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ABSTRACT

This thesis, written as a compendium of articles, addresses some of the fun-
damental problems encountered when trying to build a theory of Quantum
Gravity. Taking General Relativity (GR) as the starting point, its well-known
non-renormalizable character leads to the need for an ultraviolet completion.
Besides, the Cosmological Constant (CC) problem is still one of the corner-
stones of Theoretical Physics. The following articles explore possible insights
into these problems within the context of gravitational Effective Field Theories.

The first article is devoted to the study of quadratic (in curvature) theories of
gravity when treated in the First Order formalism, where the metric and the con-
nection are considered as independent fields. These renormalizable theories are
quadratic in the derivatives of the connection and do not contain quartic prop-
agators, leaving a priori some room for unitarity. Nevertheless, it is not clear
whether these theories include a graviton or whether they are free of ghosts, as
all the dynamics is now encoded in the connection field. A complete study of
the propagating degrees of freedom is then needed. In this work, we analyze
the spin content of a generic torsion-free connection by constructing a complete
basis of 22 six index spin projectors. We find that these theories generically
propagate a spin three piece together with several lower spin components.

One of the classical solutions to the CC problem is to consider Weyl invariant
theories, as they forbid a CC term in the action. This symmetry is a general-
ization of the usual conformal invariance to cases where gravity is present. In
the second article of the thesis, we carry out an analysis of the (in)equivalence
of conformal and Weyl invariant theories for the gravitational field. The most
general Lagrangian for spin two particles up to dimension six operators is ex-
plored, corresponding to the low-energy expansion of linear and quadratic (in
curvature) theories of gravity. We carry out a full classification of the theories
invariant under linearized (transverse) diffeomorphism, linearized Weyl trans-
formations, and the usual conformal and scale symmetries.

In the last part of the thesis, the theory of Unimodular Gravity (UG) is ex-
amined. This theory is an alternative low-energy description of gravity defined
as the truncation of GR to unit determinant metrics. In UG the CC does not
couple directly to gravity due to the unimodular constraint, and thus, it pos-
sesses a completely different nature. In particular, it does not receive radiative
corrections, partially solving the CC problem. Apart from the character of the
CC, UG is found to be classically equivalent to GR, and the question of the
full (in)equivalence of both theories is still an open debate when quantum cor-
rections are considered. The potential differences arising when studying the
coupling to matter are investigated, via the introduction of a non-minimally
coupled scalar field. We compute all the one-loop divergences in both theories
and find a physical combination of couplings whose running differs for interme-
diate values of the non-minimal coupling.



RESUMEN

Esta tesis, escrita como un compendio de articulos, aborda algunos de los prob-
lemas fundamentales que se plantean al intentar construir una teoria de la
gravedad cuantica. Tomando como punto de partida la Relatividad General
(RG), su conocido cardcter no normalizable conduce a la necesidad de una com-
plecién ultravioleta. Ademas, el problema de la Constante Cosmolégica (CC)
sigue siendo una de las piedras angulares de la Fisica Tedrica. Los siguientes
articulos exploran posibles soluciones a estos problemas en el contexto de las
Teorias de Campos Efectivas de la gravedad.

El primer articulo estd dedicado al estudio de las teorias gravitatorias cuadrati-
cas (en curvatura) cuando se tratan en el formalismo de Primer Orden, donde
la métrica y la conexién se consideran campos independientes. Estas teorias
renormalizables son cuadraticas en las derivadas de la conexién y no contienen
propagadores cudrticos, dejando a priori cierto espacio para la unitaridad. Sin
embargo, no estd claro si estas teorfas incluyen un gravitén o si estdn libres
de fantasmas, ya que toda la dindmica estd ahora codificada en el campo de
la conexién. Se necesita entonces un estudio completo de los grados de lib-
ertad que se propagan. En este trabajo, analizamos el contenido de espin de
una conexién genérica libre de torsion construyendo una base completa de 22
proyectores de espin de seis indices. Encontramos que estas teorias propagan
genéricamente una pieza de espin tres junto con varias componentes de espin
inferiores.

Una de las soluciones clasicas al problema de la CC es considerar teorias in-
variantes Weyl, ya que prohiben un término de CC en la accién. Esta simetria
es una generalizacién de la invariancia conforme habitual a los casos en los
que la gravedad estd presente. En el segundo articulo de la tesis, realizamos
un andlisis de la (in)equivalencia de las teorfas conformes e invariantes Weyl
para el propio campo gravitatorio. Se explora el Lagrangiano méas general para
particulas de espin dos hasta operadores de dimensién seis correspondientes a
la expansién de baja energia de las teorfas lineales y cuadraticas (en curvatura).
Llevamos a cabo una clasificaciéon completa de las teorias invariantes bajo difeo-
morfismos (transversos) linealizados, transformaciones de Weyl linealizadas, y
las simetrias conformes y de escala.

En la dltima parte de la tesis se examina la teoria de la Gravedad Unimodular
(GU). Esta teoria es una descripcion alternativa de baja energfa de la gravedad
definida como el truncamiento de la RG a métricas con determinante unidad.
En la GU la CC no se acopla directamente a la gravedad debido a la restric-
cién unimodular, y por tanto, posee una naturaleza completamente distinta.
En particular, no recibe correcciones radiativas, lo que resuelve parcialmente
el problema de la CC. Aparte del cardcter de la CC, la GU resulta ser cldsi-
camente equivalente a la RG, y la cuestion de la (in)equivalencia completa de
ambas teorfas sigue siendo un debate abierto cuando se consideran las correc-
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ciones cudnticas. Se investigan las posibles diferencias que surgen al estudiar
el acoplamiento a la materia, mediante la introduccién de un campo escalar no
minimamente acoplado. Calculamos todas las divergencias a un bucle en am-
bas teorfas y encontramos una combinacién de constantes de acoplo fisica cuya
variacién con la energia difiere para valores intermedios del acoplo no minimo.
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INTRODUCTION

Theoretical Physics is facing stimulating times. Although the discovery of the
Higgs Boson at the LHC [1, 2] completed the Standard Model of particle physics
— the theory describing fundamental particles and their interactions —, many
new questions came along regarding the precise value of the Higgs mass. To-
gether with other long-standing issues such as the puzzle of neutrino masses,
the matter-antimatter asymmetry of the universe, or the nature of dark mat-
ter, all these issues require the introduction of new physics. Furthermore, a full
understanding of the gravitational interaction is still the Pot of Gold of Theoret-
ical Physics. Despite the success of General Relativity (GR) [3] as a low-energy
theory describing a wide range of gravitational phenomena, its quantum com-
pletion is still an open issue. It seems, however, that we could be seeing some
light at the end of the tunnel (or rather hearing another type of waves). The suc-
cessful current generation of cosmological experiments, and more importantly
the direct detection of gravitational waves by the LIGO-VIRGO collaboration
[4], have allowed us to probe new regimes in gravitational physics which were
not accessible before. More so, next-generation experiments will push this pro-
gram further towards the edge of our current understanding and support the
exploration of possible modifications of GR and their impact on observable
physics.

THE QUEST FOR A COMPLETE THEORY OF GRAVITATION

This thesis, presented as a compilation of three articles, aims to shed some
light on some of the problems arising when trying to get to a quantum theory
of Gravitation. The philosophy followed here has been to break down this
problem into various subproblems and explore possible solutions to some of
them. With this in mind, we have tried to get some insight into how a Quantum
Gravity theory might look like. But before we get into the heart of the matter, let
us take a step back and remember where we are coming from. In the following,
we will take a general overview of the discoveries and breakthroughs that have
shaped our current understanding of the universe.

Physics as a cube: a tale of three fundamental constants

Most of the physics of the last centuries can be summarized and understood
via three fundamental constants of nature: Newton’s constant, Gy, the speed of
light in vacuum, ¢, and Planck’s constant, /i. Each of these constants embodies
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a basic prinpicle of Theoretical Physics. Let us briefly discuss the new features
that came along with each of them

o The first of the three, Gy, was introduced by Newton in his universal law
of gravitation back in 1687, as a proportionality factor between the gravi-
tational force felt by two masses and the quotient between the product of
the masses and the distance between them. This dimensionful constant
gives us an idea of the strength of the gravitational interaction, and in
particular, its small value makes gravity the weakest force compared to
the other three fundamental interactions (taking for example the gravita-
tional force felt by two protons in a nucleus, it is 38 orders of magnitude
weaker than the strong force between them).

o The constancy and finiteness of the speed of light in all inertial reference
frames was introduced by Einstein in his theory of Special Relativity (SR)
in 1905 [5]. This idea completely revolutionized the way we treated space
and time, unifying those into a single entity. Being a universal dimen-
sionful constant, ¢ can be used to transmute dimensional quantities like
length and time (e.g. x = ct). The same can be applied to mass and
energy, as encoded in Einstein’s famous formula

E =/ (pc)? + (mc?)2.

Let us highlight that this formula associates an energy to massives parti-
cles but also to massless ones, proportional to their momentum. Before
SR, the notion of massless particles could not even be addressed using
Newtonian mechanics.

o The last constant belongs to the realm of Quantum Mechanics (QM).
The introduction of the quantum world implied a complete change of
paradigm in physics. In this context, the constant i is the minimum value
that the physical action can have. This translates into the quantization
of physical quantities, such as linear momentum or energy, meaning that
they now come in tiny packets called quanta. This theory governs the
interaction of the fundamental and smallest constituents of matter and
departures from the deterministic viewpoint of classical mechanics, due
to properties like the uncertainty principle, which implies that we can-
not measure conjugate quantities such as momentum and position with
infinite precision. It also gives one of the most incredible features of na-
ture, namely that energy fluctuations violating energy conservation are
allowed as long as they happen in a very small period of time. Moreover,
when combined with SR, this has game-changing consequences.

After introducing the basic building blocks, we can turn to the construction of
the cube shown in figure 1. Simple at first sight, it summarizes the foundation



of modern Theoretical Physics." Each of the axes corresponds to one of the
three aforementioned fundamental constants (note that we take the inverse of
the speed of light for simplicity, as will be explained shortly). Different vertices
are reached when each of the constants is either switched on or off, depending
on whether they are relevant for the phenomena we want to study. For instance,
processes involving small velocities in comparison with the maximum velocity ¢
are dubbed as non-relativistic as they correspond to taking the limit ¢ — o0, and
thus, c=! — 0. For speeds comparable to c, special-relativistic effects become
important and are desbribed by moving one unit along the ¢~ axis.

NewToNiAN QUANTIM
g::“l‘y GRAVITY /’ GRaviTY
TIVIT,
NewTONIAN £
MECHANICS MecHanics
/ SPECLAL A
RELATIVITY
= QuanTun
Cct Fiewd Toeoky

Figure 1: Pictorial representation of the theories governed by each of the fun-
damental constants. The axes correspond to Newton’s constant, the
inverse of the speed of light, and Planck’s constant.

Once the stage has been settled, we can explore the cube starting from the
origin. It represents the long-known Newtonian mechanics, a classical (as op-
posed to quantum) theory without gravity, valid as long as the speeds consid-
ered remain well bellow the speed of light. Even if we take it as the starting
point, it took many great minds to get there. From that point, Newton already
took a step up and conquered the vertex of the so-called Newtonian Gravity,
and the first part of the 20th century was devoted to exploring the other two
directions, arriving at SR and QM.

As a next step, various of these movements can be combined, switching on
two constants simultaneously. Looking at the lower face of the cube, we can
climb to the first hybrid point, where both Gy and c enter the game. This point
corresponds to the General Theory of Relativity, also due to Einstein in 1915 [3].
This theory generalizes the ideas of SR to spacetimes where gravity is present.
In this theory, gravity is treated as a field, fully characterized by a symmetric
tensor called the metric tensor, g;,y. Einstein’s equations provide the equations

'As a remark, this idea was already discussed by G. Gamow, D. Ivanenko and L. Landau in Zh.
Russ. Fiz. Khim. Obstva. Chast’ Fiz. 60 (1928) 13 (in Russian).
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of motion for the gravitational field in the presence of matter or energy, and

take the form 8
T
2 Tw (1)

where R, and R stand for the Ricci tensor and the Ricci scalar respectively and
are constructed from the metric and its second derivatives, and A represents
the Cosmological Constant (CC) term.”> The right-hand side corresponds to
the energy-momentum tensor that contains all the information about any kind
of energy density in spacetime. These equations entail a very profound and
geometrical interpretation of gravity: the energy density affects the geometry
of spacetime, and at the same time, gravity tells matter and energy how to
move on this geometry. The action from where these equations of motion are
obtained is called the Einstein-Hilbert action,3

Sk = —;?Jd‘Lx\/LgT(RnLZA), (2)

where x> = (871Gy)/c* contains the two relevant constants, as advertised.

The other interesting interplay, starring ¢ and 7, takes us to Quantum Field
Theory (QFT). This is a framework that allows for the unification of SR and
QM, where brand new phenomena arise. We know from QM that quantum
energy fluctuations happen in small intervals of time, and now, when SR kicks
in, that energy can be converted into mass, and therefore, into particles. It also
provided the introduction of antiparticles, opening a new world of possibilities.
As the standard lore says, anything that is allowed in QFT will indeed happen.
For example, the vacuum can produce a particle-antiparticle pair that then an-
nihilates back into the vacuum. Therefore, we immediately depart from a static
picture of the vacuum and replace it with a boiling sea of quantum fluctuations.
New tools are then needed to treat all these processes and their contribution to
physical observables. After the path integral formulation of QFT in terms of the
action, Feynman introduced a simple technique to compute these contributions
to physical quantities in perturbation theory. Each of the relevant processes
can be depicted as a diagram, and some rules (which can be extracted from
the action) can then be applied to compute each of their contributions. More-
over, these diagrams can be ordered in a series expansion depending on the
number of internal loops (closed paths),* which corresponds to an expansion
in powers of fi. Higher loops are thus more suppressed and a hierarchy be-
tween each of the orders exists. The computation of these contributions was
not straightforward though, and the pioneers of QFT faced a lot of apparent

1
Ryy — E(R +2N)gu =

*Incidentaly, talking about famous constants, we will see that the CC embodies one of the
biggest open problems of Theoretical Physics itself.

3We take the mostly minus convention for the metric.

4Processes with more loops can be generated for example if the created particle or antiparticle
further splits into another pair.



problems coming from divergent integrals whose interpretation was not clear.
After years of work, a technical procedure called renormalization was intro-
duced to absorb these infinities and render the physical observable quantities
finite. In a nutshell, it consists of introducing a finite> number of terms, dubbed
counterterms, so that they can subtract the infinite part of the non-observable
quantities that were appearing in the initial description of the theory. However,
this procedure only works for some theories, which are therefore called renor-
malizable. In this context, the Standard Model arose as a renormalizable QFT
describing the strong, weak, and electromagnetic interactions, and has turned
out to be arguably one of the most tested scientific theories of all time.

Before going into the theory where all three constants are important, let us
comment on a concept that also involves the use of the three. Combining these
dimensionful quantities, we can build up some universal units of time, length,
and mass (or energy), called Planck’s units.® The existence of these units gives
us a universal way of measuring these quantities which has nothing to do with
the particularities of our world or galaxy. The Planck mass can be constructed
by equating two different lengths built by using GR, namely MGy/c?, or QFT,
/Mc, so that we get another constant given by M, = 4/hic/Gy. This mass is
huge, M) ~ 1019mpr0t0n, and turns out to be very important in the discussion
that will follow, as the combination of GR and QM becomes necessary at this
energy.

But what happens then when the three fundamental constants are switched
on? This is indeed the Holy Grail of Theoretical physics: a theory of Quantum
Gravity (QG), and the hope of a unified treatment of the four fundamental
interactions of nature. To reach this star point in the cube, we see that we
would need to blend GR and QFT together in a consistent way. Unfortunately,
this is proven not to be straightforward and is in turn one of the greatest open
problems in Theoretical Physics, and certainly, one that has caused rivers of ink
to flow in the last decades. At this point, one could ask whether a QG theory
is actually necessary.” This seems to be the case when looking at one of the
most amazing avatars appearing in GR: Black Holes (BH). These objects are a
direct consequence of the existence of a maximum velocity, namely c. If the
gravitational field is strong enough, the escape velocity of an object can exceed
the speed of light, and thus, nothing can escape from such a gravitational field.
This is the mechanism at work in a BH. Once an object passes through a certain
distance from the center of the BH, called the event horizon, nothing can escape
from it — not even light. But in a turn of events, it happens that this is not

5The fact that the number of counterterms needed is finite, is key for renormalization to work.
We will shortly see that this is not possible in the case of GR.

6 Although they play a main role in most areas of theoretical physics, they are most of the time
fixed to unity for simplicity. We work with c and 7 equal to unity during most of this thesis.

7The idea that gravity is not a fundamental interaction but rather an emergent phenomenum
that has to be treated in a thermodynamical framework is explored in Emergent Gravity theories
[6, 71.
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strictly true. When quantum mechanical effects are considered close to the
event horizon, a black-body type of radiation called Hawking radiation [8] is
predicted. One of the consequences of this phenomenon is a decrease in the
area of the BH given by a formula containing the three fundamental constants
I, ¢, and Gy. This fact, together with the existence of a singularity in a tiny
region of the center of the BH which GR cannot resolve, makes BHs the perfect
arena for festing QG effects.

At this point, there are two possible ways to address the construction of a
quantum theory of gravity. The first one modifies the high-energy degrees
of freedom and looks for a complete theory first, and tries to make contact
with the physics we know within that framework afterwards. This top-bottom
approach has culminated in String Theory, the strongest candidate so far for a
complete theory of QG. Nevertheless, there are still open issues regarding how
to precisely recover the low-energy theory that describes our universe. The
bottom-up approach on the other hand, takes GR as a starting point and looks
for minimal extensions to find a high-energy completion of it. The latter is the
viewpoint taken throughout this thesis. Let us then go through the problems
found when trying to quantize GR, which will be adressed in the three articles
contained in the thesis.

General Relativity and the issues to go quantum

The failed marriage attempt between QFT and GR has been a very announced
and suffered one. From the beginning, some conceptual problems could al-
ready be foreseen when looking at one of the foundational principles of QFT.
In QFT the spacetime is a fixed entity corresponding to flat Minkowski space-
time, which is then used to define key aspects like causality. When gravity
becomes quantum, however, this spacetime can fluctuate and even the notion
of causality is not well defined anymore. To surpass this issue, we can study
the quantum fluctuations of the metric around a fixed background expanding
it as

Suv = Suv + Kh;u// (3)

where the first term corresponds to the fixed background field and £, repre-
sents the graviton fluctuations (and « is defined right below (2)). This procedure
is called the Background Field method [9]. In this way, the usual quantization
methods of QFT can be applied to the graviton fluctuations. Unlike the QFT
describing the other three fundamental interactions, we find that GR is non-
renormalizable. This is tied to the fact that Newton’s constant has dimensions
of inverse energy squared. This has far-reaching consequences when looking
at the contributions to the scattering amplitude coming from different loop or-
ders. As higher loops are considered, the number of internal fields grows, and
thus, more propagators or higher interaction vertices are needed. In particular,



the interaction vertices of the gravitons, as computed from the expansion of
the action (2), contain different powers of Newton’s constant depending on the
number of fields involved. From (3) we can see that each graviton contributes
with one power of k. As the action has an extra k2, we can see that the
propagators do not carry any power of x, whereas the three and four-vertices
pick up one and two extra powers respectively. Taking for instance the tree-
level and one-loop processes in the graviton-graviton scattering diplayed in
figure 2, we see that they are of different order in x. By dimensional analysis,

O (k%) O (K?)

Tree — Level One — Loop

Figure 2: Tree-level and one-loop diagrams for a graviton-graviton scattering.

higher-order contributions will contain higher powers of the external momenta
to compensate for the extra powers of x. This translates into a series of terms
with an increasing number of derivatives. One-loop counterterms correspond
to quadratic invariants of the curvature (terms with four derivatives such as the
Ricci scalar squared), and consequently, higher-dimensional curvature invari-
ants arise at higher loops. Subsequently, an infinite number of counterterms
would be needed to absorb the infinities contained in the different terms at all
orders of perturbation theory. The only possible way out then is the vanishing
of all these invariants when the equations of motion are imposed. This is true
at one-loop for pure gravity [10], but already fails at the two-loop level [11],
and thus, GR is non-renormalizable.

Although we know that this is an unavoidable problem, the hierarchical struc-
ture of the scattering amplitudes in terms of loop contributions allows for the
theory to be treated as an EFT valid in a finite range of energies. Recalling the
equivalence between energy and momentum, the scattering amplitude at an
energy E can be symbolically written as the series

M ~ Gn[1+ GNE? + (GNE?)? + .., (1)

where the factors of 71 and ¢ are fixed to one. Therefore, as long as E «
(1/Gn)V/? = M, we can truncate the perturbative series up to some loop order
and work with it as an approximate theory, given that the non-renormalizable
pieces are highly suppressed by powers of Gy. This is true up to energies close
to the Planck mass M), where the perturbative expansion breaks down and
higher terms in the expansion cannot be ignored. This signals the need for new
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physics at least at energies of the order of the Planck mass — where the star is
reached in the cube.

But this is not the only problem of GR and its unification with the rest of
interactions. The so-called Cosmological Constant (CC) problem, namely the
explanation of why the universe is expanding in an accelerated way due to the
presence of a tiny but positive CC constant, given by (877Gy) 1A ~ 1074 GeV*,
is one of the greatest challenges in Theoretical Physics. This constant, intro-
duced by Einstein himself so that the solution for a static universe could be
accommodated in the theory, was later acknowledged by him as his biggest
failure when the true expanding nature of the universe was shown by Hubble.
After that, solutions for an expanding universe where found, which where in-
dependent of the value of the CC. This lead the comunity to assume that the
CC was zero for a long time, till the accelerated expansion of the universe was
discovered [12, 13]. Nonetheless, finding an explanation for a zero CC was not
an easy task either. Lorentz invariance implies that the contribution to the vac-
uum energy from quantum fluctuations takes the same form as the contribution
from a CC-like term given by

(T = ov) §uvs (5)

where {py) corresponds to the vacuum energy density. These terms add up to
the bare CC appearing in equations (1) and we can thus define an effective CC
constant as

Aef. = A+ 871Gy {pv). (6)

Looking at the form of the effective CC, it is easy to explore the two aspects
of the problem. The first one is related to the lack of an explanation for the
particular tiny value of the CC, and the need for a mechanism or principle
that sets it to this value. The second one is related to its fine-tuning. Using
the QFT framework to compute the zero-point energy density contributions,
and trusting GR up to the Planck mass, we obtain that the vacuum density
goes as {py) ~ M;l,. To match the experimental data, the sum of the bare
cosmological constant plus the vacuum energy contributions, as computed in
the QFT framework, must unnaturaly cancel up to 118 decimal points. Many
attempts to solve this problem have been made, but its solution is still the big
elephant in the room.

EFT APPROACH TO SOME OF THE PROBLEMS OF GR

During the completion of this thesis, we have mainly focused on some possi-
ble ways out to the two problems of GR that were introduced in the previous
section, that is, its non-renormalizability and the CC problem. The idea behind
the articles presented here (as well as some of the other publications carried out
during these years), is to modify GR in a minimal way to explore alternatives



for its UV completion. In the diagram of figure 3, a summary of the issues
analyzed in these works can be found, as well as the insights and drawbacks
that each of them presents. In the following, we will briefly introduce the main
points included in each of the three articles.®

' 4
Non - RenoenatizasiuTy CoSMOLDGICAL CONSTANT
i Bl froBLEN
1 o ” '*._-.~
v R e Ty
Quaoratic Gravery (Q&) UNIMODULME.  GRIWITY &------ Weve  INvaryance
: 4),9),%). 44) 2),6),9), 40)

Non - U.NTTAMTY ---> Flast ORden. Q4
43),14)

Figure 3: Summary of the research directions and their connections. Red lines
indicate the drawbacks found at each step, whereas the green lines
correspond to the insights followed. The numbers in gray correspond
to the precise articles where these ideas have been followed, matching
the number on the list included at the beginning of the thesis.

Non-renormalizability of GR and First Order quadratic gravity

One of the first solutions to try to bypass the non-renormalizability of GR con-
sists on considering theories that are quadratic in the curvature, instead of the
linear one given by (2). In principle, one can write three of such quadratic
gravitational invariants, but only two of them are independent when using the
Gauss-Bonnet identity. To this end, we consider the action

Squad = Jd4x \/|g>| (’XRZ + ,BR]WR’W)- (7)

The appealing feature of these theories is the fact that the coupling constants
appearing in front of each of the quadratic invariants are dimensionless. As
opposed to the GR case, the loop expansion contains a finite number of terms

8Please refer to the full introduction of each of the papers for specific and more technical
details.
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and therefore, the divergences can be absorbed by a finite number of countert-
erms. Thus, it can be proven that these theories are renormalizable for some
regions of the parameter space of & and f3 [14]. The second important difference
with GR is that quadratic theories are quartic in the derivatives of the metric.
As a consequence, the graviton propagator is quartic in the momentum. This
momentum dependence implies that these theories dominate at high energies
and, therefore, can work as a UV completion of GR. Nevertheless, a mechanism
is needed to recover GR at low-energies and describe the observable universe.
This can be achieved for instance by directly appending the EH term to the ac-
tion, which will gobern the theory at low energies.” Other mechanisms include
minimally coupling a scalar field with a potential, which after renormalization
produces a counterterm of the form AL = /|g|C¢?*R. An EH-like term can
be then generated from the spontaneous breaking of scale invariance via a vac-
uum expectation value < ¢ >= v for the scalar field, at an energy scale given
by M? = Cv?. This term will then dominate in the infrared and we can recover
the GR phenomenology.

Unfortunately, these theories suffer from another fatal problem coming from
the quartic momentum dependence. We know from the Kallen-Lehmann spec-
tral representation [15, 16] that any propagator can be written as the integral
sum of some positive density multiplied by quadratic propagators. Taking a
quartic propagator and decomposing it in such a way, it is straightforward to
see that one of the two pieces carries the wrong sign, thus signaling the pres-
ence of a ghost [17] and the corresponding non-unitarity of the theories. The
first of the three articles presented in this thesis tries to give a possible way out
to the non-unitarity problem of quadratic theories (that is, the left branch of
figure 3). To do so, we treat these theories in the First Order (FO) formalism. In
the FO approach, the metric and the connection are represented by completely
independent fields, as opposed to their relation in the usual Second Order formal-
ism where the Levi Civita connection is constructed from the metric tensor and
its derivatives. Once we take this into account, the first consequence is straight-
forward: the action is now quadratic in the derivatives of the connection so
that no quartic propagators appear. Nonetheless, FO quadratic theories come
with new features that need to be carefully analyzed. In particular, the solution
space of these theories is bigger than that of usual quadratic gravity, and more
degrees of freedom may be present coming from the three-index connection
field. Therefore, the behavior of these new components needs to be investi-
gated to fully assess the unitarity issue. Moreover, when expanded around flat
spacetime, the graviton propagator vanishes. Hence, the gravitational degrees
of freedom must come from a spin two-piece hidden in the connection field.
This is studied in detail in the first article included in the thesis.

9This is indeed the usual action considered in the literature when talking about quadratic
gravity.



Insights from Weyl invariance

Changing gears, let us focus on another concept that has been constantly pop-
ping up along the thesis: Weyl invariance. This symmetry is nothing but the
generalization of scale or conformal invariance to the case in which gravity is
present. All these symmetries embody the old and intuitive idea that at very
high-energies, masses should be unimportant, and hence, the theories describ-
ing our universe could enter a conformal or scale-invariant phase. But why is
this symmetry appealing in the first place? Weyl invariance manifests itself as
the invariance under local rescalings of the metric, namely, g,y — O2(x) Suv-
Therefore, if the universe were Weyl invariant, no CC term would be allowed,
as the volume term in the Lagrangian would not be invariant under such trans-
formations."® Moreover, as we will see in the second paper of the thesis, Weyl
invariance turns out to be quite restrictive. It could then be the case that if
a fully Weyl invariant quantum theory existed, no counterterm respecting all
the symmetries of the theory would exist, and thus, the theory could be finite.
Although these utopic ideas would help with the CC problem and the possible
finiteness of such theories, it is a fact that our universe is not Weyl invariant,
at least up to the energies avalaible to us in the LHC. Moreover, most of these
theories suffer from quantum anomalies already at the one-loop level (see [18]
for a review on conformal anomalies and [19] for a comparison when gravity
is dynamical), so it is not even clear whether fully consistent Weyl invariant
theories exist at all (see [20] for a related discussion). Contributions to the CC
would then arise at the symmetry-breaking scale.

In any case, although necessarily broken at low energies, Weyl invariance is a
recurring symmetry in Theoretical Physics. Accordingly, aspects like the differ-
ences among scale, conformal and Weyl invariance, together with the subtleties
arising for dynamical gravity, have been thoroughly analyzed in the literature,
as well as in this thesis. The first of these points, for instance, has already
been broadly investigated in several works for different types of couplings of
matter to gravity. In the second paper of this thesis, however, an analysis of
this (in)equivalence is carried out for the gravitational field itself. To do that,
we study the most general low-energy action describing spin two particles as
the linear combination of operators quadratic in the field, with two and four
derivatives. These type of operators arise as the low-energy limit of theories
linear and quadratic in the curvature. We compute the conditions on the coeffi-
cients of the operators for the theories to be scale, conformal, or Weyl invariant,
combining them with the linearized version of the symmetries of gravitational
theories, namely, (transverse) diffeomorphism invariance.

The volume measure is not invariant under Weyl transformations and it transforms as

VEdtr — OF /g dtx.
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Unimodular Gravity: invisible to the CC

Following the path of possible insights on the CC problem, Unimodular Gravity
(UG) poses a very interesting alternative to GR, in which the CC has a different
character. UG is defined as a truncation of GR to metrics with unit determinant,
¢ =1, and its action can be written as

Suc = —21? J d*x (R+2A), ®)
where a hat'" is used to denote that the Ricci scalar is constructed with the
unimodular metric ¢,,. We have explicitly written a CC-like term to highlight
the fact that these types of constant contributions in the action are irrelevant
in UG, as they do not couple to gravity. Therefore, the CC does not gravi-
tate, that is, it does not couple to the gravitational field. Moreover, the unit
determinant constraint has further implications. First of all, the variation of
the determinant must vanish, and thus, the metric variations are found to
be traceless, 6¢ = ¢""0¢,y = 0. Taking into account the infinitesimal trans-
formation of the metric under general diffeomorphisms, 6¢,y = L8, the
tracelessness condition implies that UG is only invariant under transverse dif-
feomorphisms. The symmetry group is then reduced to volume-preserving dif-
feomorphisms, whose algebra dubbed as TDiff corresponds to the infinitesimal
diffeomorphisms generated by transverse vectors.

Differences aside, both theories share many properties that may not be ob-
vious at first sight. On the one hand, the three gauge conditions from TDiff
are enough to reduce the 5 massive graviton degrees of freedom down to the 2
massless ones [21]. On the other hand, they share classically equivalent equa-
tions of motion. Due to the tracelessness condition of the variations, the uni-
modular equations of motion are just the traceless part of Einstein’s equations,
namely,

1 1
Ryv - ZLRg;n/ = x? (Tyv - 4Tg]11/> . )

Nevertheless, we can reintroduce the trace into the game by using the Bianchi
identities, V¥R, = %V,,R, and the conservations of the energy-momentum
tensor, implying

R . 1. .
Vo R+%*T) =0 — Ry - 5 (R+2A) g = Ty, (10)
where A = —%(IA{ + «2T). Here we can appreciate the main difference between

GR and UG. While in GR the CC appears like a parameter in the Lagrangian,

A note of caution here. In the third paper of the thesis, the notation is changed and g, is
used for unimodular metric and ¢y for the unconstrained ones. We have chosen to change the
notation as g,y has been used for GR metric throughout the introduction.



here it corresponds to an integration constant which is in principle fixed by
boundary conditions of our universe. This would then mitigate one of the
aspects of the CC problem as we saw it, as the CC appears as a fixed integration
constant in the Lagrangian and is not modified by radiative corrections. It does
not help, however, with the other facet of the problem, namely, the precise tiny
value of A. Classically then, the equations of motion are equivalent to the ones
found in GR with a family of fixed cosmological constants. In particular, it
can be shown that we can obtain the usual BH solutions'* as well as the FRW
cosmological solutions, from UG [22].

The big question is then whether both theories are also equivalent at the
quantum level. There has been a long debate on trying to understand whether
UG is actually a different theory than GR in any additional aspect apart from
the fact that the vacuum energy does not gravitate. In the third paper of this
thesis, we explore some possible differences between these two theories at the
quantum level. The basic idea is that whereas on-shell gravitons are transverse
and traceless in both UG and GR, their trace propagates off-shell in GR and
contributes to the renormalization of the CC. In UG, as a consequence of fixing
the condition ¢ = 1, the trace of the graviton is always absent, even off the mass-
shell. With this in mind, we compute one-loop corrections for these theories
when non-minimally coupled to a massive scalar field.

Let us comment on another important aspect of UG and its interplay with
Weyl invariance. When taking into account quantum corrections in UG, or
more precisely, when the path integral formulation is used, technical difficul-
ties arise due to working with constrained metrics. This is a subtle issue and
computations of purely gravitational corrections turned out to give contradic-
tory results when carried out with unconstrained or constrained metrics [22, 23].
The first approach uses an alternative description of UG, obtained by writing
the constrained metric in terms of an unconstrained one via the transformation,
Suv = g4 guv, where the unit determinant condition is automatically fulfilled
for any g. With this construction, an extra Weyl invariance is introduced, and
we can always gauge fix the new theory to go back to UG. In terms of the
unconstrained metric, the action can be written as

3 VugVi8
Vngu},

% g (11)

1
SWTDiff = “52 fd“x |g|1/4{R +

and is usually called WTDiff, after this extra Weyl symmetry on top of the
transverse one. This is the formulation that will be used in the third paper of
the thesis. With it, we can work with unrestricted fields in the path integral
formulation, but the price to pay is the complicated gauge sector needed to fix
both symmetries.

2 Actually Schwarzschild himself used a unimodular metric in its original derivation of his BH
solution.
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As a final remark, one can close the loop and show that the CC can also
be reintroduced in this WTDiff formulation via the Bianchi identity. This is
shown schematically for UG and WTDiff theories in vacuum (but can be easily
generalized to the case of a non-vanishing energy-momentum tensor) in the
diagram bellow. There, all the transformations between the restricted and un-
restricted metric are indicated, where f(g) and h(g) are functions of g and its
derivatives.’> As expected, both theories are trivially equivalent when the Weyl
gauge in WTDiff is fixed to g = 1.

Plan of the thesis

After this general introduction, the second part of the thesis contains the col-
lection of three articles in the published version. Each of them is presented in
a separated chapter. We leave the conclusions for the final section, where the
main results of these works are summarized.

3More precisely,

7 (V gV _ 1V,gV* 1/V,Vyg 1
f(g) = 7 r8 18 niz g&dv) 1 ( #g - Z%é’w)
7V gV g  17V,gV* 1V, Vg 1
h(g) 30 gz g 4 uiZ gg]u/ ~ }lg v + Z%gw (12)
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1 Introduction

Theories of gravity where the lagrangian is quadratic in the
Riemann tensor [1,2] are known to be well behaved in the
ultraviolet (they are often asymptotically free) but suffer from
the fatal drawback of not being unitary (cf. [3] for a general
review, and [4] for a recent analysis similar in spirit to ours).
The distinctive flavor of our approach, as compared with pre-
vious literature on the subject (confer in particular the work
of Biswas et al. [5-9] and also [10]), is that we work in the
first order formalism.

It has been recently pointed out [11-13] that when con-
sidering quadratic theories of gravity in first order formalism
(which is not equivalent to the usual, second order onel)
where the metric and the connection are considered as inde-
pendent physical fields, no quartic propagators appear and
the theory is not obviously inconsistent. This framework is a
good candidate for a unitary and renormalizable theory of the
gravitational field, leading to a posible ultraviolet (UV) com-
pletion of General Relativity (GR). Recent work, following
related lines, has been done regarding a possible UV com-
pletion of GR by modifying the usual second order quadratic
gravity [14-16].

Those theories depend on a number of independent cou-
pling constants, which can be grouped into three big classes,
corresponding to the Riemann tensor squared, the Ricci ten-
sor squared, and the scalar curvature squared. Althoug there
are many similarities with the second order approach used in
the above references, there are also crucial differences. The
most important of which is that we do not have explicit viola-
tion of the positivity in the spectral function (that is, we do not
have propagators falling off at infinity faster that ﬁ). This

! Even for the Einstein—Hilbert first order lagrangian the equivalence
is lost as soon as fermionic matter is considered.
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is the reason why we have endeavored a systematic approach
following our ideas from basic principles, even at the risk of
rederiving some results already known in the second order
approach. Of course not all of them hold true in our case. We
shall point out the main differences in the main body of the
paper.

In particular, there is one worrisome fact. When consider-
ing the theory around a flat background there is no propaga-
tor for the graviton. This means that either the theory is not a
theory of gravity at all, or else all the dynamics of the grav-
itational field is determined by the three index connection
field.

Of course the idea that the true dynamics of gravitation
is better conveyed by the connection field than by the metric
has a long history (cf. for example to the classic paper [17]).
It is the closest analogue to the usual gauge theories, and can
be easily related to physical experiments and observations.
In fact in [11-13] we have shown that there are possible
physical static connection sources that produce a V (r) = %
potential between them. This is at variance with what hap-
pens in the usual quadratic theories as formulated in sec-
ond order, in which the natural potential is a scale invariant
one V(r) = Cr. This forces many authors to include an
Einstein—Hilbert (linear in the scalar curvature) piece in the
action from the very beginning if one wants to reproduce
solar-system observational constraints (cf [1,2] for a lucid
discussion). Another possibility is a spontaneous symmetry
breaking of the scale invariance of quadratic theories, so that
the EH term is generated and dominates in the infrared (see
e.g [18-22] regarding this issue).

The static connection sources in [11-13] were of the form
Jyvs ~ juTvn + - - -, where j, was a conserved current and
T},, was the energy-momentum tensor. The physical meaning
of those sources is not clear, to say the least. In order to get
a better grasp on the workings of the theory, it would be
helpful to disentangle the different physical spins contained
in the connection.

Our aim in this paper is precisely to perform a complete
analysis of the physical content of the connection field. There
are a priori 40 independent components in this field. We shall
analyze them by generalizing the usual spin projectors [23—
25] to the three-index case, and expanding the action in terms
of these projectors. We shall find that generically there is a
spin 3 component, which disappears only when the coeffi-
cient of the Riemann square term vanishes. This property is
however not stable with respect to quantum corrections, that
will make this term reappear even if the classical coefficient
is fine tuned to zero. Kinematically, there is also a set of three
spin 2 components, five spin 1 components and three spin 0
components.

Let us now summarize the contents of our paper. First we
quickly review, mostly to establish our conventions, the spin
content of the usual lagrangian linear in curvature (Einstein—

@ Springer

Hilbert) both in second and in first order formalism. Then
we tackle the spin analysis of theories quadratic in curva-
ture, again both in second order and first order formalism.
Extensive use is made of a new set of spin projectors, which
are explained in the appendices.

Throughout this work we follow the Landau-Lifshitz
spacelike conventions, in particular

A A
RY o = 3,Th, —8,Th, + T}, Th, = T3, ) (1.1)
and we define the Ricci tensor as
Ry =RY;, (1.2)
The commutator with our conventions is
A A
Vi, VoIV = R, VP
(Vi Volh®® = nP*RS  + 0 RE | (1.3)

2 Lagrangians linear in curvature (Einstein—Hilbert) in
second order formalism

Let us begin by quickly reviewing some well-known results
on the quadratic (one loop) approximation of General Rel-
ativity (GR), as derived from the Einstein—Hilbert (EH)
lagrangian. We do that mainly to establish our notation and
methodology.

We expand the EH action around flat space by taking
Suv = Ny + Khuv (2.1)

We are interested in the quadratic order of the expansion.
The operator mediating the interaction between the metric
perturbation reads

1 4
S = E/d X h”VKlE:Lp(,hpg 2.2)
where the operator reads
EH — 1
K;wpa = _g (U/Lp’?ua + 77/40771)/)) O
1
+ g (Buapnm + 0406 Mvp — D0pNuo + avannup)
1 1
+ _1 (3/78(777/1.\) + npaap.au) + Znuvn/m‘:l (2.3)

In order to better understand the physical content of this
action, we can decompose the symmetric tensor /1, as
9,0y

d

huy = hi, + 07" (8,4, + 0,4,) —

1 0,0
+§ (Upw - ,LDU)V/

0]

(2.4)
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where as we shall see h,zw corresponds to the spin 2 part of
the field. The other fields are defined as follows

¢ =0"0"h,, =00
h=n""hy,
Ay =09"hug;

At =00 25)

Under linearized diffeomorphisms
5]’1;/,1) = 3;1_51) + 3;}5;1

these transform as

2.6)

s¢ = 200%¢
sh =200k

8A, =0E] +200,¢ 2.7)
where we have split §, in its transverse (§ 5 ) and longitudinal
(3,,) parts.

From the transformation properties, it is clear that there is
a scalar gauge invariant combination

Sy =8h—®) =0 (2.8)

As stated before, we want to carry out an analysis of the
spin content of the fields in the theory using the spin pro-
jectors defined in “Appendix A”. The action of these spin
projectors? over hy gives

iy 3,0, D
WO = (P h) e = 07 20,0,¢ = “D” :

Sh0 = 20,,0,&

1 9,0
hY, = (Pyh)u = g{mw - “D” }1//; 8h%, =0
3,0, @
O

By = (P =07 (3,4, +904,) — 2222
Sy = 98 + 0ok
hi"E(ch)/W :hl/-V - D_l (BILAV+8VA}L)+D_281Lav¢

1
= 3l — O~ @u8vh + dnyy) + 028,800}

3,0
=hy — 071 0,4, +8,A4,) + “D” @

1 v\ 5
—g(’hw— D)w, 8%, =0

and integrating by parts we get

(2.9)

/d(vol) h%, 0y = /d(vol) %ww

2 1t has to be understood that when writting the action of the projec-
tors in terms of derivatives and box operators, it is implicit that these
correspond to the ones of flat space.

/ d(vol) (%, + HO)OI (LS + LY

= /d(vol) (d)l]cb+ %z/fm]/f)

f d(ol) h},,Oh}" = f d(vol) (24, A" —2001®)
/d(vol) h?%, OhE"

1
= /d(vol) (h,th‘“’ — V0V + o000 + ZAMA">
(2.10)

Then the Einstein—Hilbert action can be rewritten in terms
of the projectors as

1
s =—2 / d*x ™Y (Py — 2P§) upo P (2.11)

At this point, one can ask the question of whether it is possible
to write a local lagrangian that contains only the spin 2 part
of ;.. Indeed the spin two part can be written as

Wb 0,0 hpy + hypd?dy  0,0,0,05h"°
iy 24 0 2
1 9,0y 9”707 h 9,,0,079% h
_5{ ’hw—%h—’hw po  On ~ po
2.12)

where we can see that we have a term which goes as é
This means that if we do not want to get non-local inverse
powers of the d’Alembert operator, the simplest monomial
that contains spin 2 only is going to be given by
Sy = Kl—é/cﬂx P (2.13)
which as is well-known suffers from several unitarity and
causality problems associated to higher derivative
lagrangians.? It would seem that the (harmless as we shall
see) spin O addition is a necessary ingredient in a unitary
Lorentz invariant spin 2 theory. We will come back to this
point at the end of this work.

Let us go back to the EH action (2.11). With the help of
(2.9), we can further decompose it in terms of the different
fields contained in &,

1
s = _§/ “x [0 Ohyy + 24, A + @00 — Oy

(2.14)

3 Note that this action has a larger gauge symmetry, namely

Sy = (P)upe A7+ (P5) 100 A7+ (PE) 0 AS”

Jvpo Hvpo

where A" are arbitrary fields.
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The equations of motion read

58S

W:thzo

88

— =0y =0

Sy v

N

— =0d=¢=0

5P ¢

55 _ =0 (2.15)
sA, " ’

so that A, = ¢ = 0, leaving just 5 free components in &,
on shell.

In order to find the propagator, we need to introduce a
gauge fixing term to make (2.3) invertible. Let us choose the
harmonic (de Donder) gauge condition given by the operator

1
K/gzvpn = g (auapnva + auaaﬂvp + 8\)8,07]/40 + 00y 77/4,0)
1

(100 88y + Nuvdpds)

T
! O
Sr/uvrlpn
3 1 V3
=—— (P +ZP5 +-P¥ — = pX O
4<1+20+20 2 )
Hvpo

(2.16)

in such a way that

e 71 ( _ O
mvpe = "¢ NupMve + Nuo Nup Vluunpo)

1 1 3
:71<P2+P1776+7P(;"7§PX) Od
vpo

2 2
P
2.17)
The propagator is easily found to be
! -1
Apvpe = 3 (ﬂupnva + NpoMvp — Nuvipe ) O
1 1 V3
=—4( P+ P — P+ PP - 2P o!
< 2=t =5 )
Hvpo
(2.18)

We are also interested in computing the interaction energy
between two external, conserved currents T(’f ;’ and T(‘;)”

W [T To] = [ @l e

1
= /d4x (T(T;D_' Toyuw — 5T<1>D_1T(2>>
(2.19)

One may reasonably feel a little nervous about the negative
sign of the spin O component in (2.11) as well as in (2.18).
Let us demonstrate in a very explicit way that in spite of what

@ Springer

it seems, the Einstein—Hilbert propagator is positive definite
when saturated with physical sources.

First we assume that massless gravitons are the carriers of
the interaction. In momentum space we choose

k= (k,0,0, ) (2.20)
and the conservation of energy-momentum implies

TO%) = T3 (k)

T% (k) = T3 (k) 221

Then, an easy computation leads to the expression for the
free energy in terms of the components of the two external
conserved sources T(’f)v and T(g)v as

W [T, To ]

_ ﬂ 1 TH 2\ (71l _ 2\ | opi2pi2
- 212\ M (eY] 2) 2) T2
(2.22)

which is positive semi-definite in case of identical sources
AV v

Thy =Tgy- _
Moreover, for static sources the energy-momentum tensor

reads (all other components vanish)

T(Ol?z) = M(1'2)5(3) (X —X(1,2) (2.23)
and in momentum space
TP (k) = My 2) 8 (k") ¥ (2.24)
it follows that
w [Tl To ] — L]‘/[lﬂ/[2 /ﬁeik(xrxz)
m Toy] = 55 %)
T MM,
= — = (2.25)
2C [x1 —x2|
where we have represented
/ dko = ! (2.26)
0=G .

Therefore, the free energy is definite positive, as it should.

3 Lagrangians linear in curvature in first order
formalism

Let us now make the exercise of reanalyzing this same theory
in first order formalism, in which the metric and the connec-
tion are independent. We shall find after some roundabout
that the physical content of the theory is the same as we
previously found in the last paragraph.
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We start with the Einstein—Hilbert action

1
S = 32 /d"x lglg"" Ryy [T] (3.1
and we expand it around Minkowski spacetime as
guv = Ny + Khyy
ng = A‘EV 3.2)

where A%V is the quantum field for the connection, which
is symmetric in the last two indices as we are restricting
ourselves to the torsionless case.

After this expansion the action can be written as

$ = = [ d"x [N, Ak - d s K P A )

(3.3)

where the operators mediating the interactions have the form

11
N, = = [5 (nyen“ﬁ — 5288 —agsf) N

1
-3 (myedf o + myes0® — 6267,
—8fo%0. — 5280, — 8080, ) }
(1
R P G DR CIA T e T

8BS o — 8PS — 5255nPY — 525] anJ} (3.4)

From the path integral, the contribution to the effective
action reads

eiW[mw] — /DhDA eiSFOEH[h,A] (3.5)

and using the background expansion (3.3) we can integrate
over DA yielding

JV = / Dhel =574 VT 41 Dy} (3.6)

where

1
Dpwpa = Z(’?upnua + NpoMvp — 277uv7’lp<r)D
1
+ E(np,uapao- + npo-a“av)
1
- g(n,u,pavaa + nuaavap + vaauaa + Uvaauap)

1
- g(rl,u,paaav + nuaapav + nvpaaau + nvaapau)
3.7

We now expand this operator in the basis of projectors
(see “Appendix A”) so that

D#v,na = (PZ —(n— 2)Pg) 0O (3.8)

1
5 Hpo

and in this way the action can be rewritten (for n = 4) as

1
=g / d*x W™ (Py — 2P3) uupo OH?? (3.9)

In conclusion, we obtain the same result when we treat the
theory in second order formalism (2.11) and in first order for-
malism, for the particular case of the Einstein—Hilbert action.

4 Lagrangians quadratic in curvature in second order
formalism

Let us now begin the study of Lagrangians quadratic in the
spacetime curvature, first in the usual second order formal-
ism.

The most general action in this set (the connection is
assumed in this section to be the metric one) is

§500 = fd"xw/lgl(aRz + BRuWR™ + Y Rypo R*P)
@.1)

When we expand around flat space g, = 9y + Khy,y it
follows that

5500 = 42 / d”xh‘”{a P

- (lea a,u.au + 77;1,1)3;730) O+ ’Iﬂvﬂpamz}

B ) 1 ) )

+7 20,0000 — 3 (p 9o + 1o 0v0p

+1pdpdo + Mo 9udp) O — (po 00y + Npvdpdo ) O
1

+§ (ﬂ/m”luo + Nuo 771)/)) Dz + Nuvipo Dz:|
+ % [43;1,31)3,030 +2 (77;/.,077\)0 + Npo Vlvp) o?
=2 (NpBvdo + Mo dvdp + Npdpds + Mo dudp) O] }

x hP? 4.2)

We can write the operator in terms of spin projectors as

Kiho
=2 (oc(n - DP§+ é(Pz +nP)+y(Pr+ Pg))
4 Hvpo
2 i 2
— s
x O —7(61P2+62P0)uvpa O 4.3)

where ¢y = f+4y and ¢ =4(n — Do +np + 4y.
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If we use the action of spin projectors over the graviton
decomposition (2.9), the action can be rewritten as

550 = ﬁ[d"x
4
v2 2 1 2
x |er (W0 DPhyy +24,04" + ¢ — Sy TPy
(4.4)

+ %wm%p]

Let us at this point make a short aside on the higher deriva-
tive scalar terms. Consider the lagrangian [26]

1 » 1
L= (@uv) + Ecwm%/f 4.5)
and introduce an auxiliary field, y, so that

1 1
L= E(a#x//)zjuca,“pa“;( - 5C X2 (4.6)
The EM for the auxiliary field just yields
x = -0y 4.7)

which just reproduces the original action. Now we can define
V=y+Cyx (4.8)

The mixing term disappears and the action diagonalizes to

1 1 1
L= (0, %) — 3¢ (0ux)" - 50X

It follows that the auxiliary field becomes a ghost no mat-
ter the value of the constant C. When there is no canonical
kinetic term for the field ¥ this mechanism is not at work.
However, such a term is always generated by the Einstein—
Hilbert (linear in the space-time curvature) piece of the grav-
itational lagrangian. This linear piece is physically unavoid-
able, even if it is not present in the classical lagrangian, it
will be generated by radiative corrections.*

Going back to our analysis, we can obtain the equations
of motion for the quadratic action (4.4)

(4.9)

8S

g = 1T T =0
8S

5y =@ — NPy =0
8S

% =ci¢p=cdd =0

4 If we restrict ourselves only to the R? terms, i.e. B = y = 0, we get
Sg2 = K’ f d"x y %y

so that the equation of motion reads

Oy =0

From this we can see that there is a gauge invariant ghostly state.

@ Springer

58S
22— DA, =0

4.10
SAR (4.10)

Please note that the equations of motion have four deriva-
tives so that the only way in which we can fix this problem
is by taking ¢; = ¢2 = 0. This implies
B+dy =B+4a=0 (4.11)
In this case the lagrangian is proportional to the Gauss-

Bonnet density, ie.« = 1,8 = —4,y = l and n = 4,
and the operator (4.3) reduces to

Ko =0 (4.12)
This fact follows from the identity
R? — 4R™W Ruv + RMYP7 Ry pe = total derivative  (4.13)

Let us now obtain the propagator for the general quadratic
action (4.4), again in the harmonic gauge (2.16) with a gauge
parameter — é The operator reads

11 n—1
Ko%= 7{EP1 + 2c2c; 0Py + (2K202I:| + 7) Py

e 8 28
1 N/
+—pr - Y- POX} o (4.14)
2 2 one

and inverting it we get
_ —1,50Q+gf 8
A;/.vpo = (K )MVPET = k7 &P+

. P+
2k2cik? 2 K2crk?

—1 1 vn—1
2, 2. k2 n Pw _ ps P><
X |:< K°Co +72§ 0 T+ 2% o 2% 0 e

(4.15)
provided ¢; # 0 and ¢ # 0.

Now the interaction energy between external static sour-
ces, for n = 4, is proportional to

4 T1 1
B N L
K2k* [c1 < W 3 )

(4.16)

WS0QUT o THV ASOQl 0

HVpo
1
+—T2]

kle)

This result is independent of the gauge fixing, and for the
particular case 2c¢; = —c3, the dependence on the sources is
proportional to the Einstein—Hilbert one

4 1 1
——— (1, T — =T
c=—2c| « K2k4 Cl < g 2 )

However, the factor ki‘* in momentum space leads to a

confining (linear) potential in position space.

weos (4.17)
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4.1 Adding a term linear in the scalar curvature

It has been argued in [11-13] that a term linear in the space-
time curvature will be generated by quantum corrections,
even if it is not initially present in the classical lagrangian.
It is then of interest to consider the quadratic action plus the
Einstein—Hilbert action

SUEH — /dnx 1l
A

x (-2—2 R+ aR*+ BRuwR™ + ¥ Ryuvpo R“””")
K
(4.18)
We can use the same harmonic gauge fixing (2.16) with

parameter &, so that the total operator can be written in terms
of projectors as

+EH+g Lf1 2
Kgf;a'f = §{§P1 + QCkciO+ )Py

-1
(21{ o0 —|— — —A(n — 2)) Py

2§
1 n—1
+—pr - Y- POX} O (4.19)
260 28 Lvpo
Inverting the operator the propagator reads
8 1
AQ+EH+ul —_ = P P
wopo = 42 :5 I TR N e
§
1(n—2)
K20ok? — 222
2 2, -1 w
X || 2k"c2k™ + —— = A(n = 2) | Py
2§
1 -1
waghi+ s || (420)
28 2& oo

Once we have the propagator, it is easy to check that the
interaction energy between two external, static sources, for
n = 4, is proportional to

W T“”(K’l)z*vE;‘;‘T”"

B § [(]2 - 1)\) <TMUT}LV - 1T2>
2
A k (k + 21(201) 3
N 2 1 1) 71?
. s | 2
n—2\ 22— ’\2(:723) 2k 3

8 7. T n—1 72
T2\ T3 )

1
(T,“,T“” - —Tz)
) 3

8 1
A2+ 55

2K4cy

1 T2

T 52 An=2)
2(k 2k2¢y ) 3

(4.21)

Notice that the only contributions to the free energy come
from P, and Py as the rest of spin operators do not contribute
when saturated with the sources. The spin 2 piece can be
rewritten as

8 8| 1 1
RQCakz+xn) ° x [kz R )} P (22)
The first term comes from the Einstein—Hilbert action, giving
the well-known massless pole, whereas the second term cor-
responds to a massive k2 = — 2[()561
residue, coming from the quadratic action.

The spin O piece has the form

8 .16
U (k2eak? — H=D) 0 T o (n — 2)
N I P 4.23)
TR T
In this case, the first term is a massive k2 = )‘(" 2) spin 0

pole with positive residue, coming from the quadratlc piece
of the action. The second term is again the massless spin O
pole with negative residue that we already encountered when
studying the EH action.

5 Lagrangians quadratic in curvature in first order
formalism

Let us now enter into the main topic of this paper, namely
the general situation in which the physics is conveyed by
the graviton as well as by the connection field. Actually, as
was pointed out in [3], when considering a metric fluctuating
around flat space there is no kinetic term for the graviton, so
that all the physics is encoded in the connection field. This
is the main reason why we underwent a systematic analysis
of the spin content of the said connection field. We consider
the general action

Sroq = /dnx 18l

X (()!R[F + BR[ F]MVR[F]ILV +VR[F]Mva [T]#VP9)
G.1)

and we again use the expansion around Minkowski spacetime
given by

Suv = Ny + Kh;w

T, = A%y 5-2)
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where A‘;V is the quantum field for the connection, which
is symmetric in the last two indices as we are restricting
ourselves to the torsionless case.

The action reduces to a kinetic term for the connection
field

Seoq = / d"x AL, K"" 7 A% (5.3)

where the operator reads

KL;U){M = ‘x{% (nHV8g 0,0” + 808,87 + 1”78} 0 0"
+078}3:0") — 00’ 3,0
- % (6057 91° + 515797 0° + 8}57 94 8%
+85'62807) }

1

+ /3{ 1 (00829, 8" + n"P 8T 801 + nH® 57 8,0"
+1"7878,9")

1
+ 5 (0780007 + 0" 50007 + 117 80:9°

1

+n"7 8} 8,:0°) — 5 (00" 40" n%) 3,9,

1
— 5 (18387 + 0" 887 + 07 5} 8¢

P
+5" 857) D}
1

+ V{nm [5 (#3790 + n*Pa%H

+n;/,oapav + nvaapa;l,) _ (nupnva + nupn/l,(r) D] }

54

In the “Appendix B” we have studied the spin projectors
for connection fields A € A, where A is the space of tor-
sionless connections (see “Appendix C” for metric, torsion-
ful connections). There are two main sectors in this space:
the one corresponding to connections symmetric in the three
indices (B.1), A, and the one endowed with the hook sym-
metry (B.2), Ay, each one with 20 components. The spin
content of the symmetric sector is

20;,=03)e2)e2(1)®2(0) (5.5
and the spin content of the hook one is given by
20, =2@Q) @3 ()6 () 6:6)

There are 12 mutually orthogonal projectors on these dif-
ferent sectors. Projectors on the symmetric sector are repre-
sented by roman letters and indexed by the spin, Py, whereas
projectors in the hook sector are represented by calligraphic
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letters also indexed by the spin, Ps. Nevertheless, this is not
enough to expand the most general linear operator
K:A—> A (5.7)
which has dimension 22. In order to find a basis for this space,
we need to add 10 new operators to the above set, which
are not mutually orthogonal anymore. These new operators
will be denoted as Py, where s stands for the spin. Explicit
expressions can be found in the “Appendix B.3”.

Once we have obtained the complete basis for this space,
we can expand the general operator in terms of these spin
operators as

(KroQ)'y {7 = (=2Q2y + B) Py — 4y +%a +2B) P

X 4 S
+Qy—-pB) Py — 5(31/ +58) Py

4
-2y P *§(3y+ﬂ)7>{ - Qy +p) P

+4B P =22y + B) (P24 P2)
—4y P3+2B+y) Py —4yP) 7 O
(5.8)

We also need to choose a gauge fixing, in this case we take

1
Sgt = ;[d"x "0 0 AL, DA, (5.9)
from where we can extract the operator which in terms of the
projectors reads

, 1 ,
(Kep) 57 = —(P§ + 3P+ 3Py —3P5 + Py + Py*
X

5 2
HP -SRI PE 4 S P O
+ PP+ P P 4 PO (5.10)

From the decomposition of the gauge fixing operator we
see that the gauge fixing term does not posses any spin 2
or spin 3 piece. Looking at the operator (5.8) for the three
quadratic terms, we are going to have problems when y
equals zero due to the fact that P3, P; and P} disappear
from the scene. As we have seen, we cannot recover the spin
2 and spin 3 ones from the gauge fixing, so this leads to a
non invertible operator, and thus, to new zero modes.

To understand this fact, let us focus in the simplest case
where 8 = y = 0. The operator for R? collapses to
(K)y' ) =

=9 (PH 7 O (5.11)

so that

.1
(Kpapgd)'y } :;(P6”+3P5+(3—9x)7>5
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, . 5
— 3P+ P+ B 4P~ P

+P{”+§P{ - PP 4P
+ P+ P+ 4P O (5.12)

It follows that there are a grand total of 13 new zero modes.
They are listed in the “Appendix D”. Physically, this means
that the theory has extra gauge symmetry when considered at
one loop order, in addition to the one it has for the full theory,
namely diffeomorphism and Weyl invariance. We are not
aware of any other physical system where this happens. For
what we can say, these extra gauge symmetries are accidental,
and will disappear when computing higher loop orders.

Itis plain that the first order theory has a sector in which the
connection reduces to the metric one. It is physically obvious
that in this sector the theory should reduce to the one obtained
in second order formalism. Let us then check what happens
when the connection reduces to the Levi-Civita connection.
Around flat space we have
AL RO = 8,k + 0,k — 8By, (5.13)

With this change we can extract an operator mediating
interactions between the 4, and expand it in terms of the
four-index spin projectors. In this way we can see how the
six-index projectors and the four-index projectors talk to each
other. The full correspondence is as follows

A Poy A%PY hy Pl 1
, k?
Py i
k2
P} PG
X 27](2 —_ 1P
Py ? (n )P§
k
P <= DP
k2
Ppgw — VA= IRY
k2
pus l—gw/n —1Py
k
PL]”‘ EP}
w k2
P TP
k? k2
P, el
2 “h2
P 2y 2wy
p) 2 (n —4) Py
)X kg k2 S
P S P = (1 =9F

.S S w ! wx ws S W S X MY wst
where P, Py, L PP PYE YL P, P Y
735, P3, do not contribute when the connection reduces to
the metric one.

The end result is that spin 3 collapses to zero, and the
surviving different spin 2 sectors of the first order theory
degenerate into the unique spin 2 of the second order one.
Moreover, spin 1 reduces to spin 1 when going to second
order formalism, as well as spin 0 goes to spin 0.

In the process however, a power of k2 has been generated.
This power is the responsible for the lack of (perturbative)
unitarity of the theory in second order formalism. This prob-
lem then appears in this particular sector of the first order
theory as well.

Then, unless a consistent method is found to isolate this
sector from the full first order theory (id est, a consistent
truncation), the latter will inherit the unitarity problems of
the second order one.

6 Conclusions

When analyzing the connection field, one easily finds that
there is generically a spin 3 component. This might be a prob-
lem in the sense that it is well-known (cf. for example [27])
that it is not possible to build an interacting theory for spin 3
with a finite number of fields. Although we see no particular
type of inconsistency to the order we have worked, it is always
possible to avoid the presence of this spin 3 field altogether
by choosing a particular set of coupling constants, namely,
putting to zero the coefficient of the Riemann squared term.
This combination is not stable by renormalization, so that
this choice implies a fine tuning of sorts. In addition there
are several spin O, spin 1 and spin 2 fields. This proliferation
of spins occurs even for the Einstein—Hilbert action when in
first order formalism.

When the connection collapses to the metric (Levi-Civita)
form, the spin 3 component disappears, and all spin 2 com-
ponents are identified, but this sector suffers from the well-
known unitarity problems present in second order formalism.

In conclusion it is unclear whether it will be possible to
define a truncation of the gravity lagrangian quadratic in cur-
vature in first order formalism in which the problems of uni-
tarity are absent. It seems that the healthy sectors do not
describe gravity, and the sectors that do describe gravity fall
into the known unitarity problems. To be specific, let us define
a scalar product in A
(A1]Az) = /d(uol)A,gMA’;“ 6.1)

Then the subspace A+ orthogonal to the metric connections

ALLV? = hvy — Wl — Rhyy (6.2)
is defined by
At e At & 9" (Apv — Avpr + Asop) =0 (6.3)
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which in terms of projectors reads
1 1 ; 2
A% = (P Z(\K szrr + (Pél)fﬁ)r» Qpar
+ (PO Qo + PV o
+ Py Qe + (PHITT Q5

+ @) Q). (6.4)
where inr c A.

Now, if we want to write a local lagrangian involving A+
only, we encounter the same problems we faced early on
when we intended to write a lagrangian in terms of h;zw only
(2.13). For example, taking just the spin 3 part, due to the
fact that (P3)ﬁ‘:; Q)¢ goes as (073, we will need to have an
action of the type

(6.5)

1
S5 = m/d(vol)A(3)HMD6A(3)MW\

if we want it to be formally /ocal (in the sense that no negative
powers of [] appear).

It is perhaps worth remarking that some of these prob-
lems are shared even by theories linear in curvature, as soon
as fermionic matter is coupled to gravity. In this case the first
order formalism and the second order one are not equivalent,
and in fact when treating the theory in first order formal-
ism, spacetime torsion is generated on shell. This fact seems
worthy of some extra research.

More work is clearly needed however before a good under-
standing of the first order formalism is achieved.
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Appendix A: Spin content and spin projectors

In order to get the spin projectors for a symmetric tensor
hy, let us start with a simple vector field u#. If we consider

@ Springer

a timelike reference momentum k* (with k> > 0), physics is

simpler in the adapted frame where
k=5 (A.1)

Therefore, the spin content of a vector u** which we represent

asl:‘is

s=1:u
0

3 components,

s=0:u" 1component. (A.2)

And the corresponding projectors in momentum space read

1000
P(O)ﬁ:kakﬁzwaﬂ_ 000 0
o 2 000 0
000 0
00 0 0
ke kP 01 00
Wp _gp _ Nk _p
P =00 = 7 = b 0010 (A3)
00 0 1

It should be noted that these operators are non-local in posi-

a stands for =, We shall use both

momentum and position space as equivalent. That is, we
could as well write

tion space where

3,08

w? = —ad
O
9, 0P

0, P =8f - QT (A4)
so the traces read as follows
TrPy=1
Tr P =3 (A.5)

As it is well-known, the metric 4, (or equivalently, the
frame field, 2 ) transforms in the euclidean setting under
the representation 10 = D:‘ of SO(4), so the spin content
and corresponding projectors are given by

1
. T _
s=2: hij =hij — ghﬁ,-j
1
(PJS = 50065 +6700) = 6,,6”"
s=1: hgy
1
(P15 = E(Glfa)f + 6,0 + 6w + 67 o)
s=0: ho

(PS)y = e

s=0: h=s8Un
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1
po _
(Pg)lw = ge,wep” (A.6)
These particular projectors have been studied previously by
Barnes and Rivers [23,24]. They are complete in the sym-
metrized direct product

Sym(Tx @ Ty) (A7)

where 7, is the tangent space at the point x € M of the
space-time manifold.
It is convenient to define another projector

Po= Py + P (A8)
and the non-differential projectors are
170 = ! 3087 + 687,80
;tv:E(uv_" " v)
1
T = 2™ (A.9)

Then we can write a closure relation for these projectors, to
be specific,

(PSS + (PDLS + (P02 = 17 (A.10)

These projectors are not enough though, as they do not form
a base of the space of four-index tensors of the type of inter-
est. Such a base is formed by five independent monomials,
namely (permutations are implicit)

My = kykokpks
M, = kuk\ﬂ?pa

M3 = kykonpy
My = NuvNpo
Ms = nupnve (A.11)

Therefore, in order to get a basis, we then need to add a new
independent operator

(P6 ) = %(w#vgm + Oy @)
that can be identified with the mixing of the two spin 0 com-
ponents, 7 and hqp. It is clear that this new operator cannot
be orthogonal to the other four, since closure implies that
the only operator orthogonal to the set that closes is the null
operator.

(A.12)

Appendix B: Spin content of the symmetric connection
field

In this appendix, we decompose the operators mediating
between two connection fields A5, = gap Fg v symmetric
in the last two indices, because we are assuming vanishing

torsion — in terms of the spin projectors of this field. The
procedure is analogue to the one followed in “Appendix A”.
Since A[AV}» = A;Muv

A € A=T, ® Sym (T, @ Ty) (B.1)
The quadratic kinetic operator in this space is
KeA® A (B.2)

In order to disentangle the physical meaning of the gauge
piece of the total action, we would like to expand K as a sum
of projectors with definite spin. There are 22 independent
monomials to consider. Let un proceed by steps.

The projector into A — namely, the identity in this space
—is

_paey) _ 1 Bsv o vsB) _ |
Po = (PO = 380 ((sv(sA +5Uax) =5 (1.0,0,1,0,0)

a(bc) _ pa(be)

2 _ a(By) -
Py = (R0 uony P0)aqy) = Puqury = Po

(i)
Pp A=A (B.3)
(where the last equality in the first equation refers to the vec-
tor notation introduced in the “Appendix E”). The subspace
A corresponds, in terms of representations of the tangent
group SO(4), to the sum of a totally symmetric three-index
tensor plus a tensor with the hook symmetry

2,00@{1)={3,00® (2 1} DjepD:DjjeaHj
(B.4)

In terms of dimensions this is 40 = 20 + 20. The Young
projectors are

1
Pg = (p)‘;ﬁ{ = 6{3;155‘5{ +8hs1 8y

+ 81,8987 + 508780 + 885%8) + agsfsg}

1
:6(1’1’1’1’1’1) (B.5)
and the hook representation
“w 1 BgY p_ 1 BsY
—(p — _ ) s oy _ Zso
Pu = <>MW\ =3 {6”8”8A + 68,678 261,5#5x
1 1 1
_ Ea‘jsfsl{ - 53;’3555 - 5535555}
1 1 1 1 1
=-|\lL—-z -5 1-Z,— (B.6)
3 27 2 27 2

It should be stressed that this projector is not symmetric
in (aB), but rather in (8, y).
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apy apy
(o) - (e
] VA (Bl VA
< afy apfy aBy
P mm + (7) Fm) + <P W) =0 (B.7)
VA [@7 JAVA @L VA
In the following, we will keep this notation: P for the
projectors in the symmetric subspace and P for those in the
hook subspace.

The Young projectors are symmetric, orthogonal and add
to the identity in A

Pg =Py PZI =Pu
PsPy = PyPs =0
Ps+Pu =Py (B.8)

Then we can always write for any A € A

A =PyA =As+ Ay (B.9)
with

PsAs = Ag
PuAny = Ag (B.10)

B.1 The totally symmetric tensor

Let us start by determining the spin content of the totally
Symmetric piece (PB}A)otﬂy = Apy)-
We can decompose it in its spin components as

e First the spin 3 component, which is given in the rest
frame by

1
ATy = Aiji — H (Aidjk + Ajdix + Akdij)  (B.11)

where

Ai=) Aijj
j

(B.12)

There are of course 7 components in this set.
The spin 3 projector reads

1
P)ShY = g<9"‘veﬂu9m +6%,0°,07;

+6%,6P,07, +6%.6%,07 , +6%,68,07,
_'_904)‘9/3#9}/”)

1
- E(e%eﬁye,u + 676,60,

+ 0907 0,5 + 0% ,0P7 0,5 + 0°7 6P 6,
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+6%P07 10,5 + 60%:.6%70,,, +6°76%,0,,
+ G“ﬁenaw> (B.13)

e The spin 2 component is given in the rest frame by

1
Agyj = Aoij = 3 Aodij (B.14)
where
Ag = Z Aoii (B.15)
i

The projector reads
PIT = L0P 07 0”5 + £6°,07 0

- é‘gﬁ}/e/wwak

+ :6P,07 0%, + £07,07 0%,

— 50%76,,0%, + L0° 07 0",

+ 168,07 w0, — §0976, 0%,

+ 56%,07 0P,

+ 509,07 005 — 5677 0,,0°;,

+ %Oaveykwﬂp, + é‘gakeyv

X wﬁ# - é@D‘VGAvwﬁM

+ 169,07 308, + 107,07 0P,

_ égwgwwﬁv

lpga g .y lpa pB v

+60 V@ nw )‘+69 MG p° )

- égaﬁe;wwyk + %Gwveﬁkwyll

+ %Oak‘gﬁuw}/u - %Gaﬁgkva;t

+10%,0P 507,

+ 16%,6% 107, — §07P0; 07 (B.16)

e There are two spin 1 components. First the one that is
given in the rest frame by

Aijis (B.17)

with projector

1
(Psl)iﬁz = B(gaveﬁy@m + 9&}/9}3\}9#)‘ + Qaﬁgyugﬂk
+6%,0P7 6, + 07 6% .6, + 0°P07 ,6,,
+ 09057 0, + 07 0P 30,1, + 0°P07 ,0,0)
(B.18)
The other corresponds to

Aooi (B.19)
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and the projector is

N E—
+0va“/\wﬂu +97Awauwﬂu +t9yuwaxw‘3u
+07 3w why, + 08w w4+ 68w w?
+0“uw’3uwyx+é0°‘uw’3vax
+ 68w w4+ 68w w
+ é@auwﬁkwyﬂ_ +0°‘Awﬁvaﬂ
+0/3#w“;‘wyv +9ﬂ;‘wa#wyv

1
+ geaﬂwﬂ;‘wyv +0“;Lwﬂ,4wyv) (B.20)

e There are also two different spin zero components. The
first one corresponds to

Aooo (B.21)
and its projector is
1

(Pow)‘;fﬁ}; =z (a)ava)ﬁﬂwy;h + waﬂa)ﬂva;‘

+ 0”00 ) + 010 o

+ wauwﬁxw}’v + w"’)\wﬂuwyv) (B.22)
while the second one corresponds to
Agij8" (B.23)

with projector
) 1
P = 5 (eﬂyeww% + 057 9w, + 6PY 6,5 0%,
+ eayeuvwﬂk + Gayekvwﬂu
+ 00 wP, + 0P, wY 5 +0°P0;,wY

+ eaﬁeﬂxwya (B.24)

Altogether we have accounted for the 20 components in
this set and the spin content is

20, =3)eR)e2(1)®2(0) (B.25)

Indeed, they satisfy the closure relation that symbolicall
reads,

0+ Py + P + Py +Py+P3 =Pg (B.26)

B.2 The hook sector

Let us now work out the spin content of the 20 components
of the diagram P 1} A.

We will henceforth assume that connections are already
projected into the corrresponding Young subspace, that is,
when A € A,

A};;,y = (PuA)yp,

1
= 3 (2Aupy = Apya = Ayep) = Aapy (B.27)
This implies cyclic symmetry
Aapy + Apya + Ayap =0 (B.28)

Consider first components with one element in the direc-
tion of the momentum (that is the O-th component in the
rest frame). Remember that for the projectors acting in this
subspace we are using the letter P.

e There is only one spin zero, a trace that is given by

3
> Ao (B.29)
i=1
that is
(PO = — 50" s + 507 By

- éeﬁmmw% + ]1—89°‘V9,wwﬁA

- %O‘YVGMwﬁM + %Q“V%wﬁu

+ %eaﬁeﬂvwﬂ

- ée“ﬂeﬂwuy + 1—180“‘30Mwﬂ (B.30)

e There are three spin 1 components. First
1
3 (Ajoi — Aioj) (B.31)
corresponding to
P = —%e%eﬂwﬂx + ieaﬂeﬂwﬁ

+ %eaﬂeﬂwﬂv - %e‘aeﬁywﬂv
- %e%eﬁ RIS
+ %emeﬁuwﬂ + %eaﬂeﬁmy
1
- Ze%eﬁﬂwvy (B.32)
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The second one is given by

Aioo
1 1

(Pf’)i‘ﬁ{ = Eevyw"‘uwﬂk - EGMVw“Vwﬂx

1

1
129,,)’u1‘)‘k11)‘8,4 + Ee)hywauwﬂu

+
1 Vo apB 1 Vo P

—geu ww V+Ee)" w w”,
1 1

+ Eﬁﬂvwauw;f’ - 69ﬁﬂw°‘vwﬁ’
1 1

- geavwﬁﬂw,\y + gea#wﬁvwk}/
1 1

+ Egﬁvwakwﬂy + Eeﬁkwauwuy
1 1

- EQ“Vwﬁ;\wMV - geaxwﬁkuy
1 1

— geﬂ“wakw\ﬂ’ + EQﬂAwaﬂwvy
1 1

+ geaﬂwﬂkw‘,y — ge‘awﬂuwﬂ

And there is also a spin 1 trace given by

+ %9"‘59%%& + %euugﬂm’"
- %G"gGﬂueln - éeaﬁeyuel"
- %959/379,‘” + %9089‘319#”

1
+ ﬁ@aﬁgy)ﬁ}“

e Finally, there are two spin 2 projectors. The first one is

the transverse traceless spin two component

3
1
(Ajoi + Aioj) — 551‘1' ZAkOk
k=1

N =

with projector

1 1
(Pz)‘;ﬁ‘u’ - _ggﬁvgyuwak _ geﬂuevaal

1 1

+ §9ﬂy9/¢vwa)\ + geﬂvey)uwau
1 2

+ 208,07 ,w®, — 2687 6;, 0%,
3 9
1 1

- 69%9&:0% - gef’,\amw%

1 1
+ 59/3}/9)#“0&\} + Egaveyuwﬁk
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1 1
+ Eeaﬂgyuwﬁk - Egay@wwﬂk

1 1
(B.33) - ga%enwﬂu - ga‘ﬁevaﬁ“

1 1
+ §9W9Mwﬂu + Ee”,ﬁnwﬁv

1 1
+ Tz@‘xwyﬂwﬂv - —186“1’9)\ﬂwﬂv
1 1

+ flzea,ﬂﬁﬂwyx + fIZQQMG’S‘,wyl

1 1
— Tg@“ﬂGMUwVA - EOQVQﬂAwVH
1 1
——0%6% W, + 600w,
6 9
1 1
+ Eeaﬂgﬁxwyu + Eeakgﬁuwyu

— lgaﬁg

o (B.37)

Auwyv

The second one corresponds to the spin 2 traceless con-

(B.34) nection field

2.1
3tj -1 s
10 ik

2! —¢?
T _ i i
Aijk = Ajjr — 5 Sjk —

2.1
3t — 1ty
10

8ij (B.38)
with projector

, 1 1

(P = = g0“0% 481 + 36°,6° 07,
1 1

- geﬂueﬂmﬂ - geawﬂvem

1 1 1
+ 56‘1“91&97\, - 89%9%9% + 89%9/37%

1 1 1
- Eaf’geﬁv% - Ee“ﬂenem - 5(9"Me/’y9,,,

(B.35)

1 1 1
+ 69“!49"",101” + ge‘xﬁwﬂeln + goaeﬁye,w

1 1
— —pasgh — —_g*Bgy
046730 — 067 16,0 (B.39)
(B.36)
Therefore, the spin content in this sector is
20, =202)®3 (1) (0) (B.40)
Finally, the closure relation in this space reads
P+ P+ P+ Pl +Pr+P5=Pnx (B.41)

B.3 Mixed operators completing a basis of L(A, .A)
Let us represent by £(A, A) the space of linear mappings
from A in A. It is plain that a basis is given by (again, with

implicit permutations)

My = kykykykokgk, M> = noik,kekgk,
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M3 = nukikekgk, My = nuakoky kgk;,
Ms = nugkvkikek, Mo = nugk, ki keky,
M7 = nuanpykok, Mg = 01y koks,
Mo = nagniykyky, Mio = naanpykuky
M1 = nuingykuke Mio = gy kuke
M3 = nvineykuks  Mis = nuaniykukp
Mis = nuavping Mie = Nualvangy
M7 = nugvang Mis = Nugnvalay
Mg = numangy M2 = 0 Nay
M>1 = nunvatipy M2z = nunvgay

So far, we have obtained 12 different operators that satisfy
the closure relation.

Given the fact that we have obtained up to now 12 pro-
jectors, which added to the identity in our space — see (B.26)
and (B.41) —, itis plain that we are 10 operators short in order
to get a complete basis on the space £(A, A). The remaining
operators (which are not, in general, projectors) correspond
to the mixing of equal spin components of A. In the same
sense that POX in (A.12) corresponds to the mixing of the two
spin O components of 4 ,,,,. Hence, we are going to classify
them by their spin.

e There are three of them with spin 0
swyafy v 4vaxﬂ l)Lva/.ﬁ
(PHHXPr i :59“w a)y+§0 o** PV
4 %gkuwwwﬁy 4 égwwaywﬂl
_ gglva)aywﬁu _ ggluwwwﬂv
4 éguvwaﬂwﬂ _ ggkva)aﬂww
— ggkuwaﬂww + é@’sywww“‘
— %@aywﬂvww — %gaﬂwvaw
+ lgﬂywmwkv — %gaywﬂuwlv
9 9

_ ge"‘ﬂw””w“ 4 ggﬂywakwuv

+ éeo‘ywﬂkw“” + é@”‘ﬂa)w‘a}"v
(B.42)

(:Pows)aﬁykuv — lguvwakwﬁy + lokvwaﬂwﬂy
9 9
+ lgluwwwﬁy + lguvwaywﬂl
9 9

4 lglvwwwﬂu + lgwwwwﬁv
9 9

4 %0”"60“‘30)” + ég)\vwaﬁww
+ %Gl“w“ﬂwy” + é@ﬁya)‘www
+ égaywﬁvwlu + éguﬁwwwku
+ é@ﬂywo‘“w}‘” + é@aywﬂuwkv
+ %gaﬂwwwkv + éGﬂwaw“”

+ %9”@‘”‘0)"” + é@"‘ﬂa)w‘w“”
(B.43)

((pﬁ)aﬂywv — l@argkvwﬂ# + l@aygkuwﬂv
6 6

+ éG“ﬁO)‘”a)y"“ + é&“ﬂe)‘“w}'” (B.44)
e There are six with spin 1

(?ﬁu)c)aﬂy)\uu — %evaauwﬂk + %eyuwavwﬁk
+ %GV”w“wﬂ“ + %Qy“wo‘)‘wﬂ”

+ l@ﬂvwauwﬂ + lgﬂﬂwavwﬂ
4 4

+ l@ﬂvwakww + lgﬂuwakww
4 4
(B.45)

(PP)HErHY = éewewwaﬂ + éeyﬂekvwaﬂ
+ égylglwwaﬁ + égﬁvgluway

+ lgﬁuelvway + égﬁ’»guvway

— O

4 et PY égﬂlﬂgkvwﬁy
+ -0V )PY 4 ée“”eﬂyww

+ -0 PV M 4 laaﬁewaﬁ*
9

— 0| = \O|— O

+ —090PY M 4 ée"yeﬂﬂw“

O | — O

+ —0Peri MY 4 Lgargpy v
9
1 1
+ 59“79“@/‘“ + 59“"9%0 (B.46)
((Psl'w)aﬁyllw — éeyuekuwaﬂ
1 Loty af 2 Aonv, aff
+§9y‘9 1) —§9V 0w

+ éeﬁw*“way
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((Pslx )aﬂyk;w

(TAI'S)QIS}/A;/.U _

(:Pllusl)otﬂy)\p,v —

@ Springer

+ lgﬂugkvway _ ggﬂkguvww
9 9

— %gavmuwﬁy — %gaugkvwﬁy
9 9

+ ﬂgakguvwﬁy _ %gamﬂyww
9 9

+ lgaygﬁvwlﬂ + lgaﬁgvalu
9 9

_ %gaﬂgﬁywkv + 19‘1)/9/9/1‘0)»“
9 9

+ éeaﬁeww“ + geﬂeﬂw”

— ggaygﬂkw/w _ ggaﬂgrkw/w
9 9

(B.47)

— _%eyve)\uwaﬁ _ geyuekuwa,ﬁ

+ %9”9“%‘““ - geﬁ“eww
_ ggﬁu‘g)\vway " égﬁxgwway
n ég“\}g}»uwﬁ}/ n %gaungwﬁy
+ ge‘“e“”wﬁy + ée“”aﬁyww
_ %Qﬂl)’gﬂvwlﬂ _ %Qﬂlﬁgvalﬂ
+ %eaﬂaﬁyw“ -

_ geaﬂgyﬂwlv 4 g@‘“@ﬁya}‘“

%gayeﬁﬂwl't

+ ée“?eﬁkw“” + éeaﬁeﬂw“”

(B.48)

11789&\)9/3791/4
1
+ 7601;/9[31)9)44
72
1 1
—_paBgrvori L __pganrgBy giv
+ 72 + 18
1 1
—_pargBrgiv 4 gaBgymghv
+ 72 + 72
2 1
ZpargBrgry 4 gargBrgnv
+ 9 * 18
1
+ —6*BgrigHy
18
,Lgyvewwaﬁ
18

_ %gyﬂglvwaﬂ _ ggylgﬂvwaﬂ

— igﬂvm#ww
18

(B.49)

_ Tlggﬂu‘g)»vwa}/ _ ggﬂlgﬂvway

5 5
790(\191;:, By 790{/1_9“ By
T AT @

+ éeakguuwﬂy _ ggaUGﬁywlu

_ iga)’gﬂvww _ Lgaﬁgwwlu

18 18
_ ggaﬂgﬁywlv _ iga)/gﬁltwlv

9 18
_ Tlggaﬂg}/uwlv + é@‘“@ﬁyw’w
+ igdl/gﬁlwﬂv + igaﬁgﬂwuv

18 18

(B.50)

e Finally, there is one more with spin 2

(zyg)ozﬂykﬂv — ieaveykwﬂu + ieakeyuwﬂu

_ éeaygkvwﬂﬂ + %ea;l,eykwﬂv

+ %Oakgyﬂwﬂv _ éeaygkﬂwﬂv

+ %eaveﬁkww}. + %eakgﬁvay,

_ lgaﬁglvaﬂ + lgaueﬂkwyv
6 4

+ lgalgﬁﬂww — lgﬂlﬁgkﬂww
4 6

(B.51)

Appendix C: Spin content of the antisymmetric connec-
tion field

In this appendix, we decompose the operators mediating
between two connection fields Ay, = gapl', — antisym-
metric in the las two indices because we consider torsionful
connections which fulfill the metricity condition— in terms
of the spin projectors of this field. The procedure is analogue
to the one followed in “Appendices A and B”.

The subspace A corresponds, in terms of representations
of the tangent group SO(4), to the sum of a totally antisym-
metric three-index tensor plus a tensor with the hook sym-

metry
(0,2} ® {1} ={0,3} & {2, 1} (C.1)

In terms of dimensions this is 24 = 4 + 20
C.1 The totally antisymmetric tensor
‘We want to determine the spin content of the totally antisym-

metric piece A[qg,],in this case there are only two monomials
we can form
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Mas = 5l58557]

Moy = 8{3 86Kk ky) (C.2)
The totally antisymmetric piece is represented as

{0, 3} @ (C3)

and the corresponding Young projectors are

afy
_ 1
( ) = 8{5555‘5{ + 888789 + 87595 — 5%87 67

w7 v

—shsas) — agsfsg}

1
:E(l’l’l’_l’_l’_l) C4

where the notation of the projectors in the same as in
“Appendix B”.
We can decompose it in its spin componets as

e First the spin 1 component

1

3 (Ajoi — Aioj) (C.5)
with projector
(pl)aﬁﬂuv — _1906‘)9/31/»91/X
6
+ l@aﬂ-gﬁvgyl + lgavgﬂ)»gyu
6 6
_ 1900»9}3\/9)/# _ lgaﬂgﬁlgyv
6 6
1
+ 69‘“9“3“9” (C.6)
e The spin O component is
Alijiy (C.7)

with projector
(ﬁo)aﬂymv — _éwlﬂeﬁvg)//i 4 la)dlgﬂﬂgyv
+ lwdltgﬂugﬂ _ lwaugﬁlgyv
6 6
- éw““(;ﬂl‘o” + éa)"‘“@(b, HorH
+ lgavwﬁkgw — l@auwﬁ)\gw
6 6

_ éeavwﬁueyl_’_ éeakwﬁugyv

4 égauwﬁvey)» _ éeakwﬁveyu

_ é@“”&ﬁ”w” + égaugﬁvwﬂ

+ égavgﬂ)»wyu _ égalgﬁvaﬂ

1 1
= S0P oMo (CB)
Finally it is easy to check that
(P)ily = POl + o)l (©9)

In terms of dimensions this is 4 = (1) & (0).

C.2 The antisymmetric hook sector

We determine the spin content of the antisymmetric hook
piece Ay[gy), in this case there are six monomials

Mos = s35iho7]

Mas = k%k;, {1 67
My = k6 k57
Mog = 8¢ kP, 6]
Moo = 8¢ kPky,,57]

M3 = k%; kPky, 67 (C.10)

The antisymmetric hook part corresponds to the piece

2. L (C1n
The Young projectors reads
5 P uspyr B Leagper
j— — o o o
Pu = (ng) ) = g{aﬂavax — 8,878, + EBVSMSA
W/
VeagBsy o Loagpsy _ Loagpsy
- 5%%% + E‘SA‘SV‘SM - ES)LS“BU
1 1 1 1 1
:g(l,i,—i»—l,i,—i) (C.12)

We can decompose it in its spin componets as

e There are two spin 2 component. The first one is the
transverse traceless spin two component

3

1 1

5 (Ajoi + Aioj) = 385 Y Avok C13)
k=1
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with projector

(752)01,3}/1/4,1) — loavwﬁueyk + leakwﬁugyv
4 4
_ égaywﬁﬂgﬂ _ %gauwﬂvgyl
— 190‘)»0)3‘)9)/# + lga}/wﬁveuk
4 6

_ Ygavgpr v _ Lgangpy vu
4 4

+ é@”’ﬂw”‘HU)‘ + j—‘eaﬂamw”
_ lgﬂtﬂwlf\’gﬂl

1
+ Za‘“eﬂ“aﬂ” (C.14)

The second one corresponds to the spin 2 traceless con-
nection field

1 1
AiTjk = Aijk - Et'gik + Etkaij (CIS)
where t; = 2;21 Ajij, with projector
(ﬁé)aﬂykuu — 19“”9ﬂ/"91’)‘ _ leaugﬁveyk
6 6
— %gwgﬁkgm
_ 19“19ﬂvgwt 4 l@aﬂ-gﬁlgyv
3 6
+ ée“keﬂﬂew
+ 1906}/9/3\}9)% _ l@ﬁlﬁgyvglﬂ
4 4
1 1
- Zeweﬁuw + ZWQW@M (C.16)
e There are three spin 1 components. First
1
5 (Aj0i = Aio)) (€17
with projector
DS\ABY Ay 1 aknBvoy i 1 aknBiroyv
() :—ga) orve +§a) orte
_ lwaﬂgﬂvgﬂ + lwaugﬂkgyv
6 6
4 lwaueﬂﬂeyk _ lwaueﬂkeyu
6 6
_ égavwﬁkgm
+ 19wwﬁ19w — Lgavwﬁugyl
6 12

4 legakwﬁp,eyv

@ Springer

+ égaﬂwﬁvgﬂ _ égalwﬁvgyﬂ
+ Lgavgpugrr _ Lgaugpvgr

6 6
+ %degﬂlwyﬂ _ %galgﬂvaﬂ/ﬂ

1 1

— gargbryyv 4 gargBu vy

12 AT v

(C.18)

The second one is given by
Aoio (C.19)
corresponding to

PDWA\XBY Ly 1 af gyv, Al 1 aynpv, A
P :§w9 @™ = Sw 07w
- %a)‘)‘HOV“w)‘” + %aﬂyeﬂ“w“ (C.20)

And there is also a spin 1 trace

3
Z Ajij (C21)
j=1
given by
(75{)043)/)»#” — _1904}/95"9)»# + l@aﬁgyvglu
4 4
+ ie“?@ﬁ%)” - ie“ﬁeww (C.22)

e There is only one spin zero, a trace that is given by

3
Z Aioi (C23)
i=1
that is
(750)0(}3)/)»;1.\) _ égaywﬂueku _ éeaywﬁveku
1 1
- geaﬁwww + geaﬁwwe*“ (C.24)
Finally it is easy to check that
(ﬁH)Z/iK = (752)?3 + (755);‘:'3{
+ DL+ PO
+ P+ Po)Y (C.25)

In terms of dimensions this is 20 = 2(2) & 3(1) & (0).
These projectors agree with the ones obtained by Sezgin
and van Nieuwenhuizen [29].
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Appendix D: Zero modes for R?

In Sect. 5 we had determined the quadratic one loop operator
in the particular case where the lagrangian is proportional to
R?, the square of the scalar curvature.

1 , ‘
(Kroag) 7 = —(PY +3P)+ 3 = 90 Py = 37
X
5
+ P+ Py +PY — 3 P

+ pw + % Pi _ IJ)IIIJX + (PU)X

) nv po
SR P 44 iP“) o o
It can be checked that this operator has 13 independent
zero modes, which are written in terms of the spin operators
acting on an arbitrary field Qqp, € A as

= (Py + Py - )‘iﬁﬁ SQ2apy
E( VP3P - 3P - 3P

= (2P +P{ = 393") Quy
E( 2PY + PP 4+ PP — LR — LRI 0,
Zs = (<2 + PY = 3O+ P = PP Qs
E( IpY + Ypp - Lo 4oy — 1P

= (P Qapy

= (PP Sty
Zy = (Pz)m, By
Z1o = (P50 Qupy
Zii = (PHII Qupy

Zip = (?2))»;4,11; Qaﬂy

Zi3 = (P3)0) Qupy

D.2)

g = 8hsy 88

= 87,5250
4= 0258)
g5 = 8)876]

g6 = 88058 (E.1)

The most general projector in this space can be written as

i=6 U
P= ;Ci gi = (V) (E2)
where we have defined the column vectors
C Cy
U= |G| V=|Cs (E.3)
C3 Ce

Those operators are not symmetric ones; rather the transpose
operator is given by

(Cy, C2, C3, Ca, Cs, Cs)T = (C1, C3, C2, C4, Cs, Co)

(E.4)

It is important to keep this in mind when multiplying projec-
tors.
On the other hand, it is not difficult to establish that

U/ U//
” Z = Xc:Pca. (P,); =M (V/> = (V”)

Itis quite remarkable that the system has extra gauge sym-
metries at one loop order that are not present in the exact
lagrangian. The physical meaning of this is discussed in the
main body of the paper.

Appendix E: Fun with S3

Let us highlight the procedure to get the spin projectors in a
systematic way. Denoting the elements of permutation group
of three elements S3 acting on Ty, € T x T x T as

g1 =5%80s!

AU’ + BV’
- (BU/ + AW) (E5)
with
i G &
Mz(g i)AE C, C; C3
C3 G C
Cy Cs Cg
B=|Cs Cq C4 (E.6)
Co Cy4 Cs
All this implies that
0
Csq4 + Ces + Ca6
Ce4 + C45 + Cs6
[P.P']=|Cs2+ Ces+ C35+ Cas (E.7)

Cs2 + Ce3 + C35 + Cp
Ce2 + Ca3 + Co4 + C36
Cyp + Cs3 + C34 + Cos

@ Springer
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where

Cup = C,,C; — CbC‘;

(E-8)

These formulas make it trivial to check all assertions about
projectors, which have been nevertheless also verified with
xAct [28].
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Abstract The most general Lagrangian describing spin 2
particles in flat spacetime and containing operators up to
(mass) dimension 6 is carefully analyzed, determining the
precise conditions for it to be invariant under linearized
(transverse) diffeomorphisms, linearized Weyl rescalings,
and conformal transformations.
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1 Introduction

Particle physics interactions, when considered at very high
energy (probing then smaller and smaller distances), are
expected to be independent of the individual masses of
the particles themselves, which are negligible in compari-

4e-mail: enrique.alvarez@uam.es

b e-mail: jesusanero@ gmail.com

¢ e-mail: raquel.santosg @uam.es

son with the energy scale. Some sort of scale invariance is
expected to be at work there. The same thing happens in sec-
ond order phase transitions. The correlation length diverges,
and again, scale invariance is at work. In fact in many known
cases (in all unitary theories') this symmetry is upgraded
to full conformal symmetry [2]. There is however a caveat.
In quantum field theory the well-known need to renormal-
ize the bare quantities implies that an arbitary mass must be
introduced. This is the origin of the dependence of coupling
constants with the energy scale, encoded in the correspon-
diong beta-functions.

It is however only recently that the precise relation-
ship between scale invariance, conformal invariance and
Weyl invariance has been clarified (cf. [3,4] and references
therein). This includes the precise conditions for scale invari-
ant theories to become conformal invariant and also the exis-
tence of the so-called a-theorem for renormalizable theories
(cf. [5] and [6] for a recent review). Most of the work done
so far has been in flat spacetime, where the gravitational field
is absent, or at most, non-dynamic.

When such a gravitational field is present [7] there are
two possible generalizations of scale invariance. The most
direct of those is the algebra of conformal Killing vector
fields (CKV), that is, those that obey

K(S)guv = ¢(x)guv (e8]
the fact that
L&, nD = LELm — LONLE) )

implies that the set of all CK'V generate an algebra, which for
Minkowski spacetime is the conformal algebra, SO (2, n).
In fact, the maximal possible dimension of the conformal
algebra is precisely

! There is a counterexample by Riva and Cardy [1] where scale invari-
ance does not imply conformal invariance. The theory is the two-
dimensional theory of elasticity which is not unitary.

@ Springer



95 Page2of 15

Eur. Phys. J. C (2020) 80:95

_(n+ D@ +2)
B 2

d 3
which is attained by conformally flat spacetimes (the ones
with vanishing Weyl tensor [8,9]). Unfortunately, however,
this property is not generic; that is, an arbitrary metric does
not support any CKYV, and the corresponding algebra has to
be studied for each particular spacetime by itself.

The next most natural symmetry to study is Weyl invari-
ance, the invariance of the action under local rescalings of
the metric tensor.

guv(X) = Q% (x) gy (x) )

this invariance, besides, can still be studied in the linear limit,
when the gravitational field manifests itself as a perturbation
of the Minkowski metric.

g/f.v(x) =N + Kh;w(x) ()

Given that the previous expansion is exact, the linearized
Weyl symmetry of the metric perturbation can be written as

K S8hyy =20 (X)) + 2k 0 Lehy,y (6)

Let us remark the appearance of an order /4 piece in the vari-
ation of the perturbation that will be relevant in our analysis.

In order for a flat spacetime theory to be scale invariant,
the (Rosenfeld) energy-momentum tensor must be a total
derivative (on-shell)

T]HUT;Lv = au VK (7)

where V# is the virial current [10-12]. This is enough to
guarantee the existence of a conserved scale current

=Xt v ®)

In the particular case when the virial current is itself a diver-
gence, that is, when

VE = d,0t )

then the theory is conformally invariant under the group
0 (2, n), and the conserved current reads

K" = (267, = 2% TP = 26" VI 4261 (10)

which also implies that the energy-momentum tensor can be
improved.

In the present paper we want to clarify the precise relation-
ship between Weyl invariant theories (WIFT) and conformal
invariant theories (CFT) for systems where the gravitational
field is dynamic, but still approachable as a fluctuation of flat

@ Springer

spacetime. Our analysis then concerns mostly spin 2 theo-
ries in flat spacetime as described by a rank two symmetric
field in Minkowski space. Our plan is to do it systemati-
cally, determining the conditions for scale invariance (which
is still meaningful in flat space), conformal invariance and
Weyl invariance.

We analyze first the most general Lagrangian containing
dimension 4 operators, and then we do the same analysis for
dimension 6 operators, containing two and four derivatives
respectively (operators appearing in the weak field expansion
of gravitational theories linear and quadratic in the curva-
ture). We then study dimension 5 and dimension 6 operators
with two derivatives. The analysis is, in some sense, the con-
tinuation of the one in [13, 14] and also in [15]. Recent works
regarding conformal invariance and Weyl invariance include
[16-18]. We are always (with the only exception of our dis-
cussion of the improvement of the energy-momentum tensor)
refering to actions defined as spacetime integrals, so that we
allow for integration by parts, in other words, when we claim
that an expression vanishes, we mean this only up fo total
derivatives.

2 Symmetries of the low energy spin 2 action

Let us revisit the possible symmetries of low dimension
kinetic operators in spin 2 theories [13] in flat spacetime
where the graviton is represented by a symmetric tensor /2.,
Lorentz invariance will be assumed throughout the paper. If
we want the field equations to be given by differential oper-
ators of (at least) second order, then the Lagrangian has got
to incorporate at least two derivatives. Let us begin our study
with the operators of lowest possible dimension.

2.1 Dimension 4 operators

Our building blocks are the gravitational field, /4p (assumed
to be of mass dimension 1) and the spacetime derivatives, 9.
There are four different dimension four operators with two
derivatives

1
Dy = L uhd"

1
D, = —Ea'\hxpaahm

S
I

1
Ea*ha“hm

1 p
Dy = —8uhd"h an

There is another operator

1
Ds = —Ea[,hk,,a*hpf’ 12)
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which is equivalent to D, modulo total derivatives:

1 1
Ds=D; = 5, (9 h5hP7) + 5 (9xh*"15) (13)
Then, the most general action principle involving dimension
4 derivative operators reads

(14)

4
S = fd4x > D
i=1

First, we are going to consider invariance under linearized
diffeomorphisms, LDiff gauge symmetry. This is the one
implemented in the pioneering work by Fierz—Pauli

ahuv = 3#&1} + avé}_p, (15)
The variation of the fragment of the action containing the D
terms only (that is, with ml2 = Ay = 0) and upon integration
by parts, yields

8/d4xD1 =fd4xs*DthM
8/d4x Dy = —/d4x £4 (8,079 hpo + 008 hy)
8/d4x Dy = /d4x £ (3,079 hpo + 3,0h)

(sfd“xmz—faﬂxg*aA Oh (16)
so that linearized diffeomorphisms (LDiff henceforth) imposes
some relations among the coupling constants

a7

o] = =03 =0y

this is, o; = 1Vi.

The second case we are analyzing is the invariance under
transverse linearized diffeomorphisms (LTDiff henceforth),
that is, diffeomorphisms such that their generating vector
fields obey

9. =0 (18)
These conditions impose
a) = (19)

but allow for arbitrary values of o3 and a4.
In third place, under linearized Weyl transformations,
LWeyl, the variation of the metric reads

2
Shap = < © (X)7ap (20)

and after integration by parts,?

1
——wlh
2

8Dy = 0 3%9P hyp
5D; = _% (49%0P hyp + Oh)
§D4 = 20 0h

8D

@n

where we have multiplied by £ for simplicity. The invari-

ance under LWeyl puts further constraints on the coupling
constants, namely

o) +a3 —4ayg =0

4a3 — 202 =0 (22)

In [13] we have dubbed WTDiff to the theory with TDiff
invariance enhanced with linearized Weyl symmetry, LWey!.
This is the particular case of the above, corresponding to
o] =ar = 1l and

(23)

A consistent non-linear completion of the actions which full-
fill these requirements are the ones explained in the Appendix
(110) namely actions proportional to

1 3 (Vg)?
Swrpiff = —ﬁ/fﬂx g (R t3; P

(24)

Finally, we could consider only traceless graviton fields,
hep such that h = no‘f’haﬂ = 0. Obviously, in this case,
D3 = D4 = 0, and for consistency, we can only implement
TDiff with the coupling constants fixed to

ap=ay =1 (25)

2.1.1 Scale and conformal invariance

The most general Lagrangian we are considering (without
the mass terms) is obviously scale invariant under

Xt — axt

By — A Ry, (26)

with the assigned scaling dimensions. In order to make a
full analysis of the scale and conformal invariance of the
theory we have to compute the energy momentum tensor of
these theories. In this case, and neglecting total derivatives,
the metric (or Rosenfeld’s) energy momentum tensor has the
form

2 Although we do not write the integrals explicitely, integration by parts
is carried out in the analysis and total derivatives are not considered as
stated in the introduction.
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1
Tyy = o {auhaﬂavhaﬁ + 203 hy,50% Ry '3}

1
- 5o 3uhde h™ + 31y de h™7

+8Ahwa‘3hgu}
1
+ =03 %M, 8 haa + 3 (0%hduhay + 3% h0vhuy

+ 8, hd*hyy + 9,00 ) }

1 1
— ZO!4 28"‘h80,h,w + auhavh} - ELU}LU 27)

whose trace reads
3o 3 1o 9o 3 s o’
T = 4a1 (9,chap) 2a2 0,h"° 0% hpe + 20{38 ho"hjy
3
- o @u)?—2L =1L (28)

The equations of motion (eom) read

58S o a
= A opgg+ 2
Shep bt

o o Q.
- fnaﬁaka"hm - ;aaaﬁh + %Y]aﬁmh 29)

0o + S50 s

In fact we know that, as explained in the introduction, scale
invariance implies that the trace of the energy momentum
tensor can be written, on-shell, as a total derivative, that is, as
the divergence of the virial (7). What happens is that whereas
two Lagrangians that differ by a total derivative still generate
the same eom, the specific form of the virial does depend
on the particular form of the Lagrangian. This, in turn, also
determines whether the virial itself can be written as a total
derivative. Examining the contributions of the whole set of
total derivative operators, leads to the convenient action

S = /d4x [%auhupaﬂhw’ - OETZ (0% 3p s h?” + 051y h7°)

a3 oy
+ S0 0 g Ta#ha#h] (30)

The trace of the energy momentum tensor can then be rewrit-
ten as

1 1
T = {al [Zaﬂ[h“/’a“hup] - Zh,u,Dh’“’]
1 . T ak 1 L, po
+ a2 _Zda[h'a 0 hAp]_ Zaa[hkpa h*?]
1 po A 1 A po
+1h 050" hyp +1hxp3 0o h

1 o A I:A no
+a3 13 (00 h]+16 [h0° hyo]
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1 1
- Zhwaaa*h - Zheﬁa"m]

1 1
+ oy {—Zaﬂ[haﬂh] + thh]} 31)

so that on-shell, we can express the trace as 7' = 9, V#,
where

Vi = {%hvpa“hw - ‘Z—zhwkhm - %hmakhw

T3 4

It is also well-known that a conformal current can be for-
mally constructed in case the virial can be so expressed as
VH* = 9,0"". In our case, and upon using the eom,

Bplarn+ Bnaonr — %ha“h} 32)

o _ 91 w peb _%hﬂﬂhv %h’“’h—% #Vh2}
o { g =y Mty g
(33)

In that way we get such a tensor (on-shell), for any value of
the coupling constants.>

Once a particular form of an oV is found, there is a sys-
tematic way of improving the energy-momentum tensor [10].
The improvement consists on adding another piece to the
initial energy momentum tensor, so that the trace of the new
energy-momentum tensor is precisely cero, that is, we avoid
the total derivative terms. The piece in [10] has the form

1
O =T + Eakapxwv (36)

where X KV is symmetric (i, v), and divergenceless. The
precise for of the improvement reads

3 We insist that this result (because this tensor is after all a total deriva-
tive) depends on the boundary terms that are neglected in order to write
down the original Lagrangian. The monomials have to be written down
as indicated; to be specific, in order to split D; in the two pieces, there
is an integration by parts

—0M 00517 — 8% 3505 hP7 = — 8" Ny, 05 hP7 — By, 3" hPT
=" (hap B h?7) + B (hsp 0" h*7) (34)
so we have two total derivatives appearing in order to interchange the
two derivatives. Although this does not contribute to the equations of
motion, it does contribute to the virial, L = L'+, j* — VF = V'* 4
j*. Tt could well be the case that V# = 8,0"Y but V/* + j* # 9,0"*".
If we take this contributions into account one of the total derivatives

cancels one of the pieces of the virial proportional to a> and the other
one is summed with the other piece. We end up with

Vi — [%Wa“hw - %h”"a*h,\p
+ %h';a‘h n %ha“hﬁ - %hi)“h] (35)

and we could not write this as the derivative of a two-index tensor.
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Appv _ JAp AV A, PV AV __Hp nv _Ap
X =g"oy —gMo — gt ol" +g¢" ol
ny o Py o

1 1
- gg”’ g"od, + gg”‘g 0%, (37)

where o _f " stands for the symmetric part of ", The original
analysis [11] was specific for n = 4 dimensions but it can be
generalized to arbitrary dimension [19].

2.2 Dimension 6 operators

In this section, we want to study the dimension 6 operators,
and among these, there are various possibilities. First we take
operators with four derivatives and two hg. After integration
by parts, those are

O = hap (879787 8%) hys
O = hap (8797 07°0) hys
O3 = hop (8797 n°0) hys
04 = haﬁ (D2naynﬁ8) hy5
Os = hag (TP 1) hys (38)
There is a small caveat here. There are also many operators
with two derivatives and four g, that will be analyzed in the
next section. It is the case that these operators do not appear
as a limit of quadratic Diff or TDiff invariant theories; they
can only appear as higher order contributions to Lagrangians
linear in the curvature.

Let us consider the general theory involving dimension 6

operators which can come from quadratic theories of gravity,
namely

5
Spad =* [ d*x 310, (39)
i=1

Like in the previous section, we first study the LDiff sym-
metry, upon which the O transform as

801 = —48,0™8% 9P Theg
802 = =26, (9*0%h + 0*0"9P Dy )

603 = ~26* (0P 0Py + ,0%9° O )

80y = —4E* 3P hy,,

805 = —4&*3,0%h (40)
after having integrated by parts. Then the symmetry under
L Diff imposes the following relations between the coupling
constants

281+8+83=0

82+285=0

83+284=0 (41)

These still allow for arbitrary values of g; and g5, and

g3 =—(2g1 + g2)

_ 281+
g=——
82
S 42
85 2 (42)

In the second place we consider invariance under LTDIiff,
which imposes

g3 +2g4=0 (43)

Finally for LWeyl symmetry, the variations read (multiply-
ing by « /2 again for simplicity)
801 = 20 00%0P hg
80, = wPh + 4w 038P hop
803 = 20 00%0P hg
804 = 200%h
805 = 8w?h (44)

so that the action is invariant under such tranformations
whenever

2g1+4g2+2g3=0
8 +284+885=0 45)

Now it is interesting to combine LDiff and LWeyl. In the
case of dimension 4 operators, actions which are invariant
under both symmetries do not exist. For dimension 6 oper-
ators, we can have LWDiff invariant theories as long as the
coupling constants are constrained to have the following rela-
tions

)

3
84 = 582, )

= _3g,,
83 22 3

81 = 82,

These actions with LWDiff invariance are obtained as the
weak field limit of the following quadratic theories

L= Vg [0 R, + [—dar + 6021 B2, + (@ — 22) R
“n

Note that the term /g is immaterial at the order we are work-

ing. The weak field expansion of the quadratic invariants is

worked out in the Appendix A. For n = 4 spacetime dimen-
sion these theories can be rewritten as

L=g (a@—3g) Es+./g382Ws (48)
where E4 is the four-dimensional Euler density

Ey= R}, — 4R + R (49)
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It can be easily checked that the weak field expansion of
E, around Minkowski spacetime vanishes. This is the origin
of the arbitrary coefficient « in the above expression. The
quantity Wy is the square of the 4-dimensional Weyl tensor

Wa=Rlg,s —2Ros+ é R? (50)
The actions which are precisely proportional to the Weyl
squared tensor are the ones with 3g> = «. Nevertheless,
at the linear level, the Euler density does not contribute, so
that all the solutions will effectively correspond to actions
proportional to Wj.

Also quite interesting are those actions that are LWTDiff
invariant; that is LWeyl invariant, but LDiff invariant under
transverse diffeomorphisms only. They are characterized by

g1 = —g3— 28 = 6g4 + 16g5
82 = —2g4 —8gs

g3 = —2g &)

The most general quadratic WTDiff invariant Lagrangian is
the one obtained by Weyl transforming the metric in the
quadratic action with g,, = g‘1/4g,w (this transformation
ensures 7Diff and automatically introduces a Weyl invari-
ance). The expansion around flat spacetime reads

\/§ (aiép,vpa RHVP7 + ,Bléuv R + VRz)

1
:<a+§+y> O1+ 5@ =)0

(e E)ors (o E o

B (200( +4p —4y 52)

3
o >(95+0(h)

The weak field limit of these theories automatically satisfies
the constraints needed for LWTDiff (51). The precise form of
these theories after the Weyl transformation (120) is shown
in the Appendix.

2.2.1 Scale and conformal invariance

Scale invariance is now lost with the assingment given to
hyy (conformal weight one). If we have a theory incorpo-
rating dimension 6 operators only, it is possible to recover
scale invariance, just by making the graviton inert (conformal
weight 0). It is plain that this does not hold when we have
both dimension 4 and dimension 6 operators in the theory.

On the other hand, the conformal invariance demands as
usual, tracelessness of the (metric, or Rosenfeld) energy-
momentum tensor. In this case, the energy-momentum tensor
takes the form

@ Springer

Ty = 281113000 3% 0P hop
+ 138, 8"8% 9P hop)
+ g2{R3, 8,3 0Oh + 13,8, Ch
+ hopd®dP 3,8, + hapd®dPThy,,)
+ 83170y 3R + hd, 00
+ oy 3 0P Ohpy + hapd® 8,9, 0,h™F }
+2841hapd, 00 + 1y, D2 R2) + 2g5(h8,,0,0h

1
+ Oy = 5 Ly (53)
and the trace reads
T=2L (54)

The eom read
88 v

Shaf = 281040p0" 3"y + 82043000

+ 821apd" 0" Oy +83959" Dhar+83820" Thipy

+ 2840 hop + 2g51°P 0% (55)
and they imply that, on-shell, the Lagrangian indeed van-
ishes, L = 0 (up to total derivatives).

In order to study the virial in detail, let us start from the
specific form of the Lagrangian
L =2{g1 (879" hapdPd°hy5 + 0% hapd? 3" 8°h, s

+ 0" hapd? 3% 3°hy )

+ % (9908 hag Tl + 9% 0P hTlh g

+20Phopd®Oh + 20P h% hap)
+e3 (a“aﬂhwmhg + 0% O
+0Pha 9O

+ g4 (DhapTh® + 20" hepd, Oh*P)

+ g5 (OhOh + 28"hd,0h)) (56)

Now it is a simple matter to show that on-shell, L = 9,,d,0""
with

81
w o o Brv Vo B
o _2{—2 (00" iy + 10,0 nf )
82 (v yny
+5 (h"'Oh + hOR")
+ % (R**0hY + k7 ORY) + gan™” hapOh*?

+ gsn‘”hDh} (57)
This result is somewhat puzzling, because we have already
indicated that this theory is not even scale invariant with the
standard assignment of conformal weight for the graviton
field (namely 1). The result is however logical if we remem-
ber that the low energy of the Weyl squared Lagrangian is of
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this form. The theory containing both dimension 4 as well
as dimension 6 operators, should not be conformal however.
This fact can be easily understood from a simpler exam-
ple, namely a scalar Lagrangian, where all complications of
indices can be avoided. Consider then the Lagrangian

B

’ 2
L' = agl¢p + W(ﬁlﬂ ¢ (58)
which is equivalent to (up to total derivatives)
L=—-ad,pd"¢

B
~ (49,000 ¢ + 20" 8,¢9,0" ¢ + Opg)
B

= —al; — WLZ (59)
This is our starting point. The eom read
88 B s
— =0 — [P =0 60
55 =00+ 3200 (60)

and the energy-momentum tensor
1
T = —a(0u$906 = S0.09" 1,0
B (40 1o - QA .
—W(46A¢6M6V8A¢ + 40,0000,¢ + 43,,0,00,9* ¢

1
+28,8,00¢ — 5 (49,,000" ¢ + 2087 3,95, " ¢

+060I0) 1,0 (61)
The trace of the above reads
T:—a(l—f)Ll—i(Z—f)Lzzau (62)
2 M? 2

Evenif we are workinginn = 4, we leave n arbitrary to main-
tain the second piece and illustrate the point we want to make.
Note that this is not proportional to the total Lagrangian,
because the trace counts the number of derivatives. We can
rewrite the trace as

= 5(-3) (o0 )

B ( n 2,2 2
~ P (- 7) (D —2¢0] )
M2 2 ¢ ¢L%¢
which fails to be a total derivative when both « and g are
nonvanishing, because

(63)

n n
1——#2—— 64
> # > 64)
Note that this is true even if there are WTDiff (that is TDiff
and Weyl invariant) theories linear as well as quadratic in the
Riemann tensor. The weak field limit of those Weyl invariant
theories fails to be conformal invariant.

2.3 Dimension 5 and dimension 6 operators (with 2
derivatives)

Next, we study dimension 5 and dimension 6 operators con-
taining just two derivatives, so that they come from the weak
field limit of theories linear in the curvature, when expanded
to higher orders in the perturbation. In the previous sections,
operators coming from the lowest (non-trivial) order of grav-
itational actions were analyzed. In that cases, the lowest order
of (T)Diff and Weyl variations was enough to obtain the con-
ditions for those actions to be invariant under such symme-
tries. In this case, however, different orders of the expansion
are needed because of the two orders involved in the field
variations

8p(k hyy) = 98y + 008 + & Lehyy

Sw Kk hyy) =200, + 2k why, (65)

This translates into dimension 4 operators mixing with
dimension 5 ones, and dimension 5 operators with dimen-
sion 6 ones.

A full list of the independent dimension 5 and dimen-
sion 6 operators (containing 2 derivatives) can be found in
Appendix 1. The most general dimension 5 Lagrangian with
such operators reads

14
Lsyy =k Za,-]\/,- (66)
i

Again, the only diffeomorphism invariant combination cor-
responds to /g R, in this case, to the order O («c®) expansion
of it

1
(FﬂR>O(K3)
=K=73N. — S Ns b TN — NG+ 2N — TN
- %Ng - é/\@ - %Nu + %le + %NB
- 11—6./\/'14} 67

This piece then combines with the previous order of the
expansion to attain diffeomorphism invariance

8 hyv)=x Lehpy
(68)

(\/gR)O(Kz)

(V3R) g3

S+
80 hy) =0 S+ €

We can also look for the most general Lorentz and Weyl
invariant Lagrangian built with this kind of operators. Again,
we need the dimension 4 operator part that will contribute
with the O (k) piece of the Weyl variation, which already has
two arbitrary constants appearing in it (22). Taking that piece
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into account, the most general Weyl invariant Lagrangian up
to dimension 5 operators reads
o B — 2, h 8 Y + 28,h" 8,k
4 2 4
2c1 +c2
32

+K=a1./\f1 + arNo + asN3 + 4a Ny + asNs

Lwsp =

9,hd™h

+ (a1 — 2ap — 4a3 + 64—2)/\/6

+ (4ay; — 4az — as)N7 + (—ay + 2az — %Z)Ng
+aoNo + 11—6(2611 —4ay — 4ag + c2)Nio
+anN + %(—4@ —8ayy + 8ay + 16a3
+2¢1 — c2)N12 — i(an + a9) N13

1
+ i(al +4aiy — 2ay — 8az + 2a9 — c1)N4
(69)

Let us insist on the fact that both pieces are needed so that
Weyl invariance is attained, that is, up to certain order in the
expansion, the previous order is needed for the computation
of the invariance conditions. Thanks to the mixing of the dif-
ferent orders, more freedom is avalaible to attain invariance
under the studied symmetries. In particular, there are 8 inde-
pendent coupling constants a1, az, az, as, ag, aji, ¢ and ¢;.

It is straightforward to see that WT Diff (24) is a partic-
ular case of this general Weyl invariant Lagrangian, with the
constants fixed to

1 1 3 1 0
a=——,ay=——,a3=—, a5 = —, dg =0,
1 g @ BT BT D
1
=—,c1=cp=-1 70
ar 1 cl =0 (70)
Accordingly, the most general dimension 6 Lagrangian
with two derivatives can be written as

38

Logs = k> Y biK; an
i

In this case, the expansion of (ﬂR) 0h) reads

1
LvaR)
<K2 0(k*)
1 1

1 1 3
— 2 e 2 S <
=K {4’C1 8’C3+2’C4 4’C5 16’C6

1 1 1 1
+ E’C7 + 5’68 - E’CQ + EICH
1 1 1 1 1
+ giClz - §K13 - EKM + Z/Cm - §/C17
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1 1 1
+ Z’CZO - EKZI + Elczz

1 1 1 1 1
—-—K —Kas — =Kz — =K —K
16 23+4 25 26 3 27-i-32 28

8
1 3 1
- §K29 + §K30 - %’Cm
+1/C IIC llC IIC (72)
K32 = 5 K33 — 1 Kss — 1o Kss

Finally, let us analyze the most general Weyl invariant
Lagrangian up to dimension 6 operators. We have different
pieces apearing in it. First of all, it contains the pieces up to
dimension 5 that were computed in this section (69), together
with the dimension 6 piece of two derivative operators, that
combine with specific coefficients so that Weyl invariance is
attained. Moreover, we have another Weyl invariant combi-
nation coming from dimension 6 operators containing four
derivatives (45). Taking everything into account, the most
general Weyl invariant Lagrangian up to dimension six oper-
ators is shown in Appendix 1.

2.4 Interaction terms

It would appear quite intuitive to think that there are no poten-
tial terms invariant under either Diff or Weyl invariance. This
is based in our GR intuition, but let us get rid of those preju-
dices and carry on with our perturbative analysis. It is easy to
systematize the perturbative expansion. Up to quartic inter-
actions we have the monomials

My = hosh®®
My = n?

Ji = h"Phg, b,
Jo = h%hogh
j3 = h3

Q1 = h*hgyh?°hse
Q= (h;whlw)z

Q3 = n*
Q4 = h%hagh®
Qs = hhagh?” h8

so that the most general potential up to dimension four will
read

2 a=3 a=5
Vo) =mM*h+Y miMi+y baJut+ )  haQu+---
i=1 a=1 a=1

(73)
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‘We want to analyze the invariance under diffeomorphisms
as if this , corresponds to the perturbation of the metric
around flat spacetime (65), but we take another energy scale
M instead of «. The crucial point is that owing to the fact
that the Diff variations contain an order zero piece and an
order one piece in the perturbation, each order in the pertur-
bative expansion of the variation of the potential contributes
to both the lower and upper orders. Up to total derivatives and
dimension four operators, it can be seen that the following
interaction Lagrangian is diffeomorphism invariant

M
VO () = mM2 i+ mT (Ma —2M))

1 1 1
+m (§J1 - 1.72+ ﬂ‘]})
m 1 1 1 1 1
tu (*ZQ' et S TsQ”aQS) o

74

In fact this is an iterative process, each term in the expan-
sion determining the following. The final potential contains
infinite terms depending on just one arbitrary constant with
dimensions of mass, m. In fact this is exactly the weak field
expansion of mM* (/g — 1).

At this point our GR intuition strikes back and asks
whether this is not precisely the expansion of the cosmo-
logical constant term. (In fact they do not quite fit).

Concentrating in the quadratic terms

M
= *Tm (hap + Milap)’

M
+ (b4 4M)? = 2m? (75)
Not knowing anything on GR we would say that there is
spontaneous symmetry breaking in the system and the ground
state has shifted from 4, = 0 to h,, = —Mn,.,, leaving
behind a vacuum energy

VP = —2mM> (76)
Fluctuations around the new vacuum state
hyy = —=Mnuy + Hyy (77)
are damped (provided mM < 0) with a quadratic term

D 3 mM mM

as is not positive semidefinite except for traceless HaTﬁ when
mM < 0.Inorder to reach a definite conclusion on positivity,
higher order terms should be considered. To the extent that
this is related to the weak field expansion of mM zﬂ, we
expect it to have a definite sign however.

Similar reasoning as in the previous paragraph leads to a
Lorentz and Weyl invariant potential

|
Vw(h,w) = mM? h+m%./\/l1—§ (mM+2m%) M,
ot (225 )
1J1 4 M 1 2
(6™ yep Taticma Q1 +220
Py m I 1 3TKmMAIE] 2%2

1 m m% by
LT YN VIS VR T3}
+256( MM M H16%2) Qs

L L o)
16 \"m2 Ty T TR A

3b
- (Zﬁl*f’ll) QS

In this case we have more freedom as more arbitrary constants
appear with each order of the perturbative expansion. The
quadratic piece can be written as

(79

V" = mi (hap — M’?aﬂ)z—M (h —4M)* +2mM’
(80)

Fluctuations around the minimum of the potential

by = Mnyuy + Hpy 81

behave as

v i, M2 ®)

which again is positive semisefinite only for traceless H, (!Tﬂ or
else for pure trace when mM < 0 as

M
vV = miu!,? - T H  omM? (83)

8
2.5 Global Weyl invariance
There is another symmetry that can be studied in this con-
text, which is global Weyl invariance, that is, when the Weyl
scaling factor is just a constant
88w = Dgu, 9,2=0 (84)
When we expand the metric around flat spacetime, g,, =

Nuv + khyy, the linearized variation of the quantum fluctu-
ation reads

@ Springer
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1
Shyw = 2w (;Wv + hw) (85)

In the case of global (rigid) Weyl invariance where  is con-
stant, the variations of the operators quadratic in the fields
have to be computed taking into account both terms in the
above (that is, the linear order in the quantum field). If we just
took the first piece, proportional to the Minkowski metric, all
the variations computed in (21) and (44) would just be total
derivatives, which have been neglected in this work.

In order to illustrate this point, let us take two simple
actions. We know that the Einstein Hilbert action is not glob-
ally Weyl invariant in four dimensions,

1 1
~33 d*x8(JgR) = ~3a <2w / d*x @R) (86)

On the other hand, we can take the simplest quadratic action
which is invariant in four dimensions

/ d*x8(JgR*> =0 87)

These equalities have to be true order by order in the per-
turbation of the metric. In this case, the quadratic order in
the variation together with the linear order in the Weyl varia-
tion, combines with the third order of the perturbation in the
action and the lowest order in the Weyl variation. These terms
are going to be of order O (%) and have to match exactly the
0 (x?) part of the rhs of the equation. Namely, The quadratice

4 0(k?) o3
/d * [(ﬁR) ‘Bhw=2whw, +(/eR) ‘ahw;zw”f%]
_ <2w f dx (ﬁR)O(KZ)) (88)
xpansion of the Einstein Hilbert action reads
1 4 0(x?)
—— [ d*x (V3R
2k2
1 4 1 A 1 124 P
=-3 x —Eaﬂh vh + Eaﬂh 0ph?
1 1 v
+ Zauha“h - Zaph“ 3’ h,, (89)

It is straightforward to see that taking the variation 8h,, =
2wh,,, we get

/d”x (VER)O®) :4w/d”x (VER)?®)

(90)

Shyy=2wh,

In order to compute the other piece contributing to O (k%) we
need the third order of the expansion of the Einstein Hilbert
action which contains terms with three quantum fields 74,

@ Springer

and two derivatives, which are shown in the Appendix 1.
Once we have this expansion, we perform the Weyl variation
Shyy = 20" yielding

/d”x (\/gR)O(KZ)‘ = _zwf d"x (ﬁR)O(KZ)
611,“,=2w%
on
Adding the two contributions
f d"x [(@R)Wﬂ

=20 / d"x (JgR)O«) 92)

R 0(#))
FWERO| L,

Shyy=2wh,

which precisely yields the right hand side of (88) for n = 4.
We cansee thatinn = 2 the Einstein Hilbert action is globally
Weyl invariant (as well as locally). In fact this is basically the
reason all two-dimensional metrics are conformally flat.

In the case of the quadratic action we have

/d4x |:(\/§R2)O(K2>‘

Shyy=2wh,,

R2)00) —
+(/gR") Sy 2 0 93)
where
/d4x (JZRHOE) :KZ/d4x {8,,0,h""8,3,h"°
—28,8,h" Oh + OhOh ) (94)

As before, taking the Weyl variation proportional to the quan-
tum field is straightforward and it yields

fd"x(ﬁRz)O(Kz)‘ :4w/d"x(ﬁR2)0(K2)

95)

Shyy=2wh

For the other piece, we need the third order variation of
the quadratic action which can be easily computed. After
performing the Weyl transformation on the quantum field,

Shyy =2 "I‘:” , we get

4" R2 0(){3)‘
f * (VER) Sy =20

= 4o / d"x(JERHOE) (96)

Summing both contributions,
/d“x [(\@Rz)ooﬂ)

R? W‘”‘ =0 97
RO ©7)

Shyy=2wh,
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3 Non-local extensions

There is a permanent temptation to avoid the Kéllen—-Lehman
spectral theorem (which states that the price to pay for having
propagators that fall off at euclidean infinity faster than k>
is to have negative norm states) by considering non-local
theories. For example in [20,21] a non-local generalization
of the dimension 4 operators has been considered, namely

1 O
_ af
O = ~1 hap |:Cl (W) D] h
1 0
Dz = Ehaﬂ |:c‘2 (W) aota)/:| h}/z
1 O
O3=—2h [03 (W) ayaé] hys
1 O
O4 = Zh |:C4 (W) D:|h

O\ %9837 d°
Os = hp [05 (W) T] hys (98)

so that the general Lagrangian of this type will be
=5

L=Y"9 (99)
i=1

(where ¢; (z) are analytic functions with dimensionless argu-
ment). The five functions c¢;(z), i = 1...5 (which are
assumed to include the corresponding coupling constants)
characterize the theory. The constants put in front are such
that the LDiff Fierz—Pauli theory corresponds to

0i<—>Di (i=1...5)
gi=g=g=g=1
g5=0 (100)

The correspondence with the dimension 6 operators in (38)
is as follows

i@ =z (i=1--5)
O < M2Ds

0y < —2M? D5

03 < 2M* 9D,

Oy < —4AM* 9|

Os < 4M?* Oy (101)

ie. g1 = M%c5(2), g2 = —2M?c3(2), g3 = 2M?c2(2) .84 =
—4M?ci(z) and g5 = 4M?c4(2), in such a way that the
conditions for LDiff invariance now translate into

c2(z) —¢3(z) +¢5(2) =0
4cq(z) —c3(2) =0

c2(z) —4c1(2) =0 (102)

Itis claimed in [20] that the theory is ghost-free provided that

c1(z) = 2(2)
¢3(z) = ¢4(2)

c5(2) =2(c3(2) — 2(2)) (103)

and the function ¢ (z) is chosen as an entire function, such
as
ci(r)=e? (104)
Note that both constraints, (102) and (103) are different and
incompatible.

It is well-known, however, that non-local theories suffer
from unitarity and causality problems, some of those can be
sometimes hidden uunder the rug of experimental precision
of the measurements [22]. However, in order to do that, the
theory needs to be quasi-local, which means that the corre-
sponding function has got to have bounded support, which
seems to contradict other conditions. It is not clear at all that
a consistent solution exists.

Outstanding problems in this respect according to [23] are
first and foremost, the fact that the presence of the exponential
damping factor in the propagator prevents analytic continua-
tion from the riemannian theory to the lorentzian one, owing
to the essential singularities in the complex energy plane. It
must be stressed, however that such an analytic continuation
is problematic in any theory involving the gravitational field.
Another argument is that none of the theories proposed so far
complies with reflexion-positivity, which is believed to be an
essential requirement in order to get a consistent quantum
field theory.

4 Conclusions

In this paper we have presented a complete analysis of opera-
tors up to (mass) dimension 6 describing spin 2 theories (e.g.
weak field limit of theories linear and quadratic in the curva-
ture), analyzing with some care the conditions for the theory
to be (transverse) diffeomorphism invariant, scale invariant,
conformal invariant and Weyl invariant. We have also identi-
fied a possible non-linear completion of those Lagrangians.

Conformality on shell is attained for any combination
of the constants appearing in the dimension 4 and dimen-
sion 6 cases. The trace of the energy-momentum tensor is
a total derivative, and besides the virial current for spe-
cific Lagrangians is also the derivative of a two-index ten-
sor, leading to improved forms of the corresponding energy-
momentum tensors.

On the other hand, Weyl invariance instead does impose
constraints on the coupling constants. Our main conclusion
is to confirm [16-18,24] that Weyl invariance and confor-
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mal invariance are independent symmetries: not every Weyl
invariant theory is conformal invariant in the weak field limit
and conversely, not every conformal invariant theory is Weyl
invariant in spite of the fact that it is always invariant under
global such Weyl transformations. To illustrate the first part
of this statement, let us take for example the following WTD-
iff invariant theory

1
f d*x (—ﬁR[g_]“gw] + Rz[g"“gw]) (105)

where the precise form of these terms after permoning the
transformation of the metric can be found in (109) and
(120). The weak field expansion of this theory will contain,
at quadratic order in the perturbation, dimension 4 opera-
tors and dimension 6 operators coming from the linear and
quadratic (in curvature) pieces respectively. Theories com-
bining operators of different dimension are not scale invari-
ant, as pointed out in the example in (58).

The analysis of dimension 5 and dimension 6 operators
does not bring anything new with respect to diffeomorphism
invariant theories, as expected. However, we have given
expressions for the most general Lorentz and Weyl invariant
Lagrangians up to dimension 5 and dimension 6 operators,
and we can clearly see that those theories contain an increas-
ing number of arbitrary constants. We have also discussed
global Weyl invariance and it is clear that this symmetry is
less restrictive than the local one. An analysis of the interac-
tion terms has been done. It can be seen that potentials with
diffeomorphism and weyl invariance can be constructive iter-
atively, for every orther of the perturbative expansion.

To end up, let us stress that the conditions that are argued
to be neccessary for a ghost free non-local theory [20] are
not compatible with the ones stemming from diffeomorphism
invariance.

We finally point out that our results prove that any Lorentz
invariant Lagrangian for spin 2 particle up to quadratic order
in the field is conformal invariant.
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A Weak-field limit of geometric scalars

‘We are interested in the expansion of the geometric invariants
when we expand the metric around Minkowski spacetime

8uv = Ny + Kkhyy (106)

If we take the limit of linear theories of gravity up to quadratic
order in the fluctuations we have

1 )
—3VER = 3%9Phep — Oh
1
+haﬁ (ZD (naﬁﬂuu - ’701/177/51))
1 P 1 . v 3
+ Enauaﬁdv - Enuvaaaﬁ "+ 0(h”) (107)

When considering TDiff scalars one can also have terms of
the type

(Vg)?
g2

=k2@h)* 4+ o) (108)

The existence of this operator gives one extra freedom.
To build the action which is WTDiff invariant we perform
a Weyl transformation in the usual Einstein Hilbert action
taking g, = g‘”“gw so that

2
3 g ) (109)

1
Swrpiff = —p/d“x g4 (R +3 o

Expanding it up to quadratic order in the fluctuations and
writting it in terms of the four dimensional operators (11) we
get

1 3
Swrpiff = /d4x (Dl + D, + ED; + §D4) (110)

On the other hand, taking into account that

K
Ruvap = 5 (—aaauh‘,ﬁ + 0 0vhyupg + 00, hgy — avaﬁhmx)
+ 0% 111)
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we learn that

2

R2

=< (112)
nvaf 4

{401 —80; + 4(’)4} +0h3)

For the Ricci tensor we have

Ruyp = g (—thﬂ + 90k + 9,08} — aﬁauh) +0(h?
(113)

so that

2
Rl = " (201 =20, =205+ 04+ 05) + 0(1)

(114)
Finally the expansion of the Ricci scalar reads

R =k (899% hap — OR) + O(h*) (115)
and it follows that

R? =2 (0] =20, + O5) + O(h%) (116)

A useful relationship is given by

aRiW +ﬂwa +yR* =« [(a + g + y) Oy

— (§+2y> 02—<2a+§> O3

o)l

+ o) (117

Using this it can easily be seen that the Euler density van-
ishes at this level of the expansion, whereas the Weyl squared
tensor decomposes into

_ p2
Wy = lepn

2

= %{201 120, -6054+304 — 05}

1
2 2
2le+3R

(118)

If we again consider quadratic theories which are TDiff
invariant, one would have terms of the type must add

Og)?
g2

= (Oh)? (119)

again, this yields in this case one extra freedom.

‘We can make the same analysis for the quadratic invariants
but when considering actions that are WTDiff invariant. This
can be achieved by making a Weyl transformation g, =

ng,w on the usual quadratic action (117) and then taking
Q2 = g~'/". For a general 2 we have
aRypo R*P7 + BR,, R™ + y R?
= 7 («Ryup R + BRuR™ + 7 R?)
+Q7 (=8a —2(n — 2)B) R, VAV'Q
Lo ° (4a +Gn—4)B+4(n— 1)2)/) OR)>
+Q7° (4(n — o+ (n — 2)2/5) V. V,QVAV'Q
+ Q70 (—da —2(n — 3)B
—2(n — )(n —4)y) RV,QV'Q
+ Q7% (160 4 4(n — 2)B) Ry V' QV'Q
x Q7 (8(n a4 40> —5n+5)B
+40—1)%(n — 4)y) 0QV,QV4Q
+Q77 (—16(11 —2a —4(n — 2)2ﬂ) vV, V,QVFQV'Q
+Q7 (=28 —4(n — 1)y) ROQ
x Q8 <2n(n “Da+ (- 1) —51+8)8

+(—=1%n-— 4)2;/) (VEQV, Q)2 (120)

Using that @ = g~ !/ (in order to have WTDiff) and keeping
dimension six operators with four derivatives and two metric
fluctuations, we get forn = 4

otléwpolé‘”p” + ,Bﬁwlé“” +yR?

:xz[(a+ﬁ+y> 01+%(a—y)(92

2
—<2cx+§> (93+<a+§> Oy
- (W) 05} + oM (121)

These are the most general theories that possess LWTDIiff.

B Dimension 5 and dimension 6 operators with two-
derivatives

This set of operators does not appear in the expansion of
terms quadratic in the Riemann tensor, although they appear
in the expansion of the Einstein—Hilbert Lagrangian.

For dimension 5, there are 14 independendent operators
(up to total derivatives), that form a basis to expand the
most general Lorentz invariant Lagrangian containing such
opeators
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M
Na
N3
Ny
Ns
Ne
N7

For dimension 6, there are 38 independent operators (up to
total derivatives), that form a basis to expand the most general

= W™ 9,hl, 05k Ng = h"hd,d,h%;

= W*hy 0,0,k No = h*hy,, 8,0, h°*
= h*’hd,d,h Nio = h8,08,h"*

= "0, h},0,ht N = ROy,
= W hP*3,8,h,) Niz = W hOhy,

= WVRP 9,03 h 0, Niz = 0""hy,Oh

= h"h%0,0,h0 Nia = h*0h

Lorentz invariant Lagrangian containing such opeators

K1
Ko
K3
Ka
Ks
Ke
Kq

Finally, taking all the contributions mentioned in the text, the
most general Weyl invariant Lagrangian up to dimension 6

= haghh,; 0" 8" h®P Koo = hagh®h}0" 8" h s
= hh:8 ho™hy, a1 = h*h%0% 8" s,

= hh}3"hd"hy, Koo = hagh® h%0" 9" hy,
= hyhPhy, 0" 8" h Koz = hhagh®®9"8" by,
= hhlh,; 079 h Kaa = B33V Ry

= h*hP Ohyg Kas = haalt™ hpe R

= h2h,, 0" 8 h Ka6 = hyuvhaph®® 38" h
= hagh®®3,hd"h K27 = hagh®h,e0h??

= hagh™9"h%8" Kag = h2hagTh®P

= P8 Ry 9"y a9 = hagh**hP0n

= WP 3R 1,50  hag Kso0 = hagh®®h0h

= hagh®P 8V h}0" h K31 = K30k

= hagh®P8"hd" h,, K2 = hyush™ 9" h%8" hog
= W% 00  heg K33 = hh? 3" 1, 8" h,,
= hhyphy,d" 8" hP* Kaa = hagh™8"h% 8" h s
= huhPPh%9" 8" hep Kss = hhy 3 hP*8"h,,
= Rhyh® 979" heg K36 = haah™ 8,hpy 8" h®
= hagh™ h%9" 8" hy), K37 = hagh® 0" 18" h,,
= hhy hP 98 hy, Kas = hagh®8,h 08" h*°

operators reads

Lwep = Lwsp + k201Kt + baKa + b3KCs + bakCs

+b5Ks 4+ Ko + b1C7 + bgKg + boKo
1
+b10K10 + b11 K11 + 3 (—=3az — by — byo
1
+4by — 3by — 4bs) K12 + 3 (2a; — 4ay — 8as
—4dag — 8by — 8b3 + ¢2) K13 + b14K14
1
+ 7 (—12a; — 3as — 4b1o — 2b14 — 2b9) Ki5
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3
+ (—Em + 3az + 12a3 — by + 4bs

+4be + 16b7 — %Q) Kie

+ (=3az — 2bs — 2bs — 8b7) K17

+ (8ay +4ay + 2as +4bio + b1y — bis — 4bs
+2b9) K13

+ % (20a; — 16as + 3as — 8b; + 4byg

+2b14 — 12by — 32b5 + 2bg + ¢2) K19

3
+ <§a1 —3ay — 12a3 — ay
3
+ by — 4bs — 8bg — 16b7 + §62> Koo

1
+ % (—=2ay + 4ay + 48a3 + 4ag
+ 8b3 + 8b3 + 32b5 + 32bg + 64b7 — ¢2)

3 3
xKa1 + b0k + <*§al +aat 3a3

1

1 3 3
— —a9g—=b1——by+bs + 2bg+4b7 — — K
2(19 3 1 a 20+bs + 2be+4b7 3202) 23

1
+ 192 (12a; — 24ap; — 160a3 + 16ag
+8b1 — 16by + 24byy — 16b3 — 64bs — 96b¢

—192b7 + 3¢3) Kagq + basKos
+ ba6Ko6 + ba7K27

1
— (1 4 —32
+256(6a1+ 8ay — 32ay

+32a3+16ag + 16by—64bys — 64by7+16b3+64b5
+ 64bg + 256b7 — 128bg — 10c; + 3¢3) Kog

1
+ % (—12a; + 16a;; + 24a; + 96a3 — 8a;

—24by; + 32bog + 32b5
+32bg + 128b7 — 3¢2) Koo

1
+ 356 (32a; + 16a;; — 64a; — 224a3

+32a9 + 16b1 — 16b;
+48byy — 64bys — 64by7 — 16b3 — 64bs — 128bg
—256b7 + 128bg — 2¢1 + 9¢2) K3o

1
—— (—104a; — 176 208
+ 3072 ( aj a1 + 208a;

+608a3z — 128a9 — 32b; + 16by — 96b2s + 192b26
+192by7 + 16b3 + 64bs + 192b¢

+ 128bg + 38c; — 21¢p) K31 + (12a; + 4ay + 3as
+8b1o + b1y + 2b9) K3n

1
+ <2a1 —6a,—2b1—2b1g—6by — 8b5+ZC2> K33
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+ (20a; — 8as + 3as — 4by + 4byo + by
1

— 12b14 — 16b5 + 3bg + ECQ) K34

+ (a1 + bio) Kss

3
+ (—5111 +3ai1 +3ax + 12a3 — by
3
+ 3bas + 4bye + 4bs + 4bg + 16b7 — ch K36

1
+ 3 (12a2 + 4by + 4b1o + 16b3
+ 12b4 + 16b5 — ¢2) K37
1
+ o (—8aj + 1643 + 32a3 + 16a9

+ 16b2-+16b3—128bs+2c1—3¢2) Kas) + L35
(122)

Let us mention that besides the 8 independent constants of
Lywsp, (69), the 6 dimensional piece constains 16 new inde-

pendent constants by, by, .

.., b10, b11, b1a, b2, bos, bag,

by7. Moreover, we have the 3 independent constants com-
ing from the six dimensional piece containing 4 derivative
operators Egg)aa 5 (45).
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1 Introduction

One of the most everlasting problems in theoretical physics is the Cosmological Constant
problem [1, 2] — the question of why our Universe is currently evolving according to the
presence of a very small cosmological constant, corresponding to MI?,A ~ 10716 GeV?,
where Mp ~ 10" GeV is the Planck mass. Being precise, this problem has actually two
sides. The first belongs to the realm of model building and aims to describe which concrete
physical mechanism leads to the observed value of A. Many attempts have been done in
this direction during the last decades (see e.g. [3, 4] and references therein), but so far we
do not have any clear experimental signature that favours one or another.

The second facet of the problem is of more fundamental theoretical nature. Even if
a sensible mechanism to produce the current value of A at the classical level is described,
it still remains to explain why this value should be stable under radiative corrections.
In a Quantum Field Theory (QFT), all dimensionful parameters receive corrections from
loops of interacting particles that shift the classical value of parameters. This occurs
even if the particles running in the loops do not manifest themselves in the low energy
spectrum of the theory. In particular, if we think of an Effective Field Theory (EFT)
setting, the cosmological constant receives contributions proportional to the cut-off of the
theory, which encodes the ignorance about the UV degrees of freedom [5]. This means that
in a gravitational theory described at low energies by General Relativity (GR), we expect
corrections of the form §(MZA) ~ Mg, which are clearly much larger than the observed
value of the cosmological constant. Although this hierarchy problem can be solved by the
inclusion of a very fine-tuned counter-term, it raises a question about the sensitivity of low
energy observables to high energy degrees of freedom and thus poses a problem for the
viability of the EFT, where separation of scales is critical.

A possible way out of this issue is to modify the infra-red (IR) limit of the gravita-
tional theory, so that the behavior of the cosmological constant gets replaced by a different
dynamical avatar. This is the direction of research followed by massive gravity [6, 7],
where the graviton mass regulates the IR limit of GR; and of the plethora of (Beyond-)
Hordensky/DHOST models [8], where the dynamics of an extra scalar degree of freedom
replaces the need for Dark Energy. However, the viability of both approaches has been
recently questioned from different directions, and the allowed parameter space is shrinking
quickly [9-14].

A particularly simple modification of GR that has attracted scattered attention during
the last decades, although it is almost as old as GR itself,! is Unimodular Gravity (UG) [16—
18], formulated by appending the Einstein-Hilbert action with a condition of constant
determinant for the metric tensor. Since the variation of this determinant is proportional
to the trace of the equations of motion (eom), this effectively suppresses the trace degree
of freedom of the metric. The resulting eom of UG are then the traceless part of Einstein

"The equations of motion of UG appear for the first time ever in a 1919 paper by Einstein himself [15].
However, that work was not related to the cosmological constant but instead to the structure of point
particles within GR.



equations [19-21]

1 1
R, — ZQWR =G (T;w — ZTgW> , (1.1)

where T}, is the energy-momentum tensor of matter coupled to gravity. Any possible
cosmological constant in the Lagrangian, or its radiative corrections, would be contained
in the trace of Einstein equations and therefore they drop from the eom of UG.

Although this seems to signal a problem to reproduce well-known cosmological physics,
it is not the case. The standard classical dynamics for gravity is recovered by the use of
Bianchi identities, which are always true for a Riemannian manifold and imply, when taken
together with (1.1)

VHR,, = %VVR — R+ GT = 4C, (1.2)

after integration in a compact manifold without boundaries, and provided that V,T*" = 0.
Here C is an integration constant. If we now eliminate T from (1.1) by means of (1.2) we
recover the full set of Einstein equations

1
R/U/ - iRg;w + Cg/w = G,*T/Lm (13)

where C takes the role of a cosmological constant. However, here C is an integration
constant instead of a coupling in the Lagrangian and therefore it does not receive radiative
corrections [22], effectively solving the second facet of the cosmological constant that we
have discussed. The value of the cosmological constant is not given by vacuum energy but
instead it is fixed by initial conditions when solving the eom. This mechanism has been
explored in the context of inflation in [23], while in [24] it was exploited together with scale
invariance to produce the complete thermal history of the Universe.

The fact that UG reproduces Einstein equations has led to a wide discussion of
whether it is fully equivalent to GR — apart form the discussed role of the cosmologi-
cal constant— or if there is some physical phenomenon that can serve to distinguish both
theories ([25-27] and references therein). From the previous discussion, it should be clear
that (semi-)classically? there cannot be any difference between both theories. The equa-
tions of motion are the same and the number of degrees of freedom propagated by UG
matches those of GR — a single massless graviton [28, 29]. The same must be true for any
tree-level computation.

However, things are more subtle when dealing with the quantum nature of the grav-
itational field. In order to properly formulate a path integral for UG we need to resolve
the constraint |g| = 1 in an explicit way. As a consequence, and although on-shell states
match those of GR, off-shell states are different, owing to a different gauge group. While
the graviton fluctuation of GR is traceless only on the mass-shell, the one propagated by
UG has a vanishing trace even for off-shell states. This means that loops with running
gravitons are potentially different in both theories.

2By semi-classically here we mean quantum matter fields, represented by a quantum corrected energy-
momentum tensor (T}.,), coupled to classical gravity by replacing Ty, by (T..) in the equations of motion.



Quantum phenomena in UG have been previosuly studied from several directions of
research [25, 27, 30-34]. Of particular interest are [22, 35], where the one-loop effective
action of UG is obtained by using two different approaches. Although the numerical results
of both works differ, something which may be a gauge artefact, their physical conclusion
is the same — the cosmological constant does not renormalize and UG is one-loop finite.
However, since in both works the theory is taken in vacuum, it is not possible to have access
to any physical observable in order to compare the dynamics of UG with that of GR. This
would require to couple another field to gravitation and account for its backreaction onto
the geometry.

In this work we tackle this last point by considering UG together with the action for a
non-minimally coupled scalar field. We will thus formulate a perturbative QFT expansion
for UG coupled to matter, clarifying the issue of fixing the complicated gauge freedom of
the theory and deriving all the elements required to implement perturbation theory around
flat space. We will afterwards use these tools to compute the renormalization group (RG)
flow of the different coupling constants in the action, at the one-loop level. This will allow
us to identify a physically relevant essential coupling and compute its S-function, that we
will be able to compare with the equivalent one as computed in GR.

This paper is organized as follows. First, in section 2 we will describe Unimodular
Gravity in more detail, together with the matter action that we consider. In order to
quantize the system we will use the Background Field Method, described in section 3
together with the concept of Weyl geometry and the BRST invariance of the gauge fixed
action. We will later compute correlation functions at the one-loop order by expanding
around flat space, as described in sections 4 and 5, where we compute divergences in the
MS scheme. Finally, we will derive the S-functions and anomalous dimensions of all the
couplings in the one-loop effective action in section 6, comparing our results with the
general relativistic ones in 7. We will draw our conclusions in section 8. For completeness,
we add two small appendices describing the computation in GR — appendix A — and the
discussion of divergences in UG in vacuum, in appendix B.

2 Unimodular Gravity

We define UG by adding a condition of constant determinant to the Einstein-Hilbert action

1
S = ~3G d*z\/]g] R+ Smatter, 9| =&, (2.1)

where ¢ is a constant tensor density. In the following we will be interested on perturbations
around flat space, so we fix it to ¢ = 1 henceforth. Here G' = 8w M 2 is the Newton’s
constant.

As a consequence of the condition |g| = 1, UG is not invariant under the full group
of diffeomorphisms. Instead, it is invariant only under those that preserve the constraint,
corresponding to volume preserving diffemorphisms, VDiff [36, 37]. Their action is char-
acterized at the infinitesimal level by a transverse vector

59;“, = E{Quuv vugu =0, (2.2)



where L, stands for the Lie derivative along {#. We will dub the corresponding Lie algebra
as TDiff for this reason. In the rest of this document we will also use TDiff in an sloppy way
to refer to the full symmetry group. Effectively, we are replacing the four gauge constraints
of GR by three of them — those corresponding to the volume preserving subgroup— plus
the unit determinant constraint. The outcome for on-shell states is the same in both
theories, four constraints that leave a single transverse and traceless graviton as the only
propagating degree of freedom. However, this implies an important difference for off-shell
states, since the constraint |g| = 1 is also satisfied by them, unlike gauge constraints, which
only act on physical degrees of freedom. As a consequence, the metric fluctuations of UG
are always exactly traceless

- 1. 5.~
(Sg/,w = 59;“/ - iguugaﬁ(Sga[% (23)

with g,g an unconstrained metric. Indeed, this is the reason as to why the eom are traceless,
since they correspond to a variation with respect to this variable.

Although for classical matters we can use (2.3) to derive the eom, in order to perform
a path integral over the gravitational field we need to resolve the constraint |g| = 1. It
must be included in the integration measure, giving

2[T,] = / [Dg] 6 (g| — 1) &STTs, (2.4)

where we have defined the dot product

T-g= / d4x\/|g| T g (2.5)

Several ways to resolve this issue have been explored before, including using a Lagrange
multiplier [21] and a Stuckelberg field [17, 69, 70]. Here we choose to deal with it by
performing a change of variables to a new metric defined by

~ 1
Juv = gul/|g|47 (26)

so that |g| = 1 is satisfied identically. In terms of the new metric g,, and after integration
by parts, the action of UG reads [38]

- GV H| G
Sug = —% d*z |g]4 <R+ ;W) , (2.7)
where g, is now an unconstrained field and variations can be taken freely.

Note that factors of g, which behaves as sort of an extra scalar field, have now ap-
peared in the action. In a diffeomorphism invariant theory this is not possible, because the
determinant of the metric transforms as a density under a general Diff element. However,
the fact that here we are dealing only with volume preserving transformations ensure that
g will transform as a true scalar and thus the new terms are allowed by symmetry.

The change of variables (2.6) also introduces an extra fictitious gauge symmetry in the
form of Weyl invariance

g;w — Q(z)qu,,, (2.8)



where Q(x) is an arbitrary function of the space-time coordinates. The full gauge symmetry
of the theory to be considered is then the direct product of TDiff and Weyl, a combination
that has been dubbed WTDiff before [36]. It is precisely Weyl invariance which comes to
replace the determinant constraint in this form of the action, giving the extra condition
needed to reduce the number of degrees of freedom to a single massless graviton.

Although we will use the action (2.7) in order to evaluate the path integral of UG, we
are interested on writing results in terms of the original metric variable, that we choose
as our physical metric. This is achieved by simply choosing the gauge |g| = 1 for Weyl
transformations, thus identifying both metrics in (2.6). This is certainly true at the classical
level, but one might be worried by the potential presence of a Weyl anomaly in the effective
action, that would then obstruct the identification in the quantum variables. There are
no reasons to worry, however, since it can be proven that the identification of the original
metric g,, as the physical one precisely ensures the absence of anomalies [39, 40].

Note that when working with the action (2.7) it is straightforward to understand the
main feature of UG. Due to Weyl invariance, a cosmological constant term is forbidden
in the action and it cannot be generated by radiative corrections either. Moreover, the
Ward identity stemming from (2.8) precisely enforces the tracelessness of the eom and all
subsequent variations

é d S
ghivighavz o ghntn — — == =0. 2.9
69#11/1 69#21/2 5g,unun ( )

This also implies that the graviton excitation h,, = gu. — nw will always be exactly

traceless. One can check explicitly that the eom derived from (2.7), in the gauge |§| = 1
where we restore the original metric, are indeed the traceless Einstein equations (1.1).

As we discussed before, one of the main conundrums in the formulation of UG is the
question of whether it is really a different theory than GR or if otherwise, and barring
aside the role of the cosmological constant, they are exactly the same theory. Classically it
is obvious that the answer is the latter. Since the eom of both theories are equivalent, the
theories are so. However, quantum mechanically there are subtleties due to the different
gauge group of UG. This question has been explored in several works from different points
of view [22, 25, 27, 30-35], but all of them consider the theory in vacuum, with only
gravitation present. Although this is an interesting setting, the simplicity of the theory
implies that nothing can be said about the true equivalence of the theories. In particular,
if UG is considered alone, there are no physical observables that can be used to establish
a comparison with GR, since the one-loop correction in vacuum is finite.

In order to bypass this problem and to be able to define dependable quantities to
establish such a comparison, we couple here UG to matter. To keep things simpler — but
not trivial — we will consider a toy model comprised of a single massive scalar field with
a quartic interaction and non-minimal coupling to gravity

2
Suatir = [ o (50,000~ 507~ 3ot - S°R). (2.10)
where we have already fixed |g| = 1. Note that, as advertised, the action is written with
respect to the original metric g,, that we consider as physical.



An important difference with respect to GR arises here. Due to the constraint on the
metric determinant, neither the mass term nor the quartic interaction couple directly to
gravity. This will have a direct effect on the form of the vertices coupling gravity to matter
in the perturbative expansion of this Lagrangian. Additionally, and since we will rely on
perturbation theory for our later computations, we will always consider G, &, A < 1.

Finally, note that since the Weyl invariance of the action (2.7) appears here as a
consequence of the change of variables (2.6), the scalar field is inert under it. Unlike
standard Weyl transformations, where a scalar would transform with a factor proportional
to its energy dimension, here the symmetry is restricted purely to the metric sector. For
this reason it has sometimes been dubbed as fake or spurious Weyl Invariance [40].

The total action that we will consider is then the sum of (2.7) and (2.10)

S = SUG + Smattcr- (2.11)

However, in (2.10) the metric is unimodular. By performing the change of variables to
1
the unconstrained metric g, = |§|4 g, we have

(S (5 3 VAEIVHELY L
o= [l oo (10 )« o

- = S~ 2
£¢2 (R+ 30jg] 27vug|V“g|>} LG A¢4}, (2.12)

2 43| 32[g[? 2

where we have integrated by parts in some terms. All indices in this expression must be
contracted by using the unconstrained metric §,,. This is the action that we will use
hereinafter.

3 The background field expansion

We will formulate the path integral of the theory by using standard tools. In order to be
able to preserve explicitly the gauge invariance of gravitational correlation functions we
will rely on the use of the background field method [41, 42]. We thus start by defining the
complete path integral that we will deal with as

Z[Tnj] = / [D3][Dg] {5+ 5+59), (3.1)

where we have introduced two sources J,,, and j, which couple to the metric and to the
scalar field respectively. We will use those to define correlation functions in the usual way
through variational derivatives with respect to them.

Now, following the background field method, we separate the metric into background
and fluctuation by

gﬂll = gm/ + h,uu, (32)

where h,,, is the graviton field. Since this is just a shift of the integration variable, we can
set [Dg] = [Dh].



Under this redefinition, the exponent inside the path integral can be expanded in
powers of hy,

oS
_ 4 J
81=Sileg t [ @' —
528,
d*z /d4yh Y h(y)as + OB, 3.3
5 f o e W T OW) (39

where we have defined S; =S5+ J-§+ j - ¢. The first term in the expansion corresponds
to the action evaluated in the background field, while the linear term vanishes whenever
the background configuration satisfies the classical equations of motion. Since in this work
we are interested only in one-loop effects, we cut the expansion at second order, which
corresponds to leading order in the % expansion.

Since we have shifted the integration variable to h,,, the background metric can be
thought as an extra source, with the path integral depending on it

2T Gy ] = / (DH][Dg] 'S7. (3.4)

If we now define the Quantum Effective Action in the standard way by a Legendre
transform before and after the field redefinition, we find the apparently trivial identity

F[gym ¢] = F[g/,w + hp,V7 ¢] (35)

However, this is not trivial at all. It means that, due to the appearance of the back-
ground metric as a shift of the total one, we can capture any covariant term of the Quantum
Effective Action just by computing those correlators in which only g,, and ¢ appear on
external legs, while h,,, is a pure internal variable over which we integrate. This will clearly
make our lives easier and defines our computational strategy.

The other advantage of the background field method is that it allows us to preserve
the gauge invariance — WTDiff in this case — of the Quantum Effective Action easily, by
preserving that of any operator involving the background metric. This is due to the fact
that, after the field redefinition, infinitesimal gauge transformations can be split in two

ObeGur = LeGuw + 2w, (3.6)
Svahyw = Lehyw + 2why, (3.7)
6qGu =0, (3.8)
Sabyw = Le(Guv + Iyw) + 20 + hy), (3.9)

where w is the infinitesimal parameter associated to Weyl transformations (2.8) Q(z) =
1+w+ Ow?).

As we see, 0p,g corresponds to the gauge invariance of the background quantities, where
h,w is then regarded as a tensor transforming in the same way as the metric. To this we
must append the condition that ¢ is a scalar field inert under Weyl transformations.



Since the path integral that we need to compute integrates only over h,, and ¢, while
G is regarded as a source, we will only need to gauge fix the quantum part of the symme-
try 4. The background symmetry will remain unaltered and therefore gauge invariance of
our results is automatically ensured. All correlation functions must then satisfy an anal-
ogous expression to (2.9), with the classical action S replaced by the Quantum Effective
Action I'[g, ¢].

3.1 Weyl Geometry

We thus turn now our attention to the issue of gauge fixing 4. In order to do that,
we first wish to be able to construct a gauge fixing term which is invariant under the
background remaining WTDiff symmetry represented by d,g. A priori this does not seem
like a complicated task, but the complexity of the gauge sector of the theory (cf. later) can
make it a cumbersome task. In order to make things easier and more straightforward, we
will use here the formalism introduced in [43, 44] and named as Weyl Geometry. By defining
a full geometric construction which is explicitly Weyl covariant — as well as diffeomorphism
covariant — we can construct invariant quantities in a easy way.

The core of the method consists in the introduction of a U(1) gauge field W, which will
serve to define Weyl covariant derivatives. However, since this is a Weyl invariant theory,
this field is not an external ingredient, but instead it can be built out of the fields already
in the action. In our case, we define it to be

1._
Wi = gViulog(lgl). (3.10)

It can be easily checked that under a Weyl transformation (2.8), W, behaves indeed as a
U(1) gauge field
W, — W, +QV,Q. (3.11)
Using it we introduce a non-metric connection
FEX/V)Q = { }ffy - 52‘W,, - 531/Vu + g/wWa> (3‘12)

where { }31/ is the Levi-Civita connection of the metric g,,. As usual, the connection T'(W)e
will induce a covariant derivative, that we label V(W).
We complete the construction presented here by introducing the Weyl covariant deriva-

tive acting on a generic tensor 7
DT =VMT =X\ T, (3.13)

where Ay is the scaling dimension of the tensor, defined as the weight of Q2 under a Weyl
transformation

T —=QMT. (3.14)

Note that, when defined in this way, D, is compatible with the background metric
Dugaﬁ =0.



For the future it will be also useful to define a Weyl covariant curvature by using the
Ricci identity acting on a generic vector V&

(D, DV =R, 5V7, (3.15)
which gives
R,Lwaﬁ = R;waB + g,LL(x (?I/Wﬂ + WVWB) - guﬁ (ﬁuWa + WVWa) — Jva (v/LWﬁ + VV,uwﬂ)
+ guﬂ (?uWa + WuWa) - (gpozguﬂ - guﬁgua)w27 (3'16)
and subsequently
Ruw = Ry + 2W, W, + V, W, + VW, — 28, W2 + G, VW, (3.17)
R =R+ 6(V'W, — W?), (3.18)
where leag is the Riemann tensor of the background metric.

The advantage of using D, now is clear. For any tensor 7 with a well-defined scaling
dimension — that is, that there are not derivatives of 2 involved in the transformation
of the tensor —, D, 7 will transform in the same way as 7. Constructing Weyl invariant
quantities is just a matter of combining D, with powers of |g| — which enjoys scaling

dimension Ajg = 8 — to form scalars under Weyl transformation. A simple example of
this is the action (2.7) evaluated in g, which can be easily written as

1
=—— [ d'z |g|"R. (3.19)

S‘§=§ 2G

3.2 Gauge fixing and BRST invariance

We finally turn ourselves to the problem of fixing the WTDiff symmetry of the fluctuations.
In principle one could think on attempting to fix the symmetry in a standard manner, by
introducing a gauge fixing condition

F, =0, (3.20)
and appending the action with a gauge fixing term
Syt = /d% F,F", (3.21)

and the corresponding action for the ghosts. However, this is not as straightforward as it
seems for two reasons. First, we are dealing with the direct product of TDiff and Weyl.
The total number of conditions required to fix the symmetry is still four and thus it seems
that choosing a space-time vector F), does the work. However, the resulting gauge fixing
term must then satisfy three conditions

1. It must break the quantum part of TDiff invariance.
2. It must break the quantum part of Weyl invariance.

3. It must preserve the background WTDiff symmetry.
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As far as we know, it is not possible to choose a function F}, such that (3.21) satisfies
all three conditions.

The other reason as to why a standard gauge fixing method is cumbersome is related
to the structure of the TDiff group. Since the generator of transverse diffeomorphisms is
constrained to be transverse, the same will be true for the corresponding ghost field ¢

Vet =0. (3.22)

This condition has to be included in the measure in some manner. The easiest way is
to follow [22] and use a transverse projector to project an otherwise arbitrary field

o = Y n 71/ H: :
= (st —vrad'v,) d (3.23)

where the inverse of the Laplace operator [ = ?#?“ is defined by acting on an arbitrary
tensor

o'o=00'7="T. (3.24)

By doing this, in a similar way to what happens with the transformation of the met-
ric (2.6), we replace the condition (3.22) by a U(1) gauge symmetry acting on d¥

d" — VHf, (3.25)

where f is an arbitrary function of the space-time coordinates. Thus, we will need to
introduce a gauge fixing term for this symmetry as well, that will then generate a full new
set of ghosts and anti-ghosts, of bosonic character this time. These have been sometimes
dubbed in the literature as Nielsen-Kallosh ghosts [45, 46].

In order to circumvent all the complications implied by these properties, we decide
here to fix the gauge by using BRST invariance [47]. We thus introduce an operator s
which, when acting on the graviton fluctuation h,,, implements a gauge transformation
with the infinitesimal generator replaced by a ghost

5huy = 'Cc(g;w + h/uj) + 2b(§uu + hul/)a (326)

where we have introduced the ghost field associated to Weyl invariance b. Note that
since the generators of the transformation are now Grassman variables, the operator s is
Grassman odd. To this we must append the transformation rules for the ghost fields ¢*
and b

sct = Lo = PV, (3.27)
sb=Lcb=c"V,b, (3.28)

which are inert under Weyl transformations.
However, in this work we are only interested in one-loop corrections, that we have

already established that correspond to the quadratic approximation in the path integral.
Since, as we will see later, the transformation of the ghost will always come in the final
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gauge-fixed action multiplied by another quantum field, we can just neglect the transfor-
mation of both ghost fields and write instead

scl = O(field?), (3.29)
sb = O(field?). (3.30)

As before, the ghost field ¢* is forced to satisfy a transversality condition. However,
since our ultimate goal is to obtain a gauge fixing term which preserves background WTDiff
invariance, from now on we define the transverse condition by using the Weyl covariant
derivative

Dy =0. (3.31)

We will do the same in any other BRST transformation from now on.

Note that this replacement is always possible, since we can always use whatever deriva-
tive we desire to compute the Lie derivative in (3.26). Alternatively, any difference between
derivatives can be also absorbed in a redefinition of the ghost field b.

Again, we use a transverse projector to satisfy (3.31), which in this case will be given by

= (64 —D"(D*)"'D,) d", (3.32)
and the inherited U(1) invariance will take the form
4" — D" (3.33)

In general, dealing with this kind of open algebra would require the sophisticated
technique of BV quantization [48]. However, in the case of UG things are simple enough
so that we can construct the gauge fixing sector by simply including the gauge symmetry
of the ghost field in the BRST operator [22, 49, 50]. Consequently, we extend the action
of s appropriately. We introduce a ghost field « and write

sd" = DPa, (3.34)

where, due to the Grassman parity of s, we see that a must be a bosonic field.

We now append our theory with a complementary set of anti-ghost and auxiliary fields
with the goal of closing the algebra of the BRST operator, that we demand to be nilpotent
when acting on any field involved in the path integral

52 =0. (3.35)

For symmetries whose associated ghost is Grassman odd, it is enough to add a single
anti-ghost and an auxiliary field with even Grassman number to achieve the closure of the
algebra. However, for symmetries whose ghost is bosonic, such as «, things are more subtle.
Since the auxiliary field needs to be Grassman odd, it is impossible to form its square. In
that case we are required to introduce two pairs of anti-ghost and auxiliary fields. Following
these rules and taking into account that here we have three gauge symmetries — TDiff,
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Weyl and the U(1) symmetry of the ghost field — we find that we need the following set
of fields and transformations

st = pt, spt =0, (3.36)
sb =1, sl =0, (3.37)
sx =m, sm =0, (3.38)
5T =m, sm = 0. (3.39)

Here the first two lines correspond to the auxiliary fields needed to close the algebra
for WTDiff transformations, while the rest are the two pairs of field required for the U(1).
Their Grassman character is

{¢*,b,m,m} = Grassman odd. (3.40)

{p",l,z,z} = Grassman even. (3.41)

This is enough to ensure the nil-potency of the BRST operator when acting on any field
of the path integral within the one-loop approximation.

Once the action of s onto every field is defined, we introduce the BRST gauge-fixing
term, which includes the action of the ghosts, as the result of acting with s on a so-called
gauge fermion

SBRST = —% diz 50, (3.42)
where VU is a term quadratic in the fields and of odd Grassman parity. Thanks to the
nil-potency of s and once Spgrgt is chosen in this way, the total action is invariant under a
BRST transformation. The associated Ward-Takahashi identities then become the Slavnov-
Taylor identities of the theory, ensuring a successful quantization.

The construction of ¥ now replaces the arbitrary choice of gauge function F*. As long
as ¥ is Grassman odd and breaks gauge invariance — but not BRST invariance — it is
a valid choice. Here we will however follow a conservative approach, still defining a gauge
condition

Fy = D"y + 7D,h, (3.43)
and writing
¥ = |g|1(c,+Dyb) F“*i(ﬂ”fD”l) vo (Dpdr 4L +yz(giD L
pt Ly 1o ™ w5
(3.44)

Here o, 7, y and 7 are gauge parameters whose value we can use either to simplify our
computations or to test gauge invariance of our results. The powers of |g| are chosen so
that the expression is invariant under background Weyl invariance. The form of this gauge
fermion is motivated by the BRST formulation of the usual Faddev-Poppov gauge fixing
method. If we were dealing with a simpler symmetry, and in the absence of Weyl invariance,
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then the first term would be enough to fix it and after integration of the auxiliary field p
we would have recovered the standard gauge fixing plus ghost action. Here the first term
deals with the combined WTDiff gauge symmetry while the rest is needed to be able to
fix the U(1) symmetry of the ghost sector.

Acting with the BRST operator we then have

1 1 -
Sonse =5 [ o {lalt (0,4 D) (P4 = ("= D)) + i+ D) s

1 1
+m <Dud“ + %m) + |§|%zD2a +ym (\g\iDuE’” - %m) + y|§\i iDup“}. (3.45)
Examining this expression we see that p*, m and m are linearly coupled, entering

the path integral as sources. We can thus integrate them out by using their equations of
motion. This simplifies the BRST term to

1 if . 2 _ _
SBRST = —ﬁ/dzlx ‘§|‘1‘ {(Cu + D,b) sF* + y’VTyl D,é*D,d" + o (F, — Z/Dux)Q
1
+ 15 Dul DML+ Dyl + xDQCk}. (3.46)

Finally, appending this action to the classical action, we can write the path integral of
UG in the background field approach to be

Z[ s Juv 5] = / [Dh)[Dg][DE[Dd)[DY][DE][Dz][D)[Dz][Da] &(7+5msm). - (3.47)

4 Perturbations around flat space

Once the path integral for the unimodular scalar-tensor theory is properly defined, we come
to the task of computing the one-loop correction to the coupling constants. Since back-
ground WTDiff invariance is ensured by construction, we will perform our computation
by expanding the background metric around flat space-time

Juv = Nuv + Huw (4.1)

where we will dub H,,, as the background graviton fluctuation. This will allow us to use
standard techniques to compute Feynman diagrams. Correlation functions of the back-
ground metric will become correlators of H,, and we will capture the renormalization of
the coupling constants by computing diagrams with H,, and ¢ in the external legs.

4.1 Propagators for bosonic fields

We start by computing the propagators of the fluctuations. In order to do that we take
Sy + SprsT and we set the background metric to be flat, thus retaining only the terms
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quadratic in the quantum fields. The lagrangian for the bosonic fields then reads

1 v « « 1 « 1 1 «, 1 (83
Lo =—55 (W 0adshiy+h Baﬁauhmiaﬁh ”8uha5—1—6h82h—1h 532haﬂ—zhaaaﬁh A

1+807 1432072

—h*B0,05h+(0—1)0uh* 8,1t — Duh20%h — gy Oah0ht - aza#z

+0y? 0, T T+00l (D5h P 470 h) —20yD0 T (5h*P +70h) +20a +§ (0agp0*p—m?¢?) .
(4.2)

We leave the discussion of the ghost sector involving d#, &, b and b for the next subsection.

Here we find a striking difference between GR and UG. Due to the complicated gauge
fixing sector involving bosonic Nielsen-Kallosh ghost fields, we find that the graviton fluc-
tuation h,, mixes with the bosonic ghosts at the kinetic level, as indicated by the last
terms in the second line in (4.2). This means that in order to compute the propagator of
the gravitational field, we need to take these fields into account in order to cancel spurious
gauge pole contributions. It is not enough to take the F,F* term in the gauge fixing and
invert the kinetic term for the graviton by itself, even for tree-level computations.

We take the action (4.2), Fourier transforming it to momentum space and we write it
in matrix form

Ly =

(h#,,,zi7 l,¢,, a) M7(q) (4.3)

N | —
>
S 8 © — w2
=

where M~1(q) is the matrix-valued inverse propagator. Inverting it with the following sign
convention

M g)M(q) =1, (4.4)

gives the following non-vanishing propagators for the fields

2iG 1+20(3+87(1+71))
<h,uu(_Q)haﬁ(Q)> = ? <77,ua77u,8 + NusMva — o+ 47_)2 NuvNap

4iG1 - 20 4iG 3 + 47
q6 —quqv9a98 + —5 q4 1+4 (quchi +77a[3Q,uQV)
iG1+20
q4 - (nanVQﬂ + Mvaquds + Mupdvqa + nuﬁqMQa) ) (4.5)

(((=9)l(q)) = *GiGaqu, (4.6)
2iG M

I(—q)h =_-- 4.
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(@(-0)r@) = 55 3 (1)
- G
(@(=q)hyuw(q)) (i) (4.9)
iG 1
I(—q)Z(q)) = ——, 4.10
(I(~=9)7(q)) 2 (4.10)
4iG
(2(—q)alq)) = 2 (4.11)
)
(9(—9)o(q)) = Z—m? (4.12)
In order to simplify our computations we will set the gauge parameter 7 = —3/4, for

which the graviton propagator reduces to

2iG 1430 4iG'1 - 20
(hw(—q)ha/a(q» = qT (77/1047]1/5 + 77/437]1/04 - TT]#V”QB) + ?TQ;LQV(]&QB

iG1+4 20

q4 o (WMQQVQ,B + Mvaquqs + Musqvqa + nquMQQ) . (4~13)

In principle we could further simplify this expression by choosing ¢ = —1/2. However, we
refrain to do so in order to be able to track the gauge dependence of our results along the
computation. We will also leave the parameter y arbitrary.

4.2 The ghost propagators

We now focus in the action for the ghost fields

1 S| = 2vy B
Sgh = _ﬁ /d4$ |g|4 |:(CFL + Dub)fiF'u' + m DHC#DVdV 5 (414)
with the goal of computing their propagators.
Acting with the BRST operator on F* gives
sFH = D%cH + RECY + (2 + 87) Db, (4.15)

with R, given by (3.17). However, this is written in terms of the constrained field ¢**. We
thus perform the change of variables (3.32) and write

sF! = D*d" — D*D,d" + REd” — 2REDY (D?) ™! Dod® + (2 + 87) D¥. (4.16)

Setting the background metric to be flat in order to derive the propagator, we have
D,, = 9, and therefore the non-local operator (9?)~! has a well-defined representation in
momentum space when acting on an arbitrary tensor, given by

(87T = /% <—%) T €72, (4.17)

However, this will never enter into the definition of the propagators, since it comes mul-
tiplied by a curvature, which vanishes when g,, = 7n,,. It will be important later when
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deriving the interaction vertices, but due to the same reason and since we will only need
vertices with one external graviton, we will never have to workout the task of inverting this
in general, but only take its flat realization.

Around flat space-time, the action that defines the propagator then gives the following
Lagrangian

LE = (6, + 0,b) (0°d" — 90, d” + (2 + 87)2"b) — 2 9D, d", (4.18)

where we must note that the different ghost sectors, belonging to TDiff and Weyl, are
mixed at the kinetic level. Here we have defined z = —2yy(1 + y)~L.
As with the bosonic fields, we now write this in matrix form after integration by parts

£ = (é,“z’)) N1 (f) 7 (4.19)

and by inverting N ~! we find the following non-vanishing propagators

o) =20 (DT ) (1.20)
(b(—q)d"(q)) = —QZG;#, (4.21)
B0 = 1 7 o (4.22)

Although we could use z to try to simplify the form of the propagator (d*(—q)c,(q)) we
prefer to keep it arbitrary in order to track gauge independence of our results.

5 Computation of correlation functions

Once we have set-up the perturbative expansion of the action and derived the propagators,
we can affront the computation of the one-loop RG flow of the different coupling constants
in the Lagrangian. In order to understand what we need to compute, let us take a look to
the zeroth order action around the background metric

1 — V .|| V*| g
S—/d4x{g|4 |:_i (R+3V/L|g|v |9|> +%8,L¢6”¢

2G 32 |g]?
€ o5 300gl  27V,|g|V¥gl m? 5
-2 R — —— = A . 5.1
27\ g T sopp A
By expanding this around flat space
Juv = Nuv + H'U.I/7 (52)

we see that it is enough to compute the two-point function of H),, in order to capture
the running of G, while from the two and four-point functions of the scalar field we de-
rive the running of m2, A and the field strength renormalization of ¢, as usual. Finally,
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from the coupling ¢?H v We can extract the running of {. Of course, since the theory
is non-renormalizable, we will also find extra divergences corresponding to higher dimen-
sion operators — with four derivatives. Therefore, we will adopt an EFT approach to
quantization from now on.

We will perform the computation with standard Feynman diagrams, using the propa-
gators (4.5)—(4.12) and (4.20)—(4.22). The interaction vertices are defined in the standard
way by variational derivatives of the action Sj, after expanding the background metric
around flat space and going to momentum space

(Hywo (@1) - Hypv (@) R 8 (1) - - - R B (Pm) D (K1) 9 (Ks))
B 7 1) 4 1 4 1 0S5y (5.3)
~ nlmls! 6Hp11/1 (QI) o 6Hpnun (Qn) 5hcx1,31 (pl) o 6hozm5m (pm) 6¢(k1) o 6¢7(k5). '

The explicit formulas for all the vertices are pretty cumbersome and not illuminating at

all, so we refrain to show them here explicitly. Let us note however that, due to background
Weyl invariance, all vertices and all correlation functions that we will compute must satisfy
the Ward identities (2.9).

Regarding loop integrals, we have two possible poles that can enter into the loops from
the propagators (4.5)—(4.12) and (4.20)—(4.22). They represent the massless pole of the
graviton and ghosts and the massive pole of the scalar field

1 1

Polg) = Z Pm(q) = (5.4)

@ —m2
This implies that the denominator in a typical Feynman diagram will be a product of

these poles evaluated for the momentum structures running in the loops, that will depend
on the external momentum p*. For example, a fish diagram will have a typical form

4
Q ~ [ (ZW’; F(p, k) Pilk + p)P; (k). (5.5)

where the form-factor F(p, k) will depend on the particular diagram, and we would have

to choose later the pole structures depending if the internal legs are scalars or gravitons.

In the following we will be interested in the computation of divergences, which are
the only piece needed to obtain the RG flow of the coupling constants. Therefore we will
ignore the finite parts of the diagrams and will capture these divergences by expanding the
integrands of the different diagrams in powers of the external momentum and the mass
m of the scalar field. After reducing any index structure as usual by using rotational
invariance,® all divergent integrals in the expansion will have the same form

4
D(n):/ dg 1 (5.6)

(2m)* g™

3When expanding the denominators in the Feynman integrals, we will encounter an increasing number
of loop momenta ¢* in the numerators. We will reduce those by Lorentz (rotational) invariance in the
standard way, averaging over directions [51],

n
Qir iz - Gin = 14" Tiyis.in

L(5)I (%)
1 d+n
2

)T (45
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Once they are taken to this form, we will use dimensional regularization in order to
compute them. Since the above integrals have no dimensionful parameter, we can directly
see that all of them must vanish — as it is usual in dimensional regularization — unless
n = 4, so we will only need to retain these integrals

4
T=D{)= /(gﬁ%. (5.7)

Although we are only interested in the UV divergences of the integral, we must note
that (5.7) is however divergent on both ends of the integral. Therefore, it will be convenient
for us to regulate the intermediate IR divergences by introducing a soft mass n and rewriting

_ [ 1
1= / (2m)* (¢ —n?)?’ (58)

which can now be computed by using standard formulas to give

7 in d dimensions as

7
T 872 1672

(’y —log(4m) + 1og(772)) + O(e), (5.9)

where v is the Euler-Mascheroni constant and € = 4 — d. This will be the form that we will
later use to regularize the divergences in the Feynman diagrams. From now on we will only
focus on those diagrams with non-vanishing divergences under this regularization scheme.

All the computations presented here have been performed with two independent com-
puter codes based on Mathematica, with the help of the package xAct [52, 53]; and
FORM [54].

5.1 The two-point function of the scalar field

We start by computing the simplest of the correlation functions that we will need to define
the RG flow of the coupling constants. That is the two-point function of the scalar field,
which will be given by the following Feynman diagrams

(¢(=p)(P))1-100p = + —Q— : (5.10)

where our dictionary for the lines of the diagrams is shown in table 1.

where d is the space-time dimension and

1
Tiizeiin = [0iyin ... 0 + all permutations of the i’s]
n!

Qi _1in

for even n, and T},4,...i,, = 0 for odd n.

Note that the maximum number of free loop momenta that we can find is tied to the number of indices
in the external legs of the diagram. Two for every H,, in a external leg and one for every p*. This means
that, for example, for the two-point function of the scalar field it is enough to retain terms with up to four
free ¢* (since we can have divergences proportional to p*), while this amount is doubled for the graviton
two-point function (four momenta and four indices in the gravitons).
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H;“,E\_Q_Q_Q_Q} hm,:'\N\/\, ¢E
l=----- T = QI = oo0o0ococococo0o
QG ====== d/"é'uz_>_ b,BE»

Table 1. Dictionary of lines for the Feynman diagrams.

By inspection of the action and the topology of the diagrams, we see that we can
expect three types of divergences, proportional to p°, p? and p*. In principle, we could
have added a gravitational tadpole here. However, it is proportional to the integral D(2)
and therefore it vanishes in dimensional regularization.

Computing the diagrams as previously discussed, expanding the denominators, and
retaining only the UV divergent terms we find

Gp*(3+20(3+8¢))  3Gm?p? (1420 (1+8£+4£2))
4o B 4o

(D)D) 11000 = ( +12)\m2—6Gm4§2> I,

(5.11)

which indeed contains the three possible divergences previously mentioned. From the
momentum-independent term we will be able to extract the running of m?, while the term
proportional to p? will give the field strength renormalization of the field. The piece quartic
in the external momentum will require the introduction of a higher-derivative operator in
order to absorb the divergence, as usual in a non-renormalizable EFT.

5.2 The four-point function of the scalar field

We compute now the four-point function of the scalar field. As before, we expect diver-
gences with external momentum up to p*. The corresponding Feynman diagrams con-
tributing to this are

((=p)p(=p)d(P)d(P))1-100p = + ﬂ + K + K + ﬁ[

(5.12)

where we are just drawing inequivalent topologies. For all the diagrams considered here, we
must sum the contribution of all inequivalent channels once the external momenta are fixed.
This amounts to adding the s, ¢t and u channels for all the diagrams, plus two permutations
of the external vertices for the triangles, which add up to six different channels.

We evaluate the divergences by setting the magnitude of all external momenta to that
of p*. This is equivalent to the kinematical configuration s = 4p?, ¢t = u = 0, which will
define our subtraction point. Under this choice, the one-loop contribution to the four-point
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function becomes

((=p)d(—=p)d(P)P(P)) 1100p = | 36(24A2—48GAMAE3+G2mAE3(249€))

+6Gp?(—6,\(1+a(2+8§(4+§)))+Gm?§(—3§+a(1+2§(11+6§(7+3»§ NN)

g

| G2t (11T+8E(17+406) 40 (27-+4€(37-+456))+ 40> (483+4€(259+ 26 (385-+ 3 (~28+95))))

352 T

(5.13)

As in the previous section, we obtain three kind of divergences. The momentum
independent one will dictate the running of A\, while the other terms will demand higher-
derivative operators to be introduced in the EFT expansion.

5.3 Corrections to the non-minimal coupling

In order to compute the one-loop contribution to the running of the non-minimal coupling
we will need to focus on the three-point function mixing two external scalar fields and a
graviton. The tree-level form of this correlator can be obtained by expanding the action
to the given order in the background graviton, giving

(8(~P)8(P) By (20))ree = = 5 (1 + 40100 — Apyp0), (514)

where we have assigned equal incoming momentum for the scalar fields.

Therefore, contributions to (¢(—p)d(—p)Hu (2p)) will renormalize the combination
1+ 4¢, once the effect of the field strength renormalization of ¢ is subtracted. Note that,
since the theory is Weyl invariant at the background level, the action must satisfy the
condition (2.9), which implies that (¢(—p)d(—p)H,.(p)) must be a traceless tensor. This
is trivially satisfied by the tree-level contribution (5.14) but it will serve as a strong sanity
check of our result for the one-loop computation since in that case the condition is satisfied
in a non-trivial way.

The one-loop topologies contributing to this correlator are

PN
oo

where the last two diagrams contain a explicit presence of the bosonic ghost fields in the

<¢(_p)¢(_p)Huu 21) 1-loop =

internal lines, with the small shaded blown representing kinetic mixing. Actually, the
presence of these bosonic ghost fields is critical, since the sum of all the other diagrams is
not traceless and therefore violates the Ward identity (2.9). It is only when the last two
topologies, which also have a non-vanishing trace, are added, that the whole contribution
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becomes traceless. This is not surprising, of course. The role of ghosts is precisely to cancel
the dynamics of gauge modes, which violate Ward identities, in the internal legs. However,
it serves here as a very non-trivial test of the construction of the path integral, the BRST
sector and of our computation.

The final result takes the form

4

" {7 6410 (14+66)—Gm?2(—3+20(14+68)(—3+2£(—3+8¢)))
40

| OpP (9406120 (234306 +0 (42+4€(53+6(13-6£)¢))))
1202

(¢(—p)¢(—p) H}W (21)) > 1-loop — z (p,upu - 1p27]/tu>

(5.16)

We see that the result is indeed proportional to (5.14). Moreover, no terms independent
of the momentum have been generated. Those would require the introduction of counter-
terms of the schematic form |g|®¢?, with « a constant, that violate Weyl invariance.

5.4 The gravitational two-point function

The last correlation function that we need in order to compute the RG flow of the coupling
constants in the action is the two-point function of the gravitational field. Its value is
required in order to get the running of the Newton constant G. Additionally, we will also
compute the contributions that require the introduction of higher-derivative operators to
cancel divergences. This will not only complete our computation but it will also serve as
a third additional computation complementary to that of [22, 35]. In the following we will
split the computation in three parts — the contribution of the scalar field, that of the rest
of bosonic fields, and the one coming from ghost loops.

5.4.1 Contributions from scalar loops

This first contribution in the simplest one of all that we will consider in this subsection. It
is equivalent to compute the contribution of a gravitating scalar-field in a background non-
dynamical geometry. As such, and by the reasons discussed in this work, its contribution
shall be identical to that coming from GR. Indeed, we have checked that it is the case at
the level of S-functions.

There are only two diagrams that need to be taken into account

<H,uu(_p)Haﬁ(p)>¢> = + \OQ@ ) (5'17)
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and whose contribution is

4

2
(- o (1H206+60€%) (1uwPaps+1aspupy)

1+20£+60§2)7]a5nm, 130

<Hpu(_p)Ha5(p)>¢

2
P 12
120 (Uﬁupapu+77aupﬂpu+77,8upapu+77aup6pu) <15 ++2¢ ) PaPpPubv

p4 m2(1+6¢) ,
120 (naunﬁu+77au775u) 18 (4p (navnﬁu+naunﬁu)+4(nuupapﬁ+77aﬁpupu)
_4(nﬁupapu+77(wp,8pu+77[3upapu+77aupﬁpu)_3p277cx57hw):| T (5.18)

As in the case of the non-minimal coupling, note that there are no terms independent
of the external momentum, since those would imply a renormalization of the cosmologi-
cal constant, violating Weyl invariance of the background. The satisfaction of the Ward
identity (2.9) can be seen here from the fact that

(H,u(—p)Hap(p)) o0 n™" = 0. (5.19)

The terms proportional to p? will renormalize the Newton’s constant G — as it can
be seen from the fact that they are proportional to the tree-level kinetic term of H,, —,
while the terms with a quartic dependence on p* will require higher-derivative terms.

5.4.2 Contributions from the graviton and bosonic ghost fields

While the contribution from the scalar field to the gravitational two-point function is pretty
simple, that of the rest of bosonic fields is pretty cumbersome, due to the kinetic mixing
between the graviton fluctuation h,, and the bosonic ghosts { and Z. This multiplies the
number of Feynman diagrams to be considered and leaves the following set of inequivalent
topologies
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(5.20)

Computing these Feynman diagrams by following the methods previously described in
this paper, we find the following result

p? (50+1000+77702) (MapM e +NavnBu) p (125+2500+216702)'r](,,ﬂ’r/,,,,,

<Hu (_p)Ha[:i (p)>bosons = ( 4800’2 - 19200_2

p*(50+1000+77702) (papunpy+PaPypu+PaPuNar+PsPuan) | (254500+1640%)papsp,py
- . +
48002 12002
2 2
D (25+500’+6130 )(n#upocpﬁ""naﬁpupu)
T. 21
+ 48002 (5.21)

Note that in this case all divergences are proportional to p* as a consequence of the
absence of any dimensionful parameter in the loops, since all the fields that propagate in
these diagrams are massless. As a consequence, this contribution will only renormalize
higher-derivative operators.

5.4.3 Contributions from fermionic ghosts

The last contribution that we need to compute in order to get the full one-loop divergence
contributing to the gravitational two-point functions is that coming from the loops of
fermionic ghosts, ¢,, d*, b and b. It is given by the following diagrams

<H,u (_p)Haﬂ(p»fermions = + \Q.QJ \Q.QJ
> P

A

, (5.22)

where the arrows indicate the fermion flow. Their contribution to the correlation func-
tion is
v 2

p p
<H,u (_p)Haﬂ(p»fermions = (E(naunﬁu+nau7]ﬁu)_TG(p,upanuﬁ+pupa"7uﬂ+pupﬁnua+pupﬁna,u)

5 1 11
+@p2 (N PaPs+NasPuPy) = GPaPsPuPy —@p‘*naﬁnw) Z. (5.23)
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Again, since there are no dimensionful constant running in the loop propagators, the
result is proportional to p? and will only renormalize higher-derivative operators. Addi-
tionally, we see that the dependence on the gauge parameter z, which appears explicitly in
the ghost propagators (4.20)—(4.22), has cancelled out in the final result. This cancellation
is non-trivial, since individual diagrams depend on z and only the total combination is
independent of the parameter.

5.4.4 The total result

We finally add up all the different contributions computed in the previous sections, finding
that the total one-loop correction to the two-point function of the background graviton is

<Hu (7p)Haﬂ(p)>1-loop = <Hm/(7p)HaB(p)>¢+<H;w(7p)Hoc5(p)>bosons+<Huu(*p)Haﬂ(p)>fermions
_ p4(50+1000+811¢72)(na#nﬁy—&—naunﬁu)+p4(—125—2500+02(—2281—&—80{—&-240{2))77“1,17&5

48002 192002
p? (254500402 (659—80£ —240¢2)) (MuvPaps+NasPuPy) 9(25+500+802(19+10§+30£2))papgpup,,
+ +
48002 108002
_ p2 (50+1000+8110’2)(p#pa7],,[5 +PuPaNuBTPuPs Mo +p1/pﬁ77cw) _ m? (1+6£)

2
48002 18 (41) (nal/nﬂquT]a;ﬂlBV)

+4(NuwPaPs+1asDuPy) —4(MguPaPu-tavDsPu+N3uPaPy-+HapPsPy) —30 Nasuw) | L.
(5.24)

5.5 Renormalization

Once we have computed the divergent parts of the different correlation functions, we come
to the moment of renormalizing the effective action, absorbing the divergences by using
a counter-term. For any generic correlation function G, we will compute the value Z by
using (5.9) so that we will have

_al ? i 2
G = 0 (s, ~ 1oz (1~ IB(An) +0(P) +0(0)) . (529
where G will be a tensor structure depending on p* and on the coupling constants of the
theory. We will then add counterterms to the bare Lagrangian, including also higher-
derivative new operators that we will need to absorb the divergences quartic in p#. Using
the M S subtraction scheme then we write

) ) (
8n2e 1672

Get o dc < v —log(4m) + log(;ﬂ))> = dc R(w), (5.26)

for a generic coupling c. We have defined

1

R0 = (222 — 1oz (0~ lostim) +1og42) ) (5:27)

where p is the renormalization scale.
We will determine the value of dc so that the sum Gi.ioop + Geounter-term is free of
divergences when € — 0.
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5.5.1 Scalar two-point function

In order to absorb the divergences in the two-point function of the scalar field, we must
extend the bare action by including an operator with four derivatives in the kinetic term.
The corresponding action for the counter-terms can be written in the frame where the
metric is unimodular in the standard way

052, = /d4$( 90" § — ¢ + @Dq&w) (5.28)

where a4 is a dimensionful coupling and 7 is the anomalous dimension of the scalar field,
related to the field strength renormalization as usual

br=72314, Z=1+0Z. (5.29)
Now, we perform the change of variables to the unconstrained background metric by
Guv = |§|%§;w, (5-30)
for which the action takes the slightly more involved form

day

07, _ 1 Sm?
652,¢:/d4w <7|§|Z maw—%& =l D%D%) (5.31)

which is explicitly WTDiff invariant.
The contribution from the counter-terms to the correlation function is then

(@(=p)p(p))er = i (6Zp” — om* + daap™) R(p). (5.32)

Adding it to the one-loop result (5.11) and demanding the result to be finite, we find
that the value of the counter-terms must be

3Gm2(1 4 20(1 +4£(2 +€)))

67 = o : (5.33)

S — _G(3+20(3+8§))7 (5.34)
4o

om? = 12am? — 6Gm*¢2 (5.35)

5.5.2 Scalar four-point function

In order to renormalize the divergences in the four-point function (5.13) we also need to
include higher-derivative operators. As before, we write them in a standard form in the
unimodular frame

Oby

Su6 = / d'z (—6A¢4 ‘”% (99)* + (845)) (5.36)

Writing it in the unconstrained frame with (5.30), the corresponding action, which is
invariant under background WTDiff transformations, then reads

Sio= [ ats (—W‘ + 221162 00y + D gt <a¢>>) (5.37)
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and gives a contribution to the correlator of the form

((—p)d(—p)D(D)B(P))et = i (—240X + Sbop® + Sbap®) R(p). (5.38)

Adding it to (5.13) and cancelling the divergences in € we find

= 6)\2772G/\m2§2+gG2m4§3(2+9§), (5.39)

Sy — 7GG(—6)\(1+a(2+8§(4+§)))+Gm2§(—3§+a(1+2§(11+6£(7+3§)))))7 (5.40)

g

5y, CP(LLTH8E(174406) 40 (27-H48(3T+456))+40° (483+4¢ (259426 (385-+3E(=28+99))))
4= = )

802
(5.41)

so that the total correlation function in the one-loop approximation is now finite.

5.5.3 The non-minimal coupling

Now we come to the renormalization of the corrections to the non-minimal coupling, given
by (5.16). In order to do that we will need not only to introduce a counter-term for &
and a new higher-derivative operator, but also take into account the contribution of two
operators that we have already included in a previous section, since they contain the metric
and therefore will also contribute to this correlator when expanded around flat space. The
full counter-term action that we need is then

Sepr = / dx <%Za,t¢>a“¢ + %D%D% - %&R + %aﬂqaaﬂqm) , (5.42)

which in the unconstrained frame reads
Soon = /d“fc 917 {%Zamaw + iﬂ\éliD%D% - %%2 <R + 355‘ - 272‘2‘@?@>
+%|§I% L $O" ¢ <R+ 335' - 2722'%'?'9')} (5.43)

The contribution from this action to the corresponding correlation function is then

P2(206 + dag) 07 + A5¢
2 T

(O(—D)&(—0) Hyu(20) ), = —i ( ) (Mb® — 4p,,) (1)

= —i (p*06 + 66) (uwp” — Apupv) R(p), (5.44)

where in the last step we have absorbed the value of day and §Z into the arbitrariness of
0 and 6¢ by redefining them.
Adding this to the divergent result (5.16) and cancelling the divergences we have

_ 64a(1+68) + Gm?(3+ 0 (6 + 8£(6 + (5 — 24€)¢)))
160 '
G(9 + 40¢ + 20(—23 — 30¢ + 20(—21 4 26(—53 + 6£(—13 + 6¢)))))

5 = 507 . (5.46)

o€ (5.45)
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5.5.4 Gravitational two-point function

The last correlation function that we need to renormalize is the two-point function of the
background graviton (H,,, (—p)H,g). In order to absorb all the divergences we need to add
counter-terms for the Newton’s constant G as well as two new standard higher-derivative
operators in the form of R? and R, R", that we write in the following combination

1 1
Som = / d'z <—5 <ﬁ) R+ 6aR? + 6p <RWRW - §R2>> : (5.47)

In principle we are allowed to add also a term RwaﬁRH”“ﬂ . However its integral
corresponds to the Gauss-Bonnet term in four space-time dimensions and therefore its
variation — and consequently its expansion around flat space — vanishes.

Of course, the counter-terms must be now written in the unconstrained frame by
performing the change of variables g, = | §|% G for which we have

9w 0a013]  59,00al910°15 8,013l 79,19/,13]

R v — R v — — — — 5 5.48
w = B+ e dgl 32l (5:48)
_30jg]  210,l910"g]
_ _ 4
B= R+l ~ 32y (5:49)

We omit the full expression for Ss g since it is very cumbersome. Note that, since G
multiplies the kinetic term of the graviton, there is no need to introduce a field strength
renormalization for H,, .

The contribution of the counter-terms to the correlator is

2

1./ 1 3p

<H;w(7p) Ha[i (p)>ct = { - 15 (ﬁ) (7172 (n;trxnuﬂ+nxil3nu<x)+ Tn;wnaﬂ - (n;tupapﬂ +77a/3pupu)
p4 pZ

+ (nuapﬁpv+77uﬂpapu+nuapupﬂ +77V[3pupa)> +da (gmwnaﬁ - ? (nuvpapﬁ+na5pupu)

p* ! P

+2p,upupozpﬁ> +5ﬂ (Z (nuan5u+npﬂnlza) - Fﬁuuﬁaﬁ"" E (7]uupapﬂ+77aﬁp#pu)

2 2

14 p
- Z (n;tupupﬂ+77u(xp;4p/3 +77u/3pupa+77uﬂpupa)+ gpap/ipu]?v) } %(/1,) . (550)

Adding this to (5.24) and demanding that the divergences cancel, we find

1 m?(1 + 6¢)
0| —=]=——""—2 5.51
(m) 0, (5.51)
54 100 — o?(71 — 48¢ — 144€2)
oo = — 14452 , (5.52)
50 + 1000 + 81152
Sp=— 5052 (5.53)

6 B-functions and running couplings

Once we have determined the form of the renormalized correlation functions that we need,
we come to the issue of computing the renormalization group flow of the different coupling
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constants, which is independent of the renormalization and regularization schemes used in
the previous sections. We will actually define the running of a given coupling through the
Callan-Symanzik (CS) equation for the corresponding correlation function [55, 56]

0
u% + zi:[)’(ci)a

which is obtained by demanding independence of the arbitrary scale p introduced by renor-

0

malization. Here ¢; are all possible dimensionless couplings appearing in the correlator,
while M refers to dimensionful couplings. (M) is then the anomalous dimension of the
coupling, while v, is the anomalous dimension of the scalar field, being n the number of
external scalar legs in the correlator. Here we have already taken into account that the
anomalous dimension of H,,, vanishes. Solving the equation (6.1) perturbatively for the
couplings in the action will allow us to obtain the running of all of them.

Since we are working at one-loop, we find an important simplification here. The only
part of the renormalized correlation function which depends on p is the counter-term, so
we can make the replacement

ag(pa /'l’) — agct (p7 .u’)
ou a ou

Additionally, since our expansion is polynomial in the couplings, derivatives with re-

(6.2)

spect to them are ordered in the loop expansion, with increasing loops contributing with
higher orders. For the one-loop computation at hand, this means that we can also replace

1o} 1o}
> 5(Ci)7ac-+g v(M;)M. igar, T Gp,n) =
i v j

0 0
Zﬂ(cz)g + Z'y( ]8M + 1% | Goree (D, 1), (6.3)
i v j

since when acting on the corrections we will generate a next-to-leading-order term. These
two substitutions simplify the computation greatly.

Let us then start by writing the simplified form of equation (6.1) for the two-point
function of the scalar field

(M% + mQ’Y(m )aa 5+ a47(a4)8i + 2’y¢) (p(=p)o(p)) = 0. (6.4)

Combining the one-loop correction and the counter-term, and ordering this equation
by powers of the momentum, it can be easily solved to get

3Gm2(1 + 20 (1 + 4€6(2 + €)))

v = 64n20 ’ (6.:5)
oy 3X 3Gm?*(1420(1+8¢(1+¢)))
v(m?) = 272 32120 ’ (6.6)
_ 3+20(3+8¢)  3m2(1+20(1 + 8¢ + 4€2))
Yag) = =G < 32aym20 + 32720 ) ' (6.7)
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From the four-point function of the scalar field we can now compute the running of A,
be and by. The corresponding CS equation is

0by

Note however that this imposes a limitation in our computation. While the divergent

(1 + 8OV 35+ br (b + Bis(bn) -+ 1) (60601 = 0. (63)

contribution (5.13) contains pieces proportional to G2, the field strength of the scalar field
is only linear in G. This means that we should expect two-loop contributions to 74 of order
G?. Indeed if one notes that the powers of G' are brought into the diagrams by gravitational
propagators, we can straightforwardly see that the following two diagrams, for instance,
will potentially contribute to +s at order G2

D o0 -

Therefore, if we wanted to solve the CS equation (6.8) at order G? we would need to
add the contribution coming from the two-loop correction to vs. As a consequence, we can
only trust our result here up to order G and thus we will cut the perturbative solution

0 (6.8) at this order. It reads

9N 3GAMA(1 + 20 (1 + 8¢ 4 28¢7))

BN =55 6.2 ; (6.10)
T 6m=o
_ 3m2(1 4 20(1 + 8¢ +4£2))  IA(1 + o (2 + 32¢ + 8€2))
V(b) =G (7 16720 + 2bom20 ) ’ (6.11)
3Gm*(1+20(1 4+ 8¢ + 452))
v(by) = 6o (6.12)

In the limit of decoupling gravitation G — 0, the running of higher-derivative terms
freeze as expected, while the running of A matches the text-book result* for A¢?.

We will find the same issue previously discussed when trying to solve the CS equation
for the running of the non-minimal coupling

(1 + 8O3 + (0] g +2(0) 3 + 230 ) G-P)OA-P) (20 =0, (613

since both y(a4) and 4 are of order G and we expect corrections of order G? coming from
two-loop divergences.

We therefore again cut the solution to this equation at order G. Taking the form of
the divergence (5.16) and the counter-terms (5.45) and ordering the CS equation in powers

of p* we find
A1466) Gm2E(3+0(6+44E+T72€2
G(9+40E =40 (T4156+9m2¢)+802 (—6—41€ —T8E24+3663—9Im? (1+4€(2+€) s ))
v(s) = 3847202
(6.15)

4Note however that we are defining our coupling without the standard 4! denominator.
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Finally, we write the corresponding equation for the two-point function of the graviton
D G(G) s+ B0) o 4 B(0) o) (Huw( ) Hop(p) =0 (6.16)
o TG G 5q o0 T P05, ) (Hiw(=p)Hap(p)) = 0. .

Ordering it by powers of the momentum, we complete the computation of the renor-
malization group flow of the theory with the results

 Gm*(1+6¢)
V(G) = T 9.2 (6.17)
5+ 100 — o?(71 — 48¢ — 144¢?)
Blo) = - 11527202 ’ (6.18)
50 + 1000 + 81102
ﬁ(p) - 9607252 (619)

As a final note in this section, let us note that all the 8 functions and ~-functions
defined here reduce to those of the case of background gravity once the right limit G — 0 is
taken. The only subtlety comes from the running of o and 3, which are however irrelevant
because in the limit G — 0 they are subleading with respect to the Einstein-Hilbert term
in the action.

This completes the computation of the one-loop S-functions for the unimodular scalar
tensor-theory. In the appendix B we discuss the results in the absence of the scalar field,
in order to establish a comparison with previous works.

7 Unimodular Gravity versus General Relativity

Once the renormalization group flow of the coupling constants is computed, we come to
the question that originated this work — is Unimodular Gravity equivalent to General
Relativity when coupled to matter?

Although the question is simple enough, the answer is not so. First of all, we note
that although the quantization of UG looks much more complicated than the one of GR,
no new counter-terms are required in order to absorb all one-loop divergences. Indeed, all
required counter-terms — depicted in (5.28), (5.36), (5.42), and (5.47) — are exactly the
same ones that would be required in GR, just appended with the condition |g| = 1.

In order to differentiate both theories we shall then look at a physical observable.
However, the running of the couplings that we have just derived does not classify as such,
as it can be observed by the explicit dependence on the gauge fixing parameter o of most
of them. Moreover, some of our results could, in principle, be modified by a non-linear
redefinition of the gravitational field H,, — H,,(¢), clearly denoting that they lack a
physical meaning due to operator mixing after the field redefinition [57, 58]. To determine
something which can be thought as physical, we must then find which combinations of the
couplings are independent of the gauge choice and blind to field redefinitions. Those, known
as essential couplings, will be the couplings that control correlation functions of observable
quantities. Only the S-functions of essential couplings have an intrinsic physical meaning.
They can be determined by noting that they correspond to the only combinations that do
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not change when we add to the action a piece proportional to the classical equations of
motion [59, 60].

In the following we will focus only on those couplings which are present in the bare
Lagrangian, ignoring the higher-derivative operators. Moreover, and for simplicity, we will
consider solutions to the eom with unimodular background determinant |g| = 1. Under
this assumption, the background action reads

£

S = /d4 (— —R+ ama% —5¢°R - m;qﬁ? - Aqﬁ“)- (7.1)

In this frame, the equations of motion are the traceless Einstein equations (1.1), which
by using Bianchi identities are equivalent to the full set of Einstein equations with an
arbitrary cosmological constant C

1=
R, — iRgW +Cguw = Gy (7.2)

The only scalar quantity up to two derivatives that we can form with the eom is then
the trace of Einstein equations

E=R+GT —4C = R+ G [~(1 +6€)9,00"¢ — 66¢0¢ + 2m*¢* + 4\¢* + EGP*R] — 4C,
(7.3)

where we have used

Tw:(1+2£)amamw&wuamfw%yf.aw(” TS 50 4 26600 ¢ AL #R )

(7.4)
We thus add a piece proportional to the trace of the eom to the action
&
SaSJr/d“ oTet (7.5)

where ¥ is a constant parameter. Under this addition, ignoring the cosmological constant
and integrating by parts, we find that the couplings transform as

0xG = %G, (7.6)
dgm? = —25m?, (7.7)
dgd = —2%), (7.8)
oxé = —X¢. (7.9)

Thus, essential couplings will be combinations of these that are invariant under the
addition of the evanescent piece proportional to ¥. Additionally, since we want to avoid
the arbitrariness tied to the reference scale for dimensionful quantities, we will demand our
essential couplings to be dimensionless as well.

Out of G and m? we can build the following scale-invariant coupling

& = Gm?, 06 = —X6, (7.10)
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which transforms as v/A and therefore we can build a ratio which is an essential coupling,
given by

62

A== (7.11)

It corresponds to the relative strength between interactions dictated by the Einstein-Hilbert
term and the self-interaction of the scalar in the Lagrangian, as measured in a 2 — 2
scattering of scalar fields. The two channels involved in this process, graviton exchange
and contact interactions, are schematically given by

Gm*

P>

~

62 (Gp?) ", ~ A (7.12)

and we can see that their ratio corresponds to A when the momentum exchanged by the
graviton is set at the scale where gravitational interactions dominate p? ~ G~ ~ M3.
Thus, the running of A indicates at which energy scale gravitation becomes important and
cannot be ignored when doing QFT with scalar fields. Its S-function can be easily obtained
from the ones of the couplings in the Lagrangian. It reads

A(—9\ + B(—1 — 6¢ + 45¢2))

B(A) = — , (7.13)

where as expected, the dependence on the gauge parameter o has cancelled out. In prin-
ciple, we could also define two other ratios A; involving £. However, these enter strong-
coupling when either &, ;& — 0 since their S-functions are not polynomial in the cou-
plings.> We will therefore refrain from discussing them hereinafter.

An unpleasant property about S(A) that we must remark here is that although A is an
essential coupling, its running, albeit being gauge invariant, depends on the non-physical
quantities A\,  and ¢ independently. A similar property has been already noted before in
the context of asymptotic safety® for the running of essential couplings [61, 62]. It implies
that in this situation one cannot disentangle physical contributions from un-physical ones
but instead one needs to first compute the latter in order to derive the former. It also poses
a conundrum on understanding how the value of A can indeed remain essential along the
RG flow and at higher order in perturbation theory. Here we cannot offer any satisfactory
explanation beyond hinting that this might be a consequence of the non-renormalizability
of the theory.

5This can be seen by writing the S-functions in the form
BlA) = Ail...),

where the dots indicate an expansion in the couplings of the theory, which will depend on the particular
coupling chosen. For instance, for A¢ = &/¢ the leading term within the parenthesis goes as ¢~' and
therefore it is not perturbative in the sense discussed along this work. Note that this is not the case for the
coupling (7.13).

SWe are grateful to R. Percacci for pointing this out.
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Following the same reasoning depicted before, we see that the same definition of essen-
tial couplings holds for the case of GR, when we restore the \/@ in the integration measure
and shift the action accordingly by modifying (7.5). Although the value for the running
of the couplings in GR can be found in the literature [63], we prefer here to re-derive the
needed ones with the same techniques described for UG. Details of this computation can
be found in appendix A. In that case, the value of the S-function for the essential coupling
takes the form

A(=9\ + &(—1 + 39¢ + 45¢2))
672 ’

Ber(A) = (7.14)

which is subtlety but clearly different from (7.13).

Let us remark that the coupling A has a physical meaning. It gives a definite answer
to the question of when gravitational interactions can be disregarded. As such, the fact
that it does not agree with the UG result is a smoking gun that the theories cannot be
considered equivalent once gravitation is dynamical. However, we see that the difference
is very minor. The one-loop result (A) agrees in both theories in two very important
limiting cases, £ — 0 and £ > 1.

The first limit corresponds to a scalar field minimally coupled. In that case, we see
that although the theory is very complicated, the running of the physical parameter A is
identical to the more easily computed one in GR. It seems that non-minimal coupling is
then an important ingredient to violate the equivalence. One could argue then that the
full identification of both theories seems to be connected in a very non-trivial way to the
satisfaction of the strong equivalence principle.

The second case is also interesting, since it corresponds to the limit in which several
models of inflation — in particular Higgs [64, 65] and Higg-Dilaton inflation [66-68] — are
successful. Although strictly speaking we have performed our computations in the limit
¢ < 1 and therefore they would not be valid in the large £ limit, let us note that in the case
&> 1 we can also take G > 1 and then the role of both couplings is formally exchanged in
the action for the case of approximately constant scalar profiles. In that case, the equations
for gravity reduce to

£4? (RW — iRg,W +0 (%)) =0, (7.15)
which corresponds to the vacuum equations, up to sub-leading corrections. This means
that in the £ > 1 limit, and around flat space, the theory becomes indistinguishable from
the case £ < 1 and therefore our result should hold.

In any other intermediate value of € we find that UG and GR are not equivalent. Al-
though this might look minor, since the difference is very subtle, it might have influence
in intermediate energy regimes when moving along the flow. For instance, in the thermal
history of our Universe. It also poses a question mark on the validity of quantum compu-
tations performed in UG without taking into account the very complicated quantization
structure and just assuming that, since they are classically equivalent, one can compute in
GR instead. This is clearly wrong at the light of our result.
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Let us finally remark that we strongly believe in the robustness of our result. We
have derived it independently by using two different computer codes in different languages.
Moreover, the preservation of gauge invariance — both at the background level and from
independence of o — is a very non-trivial issue and any minor modification of any ingredient
in the computation would produce a result not satisfying it.

8 Discussion and conclusions

In this paper we have studied the question of the equivalence between General Relativ-
ity and Unimodular Gravity. Although the answer is positive when we look to classical
physics, or even classical gravitation in the presence of quantum matter, there are impor-
tant subtleties when gravitons are dynamical and allowed to run freely in the loops.

In order to discuss this property in a QFT manner, we started by formulating the theory
in a frame where the constraint |g| = 1 is automatically satisfied, by redefining the metric
as gy = |§|%§H,,. In this frame UG becomes a pretty non-standard theory enjoying an
extended gauge symmetry, the product of TDiff and Weyl, that we call WTDiff. However,
in this form the main properties of UG are explicit. The counting of degrees of freedom
is straightfoward and the traceless character of the eom is explicit. In order to compute
one-loop corrections we exploited this symmetry by using the background field method in
combination with the construction of a Weyl invariant geometry.

The construction of the gauge sector — combining gauge fixing and ghost action —
becomes surprisingly much more cumbersome in UG than in GR, mainly due to the fact
that TDiff generators are not independent but rather constrained to be a transverse vector.
Although they can then be represented by using a transverse projector and the full gauge
system solved by using BRST symmetry, this generates a tower of new ghost fields of
bosonic character. These fields actually couple with the graviton degree of freedom, showing
a first non-trivial difference of UG with respect to GR, at least at the technical level. Even
for tree-level computations, one cannot just ignore the gauge sector, since the kinetic mixing
between h,,, and the bosonic ghosts will have an impact on the propagator of the former.

Nevertheless, once the issue with constructing the gauge sector is solved, then the one-
loop corrections to the correlation functions of the theory can be computed in a standard
manner by expanding the background around flat space and looking at Feynman diagrams
carrying perturbations of the background in the external legs. Although there are plenty
of them — in particular due to the mixing of the graviton with the bosonic fields —, this is
a task that we were able to carry out with the help of computer codes specialized in tensor
algebra.

The result of our computations are the complete set of S-functions and anomalous
dimensions of all the couplings involved in the action, computed in the one-loop approxi-
mation and at order GG, which we reproduce here to collect them together

_ 3Gm? (1420 (1+4€(2+9)))

¢

6420 ’
3X  3Gm2(14+20(1+8£(14€)))
2\ — -
y(m?) = 212 32120 ’
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o 2 o 2
v(as) = -G (3+2 (3+8¢)  3m* (1420 (1+8£+4¢ ))) 7

32a4m%0 32720
9N 3GAM2 (1420 (1+8£+2862))
AN = or2 16720 ’
_ 3m2 (1420 (1+8£+4€2))  IA(1+0(2+326+8¢2))
1(b2) =G <_ 16720 + 20920 ) ’
3GmM2(1+20 (1+8¢+4&2
A146£)  Gm2E(3+0(6+44€+72€2))
Ble) = o2 32120 ’
G(9+40€ —40 (T+156+9m?%¢) +802(—6—416—T8¢2+36£3 —9Im2(14-4£(24+€))<))
(s) = 3847202 ’
S
Gm?(1+6
1@y = S0,
5-+100—0?(71—48¢—144€2)
fla) = - 0115271'202 ’
50+1000+81102
R )

They include the couplings present in the classical Lagrangian but also new couplings
controlling the strength of higher-derivative terms in the EFT expansion, as required by
the non-renormalizability of gravity. The full one-loop EFT action that we obtain is then

1 1
Sioop = / d*z { - —R+ iamaﬂqj _¢

2 m® 4 04 by o 9
Ye §¢ R——¢ = A" + ?D¢D¢+ §¢ (09)

2
1
+ Z—Z(aqs)‘* + %aﬂw%l{ +aR 4 p (RWRW - 51#) } , (8.2)

in the frame where the metric is unimodular |g| = 1.

These runnings are however dependent on the gauge choice used to quantize the the-
ory and therefore they do not correspond to physical quantities. Out of them, we identify
the combination A = G®m*A~!, which controls the relative strength of gravitational in-
teractions with respect to scalar self-interactions and therefore has a physical meaning. It
corresponds to an essential coupling of the theory. Its running is then gauge invariant and
reads

B(A) = A(—9)\+05(—1—6£+45§2))' (8.3)

672

We find that this quantity actually differs from the corresponding result in GR, which
can be found in (7.14), whenever the non-minimal coupling ranges on intermediate values.
Only in the two extremal limits £ — 0 and & > 1, our result agrees with the general
relativistic one. We interpret the first of these agreements as a consequence of the strong
equivalence principle, which is then violated by non-minimal coupling. The second coinci-
dence can be traced back to the singular behaviour of the eom in the large £ limit. However,
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the difference in intermediate regimes might be important when considering situations in
which following the running of physical quantities along an energy history is critical, like
the thermal history of the Universe.

Altogether this poses a question on the validity of several approaches found in the
literature to computing quantum corrections in the case of UG. One cannot just assume that
the theories are equivalent, restore \/m in the action, and compute quantum corrections
in GR by hiding under the carpet the fact that actually one wants to work with UG. In
particular, it would be interesting to revisit these results and their effects in models of
inflation, which closely resemble the case studied here.

Acknowledgments

We are grateful to E. Alvarez, C.P. Martin, S. Mooij, R. Percacci and C. Steinwachs for
discussions and/or comments on the manuscript. M.H-V has been supported by the Euro-
pean Union’s H2020 ERC Consolidator Grant “GRavity from Astrophysical to Microscopic
Scales” grant agreement no. GRAMS-815673. R.S-G. has been supported by the Spanish
FPU Grant No. FPU16/01595 and by COST action CA16104 “GWverse” through a Short
Term Scientific Mission. R.S-G. also wishes to thank the APP department at SISSA for
their hospitality during part of this work.

A Computation of 3-functions in General Relativity

We summarize here the computation of the S-function of the composite coupling A in GR,
following the same techniques as in the case of UG. We will consider the action equivalent
to Sua + Smatter by restoring V |g|

1 1 2
Scr = /d4x\/|g\ LRy Logors - g agt - SoR). (A1)
2G 2 2 2
We will also expand this around a background configuration for the gravitational field

9w = Guv + hy. However, the absence of Weyl invariance and the independence of the
generators of Diff allow us to construct a standard gauge fixing a la Feynman

o -
Sor =55 | d'= Vgl EuF", (A.2)
with F}, analogous to (3.43)
. 1-
Fy =Vl = 5V, (A.3)

Since we only want to compute the running of A, G and m?, we will not need to add the
action for the ghost fields in this case.

Expanding now the background metric around flat space g, = 1, +H,,, and comput-
ing correlation functions involving H,, and ¢, we can derive the running of the couplings
that we are interested in. The computation is analogous to that of UG with only two
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important changes — the diagrams containing bosonic ghosts are now absent, and there
are two extra diagrams to be considered

whose contributions are actually critical to ensure gauge invariance.
Running our code and computing all the Feynman diagrams, renormalizing, and solving
the CS equation, we find

Gm2(—1+60(—1— £ +£2))

YCR,$ = 6o ) (A.5)
6) —3Gm2E(1 +2
Yar(m?) = T f( 5)7 (A.6)
T
3A(BA — Gm2E(6+ 7
T
B Gm2(1 + 6¢)
’VGR(G) - 1271_2 ’ (AS)
from which we can compute the running of A = Gm2A~! to be
A(=9\ + &(—1 + 39¢ 4 45¢2
fan(a) = 24 (L4 39 + 45¢7)) (A.9)

672 ’

where & = Gm?. We have also cross-checked the results of 7GR,¢ and var(m?) by using
the three-point function mixing scalar fields and a graviton (¢(—p)é(—p)Hu (2p)).

B Quantum corrections to vacuum Unimodular Gravity

For completeness, we take here a look to the renormalization group flow of the theory in
the case of pure UG, when the action is only
L 1 (5, 3 VgVt
Sve=—== [ d'z[g]T |R+ - B.1

In this case, and using the renormalization scheme previously described in this work,
we see that G does not receive divergent one-loop corrections. Only the higher-derivative
terms in (5.47) will run in this case. Subtracting the contribution of the scalar loops from
our result and repeating the steps in section 5, we find that the running of the higher-
derivative terms is controlled by

5+ 100 — 3002
vacuum = - —, B.2
Bracnum() 11527202 (52)
50 + 1000 + 80752
vacuum - - B.3
B (p) 960m202 (B.3)
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As we expected, these S-functions are gauge dependent, since they do not correspond
to essential couplings. In order to check the robustness of our result we will then recon-
struct the full non-linear divergence by noting that due to background field invariance,

1

the divergent part of the one-loop correction — the term proportional to e — can be

obtained by expanding the following action around flat space
i 4 2 Ny 1 2
Saiv = _E d*z ﬁvacuum(a)R + Bvacuum(P) RIUIR - gR . (B4)
Otherwise, we would not be able to absorb it into a counter-term.
Now, gauge independence can be tested with the help of the Kallosh-DeWitt theo-
rem [59, 60]. Since addition of terms proportional to the eom must be able to shift every
gauge-dependent quantity, only when we take the previous divergence to be on-shell we

must find a gauge-independent result. For the theory in vacuum, the eom of UG are
equivalent to the full set of Einstein equations (1.3), which imply

Ry = Cyuw, R=4C. (B.5)
Plugging this into (B.4) we get

173
= dz C? B.
Sa 807’[’26/ z % (B.6)

where the gauge dependence has vanished. Moreover, we find that the divergence is inde-
pendent of the field, since there is no \/|?| term due to the unimodular condition. Therefore
we conclude, in the same lines as [22], that UG is one-loop finite even in the presence of a
cosmological constant.

Note however that our result cannot shed any light on the discrepancy of the results
between [22] and [35], since here we only have access to gauge dependent quantities whose
on-shell value is not dynamical. Due to the fact that we are working in perturbation
theory around flat space, we cannot obtain the value of the topological term, which should
be gauge independent by itself.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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CONCLUSIONS

In this thesis, we have presented various research directions aimed at solving
some of the problems of GR from a bottom-up point of view. Let us briefly
summarize the key points and the main results of each of the three articles.

First Order (FO) quadratic theories of gravity have been the object of study of
the first chapter. We started by reviewing the well-known linear and quadratic
theories of gravity in the Second Order formalism, using the usual spin projec-
tors to compute the propagating degrees of freedom for such theories. After
this warm-up, we turned to the FO formalism. When the metric and the connec-
tion are treated as independent fields, the connection field plays the main role
in these theories, as the graviton propagator vanishes when expanded around
flat spacetime. Therefore, the graviton degrees of freedom must come from a
spin two piece encoded in the three-index connection field. If this were not
the case, these theories would not be able to describe the gravitational interac-
tion. To settle this issue, we carried out a complete analysis of the spin content
of the connection field. We focused, in particular, on non-metric connections
with vanishing torsion." As a first step, the usual four-index spin projectors
were generalized to six-index projectors applicable to the symmetric connec-
tion field. The main result of the work was the obtention of a complete basis
of 22 projectors, corresponding to one spin three, four spin two, eleven spin
one, and six spin zero projectors. All the elements with a different spin con-
tent are orthogonal among themselves, although they are not orthogonal to the
other projectors of the same spin. This makes it difficult to get to the equations
of motion for each of the spin components, and thus, the computation of the
asymptotic degrees of freedom is still missing in this preliminary analysis. Nev-
ertheless, they can be used to invert the quadratic operator mediating between
two symmetric connection fields and thus, to obtain the propagating degrees
of freedom. Generically, a spin three component is present, which is tied to
the non-vanishing of the Riemann squared term in the action. This piece needs
further investigation, in particular, regarding the possible inconsistencies aris-
ing when building an interacting theory for it. Finally, a particular form of the
connection perturbations was studied, namely, the Levi Civita form in terms of
the derivatives of the metric perturbations. This case resembles the usual Sec-
ond Order formalism, and as expected, the six-index projectors degenerate into
the known four-index ones multiplied by a momentum squared term in the

"Nevertheless, a study of the torsion-full metric connection was carried out in one of the ap-
pendices.
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process. Therefore, these extra powers of momentum make the propagators
quartic again and lead to the non-unitarity of the theory.

The goal of the second article was to analyze the (in)equivalence of conformal
and Weyl invariance for the gravitational field itself. To do that, we studied the
most general Lagrangian, up to dimension-six operators, for a spin two field
around flat spacetime. We mainly focused on dimension-four and dimension-
six operators quadratic in the fields, containing two or four derivatives, and
matching the possible low-energy terms of linear and quadratic theories of
gravity. We then classified the different possibilities depending on their sym-
metries. To make contact with gravitational theories, we considered theories
invariant under (transverse) diffeomorphism and Weyl transformations, dub-
bing LWDiff and LWTDiff to these combinations. We showed that any quadratic
(in the field) Lorentz invariant theory constructed purely from dimension four
or dimension six operators is automatically conformal invariant. When combin-
ing both types of operators, however, no invariant combination is left. On the
other hand, Weyl invariance is quite restrictive, in particular, when combined
with Diff invariance. WTDiff invariant theories are more natural in this sense
and can be constructed as the low-energy limit of gravitational theories where
the metric is transformed as g, — g_l/ "¢uv, where n is the spacetime dimen-
sion. These findings clarified the central question of the article: Weyl invariance
and conformal invariance are not equivalent symmetries for spin two theories.
The inequivalence is found to work in both directions. The low-energy limit
of a WTDiff theory containing linear and quadratic terms in the curvature re-
sults in a combination of dimension four and six operators, and as stated above,
these are not conformal invariant. Finally, an interesting analysis of the interac-
tion terms was included, where an iterative procedure for the construction of
LWDiff invariant potentials was developed.

In the final chapter, the quantum (in)equivalence of GR and UG was inves-
tigated when a coupling to matter was included. In particular, we considered
a non-minimally coupled massive scalar field with a quartic interaction con-
trolled by A. The fact that the potential terms such as the mass and the quartic
interaction term do not couple to the metric in UG posed a first difference,
modifying the vertices involved in the computations. We avoided the use of
constrained fields and wrote the theory in terms of an unconstrained metric in
the WTDiff description of UG. This theory is then invariant under Weyl trans-
formations and transverse diffeomorphisms. The first part of the paper was
devoted to dealing with the construction of the gauge sector corresponding to
the combined WTDiff symmetry. BRST techniques were used, and the needed
auxiliary fields and ghost fields were introduced. These fields couple to the
graviton modifying the graviton propagator, so that the computations differed
for both theories at least at the technical level. After settling the issue of the
gauge sector, we carried out the standard computation of all one-loop diver-
gences in the background field approach for both theories, and computed all



B-functions and anomalous couplings in the Lagrangian. With this in hand,
we compared the renormalization group flow of a certain physical combination,
given by A = G%m*A~!. This combination turned out to differ for GR and UG
for intermediate values of the non-minimal coupling, ¢. There is a caveat here,
however. The running of A is a function of non-physical couplings such as A
and G%m* so that we cannot completely disentangle these contributions from
the physical ones. Although it could be caused by the non-renormalizability of
the theory, this issue requires further investigation. For instance, the same com-
putations could be carried out for renormalizable theories, such as quadratic
theories of gravity, to analyze whether this feature is still present.

As a final remark, we have seen that the pillars of modern Theoretical Physics
have been built after many small contributions and connections between things
that were already known. In the same spirit, the goal of these works has been
to explore various subproblems of the gravitational interaction with the hope
of adding a modest grain of sand to the construction of a Quantum theory of
Gravity. And hopefully, one day, we will sit in the edge of the cube, adimiring
the land where Gy, ¢ and T lived happily ever after.
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CONCLUSIONES

En esta tesis se han presentado varias direcciones de investigacién destinadas a
resolver algunos de los problemas de la RG tomando como punto de partida la
teorfa a bajas energias. A continuacién resumimos brevemente los puntos clave
y los principales resultados de cada uno de los tres articulos.

Las teorias cuadraticas tratadas en el formalismo de Primer Orden (PO) han
sido el objeto de estudio del primer capitulo. Se ha empezado revisando las
conocidas teorias lineales y cuadraticas de la gravedad en el formalismo de Se-
gundo Orden, utilizando los proyectores de espin habituales para calcular los
grados de libertad de propagaciéon de dichas teorias. Después de este calen-
tamiento, hemos pasado al formalismo de PO. Cuando la métrica y la conexién
se tratan como campos independientes, el campo de la conexién juega el papel
principal en estas teorfas ya que el propagador del gravitén desaparece cuando
se expande alrededor del espaciotiempo plano. Por tanto, los grados de lib-
ertad del graviton deben proceder de una pieza de espin dos codificada en el
campo de la conexién de tres indices. Si no fuera asi, estas teorias no podrian
describir la interaccién gravitatoria. Para resolver esta cuestion, hemos llevado
a cabo un anélisis completo del contenido de espin del campo de conexién. Nos
hemos centrado, en particular, en las conexiones no métricas con torsién nula.>
Como primer paso, se han generalizado los proyectores de espin habituales de
cuatro indices a proyectores de seis indices aplicables al campo de la conexién
simétrica. El principal resultado de este trabajo es la obtencion de una base
completa de 22 proyectores, correspondientes a un espin tres, cuatro espines
dos, once espines uno y seis espines cero. Todos los elementos con diferente
contenido de espin son ortogonales entre si, aunque no lo son respecto a los
demads proyectores del mismo espin. Esto dificulta la obtenciéon de las ecua-
ciones de movimiento para cada uno de las componentes de espin y, por tanto,
el célculo de los grados de libertad asintéticos sigue faltando en este andlisis
preliminar. No obstante, pueden utilizarse para invertir el operador cuadratico
que media entre dos campos de conexién simétricos y, por tanto, obtener los
grados de libertad de propagacién. En general, hay una componente de espin
tres, que estd ligada a la presencia del término de Riemann al cuadrado en
la accién. Esta pieza requiere de un andlisis mdas detallado, en particular, en
lo que respecta a las posibles incoherencias que surgen al construir una teorfa
interactiva para ella. Por tltimo, se ha estudiado una forma particular de las
perturbaciones de la conexidn, en particular, la de Levi Civita, construida a par-

>No obstante, en uno de los apéndices se lleva a cabo un estudio de la conexién métrica con
torsion.
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tir de las derivadas de las perturbaciones de la métrica. Este caso se asemeja al
formalismo habitual de segundo orden, y como se esperaba, los proyectores de
seis indices degeneran en los conocidos proyectores de cuatro indices multipli-
cados por un término de momento al cuadrado. Por lo tanto, estas potencias
extra de momento hacen que los propagadores vuelvan a ser cudrticos y con-
ducen a la no unitariedad de la teorfa.

El objetivo del segundo articulo ha sido analizar la (in)equivalencia de la
invariancia conforme y de Weyl para el propio campo gravitatorio. Para ello,
hemos estudiado el Lagrangiano mds general, hasta operadores de dimensién
seis, para un campo de espin dos en torno al espaciotiempo plano. Nos hemos
centrado principalmente en operadores de dimensién cuatro y dimensién seis
cuadréticos en los campos y con dos o cuatro derivadas, que coinciden con
los posibles términos de baja energia de las teorias lineales y cuadraticas de la
gravedad. A continuacién, hemos clasificado las distintas posibilidades en fun-
cién de sus simetrias. Para hacer contacto con las teorfas gravitacionales, hemos
considerado teorias invariantes bajo difeomorfismos (transversos) y transforma-
ciones de Weyl, apodando LWDiff y LWTDiff a estas combinaciones. Hemos de-
mostrado que cualquier teorfa invariante de Lorentz cuadratica (en el campo),
construida puramente a partir de operadores de dimensiéon cuatro o seis, es
automdticamente invariante conforme. Sin embargo, al combinar ambos tipos
de operadores, no sobrevive ninguna combinacién invariante. Por otro lado,
la invariancia Weyl es bastante restrictiva, en particular, cuando se combina
con la invariancia Diff. Las teorias invariantes WTDiff son mds naturales en
este sentido y pueden construirse como el limite de baja energfa de las teorias
gravitacionales donde la métrica se transforma como g,y — g in Suv, siendo
n la dimensién del espaciotiempo. Estos resultados aclaran la cuestion central
del articulo: la invariancia de Weyl y la invariancia conforme no son simetrias
equivalentes para las teorias de espin dos. Se encuentra ademds que esta de-
sigualdad funciona en ambas direcciones. El limite de baja energia de una
teorfa WTDiff que contiene términos lineales y cuadraticos en la curvatura in-
cluye una combinacién de operadores de dimensién cuatro y seis, y como se ha
dicho anteriormente, esta combinacion no es invariante conforme. Por dltimo,
se ha incluido un analisis de los términos de interaccién, y se ha desarrollado
un procedimiento iterativo para la construccion de potenciales invariantes bajo
LWDIff.

En el dltimo capitulo, se investiga la (in)equivalencia cuédntica de la Rela-
tividad General (RG) y la Gravedad Unimodular (GU) cuando se incluye un
acoplamiento a la materia. En particular, hemos considerado un campo escalar
masivo no minimamente acoplado con una interaccién cudrtica controlada por
A. El hecho de que los términos de potencial como la masa y el término de inter-
accién cudrtica no se acoplen a la métrica en GU plantea una primera diferencia
que modifica los vértices implicados en los célculos. Se ha evitado el uso de
campos restringidos y se ha escrito la teorfa en términos de una métrica no



restringida, dando lugar a la versién WTDiff de GU. Esta nueva descripcién de
GU es invariante bajo transformaciones de Weyl y difeomorfismos transversos.
La primera parte del articulo se ha dedicado a tratar la construccién del sector
gauge correspondiente a la simetria combinada WTDiff. Se han utilizado técni-
cas de BRST y se han introducido los campos auxiliares y los campos fantasma
necesarios. Estos campos se acoplan al gravitén modificando su propagador,
por lo que los célculos difieren para ambas teorias al menos a nivel técnico.
Una vez resuelta la cuestioén del sector gauge, hemos llevado a cabo el calculo
estandar de todas las divergencias a un bucle en la aproximaciéon del campo
background para ambas teorias, y hemos calculado todas las funciones § y los
acoplamientos anémalos del Lagrangiano. Con esto en la mano, hemos com-
parado el flujo del grupo de renormalizacién de una cierta combinacién fisica,
dada por A = G?>m*A~!1. Esta combinacién resulta ser diferente para la RG y
la GU para valores intermedios del acoplo no minimo, ¢. Sin embargo, hay
una sutileza en este resultado. La variacion de A con la energia es una funciéon
de los acoplos no fisicos como A y G*m*, de modo que no podemos separar
completamente estas contribuciones de las contribuciones fisicas. Aunque po-
dria deberse a que las teorias son no renormalizables, esta cuestion requiere
ser investigada mds en profundidad. Por ejemplo, los mismos calculos podrian
llevarse a cabo para teorfas renormalizables, como las teorias cuadraticas de la
gravedad, para analizar si esta caracteristica sigue presente.

Como apunte final, hemos visto que los pilares de la Fisica Te6rica moderna
se han construido tras numerosas pequefias aportaciones y conexiones entre
cosas que ya se conocian. En el mismo espiritu, el objetivo de estos trabajos
ha sido explorar diversos subproblemas de la interaccién gravitatoria con la
esperanza de afiadir un modesto grano de arena a la construccién de una teorfa
cudntica de la gravedad. Y con suerte, algtin dia, nos sentaremos en la arista
del cubo, admirando la tierra donde Gy, ¢ y I vivieron felices y comieron perdices.
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