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ABSTRACT 
 
What does a hologram have in common with our world? According to what is referred to as the 
holographic principle there seems to be a close connection. The essence of this principle is that our 
world seems to behave very much like a hologram. In a hologram, information about a three-
dimensional object is stored on a two-dimensional surface and basically the same idea appears to be 
true for our world.  The holographic principle implies that all information about a physical system, 
seems to be gathered on lower-dimensional surfaces, which basically reduces the number of 
dimensions we have to consider and hence the complexity of our theories. This may have very 
interesting and intriguing consequences . The holographic principle might turn out to be a cornerstone 
for a theory of quantum gravity and perhaps even hold the key to its formulation.  
 
This thesis is intended to present the origin, statement and applications of the holographic principle as 
well as a discussion of possible implications for a theory of quantum gravity. The holographic 
principle is intimately connected with the concept of entropy. The way towards the holographic 
principle that I will follow is based on a covariant entropy conjecture which places an upper bound on 
the entropy in general space-times, following Bousso [(1999)]. This result is besides its connection 
with the holographic principle interesting by itself, and therefore this conjecture is stated in detail 
together with evidence for its validity in cosmological solutions and in the interior of black holes.  
Included is also a brief discussion of some of the predecessors of this covariant entropy conjecture, 
with a short discussion of their drawbacks.     
 
I have also chosen to include some preliminary basics in Ch.1, to help the reader who encounters this 
thesis without sufficient knowledge about entropy, general relativity and black hole thermodynamics.  
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1.  INTRODUCTION 
 
1.1 NOTATION, CONVENTIONS AND UNITS 
 
Throughout this work our stage will be the 3+1-dimensional manifold M, which our space-time 
consists of. Any three-dimensional subset H of M is called a hypersurface of M. If two of its 
dimensions are spacelike everywhere and the remaining dimension is timelike (null, spacelike) 
everywhere, H is called a timelike (null, spacelike) hypersurface. A surface B is always meant to be a 
two-dimensional spacelike subset of M. A light ray does not refer to an electromagnetic wave or 
photon, but simply a null geodesic. Unless stated otherwisely, Planck units are used throughout, i.e., 
units for which h=c=k=G=1.  
 
 
1.2 A CRASH COURSE IN GENERAL RELATIVITY 
 
Einstein’s theory of general relativity (GR), which he introduced in 1915, is a theory of gravitation. 
According to GR, there are no such thing as a gravitational force. Gravitation is just a manifestation of 
curved space-time. In GR our world is a 3+1-dimensional space-time. When matter or energy is 
present, space-time curves, and free particles follow geodesics in the geometry that results from the 
curvature. What determines the curvature in GR is the energy-momentum tensor, Tab. This tensor 
contains the matter and energy density. The curvature is given by a metric tensor, gab, which is 
calculated from Tab through Einstein’s equation: 
  

ababab T8Rg
2
1R π=− ,                    (1.1) 

 
where 
 

)Tg
2
1T(8R ababab −π=                     (1.2) 
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R = -8πT                     (1.3) 
 
and T is the trace of the energy-momentum tensor. As soon as the metric is known, we basically have 
everything we need to determine the motion of particles. This might sound simple, but the simplicity is 
deceptive. Actually, Einstein’s equation can be solved analytically only in a few simple, although 
interesting and important, special cases.  
 
This extremely brief and incomplete summary of what GR is all about is actually everything we will 
need in this thesis. The reader who wants to learn and understand GR and get a firm grip of Einstein’s 
equation, or finds this summary utterly impossible to understand (which by no doubt might be the 
case), is advised to take a  closer look at the large amount of literature written about GR.  
 
 
 
 
 
 
 
 
 
 
 
 
 
1.3 BLACK HOLES AND THERMODYNAMICS 
 
According to the classical theory of general relativity, a gravitationally collapsing star of mass M will 
shrink, in a short time as measured by an observer on the surface, to a radius of order 2GM/c2, at 
which the gravitational field becomes so strong that no further radiation or anything else can escape. 
The region of space-time from which it is not possible to escape is called a black hole, and its 
boundary is called the event horizon. This is the classical picture of a black hole. However, when 
quantum effects are taken into account it turns out that a black hole is not completely black. As 
Hawking was the first to show, radiation tunnels out through the event horizon and escapes at a steady 
rate.  
 
In the theory of black holes, black-hole physics, there are a number of analogies to thermodynamics. 
Most striking is the similarity in the behaviours of black-hole area and of entropy: Both quantities tend 
to increase irreversibly. Hawking has given a general proof that the black-hole area cannot decrease in 
any process [21], which is analog to the fact that the entropy of a closed thermodynamical system 
cannot decrease. It might appear that this similarity is of a very superficial nature. It can however be 
shown that this formal analog for black holes of the second law of thermodynamics extends to the 
other laws of thermodynamics as well.  
 
If we consider a Kerr black hole, i.e., a charged and rotating black hole, with mass M, charge Q and 
angular momentum L, it can be shown, see Ref. [14], that the following formula holds:  
 

dLdA
8
1dM Ω+κ
π

= ,                    (1.4) 

 
where  
 

22/1222

2/1222

Q])QaM(M[M2
)QaM(

−−−+

−−
=κ ,                  (1.5) 
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22 ar
a
+

=Ω
+

,                    (1.6) 

 
and  
 
a = L/M                    (1.7) 
 
r± = M ± (M2 – a2 – Q2)1/2.                    (1.8) 
 
We noted earlier in this section that the black hole area theorem is analogous to the second law of 
thermodynamics. We now have a formula for dM, which bears a strong resemblance to the first law of 
thermodynamics: 
 
dE = TdS + work terms.                   (1.9) 
 
 
 
 
 
 
 
 
 
 
The term ΩdL in Eq. (1.4) is analogous to the ”work term” PdV of the first law, and for an ordinary 
rotating body a term of the form ΩdL would be present in the thermodynamical formula. The term dA 
appears in Eq. (1.4) in the same manner as dS appears in the first law of thermodynamics, except 
being multiplied by (1/8π)κ rather than T, so κ plays the role of temperature in the black hole laws. It 
can be shown [14] that κ satisifies an important property analogous to the property of temperature in 
the zeroth law of thermodynamics: it is uniform over an ”equilibrium” (i.e., stationary) black hole. 
From Eq. (1.5) we can see that for a charged Kerr black hole, κ vanishes only for the ”extreme” case 
M = a2 + Q2. Explicit calculations [22] show that the closer one gets to an ”extreme” black hole, the 
harder it is to get a further step closer, in a manner similar to the third law of thermodynamics, which 
in one of its versions states that it is impossible to achieve T=0 by a physical process.  
 
So we have the analogous quantitites E and M, T and ακ, and S and (1/8πα)A where α is a constant. A 
hint that the relation between thermodynamics and black hole physics might be more than just an 
analogy comes from the fact that E and M are not merely analogs in the formulas, but represent the 
same physical quantity: total energy. However, the thermodynamical temperature of a black hole in 
classical general relativity is absolute zero, since a black hole is a perfect absorber, but does not emit 
anything. So it seems like κ could not physically represent a temperature. But in 1974, Hawking 
discovered, as discussed earlier in this section, that quantum effects result in an ”emission” of particles 
from a black hole with a blackbody spectrum at temperature T = κ/2π. Thus, κ does physically 
represent the thermodynamical temperature of a black hole, which suggests that the relationship 
between laws of black hole physics and thermodynamics may be much more than an analogy. The 
black hole laws discussed above may be precisely the ordinary laws of thermodynamics applied to a 
black hole.  
 
With help of T = κ/2π, and the analogous correspondence between T and ακ, we can set α=1/2π. This 
means that the remaining analogous quantities are S and (1/4)A. Does a forth of the horizon area 
represent the entropy of a black hole? We shall argue that the answer seems to be yes. The ordinary 
second law of thermodynamics state that the total entropy of matter in the universe never decreases. 
However, if a black hole is present, one would like to restrict attention to matter outside black holes, 
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since matter that falls in is ”swallowed up” by the singularity within the black hole and, in any case, it 
cannot be measured by an external observer. However, one easily can make the total entropy, S, of 
matter outside black holes decrease, by dropping matter into a black hole. On the other hand, the area 
theorem of classical general relativity states that the surface area, A, of a black hole never decreases.  
 
When we include quantum effects, however, we can violate this. An isolated black hole eventually 
”evaporates” completely, decreasing its area to zero. So when black holes are present and we include 
quantum effects, both the ordinary second law and the area theorem can be violated. However, in the 
processes where dS > 0 due to loss of matter into a black hole, we increase the black hole area, dA > 0. 
Similarly, in the evaporation process where dA < 0, we increase the entropy of matter outside black 
holes, dS > 0, by the emission of thermal radiation. Therefore, we define the generalized entropy, S’, 
by  
 

A
4
1S'S += ,                  (1.10) 

 
an idea originally due to Bekenstein. The fact that a decrease in S always seems to be compensated by 
an increase in A and the other way around, suggests that in any process, the generalized second law 
(GSL), 
 
dS’ ≥ 0                   (1.11) 
 
 
 
 
 
may be valid. Actually Eq. (1.10) was proposed by Bekenstein (except for an undetermined numerical 
factor in front of A) before the discovery of the quantum effects. But it turns out that quantum effects 
are necessary for it to be satisfied, prohibiting processes who otherwise could violate the generalized 
law. The generalized second law appears to hold, at least insofar as it can be tested by 
gedankenexperiments.  
 
The generalized second law has a natural and simple interpretation. It can be viewed as nothing more 
than the ordinary second law of thermodynamics applied to a system containing a black hole, if we 
assign one forth of the area A as the physical entropy of the black hole. If this final step is taken, there 
would no longer be an analogy between black-hole physics and thermodynamics. The laws of black 
hole thermodynamics would be seen as nothing more than the ordinary laws of thermodynamics 
applied to a self-gravitating quantum system containing a black hole.  
 
So, the apparent validity of the generalized second law, suggests that (1/4)A is the thermodynamical 
entropy of a black hole. But the underlying physical basis by which it arises remains unclear. It is a 
situation in black-hole physics which is very similar to the situation with regard to ordinary 
thermodynamics prior to the discovery of the underlying basis of these laws arising from statistical 
physics. We have discovered the laws of black hole thermodynamics, but the underlying basis of these 
laws is not known and will probably not be fully understood until we have a quantum theory of 
gravitation. String theory has made some attempts to derive the formula for the entropy of a black hole 
from more fundamental ideas, but it is still far from obvious that it is the correct road to walk.   
 
 
1.4 OUTLINE 
 
Ch.1 contains material that is intented to help a reader who encounters this thesis with insufficient 
knowledge of the key concepts that occur in the text. My reason for including this is that I wanted the 
thesis to be possible to read and understand for as many people as possible.  
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In Ch.2 we start by formulating Bekenstein’s entropy bound, discussing the ideas that led to this 
conjecture and its range of validity. Bekenstein was the first to recognize the fact that there might be a 
bound on the entropy of physical systems, and his conjecture will be an important starting point for the 
formulation of our covariant entropy conjecture.  
 
Using Bekenstein’s conjecture as a starting point, in Ch.3 we try to generalize this conjecture, guided 
by a wish for general covariance, following the work of Bousso [16-18]. This leads us to a covariant 
entropy conjecture which we will discuss and state in detail. 
 
In Ch.4 we show that the covariant entropy conjecture implies Bekenstein’s bound as a special case, 
which is an important point if we want to keep our believes in our conjecture. Furthermore, we test our 
conjecture for different cosmological solutions, showing that the conjecture passes all this test.    
 
The holographic principle is introduced in Ch.5 and is shown to follow from our covariant entropy 
bound. We introduce the important concept of screens and discuss how to construct them. 
 
Ch.6 is dedicated to applications of the holographic principle to various cosmological situations.  
 
In Ch.7 we discuss the possible implications of the holographic principle for a theory of quantum 
gravity, as well as the possibility of a general holographic theory.  
 
 
 
 
 
 
 
2.  A NON-COVARIANT ENTROPY CONJECTURE 
 
2.1 WHAT BOUNDS THE ENTROPY?   
 
Already in 1981, Bekenstein [1] suggested that there is a surprising limitation for the entropy of a 
physical system. Let us follow the chain of reasoning which led Bekenstein to conjecturing this 
limitation.  
 
Classically, we can view entropy S, as a measure of the available phase space for the system in 
consideration. Let our system have energy E, or alternatively, an energy which does not exceed E. 
This implies a limitation for the momentum space which is available for the system (on condition that 
the potential energy is limited from below). If the system is bounded in space as well, its phase space 
and hence also the entropy is bounded. Clearly the upper bound on the entropy increases when E 
grows. But how does it grow with E? Does it grow linearly or non-linearly? What value does a 
possible proportionality constant assume? Can we say anything at all about how S grows with E, 
without knowing how our system is composed in detail?  
 
To approach the answers to these questions we look upon the sky, and for a moment we turn our 
attention to black holes. For systems with negligible self-gravitation, i.e., systems where gravitation 
plays a subordinate role and is not the dominating force, it turns out that we can find an upper bound 
for S/E, the quotient of entropy and energy. According to the generalized form of the second law of 
thermodynamics (GSL), which we discussed in Sec.1.3, the sum of the entropy outside a black hole 
and the entropy of the black hole itself (which from Sec.1.3 is a quarter of the area of the horizon of 
the black hole), can never decrease. A known result regarding black holes, is that when a black hole 
swallows a body with limited self-gravitation, energy E and effective radius1 R, the surface area of the 
black hole has to increase by at least 8πER [2,3]. It is possible to arrange this process when the body is 
swallowed by the black hole in such a way that this least value of the increase is assumed  [2].  
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Where does this 8πER come from? Let us calculate the minimum possible increase in black-hole area 
which must result when a spherical particle with mass µ and proper radius b is captured by a Kerr 
black hole. We are interested in the increase in area ascribed to the particle itself, and not any increase 
incidental to the process of bringing the particle to the black-hole horizon. We shall ignore all 
incidental effects and focus on the increase caused by the particle all by itself.  
 
We assume that the particle is neutral so that it follows a geodesic of the Kerr geometry when falling 
freely. We use the Kerr metric with Boyer-Lindquist coordinates: 
 
ds2=gttdt2+2gtφdtdφ + gφφdφ2+grrdr2+gθθdθ2. 
 
For grr we have 
 
grr = (r2+a2cos2θ)∆-1, 
 
where  
 
∆ = r2-2Mr + a2 + Q2.  
 
The event horizon is located at r=r+, where r± is given by Eq. (X.x). We have 
 
∆ = (r – r-)(r – r+).  
 
First integrals for geodesic motion in Kerr background have been given by Carter [ 25]. As a starting 
point for our analysis we will use the first integral 
 
E2[r4+a2(r2+2Mr-Q2)] – 2E(2Mr-Q2)apφ - (r2-2Mr + Q2)pφ

2 – (µ2r2 + q) ∆ = (pr ∆)2 
 
where E = -pt is the conserved energy, pφ is the conserved component of angular momentum in the 
direction of the axis of symmetry, q is Carter´s fourth constant of the motion [25], µ is the rest mass of 
the particle, and pr is its covariant radial momentum.  
 
We now solve Eq.(X.x) for E, giving us 
 
E = Bapφ + {[B2a2+A-1(r2-2Mr+Q2)]pφ

2 + A-1[(µ2r2 + q) ∆ + (pr ∆)2]}1/2,  
 
where  
 
A = r4 + a2(r2 + 2Mr – Q2),  
 
B = (2Mr – Q2)A-1.  
 
At the event horizon, ∆=0 (see Eq. (X:x)) so there we have 
 
A = A+ = (r+

2 + a2)2, 
 
B = B+ = (r+

2 + a2)-1. 
 
Furthermore, at the horizon Ba=Ω, and the coefficients of pφ

2 and µ2r2 + q in Eq. (X.x) vanish. 
However,  
 
pr ∆ = (r2 + a2 cos2 θ) pr 
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does not vanish at the horizon in general. If the particle’s orbit intersects the horizon, we have from 
Eq. (X.x) that 
 
E = Ωpφ + A+

-1/2 |pr ∆|+ 
 
As a result of the capture, the black hole’s mass increases by E and its component of angular 
momentum in the direction of the symmetry axis increases by pφ. Therefore, according to Eq. (X.x), 
the black hole’s rationalized area will increase by θ-1A+

-1/2 |pr ∆|+. As pointed out by Christodoulou this 
increase vanishes only if the particle is captured from a turning point in its orbit in which case |pr ∆|+ = 
0. In this case we have 
 
E = Ωpφ. 
 
This analysis shows that it is possible for a black hole to capture a point particle without increasing its 
area. How is this conclusion changed if the particle has a nonzero proper radius b? We start by noting 
that no matter how the particle arrives at the horizon, it must clearly aquire its parameters E, pφ and q 
while every part of it is still outside the horizon, i.e., while it is not yet part of the black hole. 
Moreover, as the particle is captured, it must already be detached from whatever system brought it to 
the horizon, so that it may be regarded as falling freely. This means that Eq. (X.x) should always 
describe the motion of the particle’s center of mass at the moment of capture.  
 
To generalize our previous result to the present case, we should evaluate Eq. (X.x) not at r=r+, but at r 
= r+ + δ, where δ is determined by  
 

∫
δ++

+

=
r

r

2/1
rr bdr)g(  

(r = r+ + δ is a point a proper distance b outside the horizon). Using Eq. (X.x) we find that  
 
b = 2δ1/2(r+

2 + a2cos2θ)1/2(r+ - r-)-1/2.  
 
We have assumed that r+ - r-  >> δ (black hole not nearly extreme). Expanding the argument of the 
square root in Eq. (X.x) in powers of δ, replacing δ by its value given by Eq. (X.x), and keeping only 
terms to O(b), we get  
 
E = Ωpφ + (1/2)b[( r+

2 – a2)(r+
2 + a2)-1pφ

2 + µ2r+
2 + q]1/2(r+ - r-)(r+

2 + a2)-1(r+
2 + a2cos2θ)-1/2. 

 
We have in this calculation already assumed that the particle reaches a turning point as it is captured 
since we know that this minimizes the increase in black-hole area.  
 
What is q in Eq. (X.x)? We can obtain a lower bound for it as follows. From the requirement that the θ 
momentum pθ be real it follows that [25]  
 
q ≥ cos2θ[a2(µ2-E2) + pφ

2/sin2θ];  
 
where the equality holds when pθ = 0 at the point in question. If we replace E in Eq. (X.x) by Ωpφ (see 
Eq. (X.x)) we obtain  
 
q ≥ cos2θ[a2µ2 + pφ

2(1/sin2θ – a2 Ω2)],  
 
which is correct to zeroth order in b. We know that 1/sin2θ ≥ 1 and it is easily shown that a2 Ω2 ≤1/4 
for a charged Kerr black hole. This means that q ≥ a2µ2cos2θ. Using this in Eq. (X.x) we obtain  
 
E ≥ Ωpφ+ (1/2)µb(r+ - r-)(r+

2 + a2)-1 
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which is correct to O(b). By retracing our steps we can see that the inequality sign in Eq. (X.x) 
corresponds to the case pφ=pθ=pr=0 at the point of capture. The increase in black-hole area, computed 
by means of Eq. (X.x), Eq. (X.x) and Eq. (X.x), is  
 
∆α ≥ 2µb.  
 
This gives the fundamental lower bound on the increase in black-hole area. We note that it is 
independent of M, Q and L. Using the horizon area A instead of the rationalized area α=A/4π, we get 
 
∆A ≥ 8πµb.  
 
But this means that we will violate GSL, unless the entropy of the body cannot exceed 2πER (one 
forth of the increase in the area). This gives us a bound for the entropy of a body with limited self-
gravitation: 
   
S/E ≤ 2πR.                    (2.1) 
 
For a system enclosed in a spherical volume, gravitational stability requires that E ≤ R/2, and the 
effective radius coincide with the radius of the sphere, so from Eq. (2.1) we then get 
 
S  ≤  A/4                    (2.2) 
 
where A is the surface of the sphere.  
 
The fascinating thing about this limitation is that we use the generalized form of the second law of 
thermodynamics (GSL) for its derivation, a law whose significance is strongly coupled to gravitation, 
but the result is a bound for the entropy of systems with limited self-gravitation, i.e., systems where 
the gravitation can be neglected! All connections to gravitation has mysteriously vanished. This 
indicates that the relation might have a more fundamental meaning than what the derivation tells us.  
 
1) The effective radius R is defined as  
 

        
π

=
4
AR  

         where A is the area of the smallest sphere circumscribing the system 
  
 
 
 
 
2.2 A CLOSER LOOK AT BEKENSTEIN’S CONJECTURE 
 
Bekenstein’s result is truly beautiful and fascinating. Sad to say though, it has its limitations. In 
Sec.2.1, the conditions Bekenstein specified for the validity of his bound was not stated explicitly. The 
system under consideration must be of constant, finite size, have limited self-gravity and no matter 
components with negative energy density can be available. A system which satisfies these conditions 
will be referred to as a Bekenstein system.  
 
The last condition stems from the fact that the bound relies on the gravitational collapse of systems 
with excessive entropy, and the idea that information requires energy. With matter of negative energy 
we could add entropy to a system, without an increase in the mass, by adding enthropic matter with 
positive mass as well as an appropriate amount of negative mass, and this would violate our 
conjecture. 
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One of the most serious problems about Eq.(2.2), due to the conditions for its validity, is that it, as 
stated above, presumes systems where gravitation does not dominate. This automatically excludes 
systems such as collapsing stars and sufficiently large regions of our cosmological spacetime. In these 
cases it is a piece of cake to violate Bekenstein’s bound. Take a collapsing star for instance. When the 
star collapses, the surface area becomes arbitrarily small, while the enclosed entropy cannot decrease, 
which means that Eq.(2.2) no longer holds. Another example is a homogeneous, spacelike 
hypersurface in a flat Friedmann-Robertson-Walker universe (FRW). In this system, the dynamics is 
goverened by the cosmological expansion and in this respect gravitation is dominating. For FRW 
space is infinite so the entropy density is constant, and volumes increase more rapidly than areas. In 
other words, our bound will be violated [4].  
 
These limitations lead to a number of interesting questions. One of these is which range of validity 
Bekenstein’s formula really have in different cosmological situations. Can we specify this? This 
question has been examined in numerous situations [4,5-9], where the problems of Bekenstein’s bound 
is demonstrated when we go beyond its range of validity, and I will not touch upon this results in this 
thesis. We will, however, get an answer to this question in Sec.4.1, where we state the spacelike 
projection theorem.  
 
Let us instead try a braver project. Can we reformulate our entropy bound, so that we achieve a 
formulation which holds even in the situations mentioned above, i.e., find a more general formulation? 
Happily enough, the answer to this question seems to be yes. Some bold leaps in this direction was 
taken in [4,10-12] and underlies the formulation we are about to state, which is due to Bousso [16] 
 
 
 
 
 
 
 
 
3. A COVARIANT ENTROPY CONJECTURE 
 
3.1 FOLLOW THE LIGHT!  
 
Bekenstein’s bound for the entropy presumed, as discussed in Ch. 2, that the systems we consider are 
of finite extension and that gravitation is not allowed to dominate within the system. Moreover is 
Bekenstein’s conjecture based on spacelike hypersurfaces, which eliminates any hope of a generally 
covariant conjecture. What we will try to do is to aim for a similar bound which is covariant, i.e., has a 
universal validity. We are interested in searching for a general formulation of the entropy bound which 
can be applied to arbitrary space-times. Conservative and fearful as we are, we will try to keep the 
formula S ≤ A/4 unchanged, but change the meaning of A in this relation. This is a program which a 
priori has no guarantees for success, and which has all chances of going completely wrong. We do not 
have the slightest idea of how things work when Bekenstein’s presumptions are not fulfilled. But let us 
not worry about this for a moment, and see whether such a program is possible and where it might lead 
us.   
 
As stated above, Bekenstein’s formulation has an dissatisfying, inherent non-covariance, which we 
somehow has to get rid of if we aim for general covariance. The problem is, in a bit more detail than 
stated above, that given a closed surface B, Bekenstein’s entropy bound is concerned with the volume 
that B encloses, i.e., a specific spacelike hypersurface. But the so chosen hypersurface depends on the 
choice of time coordinate. How do we get rid of this non-convariance? One possibility is to demand 
that the bound is valid for all spacelike hypersurfaces which are enclosed by B. But the possibility of 
using any spacelike hypersurface has already been ruled out in our discussions in Sec.2.2. So what to 
do? A nice idea is that we instead use null hypersurfaces which is bounded by B. These are by nature 
covariant. How do we construct such hypersurfaces?   
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A natural way of doing this is to start at the surface B and then follow a family of light rays (also 
called a congruence of null geodesics) which leaves the surface orthogonally to the same on each side. 
But this leads immediately to a couple of questions. To start with, every two-dimensional surface, 
regardless size and shape, generates exactly four different null hypersurfaces, four different families of 
light rays. Our family of light rays can  be future-directed and outgoing, future-directed and ingoing, 
past-directed and outgoing and past-directed and ingoing (Fig. 1). Who or which of these four families 
should we choose? And moreover, how far should we follow the light rays?  
 

 
 
Figure 1: There are four families of light-rays projecting orthogonally away from a two-dimensional 
surface B, two future-directed (one to each side of B) and two past-directed families.  
 
 
 
 
 
 
 
Fischler and Susskind [4] considered spherical surfaces, i.e closed surfaces, and suggested that what 
should be used are past-directed ingoing null hypersurfaces. The resulting entropy bound works just 
fine for big regions in flat FRW-universes, for which Bekenstein’s bound could not be used. 
Unfortunately, it turns out that [4,8] Fischler and Susskind’s bound does not hold for closed or 
collapsing spacetimes. Our aim is a generally valid bound, so if we insist on using orthogonal null 
hypersurfaces we somehow have to find another selection rule for the null hypersurfaces which gives a 
bound that is satisfied in these situations as well.  
 
Let us in our search for this selection rule once again be inspired by Bekenstein’s bound. For a 
Bekenstein system, the entropy enclosed inside a closed surface B of area A cannot exceed the area A. 
But our surface B is the boundary of everything outside the enclosed region as well, and the entropy in 
this region could clearly be anything. The moral of the story is that we somehow should try to consider 
entropy only on hypersurfaces which do not lie outside the boundary. 
 
But what is meant by ”outside”? There is an ambiguity in the concepts ”inside” and ”outside” in 
general situations. Is ”inside” the side on which infinity does not reside and ”outside” where infinity 
exists? This classification works for infinite spaces, but does not lend itself to applications in closed 
spaces. Fortunately, we can from intuitive concepts generalize ”inside” and ”outside” to a rule which 
is even covariant.  
 
Consider Euclidean geometry and start with a closed surface B. Construct a new surface B’, by moving 
every point on B an infinitesimal distance away from one of B:s sides along lines orthogonal to B. If 
this increases the area, we have moved to the outside. If this decreases the area, it was the inside which 
we moved to (Fig.2a) 
 



 14

We realize from this observation that our light rays which leaves B orthogonally, which we introduced 
above, is well suited to do the job and provide us with the tools that we need to be able to formulate a 
rule for which null hypersurfaces of our surface B we should choose. Our intuitive notion of ”going 
inside” corresponds to the following procedure: Start on B, and follow any of the four families of 
orthogonal light rays, for which the cross-sectional area of neighbouring rays is constant or decreasing 
in the neighborhood of B. We can formulate it with more formal accuracy by requiring that the 
expansion of the family of orthogonal light rays should be non-positive near B, in the direction away 
from B. The expansion θ for a family of light rays is defined as the logarithmic differentiation of the 
infinitesimal cross section which is spanned by a bunch of neighbouring rays (for a more rigorous 
definition and additional discussion the reader can consult [13,14]), and measures the local rate of 
change of the cross-sectional area when we move along the light rays. This means that θ is positive if 
the cross-sectional area increases and negative if it decreases. Worth stressing once more is the fact 
that the expansion is a local quantity. Using this definition of the expansion θ, our condition for calling 
a side the ”inside” is simply that we must have  
 
θ ≤ 0                     (3.1) 
 
This gives us a covariant definition of the concepts ”inside” and ”outside”.  
 
If the expansion is positive for the future-directed light rays to one of the sides, it is negative for the 
past-directed light rays to the other side and the other way around. This follows from continuity across 
our surface B. Put another way: at least two of the four possible directions are allowed. If the 
expansion is zero in some directions, three or even all four null hypersurfaces will be allowed.   
 
Perhaps the most interesting property of our covariant definition of ”inside” and ”outside”, is that we 
have opened the door to a powerful generalization of our attempts to find a covariant entropy bound. 
We no longer have to demand that B is closed to be able to speak about ”inside”. Only our naive 
definition of ”inside” as a finite region enclosed inside a surface, needed the surface to be closed. Our 
selection rule works equally fine for open surfaces, by choosing at least two of the four null 
hypersurfaces which is bounded by B. Fig. 2b below is an attempt to illustrate the idea.  
 

 
Figure 2. [We have suppressed time and one spatial dimension.] We define the ”inside” of a two-
dimensional surface A to be the light-like direction along which the cross-sectional area decreases. 
(a): A’ ≤ A, or equivalently, θ ≤ 0. We can apply this definition to open surfaces as well (b). 
 
 
So from now on we drop the condition that the surface is closed and allow any connected two-
dimensional surface. This means that we without loss of generality can assume that the expansion in 
each of the four  null directions does not change sign anywhere on B, and if it does, we simply split B 
into suitable parts and apply our entropy conjecture to each part separately.  
 
 
3.2 WHERE TO STOP?  
 
Now we know how to choose orthogonal null hypersurfaces given an arbitrary surface B. But how far 
should we really follow the light rays which define the null hypersurfaces? We should need some kind 
of rule that tells us where to stop. For a closed space-time, it is nearly obvious that we should stop if 
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we reach the boundary of the space-time, but for an open space-time, we need another criterion. 
Otherwise the light rays would continue and generate another cone, which could be arbitrary large, and 
that is definitely not a situation we want to face if we are to find an entropy bound. Fortunately, we 
can now use the same idea as we used for choosing null hypersurfaces to find this rule. We simply 
demand that we should have θ ≤ 0 everywhere on the null hypersurfaces, not only in the 
neighbourhood of our surface B.  
 
When neighbouring light rays intersect each other they form a caustic or ”focal point” (Fig. 2b). 
Before the caustic we have θ < 0 and after we have θ > 0. This means that we now know where to 
stop, using the condition stated above. As soon a light ray reaches a caustic, for instance the vertex of 
a light cone, we stop. This gives us well-defined null hypersurfaces. Now we are in position to state, in 
an unambiguous way, how to choose and construct our null hypersurfaces. In what follows, we will 
call these priviliged null hypersurfaces light-sheets. Thus, we define a light-sheet L to a connected 
spatial two-dimensional surface B as a null hypersurface which is bounded by B and which is 
constructed by following a family of light rays orthogonally away from B, in such a way as to keep the 
expansion non-positive (θ ≤ 0) all the time.  
 
Note the fact that the expansion θ and our ”decreasing cross-sectional area” rule enters in two ways: it 
tells us which null hypersurfaces who are allowed and then it determines the light-sheets, by telling us 
how far we should proceed along the favoured null hypersurfaces.  
 
 
 
 
 
 
 
 
3.3 AVOIDING PATHOLOGICAL SCENARIOS 
 
To protect our conjecture about to be stated against pathologies, like for instance superluminal entropy 
flow, we require the dominant energy condition to hold. This condition states that for all timelike va, 
we have 
 
Tabvavb ≥ 0                   (3.2) 
 
and Tabva is a non-spacelike vector. This states that to any observer the energy density appears non-
negative and the speed of energy flow of matter is less than the speed of light. It implies that a space-
time must remain empty if it is empty at one time and no matter is coming in from infinity [13]. It is 
not a severe restriction, since all ordinary matter is believed to satisfy this condition [13,14].  
 
We also require that the space-time is inextendible and contains no null or timelike (”naked”) 
singularities. This excludes the possibility of destroying or creating entropy on such boundaries. These 
conditions are believed to hold in all physical space-times, and hence will not be explicitly stated 
below. Of course we do not exclude spacelike singularities occuring in cosmology and gravitational 
collapse.  
 
 
 
 
3.4 A COVARIANT CONJECTURE FOR THE ENTROPY 
 
After so much effort in defining light-sheets, time has come for our reward. With light-sheets well-
defined we are now in position to formulate a covariant conjecture for the entropy bound:  
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(Covariant Entropy Conjecture) Let M be a four-dimensional space-time, on which Einstein’s 
equation is satisfied with the dominant energy condition holding for matter, A be the area of an 
arbitrary connected two-dimensional spatial surface B in M, L be a light-sheet bounded by B and let S 
be the total entropy enclosed on L. Then we have S ≤  A/4.   
 
What is remarkable and appealing with this formulation is its generality. Earlier conjectures have all in 
one way or another suffered from limited presumptions, which led to a restricted range of validity and 
applicability. In the conjecture above, we associate regions which contain entropy in a very well-
defined way to each surface area in an arbitrary space-time. We dont have to require that gravitation 
is negligible, and the surface can be closed or open and furthermore assume any shape, which is an 
enormous strength of our formulation.  
 
Comparing this conjecture, with the conjecture proposed by Fischler and Susskind [4], which also uses 
null hypersurfaces, the main difference is that our conjecture considers all four light-like directions 
without prejudice and selects some of them by our selection rule of non-increasing expansion. 
 
Worth stressing though, is the fact that this simple formulation, which our conjecture assumes, is a bit 
deceptive. The construction of the light sheets can in some situations be everything but trivial. Tavakol 
and Ellis [15] showed for instance, that light-sheets can be extremely complicated structures, 
sometimes with fractal properties, in inhomogeneous space-times. But this by no means indicate that 
we should throw our rule for non-positive expansion, which defines the light-sheets, in the trashcan. 
Just because a theory suffers from complications when applied in certain situations, it does not mean 
that the theory has to be discarded. To quote Bousso [16]: ” - - - we would not discard the standard 
model merely because its application becomes impractically complicated when one is describing an 
elephant”.  
 
Another thing worth mentioning is the fact that our covariant bound assumes its strongest form when 
the light-sheet is made as large as possible, i.e., if we stop only at caustics. Of course it still remains 
valid, but becomes less powerful, if we choose to stop earlier, since it will decrease the entropy on the 
light-sheet, but not the boundary area. It has, however, been pointed out by Flanagan, Marolf and 
Wald [19], that we can strengthen our bound in this case to (A-A’)/4, where A’ is the surface area 
spanned by the endpoints of the light-rays (Fig. 2b), which goes to zero as a caustic is approached. 
This is an appealing expression, since it makes the bound additive over all directions on the light-
sheet. In this form the covariant entropy bound implies the generalized second law of thermodynamics 
[19].  
  
 
 
3.5 A RECIPE FOR THE PRACTICALLY-MINDED 
 
After a great deal of formal accuracy and general formulations, it might be a good idea to formulate 
our conjecture in a more practical way, for instance as a step-by-step-procedure, which is the aim of 
this section. The recipe to follow is:   
 
1. Pick an arbitrary two-dimensional surface B in the space-time M under consideration.  
 
2. For B there exists four families of light rays which leaves B orthogonally (unless B happen to  

reside on the boundary of M).  
Let us call these F1, F2, F3 och F4.  

 
3. If the expansion is positive (in the direction away from B), i.e., the cross-sectional area increases, 

we must not use that actual family of light rays. If, on the other hand, the expansion is zero or 
negative, the actual family of light rays can be used.  

 
4.   After performing this test for each of the four families of light rays, we have to our disposal at least  
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      two allowed families (if the expansion is zero in some directions we might have as many  
      as three or four allowed families).  
 
5.  Choose one of the allowed families, Fi. Now, construct a light-sheet Li, by following each light ray  
     until anything of the following occurs:  
 

(a) The light ray reaches the boundary or a singularity of the space-time.  
(b) The expansion becomes positive, i.e., the cross-sectional area  which is spanned by the actual 

family, starts to increase in a neighbourhood of the light ray.  
 
      This gives us a light-sheet for each one of the allowed families.   
 
6. Our conjecture now tells us that the entropy Si on the light-sheet Li does not exceed a quarter of 

the area A of B:  
 

Si  ≤ A/4.  
 

      Note that the bound applies to each of the allowed light sheets separately. Since B can have as         
      many as four light sheets, it is possible that the total entropy on all light sheets adds up to as much  
      as A. 

 
A few remarks might be useful at this point. We often refer to F1….F4 as future-directed ingoing, 
future-directed outgoing, past-directed ingoing and past-directed outgoing families respectively. The 
names ”ingoing” and ”outgoing” are only two arbitrary labels to distinguish between the two sides of 
B. Only when B is closed there are reasons to be a bit more careful when assigning these names. 
Actually, nothing in our rule for choosing families makes a distinction between ”ingoing” and 
”outgoing”.   
 
If B is closed, we can characterize it as trapped, anti-trapped or normal (se [13,14] for definitions). 
This gives a simple criterion for the allowed families. If B is trapped (anti-trapped), it has two future-
directed (past-directed) light-sheets. If B is normal, it has a future-directed and a past-directed light 
sheet on the same side, usually called the inside. If B lies on an apparent horizon (the boundary 
between a trapped or anti-trapped region and a normal region), it can have more than two light-sheets. 
 
 

 
 
Figure 3. [In (a) we have suppressed one spatial dimension (a surface becomes a line). In (b,c) we 
have suppressed two spatial dimensions (a surface becomes a point). A fixed light-like angle separates 
spacelike and timelike directions.] A is the two-dimensional boundary of four 2+1-dimensional light-
like hypersurfaces (a), who are covariantly generated by the past- and future-directed light-rays going 
to either side of A, so for a normal spherical surface they are given by two cones and two ”skirts” (a).  
In a Penrose diagram, where spheres are represented by points, the null hypersurfaces show up as the 
three legs of an X (b). Null hypersurfaces with decreasing cross-sectional area, such as the two cones 
in (a), are called light-sheets. The light sheets for normal (c1), trapped (c2), and anti-trapped (c3) 
spherical surfaces are shown. If gravity is weak, as in (a), the light-sheet directions agree with our 
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intuitive notion of ”inside” (c1). For surfaces in a black hole interior, both of the future-directed 
hypersurfaces collapse (c2). Near the big bang, the cosmological expansion makes the area decrease 
on both past-directed hypersurfaces (c3).  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  TESTING THE COVARIANT ENTROPY CONJECTURE 
 
4.1 BEKENSTEIN’S CONJECTURE – A LIMITING CASE  
 
After formulating our conjecture for a covariant entropy bound, there remains to see how well it works 
in various situations, where different more or less intricate situations and cosmologies are used to test 
the conjecture. Before it is clear that it can withstand these tests without remarks, our conjecture is 
merely a theoretical construction of limited significance. One failed test is enough to falsify our 
conjecture. So how does our conjecture cope when put under the magnifying glass?  
 
One first important test, is whether our covariant bound implies Bekenstein’s bound in the appropriate 
limit. How can such a thing be proven? There seems to be an obvious distinction between the two 
conjectures. In our covariant formulation we use null hypersurfaces, in Bekenstein’s formulation 
spatial surfaces is used, so where is the connection?  
 
It turns out that there is a large class of situations, where an entropy bound on spacelike hypersurfaces 
is implied by our covariant entropy bound. We will examine under what presumptions this is the case, 
and derive a theorem for the entropy of spatial regions. We then proceed to show that Bekenstein’s 
bound follows from our covariant bound, as a special case of this theorem. 
 
Let A be the area of a closed surface B, which has at least one future-directed light-sheet L. We 
furthermore assume that L has no other boundary besides B. We can then call the direction of this light 
sheet the ”inside” of B. Let the spatial region V be the interior of B on some spacelike hypersurface 
through B. If the region V is enclosed in the causal past of the light-sheet L, the dominant energy 
condition implies that all matter in V eventually has to pass through the light-sheet L. But then the 



 19

second law of thermodynamics tells us that the entropy on V, SV, cannot exceed the entropy on L, SL. 
From our covariant entropy bound we know that SL ≤ Α/4. Τhus the entropy of the spatial region V 
cannot exceed one forth of the boundary area, i.e., SV ≤ Α/4. 
 
The condition that the future-directed light-sheet L does not possess a boundary ensures us that no 
entropy in V disappears through holes in L. Neither can any entropy disappear in a black hole 
singularity, since we have required that the spatial region must reside in the causal past of L. Since we 
always assumes that the space-time is inextendible and that no naked singularities are present, all 
entropy on V must go through L.  
 
We are therefore led to the following theorem: 
 
(Spacelike Projection Theorem) Let A be the area of a closed surface B possessing a future-directed 
light-sheet L, with no boundary other than B. Let the spatial region V be contained in the intersection 
of the causal past of L with any spacelike hypersurface containing B. Let S be the entropy on V. Then 
S≤A/4.  
 
 
 
 
 
 
 
 
 
 
 
Consider now, in asymptotically flat space, a Bekenstein system in a spatial region V, bounded by a 
closed surface B of area A. The future-directed ingoing light sheet L of B exists (otherwise B would 
not have limited self-gravitation), and can be taken to terminate when two light rays meet. We thus 
have no other boundary besides B. Since the gravitation in a Bekenstein system is not strong enough to 
form a black hole, V is enclosed in the causal past of L. This means that the presumptions of the 
theorem are fulfilled, and the entropy of the system must not exceed A/4. This means that we have 
reached Bekenstein’s bound from our covariant formulation.  
 
 
4.2 COSMOLOGICAL TESTS OF THE COVARIANT ENTROPY CONJECTURE 
 
We have seen in section 4.1 that our covariant entropy conjecture implies Bekenstein’s bound in the 
appropriate limit. Now it is time to see how our conjecture copes with cosmological models.  So the 
question is: Does our conjecture pass the test?  
 
We will apply our covariant bound to the cosmological models that our universe is believed to be 
described by, and others that certainly not is a good description of our universe. We have, in the 
formulation of our conjecture, claimed that it is valid for all space-times that satisfy Einstein’s 
equation (with the dominant energy condition), so it must in particular then be valid for cosmological 
solutions.  
 
We will consider Friedmann-Robertson-Walker (FRW) cosmologies. These have a metric of the form  
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[ ]222222 d)(fdd)(ads Ωχ+χ+η−η=                   (4.2) 
 
where as usual, k=-1,0,1 and f(χ)=sinh χ, χ, sin χ, correspond to open, flat and closed universes 
respectively.  
 
The Hubble horizon is the inverse of the expansion rate H:  
 
rHH = H-1 = a  / da/dt                   (4.3) 
 
The particle horizon is the distance travelled by light since the Big Bang: 
 
rPH= η                    (4.4) 
 
The apparent horizon is defined geometrically as a sphere at which at least one pair of orthogonal null 
congruences have zero expansion, and is given by [7]  
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With the help of Friedmann’s equation  
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where ρ is the energy density of matter, we find that 
 

πρ
=

8
3rAH                     (4.7) 

 
 
We consider matter described by the energy-momentum tensor Tab=diag(ρ, p, p, p), with p=γρ as the 
equation of state. Our dominant energy condition then requires that  ρ≥ 0 and –1 ≤ γ ≤ 1. The case with 
γ = - 1 is special from the others, since it gives a different global structure. It is the so called de Sitter 
space, which lacks past or future singularities. This is actually an interesting case since it describes an 
inflationary universe, and we will get back to this later.  
 
What we will do next, is to test our entropy conjecture on spherical surfaces B characterized by some 
value of r, or (η, χ). As discussed earlier in Sec.3.5 the directions of the light-sheets on a surface 
depend on its classification as trapped, normal or anti-trapped. Close to χ=0 (and for closed universes, 
also on the opposite pole, near χ=π), the spherical surfaces will be normal. The larger spheres beyond 
the apparent horizon(s), will be anti-trapped. Some universes, for instance, most closed universes, or a 
flat universe with a negative cosmological constant [8], recollapse. Such universes necessarily contain 
trapped surfaces. Trapped surfaces also can occur by gravitational collapse. Surfaces inside such 
regions is a serious challenge for our conjecture, since their area shrinks to zero, while the entropy 
cannot decrease. We will get back to this problem later on, and argue that the conjecture nevertheless 
holds even in these regions. We will start by considering anti-trapped surfaces and then proceed to 
normal and trapped surfaces.  
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4.3 ANTI-TRAPPED SURFACES 
 
An anti-trapped surface B is characterized by two past-directed light-sheets. Unless B lies within the 
particle horizon, both light-sheets will be ”truncated” at the Planck era near the past singularity. The 
truncation has the nice property that the volume the light-sheets sweep out grows roughly like the area 
A, and not like A3/2. Actually, the ”ingoing” light-sheet coincides with the ”truncated lightcones” used 
in the conjecture of Fischler and Susskind [4], and the other light-sheet can be treated similarly. In 
open universes the bound will be satisfied more comfortably then in flat ones [4]. The bound was 
checked for flat universes with 0 ≤ γ ≤ 1 in [4] and for –1< γ < 0 in [8]. Here I will present a summary 
of these results and discuss some connected issues, regarding inflation.  
  
Near a past singularity, it is quite simple to see why our bound is satisfied.  The first moment of time 
we really can talk about without getting into trouble is one Planck time after the singularity. At his 
time, up to a factor of order one, there cannot have been more than one unit of entropy per Planck 
volume. This is a mere application of the usual Planck scale cutoff. We cannot continue our light-
sheets into regions where we cannot control the physics.  A backward light-sheet with area A specified 
at the time t=2tPl will be truncated at t = tPl. It will sweep a volume of order AlPl and the entropy bound 
will be at most saturated.  
 
 
 
 
 
 
We can define σ as the entropy/area ratio at the Planck time. Consider a universe filled with matter 
allowed by the dominant energy condition, -1 ≤ γ ≤ 1. We can exclude γ = -1, since this case (de Sitter 
space) contains no past singularity. Our scale factor is  
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If we have adiabatic evolution, we have for the ratio of entropy to area that [8] 
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for any past-directed light-sheet of areas specified at a later time t. We have a non-positive exponent, 
so the ratio does not increase. Since this bound is satisfied at the Planck time, it will remain satisfied at 
later times.  
 
If the evolution is non-adiabatic, the entropy bound nevertheless predicts that S/A ≤ 1/4, which implies 
that we have a limitation for the rate at which our universe can produce entropy.  
 
In our discussion above, we have used the standard cosmology all the way back to the Planck era. This 
is not seriously tenable. There are some properties of our universe, such as homogenity and flatness, 
which usually are explained by assuming that the radiation dominated era was preceded by a vacuum 
dominated era, where our universe was rapidly blown up like a balloon. This is called inflation. 
 
Inflation ends on a spacelike hypersurface V at t=treheat. At this time, all the entropy in the universe is 
produced through reheating. Both before and after reheating, all spheres will be anti-trapped, except in 
a small neighbourhood of r=0, of the size of the apparent horizon. So our spacelike projection theorem 
does not apply to any but the smallest of the surfaces B in V. The other spheres may be exponentially 
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large, but our covariant conjecture does not relate their area to the enclosed entropy. The size and total 
entropy of the reheating hypersurface V is thus irrelevant.  
 
Outside the apparent horizon, entropy/area comparisons can only be done on the light-sheets specified 
in the conjecture. The past-directed light-sheets of anti-trapped surfaces of the post-inflationary 
universe intersect V. Since there are virtually no entropy during inflation, we can consider the light-
sheets to be truncated by the reheating surface. Because inflation cannot produce more than one unit of 
entropy per Planck volume, the bound will be satisifed by the same arguments that were given above 
for universes with a Big Bang.  
 
4.4 NORMAL SURFACES 
 
Spatial regions enclosed by normal surfaces, will in a sense, turn out to be very much like Bekenstein 
systems. How can we understand this? First, we have to establish a few properties of Bekenstein 
systems. We will call the first bound, Eq. (2.1), Bekenstein's entropy/mass bound, and the second 
bound, Eq. (2.2), Bekenstein's entropy/area bound. Since a Bekenstein system must be gravitationally 
stable (M ≤ R/2), which implies 2πRE = πR2 = A/4, the entropy/mass bound is always at least as tight 
as the entropy/area bound for a spherical Bekenstein system of a given radius and mass. A spherical 
Bekenstein system that saturates the entropy/area bound will be called a saturated Bekenstein system. 
This system will also saturate the entropy/mass bound, due to what was said above.  
 
 
 
 
 
 
An example of a saturated Bekenstein system is a black hole, viewed from the outside, in semi-
classical gravity. In many occasions though, it is simpler to think of an ordinary, maximally enthropic, 
spherical thermodynamic system just on the verge of gravitational collapse. We also introduce the 
term mass-saturated Bekenstein system, which refers to a system that saturates the entropy/mass bound 
but not the entropy/area bound.  
 
The normal region contains a past- and future-directed light-sheet. They are both ingoing, i.e., they are 
directed towards the center of the region at χ=0 (or χ=π for the normal region near the opposite pole in 
closed universes). This is the important point. If outgoing light-sheets existed even as χ goes to zero, 
the area would become arbitrarily small while the entropy remained finite. Except for this constraint, 
the past-directed light-sheet coincides with the light-cones used by Fischler and Susskind [4]. The 
entropy/area bound has been shown to hold on such surfaces [4,7,8]. Therefore, we focus on the 
future-directed light-sheet.  
 
The future-directed light-sheet covers the same co-moving volume as the past light-sheet, so the 
covariant entropy bound will be satisfied on it if the evolution is adiabatic. We though have to allow 
for the possibility that additional entropy is produced. As an example, consider the outermost surface 
on which future-directed light-sheets are still allowed, a sphere B on the apparent horizon. Suppose 
that a group of experimental cosmologists within the apparent horizon are determined to break the 
entropy bound. They must produce as much entropy as possible before the matter passes through the 
future-directed light-sheet L of B. What is their best shot?  
 
They cannot collect mass from outside B, since L is a null hypersurface bounded by B and the 
dominant energy condition holds, which makes spacelike energy flow impossible. The system with 
most entropy is a saturated Bekenstein system, so they should convert all the matter into such systems.  
 
If all matter is condensed into several small highly enthropic systems, they will be widely separated, 
i.e., surrounded by empty regions of space which are large, flat and static compared to the length scale 
of any individual system. Since we are envoking the dominant energy condition, no negative energy is 
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present. So all the conditions for Bekenstein's bound are fulfilled. So we can apply Bekenstein's 
bounds to the systems, and we will use the entropy/mass bound, Eq. (2.1), since it is tighter. To create 
the maximum amount of entropy, however, it is best to put the matter into a few large saturated 
Bekenstein systems, rather than many small ones. So we should take the limit of a Bekenstein system, 
as large as the apparent horizon and containing the entire mass within it. A question that arises at this 
point, is whether the calculation remains consistent in this limit, both in its evaluation of the mass and 
in its treatment of the interior as a Bekenstein system. We will show below, that the interior of the 
apparent horizon is in fact the largest system for which Bekenstein's conditions can be considered to 
hold. The same conclusion can be reached within the framework of the covariant entropy conjecture 
by using the spacelike projection theorem (see Sec.4.1).  
 
The use of an entropy/mass bound in general space-times demands a certain measure of carefulness, 
since there are no concept of local energy density. In our case, however, the mass in certainly well-
defined before we take the limit of a single Bekenstein system, since our multitude of saturated 
systems will be widely separated and can be treated as residing in asymptotically flat space. In the 
limit of a single system, we can follow [7], and treat the interior of the apparent horizon as part of an 
oversized spherical star. We are thus pretending that somewhere beyond the apparent horizon, the 
space-time may become asymptotically flat and empty. This is not an inconsistent assumption as long 
as Bekenstein's conditions are satisfied, and we show below that this is indeed the case. Then we can 
apply the usual mass definition for spherically symmetric systems [21] to the interior region.  
 
 
 
 
 
 
The circumferential radius of our system is the apparent horizon radius, and is given by Eq. (4.7): 
 

πρ
=

8
3rAH .                  (4.10) 

 
The mass inside the apparent horizon is given by [21]: 
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This gives us r = 2M(rAH). From Eq.(1.1), Bekenstein's entropy/mass bound, the entropy cannot 
exceed 2πM(rAH)rAH. So we find 
 
SMAX = πrAH

2                 (4.12) 
 
which is exactly a quarter of the area of the apparent horizon.  
 
Eq. (4.7) follows from the Friedmann equation (which involves only the density but not the pressure), 
and from Eq. (4.5), which is a geometric property of the FRW metrics, so our calculation holds 
independently of the equation of state. We have not dropped any factors of order one, and attained 
exactly the saturation of the bound. This would not be the case for the Hubble horizon or the particle 
horizon. We thus conclude that the entropy on the future-directed light-sheet L will not exceed a 
quarter of the area of the boundary B. The covariant entropy bound may be saturated on the apparent 
horizon, but it is not violated, despite the cosmologists furious attempts to produce entropy.  
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5. THE HOLOGRAPHIC PRINCIPLE  
 
5.1 THE MYSTERIOUS T-INVARIANCE AND THE HOLOGRAPHIC PRINCIPLE. 
 
An important and surprising property of our covariant entropy bound is that there is no explicit 
reference to future and past. This means that our bound is invariant under time reversal (T-invariant). 
This is a bit mysterious in a law about thermodynamic entropy. Our only way out of this mystery is to 
interpret the covariant bound not only as an entropy bound, but as a bound on the number of degrees 
of freedom Ndof that constitute the statistical origin of entropy. From our conjecture we thus have  
 
Ndof ≤ A/4                     (5.1) 
 
where Ndof is the number of degrees of freedom present on the light-sheet of A. We have made no 
assumptions about the microscopic properties of matter, so our limit is fundamental. There cannot be 
more independent degrees of freedom on L than A/4. This principle is called the holographic 
principle. One might say that logically, since S ≤ Ndof , our entropy bound follows from the 
holographic principle. It is though intellectually appealing to consider the entropy bound first, since 
the mystery of its T-invariance naturally leads us to the holographic principle. The analogous step was 
a lot bolder when it was taken by ’t Hooft [10] and Susskind [11], since more conservative 
interpretations of Bekenstein’s bound were available. Given our covariant bound, the necessity for a 
holographic interpretation is much more obvious.  
 
We formulate our holographic principle rigorously as: 
 
(Holographic Principle) Let a be the area of a two-dimensional connected spatial surface B. Let L be 
a light-sheet of B. Then the total number of independent quantum degrees of freedom Ndof present on L 
satisfies Ndof ≤ A/4.   
 
Another way of expressing the same thing is by formalizing independent quantum degrees of freedom.  
If N is the number of elements of an orthonormal basis of the quantum Hilbert space that fully 
describes all physics on the light-sheet L, we then have N ≤ eA/4.  
 
In the same way as our covariant entropy bound associates the area of a surface B with entropy on null 
hypersurfaces bounded by B, the holographic principle associates the area of a surface B with degrees 
of freedom on null hypersurfaces. We saw in Sec.4.1 that we could use our covariant entropy 
conjecture on spacelike hypersurfaces as well under certain conditions. This derivation can be repeated 
for the holographic principle, by replacing ”entropy” by ”Ndof”. This gives us the holographic version 
of our spacelike projection theorem: 
 
(Holographic Spacelike Projection Theorem) Let A be the area of a closed surface B possessing a 
future-directed light-sheet L with no boundary other than B. Let the spatial region V be contained in 
the intersection of the causal past of L with any spacelike hypersurface containing B. Let Ndof be the 
total number of independent quantum degrees of freedom present on V. Then Ndof ≤ A/4.  
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5.2 SCREENS AND PROJECTIONS 
 
The holographic principle implies that all information contained on the light-sheet L can be stored on 
the surface B. The construction of light-sheets according to the prescription stated in Sec.3.2 answers 
the following question: Given a surface B of area A, what is the hypersurface L on which Ndof is 
bounded by A/4? We now consider space-time globally and pose a different question: Which surfaces 
store the information contained in the entire space-time? To answer this question, we should invert the 
above prescription. Given a null hypersurface L, we follow the geodesic generators of L in the 
direction of non-negative expansion. We can stop anytime, but must stop when the expansion becomes 
negative. We will call this procedure projection. The two-dimensional spatial surface B which is 
spanned by the points where the projection is terminated will be called a screen of the projection. If 
the expansion vanishes on every point of B, it will be called a preferred screen.  
 
Preferred screens are particularly interesting because the expansion of the projection typically changes 
sign on a preferred screen B, so B will be a preferred screen for projections coming from two 
directions, e.g., the past-directed outgoing and future-directed ingoing directions. It is thus particularly 
efficient in encoding global information.  
 
By following all generators of the null hypersurface L in a non-contracting direction to a screen, we 
obtain a projection of all information  on the hypersurface onto one or more screens, which may be 
embedded in the hypersurface or lie on its boundary.  
 
To project the information in a space-time M, our strategy will be to slice M into a one-parameter 
family of null hypersurfaces. This turns out to be possible in all the examples we consider. The 
slicings are usually not unique, but symmetries in the space-times reduce the number of equivalent 
slicings considerably.  For each slice L, we apply the projection rule stated above. This gives us a 
number of one-parameter families of two-dimensional screens. Each family forms a three-dimensional 
screen-hypersurface embedded in M or located at the boundary of M. This might sound extremely 
complicated, but we will see that it is easier than it seems. Our screen-hypersurfaces can be timelike, 
null or spacelike, and in Ch.6 we will see examples of different types of screen-hypersurfaces.  
 
Usually it is clear from the context, whether we are talking about a screen (a spatial surface) or a three-
dimensional hypersurface formed by a one-parameter family of screens. We will therefore a bit sloppy 
refer to a screen-hypersurface as a ”screen” of our space-time M. A hypersurface consisting of 
preferred screens will be called a preferred screen-hypersurface, or loosely a preferred screen of M. If 
the expansion of both independent pairs of othogonal families of light-rays vanishes on a screen, it is 
preferred under all four projections that end on it. Such a screen, and hypersurfaces formed by such 
screens, will be called optimal.  
 
We might call the projection discussed so far null projection, i.e., projection along null hyprsurfaces. 
Sometimes it is possible to project information along spacelike hypersurfaces, that is, spacelike 
projection in a spatial region V onto a screen B. This is allowed if V and B satisfy the conditions of 
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our spacelike projection theorem (see Sec.5.1), and is of significance in de Sitter and Anti-de Sitter 
space in particular.  
 
 
 
 
 
 
 
 
 
 
 
 
5.3  A RECIPE FOR CONSTRUCTING SCREENS 
 
We construct screens by slicing a space-time into null hypersurfaces. In all our examples below, we 
have spherical symmetry, which makes it natural to slice the space-time into a family of light-cones 
centered at r=0. As a parameter for our family we can use time. This gives two inequivalent null 
projections: along past- or future-directed light-cones. The light-cones are often truncated by 
boundaries of the space-time and will not include r=0, but this does not matter. So when we have 
spherical symmetry, screens can be constructed using the following recipe:  
 
1. Draw a Penrose diagram. Every point in the diagram represents a 2-sphere. Each diagonal line  

represents a light-cone. The two inequivalent null slicings can be represented by the ascending and  
descending families of diagonal lines.  

 
2. Pick one of the two families. In which direction should we now project along the diagonal lines?  
 
3.    Identify the apparent horizons, i.e., hypersurfaces on which the expansion of the past or future  
       light-cones vanishes. They will divide the space-time into normal, trapped and anti-trapped  
       regions. In each region, draw a wedge whose legs point in the direction of negative expansion of 
       the cones.  
 
4. On a given diagonal line (i.e., light-cone), project each point towards the tip of the local wedge, 

onto the nearest point (i.e., sphere) Bi where the direction of the tip flips, or onto the boundary of 
space-time as the case may be.  

 
5. Repeat for every line in the family. The surfaces Bi will form (preferred) screen-hypersurfaces Hi.  
 
We will in Ch. 6, as we turn to examples, try to make these steps explicit by including a few Penrose 
diagrams for each example. In the first diagram, we will identify the apparent horizons and mark the 
wedges. For each inequivalent family of light-cones, we will the draw a diagram and indicate the 
projection directions by thick arrows. Screens will be denoted by thick points, and preferred screen-
hypersurfaces by thick lines. This procedure follows, like most of the material in this and the 
following chapter, Bousso [17].   
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6. EXAMPLES OF THE HOLOGRAPHIC PRINCIPLE IN ACTION 
 
6.1 CHAPTER OUTLINE 
 
In this chapter two examples of the holographic principle in action will be discussed. We will show 
how screens and screen-hypersurfaces are constructed, and illustrate how this is done by diagrams, 
constructed as described in Sec. 5.3. We will focus on two cosmologies, the Anti-de Sitter space and 
FRW-cosmologies, which both are of great cosmological importance. In [17], the interested reader can 
find more examples, including de Sitter space, Minkowski space and a static Einstein universe.  
 
6.2 ANTI-DE SITTER SPACE 
 
Anti-de Sitter space (AdS) can be scaled into the direct product of an infinite time axis with a unit 
spatial ball [20]. In this form the metric is given by 
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The (constant) scale factor R is the radius of curvature. The spacelike hypersurfaces are open balls 
given by t=constant, 0 ≤ r < 1. The boundary is a two-sphere residing at r=1. The proper area of 
spheres diverges as r goes to zero.  
 
Consider the past-directed radial light-rays which emanate from a caustic (θ = +∞) at r=0, t=t0 (see 
Fig.4). They form a past light-cone L with a spherical boundary. The cone grows with affine time until 
the light-rays reach the boundary of space at r=1. The expansion, θ, is inversely proportional to the 
affine time, and decreases monotonically, but remains positive, and as r goes to 1, θ goes to zero.  
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Figure 4: Conventions and methods used in all diagrams are spelled out in Sec.5.3. Anti-de Sitter 
space contains no apparent horizons; all spheres are normal. Space-like projection is allowed. All null 
and spacelike projections are directed away from the center at r=0. Interior information can thus be 
projected onto a screen-hypersurface H of constant area; H encodes no exterior information. The 
screen at spatial infinity, H∞, is optimal and encodes all bulk information.  
 
 
Now, consider a sphere B, of area AB, on the lightcone L. The part of L inside B, LB, has negative 
expansion in the direction away from B, and is thus a light-sheet of B. The holographic principle then 
tells us that the number of degrees of freedom on LB does not exceed a quarter of the area of B:  
 
Ndof(LB) ≤ AB/4.                    (6.2) 
 
Since the cone closes off at r=0, it has no boundary other than B. The spatial interior of B on any 
spacelike hypersurface through B, VB, lies entirely in the causal past of LB. This means that the 
conditions of our spacelike projection theorem are met, and hence area bounds Ndof on spatial regions 
of AdS:  
 
Ndof(VB) ≤ AB/4.                                          (6.3) 
   
 
Since the light-cone expansion is positive for all r, this remains valid in the limit as the sphere B 
moves to the boundary of space, B → B∞. From the fact that θ goes to zero when r goes to 1, we notice 
that B∞  is a preferred screen. As expected, the preferred screen is precisely the one which encodes the 
entire space. Actually B∞ is an optimal screen, since the expansion of future-directed radial lightrays 
arriving at B∞ also vanish by time reversal invariance of the metric.  
 
Up to this point, we have considered screens bounding Ndof on a particular light-cone or spatial 
hypersurface. A screen-hypersurface encoding the entire space-time is obtained by repeating the 
construction for every single light-cone in our slicing of AdS. This repetition is trivial by the time-
translation invariance of the metric. The family of finite screens B(t) of constant area AB thus forms a 
timelike screen-hypersurface H (with topology R x S2). From the holographic principle, Ndof in the 
enclosed space-time region does not exceed AB/4. Using the spacelike projection theorem we might 
notice that it does not matter whether we count degrees of freedom on null or on spacelike 
hypersurfaces intersecting H. After taking the limit B(t) → B∞(t), we find that the timelike boundary at 
r=1, H∞, is an optimal screen of Anti-de Sitter space and encodes all information in the bulk, by 
spacelike or null projection.  
 
  



 29

 
6.3 FRW-COSMOLOGIES 
 
The Friedmann-Robertson-Walker (FRW) universe is described by a metric of the form 
 

[ ]222222 d)(fdd)(ads Ωχ+χ+η−η=                   (6.4) 
 
Here f(χ) = sinh χ, χ, sin χ corresponds to open, flat and closed universes respectively. FRW universes 
contains homogeneous, isotropic spacelike slices of constant curvature. We will not discuss open 
universes, since they display no significant features beyond those arising in the treatment of closed or 
flat universes.  
 
The matter content will be described by Tab = diag(ρ,p,p,p), with pressure p=γρ. We assume that  ρ ≥ 0 
and -1/3 < γ ≤ 1. The case γ= -1 corresponds to de Sitter space, for which the reader is referred to [17]. 
The apparent horizon is defined geometrically as the spheres on which at least one pair of orthogonal 
null congruences have zero expansion, and is given by 
 
η = qχ                    (6.5) 
 
 
 
 
 
where  
 

γ+
=

31
2q .                    (6.6) 

 
The solution for a flat universe is given by  
 

q

q
)(a 







 η
=η .                    (6.7) 

 
Its causal structure is shown in Fig. 5. The interior of the apparent horizon, η ≥ qχ, can be projected 
along past light-cones centered at χ=0, or by space-like projection, onto the apparent horizon. The 
exterior, η ≤ qχ, can be projected by the same light-cones, but in the opposite direction, onto the 
apparent horizon. The apparent horizon is thus a preferred screen encoding the entire space-time. 
Alternatively, one can use future light-cones to project the entire universe onto future null infinity, 
another preferred screen.  

 
Figure 5: Penrose diagram for a flat FRW-universe dominated by radiation. The apparent horizon, 
η=χ, divides the space-time into a normal and an anti-trapped region (a). The information contained 
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in the universe can be projected along past light-cones onto the apparent horizon (b), or along future 
light-cones onto null infinity (c). Both are preferred screen-hypersurfaces.  
 
 
By Eq. (6.5), the apparent horizon screen is a timelike hypersurface for -1/3 < γ < 1/3, null for γ = 1/3, 
and spacelike for 1/3 < γ ≤ 1. In a universe dominated by different types of matter in different eras, the 
causal character of the apparent horizon hypersurface can change from timelike to spacelike or the 
other way around.  
 
For a closed universe, the solution is given by  
 

q

max q
sina)(a 







 η
=η .                  (6.8) 

 
In addition to Eq. (6.5), a second apparent horizon emanates from the opposite pole of the spatial S3, at 
χ=π, and is described by 
 
η=q(π-χ).                   (6.9) 
 
 
 
 
 
 
The two hypersurfaces formed by the apparent horizons divide the space-time into four regions (see 
Fig. 6). Let us choose the first apparent horizon, Eq. (6.5), as a (preferred) screen-hypersurface. On 
one side, η ≥ qχ, lies a normal region and a trapped region. These regions can be projected onto the 
screen by past-directed radial light-rays moving away from the South pole (χ=0). The other half of the 
universe, η ≤ qχ, can be projected onto the same screen by future-directed radial light-rays moving 
away from the North pole (χ=π). Therefore the preferred screen given by Eq. (6.5) encodes the entire 
closed universe.  
 
 

Figure 6: Penrose diagram for a closed FRW universe dominated by pressureless dust. Two apparent 
horizons divide the space-time into four regions (a). The information in the universe can be projected 
onto the embedded screen-hypersurface formed by either horizon (b).  
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7. A HOLOGRAPHIC THEORY 
 
7.1 DUAL THEORIES 
 
Our holographic principle and its interpretation has centered on the information needed to describe a 
state, which is given by the number of degrees of freedom. We can use the holographic principle to 
project all information in the space-time onto screen-hypersurfaces. This means, in a sense, an 
enormous reduction of the complexity of nature.  
 
Worth stressing though, is that we did not use the holographic principle to describe nature. We have 
very successful theories that describes our world, such as general relativity and quantum field theory. 
In these theories the holographic principle is far from manifest. In these theories, one finds a number 
of non-trivial effects which seem to insure that the entropy bound implied by the holographic principle 
is always satisfied [16], but the results is not immediately implied by the basic axioms of these 
theories.  
 
One might be tempted to consider the holographic principle as an external restriction imposed on 
physical theories. This is, however, a very dissatisfying point of view. If the number of degrees of 
freedom is limited by the holographic principle, there should be a description of nature in which the 
principle is manifest. We can call such a theory the holographic theory. One would expect the 
holographic theory to remain valid when semi-classical gravity breaks down, and in this regime it may 
be the only possible description. So the search for a holographic theory is of great importance.  
 
An idea would be to define a theory on the geometric background given by the screen-hypersurfaces. 
If the theory was related by a kind of dictionary (”duality”) to the space-time (”bulk”) physics, the 
holographic principle would be manifest. Let us call this type of theory a dual theory. This idea seem 
to work for certain asymptotically Anti-de Sitter space-times. The screen encoding the entire bulk 
information is the timelike hypersurface formed by the boundary of space (Sec. 6.2). According to 
Maldacena’s remarkable conjecture [23], a super-Yang-Mills theory living on this hypersurfaces 
describs the bulk physics completely, and is a dual theory in the sense of our definition.  
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Can we find dual theories for other space-times? This would be a bold leap forward in our 
understanding of holography and quantum gravity. Unfortunately, the dual theory approach will not 
work in general situations. The theories we usually think of have a fixed number of degrees of 
freedom built into them. But consider the cosmological solutions studied in Sec.6.3. The area of the 
screens are time-dependent, so the screen theory would have to be capable of activating degrees of 
freedom. Moreover, the area can decrease, as seen in the closed universe example, so a screen theory 
would also have to be able to deactivate degrees of freedom, and eventually the number of degrees of 
freedom would approach zero and the second law of thermodynamics would be violated.  
 
So what this suggests, is that one should not think of the screen theory as an ”ordinary” theory with a 
fixed number of degrees of freedom, but a theory with a varying number of degrees of freedom, which 
means that it would be very different from our ”ordinary” physical theories.  
 
 
7.2 GEOMETRY FROM ENTROPY? 
 
In Sec. 7.1 we discussed a possible ”screen theory”. One can be more radical than that. Perhaps one 
should not consider a ”screen theory” at all. A screen theory cannot be fundamental, since it presumes 
the existence of a space-time background. To use the holographic principle for a full description of 
nature, Bousso [17] have suggested an interesting idea. It can be summarized as stating that one should 
not constrain entropy by geometry, but construct geometry from entropy (or more correctly, degrees of 
freedom), and the construction should be such that the holographic principle is satisfied manifestly.  
 
So it seems like there are (at least) two main problems to solve if we want to find a holographic 
theory. First, we have to formulate a theory with a varying number of degrees of freedom, as discussed 
in Sec.7.1. An idea is that the theory can activate och de-activate degrees of freedom from an infinite 
reservoir. Another more radical resolution would be to treat quantum degrees of freedom not as 
fundamental ingredients, but as a derived concept. In such models it would be natural for the number 
of degrees of freedom to vary.  
 
Our second task is to find a way to uniquely reconstruct the space-time geometry from the varying 
number of degrees of freedom. A part of this will be to equate the number of degrees of freedom with 
the proper area of an two-dimensional preferred or optimal screen. A more difficult question is how 
the intrinsic geometry of screen-hypersurfaces can be recovered. But the number and character of the 
degrees of freedom gives us information about the matter content, so a complete reconstruction of 
space-time geometry is not inconceivable. It will be of great interest to follow the development in this 
area in the near future.  
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