∇ + tιXF
±
∇ to show that, for G =

SU(2), U(2), or SU(3), if ∇ is a G-connection that is a stable critical point of the en-

ergy, then it is an instanton. Using a related variation involving the flow along X (of

which the Bourguignon–Lawson–Simons variation is the linear term), Stern [Ste10]

extended the result for higher rank structure group over complete (but not necessar-

ily compact) homogeneous spaces, in which case the adjoint bundle has an instanton

subbundle and an anti-instanton subbundle, and these subbundles commute.

In this chapter, we generalize this argument over certain manifolds of cohomo-

geneity one. This necessitates taking the Taylor expansion of the variation studied

by Stern, but the argument otherwise follows closely. In this chapter, we also allow

the use of conformal vector fields X, as opposed to simply Killing fields.

For this chapter we will consider connections that minimize ‖F−‖2. In the case

of a complete manifold, we have ‖F−‖2 = ‖F‖2 + p1(E)[M ] where p1(E)[M ] is the

constant obtained by integrating the Pontrjagin form of E. Therefore, minimizing

‖F−‖2 is equivalent to minimizing ‖F‖2. Due to the presence of boundary terms,

this is no longer true in general for incomplete manifolds.

For the variation ∇+ tιXF
+
∇ to be valid, we also make the assumption, for vector

fields X under consideration, that ιXLkXF+
X is in L2 ∩ L4 for all F+

X for all k.
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6.1 Conformal vector fields

A vector field X is called conformal if LXg = α2g, where g is the metric on M .

Equivalently, the flow ϕX,t along the vector field is a conformal map for all t.

Let L denote the Lie derivative extended to ad(E)-valued forms using the par-

allel transport of ∇. This Lie derivative satisfies a generalization of Cartan’s magic

formula,

LX = ιXd∇ + d∇ιX . (6.1.1)

In dimension 4, the Hodge star ∗ : Ω2 → Ω2 is conformally invariant, and therefore

[LX , ∗] = 0. In particular, the decomposition Ω2 = Ω+ ⊕ Ω− is preserved by LX .

This leads to the following two propositions, which will be helpful in simplifying the

variations of the curvature.

Proposition 6.1.2. If X is conformal and ∇ is Yang–Mills, then d∇ιXF
+
∇ is self-

dual.

Proof. By formula (6.1.1),

d∇ιXF
+
∇ = LXF+

∇ + ιXd∇F
+
∇ .

By the Yang–Mills equation and the Bianchi identity, d∇F
+
∇ = 0. Since X is confor-

mal, LX preserves self-duality.

We take the exterior product on ad(E)-valued forms to be the Lie bracket on

ad(E) tensored with exterior product on forms. For ω ∈ Ω•(ad(E)) let e(ω) denote

left exterior multiplication by ω.

Proposition 6.1.3. For any r ≥ 1,

d∇LrXF+
∇ = −

r−1∑
k=0

LkXe(ιXF∇)Lr−1−k
X F+

∇ . (6.1.4)
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Proof. We begin by noting that

[d∇,LX ] = d∇ιXd∇ + d2
∇ιX − ιXd2

∇ − d∇ιXd∇

= e(F∇)ιX − ιXe(F∇)

= −e(ιXF∇) (6.1.5)

In the case r = 1,

d∇LXF+
∇ = −e(ιXF∇)F+

∇ + LXd∇F+
∇ .

Since d∇F
+
∇ = 0, we have obtained the desired equality.

If the statement holds for r, then

d∇Lr+1
X F+

∇ = −e(ιXF∇)LrF+
∇ + LXd∇LrXF∇

= −
r∑

k=0

LkXe(ιXF∇)Lr−kF+
∇ .

Therefore the statement holds by induction.

The following definition will be necessary for obtaining local information from L2

variational inequalities.

Definition 6.1.6. Let V be a vector space of vector fields on M , and let V be

equipped with an inner product. Evaluation at a point p gives a map Pp : V → TpM .

Let P̃p be the restriction of Pp to the orthogonal complement of its kernel. We say V

is conformally spanning (with conformal factor α) if V consists entirely of conformal

vector fields, and for all p the map P̃p is a conformal map with conformal factor α(p).

Note that if V is a conformally spanning set, then in particular the vector fields

in V span TpM for every p.

Remark. If M admits a conformally spanning set consisting entirely of vector fields

that are complete, meaning their flow is defined for all time, then M is in fact
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conformal to a homogeneous space. This can be seen using the following theorem of

Alekseevskĭı and Ferrand.

Theorem (Alekseevskĭı [Ale72], Ferrand [Fer96]). Let C(M) be the group of conformal

transformations of a Riemannian manifold M . If M is not conformal to Sn with the

round metric or Rn with the Euclidean metric, then C(M) can be reduced to the group

of isometries by some conformal transformations.

In the case M is conformal to Sn or Rn, it is conformal to a homogeneous space,

and otherwise, the conformally spanning set V generates the isometries needed to

show that M is homogeneous.

Note, however, that this argument fails in the case that the vector fields in M are

not complete, since in this case they do not generate diffeomorphisms of M . We study

here a particular example of where incomplete vector fields are natural to consider,

namely when the manifold M is itself incomplete.

6.2 Vanishing commutators

The goal is to prove a generalization of the minimality result of [Ste10], the precise

formulation of which is given in Section 6.3. To do this we consider variations of a

Yang–Mills connection ∇ of the form

∇n,t := ∇+Bn(t), (6.2.1)

where

Bn(t) :=
n∑
k=1

tk

k!
ιXLk−1

X F+
∇ . (6.2.2)

Note that letting n = 1 gives the variation considered in [BLS79, BL81], while in

general this is simply the n-th Taylor expansion of the variation considered in [Ste10].

Using the Taylor expansion allows the consideration of vector fields X for which the
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flow is not defined for all time. These variations will be used to show the vanishing

of certain commutators of derivatives of F−∇ and F+
∇ .

The first step is to compute variational inequalities, beginning by computing the

curvature of ∇n,t, which we denote F n,t.

F n,t = F∇ + d∇Bn(t) +
1

2
Bn(t) ∧Bn(t). (6.2.3)

Expanding the middle term using (6.1.1) and (6.1.4) gives

d∇Bn(t) =
n∑
k=1

tk

k!
d∇ιXLk−1

X F+
∇

=
n∑
k=1

tk

k!
LkXF+

∇ −
n∑
k=1

tk

k!
ιXd∇Lk−1

X F+
∇

=
n∑
k=1

tk

k!
LkXF+

∇ +
n∑
k=1

tk

k!

k−2∑
`=0

ιXL`X(ιXF∇ ∧ Lk−`−2
X F+

∇ )

=
n∑
k=1

tk

k!
LkXF+

∇ −
n∑
k=1

tk

k!

k−2∑
`=0

∑̀
m=0

(
`

m

)
ιXLmXF∇ ∧ ιXLk−m−2

X F+
∇

=
n∑
k=1

tk

k!
LkXF+

∇ −
n∑
k=1

tk

k!

k−2∑
m=0

k−2∑
`=m

(
`

m

)
ιXLmXF∇ ∧ ιXLk−m−2

X F+
∇

=
n∑
k=1

tk

k!
LkXF+

∇ −
n∑
k=1

tk

k!

k−2∑
m=0

(
k − 1

m+ 1

)
ιXLmXF∇ ∧ ιXLk−m−2

X F+
∇

The last step uses the identity
∑r

p=q

(
p
q

)
=
(
r+1
q+1

)
. Shifting the index m by 1,

d∇Bn(t) =
n∑
k=1

tk

k!
LkXF+

∇ −
n∑
k=1

k−1∑
m=1

tk

m!(k −m− 1)!k
ιXLm−1

X F∇ ∧ ιXLk−m−1
X F+

∇ .

(6.2.4)
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Turning our attention to the last term of (6.2.3), we now have

1

2
Bn(t) ∧Bn(t) =

1

2

(
n∑

m=1

tm

m!
ιXLm−1

X F+
∇

)
∧

(
n∑
`=1

t`

`!
ιXL`−1

X F+
∇

)

=
1

2

n∑
k=1

k−1∑
m=1

tk

m!(k −m)!
ιXLm−1

X F+
∇ ∧ ιXL

k−m−1
X F+

∇

+
1

2

2n∑
k=n+1

n∑
m=k−n

tk

m!(k −m)!
ιXLm−1

X F+
∇ ∧ ιXL

k−m−1
X F+

∇

(6.2.5)

Using commutativity of ad(E)-valued 1-forms,

ιXLm−1
X F+

∇ ∧ ιXL
k−m−1
X F+

∇ =

(
m

k
+
k −m
k

)
ιXLm−1

X F+
∇ ∧ ιXL

k−m−1
X F+

∇

=
m

k
ιXLk−m−1

X F+
∇ ∧ ιXL

m−1
X F+

∇

+
k −m
k

ιXLm−1
X F+

∇ ∧ ιXL
k−m−1
X F+

∇ .

In the sum k = 1, . . . , n in (6.2.5), the m and k − m terms then combine, and we

obtain the sum
n∑
k=1

k−1∑
m=1

tk

m!(k −m− 1)!k
ιXLm−1

X F+
∇ ∧ ιXL

k−m−1
X F+

∇ ,

which cancels with part of the sum in (6.2.4). Assembling the terms from (6.2.4) and

(6.2.5),

F n,t = F∇ +
n∑
k=1

tk

k!
LkXF+

∇

−
n∑
k=1

k−1∑
m=1

tk

m!(k −m− 1)!k
ιXLm−1

X F−∇ ∧ ιXL
k−m−1
X F+

∇ (6.2.6)

+
1

2

2n∑
k=n+1

n∑
m=k−n

tk

m!(k −m)!
ιXLm−1

X F+
∇ ∧ ιXL

k−m−1
X F+

∇ .

6.2.1 Zeroth order

We first consider the variation (6.2.1) with n = 1, which will eventually show us that

commutators of components of F+ and F− must vanish.
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Proposition 6.2.7. Suppose M admits a conformally spanning space V . If ∇ is a

minimizer of ‖F−∇‖2, and if there is an orthonormal basis {Xk}dk=1 of V for which

ιXkF
+
∇ ∈ L2 ∩ L4, then for each X ∈ V ,

〈F−∇ , ιXF
+
∇ ∧ ιXF

+
∇ 〉L2 = 0.

Proof. Consider the variation∇1,t for some fixed conformal vector fieldX. Expanding

the curvature gives

F 1,t = F∇ + d∇B1(t) +
1

2
B1(t) ∧B1(t)

= F∇ + td∇ιXF
+
∇ +

t2

2
ιXF

+
∇ ∧ ιXF

+
∇ (6.2.8)

By Proposition 6.1.2, we have that d∇ιXF
+
∇ is self-dual. Therefore, taking the ASD

part,

‖(F 1,t)−‖2 = ‖F−∇‖
2 + t2〈F−∇ , ιXF

+
∇ ∧ ιXF

+
∇ 〉L2 +O(t4). (6.2.9)

Since ‖F−∇‖2 is minimized, we must then have

〈F−∇ , ιXF
+
∇ ∧ ιXF

+
∇ 〉L2 ≥ 0 (6.2.10)

Let {Xj}dj=1 be an orthonormal basis for V . Inequality (6.2.10) holds for each Xj

since they are all conformal. To show equality in (6.2.10), fix a point p ∈ M and

consider the sum of the pointwise inner products

s(p) =
d∑
j=1

〈F−∇ , ιXjF
+
∇ ∧ ιXjF

+
∇ 〉p. (6.2.11)

The above sum is the trace of a quadratic form on V , and is thus invariant under

orthogonal transformations on V . In particular, for some conformal factor α and

orthonormal basis {ei} for TpM ,

s(p) =
4∑
i=1

α2〈F−∇ , ιeiF
+
∇ ∧ ιeiF

+
∇ 〉p.
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One can check that if ϕ ∈ Ω2(M) is self-dual, then
∑4

i=1 ιeiϕ ∧ ιeiϕ is also self-dual.

Therefore, s(p) must vanish. Integrating s(p) then gives the vanishing of the sum of

the L2 inner products,

d∑
j=1

〈F−∇ , ιXjF
+
∇ ∧ ιXjF

+
∇ 〉L2 = 0. (6.2.12)

Since each term of the sum individually is nonnegative by (6.2.10), each term must

individually vanish. Since {Xj} spans V , this gives the desired result.

Proposition 6.2.13. Suppose M and ∇ satisfy the conditions of Proposition 6.2.7.

Then for all X in the conformally spanning space V ,

e∗(ιXF
−
∇ )F+

∇ = 0.

Proof. Consider a new variation ∇̃t = ∇ + B1(t) + t
3
2ψ for ψ ∈ Ω1(ad(E)) with

compact support. Then

F∇̃t = F∇ + d∇B1(t) + t
3
2d∇ψ +

1

2
B1(t) ∧B1(t) + t

3
2B1(t) ∧ ψ +

t3

2
ψ ∧ ψ.

Using Proposition 6.2.7 along with the fact that ∇ is Yang–Mills, we obtain

‖F−∇̃t‖
2 = ‖F−∇‖

2 + 2t
5
2 〈F−∇ , ιXF

+
∇ ∧ ψ〉L2 +O(t3).

Then, since ‖F−∇‖2 is minimized,

〈F−∇ , ιXF
+
∇ ∧ ψ〉L2 ≥ 0.

Replacing ψ by −ψ gives the opposite inequality, and thus

〈F−∇ , ιXF
+
∇ ∧ ψ〉L2 = 0

for arbitrary ψ.
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Proposition 6.2.14. Suppose M and ∇ satisfy the conditions of Proposition 6.2.7.

Then

[F+
jk, F

−
m`] = 0

for all indices j, k,m, `.

Proof. From Proposition 6.2.13 we have that the commutator vanishes whenever

there is a repeated index, say k = m. Then applying self-duality and anti-self-duality

relations gives the vanishing of the commutator for other indices.

As shown in [BLS79] and [BL81], the vanishing of the commutator in Proposition

6.2.14 is enough to show that the connection is an instanton in the case when G =

SU(2), U(2), or SU(3) and under certain additional boundary conditions. For higher

rank structure groups, we must also consider, as in [Ste10], commutators of derivatives

of F+ and F−. We do this in the next section.

6.2.2 Higher order

We now establish the vanishing of commutators of the form [∇kF+
∇ ,∇`F−∇ ]. Proposi-

tions 6.2.15 and 6.2.18 below are analogous to Propositions 6.2.7 and 6.2.13 from the

previous section. Together, these will form an inductive argument, with Proposition

6.2.14 being the base case.

Proposition 6.2.15. Suppose M admits a conformally spanning space V . Let ∇ is

a minimizer of ‖F−∇‖2, and suppose there is an orthonormal basis {Xk}dk=1 of V for

which ιXkLmXkF
+
∇ ∈ L2 ∩ L4 for 0 ≤ m ≤ n. Suppose moreover that

[∇jF+,∇`F−] = 0

for j + ` < n. Then for X ∈ V ,

〈F−∇ , ιXL
n
XF

+
∇ ∧ ιXL

n
XF

+
∇ 〉 = 0.
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Proof. As in the proof of Proposition 6.2.7, we first prove that the L2-inner product

is non-negative. We do so by considering the variation ∇n+1,t defined by (6.2.1) and

(6.2.2).

In the inductive hypothesis [∇kF+,∇`F−] = 0, we may replace the covariant

derivatives with Lie derivatives since their difference results in lower order terms that

also vanish. Therefore the terms ιXLm−1
X F−∇ ∧ιXL

k−m−1
X F+

∇ in the expansion of F n+1,t

vanish, and so by (6.2.6),

F n+1,t = F∇ +
n+1∑
k=1

tk

k!
LkXF+

∇

+
1

2

2n+2∑
k=n+2

n+1∑
m=k−n−1

tk

m!(k −m)!
ιXLm−1

X F+
∇ ∧ ιXL

k−m−1
X F+

∇ .

Furthermore, since the inner product is ad-invariant, we see that

〈F−∇ , ιXL
k
XF

+
∇ ∧ ιXL

`
XF

+
∇ 〉 = 0

whenever either k < n or ` < n. Moreover, LkXF+
∇ is self-dual, and so expanding

‖(F n+1,t)−‖2 gives

‖(F n+1,t)−‖2

= ‖F−∇‖
2 +

t2n+2

((n+ 1)!)2
〈F−∇ , ιXL

n
XF

+
∇ ∧ ιXL

n
XF

+
∇ 〉+O(t2n+4). (6.2.16)

Then since ‖F−∇‖2 is minimized,

〈F−∇ , ιXL
n
XF

+
∇ ∧ ιXL

n
XF

+
∇ 〉 ≥ 0. (6.2.17)

For X ∈ V , let S(X) = 〈F−∇ , ιXLnXF
+
∇ ∧ ιXLnXF

+
∇ 〉. Equality in (6.2.17) will

be obtained by taking the average of S over the unit sphere in V . Let Xk be an

orthonormal basis of V . Then S(yjXj) is a homogeneous polynomial of degree 2n+2
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in the variables y1, . . . , yd. Integrating over the unit sphere in Rd,∫
|y|=1

S(yjXj) dS
d−1

=

∫
|y|=1

ymypyIyJ〈F−∇ , ιXmL
I
XF

+
∇ ∧ ιXpL

J
XF

+
∇ 〉 dS

d−1

By symmetry of Sd−1 ⊂ Rd, the above integral is a pairwise contraction in the indices

of y. The following demonstrates that all such contractions must vanish.

As noted earlier, we may replace Lie derivatives by covariant derivatives, and we

may also commute derivatives, since the remainders all involve lower order comm-

mutators of F+ and F−, which vanish by assumption. Thus, if m contracts with an

index in I, we may rearrange to obtain the term ιXm∇XmF
+ = d∗∇F

+ = 0. If, on the

other hand, m contracts with p, then ιmLIF+
∇ ∧ ιmLJF

+
∇ is self-dual, and the inner

product vanishes.

We are then left only with the terms where m contracts with some index in J .

Let J ′ be the indices in J other than m. Then, modulo lower order terms, all such

contractions of m with J involve LJ ′ιp∇mF
+
∇ . Since d∇F

+
∇ = 0,

∇mF
+
pk = −∇pF

+
km −∇kF

+
mp,

and so ιp∇mF
+
∇ = ιm∇pF

+
∇−∇(F+

mp), modulo terms that vanish in the inner product.

The first term on the right side becomes the case m = p from before, and the inner

product vanishes. We are then left only with terms of the form

〈F−k1k2 , [LIF
+
m`1

,LJ ′∇`2F
+
mp]〉 = 〈LIF+

m`1
, [LJ ′∇`2F

+
mp, F

−
k1k2

]〉,

where each of k1, k2 contract with one of `1, `2. Note then that

[∇`2LJ ′F+
mp, F

−
k1k2

] = ∇`2 [L′JF+
mp, F

−
k1k2

]− [LJ ′F+
mp,∇`2F

−
k1k2

].
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The first term on the righthand side vanishes since the commutator is of lower order,

while the second term vanishes since `2 contracts with one of k1, k2, and d∗∇F
− = 0.

We have thus shown that the integral of S(X) over the sphere in V vanishes. By

(6.2.17), however, we have S(X) ≥ 0 for all X ∈ V , and therefore it must be that

S(X) ≡ 0 identically.

Proposition 6.2.18. Suppose the conditions of Proposition 6.2.15 are satisfied.

Then

e∗(ιXLnXF+
∇ )F−∇ = 0.

Proof. Let ψ be an arbitrary compactly supported ad(E)-valued 1-form. Similarly

to the proof of Proposition 6.2.13, consider a new variation

∇̃t = ∇n+1,t + tn+2ψ. (6.2.19)

Then the curvature is

F̃ t = F n+1,t + tn+2d∇n+1,tψ +
t2n+4

2
ψ ∧ ψ. (6.2.20)

From Proposition 6.2.15 and its proof,

(F n+1,t)− = F−∇ +O(tn+2) (6.2.21)

‖(F n+1,t)−‖2 = ‖F−∇‖
2 +O(t2n+4) (6.2.22)

Therefore,

‖F̃ t‖2 = ‖F−∇‖
2 + 2tn+2〈F−∇ , d∇n+1,tψ〉L2 +O(t2n+4). (6.2.23)

Evaluating,

〈F−∇ , d∇n+1,tψ〉L2 = 〈F−∇ , d∇ψ〉L2 +
n+1∑
k=1

tk

k!
〈F−∇ , (ιXL

k−1
X F+

∇ ) ∧ ψ〉L2 . (6.2.24)

The first term of (6.2.24) vanishes because ∇ is Yang–Mills. Additionally, all terms in

(6.2.24) involving Lk−1
X F+

∇ for k ≤ n vanish by the inductive assumption. Therefore,
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(6.2.23) becomes

‖F̃ t‖2 = ‖F−∇‖
2 +

2t2n+3

(n+ 1)!
〈F−∇ , (ιXL

n
XF

+
∇ ) ∧ ψ〉+O(t2n+4). (6.2.25)

Since ‖F−∇‖2 is minimized,

〈F−∇ , (ιXL
n
XF

+
∇ )ψ〉 = 0. (6.2.26)

Since ψ was arbitrary, e∗(ιXLnXF+
∇ )F−∇ = 0.

Proposition 6.2.27. Suppose the conditions of Proposition 6.2.15 are satisfied.

Then

[∇kF+
∇ ,∇

`F−∇ ] = 0

for all k + ` < n+ 1.

Proof. Fom Proposition 6.2.18, we see∑
j

[∇n
kF

+
kj, Fjm] = 0,

where k is not summed over. Combining this with the Yang–Mills equation, the

Bianchi identity, and the self-duality and anti-self-duality relations allows one to

algebraically deduce the result. The proof proceeds exactly as in Section 4.3 of

[Ste10], and so will not be repeated here.

Proposition 6.2.27 forms the inductive step, and so along with the base case in

Proposition 6.2.14, we have proved the following theorem.

Theorem 6.2.28. Suppose M admits a conformally spanning space V . If ∇ is a

minimizer of ‖F−∇‖2, and if there is an orthonormal basis {Xk}dk=1 of V for which

ιXkLmXkF
+
∇ ∈ L2 ∩ L4 for all m, then

[∇jF+
∇ ,∇

`F−∇ ] = 0

for all j, `.
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6.3 Instanton subbundles

As shown in [BLS79, BL81], in the case G = SU(2), U(2), or SU(3), if even the

zeroth order commutator from Proposition 6.2.14 vanishes, and assuming boundary

conditions to allow an integration by parts argument, then either F+
∇ or F−∇ must

identically vanish, and so the connection must be an instanton (or anti-instanton).

Examples of this case are discussed in Sections 6.4 and 6.5.

For higher rank structure groups G, however, this no longer need be the case as g

may be large enough to accommodate two nontrivial commuting algebras. Following

[Ste10], with the argument reproduced here for completion, we can show instead that

ad(E) has an instanton and an anti-instanton subbundle.

Theorem 6.3.1. Suppose M is an analytic manifold that admits a conformally span-

ning space V , and let ∇ be a connection for which ‖F−∇‖2
L2 is minimized, and suppose

moreover that for an orthonormal basis {Xk}dk=1 of V , the interior products ιXkLnXkF
+
∇

are in L2 and L4 for all n. Then there exist subbundles K+, K− of ad(E) that are

preserved by ∇ and such that the restriction of ∇ to K+ is an instanton and to K−

is an anti-instanton. Moreover,

[K+, K−] = 0.

Proof. Let K± be the subsheaf of ad(E) generated by the coordinate components of

F±∇ and all its derivatives. We first want to show that K± is in fact a subbundle.

Fix a point p ∈ M and let f1, . . . , fk generate K±p . Since f1, . . . , fk are each

generated by F±∇ and its derivatives, each can be extended to a section of K±p . Thus

it remains only to verify that these sections generate K±. For some other section

fk+1, consider η = f1 ∧ · · · ∧ fk ∧ fk+1. By assumption η must vanish at p. Moreover,

derivatives of η are all also exterior products of k + 1 elements of K±p , and so must

also vanish at p. The Yang–Mills and Bianchi identity together show that F±∇ are
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solutions to an elliptic equation, and thus are analytic. Since η vanishes to all orders,

by analyticity it must identically vanish. Therefore, fk+1 is generated by f1, . . . , fk,

and since fk+1 was arbitrary, we have that K± is a subbundle.

Next observe that K± is preserved by∇ by definition, and [K+, K−] = 0 by Theo-

rem 6.2.28. Moreover, as curvature acts on ad(E) by commutation, and [F−∇ , K
+] = 0,

we have that the curvature on K+ is simply F+
∇ . Therefore ∇ on K+ is self-dual,

and similarly ∇ on K− is anti-self-dual.

Remark. In the case where M is incomplete, it would be natural to impose conditions

on the behaviour of∇ near singular points or boundaries of M . One can then consider

connections that minimize ‖F−∇‖2 among a certain class of connections. As long as the

variations ∇n,t defined in (6.2.1) remains within this class of connections, Theorem

6.3.1 may still be applied.

6.4 Minimal Yang–Mills on a compact manifold

As mentioned previously, when the structure group G = SU(2), U(2), or SU(3) we

can obtain vanishing results even with just the vanishing zeroth order commutator

given by Proposition 6.2.14. The essential idea is that for these structure groups the

Lie algebra is not large enough to accomodate the commuting subalgebras Kp± from

the proof of Theorem 6.3.1.

First assume M to be compact, a noncompact case being given in Section 6.5.

As discussed in Section 6.1, a compact M admitting a conformally spanning space V

must be homogeneous, and so we do not obtain any new examples beyond what was

proved in [BLS79] and [BL81].

We do observe, however, that the vector fields used in [BLS79] over S4 were

conformal and not Killing, while those vector fields used in [Ste10] were Killing. The
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author hopes that a unified perspective considering all conformal vector fields may

yield improved stability results in the future.

Theorem 6.4.1. Let ∇ be a G-connection on a compact homogeneous four-manifold

M with positive Ricci curvature, and suppose G = SU(2), U(2), or U(n). If ∇ is a

minimizer for ‖F∇‖2, it is either an instanton or an anti-instanton.

Proof. As in the proof of Theorem 6.3.1 let K±p be the subalgebra of ad(E)p generated

by the components of K±p .

Because M is compact, from the Chern–Weil argument in Section 2.2 we have

that ‖F∇‖2 is minimized if and only if ‖F−∇‖2 is minimized. Since the Killing vector

fields on M are a conformally spanning space, by Proposition 6.2.14 we then obtain

that

[K+
p , K

−
p ] = 0. (6.4.2)

We now show that at least one of K±p must be abelian.

If g = su(2), and if, say K+
p has two non-commuting elements, then K+

p must

be all of su(2). In this case K−p must be 0, which is abelian. Performing the same

argument with K−p shows that at least one of K±p is abelian.

If g = su(3), and if, say, K+
p contains two non-commuting elements, then K+

p

must contain su(2) as a subalgebra. Then the centralizer of K+
p , which contains K−p

is at most one-dimensional, and hence abelian. Replacing K+
p with K−p above shows

that at least one of K±p is abelian.

Lastly, if g = u(2), we can embed it in su(3) and obtain the result from above.

Therefore, at every point p ∈ M we have at least one of [K+
p , K

+
p ] or [K−p , K

−
p ]

must vanish. In particular, a zero set of at least one of them must be dense in some

open set. Because the generators of K±p are solutions to an elliptic equation, they

must be analytic, and if the zero set [K±p , K
±
p ] is dense in an open set, it must vanish

everywhere.

104



Suppose that it is [K+
p , K

+
p ] that vanishes everywhere. Because d∇F

+
∇ and d∗∇F

+
∇

all vanish, a Bochner argument gives that (as in [BL81, Theorem 3.10])

0 = ∇∗∇F+
∇ + (Ric∧I + 2R)F+

∇ + 2F̂F+
∇ = 0, (6.4.3)

where F̂F+
∇ = −[Fij, F

+
k`]e

j∧e`. Note, however, that because [K+
p , K

+
p ] and [K−p , K

+
p ]

both vanish, then F̂F+
∇ = 0.

Note then that (6.4.3) tells us that

0 = ‖∇F+
∇‖

2 + 〈(Ric∧I + 2R)F+
∇ , F

+
∇ 〉. (6.4.4)

Since M has positive Ricci curvature, we then have that F+
∇ = 0, and hence ∇ is an

anti-instanton.

The case where [K−p , K
−
p ] vanishes is similar, and shows that∇ is an instanton.

6.5 Minimal Yang–Mills on a cylindrical manifold

with bounded end

Consider M = R>0 × N , where N is a homogeneous manifold of dimension 3 with

nonnegative Ricci curvature, where we take r to be the coordinate on R>0. Equip M

with the product metric g = dr2 + gN .

Since N is homogeneous, the set of Killing vector fields on N restricted to a point

p span TpN . We can fix an inner product on the space VN of Killing fields on N

for which restriction to a point is an isometry on the orthogonal complement to its

kernel. Let {Xk}dk=1 be an orthonormal basis for VN . Let V = span{∂r} ∪ {Xk}dk=1,

and note that this is a conformally spanning set for M .

We will again consider the case G = SU(2), U(2), or SU(3). The case proceeds

similarly to Theorem 6.4.1, and note that the use of the Bochner formula necessitates
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integration by parts. As such we consider connections satisfying |F∇| = O(1) and

|∇∂rF∇| = O(r) as r → 0.

Proposition 6.5.1. Suppose M is as above and G = SU(2), U(2), or SU(3).

Suppose ∇ is a connection such that F∇ satisfies the condition |F∇| = O(1) and

|∇∂rF∇| = O(r) as r → 0. If ∇ minimizes ‖F−∇‖2, then F∇ is either self-dual or

anti-self-dual.

Proof. At a point p ∈M let K±p be the subalgebra of g generated by the components

of F±∇ . Using the conformally spanning set V , by Proposition 6.2.14 we have that

[K+
p , K

−
p ] = 0. The argument from Theorem 6.4.1 shows that one of K±p is abelian,

and again by analyticity we have that one of [K+
p , K

+
p ] or [K−p , K

−
p ] must vanish

identically on M .

Suppose that it is [K+
p , K

+
p ] that vanishes everywhere. Because d∇F

+
∇ and d∗∇F

+
∇

all vanish, we again have the Bochner Formula (6.4.3)

0 = ∇∗∇F+
∇ + (Ric∧I + 2R)F+ + 2F̂F+

∇ = 0,

and once again F̂F+
∇ = 0. Then,

0 =

∫
M

〈∇∗∇F+
∇ , F

+
∇ 〉+ 〈(Ric +2R)F+

∇ , F
+
∇ 〉

= ‖∇F+
∇‖

2 + 〈(Ric +2R)F+
∇ , F

+
∇ 〉L2 + lim

r→0

∫
{r}×N

〈∇rF
+
∇ , F

+
∇ 〉 d volN . (6.5.2)

By our decay assumptions, the boundary integral vanishes, while the remaining terms

are non-positive. In particular, we must have ∇F+
∇ = 0, and so |F+

∇ | is constant.

Therefore, F+
∇ = 0, otherwise this would violate the finite L2 condition. Therefore ∇

is an anti-instanton.

The case where [K−p , K
−
p ] vanishes is similar, and shows that∇ is an instanton.
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Chapter 7

Conclusions

Here we summarize our results, and present potential future directions of research.

In Chapter 4, we adapted the ADHM construction for S1-invariant instantons

on S4. We proved that the ADHM data decomposes into S1-subrepresentations of

V = kerD, and this decomposition is given in terms of the weights of the S1-action

on the fibres at 0 and ∞. Using this framework, we then found the moduli spaces of

S1-invariant SU(2)-instantons of charge up to 3, and exhibited an example of charge

4 demonstrating that this moduli space is non-empty. One could extend this research

in different ways:

• One could compute the Higgs fields and connections of monopoles given their

corresponding ADHM data, and as such gain more explicit examples of singular

monopoles.

• The instanton-monopole correspondence examined here was a special case of a

correspondence between multi-monopoles and S1-invariant instantons on multi-

Taub-NUT spaces. The analogue of the ADHM construction in this case is given

in terms of bow diagrams, described in [Che11] and [CLHS16]. One might con-

sider whether one can decompose the bow diagrams as an S1-representation to

obtain a description of the S1-invariant instantons on multi-Taub-NUT spaces.

In Chapter 5, we constructed a Nahm transform on the quotient of R4 by a specific

Bieberbach group B. This construction resulted in a transformed connection that

was invariant by a crystallographic action. This project was exploratory in nature,

and so leads to many possible questions for future research.
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• A first step in extending this work would be to determine if the construction

given is invertible, and if so construct the inverse.

• One might also attempt to construct similar Nahm transforms for quotients by

other Bieberbach groups, or more generally by crystallographic groups. One

could also consider similar constructions for dimensional reductions, and con-

struct a Nahm transform for, say, crystallographic-invariant monopoles.

• In addressing the previous question, one might wish to look for general proper-

ties of such Nahm transforms. A particular question in this regard would be to

determine the appropriate dual space for R4/B for a general Bieberbach group

B.

The final chapter consisted of extendinng the proof that minimal Yang–Mills

connections are instantons to a broader class of manifold.

• A direct question raised by this work is whether there is a natural boundary

condition for instantons which is preserved by the variations considered. In

that case, one would obtain a minimality result for instantons that are minimal

among those satisfying the boundary condition.

• One might try to weaken the assumptions on the conformal vector fields used

in order to generalize the result yet again.
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