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Abstract

The interaction of matter with an electromagnetic field is an old problem. We per-formed theoretical modelling for experiments simulating a fundamental model of thisinteraction: the Dicke model. We then made use of this model, and the methods usedto simulate it, to propose the production of a variety of entangled many-body statesof an atomic ensemble.Our research focussed on engineering interactions between a gas of cold atomsand light, in particular laser fields and modes of an optical cavity. These interactionsare engineered via cavity-assisted Raman transitions: two-photon transitions whereone photon is provided by a laser field and the other is associated to a mode of anoptical cavity. Two types of interactions were considered: between the cavity modeand the gas, and within the gas via the cavity mode.Results of our research included contributions to the experiments of our collabo-rators, who mapped out phase boundaries of the Dicke model, giving a fundamentalinsight into how atoms interact with a field. Using these methods in the context of ageneralised Dicke model with an added non-linear coupling, we discovered the pres-ence of strong entanglement for atoms in steady state and proposed how to accesssuch entanglement.A key concept of the thesis is the introduction of spinor atoms - i.e. atoms withinteger spin - to many-body cavity QED. We showed that the Dicke model, andmore simply a Tavis-Cummings model, acting on a particular state of spin-1 atomsproduces highly entangled states heralded by measurement of the cavity output. Inthe context of interactions within the gas, we proposed the emulation and extensionof physics currently accessible only to spinor Bose-Einstein condensates. We thenproposed the use of those engineered interactions to emulate a particular experimentperformed in spinor Bose-Einstein condensates, creating a novel type of squeezingand entanglement in a spinor gas.Our research has not only helped explain how light and matter interact and givenspecific methods to produce interesting many-body states using those interactions,but it also implies a rich field of novel results for spinor atoms in many-body cavityQED systems.
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Chapter 1

Introduction

Over the last few decades, progress in experimental atomic and quantum opticalphysics has gone from groundbreaking proof of principle experiments to a point whereprecisely manipulating and measuring such systems can be performed on an almostroutine basis. As recently as the early 1990s, there was discussion as to whetherBose-Einstein condensates could even exist, yet now they can be created for awide variety of atomic species and controlled with exquisite precision. Similarly,the ability to strongly couple atoms to single modes of the electromagnetic fieldwas a tremendous breakthrough only a few decades ago. Now we can build suchsystems, not only with atoms between mirrors as in those first experiments, but ina variety of equivalent setups. They can be built making use of extremely thinoptical fibres or tiny donut shaped resonators where the atoms are trapped in, andcoupled to, an evanescent field. Even more exotic architectures can be used, such assuperconducting circuits and tiny dots of semiconductor material where the “atoms”are actually quantised elements of a macroscopic system.These advances allow us to test fundamental aspects of quantum mechanics. Weknow now that the properties of two particles, even if separated by huge distances,can be correlated in ways that make no sense in terms of a 19th century understandingof physics. We know that a single particle can create interference patterns with itself.We know that two particles can arrive at two inputs to a beamsplitter and exit throughthe same output every single time. It was these fascinating, and, quite frankly, weirdphenomena that first piqued my interest in quantum physics.Modern techniques have now brought us to a point where we can not only testthe correctness of quantum mechanics, we can harness quantum mechanics. We store,transfer and manipulate bits of information held in quantum states. We make chainsof trapped ions answer maths questions. We measure time with an error of a fractionof a second in the age of the universe. We have made Schrödinger’s infamous cats,though obviously not with actual cats. A focus on the cool stuff belies the fact that
1
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quantum physics underlies huge swathes of technology used around the world everysingle day. Computers, phones, GPS, internet traffic, DVD players, MRI machines,and even those low-wattage environmentally friendly light bulbs that save the planetand your wallet at the same time. All those things could not have been inventedwithout our understanding of quantum physics. A century ago, quantum mechanicswas just an interesting mathematical theory, but now, without our understanding ofit, my thesis would have been written on a typewriter and, let’s face it, would be alot less interesting.As our experimental prowess advances, the quest for new understanding andnew technologies advances with it. This thesis deals with my contributions to bothaspects. These contributions include theoretical modelling of experiments performedat the Centre for Quantum Technologies in Singapore of the simulation of a classicmodel for the interaction of light and matter, first discussed in 1954 but only recentlyrealised. I also propose methods to engineer other models, some of which can beused to produce exotic quantum states useful for precision measurements.

In theory, if read (thoroughly) from front to back, the thesis should be accessibleto anyone with a basic knowledge of physics. However, practical concerns meanthat this may not be quite as simple as intended. In particular, the introduction tomany key concepts is somewhat brief and so a rudimentary understanding of quantummechanics and atomic physics is probably very useful if not essential. A reasonableunderstanding of certain aspects of classical physics, in particular classical opticsand electromagnetism, is assumed. It is necessary, given the nature of the thesis, forthere to be significant mathematical content. Long derivations are presented morein the vein of transparency to the methods than as essential content. For those withless interest or knowledge in the mathematical side of the work, a physical intuitionof the equations is given where it is deemed necessary.Chapters 2, 3 and 4 act as an introduction, providing the background materialneeded to understand the rest of the text. Chapter 2 introduces the key aspects ofquantum mechanics and quantum optics, and the mathematical frameworks used bothin the rest of the text and to perform the majority of the computational work. Chapter3 is an introduction to atomic physics. This includes the electronic level structure ofatoms and how those atoms interact with light. I then introduce the basics of howto prepare cold atoms for experiments, as well as the mathematical structures usedto describe those atoms theoretically. In Chapter 4, I introduce the field of cavityquantum electrodynamics. I will show how the building blocks of alkali atoms andoptical cavities can be used to build the types of experiments discussed throughoutthe rest of the thesis, as well as simple models for its behaviour that will also be ofrelevance later.Chapters 5 and 7 describe the experiments performed at the Centre for QuantumTechnologies and my contributions to that work. This includes a brief explanation of
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those experiments and the results, and a more in-depth discussion of my theoreticalmodelling of both systems. Chapter 7 is an introduction to perhaps the most importantand fundamental development of the PhD: the combination of many-body spinorphysics and cavity QED systems. Chapter 9 moves to a limit where the cavity modeitself becomes a tool by which to engineer interactions between the particles and socreate “pure" spinor systems.Chapters 6, 8, 10 and 11 describe proposals for experiments, all of which arepresented as papers published during the course of the PhD. These have been re-formatted to fit with the aesthetic of the thesis and in some cases have had minoredits such as the insertion of supplemental material into the main text or alterationsto notation so as to be consistent with other sections of the thesis. All such changesare noted in the introductions to those Chapters.In Chapter 12, I discuss how this project might be extended. This includes dis-cussion of speculative ideas on the range of physics accessible with the methodsdeveloped in the thesis, as well as more specific ideas that arose during the PhDand are currently being further explored.This introduction, in its frequent use of technical terms that are yet to be intro-duced, may immediately undermine the intention for the thesis to be accessible fromfront to back. However, I hope that it gives some sense of why this field is so excitingand the broad motivation behind my work. I hope it gives an idea of the value of mywork and perhaps even the motivation to read the thesis. I hope those who do read itcome away with at least a grasp on how these ideas are of interest to the scientificcommunity. At the very least, I hope any reader can come back and understand thosetechnical terms. . .
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Chapter 2

Quantum mechanics & quantum
optics

Quantum physics is inherently based on the concept of quantisation: the idea thatthe measurement of things results in discrete quantities. These things might be aparticle’s energy, its angular momentum or the projection of that angular momentumon some spatial axis. Upon measurement, the particle can only exist with thosediscrete properties. In between, the particle can exist in one of those states or insome superposition of them. It is this fundamental principle, which dates back toBoltzmann, Planck and Einstein, that underlies much of quantum mechanics. In thisChapter I dissect the key postulates of quantum mechanics, as well as introducingthe mathematical framework necessary to understand them. I discuss how to describethe quantum state of a particle or system, how that state can feature superpositionsand entanglement, how to define variables, and how to describe measurement. I thenquantise the electromagnetic field, discuss useful states associated with that photonpicture and introduce how to evolve states in quantum optics.

5
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2.1. POSTULATES OF QUANTUM MECHANICS 7
2.1 Postulates of quantum mechanics

Quantum mechanics relies on certain postulates upon which our understanding isbased. Here I introduce those postulates, how I will represent them mathematicallyand their important implications with respect to this thesis.
2.1.1 States

Associated to any system is a wavefunction that describes all information that can
be known about the system.

The global wavefunction of a system describes every aspect of the system. How-ever, in general, there will be some aspects of the system that we are interestedin, and others which are neither relevant nor coupled to those interesting aspects.The wavefunction, |ψ〉1, will thus describe the relevant aspects of the system. Thewavefunction of a system lives in a Hilbert space, defined as the space that containsall possible wavefunctions.Wavefunctions evolve over time and take different forms over the course of thatevolution. We can denote, for example, a set of possibilities for the state as { | φi〉 }.If any possible wavefunction for the system can be expressed using the members ofthat set then the set is complete. If the set is such that 〈φi|φj〉 = δij , where δij is theKronecker delta function, then that set is orthonormal and that expression is unique.If both are true, then we have a complete orthonormal basis of the Hilbert space.The system can obviously take on any one of these basis states but also super-
positions of them. For simplicity, we consider two states such that

|ψ〉 = α |φ1〉+ β |φ2〉 (2.1)
where α, β are any complex numbers that are normalised such that |α2|+ |β|2 = 1.More generally, such superpositions can be of anywhere from two states to an infinitespace with the condition that 〈ψ|ψ〉 = 1. For two different states, the overlap betweenthem is given by the modulus square of the inner product | 〈ψ1|ψ2〉 |2.These superpositions are a fundamental part of quantum mechanics. It is notthe relic of some lack of statistical knowledge on the part of the observer, it is thatwithout observation the state truly lives in this unknown sum of different possibilities.Some statistical lack of knowledge is also possible. The introduction of this
statistical mixture can be thought of as information about the state either being lostor accessible but unobserved. In some sense, that information is no longer within the

1Dirac notation (or bra-ket notation) is a general formulation of expressing a quantum state. Thisnotation offers great flexibility and allows for complicated states and equations to be represented extremelysimply. The ket, |ψ〉, describes a state and can generally be represented as a column vector. The bra, 〈ψ|,is its adjoint, or Hermitian conjugate, denoted as 〈ψ| ≡ (|ψ〉)† .
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system and is not known by the observer. A more general formalism for the quantumstate which allows for this statistical lack of knowledge is the density matrix. Therelationship between the density matrix and the wavefunction is given by

ρ = |ψ〉 〈ψ| . (2.2)
Note the existence of a wavefunction means a density matrix exists, but the oppositeis not necessarily true. The normalisation condition above means that here we needtr(ρ) = 1 where tr(·) means to take the trace. A state which can be represented asa wavefunction is referred to as a pure state, while any state that exists with somestatistical mixture is a mixed state. A pure state has the property that

tr(ρ2) = 1 (2.3)
and so the density matrix allows us to calculate the purity for the system.In some circumstances we have two systems, or two parts of the same system, thatinteract and, by the postulate above, there is a wavefunction that describes everythingabout the composite system. If the individual systems have states |ψA〉 and |ψB〉 thenour composite system can be given by

|ψA⊗B〉 = |ψA〉 ⊗ |ψB〉 (2.4)
where ⊗ is the tensor product. |ψA⊗B〉 lives in the composite Hilbert space HA⊗HB .We can find the state in space HA by tracing over HB .This decomposition is not necessarily possible, i.e. |ψA⊗B〉 6= |ψA〉⊗ |ψB〉. Some-times tracing out one of the systems leaves the other in a mixed state. This meansthat we have an entangled state with correlations between the systems that require acomposite description. Information about system B is contained in system A and viceversa. Tracing out one of the systems introduces a statistical mixture to the systembecause that information has been removed. Two systems are thus entangled if thereis more mixture in an individual system than in the composite system

tr(ρ2
A⊗B) > tr(ρ2

A,B). (2.5)
2.1.2 Operators

Associated to any observation or action on the system is an operator.

Properties of the state are described by operators, Ô. In the linear algebra formthese are matrices, while in Dirac notation they are formed by sums over ket-bra
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pairs. In some orthonormal basis {φi } we express an operator as

Ô =∑
ij
cij |φi〉 〈φj | (2.6)

and its action on a state
Ô |ψ〉 =∑

ij
cij |φi〉 〈φj |

∑
k
αk |φk〉

=∑
ik
cikαk |φi〉 . (2.7)

That is, the action of an operator is to map states in a Hilbert space to other statesin the Hilbert space, |φj〉 → |φi〉, with some coefficient cij . The equivalent form forthe density matrix is
Ô |ψ〉 → ÔρÔ† . (2.8)

Like any matrix, these operators can have eigenstates and eigenvalues given by
Ô |ei〉 = ξi |ei〉 ↔ Ô =∑

i
ξi |ei〉 〈ei| . (2.9)

Physical observables, such as position or momentum, must have real eigenvalues.Therefore, the operators that describe these physical observables must be Hermitian,meaning that they are their own adjoint
Ô = Ô† . (2.10)

Eigenstates of Hermitian operators form a complete orthonormal basis for thesystem they act upon2, which in composite systems may only be a part of the system.This means any state in that system can be written in terms of the eigenstates ofany physical observable of the system.Operators that act on the same system can have different eigenstates, allowingfor different representations of the state. Whether two operators Ô and P̂ shareeigenstates can be found by considering the commutator of the two
[Ô, P̂] = ÔP̂ − P̂Ô. (2.11)

If this is zero then the two operators share eigenstates. If instead it is non-zero, thenwe note that they have separate eigenstates and the order in which the operatorsact upon the state is important.In composite systems, operators may act on all or part of the Hilbert space. If we
2Non-Hermitian operators need not have real eigenvalues, or even have eigenstates at all and so arenot necessarily useful as a basis.
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have an operator that acts only on HA , ÔA , then we have that

ÔA(|ψA〉 ⊗ |ψB〉) = (ÔA |ψA〉)⊗ |ψB〉 (2.12)
Similarly, any operator that only acts on HB allows for |ψA〉 to be factored out. Thismeans if we act with both operators then we have

(ÔA ⊗ ÔB)(|ψA〉 ⊗ |ψB〉) = (ÔA |ψA〉)⊗ (ÔB |ψB〉). (2.13)
It does not matter which order we write down these operations since they act ondifferent parts of the Hilbert space, and so operators that act on different spaces will
always commute.
2.1.3 Measurement

Measuring a physical observable collapses the wavefunction to an eigenstate of the
operator associated with that measurement.

If we make a measurement with some Hermitian operator Ô then the only resultswe can get are the eigenvalues associated with the eigenstates of the operator. Wecan define operators which collapse the state onto a single eigenstate
P̂i = |ei〉 〈ei| (2.14)

where the sum of the full set of these projectors is the identity, 1. A measurement ofthe observable on a wavefunction results in the action of one of the set { P̂i } on thesystem with a probability given by
pi = 〈ψ| P̂i |ψ〉 . (2.15)

If the state can be recreated and measured multiple times, then the statistics of thisrandom collapse can be interrogated. If we were to make infinite measurements, thenthe mean would be given by the expectation value

〈Ô〉 = 〈ψ| Ô |ψ〉 ↔ 〈Ô〉 = tr(ρÔ). (2.16)
These expectation values do not necessarily need to be eigenvalues of the operatorsand tracking their evolution can give a useful picture of how the system evolves.The action of two measurements on the same system one after the other is animportant concept. If we have an operator Ô with eigenstates, |φ1〉 and |φ2〉, then ameasurement of some superposition gives one of these states. If we have a secondoperator P̂ which has different eigenstates, i.e. it does not commute with Ô, then a
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measurement of that observable collapses the state into this new basis, destroyingthe information gained by the first measurement. Measurement of non-commutingoperators cannot be performed simultaneously and full information about both cannotbe known at the same time. It is this fact that leads to Heisenberg’s famous uncertaintyprinciple. For two operators Ô and P̂ with commutator relation

[Ô, P̂] = iQ̂ (2.17)
then the product of their standard deviations is bounded by

(∆Ô)2(∆P̂)2 ≥ 14 〈Q̂〉2 . (2.18)
Note that Q̂ is kept as an operator here, but it is a constant in many cases.A projective measurement, as described above, of Ô means nothing can be knownabout P̂ as its variance must become infinite to satisfy the inequality. So-calledweak measurements are possible, where the system is coupled to some externalsystem and measurements of that are performed [1]. This gives some informationabout the desired observable with a comparatively small perturbation of the state.This allows information about both observables to be known at the same time, butwith error bars that meet the above equality.The inequality also describes the statistics of the state itself. When the in-equality becomes an equality, we have a minimum uncertainty state, which can havethe uncertainty equally split between the two observables, or squeezed such thatone variable contains more noise than the other. These squeezed states cannot bedescribed by classical physics and so are inherently quantum.
2.1.4 Evolution

Between measurements the wavefunction evolves according to the time-dependent
Schrödinger equation.

When the system is not being measured it evolves coherently according to theSchrödinger equation. For a wavefunction |ψ〉 this is
i~ ∂∂t |ψ(t)〉 = Ĥ |ψ(t)〉 ↔ i~∂ρ∂t = [Ĥ, ρ] (2.19)

where we have introduced the Hamiltonian operator Ĥ and ~ is the reduced Planckconstant.We can solve the Schrödinger equation for the wavefunction such that
|ψ(t)〉 = e−iĤt/~ |ψ(0)〉 . (2.20)
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For that process to be reversible, and time-symmetry tells us it must be, then changing
t → −t must produce the inverse. This is equivalent to saying that e−iĤt/~ must beunitary - meaning its conjugate transpose is its inverse such that Û† Û = 1 - as onlythese can describe reversible time evolution. For the Hamiltonian we require

eitĤ† /~e−itĤ/~ |ψ(0)〉 = |ψ(0)〉 → e−it/~(Ĥ−Ĥ† ) = 1 → Ĥ = Ĥ† . (2.21)
The Hamiltionian is Hermitian and that means it represents some physical observ-able. In fact, this quantum mechanical operator is a direct descendent from classicalHamiltonian mechanics. As there we have that

Ĥ = T̂ + V̂ (2.22)
where T̂ is the kinetic energy operator and V̂ is the potential operator. Usually,the Hilbert space of the system is restricted to a subset of properties such that thishistorical picture is not particularly useful. Instead, the idea that the Hamiltonian isthe “energy operator" that describes the evolution of the system is more intuitive.We diverge from classical mechanics because, as a Hermitian operator, the Hamil-tonian here has a series of eigenstates and eigenvalues. These eigenvalues tell usabout the energy levels of the system, and so the lowest eigenvalue gives us the
ground state and its energy.The Hamiltonian can also tell us about the evolution of operators. The expectationvalue of an observable at some time t is given by

〈Ô〉t = 〈ψ(0)| eiĤt/~Ôe−iĤt/~ |ψ(0)〉 . (2.23)
If the operator and the Hamiltonian commute then we can move that operator out ofthe centre and, cancelling the unitaries to the identity, we find that

〈Ô〉t = 〈Ô〉0 . (2.24)
That is, if an operator commutes with the Hamiltonian, then the observable it rep-resents must be conserved. This includes, of course, the Hamiltonian itself and soenergy conservation is intrinsically built into this picture.
2.2 Photon statistics

Quantum optics deals with light at the level of single quanta - photons - and theirinteraction with matter. The idea of a quantised light field can be traced back toPlanck and his attempts to explain the spectral distribution of thermal light. Furtherevidence came with Einstein’s explanation of the photoelectric effect. What we think
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of as quantum optics began more earnestly with the experiments of Hanbury Brownand Twiss and their observation of photon bunching in thermal light [2]. A full quantumpicture of coherent light fields was then introduced by Glauber and Sudarshan [3–5].In this Section we discuss that theory and its implications. Many of the details andderivations are left out in exchange for brevity. More comprehensive descriptions canbe found in [6], or for a more complete mathematical treatment see [1, 7].
2.2.1 Quantisation of the electromagnetic field

We begin with Maxwell’s equations, specifically Ampère’s circuital law
µ0∇× B = ε0 ∂E

∂t (2.25)
where B and E are the magnetic and electric fields, and µ0 and ε0 are the permeabilityand permittivity of free space. The vector potential A(r, t) relates the fields as

B =∇× A, E = −∂A
∂t (2.26)

and we operate in the Coulomb gauge where the vector potential satisfies
∇ · A = 0 → ∇2A = 1

c2 ∂
2A
∂t2 (2.27)

where we show that Ampère’s circuital law becomes a wave equation for the vectorpotential and use c = 1/√µ0ε0 is the speed of light in a vacuum.We now split the vector potential into two complex terms
A(r, t) = A+(r, t) + A−(r, t) (2.28)where A+(r, t) =∑

k
Ckuk (r)e−iωk t , A− = (A+)∗ (2.29)

and electromagnetic modes of frequency ωk have spatial functions uk (r). Followingon from the gauge condition, ∇ · uk (r) = 0, and from the wave equation(
∇2 + ω2

k
c2
)

uk (r) = 0. (2.30)
The form of these spatial modes depends on the boundary conditions of the relevantvolume and they form a complete orthonormal set over the space indexed by k whichsums over both space and polarisation. The vector potential is now given by

A(r, t) =∑
k

(
~2ωkε0

)1/2 [
akuk (r)e−iωk t + a†k u∗k (r)eiωk t] (2.31)
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where we normalise the equation such that the amplitudes ak are dimensionless andthat the energy in the field is commensurate with the Planck-Einstein relation.The electric field is then given by

E(r, t) =∑
k

(
~ωk2ε0

)1/2 [
akuk (r)e−iωk t − a†k u∗k (r)eiωk t] . (2.32)

In classical electromagnetism these amplitudes ak are complex numbers. Quantisa-tion of the electromagnetic field is accomplished by designating these as operators.Photons are bosons and so these operators obey
[âk , âk ′ ] = 0, [â†k , â†k ′ ] = 0, [âk , â†k ′ ] = δkk ′ . (2.33)

This quantisation describes the electric field as a sum of independent harmonic oscil-lators. Operators for different modes commute because they act on different Hilbertspaces. This lets us consider a relevant set of single modes of the electromagneticfield without considering the full spectrum. For the same mode the operators do notcommute meaning they are non-Hermitian.The Hamiltonian for the electromagnetic field is given by
H = 12

∫ (ε0E2 + µ−10 B2) dr (2.34)
which by following through the above conditions and expanding out gives

Ĥ =∑
k

~ωk
(
â†k âk + 12

)
. (2.35)

â†k âk is the number operator and so the energy of the field is a sum over the energyin each mode: the energy per photon multiplied by the number of photons plus one
half. This half represents the energy of the vacuum fluctuations in each mode. Sincethere are infinite modes, this means that with zero photons in all modes we still haveinfinite energy in the field. This may seem counterintuitive, but experiments measurea change in energy so this infinite background does not influence measurements.
2.2.2 Fock states

For simplicity we now consider a single mode with a specific polarisation and fre-quency ω. Our Hamiltonian is then
Ĥ = ~ω

(
â† â+ 12

)
. (2.36)
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This has obvious eigenstates: exact numbers of photons. These states are calledFock states (or number states) and are written simply as |n〉. Clearly they areeigenstates of the number operator with eigenvalues n. The ground state is that withzero photons. The action of these operators on the Fock states is

â |n〉 = √n |n − 1〉 , â† |n〉 = √n+ 1 |n+ 1〉 , â† â |n〉 = n |n〉 . (2.37)
We can see that â and â† are annihilation and creation operators respectively. Thatis, their action on a state removes or adds a photon to the state.The Fock states form a complete basis for the mode. We can define a state

|ψ〉 ≡ n0 |0〉+ n1 |1〉+ n2 |2〉 · · · = ∞∑
i=0 ni |i〉 (2.38)

and write our operators as
â ≡ |0〉 〈1|+√2 |1〉 〈2|+√3 |2〉 〈3|+ · · · = ∞∑

i=1
√
i |i − 1〉 〈i| (2.39)

â† ≡ |1〉 〈0|+√2 |2〉 〈1|+√3 |3〉 〈2|+ · · · = ∞∑
i=0
√
i+ 1 |i+ 1〉 〈i| (2.40)

â† â ≡ |1〉 〈1|+ 2 |2〉 〈2|+ 3 |3〉 〈3|+ · · · = ∞∑
i=0 i |i〉 〈i| . (2.41)

This clearly shows that the annihilation and creation operators are not Hermitianand that the number operator is Hermitian with the Fock states as eigenstates.Fock states make sense from a mathematical perspective and are physically in-tuitive, but, in experiments, Fock states above a few photons are difficult to produce.Most fields are a superposition or a mixed state of Fock states.
2.2.3 Coherent states

A useful basis for many situations are the coherent states |α〉. These are eigenstatesof the annihilation operator â with eigenvalues α
â |α〉 = α |α〉 . (2.42)

This means subtracting photons from a coherent state returns the exact same state.Since â is non-Hermitian these eigenvalues can be complex.Coherent states can be expressed in Fock states as
|α〉 = e−|α|2/2 ∞∑

n=0
αn√
n! |n〉 → p(n) = |α|2ne|α|2n! . (2.43)
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(b) |n = 5〉
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(c) |α = √5eiπ/4〉
Figure 2.1: Q-function plots for different states of light.

where p(n) is the probability distribution of the photon number. This distributionis Poissonian and the expectation value is 〈â† â〉 = |α|2. Coherent states can bethought of as a shift on the vacuum, formed by acting with the displacement operator
D̂(α) = e(αâ†−α∗â). (2.44)

A pair of coherent states are not necessarily orthogonal. Whilst they can forma basis for the states, they are overcomplete. This means that any state of the fieldcan be represented in multiple different combinations of coherent states. This allowsus to construct a useful visual representation for an electromagnetic field state: the
Q-function. This is given by

Q(α) = 〈α| ρ |α〉π . (2.45)
Figure 2.1 shows Q-function plots of states discussed so far.Defining the position and momentum operators for the harmonic oscillator as

q̂ = √ ~2ω (â+ â†
)
, p̂ = i

√
~ω2 (

â − â†
)
, (2.46)

we calculate variances on the coherent states as
(∆q̂)2 = ~2ω, (∆p̂)2 = ~ω2 . (2.47)

The product of the standard deviations is then ~/2, showing that coherent states areminimum uncertainty states.
2.2.4 Squeezed states

If we take a coherent state and redistribute noise between two orthogonal axes, wecan create squeezed states. This is done with the squeezing operator
Ŝ(ξ) = e(ξ∗â2−ξâ† 2)/2 (2.48)
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where ξ is a complex number. The squeezing takes the form of correlated pairs ofphotons being added to and removed from the mode. A squeezed vacuum thus onlyhas contributions from even photon numbers. The magnitude and phase of ξ tellus about the degree to which noise is redistributed and the axis about which it issqueezed, as shown in Figure 2.2.Two-mode squeezed states are formed by the alternate operator

Ŝ(ξ) = e(ξ∗â1â2−ξâ†1 â†2 )/2 (2.49)
where instead of pairs of photons correlated in a single mode, the pair is splitbetween two modes. The quantum correlations are thus between two modes ratherthan between the populations of a single mode.
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Figure 2.2: Q-function plots for different squeezed vacuum states of light.

2.2.5 Thermal states

Another class of states that are important to consider are thermal states. These arestates that do not satisfy the minimum-uncertainty relation. Instead, their populationstatistics follow the Bose-Einstein distribution
p(n) = 1

n̄+ 1
(

n̄
n̄+ 1

)n (2.50)
where n̄ is the expectation value of the number operator and, for a temperature Tand mode of frequency ω, is given by

n̄ = 1exp(~ω/kBT )− 1 . (2.51)
where kB is the Boltzmann constant.For cold enough temperatures and large enough frequencies then this is approx-imately the vacuum. For lower frequencies or higher temperatures, these thermalphotons must be taken into account.
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It is possible to create thermal coherent and squeezed states simply by applyingthe displacement or squeezing operator to this thermal state instead of the vacuum.Figure 2.3 shows that, instead of displacing the state, larger thermal states simplyenlarge the uncertainties. For any n̄, the most probable photon number is still zero,but the average photon number increases as the size of the spread increases. Notethat there is no phase information associated with the thermal state.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

(a) n̄ = 0
−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

(b) n̄ = 2
−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

(c) n̄ = 5
Figure 2.3: Q-function plots for different thermal states of light.

2.2.6 Photon counting statistics

Important information about the state can be gained by looking at the countingstatistics. For light incident on a photon detector, we can measure the times ofarrival of the photons and so the correlations in these times can be studied. We cando this with photon correlation measurements. We define the second-order correlationfunction
G(2)(τ) = 〈â† (t + τ)â† (t)â(t + τ)â(t)〉 . (2.52)

Intuitively, this is the probability of measuring a photon at a time t + τ conditionedon having measured a photon at time t . Often this is normalised by the probabilityof measuring that first photon,
g(2)(τ) = 〈â† (t + τ)â† (t)â(t + τ)â(t)〉

〈â† (t)â(t)〉2 . (2.53)
For the rest of this analysis we will focus on g(2)(0), i.e. the probability of measur-ing two photons simultaneously relative to the probability of measuring one photonsquared. This can be written in the forms

g(2)(0) = 〈â† â† ââ〉
〈â† â〉2 (2.54)

= 1 + (∆n̂)2 − 〈n̂〉
〈n̂〉2 . (2.55)
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The easiest case to decipher is that of coherent states. The statistics of Poisso-nian distributions, such as the photon number probability distribution of a coherentstate, intrinsically apply to random processes. If a coherent beam or source producesphotons at random intervals, there cannot be correlation between the photon mea-surements. A coherent state has ∆n̂ = √

〈n̂〉 which clearly leads to g(2)(0) = 1.There are no correlations between photon counts since the probability of measuringa second photon is the same as measuring the first. Remembering that coherentstates are eigenstates of the annihilation operator, this makes perfect sense. Themeasurement of the first photon does not impact the statistics of measuring a secondphoton because the annihilation operator does not change a coherent state.Thermal light produces what is known as super-Poissonian light. The varianceof a thermal state follows the relation ∆n > √〈n̂〉 and so g(2)(0) > 1 and so therethe measurement of one photon makes it more likely to have a second. This is oftencalled bunched light as photons will tend to come closer together with longer pausesbetween those “bunches”. As n̄ increases, the average population of the thermal stateincreases and so the bunching effect becomes stronger.A Fock state |n〉 gives the result
g(2)(0) = 1− 1

n. (2.56)
For a single photon this is zero, which makes sense given that measuring one photonnegates any possibility of measuring a second. For higher photon numbers then
g(2)(0) tends towards unity but is always less. Measuring a photon makes it lesslikely to measure a second photon and so we have an example of something we call
anti-bunched light. Bunching and random statistics can both be perfectly explainedwith classical statistics, but anti-bunching is a distinctly quantum phenomenon. Thismeans any state with g(2)(0) < 1, or equivalently ∆n <√〈n̂〉 is inherently quantum.
2.3 Open system evolution

A problem with simulating quantum systems is that the system in which we areinterested in is always coupled in some way to the environment around it. Thatinteraction thus needs to be included in the simulation, but including the environmentin the simulation makes the Hilbert space far too large. Of course, the environmentalso has its own interactions with its environment and so on. Instead, we need to traceout the environment in some way. In this Section, I discuss methods of doing this inquantum optics that will be used in the rest of the thesis. Much of the mathematicaldetail here is skipped over since it is covered in much more detail elsewhere. Eachcase has relevant references to where those details can be found.
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2.3.1 Master equation

The first method to discuss is the quantum optical master equation [7–9]. Here, wetake a total Hamiltonian
Ĥ = ĤS + ĤE + ĤSE (2.57)

where S stands for system, E for environment and SE for the system-environmentinteraction. The density matrix P for both the system and environment follows theequation Ṗ = − i
~
[Ĥ,P]. (2.58)

What we want is
ρ(t) = trE (P(t)) . (2.59)

We transform to the interaction picture such that
P′(t) = ei(ĤS+ĤE )t/~P(t)e−i(ĤS+ĤE )t/~ and Ĥ ′SE (t) = ei(ĤS+ĤE )t/~ĤSE (t)e−i(ĤS+ĤE )t/~.(2.60)This gives us an evolution equation

Ṗ′ = − i
~

[
Ĥ ′SE ,P′] . (2.61)

We can integrate this and substitute that result in to give
Ṗ′ = 1

i~

[
Ĥ ′SE (t),P′(0)]− 1

~2
t∫

0
dt′ [Ĥ ′SE (t), [Ĥ ′SE (t′),P′(t′)]] . (2.62)

At this stage no assumptions have been made and so the form is exact.The first assumption is that at t = 0 there is no correlation between the systemand its environment. This means that P′(0) = ρ(0)E (0) where we introduce E as theenvironment density matrix.The second assumption is that the environment is very large and weakly coupledto the system such that it remains virtually unaffected by that coupling. We thenmake a Born approximation, neglecting all terms to more than second order in ĤSEand so, after both assumptions, we have
ρ′(t) = − 1

~2
t∫

0
dt′ trE ([Ĥ ′SE (t), [Ĥ ′SE (t′), ρ′(t′)E (0)]]) . (2.63)

This equation is interesting because the evolution of ρ′(t) is related to its own pastsince we integrate over ρ′(t′). This means that two identical system states mayevolve differently depending on the path they took to that state. This makes the
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system non-Markovian.Throughout this work, we assume that this is not the case. This Markovianapproximation states that the evolution of the state cannot be affected by the paststate. This is equivalent to saying that any information sent into the environment islost. This makes sense for most systems, where the environment is very large andthermal such that changes in it would be washed away quickly.We make the assumption that the environment is composed of a set of electromag-netic modes { r̂j }. The system interacts with the environment through an exchangeof energy between some system operator Ĵ , which we later refer to as the jump orloss operator, and those modes3

ĤE =∑
j

~ωj r̂†j r̂, ĤSE =∑
j

~
(
κ∗j Ĵ r̂

†
j + κj Ĵ† r̂j

)
. (2.64)

The density matrix for the environment is then taken as in thermal equilibrium attemperature T as the product of thermal states in each of the set of modes. We thenexpand out the master equation given in Equation 2.62 under these approximationsand calculate the correlations within the environment. A full treatment of this is givenin [8]. Here, we summarise the key aspects. Each of the modes is assumed to haveno correlations to other modes. Environment operators for each mode are related tothemselves at other times with a correlation function that decays much faster than thetimescale associated with the evolution of the system operator. By then integratingover the environment to account for the summation of modes and moving back out ofthe interaction picture we arrive at the quantum optical master equation (~ = 1)
ρ̇ = −i [Ĥ, ρ] + γ2 (2ĴρĴ† − Ĵ† Ĵρ − ρĴ† Ĵ) + γn̄

(
ĴρĴ† + Ĵ†ρĴ − Ĵ† Ĵρ − ρĴĴ†

)
(2.65)where

γ = 2πg(ω0)|κ(ω0)|2 (2.66)
and g(ω0) and κ(ω0) are, respectively, the density of states in the environment and thecoupling between environment and system to each of those states at the frequency ofthe emission ω0. In essence, γ tells us about the rate of excitations being exchangedbetween the system and its environment. If n̄ is non-zero, then excitations can enterthe system at rate γn̄ and leave at an enhanced rate γ(n̄ + 1). If the environmentis very cold relative to the energy of the photons, then n̄ can be assumed as zero,as it will be throughout this thesis, and that exchange is one-sided - excitations canleave the system but no excitations will enter - and happens at a rate γ . The master

3Of course, the same derivation is valid for any form of environment that can be expressed in terms ofharmonic oscillators. Moreover, the specific form of the environment is not actually necessary [8]. However,for the purposes of much of quantum optics, and certainly for this thesis, this is a suitable picture and itprovides more intuition than a more general derivation.
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equation used throughout these thesis will then be4

ρ̇ = −i [Ĥ, ρ] +∑
i

γi2 (2ĴiρĴ†i − Ĵ†i Ĵiρ − ρĴ†i Ĵi) ≡ Lρ (2.67)
where L is a set of operations on the state known as a superoperator. Note thatthese dissipative terms in the sum will generally be referred to using a superoperatordefined by

D [̂Ji]ρ ≡ (2ĴiρĴ†i − Ĵ†i Ĵiρ − ρĴ†i Ĵi) . (2.68)
The density matrix evolves according to Equation 2.67, and so at each time step wehave a mixture of coherent Hamiltonian evolution and scattering to the environment.That scattering to the environment entangles it with the system. Information aboutthe system is held within that scattering record. That record is traced over when wetrace out the environment, and so the information is lost. Defining a state conditionedon a particular scattering record as |ψREC〉 then the master equation result is

ρ(t) =∑REC pREC |ψREC(t)〉 〈ψREC(t)| (2.69)
where we sum over every single possible scattering record.
2.3.2 Quantum trajectories

The master equation produces a mixed state of all the possible paths of loss andno loss that the initial state can take as it evolves in the system. An alternativemethod is to stochastically choose a single path: a Monte-Carlo quantum trajectory.We choose to either evolve the system dissipatively or coherently at each time steprather than the mixture of both prescribed by the master equation. The physicalinterpretation for this is the placing of a detector outside the system that measureswhether or not there is a loss event. Such a move provides information about theenvironment and so the mixture caused by the information lost to the environmentin the master equation is removed. The measurement disentangles the system fromits environment, and so returns a pure state. Each trajectory has a unique recordof times (and locations) of each loss measurement and the average of all possibletrajectories returns the master equation result, as shown in Figure 2.4.A strict and thorough mathematical description of trajectories and how they relateto the master equation is given in [10]. Here, I briefly discuss the key points of such
4It should be noted that this master equation assumes that the loss processes are all completelyindependent. This is an assumption that, while it does hold for the work considered in this thesis, is notnecessarily always true. When it is not, the master equation cannot be written in this simple form andinstead γ is a matrix.



2.3. OPEN SYSTEM EVOLUTION 23

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time

0.0

0.2

0.4

0.6

0.8

1.0
Ex

pe
ct
at
io
n 
va

lu
e 
of
 th

e 
ex

cit
ed

 st
at
e 
po

pu
la
tio

n 1 trajectory
25 trajectories
100 trajectories
Master equation

Figure 2.4: A comparison of quantum trajectories and the master equation for spontaneous emission froma single atom (see Section 3.2.2 for more details). The master equation result is an exponential decay,while individual trajectories instead “jump” to the ground state at a particular time. Averaging over thosetimes returns an exponential decay.

a derivation. We take our master equation and split L into two parts5
ρ̇ = (LC + LS ) ρ (2.70)

LCρ = −i[Ĥ, ρ]− 12 (Ĵ† Ĵρ + ρĴ† Ĵ
)
, LJρ = ĴρĴ† . (2.71)

The first of these superoperators, LC , represents coherent evolution. We can writeits action on the density matrix in the form
LCρ = −i(ĤC |ψ〉 〈ψ| − |ψ〉 〈ψ| Ĥ†C

) where ĤC = Ĥ − iĴ† Ĵ . (2.72)
The state evolves according to a Schrödinger equation (~ = 1)

d |ψ(t)〉dt = −iĤC |ψ(t)〉 → |ψ(t)〉 = (e−iĤ/te−Ĵ† Ĵt) |ψ(0)〉 . (2.73)
The fact the Hamiltonian is now non-Hermitian means that states with non-zerovalues for 〈Ĵ† Ĵ〉 will “decay”. This subtlety can be of great importance, and creates adistinctly different evolution to the usual unitary Schrödinger equation.Let us consider a state such that Ĥ |ψ〉 ∝ |ψ〉 and 〈ψ| Ĵ† Ĵ |ψ〉 = 0. These statesdo not decay and, as eigenstates of the Hamiltonian, they do not evolve beyond aglobal phase rotation. This means such states are decoupled from the evolution.

5For the sake of simplicity in this derivation we consider one jump operator, but the treatment is easilygeneralised to any number.
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The backaction of the null measurement in the photon emission channel projects thesystem into such a state, since the measurement of no photons over long times is notcommensurate with the system being anywhere else. Due to this absence of emission,they are called dark states. Multiple dark states can exist for the same system. Inthat case, the scattering record before the emergence of the dark state might signalwhich dark state has been reached.If the system has several dark states or a dark state and a stable “bright” state, themaster equation gives us a statistical mixture of the various solutions. If those darkstates are not obvious or are obscured by bright states, then it is often ambiguouswhat the underlying physics is. The ambiguity is broken by considering Monte-Carlotrajectories where a single trajectory shows a single specific attractor.The action of LJ is even simpler to consider

LJρ → Ĵ |ψ〉 . (2.74)
We act with the jump operator on the state.For an initial pure state, this means that both superoperators in Equation 2.70can be replaced by regular operators acting on a pure state. Our stochastic choice ofwhich operator to apply thus leads us through the time evolution with a pure state.Herein lies the practical benefit of using quantum trajectories. For a Hilbert spaceof size M then a pure state formalism involves a differential equation for a vector of
M complex numbers. The master equation approach requires the density matrix, forwhich the differential equation is now for a matrix of M2 complex numbers. Evolvingthe master equation thus takes M times more computational time than a trajectory.Therefore, running a large number of trajectories6 is still substantially faster thanone master equation integration for large systems.The Monte-Carlo algorithm to move from |ψ(t)〉 → |ψ(t) + δt〉 is as follows:

1. Generate a uniformly distributed random number between zero and one, R .
2. Calculate the probability that the jump operator occurs in the time step

p(Ĵ) = 〈ψ(t)| Ĵ† Ĵ |ψ(t)〉 δt. (2.75)
3. (a) If p(Ĵ) ≥ R then

|ψ(t + δt)〉 = Ĵ |ψ(t)〉 . (2.76)
6It should also be noted that trajectories are trivially parallelised since each trajectory is completelyseparate. This parallelisation allows for a trajectory to be run on each CPU simultaneously, and so asmany trajectories as the computer has CPUs can be run at once. This means that trajectories can offer agreatly improved speed at finding evolution even when it is the master equation result that is desired.
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(b) If p(Ĵ) < R then

|ψ(t + δt)〉 = (1 + δt 1
i~ Ĥ

)
|ψ(t)〉 . (2.77)

4. Normalise the state.
By iterating this process we can go from some initial state through to some final state
|ψREC〉 uniquely defined by the record of when (a) and (b) were chosen7. Remember-ing that the master equation returns a weighted average over all possible records, itis intuitive from this picture to see how a sample average of trajectories returns anapproximation of the master equation result.
2.3.3 Other stochastic methods

The quantum trajectory theory has limitations. One of the more obvious relates tothe measurement of the systems output. Perfect photon detection, as described bythe formalism above, is not currently feasible. Instead, excitations are lost that arenever measured. In a lot of cases, the intuition gained from trajectories is enoughto predict what would happen with a realistic detector. However, there are alsomethods of adapting quantum trajectories to allow for a true mathematical picture.These methods are not used explicitly in this thesis, and so the discussion of them iskept brief and is included solely to illustrate how the assumptions made above canbe worked around. For a detailed mathematical approach to such methods see [9].Firstly, we continue to assume detection of single quanta that escape the systembut that measurement is done with efficiency η. This means that η of those quanta aremeasured and 1−η are not. This means that we can run the Monte-Carlo algorithmabove with a simple tweak: we now have two jump operators √ηĴ and √1− ηĴ .The first of these is measured so still performs stochastic jumps on the system. Thesecond is not and so, in between jumps, a master equation must be used instead ofcoherent evolution. These stochastic master equations therefore unravel some of thesystem-environment entanglement but not all of it.Alternative measurement schemes are also possible. For photon fields, measuringsignals mixed with a strong coherent field is often advantageous for practical reasons.Even with a perfect detection scheme, the noise associated with that coherent fieldneeds to be modelled on top of the measurement. This leads to stochastic Schrödinger
equations where coherent evolution exists in parallel with noise elements. Of course,such systems can be modelled with imperfect schemes as well, where we return to aform of stochastic master equation.

7For systems with multiple jump operators then this set of steps is followed for each operator at eachtime step.
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Chapter 3

Atomic physics

To study quantum mechanics, we need quantum systems that can be contained andcontrolled. One of the more obvious options, and most conceptually simple, is thatof single atoms - in particular, the outermost electron of a single alkali atom. Thatelectron lives in particular orbits around the nucleus, giving us a set of quantumstates for the electron to live in. In this Chapter, I describe the structure of thoseelectronic levels, and how through interaction with modes of the electromagnetic fieldthe electron can move between them. I then discuss the cooling of the atoms downto temperatures where their motion is restricted, enabling more control over thoseinteractions. Finally I discuss the algebra of two-level systems and integer spins, howto describe ensembles of atoms and the idea of squeezing in a finite size ensemble.

27
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3.1 Atomic level structure

Manipulating the state of atoms is a key component of the work in this thesis, andso it is necessary to explain what those states are. I start from the traditional place- the single hydrogen atom - and go through the corrections and field shifts thatprovide the rich structure of states used by atomic physicists. These explanationsdraw from [11] and that is an excellent place to seek further details.
3.1.1 Gross structure

The Hamiltonian eigenvalue equation for the spatial wavefunction, ψ(r), of the electronin a hydrogen atom is (
− ~22me

∇2 − e24πε0r
)
|ψ〉 = Eψ(r) (3.1)

where the electron is assumed to be in a Coulomb potential created by the nucleusand we introduce the mass and charge of the electron as me and −e respectively.We cast to spherical coordinates { r, θ, φ }, in which the solution must be sepa-rable, ψ(r) = R (r)Y (θ, φ), due to the spherically symmetric potential. We have
1
R
∂
∂r

(
r2 ∂R∂r

)
− 2mer2

~2 (V (r)− E ) = 1
Y l̂2Y → l̂2Y = CY (3.2)

where we have simplified the angular dependence to the orbital angular momentumsquared, ~2 l̂2, and used that each side now depends on different variables and soboth equal the same constant, C .For the φ component, Φ(φ), the result is somewhat trivial
− ∂2Φ
∂φ2 ∝ Φ → Φ = Aeimφ + Be−imφ. (3.3)

Physical solutions require ψ(r), and thus Φ, to be continuous in space and so Φ(φ+2π) = Φ(φ). This means that m must be an integer. We can now introduce theoperator l̂z . This operator is the projection of the orbital angular momentum onto the
z-axis and is given by

~l̂z = −i~ ∂
∂φ . (3.4)

Clearly this operator has eigenvalues m with Φ = eimφ the eigenfunctions.The θ dependence, Θ(θ) is more complicated. One method to find these solutionsmakes use of the ladder operators, which increase or decrease m, defined by
l̂± = l̂x ± îly, l̂± = e±iφ (± ∂

∂θ + icotθ ∂
∂φ

)
. (3.5)
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Repeated application of the raising or lowering operator does not continue indefi-nitely. The maximum value that can be achieved is ±m and action to move the statebeyond that gives zero. Making use of this and defining that maximum m as l

l̂+Y = 0 → Y ∝ sinl θeilφ. (3.6)
To find an arbitrary combination of l and m, we can then use the lowering operator8

Yl,m ∝
(
l̂−
)l−m sinl θeilφ. (3.7)

Yl,m gives us the value of the constant: C = l(l+ 1). This gives us two quantumnumbers by which to categorise the angular dependence of the state: l is the angular
momentum quantum number and m is the magnetic quantum number.We can now consider the radial component of the distribution. We make thesubstitution P(r) = rR (r) to simplify the equation and use the constant from above

− ~22me

d2Pdr2 + [ ~22me

l(l+ 1)
r2 − e24πε0r − E

]
P = 0. (3.8)

We can make the equation dimensionless using the substitution
ρ2 = 2me|E|r2

~2 → d2Pdρ2 + [−l(l+ 1)
ρ2 + λ

ρ − 1]P = 0 (3.9)
where we define a constant λ that characterises the Coulomb interaction strength as

λ = e24πε0
√ 2me

~2|E| . (3.10)
The solution to such an equation requires finite term polynomials9 and it is foundthat these converge when λ = 2n. This gives energies

En = − mee416π2ε20~2 1
n2 . (3.11)

Here we have defined another quantum number - n - the principal quantum num-
ber. This energy is independent of l and m making those states degenerate. Thepolynomial defining the radial state does depend on l and so limits 0 ≤ l < n.We can thus describe the positional state of the electron of a hydrogen atom withthree quantum numbers: |n, l, m〉 = Rn,l(r)Yl,m(θ, φ).

8The resultant functions are actually well known functions called spherical harmonics. They form acomplete orthogonal set for states living on a sphere.9These polynomials are Laguerre polynomials. They form an orthogonal set for the radial componentof the electron’s wavefunction. This means that between these polynomials and the spherical harmonicswe have an orthogonal set to describe the state in 3D.
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3.1.2 Fine structure

The electron itself has its own intrinsic angular momentum: spin10. This means thatour hydrogen electron needs two more quantum numbers |n, l, ml, s, ms〉 where s isthe spin and ms its z-axis projection. For an electron, s is 1/2 and so ms can be+1/2 ≡↑ or −1/2 ≡↓.Electrons moving around the nucleus create magnetic fields. The electron spinprovides an intrinsic magnetic moment and so the electron responds to the magneticfield created by its own motion. This phenomenon is referred to as spin-orbit coupling.This extra term in the Hamiltonian gives an energy shift proportional to 〈ŝ · l̂〉. Wecan calculate this by considering the total angular momentum of the electron
ĵ = l̂ + ŝ → 2 〈ŝ · l̂〉 = 〈̂j2〉 − 〈̂l2〉 − 〈ŝ2〉 = j(j + 1)− l(l+ 1)− s(s+ 1). (3.12)

The sum is either j = l ± 1/2. We thus break the degeneracy of the different l statesand we might think we split those l states into two j states too. However, due torelativistic considerations, a full calculation actually recreates degeneracy betweenstates with the same n and j . This degeneracy is slightly broken by the Lamb shiftwhich includes vacuum fluctuations of the electromagnetic field. These shifts are onthe order of a tenth of the fine structure splitting. For the alkali atoms, which wefocus on in this thesis, the different l states are split by another effect.
3.1.3 Hyperfine structure

The above work all assumes the nucleus is a fixed charge that can be treated com-pletely classically. However, protons and neutrons also have spin and so the nucleushas its own spin11. This means that the nucleus spin, Î, is also affected by the mag-netic field produced by the moving electron. This hyperfine splitting is proportionalto 〈̂I · ĵ〉. Defining a total angular momentum of the atom
F̂ = ĵ+ Î → 2 〈̂I · ĵ〉 = 〈F̂2〉− 〈̂I2〉− 〈̂j2〉 = F (F +1)−I(I+1)−j(j+1). (3.13)

That means that different vector sums of I and j are split. For the hydrogen atom(assuming the common isotope with zero neutrons) then I = 1/2 and so for each levelwe have a split into two hyperfine levels. For atoms with higher values of I then wehave |I − j| ≤ F ≤ I + j where we also satisfy F = |I − j|+ n with n an integer.
10All elementary particles have spin angular momentum. Protons, neutrons and electrons are all spin-1/2particles, also called fermions. This means they have an intrinsic spin of ~/2. Pauli’s exclusion principlestates that no two fermions can have the same wavefunction. Photons are bosons or spin-1 particles. Theyhave an intrinsic spin of ~ and no exclusion principle. A physical intuition to spin is difficult to obtainsince these elementary particles are points and therefore cannot really be thought of as literally spinning.Instead, this intrinsic angular momentum needs to be taken as mathematical and experimental fact.11Summing over the spin of many nucleons can give a variety of total nuclear spin. However, one ofthese total spins is generally the most stable and so for each isotope there is a fixed nuclear spin value.
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3.1.4 Zeeman & light shifts

In the presence of a low strength external magnetic field, the energy of the levelsshift proportional to F̂ · B̂. If we define the z-axis along the magnetic field thenthe shift is proportional to BmF , where mF is the magnetic quantum number of thetotal angular momentum. The magnetic field splits states with different magneticnumbers, removing the last layer of degeneracy. This effect is linear and so the shiftson |F ,±mF 〉 are equal in magnitude and opposite in sign and so the gaps betweenneighbouring states are the same. For higher fields a second effect becomes relevantdue to the coupling between the spin and orbital angular momentum that results in ashift proportional to the square of the previous shift. This shift is called the quadraticZeeman effect and it shifts states |F ,±mF 〉 the same amount with the same sign.An electromagnetic field also shifts the levels. These light shifts are most relevantto this work in the limit where the field is strongly detuned from the transition. Inthat case the light shift is given by Ω2/4∆, where ∆ is the detuning and Ω is theRabi frequency introduced in Section 3.2.1.
3.1.5 Full structure

We now have states uniquely identified by the quantum numbers |n, l, j, F ,mF 〉.Generally states are not written in this format. In chemistry the spin effects are notgenerally important and so states are written with the first two quantum numbers
nl (3.14)

where l is generally represented by letters. For example, l = 0 is the S orbital and
l = 1 is the P orbital. With fine structure and hyperfine structure we will write

nlj |F ,mF 〉 . (3.15)
3.1.6 Electronic structure of alkali atoms

Everything above is for the hydrogen atom, and all other atoms have multiple elec-trons. These electrons interact and so performing analysis like above becomes verydifficult. The majority of this thesis considers alkali atoms - primarily 87Rb. Rubidiumhas 37 electrons. We can express the first 36 electrons in ground state as
1S22S22P63S23P63D104S24P6 (3.16)

where the superscripts are the number of electrons in that level. This means that theelectrons fill all the levels except for one spare electron; the same holds for all otheralkali atoms. A surprisingly powerful picture is to then think of the atom as a single
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electron outside of a core - which includes the nucleus and the other 36 electrons -of charge +e. This core creates a Coulomb potential with the same charge, thougha different mass, to the hydrogenic case.There are other differences to take into account. The orbitals are probabilitydistributions with different shapes, so for different l orbitals the amount of the distri-bution contained within the core is different. The lower l orbitals penetrate the coremore and so the approximation of a hydrogenic potential is less accurate. This meansthat they, on average, see a deeper potential than they would in hydrogen, and sothose orbitals are shifted to lower energies. For higher l the orbitals are closer tothe hydrogenic forms. This means that the different l orbitals are shifted away fromeach other; in fact, the shift is substantial enough that for rubidium the 5S level hasa lower energy than the 4D level, and so it is filled first. The second key differenceis that, due to more nucleons being added, the nuclear spin is not necessarily 1/2any more. This can lead to much richer structure than the hydrogen atom.It is this picture which will be used in much of this thesis. There is an innercore of electrons and the nucleus, and a single electron that is manipulated. 87Rbhas a nuclear spin of 3/2 and so the ground state 5S is split into two hyperfinelevels 52S1/2 |F = 1, mF 〉 and 52S1/2 |F = 2, mF 〉, where the superscript is 2s + 1.The relevant excited states are then those with l = 1, which we separate into twosets of states due to the fine structure splitting: the D1 line 52P1/2 and the D2 line52P3/2. The fine structure splitting is large enough that these lines can be consideredseparately. The hyperfine splitting, which allows for F = 1, 2 in the D1 line and
F = 0, 1, 2, 3 in the D2 line, is considerably smaller and so it is often necessary toconsider the full structure of the line for the work in this thesis.
3.2 Interactions of atoms & light

I now introduce a key concept for this thesis: how light can be used to manipulatethe state of the outer electron of an alkali atom.
3.2.1 Rabi oscillations

Let us consider a single atom exposed to a single-mode oscillating electric field atfrequency ω, for example, a single-mode laser. We assume that the frequency andpolarisation match such that the field acts on a single transition. This means thatwe can consider the atom as a two-level system with a ground and an excited state,which we label as |0〉 and |1〉 respectively, as shown in Figure 3.1. This gives us aHamiltonian (~ = 1)
Ĥ = ωg |0〉 〈0|+ ωe |1〉 〈1| . (3.17)
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The atom has an electric dipole −er̂ and so the interaction with the field givesan extra Hamiltonian term

Ĥ(t) = ω0 |1〉 〈1|+ er̂ · Ê0 cos(ωt) (3.18)
where we have moved to a reference frame where ωg = 0 and ω0 = ωe − ωg is thetransition frequency between the two-levels.Our wavefunction for the atom lives in some state

|ψ(t)〉 = cg(t) |0〉+ ce(t) |1〉 (3.19)
and the Hamiltonian’s action upon that state gives us

ċg = −iΩ2 ei∆tce, ċe = −iΩ∗2 e−i∆tcg (3.20)
where we have moved to a rotating frame, defined the detuning ∆ = ω−ω0 and the
Rabi frequency Ω = 〈0| er̂ · Ê0 |1〉 . (3.21)
Combining these coupled differential equations gives a second order equation for ce

d2cedt2 + i∆dcedt + |Ω|22 ce = 0. (3.22)
Taking cg(0) = 1 then the population in the excited state oscillates

|ce(t)|2 = Ω2
W 2 sin2(Wt2

) where W 2 = Ω2 + ∆2. (3.23)

Figure 3.1: Diagram of a two-level system driven between |0〉 ↔ |1〉 by a coherent field at Rabi frequencyΩ and with detuning ∆.
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Figure 3.2: Populations in the ground and excited states of a two-level atom driven with coherent radiationwith Rabi frequency Ω with time in units Ω−1 .

At resonance, ∆ = 0, these Rabi oscillations reduce to
|ce(t)|2 = sin2(Ωt2

)
→ |cg(t)|2 = cos2(Ωt2

)
. (3.24)

Quite simply the atom oscillates completely between the two states with the Rabifrequency. This allows us to prepare specific superpositions of the two states. Allow-ing Ωt = π prepares the atom entirely in the excited state, while Ωt = π/2 preparesan equal superposition of the two. These are called π- and π/2-pulses respectively.Figure 3.2 shows this resonant behaviour. We also see that with a non-zerodetuning then we still have oscillations but some population always remains in theground state and the oscillations occur on a faster timescale.
3.2.2 Spontaneous emission

Rabi oscillations imply entirely coherent interactions between the field and the atom.This ignores an important fact: spontaneous emission. The excited state is by natureunstable and so decays back to the ground state by emitting a photon. This happenson a time-scale defined by the spontaneous emission rate [11]
γ = 2e2ω303ε0hc3 | 〈g| r̂ |e〉 |2. (3.25)

We can include this in a master equation for the Rabi oscillation picture
ρ̇ = −i[Ĥ, ρ] + γ2D [|g〉 〈e|]ρ. (3.26)

Figure 3.3 shows that spontaneous emission damps the oscillations. When γ � Ωthen this emission process dominates and there are no oscillations and we reach asteady state quickly. This steady state is the balance of how much population is on
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(b) γ = Ω (master equation)
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(c) γ = Ω (single trajectory)
Figure 3.3: Populations in the ground and excited states of a two-level atom with spontaneous emissionrate γ driven with resonant coherent radiation at Rabi frequency Ω with time in units Ω−1 .

average excited before an emission. Thus for high γ , that steady state is primarilythe ground state. With γ . Ω and zero detuning, then we see decaying oscillationsto some steady state much closer to an even split between the states.Mapping to the trajectory picture shows that the oscillations are still presentand continue indefinitely. The difference is that the spontaneous emission events
reset the oscillations. This means the master equation, which is the average overall possible trajectories, is the average of oscillations with different phases. Aftera timescale allowing for a few events, then the phase of the oscillations is evenlydistributed. This means that a single trajectory may show oscillations, but the averagewill completely destructively interfere, producing a steady state.
3.2.3 Selection rules

So far we have considered just two states and for both the coherent and dissipativecases we have to evaluate quantities related to the electric dipole moment
〈g| r̂ |e〉 . (3.27)
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For real atoms these quantities can be non-zero or zero, i.e. allowed and forbiddentransitions. Due to the symmetries of the systems, the parity of the state mustchange. We also have to conserve angular momentum. This gives us the followingset of rules [6]:
• ∆l = ±1. The parity of the azimuthal wavefunction is given by (−1)l and sothis must change by one to flip parity. This forbids, for example, S ↔ S or
S ↔ D transitions.

• ∆m depends on the polarisation of the light. For linear z- or, as it will calledhenceforth, π-polarised light ∆m = 0. For σ+- and σ−-polarised light then∆m = +1, −1 respectively. For x− or y−polarised light, we can think of themas a combination of both σ± and so ∆m = ±1.
• ∆s = 0. Light does not interact with the spin of the electron and so this cannotchange. This limits the change of angular momentum to either zero or ±1.
Remembering the relevant set of levels for a 87Rb atom this means that the twolower hyperfine levels, 52S1/2 |F = 1, 2〉 cannot be coupled because they have thesame l and so the |F = 2〉 state does not decay12. Those ground states can becoupled to the states in the D1 or D2 line provided that ∆F = 0, ±1 and, makinguse of the correct light polarisations, ∆mF = 0, ±1.

3.2.4 Raman transitions

A key component for the work in this thesis is that of Raman transitions. We coupleour ground and excited states |0〉 and |1〉 via some intermediary state |m〉, as shownin Figure 3.4. These could be driven by the same laser, or by two separate lasers.In the latter case, either the frequency of the drives, the polarisation of the drives, orboth might be different. Moving to the interaction picture, we have a Hamiltonian
Ĥ = Ω02 ei∆0t |m〉 〈0|+ Ω12 ei∆1t |m〉 〈1|+ h.c. (3.28)

where h.c. means Hermitian conjugate and therefore provides the reverse processesand Ω0,1 and ∆0,1 are the Rabi frequencies and detunings for the two transitions.From the form of the Hamiltonian, it can be seen that there is no direct couplingbetween |0〉 ↔ |1〉.If both drives are resonant and we start in the ground state, as in Figure 3.5,then we can see that the population moves through |m〉 to |1〉 and back. Oscillations
12In reality, there are other types of transitions possible. Magnetic-dipole and electric-quadrupoletransitions do not need to change the parity and so the F = 2 states can decay via those processes.However, such transitions generally occur on much longer timescales than electric-dipole transitions andso we can consider the F = 2 level as a metastable “ground state” over the timescales considered in thisthesis.
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Figure 3.4: Diagram of a Raman transition between |0〉 ↔ |1〉 formed via Rabi oscillations between anintermediary state |m〉 and both states. The driving fields have Rabi frequencies Ω0,1 and detunings ∆0,1 .
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(b) ∆ = 100Ω
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Figure 3.5: Populations in the ground, excited and intermediary states of an atom undergoing Ramantransitions. Both driving fields have Rabi frequency Ω with time in units of Ω−1 .
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between the ground state and the excited state are complete, though they are notsinusoidal due to the intermediary step.However, if the detunings are instead large then the same process happens butwith significantly lower population in the intermediary level and on a much slowertimescale. The intermediary state is only slightly excited by the process, yet the fullpopulation is transferred to the excited state. What we have looks a lot like Rabioscillations between the ground and excited state, yet there is no direct couplingbetween the two. Instead, we have two-photon transitions where a photon is ab-sorbed from the first mode and emitted into the second via a virtual excitation of theintermediary state.Since the intermediary state is only virtually excited we can adiabatically elimi-
nate the state from the Hamiltonian, i.e. since there is almost no population there, wecan trace it out. The Hamiltonian for the remaining two-level system then effectivelydescribes Rabi oscillations between those states where the rate is dependent on thetrue Rabi frequencies and detunings as well as the mismatch between the two lightfields.Of course we can also get Rabi oscillations between two states directly, so whyis this technique useful? Raman transitions allow us to couple two states betweenwhich a direct transition is forbidden. This means that both are stable, and there isno spontaneous emission from |1〉 → |0〉 (or vice versa). This allows us to producesystems without dephasing due to spontaneous emission events as the only dephas-ing in this system comes from spontaneous emission from the intermediary state.Remaining in the three state system we can include spontaneous emission from thatintermediary state. Figure 3.5c shows that the effective Rabi oscillations dephaseafter a significantly larger number of oscillations than if we used an excited state.For most of this thesis we operate in a hierarchy of scales ∆ � Ω � γ and so therate of spontaneous emission is so small that we can disregard it.
3.3 Cold atoms & Bose-Einstein condensates

To be able to manipulate and monitor the internal states of these atoms requires themto be “contained”. This cannot happen if the atom is moving around. This means theatoms need to be cooled and held in some sort of trap. In this Section, I give a briefexplanation of these processes. More detail can be found in [6, 11].
3.3.1 Laser cooling

Much of laser cooling relies on the recoil force of an atom scattering photons. Aphoton carries momentum ~k, where |k| = 2π/λ is the wavevector and λ is thewavelength of the photon. Momentum is conserved and so, if an atom absorbs a photon
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with momentum ~k then the atom gains ~k momentum. Equivalently, spontaneousemission carries away momentum. Spontaneous emission is randomly distributed, sothis momentum “kick” is randomly distributed.Initially, we consider a beam of atoms travelling in a single specific directionwhich takes them into a laser beam. Atoms travelling into the laser beam thusabsorb photons travelling in the opposite direction to them which slows them down.They then emit and are able to absorb again. Absorbing multiple photons eventuallymeans this process should slow the photons down to velocities limited by the randomwalk process induced by the spontaneous emission.However, the atoms are travelling and so they see a Doppler shifted version ofthe light. This means that light resonant for the atom initially, once it has beenslowed and sees a different Doppler shifted frequency, is no longer resonant forthat atom. There are two methods to deal with this: a Zeeman slower and chirpcooling. The Zeeman slower is a tapered solenoid that, due to the changing magneticfield, Zeeman shifts the relevant states to compensate for the slowing. Chirp coolinginvolves changing the frequency of the laser to compensate instead.In three dimensions, a similar technique known as optical molasses is used. Thisinvolves three pairs of counter-propagating laser beams at the same frequency. Thefrequency is chosen with negative detuning, ∆ = ω−ω0, such that the Doppler shiftcauses the atom to see the laser beam it is travelling into to be closer to the resonantfrequency than its pair. The momentum is on average reduced rather than increasedas the atom preferentially interacts with the field of direction opposite to its direction.The heating caused by the random spontaneous emission can be balanced againstthe cooling to find the limit of such a technique. For a spontaneous emission rate γthe optimal detuning is ∆ = −γ/2 and the Doppler cooling limit is

TD = ~γ2kB . (3.29)
This is not the ultimate limit of laser cooling. The two counter-propagating lasersinterfere to produce a standing wave. If they have orthogonal polarisations then thestanding wave has a modulated polarisation pattern. This polarisation gradient meansthat different magnetic states of the atom see a different modulated light shift andtherefore a different potential.Consider an atom travelling through that potential; it must convert potential en-ergy to and from kinetic energy. An atom at its largest potential will have its lowestkinetic energy and vice versa. The laser can be tuned such that the atom is mostlikely to absorb a photon at this point of highest potential. It can then emit a photonwith polarisation such that it leaves the atom in a different magnetic state. This statesees a different modulation to the potential and so it is not at its maximum potentialenergy. This means that the spontaneously emitted photon has to have carried off
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some of that potential energy. This process means that the most likely outcome is forthe atom to climb a potential hill and then lose some (or all) of the potential energyit has gained and start back over again at low potential. This repeated climbing ofhills only to lose the gained energy has lead to this process being given the ratherpoetic name of Sisyphus cooling.This process works until the energy of the atoms is such that the kinetic energyis lower than the potential barrier. This means that, up to some limit, the smallerthat barrier can be made, i.e. large detuning, the colder the atoms become. The limitis actually still set by the random recoils from the spontaneous emission events, butin this case it is set by a single recoil rather than the random walk process and sothe limit is much lower

TR = ~2|k|2
kBM

(3.30)
where M is the mass of the atom.To cool atoms down to temperatures useful for quantum optics experiments thefollowing procedure might be followed:

1. Create a beam of atoms and pass that beam through a Zeeman slower into anoptical molasses13 with detuning ∆ = −γ/2.
2. Detuning is held long enough for the ensemble to approach the Doppler limit.
3. Greatly increase the detuning and reduce the intensity such that Sisyphuscooling takes over.

3.3.2 Trapping

Our discussion of Sisyphus cooling already implies the concept behind trapping:reducing the velocity in a potential such that the atoms do not have the kinetic energyto move out of the potential dip. The first type of trap to discuss is a magneto-opticaltrap (MOT). This uses optical molasses with a magnetic field gradient. The field iszero at the centre and linearly increases in all directions. This field is not whatdirectly traps the atoms14; the field creates Zeeman shifts on the levels providing animbalance in the scattering forces that encourages the atom to move back towardsthe centre. Often a MOT will be overlapped with the optical molasses at the time ofcollection from the slowed beam, then turned off once the atoms have accumulated toallow them to be further cooled.
13For those atoms not suitably slowed by the Zeeman slower, their velocity will simply be too large tobe “captured” by the optical molasses and they will be lost. Overlapping a trap over the optical molasses,as discussed in Section 3.3.2, allows us to increase that capture velocity.14Magnetic trapping, where the atoms are directly trapped by the field, is also possible. Here themagnetic dipole provides a force on the atom ∝ −mFdB/dz . For cold atoms it is possible for thesetrajectories to bend round to form closed loops, localising the atoms. This of course only works for onesign of magnetic state mF and so cannot be used for the sorts of experiments described in this thesis.



42 CHAPTER 3. ATOMIC PHYSICS
A second type of trap uses the other force exerted by light on atoms: the dipoleforce. The energy of a dipole in an electric field is

U = 12er · E → Fz = −∂U∂z ∝ E ∂E∂z . (3.31)
If the radiation propagates along that axis we have a force

Fz = −ex [∂E0
∂z cos(ωt − kz) + kE0 sin(ωt − kz)] . (3.32)

Taking time averages of these two terms and following the derivation through givesus that the second term is related to the scattering force that we discussed withlaser cooling [11]. The first term is the dipole force and is important when the fieldgradient is strong. The dipole force for large detuning can be shown to be equal tothe derivative of the light shift. This means that if we have a gradient on the lightshift, then the potential follows that gradient as
Udipole ≈ ~Ω24∆ . (3.33)

If the detuning is negative then this potential is at a minimum at points of highintensity and the atoms are attracted to the points of highest intensity.An extension of this dipole force is that it can form a lattice potential. Forming astanding wave with counter-propagating lasers creates a pattern of maximum intensityand zero intensity. The gradient is high since that change happens over half awavelength and so forms a pattern of potential wells for an ensemble of atoms in 1D,2D, or 3D. If the potential is deep then the atoms will be strongly localised to onesite, while if the filling factor for the lattice - i.e. the average occupation per site - islow then the atoms should be spatially separated. This means that the atoms shouldnot interact with each other or move around too much, allowing manipulations of theinternal states with light without concern for the external states of the atoms15.
3.3.3 Bose-Einstein condensation

When the temperature of the atoms is reduced to extremely low temperatures thena different type of physics appears. At some critical temperature, Bose-Einstein
15This is the limit useful for the work in this thesis, but it should be noted that optical lattices aremuch more than a tool to isolate atoms. Indeed, atoms in optical lattices are an interesting enough fieldfor books (or at least one book) to have been written about them [12]. They can be described by a richHamiltonian that allows atoms to hop between sites and includes a wide variety of possible ways theatoms can interact with one another. Those interactions might be, for example, that two atoms cannotbe on the same site, or perhaps that atoms prefer to be sat next to atoms with the opposite spin. Theevolution of the system depends on the strengths and forms of those terms, as well as the filling factorand the shape and dimensions of the lattice. This interplay can produce complex dynamics and a widerange of ground states, offering a fascinating window into fundamental many-body quantum mechanicalbehaviour.
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condensation takes place. In a Bose-Einstein condensate (BEC), the vast majority ofatoms occupy the same ground state and have to be thought of as a single macroscopicfluid. This is because the de Broglie wavelength, defined as,

λ = h
p (3.34)

increases considerably as the velocity is reduced. At some velocity this delocalisationof the atoms is on a similar scale to the spacing between atoms in the gas. At thispoint, thinking of the gas as an ensemble of localised individual atoms is not accurate;there is a global wavefunction that governs the entire fluid and follows a non-linearSchrödinger equation called the Gross-Pitaevskii equation.Reaching the temperatures needed for Bose-Einstein condensation requires anextra form of cooling: evaporative cooling. Much simpler in concept than laser cooling,evaporative cooling involves trapping and cooling atoms and then reducing the depthof that trap sharply. The atoms with high velocities then escape taking their energywith them. The rest of the gas assumes a new Maxwell-Boltzmann distribution witha lower average energy and therefore a lower velocity. Repeated changes of the trapdepth cool the atoms further, but it is necessary for the atoms to be laser cooled firstto leave significant population after evaporative cooling. In such a way, this acts asan extra step to the cooling process described in Section 3.3.1BECs have been at the forefront of atomic physics since they were first producedin 1995 and many of those experiments have considered a problem that this thesisfocuses on - many-body dynamics in atomic gases. The proposals discussed inthis thesis do not require BECs. However, many of them were inspired by BECexperiments and many of them could be implemented in a BEC. Discussions on themost important BEC experiments to this work are found in Sections 4.4.3 and 9.1.

3.4 Atomic state representations

We now know the full set of states available to the atoms and that they can be cooledand trapped. This is the toolbox necessary for experiments on alkali atoms. We nowneed a mathematical framework to deal with them algebraically and computationally.The atoms are complex sets of many levels, but to treat them that way is generallyinfeasible. Instead, we want to approximate their wavefunction to discrete subsets ofthose levels. I have discussed how to carefully control excitations with light fieldsand so restrict the atom to a subset to very good approximation. In this Section, Iintroduce a formalism to describe the states of single atoms in such subsets as wellas ensemble of atoms.
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3.4.1 Two-level systems

For a single atom, the simplest possible system is to isolate two states, making theatom a pseudo spin-1/2. Our basis is then just two states: |0〉 and |1〉 (alternativelythese states can be labelled |↓〉 , |↑〉) and our atomic wavefunction then lives in somesuperposition
|ψ〉 = α |0〉+ β |1〉 = (α

β

) (3.35)
where α, β are complex numbers that satisfy α2 + β2 = 1. More generally, it existsin some density matrix

ρ = (c00 c01
c10 c11

) (3.36)
where for the pure state above we have

ρ = |ψ〉 〈ψ| = (α
β

)(
α∗ β∗

) = (|α2| αβ∗

βα∗ |β2|
)
. (3.37)

For a spin-1/2 particle any operator acting on the state can be described by somecombination of the Pauli operators (and the identity)
σ̂x = |0〉 〈1|+ |1〉 〈0| = (0 11 0

) (3.38)
σ̂y = i(|0〉 〈1| − |1〉 〈0|) = ( 0 i

−i 0
) (3.39)

σ̂z = |1〉 〈1| − |0〉 〈0| = (−1 00 1
)
. (3.40)

Note that the ladder operators introduced in Section 3.1.1 can be formed as theywere there: σ̂± = σ̂x ± iσ̂y.These matrices each have two eigenstates with eigenvalues ±1. These are
|x±〉 = 1√2 (|0〉 ± |1〉) (3.41)
|y±〉 = 1√2 (|0〉 ∓ i |1〉) (3.42)
|z−〉 = |0〉 , |z+〉 = |1〉 . (3.43)

In the same way that the Pauli operators span the operator space, any of theseeigenstate pairs span the state space. The three pairs, and thus the state, can alsobe mapped to the axes of a sphere of unit radius. Our state on the sphere is given
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simply by solving

|ψ〉 = sin(θ2
)
|0〉+ eiφ cos(θ2

)
|1〉 (3.44)

where θ and φ define spherical coordinates in the usual way. This is the Blochsphere and the state described in this way is the Bloch vector.
3.4.2 Spinor systems

Let us now consider a three level, or spin-1, atom. Our basis now has three states:
|−1〉, |0〉 and |+1〉. Our wavefunction lies in some superposition

|ψ〉 = α |−1〉+ β |0〉+ γ |+1〉 =
αβ
γ

 (3.45)
with the more general density matrix for such a state obtained in the usual way.We can define spin operators for these spin-1 atoms just like the Pauli matricesdescribed the two-level systems

σ̂x = 1√2 (|0〉 〈+1|+ |−1〉 〈0|+ |+1〉 〈0|+ |0〉 〈−1|) = 1√2
0 1 01 0 10 1 0

 (3.46)
σ̂y = i√2 (|0〉 〈+1|+ |−1〉 〈0| − |+1〉 〈0| − |0〉 〈−1|) = i√2

 0 1 0
−1 0 10 −1 0


(3.47)

σ̂z = |1〉 〈1| − |−1〉 〈−1| =
−1 0 00 0 00 0 1

 . (3.48)
Generally speaking the ladder operators will be used more frequently in this thesisand these are defined as

σ̂− = √2 (|0〉 〈+1|+ |−1〉 〈0|) =
 0 0 0√2 0 00 √2 0

 (3.49)
σ̂+ = √2 (|0〉 〈−1|+ |+1〉 〈0|) =

0 √2 00 0 √20 0 0
 . (3.50)

The form of the ladder operators is reminiscent of the annihilation and creation
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operators for the electromagnetic field. Both feature off diagonal terms that movepopulations one rung of a ladder up or down. σ̂z plays the role of the numberoperator in this picture, in that it is proportional to the number of “excitations” in thesystem. The key difference of course is that these atomic operators act on a finiteHilbert space, whereas there is no bound to the number of photons in a field.Unlike the spin-1/2 case these do not form a complete set of operators. Forexample, the operator for the population in the |0〉 state, |0〉 〈0|, cannot be formedfrom these operators. The third degree of freedom in the state means we requiremore operators to describe action upon the states. A full set can be formed with thethree operators above, the identity and the following [13]

q̂xy = i

 0 0 10 0 0
−1 0 0

 (3.51)
q̂yz = i√2

 0 1 0
−1 0 −10 1 0

 (3.52)
q̂zx = 1√2

0 1 01 0 −10 −1 0
 (3.53)

D̂xy =
0 0 10 0 01 0 0

 = 12 (q̂xx − q̂yy) (3.54)
Ŷ = 1√3

1 0 00 −2 00 0 1
 = 12√3 (2q̂zz − q̂xx − q̂yy) (3.55)

where we have defined the nematic tensor q̂ with elements [13–15]
q̂ij = σ̂iσ̂j + σ̂j σ̂i −

43δij . (3.56)
For higher spin particles the number of degrees of freedom for the state increasesand so the number of operators required increases too. In the few cases in this thesisthat spin-2 or higher particles are considered, the states are confined in such a waythat these extra operators are not necessary.
3.4.3 Dicke states

This thesis generally concerns ensembles of atoms and so a collective basis is needed.Let us consider an ensemble of N atoms each in some state |ψi〉. The collective
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wavefunction is then the product state |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 ⊗ · · · ⊗ |ψN〉. Thebasis size to properly describe such a state for N two-level atoms scales like ∼ 2Nwhich limits us to very small numbers of atoms. A more restricted subset of thepossibilities is necessary.In the vast majority of this work, we rely on the fact that these atoms are indis-tinguishable16. This is equivalent to saying that the global spin state is symmetricunder particle exchange17, or more simply, the state does not change if the labels ofany two atoms are switched.This insistence on symmetric states reduces the Hilbert space to a set of statesknown as Dicke states. These are collective states with a known collective angularmomentum length S and z−projection m: |S,m〉. This means that, for a fixed spinlength S , we reduce our basis size to 2S + 1.Let us consider N two-level atoms all in the same state |0〉. Rememberingthat a two-level system is mathematically equivalent to a spin-1/2 particle, |0〉 =
|S = 1/2, m = −1/2〉. The wavefunction for the ensemble in the collective picture isthen |Ψ〉 = |1/2, −1/2〉⊗N which is equivalent to the Dicke state |S = N/2, m = −N/2〉.This is a definite total spin of N/2 with a definite z-projection −N/2.This picture lets us consider an ensemble of atoms as equivalent to a single largespin. A single large spin has its own ladder operators Ŝ± which add and subtractone to the magnetic quantum number. Let us consider the action of Ŝ+ on the Dickestate |S = N/2, m = −N/2〉,

Ŝ+ |S = N/2, m = −N/2〉 ∝ |S = N/2, m = −N/2 + 1〉 . (3.57)
The total magnetic quantum number has increased by one. This is interesting whenwe move back to the picture of individual spins, where, since the atoms are indistin-guishable and thus equally likely to have been excited, the wavefunction is now abalanced superposition of all possible combinations of exactly one atomic excitationin the ensemble
|N/2, −N/2 + 1〉 = 1√

N
(|1〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · ·+ |0〉 ⊗ |1〉 ⊗ |0〉 · · ·+ · · · ) . (3.58)

Instead of raising a single atom, we have spread the excitation throughout the en-semble. Note that this is not the same as the product of each atom being partially
16In theory, the atoms are held at different points of a lattice such that they could be distinguished.However, we consider them to be identically coupled to the fields that drive them such that to those fieldsthey are indistinguishable. Where we consider processes that can break that indistinguishability, we donot operate in a Dicke state basis.17Of course, this is not strictly true. For fermions, the total wavefunction should in fact be anti-symmetricunder particle exchange due to Pauli’s exclusion principle. For the purposes of this thesis, we assume theglobal spin wavefunctions to be symmetric, and that the anti-symmetry is instead in the spatial degree offreedom that we do not consider.



48 CHAPTER 3. ATOMIC PHYSICS
excited as the state insists on exactly one excitation. The state for each atom is

ρi = N − 1
N |0〉 〈0|+ 1

N |1〉 〈1| . (3.59)
Note that this is a density matrix whilst the collective state was a pure state. Thisis because the Dicke states, excluding |N/2, ±N/2〉, are entangled. They feature anexact number of excitations, and so, like the Fock states, are inherently non-classical.As with Fock states, they are a useful basis for calculation but are not trivial toproduce in the laboratory. This is the motivation behind our work on producingDicke states for an atomic ensemble found in Chapter 6.
3.4.4 Collective spin operators

The Dicke states allow us to consider the ensemble as a large spin of length S withassociated operators Ŝ± and Ŝz . These operators are formed by summing over theindividual spin operators, for example,
Ŝz = N∑

i=0 σ
(i)
z . (3.60)

More useful is the form of these in the basis of Dicke states where
Ŝz = S∑

m=−Sm |S,m〉 〈S,m| (3.61)
Ŝ± = S∑

m=−S
√
S(S + 1)−m(m± 1) |S,m ± 1〉 〈S,m| . (3.62)

Note that Ŝ± |S,±S〉 = 0 and so the boundary conditions are met. This equationshows that the ladder operators act strongest on states with m close to zero, withcoefficients ∼ S , and weakest on those that are near fully polarised, with coefficients
∼
√
S . This effect is thus more pronounced for larger spins, or, in the case of anensemble, more spins.

3.4.5 Coherent spin states

It is also useful to consider unentangled pure states of the ensemble: a coherent spin
state (CSS). Let us take the product state

|ψ〉 = [sin(θ2
)
|0〉+ eiφ cos(θ2

)
|1〉]⊗N . (3.63)
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(a) Coherent spin state (b) Dicke state (c) One-axis twisted state
Figure 3.6: Atomic Q-function plots of different atomic ensemble states.

Clearly such a state is also symmetric to particle exchange and so can describe astate in our indistinguishable system. We can calculate this state in the basis ofDicke states as [16, 17]
|θ, φ〉 = N/2∑

m=−N/2
(

N
N/2 +m

)1/2 cos(θ2
)N/2+m sin(θ2

)N/2−m ei(N/2+m)φ |N/2, m〉
|η = eiφ tan(θ/2)〉 = 1(1 + |η|2)N/2 N/2∑

m=−N/2
(

N
N/2 +m

)1/2
ηN/2−m |N/2 +m〉 . (3.64)

where we have used that the statistics of the product states will follow a binomialdistribution with probabilities given by the superposition of the single atom. Notethat, as with the vacuum, the Dicke states |S,±S〉 are also CSSs with θ = 0, π .These states are defined by two angles and a definite length, meaning that theycan be mapped to a sphere. Like coherent states of light, CSSs are not orthogonaland so we can define an atomic Q-function. This atomic Q-function lives on a sphererather than the plane and is formed by the overlap with CSSs [17, 18]
Q(η) = 〈η| ρ |η〉 . (3.65)

Examples of this are given in Figure 3.6. CSSs appear as circles, like their lightanalogy, while Dicke states appear as rings similarly to the circles of the Fock states.
3.4.6 Spin squeezing

A sequence of N uncorrelated measurements of some property gives a sample meanand an associated sample variance that scales as 1/N . Simultaneous measurementof N uncorrelated particles thus gives a variance with ideal scaling 1/N , calledthe standard quantum limit (SQL)18. A measurement of N correlated particles is not
18The standard quantum limit is just that, a limit, rather than the scaling of any ensemble measurement.Other sources of noise associated with the ensemble, the experiment or the measurement may increasewith N such that the scaling is actually worse than 1/N .
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constricted by the same bound but instead by the Heisenberg limit 1/N2. This meansthat the precision available to quantum states exceeds that for classical states.If there is some property that we wish to measure precisely, we can couple thatproperty to a quantum system such that the property imprints a phase proportional toits magnitude on the quantum state. This phase is then measured so as to estimate themagnitude of the desired property. For this reason, often the metrological precisionavailable is referred to as the phase sensitivity. Here I discuss how to characterisethe metrological properties of an ensemble of spins.To think about spin squeezing we need to consider the commutator relations forthe angular momentum components

[Ŝx , Ŝy] = iŜz , [Ŝy, Ŝz ] = iŜx and [Ŝz , Ŝx ] = iŜy. (3.66)
A squeezing parameter based solely on these relations does not correctly capturethe physics because of the fact there are three dimensions. Instead of noise beinghidden in a different component, it can simply be that the vector points more alongone of the two axes than the other.A more useful spin squeezing parameter is defined around the mean-spin direc-tion. Here, we use the Heisenberg relation above, but for a set of axes defined by themean-spin direction and two vectors perpendicular to that direction and each other.Introduced by Kitagawa and Ueda, the spin squeezing parameter is [19, 20]

ξ2
S = min (∆Ŝ2

⊥

)
S/2 . (3.67)

A state is spin squeezed if, along some axis perpendicular to the mean spin direction,the variance on the spin is smaller than the length of the spin. It can be shown thatfor a CSS ξ2
S = 1. If ξ2

S < 1 then the state is entangled.A subtly different term, first proposed by Wineland et al [21], is given as
ξ2
R = N min (∆Ŝ2

⊥

)
| 〈Ŝ〉 |2 . (3.68)

Whilst the differences to ξ2
S are subtle, it offers a distinct advantage. Instead ofconsidering the variances in relation to the uncertainty principle, this parametertells us directly about the improved phase sensitivity of the state over a CSS fora particular type of phase measurement called Ramsey interferometry. While ξ2

Sis a witness to entanglement, ξ2
R is a witness to useful metrological improvementover a classical state. In many cases, including for the indistinguishable ensembleconsidered above, the length of the spin is given by S and so the two are equivalent.Kitagawa and Ueda [19] also introduced a commonly used method to spin squeeze.
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The first of these is one-axis twisting, which has been produced in various systems[20, 22]. This involves operating upon the Dicke state |S,−S〉 with the Hamiltonian

Ĥ = χŜ2
x = χ4 (Ŝ2+ + Ŝ2

− + Ŝ+Ŝ− + Ŝ−Ŝ+). (3.69)
It is clear from the form on the right hand side that this Hamiltonian creates andannihilates pairs of excitations, analogously to the squeezing operator. However,due to the finite size of the Hilbert space, the squeezing is limited to a variance1/N2/3 improved over a CSS. Kitagawa and Ueda also introduced two-axis twistedsqueezed states [19], which offer Heisenberg limited precision but are yet to berealised experimentally.There are lots of other methods used to produce spin squeezed states. Theseinclude, but are certainly not limited to, the transfer of squeezed light onto an en-semble, quantum non-demolition measurements and adiabatic state preparation ofground states [20, 22].For the specific case of the Dicke states we run into an issue using either of thesespin squeezing parameters as they require a mean-spin direction. The Dicke stateshave a definite Ŝz and so, by the uncertainty principle, cannot have any informationin either of the other coordinates. Considering the atomic Q-function plot in Figure3.6b we see that the Dicke state is a ring. The mean point of a ring is the centre ofit, which has no direction and length of zero. Instead, for Dicke states and entangledstates in the vicinity of such states we can use the Dicke squeezing parameter [23]

ξ2
D = N (∆Ŝz )2 + 1/4

〈Ŝ2
x + Ŝ2

y〉
. (3.70)

For a pure Dicke state |S,m〉 this is
ξ2
D = 1

N + 2− 4m2/N (3.71)
and so for m ∼ 0 and large N offers significant squeezing. This parameter gives usaccess to the metrological sensitivity equivalently to the Wineland parameter, given inEquation 3.68, and so those central Dicke states offer Heisenberg limited metrology.This parameter also gives access to a minimum bound to the entanglement depth ofthe system dξ−1

D − 2e [24]. The entanglement depth quantifies the minimum size of asubset of atoms that are genuinely entangled between all members of the subset.Another complication arises if we consider an ensemble of spinor particles. Asdiscussed in Section 3.4.7, such an ensemble does not necessarily have maximal spinor live on the surface of the collective Bloch sphere. In such cases, other measuresof the phase sensitivity can be used, as in Chapter 8, or a different set of axes canbe found to define a sphere that the state does live on, as in Chapter 10.
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3.4.7 Bosonic mode picture

For collective spinor states initialised into a fully polarised state - i.e. |±1〉⊗N -then the Dicke model picture above works fine19. However, for states involving thezero mode this picture is not suitable. The issue is that two bosons in the |0〉 statedo not have a set collective spin. Instead
|1, 0〉 ⊗ |1, 0〉 = √23 |2, 0〉 −

√13 |0, 0〉 . (3.72)
This means that, for any product state of indistinguishable spinor atoms with anypopulation in the zero mode, there will be a spread of different angular momentumlength states and so a Dicke state representation does not simplify the basis inthe same way. The full properties of such superpositions of angular momentum areencountered in many sections of this thesis, and exploiting them is the basis of theproposal in Chapter 8.Instead of tracking the spin length and polarisation, we track the populations ineach state. Simply, each state of our spin-1 atom, |m〉, has an annihilation operator
b̂m and creation operator b̂†m. These have exactly the same form and statistics as thephoton annihilation and creation operators and so, for example, the number operatorin each case is given by b̂†mb̂m. Using a basis of Fock states in each state, ourwavefunction for N atoms is then given by the superposition
|ψ〉 = ∑

m,n,o
cmno |m〉−1 ⊗ |n〉0 ⊗ |o〉+1 ∀ m, n, o s.t. m+ n+ o = N. (3.73)

Our operators need to be recast in terms of angular momentum operators
Ŝi = (b̂†−1 b̂†0 b̂†−1

)
σ̂i

b̂−1
b̂0
b̂−1

 (3.74)
where Ŝi is the collective equivalent of the single-atom operator σ̂i. Note that re-placing σ̂i with q̂ij produces the elements of the collective nematic tensor.

19From the work that follows, it should be stated that this treatment is valid if neither the Hamiltoniannor the dissipation couples different angular momentum length states. In that case then the bosonic moderepresentation described in the following text would also be needed.



Chapter 4

Cavity quantum electrodynamics

The interaction of an electron and the electromagnetic field in free space is inherentlyvery weak. Using light to manipulate the atoms in the ways we desire requires amuch stronger interaction. We can do this by using very strong fields or by increasingthe strength of the interaction. The simplest method is to use high quality opticalresonators. These confine the light into very small volumes, such that an atom placedinside that space has a greatly enhanced interaction with the confined light. I willdiscuss this as well as briefly discussing less obvious architectures that produceequivalent systems. I then discuss the simplest model of a single atom interactingwith a single mode of the electromagnetic field: the Jaynes-Cummings model. For anensemble of atoms, such a model can be generalised to the Tavis-Cummings model.In a somewhat different limit, that interaction can be described by the Dicke model.I include a discussion of the historical origins of that model, as well as much morerecent attempts to recreate the model in a Bose-Einstein condensate.
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4.1 Optical cavities

The Rabi oscillations and Raman transitions described in Section 3.2 consideredsingle modes of the electromagnetic field coupled strongly to single atoms. However,photons interact very weakly with such small dipoles. When thinking of lasers, wehave interactions between the atom and lots of indistinguishable photons buildingup to be substantial. When thinking of cavities, we can think of a single photon thatis reflected back and forth lots of times and so interacts multiple times to build upthe substantial interaction.
4.1.1 Cavity modes

The simplest form of an optical cavity is a planar, or Fabry-Pérot, cavity and involvestwo very highly reflective mirrors with a spacing L. If light of wavelength λ isintroduced to the cavity then, after one round trip, the light accumulates phase
φ = 4πL

λ (4.1)
where we assume the refractive index of the intracavity medium is unity. A secondround trip doubles that accumulated phase. With light bouncing back and forth inthe cavity, these different phase shifts will interfere. If φ = 2πj , where j is aninteger, then that interference will be constructive. These are resonant modes of thecavity. For any other frequency, it will destructively interfere after some number oftrips. If the cavity has some transmission, then the confined light does not performinfinite round trips and so wavelengths with φ ≈ 2πj will have interference thatis not completely destructive. This gives the cavity resonances a linewidth whichtranslates to a deviation of the accepted round trip phase shift with full width at half

Figure 4.1: An atom contained within a planar cavity. Light is confined between two mirrors and an atomis placed inside. The atom is coupled to the cavity light, and both the atom and cavity can emit excitationsinto free space.
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maximum [6] ∆φ = 2π/F where F = π(R1R2)1/41−√R1R2 (4.2)
and we have defined the cavity finesse F and the reflectivity of the two mirrors R1,2.If the finesse is high enough, then we have isolated a series of single frequencies

ωm = mπcL with spectral width ∆ω = πc
FL . (4.3)

A high finesse leads to sharp lines while a small cavity length is important to createwell separated lines.If we have a single photon in the cavity then after a round trip there is a 1−√R1R2chance of the photon remaining. This allows us to construct an average timescale aphoton would be expected to remain in the cavity
τ = L

c(1−√R1R2) → κ = 1
τ (4.4)

where we have defined κ as the decay rate for the cavity. Comparison of this to thespectral width of the line shows that, if R1,2 ≈ 1, then
∆ωm = 2κ̃ (4.5)

where we now define κ̃ = κ/2 as the half width of the cavity. This value will be usedhenceforth and will just be called κ .This means that the cavity has just two important characteristics: its finesseand its frequencies. For a more general system, where defining reflectivity is notnecessarily simple, the finesse is replaced with the quality factor [11]
Q = ω∆ω = ω2κ . (4.6)

It means we can also create a master equation formulation for the cavity as
ρ̇ = −i[Ĥ, ρ] + κD [â]ρ. (4.7)

4.1.2 Cavity enhanced interactions

We now introduce an atom into the cavity. There are now three important rates: thedecay rates of the atom and cavity governed by γ and κ , as well as the couplingbetween the two of them, g. We have no external field and so the interaction strengthis the energy of the interaction between the cavity vacuum mode and the electricdipole, −er̂, of the atom
~g = |µ12E | (4.8)
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where µ12 = −e 〈1| r̂ |2〉 and E is the vacuum field strength [6]

E = ( ~ω2ε0V
)1/2

→ g = ( µ212ω2ε0~V
)1/2

. (4.9)
where V is the mode volume.For the types of experiments we consider in this thesis, we want the couplingstrength g to be larger than the decay rates κ and γ . The first requirement meanswe want a quality factor

Q �
(
ε0~ωV2µ212

)1/2
. (4.10)

A high quality factor is required, but the requirement can be relaxed somewhat byan increased vacuum field strength. This can be done by choosing transitions withhigh µ12, though that also raises the spontaneous emission rate, or by confining thelight in a very small mode volume20.One method of enhancing the coupling is simply to use more atoms. For N atomsinitiated in the collective Dicke state |N/2, −N/2〉 the coupling is enhanced by √Nover a single atom |1/2, −1/2〉. This can be trivially seen by the form of Ŝ+ inEquation 3.62. This then allows us to have strong coupling for the ensemble evenwhen the cavity does not have strong coupling for a single atom. This is particularlyuseful for the work described in this thesis as we need to overcome the reduction ineffective coupling strength caused by operating at high detunings.
4.1.3 Alternative architectures

There are alternative architectures that can help increase the coupling to lossesratio. An example would be a cavity embedded into a tapered optical fibre [25, 26].In sub-wavelength diameter fibres the majority of the electromagnetic field travels
outside the fibre as an evanescent wave. Evanescent fields decay exponentially withdistance from the surface and so the majority of the field is close to that surface andthus has a very small mode volume. Trapping atoms near such a surface thus allowsvery strong interactions. Other systems that use an enhancement via such evanescentfields include micro-resonators [27, 28] and photonic crystal waveguides [29, 30].Using a different medium as the two-level system “atoms” is also a possibility.Those systems might be atomic defects in crystal structures, such as rare earth iondopants [31] or nitrogen-vacancy centres in diamond [32]. There are also macroscopicsized objects that have quantised degrees of freedom that can be used. Supercon-ducting circuits have energy levels that are quantised elements of the circuit [33].

20Of course, in lots of architectures, the mode volume is the volume of the cavity and so decreasing thevolume and the length come hand in hand. If all we do is decrease the cavity length, L, then the couplingincreases as ∼ L−1/2 while the cavity decay rate increases as ∼ L−1 and so the ratio of g/κ will decrease.If we need to reduce the volume, we require a more clever manner than making the cavity smaller.
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Often these levels have a strong non-linearity and so it is easy to isolate a two-levelsystem that can be coupled to microwave resonators. Dots of semiconductor material,of a size on the order of nanometres, have levels defined by the band structure of thesemiconductor. These can be grown on, for example, a photonic crystal waveguidestructure allowing for a single fully integrated “cavity QED” system.All of these architectures have their benefits and flaws and so are suitable fordifferent purposes. In this thesis, we focus on a traditional cavity QED system witha large ensemble of atoms. However, some of our proposals could be implementedin other architectures. Making use of the different advantages of alternative systems,there are a range of other possibilities building on the methods we introduce here.A brief discussion of some of these ideas is given in Section 12.3.
4.2 The Jaynes-Cummings model

The simplest model of a single atom in a cavity is the Jaynes-Cummings model [34,35].A two-level system is coupled to a cavity mode with a Hamiltonian
Ĥ = ωâ† â+ ω0σ̂z + g(â+ â† )(σ̂− + σ̂+). (4.11)

The first two terms are simply the energy associated with photons in the field and thestate of the atom. The interaction term involves the exchange of excitations betweenthe field and the atom. Transforming the Hamiltonian to the interaction picture gives
Ĥ ′ = g

(e−i(ω+ω0)t âσ̂− + e−i(ω−ω0)t âσ̂+ + ei(ω−ω0)t â† σ̂− + ei(ω+ω0)t â† σ̂+) . (4.12)
Two of these terms rotate at ±(ω+ ω0) and two at ±(ω −ω0). If ω ∼ ω0 then thosesecond terms are close to resonant and the first terms rotate at an extremely highfrequency and so are strongly suppressed [7]. This allows us to make the rotating
wave approximation and so, coming out of the interaction picture, we have

Ĥ = ωâ† â+ ω0σ̂z + g(âσ̂+ + â† σ̂−). (4.13)
The interaction has been simplified to those that conserve the number of excitations.An atomic excitation turns into a field excitation and vice versa.The obvious states to consider are Fock states coupled to the bare levels, |0〉 and
|1〉, of the two-level system. If we take these states, with notation |n〉 ⊗ |0〉 ≡ |n, 0〉and |n〉 ⊗ |1〉 ≡ |n, 1〉, then the action of the Hamiltonian (where we transform
σ̂z → |1〉 〈1| for simplicity) is

Ĥ |n, 0〉 = nω |n, 0〉+√ng |n − 1, 1〉 (4.14)
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Ĥ |n − 1, 1〉 = ((n − 1)ω + ω0) |n − 1, 1〉+√ng |n, 0〉 (4.15)

and so we have a closed set. Of course, this should be expected, due to the excitationconservation of the Hamiltonian. This means that we can form eigenstates whichhave n excitations split between the field and the atom
|ψ〉 = A |n, 0〉+ B |n − 1, 1〉 (4.16)

upon which the action of the Hamiltonian, defining ∆ = ω − ω0, gives us
Ĥ |ψ〉 = [Aωn+ Bg

√
n
]
|n, 0〉+ [B(ωn − ∆) + Ag

√
n
]
|n − 1, 1〉 (4.17)

If ω = ω0 then the eigenstates are
|ψ±n〉 = √12 (|n, 0〉 ± |n − 1, 1〉) with E±n = nω ± g

√
n. (4.18)

Without the coupling, |n, 0〉 and |n − 1, 1〉 are both eigenstates and are degenerate.The coupling creates two new dressed states which have an energy difference of2g√n. Note that the energy gap between the pair of dressed states increases withthe number of excitations in the system21.If ω 6= ω0 then, defining ∆ = ω − ω0, the eigenvalues are
E±n = nω − ∆2 ±

√(∆2
)2 + g2n (4.19)

and the eigenstates are now imbalanced superpositions of the states. The splitbetween the dressed states is now even larger, which makes sense since the barecavity and atomic excitations are now at different frequencies as well. If ∆ is positivethen there is less energy in the atomic excitation, and so the lower energy dressedstate has more of the atomic excitation in it. For negative ∆ the opposite is obviouslytrue. As ∆, and thus the split, increases, the eigenstates become focussed more andmore to one side. In the large detuning limit, ∆ � g
√
n, the eigenvalue equationshows that the two “dressed” states have gone back to the undressed picture. Wethus require near resonance between the cavity and atom frequencies to notice thesplitting caused by the interaction.If we initiate the system with an excited atom, as in Figure 4.2a, then the excitation

21This fact can be used to generate single photons. If we drive the system in its ground state with lightat a frequency ω + g then we excite the upper of those dressed states. The next pair of excited stateshas its upper level ω + (1 − √2)g above this first rung, meaning it is out of resonance. As such, if thedriving is weak, the system cannot gain more than one excitation. This so-called photon blockade [36,37]thus produces one photon as it drops back to the ground state and then has a dead time while the drivingre-excites the system. This means that a weakly driven Jaynes-Cummings system - higher driving doesbreak the blockade [38] - can produce only single photons separated by at least the time taken to re-excitethe system following emission.
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oscillates between the two components. With a detuning, that oscillation exists butnot for the entire population. Adding dissipation to the system makes |0, 0〉 the onlystable state as the excitations leave via the losses and so we have oscillations untilthe excitation decays. This is reminiscent of the Rabi oscillations discussed in Section3.2.1, except with an interesting difference: these Rabi oscillations are self-driven.The only excitation in the system is the original excitation of the atom.We can prepare the system in different levels of the ladder. Figure 4.2b showsthat the oscillations are at higher frequencies at higher rungs. Comparing to Rabioscillations from a coherent drive, we see that, for n excitations, Ω = √ng. If we startthe cavity mode in a coherent state, then the oscillations induced by different photonnumbers will become out of phase and destructively interfere. Figure 4.2c showsthat this is exactly what happens, except with the curious feature that after sometime the oscillations come back. This collapse and revival is because the importantcontributions have come back around to being in phase again and is a distinct featureof discrete systems.If we prepare the cavity in its vacuum and a ground-state atom, |0, 0〉, and then
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(a) Initial state |0〉 ⊗ |1〉 with and without losses.
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(b) Initial state |n〉 ⊗ |1〉 and no losses.
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(c) Initial state |α = 8.0〉 ⊗ |1〉 and no losses.
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(d) Drive detuning ∆ and strength Ξ = 0.01g.
Figure 4.2: Plots of different phenomena in the Jaynes-Cummings model. In all cases the atom and fieldare considered resonant. (a,b,c) show the population in the excited state over time in units g−1 , (d) showsthe steady-state photon number. Where used, losses are γ = κ = 0.04g.
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drive the system with a laser field of strength Ξ with frequency near the first pairof states, then we can directly measure the splitting. We consider the Hamiltonianin the interaction picture of this driving, assuming resonance between the atom andmode

Ĥ = ∆â† â+ g(âσ̂+ + â† σ̂−) + Ξ(â+ â† ) (4.20)
defining ∆ = ω − ωd with ωd the drive frequency. Figure 4.2d shows the responseof the system. The presence of losses does give the two resonances a finite widthand so g > κ, γ is required to observe the splitting. Observations of this splittinghave been performed for a single atom falling through a cavity [39] and later fora single atom trapped in a cavity [40]. Observations have since been made for allsorts of other architectures including Rydberg atoms22 in microwave resonators [41],superconducting qubits [42] and quantum dots [43].
4.3 The Tavis-Cummings model

The Hamiltonian for N atoms under the rotating wave approximation is
Ĥ = ωâ† â+ ω0Ŝz + g(âŜ+ + â† Ŝ−), (4.21)

where we have replaced the two-level operators with collective operators. Due tothe presence of these collective operators, the coupling is enhanced by √N and thisenhancement can be used to observe an enhanced vacuum Rabi splitting of 2g√N .This makes the splitting much larger, and so was observed before the single-atomcase [44]. This splitting can actually be used to determine either g or N if one isknown. Indeed, in the experiments described in Chapters 5 and 7, the vacuum Rabisplitting was used to quantify the effective coupling rate for a given laser power.For higher ladder levels the n excitations can be distributed in the field modeand the ensemble in a variety of ways. Figure 4.3a shows how an initially emptycavity and an ensemble of excited atoms evolves. The evolution shows complicatedoscillations of excitations and the field. This is because of the different frequenciesthat different numbers of excitations in each state exchange energy. We can see that,in the absence of losses, these oscillations continue indefinitely, conserve the totalnumber of excitations and are never complete.As above, dissipation makes an empty cavity and a fully polarised ensemble theonly ground state. However, the complicated structure above that ground state leadsto interesting transient behaviour. Taking that excited ensemble and allowing it todecay means that excitations leave the system. The way in which they do is extremely
22Rydberg atoms are atoms where the outer electron has an extremely high principal quantum number.In [41] the two-level system is between the principal quantum numbers n = 50↔ 51. For these orbits, thedifference in energy is much smaller and so the relevant frequencies of light are in the microwave regime.
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Figure 4.3: Plots of different phenomena in the Tavis-Cummings model. (a) Excitations in the ensembleand field from an initial state |0〉⊗ |e〉⊗N and no losses and (b) photon number in the field from an initialstate |0〉 ⊗ |e〉⊗N with κ = 5g. In both cases the atoms and field are considered resonant and time is inunits of g−1 .
interesting. We consider the so-called “bad-cavity” limit, where κ � g, γ .Let us first consider an ensemble of atoms that are not strongly coupled to a sharedmode; the atoms emit into free space and so each undergoes a simple exponentialdecay. The sum over the ensemble thus gives a collective exponential decay, i.e.the master equation would give an expectation value for the remaining excitations of
Nexp(γt) and the average peak emission will be at t = 0 and will be γN .Strongly coupling the atoms to a mode means the atoms will exchange theirexcitations with that shared mode. Since we are in the bad-cavity limit, the excitationswill generally leave via the cavity decay. Figure 4.3b shows this cavity-mediateddecay process. Instead of an exponential decay, we have an increase in the cavitymode population, which we note is directly proportional to the cavity output flux.This increase continues until, at some non-zero time, it reaches a peak ∼ N2. Thepresence of a shared mode allows the atoms to decay collectively, with a greatlyenhanced rate. This superradiance was first introduced by Dicke in 1954 [45].This can be explained by a chain reaction caused by the combination of thetwo operators that form the important interaction: â† Ŝ−. Both of these act withincreasing strength as we populate the field. If we consider the form of the creationoperator we can see that the impact of the operator is enhanced for higher photonstates by a factor √n+ 1. This means as the field builds up, the interaction term
â† Ŝ− increases in effective “strength”. Essentially, the production of photons in thecavity mode enhances the rate of producing more photons. Similarly, the ladderoperators for the ensemble, Ŝ±, have higher coefficients for states away from thepolarised states. The ensemble losing excitations thus also increases the power ofthe interaction term and the rate at which the cavity mode is populated. Of course,after passing through the central point, this rate decreases until the cavity decay
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becomes a faster process and the field depopulates instead.
4.4 The Dicke model

We have so far assumed that we operate in a situation close to resonance - ω ≈ ω0- where we can make the rotating wave approximation. If we are far from resonance,or if the coupling is extremely strong, then that approximation does not necessarilyhold. For an ensemble of atoms that means we have the Dicke model Hamiltonian
Ĥ = ωâ† â+ ω0Ŝz + λ√

N
(
â+ â†

) (
Ŝ− + Ŝ+) (4.22)

where λ = √Ng and the factor of 1/√N is introduced as a normalising factor thatis useful for analysis of the equation. This model, and variations of it, form the basisfor much of the work in this thesis and so a brief history is provided.
4.4.1 Steady-state superradiance

This equation is fundamentally different to the Tavis-Cummings model because it doesnot conserve the number of excitations. There are two terms, âŜ− and its conjugate,that respectively destroy and create an excitation in both the field and the ensemble.This means our states are not limited to the ladder we found in the Tavis-Cummingsmodel; states can now be spread between different levels and energy can be createdor destroyed by the Hamiltonian.We can look at the ground state of the system by splitting the Hamiltonian intotwo parts: one that describes the energy of the system and the other the interactionterms. With small λ � ω,ω0, the energy part dominates. Our ground state is thenthe ground state for those terms, which is the same as for the Tavis-Cummings model:a fully polarised state with the entire ensemble in the lower energy level and anempty cavity mode. For very high λ � ω,ω0, then instead the ground state shouldbe decided by the interaction part. The interaction part is symmetric for the twoenergy levels of the atoms and so it does not have a preferred “direction” to movethe ensemble. As such, it should be that the ground state there is halfway betweenthe two atomic levels. This is where the collective operator acts strongest and soamounts to steady-state superradiance [46–51].Between these two phases is a second order phase transition [46–48] that hasgenerated a lot of interest ever since it was first proposed23. As λ increases, the
23It should be noted that the first predictions of steady-state superradiance were for the Tavis-Cummingsmodel at non-zero temperatures. The critical point was thus dependent on the coupling strength and thetemperature. It was not until [49,50] that the counter-rotating terms were included in the calculations. Thereare subtle differences to the physics around the transition depending on whether it is a thermodynamic orquantum, that is zero temperature, transition. This is excellently summarised in [51].
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Figure 4.4: Q-function of the cavity field for a typical state of the Dicke model above threshold.

system undergoes a distinct change. In the thermodynamic limit24, this happens at acritical point
λc = 12√ω0ω. (4.23)

Above this threshold the atoms cohere via the cavity mode.If we move to an open system for the cavity mode, ignoring spontaneous emission,we have the Dicke model master equation
ρ = −i[Ĥ, ρ] + κD [â]ρ → λc = 12

√
ω0ω2 + κ2

ω . (4.24)
The presence of losses from the cavity mode changes the threshold equation. Aphysical intuition is that the formation of the coherence between the atoms becomesmore difficult because the channel by which that process occurs is now lossy. Abovethis threshold, we still have steady-state superradiance.Figure 4.4 shows a typical state of the field above threshold. The field is amixed state of two coherent states of the same magnitude and opposite phase, |α〉and |−α〉. Associated to each of these coherent states are coherent spin states ofequal magnitude and opposite phase, |η〉 and |−η〉. The steady-state wavefunction isthen an entangled superposition of these correlated coherent field and spin states25.

24The thermodynamic limit is a term used in this thesis, and quantum optics more broadly, to mean thatthe size of the system is infinite. This allows us to ignore quantum fluctuations in our treatment of thesystem. In this thesis, the thermodynamic limit means to assume an infinite sized ensemble, though thequantum results often approach the thermodynamic limit for surprisingly small N .25It can actually be shown at small superradiant state amplitudes that there is Einstein-Podolsky-Rosenentanglement between the atoms and field [52, 53].
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Again, coherences between the atoms are formed through the cavity mode.Both the master equation and quantum trajectory pictures produce the entangledsuperposition described above. Since the two terms have the same photon number,observing the photon output flux is not enough to break the superposition. If insteadthe cavity is monitored with a phase sensitive detection system, such as a homodynedetector, we can collapse the state according to the phase of the field. This randomchoice of phase following the transition is referred to as symmetry breaking. Thesystem undergoes a bifurcation, moving from a single ground state to two degenerateground states.
4.4.2 An important correction

This picture should have alarm bells ringing. What was a fundamental descriptionof the interaction between an ensemble of emitters and an electromagnetic moderesulted in self-sustaining superradiance in the presence of losses. At zero tempera-ture, we predict an ensemble will produce photons into the environment in perpetuity.The system has no energy put into it and yet creates energy indefinitely. This wouldseem to break a lot of rules of thermodynamics.In fact, this problem is something that is still debated in quantum optics literature.An initial resolution was presented by Rza̧żewski et al [54]. There, it was explainedthat the approximation of the dipole interaction is too simple to capture this system.Essentially, there is a second order term that, at least in the case of atoms, blocksthe steady-state superradiance described above. A second treatment provided analternative proof of the lack of a superradiant threshold [55]. However, in more recentyears, alternative models for the electromagnetic field, or in some cases alternativearchitectures, have questioned or confirmed those results [56–61].Much of this discussion does not treat an open system, or considers very particularconfigurations and architectures. One thing that does seem certain is that we shouldnot simply put atoms in a cavity and expect superradiance. Luckily, to study theDicke model we can bypass these fundamental questions with a little creativity.
4.4.3 Implementation in a Bose-Einstein condensate

Self-organisation is a process where atoms coupled to a cavity mode arrange them-selves spatially so as to maximise their collective emission into the cavity [62–65]. Themapping of a self-organisation process to an effective Dicke model was proposed [66]and then performed with a Bose-Einstein condensate in a cavity [67–70]. Theseexperiments used detuned Raman transitions between different momentum states ofthe BEC. The ground state of the atoms is the momentum ground state, while theexcited state is a symmetric superposition of one quanta of momentum in the x− and
z−direction. The Raman transitions are via the states with a quanta of momentum
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in either of those directions, providing the two paths which can be mapped to thequanta conserving and non-conserving terms.In this case, superradiance happens if the atoms are spatially arranged such thattheir emission into the cavity happens with the same phase. The atoms self-organiseto this pattern through the cavity mode. This process feeds back on itself. The fieldcreates a square lattice that the atoms sit in, while the enhanced scattering of atomsin that pattern feed the field. The atoms sit in a two-dimensional square lattice in achequerboard pattern where no two atoms sit next to each other. This chequerboardpattern has two possibilities: the black squares or the white squares. Instead ofthe correlations between coherent field and atomic states, we have correlations be-tween a particular spatial pattern for the atoms and the phase of the coherent field.Measurement of the photon number shows the distinct phase transition [67] whilethe use of a homodyne detector shows the spontaneous symmetry breaking at thetransition [68].An effective Dicke model can also be produced using spin states of a dilute gas ofcold atoms [71,72], as discussed in Chapters 5 and 7 of this thesis. Combining theseideas such that the atoms self-organise in both the spatial and spin components isalso possible [73, 74]. One interesting extension to these models is to use multiplemodes of the cavity such that the position of the atomic cloud impacts the criticalthreshold [75]. An alternative extension is the addition of a second cavity, such thatthe atoms will self-organise with respect to one cavity or the other or some arbitrarysuperposition of the two [76, 77].



Chapter 5

Engineering the Dicke model in
a cavity QED setup

The Dicke model is one of the simplest examples of how light and matter can interact,and yet it describes a peculiar trait that many-body systems can self-organise andoffer amplified behaviour. Interest in its implementation is thus driven by a fundamen-tal interest in light-matter interactions, quantum phase transitions and many-bodyphysics. In this Chapter, I discuss a method used to study the Dicke model at theCentre for Quantum Technologies in Singapore. The first section of this Chapterdiscusses the theoretical origins of this work over a decade ago. The second sectiondescribes the specific setup and results of the Dicke model experiment carried outby Zhiqiang Zhang, Chern Hui Lee, Ravi Kumar, Kyle Arnold and Murray Barrett.The third section describes my theoretical modelling of the experiment performedunder the supervision of Scott Parkins. Some of the work in this section was actuallyperformed in response to the experiment described in Chapter 7, but discussion isincluded here as the results are relevant to both cases. The final section describesa treatment of the experiment allowing for atomic motion performed in collaborationwith Murray Barrett, Zhiqiang Zhang and Scott Parkins.
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5.1 The Dicke model via cavity-assisted Raman transi-

tions

In Section 4.4.3, we discussed experiments that simulated the Dicke model using themomentum states of atoms in a BEC as the two-level systems. The Dicke model canalso be realised using cavity-assisted Raman transitions between atomic spin states.Dimer et al [53] proposed confining an ensemble of atoms within a circular cavity,also known as a ring cavity.Figure 5.1 shows that such a scheme requires four states of the atoms: two groundstates |0〉 and |1〉, which become the two-level systems, and two excited states |e〉and |f 〉, via which Raman transitions are driven. These states are chosen such that
|0〉 ↔ |e〉 and |1〉 ↔ |f 〉 are driven by a cavity mode, while |0〉 ↔ |f 〉 and |1〉 ↔ |e〉are driven by different laser fields respectively. By matching the frequencies correctly,we can drive Raman transitions between |0〉 ↔ |1〉.In the limit that the transitions are significantly detuned, then the excited statescan be adiabatically eliminated. We are left with the exchange of photons betweena cavity mode and two laser fields driving the atoms between |0〉 and |1〉. If certainselection rules are met, there are two different routes between the two states. Onelaser drives from |0〉 → |1〉 depositing a photon into the cavity mode, but requires aphoton to be taken from the cavity mode to drive from |1〉 → |0〉. The other laser hasthe opposite effect. Thus, one of the Raman transitions produces the rotating terms,
â† Ŝ− and âŜ+, and the other the counter-rotating terms, â† Ŝ+ and âŜ−.

Figure 5.1: Level diagram to produce the Dicke model via the Dimer et al proposal [53]. Two ground-statelevels, |0〉 and |1〉 have Raman transitions driven between them via two excited states |e〉 and |f 〉 using acavity mode (red arrow) and two laser modes (blue, green).
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For a single atom the system in Figure 5.1 can be written in the Hamiltonianform
Ĥ =ωcâ† â+ ω1 |1〉 〈1|+ ωE |e〉 〈e|+ ωF |f 〉 〈f |

+ Ωf2 e−iωf t |f 〉 〈0|+ Ωe2 e−iωet |e〉 〈1|+ ge |e〉 〈0| â+ gf |f 〉 〈1| â+ h.c. (5.1)
where h.c. means Hermitian conjugate and applies to all the transition terms. Here
ωc is the cavity mode frequency, and so the first term describes the cavity modeoccupation energy. ω1,E,F are the frequencies of the levels |1〉 , |e〉 , |f 〉 respectivelyand the frequency of |0〉 is assumed to be zero. These terms therefore describe theatomic energy. ωe,f ,Ωe,f are the bare frequencies and Rabi frequencies respectivelyof the two lasers and so these terms describe the atom’s stimulated absorption andemission into the laser modes. ge,f are the single-atom coupling strengths normalisedon their transitions and so these terms describe the exchange of quanta between theatom and cavity mode. Adiabatic elimination of the excited states and summationover the ensemble then leads to the master equation [53]

ρ̇ = −i[Ĥ, ρ] + κD [â]ρ (5.2)
with a Hamiltonian
Ĥ = ωâ† â+ ω0Ŝz + λe√

N
(Ŝ+â+ Ŝ−â† ) + λf√

N
(Ŝ−â+ Ŝ+â† ) + U

N Ŝz â
† â (5.3)

and parameters given by
ω = ωc −

(ωf + ωe2 ) + N2
(
g2
e∆e

+ g2
f∆f

) (5.4)
ω0 = ω1 − (ωf − ωe2 ) + 14

(Ω2
e∆e
− Ω2

f∆f

) (5.5)
λe,f = √Nge,fΩe,f2∆e,f

(5.6)
U = g2

e∆e
− g2

f∆f
. (5.7)

One can see that if λ− = λ+ and U = 0 then the effective system representsa Dicke model as discussed in Section 4.4. Whilst removing the dispersive term(i.e. U = 0) is possible through manipulation of the microscopic parameters, it isnot strictly necessary. Provided it is small in comparison to ω,ω0 (most relevantly
< 2ω) then its impact on the phase transition point is well understood [78–81]. Thederivation of the superradiant phase transition in the presence of this non-linearityis given in Section 5.1.2.
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5.1.1 Semi-classical equations

In the thermodynamic limit, we can neglect quantum fluctuations and factorise oper-ator products (e.g. 〈Ŝ−â〉 → 〈Ŝ−〉 〈â〉) giving the semi-classical equations [53,78,79]
α̇ = −κα − iωα − iUαγ − iλ+β − iλ−β∗ (5.8)
β̇ = −iω0β − iU|α|2β + 2iλ+αγ + 2iλ−α∗γ (5.9)
γ̇ = iλ+(α∗β − αβ∗) + iλ−(αβ − α∗β∗) (5.10)

where
α = 〈â〉√

N
, β = 〈Ŝ−〉N , γ = 〈Ŝz〉N , |β|2 + γ2 = 0.25. (5.11)

These equations offer two trivial solutions: α = β = 0 and γ = ±0.5. This meansan empty cavity and all spins in one state, i.e. the collective spin aligned alongthe z-axis of the Bloch sphere. γ = −0.5 is the normal phase, while γ = 0.5 isthe inverted phase. These trivial solutions represent the sub-threshold ground stateswith positive (normal) and negative (inverted) ω0.Outside of these two solutions, the behaviour of these equations is extremely richand complex, something explored in much detail in [79] and in the specific case ofimbalanced coupling in Section 7.3 and [82].
5.1.2 Superradiant phase transition

We now consider the specific case of the Dicke model and so λ− = λ+ ≡ λ. Thisreduces the above equations to
α̇ = −κα − iωα − iUαγ − iλ(β + β∗) (5.12)
β̇ = −iω0β − iU|α|2β + 2iλ(αγ + α∗γ) (5.13)
γ̇ = iλ(α∗β − αβ∗ + αβ − α∗β∗). (5.14)

We are interested in the steady-state solutions to these equations so the left handside is set to zero. The third equation reduces to a form that means that either thereal part of α or the imaginary part of β , which corresponds to βy = 〈Ŝy〉 /N , mustbe zero. It also follows from the second equation that it be βy since there is noimaginary part on the right hand side.We can then combine and solve those two equations for γ to give [78, 79]
γ = −ωU ±

√
λ2(4ω2 − U2)− ω0Uκ2

U2(ω0U + 4λ2) . (5.15)
We can find the real part of β from the normalisation condition and then α follows
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from the form of the ensemble.The threshold occurs when the equation above allows for physical solutions, i.e.
|γ| ≤ 0.5 and real. Setting γ = −0.5 should thus give the boundary between thenormal state and the onset of superradiance26. This gives the critical coupling as

λc = 12
√
ω0 (ω − U/2)2 + κ2

ω − U/2 . (5.16)
Below this point the system is fully polarised in |0〉 (or |1〉 if ω0 is negative), andabove it the atoms self-organise their spin degree of freedom through the cavitymode and the system becomes superradiant. At the transition, from a dynamicalsystem perspective, the system goes through a supercritical pitchfork bifurcation [82];one solution splits into three, with the original solution becoming unstable and twonew stable solutions emerging. In this case, these two new solutions differ through achoice of sign in β and of the cavity field, highlighting the broken symmetry. Dynamicsimulations of these equations have to choose one of these superradiant solutions, asthis semiclassical picture does not allow for the quantum result of a superposition ofthe two solutions nor the ensuing entanglement between the atoms and cavity field.If we return to the original Dicke model, where U = 0, the above thresholdreduces to

λc = 12
√
ω0ω2 + κ2

ω . (5.17)
If instead |U| > 2ω then the above treatment is not accurate. This has been studiedin [79–81] and the limit of very large U is explored in Chapter 6 of this thesis.

5.2 Experimental implementation

5.2.1 Switch to a Fabry-Pérot cavity

The original proposal of Dimer et al [53] makes use of a circular cavity, but thesame model can be implemented in a Fabry-Pérot cavity. Here the laser fields areperpendicular to the cavity mode, with the only complication that the laser fieldsmust be counter-propagating, i.e. the two lasers must illuminate the atoms fromopposite directions, as shown in Figure 5.2. With co-propagating lasers, a phasefactor is introduced that, averaged over the spatial distribution of the entire ensemble,removes the presence of the phase transition and any superradiant behaviour [72].This is discussed in Section 5.2.4.
26γ = +0.5 will give the boundary between the inverted and superradiant states if that is the groundstate. This means that for negative ω0 the threshold equations still produce a real critical coupling.
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Figure 5.2: Experimental setup to produce the Dicke model in a Fabry-Pérot cavity. Here we have twocounter-propagating lasers illuminating an ensemble of 87Rb atoms confined within the cavity.

5.2.2 Choice of levels in 87Rb

Here, we consider 87Rb, choosing the specific hyperfine states |0〉 = |F = 1, mF = 1〉and |1〉 = |F = 2, mF = 2〉 as the two-level systems [81] (see Figure 5.3). Selectionrules allow for two separate Raman transitions made of a π−polarised cavity modeand a σ±-polarised laser field. These can then be driven on either the D1 or D2lines, though here we consider the D2 line. As such |f 〉 = |F ′ = 2, mF ′ = 2〉 and |e〉is actually the pair of states |F ′ = 2, mF ′ = 1〉 and |F ′ = 1, mF ′ = 1〉 which we take

Figure 5.3: Level diagram to produce the Dicke model using hyperfine states in 87Rb. The two-levelsystems are made from the states |F = 1, mF = 1〉 and |F = 2, mF = 2〉 with detuned Raman transitionsdriven between them via the D2 line made from a cavity mode (red arrows) and σ+-polarised (green) and
σ−-polarised (blue) lasers. For the experiment the relevant scales are ωz ∼ 7× 2π GHz, ∆± ∼ 100× 2πGHz and ωc,± ∼ 50× 2π THz. Note also that both lasers drive both states, which produces a light shifton the levels and that the diagram is not to scale.
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to be at the same energy due to the large detuning. There are also other relevantexcited states, such as |F ′ = 0, mF ′ = 0〉, which are coupled to only one active stateand so result in a light shift on the active state.
5.2.3 Full model

Using these levels and notation such that |F = 1, mF = 1〉 ≡ |0〉, |F = 2, mF = 2〉 ≡
|1〉 and |F ′ = i, mF ′ = j〉 ≡ |i, j〉, we have a full Hamiltonian
Ĥ =ωcâ† â+ ωz |1〉 〈1|+∑e ωe |e〉 〈e|+ Ω+2 eiω+t

(√14 |0〉 〈2, 2|+
√12 |1〉 〈3, 3|

)
+ Ω−2 eiω−t (√16 |0〉 〈0, 0| −

√ 524 |0〉 〈1, 0|+
√ 124 |0〉 〈2, 0|

)
+ Ω−2 eiω−t (√ 120 |1〉 〈1, 1| −

√ 112 |1〉 〈2, 1|+
√ 130 |1〉 〈3, 1|

)
+ gâ†

(√ 524 |0〉 〈1, 1| −
√18 |0〉 〈2, 1|+

√16 |1〉 〈2, 2| −
√16 |1〉 〈3, 2|

)+ h.c.
(5.18)

where h.c. means Hermitian conjugate and is meant for all the transition terms. Inthis equation ωc is the cavity frequency, ωz is the splitting between the two activestates, ∑e sums over the excited manifold with ωe being their frequency relative tothe energy of |1, 1〉 which is taken to be zero. ω±,Ω± are, respectively, the barefrequencies and Rabi frequencies of the σ±-polarised lasers and g is the single-atomcoupling strength normalised on the D2 cycling transition. The coefficients on eachof the interaction terms are the dipole-matrix coefficients for the transitions [83].Adiabatic elimination of the excited states (an example of how this can be doneis given in Section 7.1.1) gives a master equation
ρ̇ = −i[Ĥ, ρ] + κD [â]ρ (5.19)

with an effective Hamiltonian summed over N atoms
Ĥ = ωâ† â+ ω0Ŝz + λ−√

N
(Ŝ+â+ Ŝ−â† ) + λ+√

N
(Ŝ−â+ Ŝ+â† ) + U

N Ŝz â
† â (5.20)

and parameters given by [72]
ω = ωc −

12 (ω+ + ω−) + N3
(
g2∆+ + g2∆−

) (5.21)
ω0 = ωz −

12 (ω+ − ω−) + 16
(Ω2

−∆− − Ω2+∆+
) (5.22)
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λ± = √3NΩ±g12∆± (5.23)
U = 2N3

(
g2∆+ −

g2∆−
) (5.24)

where ∆± are the detunings from the excited states of the σ± lasers.
5.2.4 Co-propagating vs. counter-propagating lasers

The Hamiltonian given in Equation 5.18 omits a phase factor to the laser couplingterms introduced by the positional spread of the atoms. Following the derivation withsuch a phase factor left in for a single atom gives us coupling terms [72]
e−i(k−·r)σ̂+â+ ei(k−·r)σ̂−â† + ei(k+·r)σ̂+â† + e−i(k+·r)σ̂−â (5.25)

where k± is the wavevector of the σ±-polarised laser fields and r is the position ofthe atom. If the driving laser fields are counter-propogating then k− ≈ −k+ = k andwe can make the rotation σ̂+ → σ̂+ei(k·r) to remove this atom-by-atom phase factor. Ifinstead the lasers are co-propagating then k− ≈ k+ and no such rotation is possible.In that case, once we sum over the entire ensemble and its uniform distribution inthat phase, we do not have a superradiant threshold.
5.2.5 Experimental procedure & results

The experiment at the Centre for Quantum Technologies [72] used this method to mea-sure the transition threshold, λc , as a function of various parameters. Their experimentinvolved 87Rb atoms in a cavity with parameters { g, κ, γ } = 2π×{ 1.1, 0.1, 3 } MHzand a detuning of −2π × 127 GHz from the D2 transition line. The atoms are cooledand around 5 × 106 are loaded into a one-dimensional optical lattice within thecavity. This lattice is created by a laser driving along the cavity axis at twice thewavelength of the cavity resonance used in the Raman transition scheme. This pinsthe atoms to positions such that they have identical coupling to the cavity mode.Once loaded, the atoms are allowed to evaporate until a specific number of atoms,fixed from run to run, are left in the cavity, achieved by a non-destructive measurementof the dispersive shift on the cavity frequency, which is proportional to the atomnumber. The experimental sequence is triggered once the desired number of atomsis inferred. This sequence involves slow ramping27 of the coupling lasers until theoutput from the cavity field, measured by a single-photon counting module (SPCM),is deemed to show that the transition has been crossed. This is done simply bycomparing the output photon flux to some threshold. By varying parameters in the
27This is done for reasons of practicality. Further discussion of this ramp is presented in Section 5.3.2.
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Hamiltonian in Equation 5.20 it is thus possible to compare the behaviour of themeasured threshold with Equation 5.16.The results of the experiment show that there is a range of ω0 for which thethreshold predicted in Equation 5.16 is accurate, as shown in Figure 5.4 reproducedfrom [72]. However, there are also significant regions where this is not true. Inparticular, Equation 5.16 predicts a critical coupling of zero for ω0 = 0 but in realitythe threshold tends to infinity as ω0 → 0.This could be due to effects such as spontaneous emission, collisions and evapo-ration. All of these things decay the length of the collective spin, either by breakingthe indistinguishability or literally by removing atoms. The impact of such an effecthas been considered in [84,85] where their methods lead to a new transition point of

λc = 12
√

ω20 + γ2
−2 〈σ̂z〉 ω0

(ω − U/2)2 + κ2
ω − U/2 (5.26)

where γ quantifies the decay of the collective spin and 〈σ̂z〉 = 〈Ŝz〉 /N is the ex-pectation value of an individual spin initially, allowing for imperfect initial statepreparation which will also decrease the spin length.Qualitatively, such a formula can be explained in the same way that the introduc-tion of cavity decay was explained. Introducing an atomic decay means that there issomething more for the atomic ensemble to overcome to self-organise. Such a formulacan be fitted, by varying γ , to the data. However, the value of γ needed for that fit ismuch larger than any estimated rate of the cause of such a collective spin decay, i.e.the rates of evaporation, spontaneous emissions or collisions. Moreover, the length ofthe pulses emitted by the experiment gives their own indication of the decay of thespin length. These pulse lengths indicate that the spin length decay rate is on theorder of the spontaneous emission and collision processes, supporting the estimated

Figure 5.4: Figure reproduced from [72]. Measured threshold for varying ω0 for different fixed values of
ω. Comparison to theoretical fits from the traditional threshold of Equation 5.16 (black line), the thresholdincluding spin length decay given by Equation 5.26 with fitted γ and 〈σ̂z〉 = −0.5 (grey) and the derivedthreshold including motion given in Equation 5.40 (solid coloured lines). For the experimental data, thetrap depth is 219 µK giving a Doppler broadening γd = kv̄ = 2π × 59kHz for the motional threshold.
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rates of those processes. This implies that there is something else going on, whichdelays the onset of superradiance without decaying the spin length or altering thelength of the output pulses.Our interpretation was that the differences were actually caused by the motionof the atoms. Since the atoms are thermal, rather than in a condensate, the atomshave residual thermal motion. This motion produces a Doppler shift to the frequencyand so, since the atoms move at different velocities, ω0 varies between atoms, causinga blurring of the phase transition point for different atoms. The subsequent delayin the onset of superradiance can be explained qualitatively by this inhomogeneous
broadening meaning that the atoms want to self-organise differently, again acting asan extra barrier for the system to overcome to become superradiant. We believe thatthis is why the predicted threshold is less accurate for small ω0, where this Dopplerbroadening is comparatively larger28. A mathematical approach to this problem isgiven in Section 5.4.
5.3 Theoretical modelling of the experiment

5.3.1 Comparison of quantum & semi-classical simulations

Much of this Section, and the earlier derivation of the phase transition point, relies onintegration of the semi-classical equations discussed earlier in Section 5.1.1. Theseequations rely on two key assumptions: operator product factorisation and infiniteatom number. Of course, no experiment can have an infinite atom number, but atwhat point does this become a reasonable approximation? Given the entanglementbetween the field and the atomic ensemble, can we simply factorise those operatorproducts without losing information?Figure 5.5 shows a comparison between a quantum treatment of the system anda semi-classical approximation of the dynamics. The quantum side of the compar-ison is presented in two ways: a single trajectory and an ensemble average of100 trajectories. We can see that for a single trajectory, the photon measurementrecord introduces a significant amount of noise on the photon number in the cav-ity. However, this noise clearly is centred on some photon number. An ensemble oftrajectories thus shows a rise to some final photon number. The semi-classical equa-tions are integrated from an initial state slightly perturbed from the normal phase(i.e. { α, β, γ } = { 0.001, 0.0, −0.5 }) and multiplied by N for comparison. They alsoshow a rise to a steady photon number. The approximation is clearly better for higheratom number. Indeed, for N = 80 atoms the master equation estimate even appears
28Note also that, perhaps coincidentally, the fitted parameter for the decaying spin length thresholdis remarkably close to the Doppler broadening. This is also true for the lower trap depth for whichmeasurements were made. This could be argued to be extra evidence that indeed it is the inhomogeneousDoppler broadening that shifts the threshold.
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to have decaying oscillations of around the same frequency that the semi-classicalmethod predicts. Therefore, for the system above threshold the semi-classical modelaccurately predicts the dynamics and the steady state, even for quite small atomnumbers. For the large numbers of atoms used in the experiments, ∼ 105 atoms, thiswould be an excellent approximation.Below threshold is a somewhat different situation. Figure 5.6 shows two examplesof below threshold behaviour. Clearly the perfect normal phase one would expect isnot present. Instead, noise creates population in the cavity mode, and by considering
g2(0) we can see that this field is thermal in nature. The size of the ensemble doesnot seem to change either the average photon number of the thermal state nor its
g2(0) value (which should characterise the size of the thermal fluctuations). Thisimplies that again, noise on the system below threshold tends towards zero photons(and thus atomic excitations) per atom as the atom number increases, bringing it inline with the semi-classical predictions.We now turn our attention to the focus of much of the experimental study of thissystem: the phase transition. The semi-classical prediction is that below thresholdthere is no cavity field and above we have a sudden increase in the photon number.
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â
>

(b) N = 40

0 10 20 30 40 50
κt

0

5

10

15

20

25

30

<
â
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â
>

(d) N = 80
Figure 5.5: Comparisons between a single quantum trajectory (blue), an ensemble average of 100 quantumtrajectories (green) and the semi-classical result (red) for the Dicke model above threshold with differentsize atomic ensembles. In each case the parameters are {ω, ω0, λ, U } /κ = { 1.0, 1.0, 1.0, 0.0 }.
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Figure 5.6: (a,b) Comparisons between a single quantum trajectory (blue), an ensemble average of 100quantum trajectories (green) and the semi-classical result (red) for the Dicke model above threshold withdifferent size atomic ensembles. (c) Average of 100 trajectories g2(0) for different atomic ensemble size.(d) Average photon number over a single long trajectory (average over κt = 100→ 1000) and its scalingwith atomic ensemble size. In all cases the parameters are {ω, ω0, λ, U } /κ = { 1.0, 1.0, 0.5, 0.0 }.

In reality, we know this cannot be exactly true for the quantum treatment as belowthreshold we have a small thermal state rather than a vacuum. Any transition in thesemi-classical picture also requires some “fluctuation” away from the normal state,which is still a solution above threshold, albeit an unstable one.This is an area in which the semi-classical picture fundamentally cannot tell uswhat is going on. In reality, those fluctuations could be quantum in nature. Theexperimental results for the BEC formulation of the Dicke model support the ideaof quantum density fluctuations seeding the transition [67–70]. In our system, thetemperature is high enough that vacuum fluctuations may seed the cavity mode withenough photons to drive the transition. What drives this transition is actually of someimportance to our understanding of what happens in the experiment. In particular,the source of the fluctuations, characterised by a realistic set of initial conditionsfor the semi-classical integration, has a significant impact on the rise time once thesystem crosses the threshold. Due to the way the lasers are ramped up until thethreshold is deemed to have been crossed, any delay in self-organisation leads toan overestimate of the critical coupling.
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Figure 5.7 shows the photon number around the threshold for a variety of atomnumbers. We can see that with a small atomic ensemble size the transition issmoothed out quite considerably, but as we increase the atom number we see sharperbehaviour. This again indicates that for the atom numbers considered in the ex-periment, the shape of the transition is accurately predicted by the semi-classicalequations.

5.3.2 Ramping the laser powers

The experimental sequence involves a slow ramp of the laser powers until the cavityoutput indicates the transition has been crossed. Why? It can be argued that thisslow ramp provides time for atoms to undergo collisions, spontaneous emission orevaporate, and thus decay the spin length and delay the threshold. This delaywould be higher for higher thresholds and so create an exaggerated profile for thetransition. Why is it not a better idea to simply quench the system to different valuesof λ and make the judgement on whether the state is superradiant or not at eachpoint? The simple answer is one of experimental practicality: the experiment worksbetter if ramped [86]. We aim to explain why this ramp is preferred by consideringthe reaction of the semi-classical equations.For the semi-classical approach, we begin at the theoretical transition and turnon the ramp. Starting at zero would allow the initial perturbation on the state todecay such that at threshold the perturbation would vary depending on the rampspeed. Regardless of the source of this perturbation in the experiment, it should not

0.5 0.6 0.7 0.8 0.9 1.0
λ

0.0

0.1

0.2

0.3

0.4

0.5

<
â
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Figure 5.7: Average photon number over a single long trajectory for different atomic ensemble sizes. Inall cases the parameters are {ω, ω0, U } /κ = { 1.0, 1.0, 0.0 }
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be dependent on the ramp, and so we choose initial conditions such that we ensurethat the state is the same as it crosses the threshold in each case.Figure 5.8 shows the response of the system given an abrupt switch, or quench,to a value above threshold, and the same response with a slow ramp to that value.We see that the response in the case of the ramp is significantly smoother. Webelieve that it is this smoother reaction that creates a more stable experiment. Giventhat the system starts with near vacuum in the cavity mode and a fully polarisedatomic ensemble, it seems fair to state that in the initial spike of population, thepredominant active term is â† Ŝ+. Thus that initial reaction to an imbalance inpopulation is scattering predominantly from one Raman beam. Each event producesa momentum kick on the atom due to the absorption and emission of photons, andso, if most are from one beam, most of them give a momentum kick in the samedirection. The expectation value of Ŝz of the atomic ensemble therefore tells us howmuch momentum is being put into the system and its derivative can tell us the rate29.If that initial imbalance between the steady state and current state is large, as itis when a quench is performed, then a large momentum kick is given to the ensemble.The plot shows that this adjustment happens in a very short period of time (the firsttransfer of population takes around κt ≈ 5, or 8µs with κ = 100× 2π kHz). Furtherthan that, we can see that the initial reaction to a quench is an overcompensationfollowed by an overcorrection, followed by another smaller overcompensation andanother smaller overcorrection, etc.. This means the state oscillates around the steadystate with a decaying amplitude and so the large initial kick is larger than is evennecessary and is followed by a sequence of smaller kicks. Momentum is transferredin a very short period of time, such that lots of kinetic energy is put into the systemwithout much opportunity for dissipation of that energy.If instead the system is reacting to very small changes in the steady state, as itdoes when following a ramp, then those momentum kicks are much fewer, and thelevel of response is more in line with the imbalance. It can clearly be seen that thereis some initial period whereby the system adjusts to the threshold being crossed, butthat it does so much more gradually than with the quench. Even for the fastest rampconsidered here the peak of the derivative of 〈Ŝz〉 is an order of magnitude lowerthan for the quench. Once the system has adjusted to the steady state it followsit reasonably closely, with a constant derivative for the atomic response, until it isturned off. This means that the momentum put into the experiment is much morespread out and so the introduced kinetic energy is smaller. We believe that this

29The other term that produces atomic excitations is âŜ+ which is operated by the other Raman beam.However, if we consider the origin of the actual term it relates to the conversion of a cavity photon intoa σ− photon in that laser mode. The predominant term, Ŝ+â† , relates to the conversion of a σ+ laserphoton into a cavity photon. This means that both processes give the atoms a momentum kick in the samedirection if the lasers are counter-propagating. Similarly, both Ŝ− terms give the atoms a kick in theopposite direction. Therefore, the time derivative of 〈Ŝz〉 is directly proportional to the time derivative ofthe momentum delivered into the system along the axis of laser propagation.
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Ŝ
z
>
/
N

(b)

0 50 100 150 200 250 300 350 400
κt

−0.10

−0.05

0.00

0.05

0.10

0.15

N
−1

d
<
Ŝ
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Figure 5.8: Semi-classical simulations for the Dicke model with parameters {ω, ω0, U } /κ =
{ 1.0, 1.0, 0.0 } beginning with λ/κ = 1/√2 and ending at λ/κ = 1.0 either by quench or by a linearramp categorised by a total ramp time κτ . Plotted are (a) the average photon number per atom, (b) thepopulation inversion per atom and (c,d) its derivative.
is why the ramp provides a more stable response. Essentially the quench puts toomuch momentum into the system in too short a period of time for it to respond andthis leads to significant increases in collisions and evaporation and therefore a muchshorter and less reproducible output pulse.
5.3.3 Impact of single-atom effects

The Dicke model derivation above assumes all atoms are coupled indistinguishablyto the cavity mode, allowing us to treat the atomic ensemble as one large collectivespin. This is true only if there is nothing that affects single atoms. A true treatmentof the experimental system must therefore include single-atom events, either throughevaporation or atoms being scattered into non-contributing states by collisions orspontaneous emission events. This can be accounted for reasonably simply in thesemi-classical model by simply putting a decay on all components of the spin. Atsome point, the number of atoms is too small to support a superradiant state, and theremaining atoms return to the normal phase.
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This collective spin treatment cannot be modified to account for spontaneousemission events, which break the indistinguishability criterion. These events caneither decay or increase the spin length (of course not above N/2), and as describedin [84, 85], increase the value of the critical coupling. Here we discuss the impactof these spontaneous emission events on a small ensemble, and, using this insight,discuss the idea of using a laser to repump atoms scattered into other states backinto the active states.We consider a simplified model to deal with spontaneous emission. Since we con-sider the system around threshold and as it self-organises, we assume the majorityof the population is in |0〉 ≡ |F = 1, mF = 1〉 and the cavity mode is near unpop-ulated. This means that the only source of spontaneous emission events is the σ+laser driving off-resonant Rabi oscillations with |F ′ = 2, mF ′ = 2〉30. That state canundergo three emission processes: decay to |F = 2, mF = 2〉 (|1〉), |F = 2, mF = 1〉(|s〉) and |F = 1, mF = 1〉 (|0〉). In our effective system where the excited stateshave been eliminated the three processes can be represented as follows: the first is

|1〉 〈0| = σ̂+, the second shelves31 the atom outside of the Dicke model scheme whichwe will call σ̂s and the third is a dephasing process |0〉 〈0| which we call σ̂1. Therates for these are in a fixed ratio given by the Clebsch-Gordan coefficients for therelevant levels [83]. The rate at which these happen can be stated in terms of theRaman transition rates, detuning and the cavity co-operativity [71].The Hamiltonian in this treatment is unchanged, but the master equation nowfeatures these three loss terms on each atom,
ρ̇ = −i[Ĥ, ρ] + κD [â]ρ + N∑

i=0
(γ+2 D [σ̂ (i)+ ]ρ + γ12 D [σ̂ (i)1 ]ρ + γs2 D [σ̂ (i)

s ]ρ) , (5.27)
where we assume that each process can be distinguished.The impact of the shelving process is the easiest to consider, as its impact is thesame as atoms leaving the trap. As above, this simply puts an exponential decayon the spin length and so any superradiance achieved will be temporary. Clearly astate with all atoms in the inactive state |s〉 is uncoupled from the Hamiltonian andso with that term active the only possible steady state is all atoms in this dark state.Figure 5.9 shows this clearly. A superradiant state is formed, and then slowly decaysuntil there are not enough atoms in the active states to support superradiance.For the six atoms considered here, then, with coupling λ/κ = 1.0, a state of spin

30Of course spontaneous emission from the other Raman process is also possible. These events wouldadd extra shelving processes, as well as a dephasing process for |2, 2〉 and a traditional spontaneousemission term |1, 1〉 〈2, 2|. The impact of such terms would be much the same as for their equivalentprocesses discussed in the text and so they are omitted for the sake of simplicity.31The atom being “shelved” means that the atom has been put into an inactive state, in this case
|F = 2, mF = 1〉, from which there are no active Raman transitions.
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Figure 5.9: Dicke model simulation for six atoms with {ω, ω0, λ, U } /κ = { 1.0, 1.0, 1.0, 0.0 } where foreach atom a spontaneous emission term is simulated by a loss term σ̂s at a rate γs/κ = 0.05. Shown aretwo individual trajectories (blue, green) and an ensemble average of 200 trajectories (red). Plotted are(a) the photon number in the cavity mode while (b) shows the expectation value of a projector into theshelved state |s〉. The atomic jumps in the individual trajectories can be seen by jumps in the populationof the shelved state, with the system expected to be below threshold once the number of shelved atoms isgreater than half of the total number of atoms.
length S = 3/2 would be at exactly the semi-classical threshold32. All states withlarger spin length than that would support a superradiant state, with the maximalspin length meaning the largest magnitude of superradiant state. States with spinlength below S = 3/2 will be below threshold, which for six atoms means thermalfluctuations about the normal phase. The lower the spin length the smaller thesefluctuations, with zero spin length leading to no movement at all. Therefore, as thespin length decays, so does the magnitude of the cavity field occupation leading toa measured output of a pulse of finite length. This is what is seen in the experi-ments, though of course other causes of spin length decay in the experiment will alsocontribute to this.The impact of the other two spontaneous emission processes is more complex.Figure 5.10 shows that the response of the system is a decay of the spin length tosome non-zero steady state. However, an individual trajectory shows that individualevents do not necessarily lower the spin length. Some events decrease the spinlength, some do not alter it and some even increase it. In fact, the spin length canbe reduced to below superradiance but then another event can seemingly bring thesuperradiance back. In the experiments, this is not seen. This is because otherprocesses, including the shelving processes shown above, also decay the spin lengthirreversibly. This means that any “resuscitation” comes too late. However, the reasonwhy this can happen when those processes are ignored gives a fundamental insightinto the impact of these single-atom effects.The change in the collective spin length happens because of the way different

32An explanation of this and a more in-depth consideration of the impact of the spin length on theresponse of the system is given in Section 7.2.
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Figure 5.10: Dicke model simulation for six atoms with {ω, ω0, λ, U } /κ = { 1.0, 1.0, 1.0, 0.0 } wherefor each atom a spontaneous emission term is simulated by a loss term (a,b) σ̂+ or (c,d) σ̂1 , at rates
γi/κ = 0.01. Shown is an individual trajectory (blue) and its jumps (blue vertical lines) and an ensembleaverage of 200 trajectories (red). Plotted are (a,c) the photon number in the cavity mode while (b,d) showsthe magnitude of the spin vector Ŝ found by calculating 〈Ŝ2

x + Ŝ2
y + Ŝ2

z 〉 = S(S + 1) and solving for S .The system is expected to be below threshold when the spin length is below 3/2.
spin states combine to form a collective spin, whereby the length of some product
S1 ⊗ S2 is not necessarily the sum S1 + S2. The state after, for example, the first
σ̂+ event is something of the form ρ = ρN−1 ⊗ |1〉 where ρN−1 represents N − 1indistinguishable atoms in some collective state. The length of ρN−1, due to thisbeing the first event, is (N − 1)/2, and the length of |1〉 (in this basis) is 1/2. Thismeans that the length of ρ is some superposition of S = (N − 1)/2 ± 1/2 with thecoefficients decided by the particular states occupied by the atoms.The cavity output field is different for each of these spin length contributions, andso, in a quantum trajectory picture, one of them is projected out by the cavity outputmeasurement. Thus, the first event can cause the spin length to drop or stay maximal.If a drop has occurred, and the spin length now sits at some sub-maximal length SN−1,then the subtraction and re-addition of the spin-1/2 particle add separately. Thisgives the length of the total spin as some superposition S = SN−1±1/2±1/2 (wherethe two ± are independent). This means the event can cause the spin to jump upone, jump down one or stay the same.
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The jump to a superposition, and the subsequent measurement backaction, occurafter every event, and so on an individual trajectory we have a sequence of events,each followed by the spin length being projected into a state below, above or the sameas the one it was in before. On average, this trends down to some steady-state value.At this point, the superposition imposed by each event does not on average changethe spin length because the average of the states in the post-jump superposition isthat of the steady state. Of course individual trajectories must choose a specific stateof the superposition and so will jump around the steady state. It should be notedthat this steady-state spin length is always less than maximal. We see that the σ̂+events have a lower steady-state spin length and reach that value faster. This canbe explained by the fact that the impact of σ̂1 events is lower given that most of theatoms are in that state as it is.If the loss of atoms by scattering into non-active states, in particular |s〉 asdiscussed above, is a major source of the decay in the spin length, then it would seem
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Figure 5.11: Dicke model simulation for six atoms with {ω, ω0, λ, U } /κ = { 1.0, 1.0, 1.0, 0.0 } where foreach atom a spontaneous emission term is simulated by a loss term σ̂s at a rate γs/κ = 0.05 and a repumplaser is simulated by the repump terms |1, 1〉 〈2, 1| at rate γ/κ = 10.0 and |2, 2〉 〈2, 1| at rate√2/3γ . Shownare two individual trajectories (blue, green) and an average of 200 trajectories (red). Plotted are (a) thephoton number in the cavity mode while (b) shows the expectation value of a projector into the shelvedstate |s〉 and (c) shows the magnitude of the spin vector Ŝ found by calculating 〈Ŝ2
x + Ŝ2

y + Ŝ2
z 〉 = S(S+1)and solving for S . For the individual trajectory the jumps into and out of the shelved state can be seen inthe value of the shelved state projector. The system is expected to be below threshold for S < 3/2.
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that repumping from that state into the two active states would help. Essentially, astrong laser can be added to the scheme, driving transitions from |s〉 to some excitedstate. The resultant emissions from there will drop the atom down into down intoeither of the other states (or back to |s〉 where the process repeats). The excitedstate could be, for example, |F ′ = 2, mF ′ = 2〉 in the D1 line33. To simulate this wetake Equation 5.27 and add two extra dissipative terms for each atom |0〉 〈s| at a rate
γr � γs and |1〉 〈s| at a rate √2/3γr .Figure 5.11 shows that this does not necessarily help. One trajectory is stabilisedbut the other quickly decays. We can use the insight garnered above to explain this:pumping atoms back into states that do not match the global state does not necessarilyreplenish the spin length. This is in line with limited results from the experiments [87],where the addition of the repump laser sometimes helped and sometimes did not helpand was thus not used in the collection of data for [72].
5.4 Impact of motion on the phase transition

As discussed in 5.2.5, there are discrepancies between the theoretical and experimen-tal results, with particular inaccuracy for low ω0. Our interpretation of this mismatchis that it is caused by the atomic motion. Different atoms move at different speeds,and so the Doppler shift on ω0 is a spectrum across the ensemble. This inhomo-geneous broadening means that different atoms see different transition points. Thismeans that the self-organisation of the spins, which is required for superradiance, hasmore to overcome and so the transition is shifted to higher couplings. The followingtext is adapted from the Appendix of [72].We assume that the internal atomic and cavity dynamics are much faster than thetimescales of the atomic motion, and so treat the position as a classical parameternot tied to the other dynamics. The Hamiltonian, summing over individual atoms, is34

Ĥ = ωâ† â+ ω0 N∑
j=1 σ̂

(j)
z + λ−√

N

N∑
j=1
(e−iφj âσ̂ (j)+ + eiφj â† σ̂ (j)

−

)
+ λ+√

N

N∑
j=1
(e−iφj â† σ̂ (j)+ + eiφj âσ̂ (j)

−

)
. (5.28)

The phases on each atom are given by φj = ~k ·~rj (t) where ~k is the wavevector of the
33It is important that this laser is not close in frequency to the Dicke model configuration laser andcavity modes, as otherwise the repump laser would also create Raman transitions and thus impact theactive states and the Dicke model configuration. Choosing an excited state in a different hyperfine manifoldavoids that issue.34Note that in this derivation U is assumed to be zero for the sake of simplicity, but if it is non-zero,and its magnitude less than 2ω, then it can be easily accounted for. Since we are only interested in thetransition point, where σ̂z = ±0.5 depending on the ground state, then the derivation can be edited suchthat ω → ω ± U/2.
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laser beam35 and so the only relevant part of the position, and thus motion, is thesingle dimension along the path of the lasers and so the dot product becomes krj (t).We make a Holstein-Primakoff approximation σ̂ (j)

− ≈ b̂j , where b̂j is the anni-hilation operator for an excitation on atom j . Such an approximation is valid for
b̂†j b̂j � 1, i.e. below threshold where the number of atomic excitations is very low.We can then build quantum Langevin equations

˙̂a = −(κ + iω)â − iλ−√
N

N∑
j=1 eikrj (t)b̂j − iλ+√

N

N∑
j=1 e−ikrj (t)b̂†j +√2κâin(t) (5.29)

˙̂bj = −iω0b̂j − iλ−√
N

e−ikrj (t)â − iλ+√
N

e−ikrj (t)â† . (5.30)
The formal solution to the second of these is

b̂j (t) = e−iω0t b̂j (0)− iλ−√
N

t∫
0

e−ikrj (t′)e−iω0(t−t′)â(t′)dt′
− iλ+√

N

t∫
0

e−ikrj (t′)e−iω0(t−t′)â† (t′)dt′ (5.31)
and this can be substituted into the field annihilation operator equation giving

˙̂a = −(κ + iω)â − iλ−√
N

N∑
j=1 eikrj (t)e−iω0t b̂j (0)− iλ+√

N

N∑
j=1 eikrj (t)+iω0t b̂†j (0)

+√2κâin(t)− λ2
−
N

 N∑
j=1

t∫
0

dt′eik [rj (t)−rj (t′)]−iω0(t−t′)â(t′)
+λ2+
N

 N∑
j=1

t∫
0

dt′e−ik [rj (t)−rj (t′)]+iω0(t−t′)â(t′)
−λ−λ+

N

 N∑
j=1

t∫
0

dt′eik [rj (t)−rj (t′)]−iω0(t−t′)â† (t′)
+λ−λ+

N

 N∑
j=1

t∫
0

dt′e−ik [rj (t)−rj (t′)]+iω0(t−t′)â† (t′) . (5.32)
We now consider rj (t) ≈ rj + vj t , such that rj is the initial position and the velocity
vj is assumed unchanged through the length of the experiment. This means that the

35The signs of the phases in the Hamiltonian here take the counter-propagation of the lasers intoaccount. In the co-propagating case the phases in the λ+ term are switched. This has strong implications,primarily that in two of the integrals introduced in Equation 5.32 the positions no longer cancel. Thisintroduces an integral over the positions which cancels those terms to zero. This reduces the entireproblem to something more akin to a single-beam.
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initial position dependence drops out of every one of the integrals. The velocities areassumed to follow a one-dimensional Maxwell-Boltzmann distribution such that

1
N

N∑
j=1 f (vj ) = 1√2πv̄2

∞∫
−∞

exp(− v22v̄2
)dv (5.33)

where v̄ is the route-mean-square (rms) velocity. Thus all the above integrals becomea variant on the single integral
1√2πv̄2

∫ ∞
−∞

∫ t

0 exp(− v22v̄2
)e±i(ω0−kv )(t−t′) 〈Ô(t′)〉 dt′dv

= t∫
0

exp [−k2v̄2(t − t′)22
] e±iω0(t−t′) 〈Ô(t′)〉 dt′ (5.34)

where Ô represents â or â† . We then take the Laplace transform
∫ ∞

0 e−st


t∫
0

exp [−k2v̄2(t − t′)22
] e±iω0(t−t′) 〈Ô〉 dt′

dt
= ∞∫

0
∞∫
t′

exp [−k2v̄2(t − t′)22
] e−st±iω0(t−t′) 〈Ô(t′)〉 dtdt′ (5.35)

= ∞∫
0

∞∫
t′

exp [−k2v̄2(t − t′)22
] e−(s∓iω0)(t−t′)dt

e−st′ 〈Ô(t′)〉 dt′ (5.36)
= ∞∫

0
 ∞∫

0
exp(−k2v̄2τ22

) e−(s∓iω0)τdτe−st′ 〈Ô(t′)〉 dt′ (5.37)
= 1
kv̄

√
π2 exp(z2

∓)erfc(z±) 〈Ô(s)〉 (5.38)
where 〈Ô(s)〉 is the Laplace transform of 〈Ô(t)〉, z± = (s ± iω0)/(kv̄√2) and erfc(z)is the complementary error function.

Considering initial expectations 〈b̂j (0)〉 = 〈b̂†j (0)〉 = 0 and noise 〈âin(t)〉 = 0then the Laplace transform of Equation 5.32 is given by
(s+ κ + iω) 〈â(s)〉 − 〈â(0)〉 =− λ2

−
kv̄

√
π2 f (z+) 〈â(s)〉+ λ2+

kv̄

√
π2 f (z−) 〈â(s)〉

− λ−λ+
kv̄

√
π2 f (z+) 〈â† (s)〉+ λ−λ+

kv̄

√
π2 f (z−) 〈â† (s)〉(5.39)

where we have defined f (z) = exp(z2)erfc(z).
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For the Dicke model λ+ = λ− ≡ λ and so the above can be translated to twocoupled equations for 〈â(s)〉 and its conjugate. If any of the poles of 〈â(s)〉 havea positive real part, the solution describes an amplification process36. This meansthat the cavity field becomes non-zero, and so the threshold has been reached. Thethreshold is thus the smallest value of λ for which a pole crosses the imaginary axis.For these equations, the poles can be found as the roots of the determinant. Thisgives us the threshold expression

λc = √√√√√2kv̄ (ω2 + κ2)8ωF ( ω0√2kv̄
) (5.40)

where F (y) is the Dawson function defined by
F (y) = e−y2 ∫ y

0 ex2dx. (5.41)
This method still underestimates the transition, but the shape seems much moreaccurate in comparison to the traditional threshold given in Equation 5.16. In com-parison to Equation 5.26 the fit for this method is perhaps somewhat less convincing.However, given our lack of explanation of the high fitting parameter required forthat method to match the data, it would seem like our method is a much more solidexplanation.There are several reasons why our treatment is still not perfect, including theassumption that velocities do not change over the length of the experiment, and thatthey are not coupled to the cavity field or the spins. The motional fit is also moreconvincing for the lower trap depth considered in [72]. At lower temperatures, theatomic velocities are smaller, and so perhaps the assumptions made about the velocitydistribution are more accurate.The fact that the fit is also more convincing with a single-beam or co-propagatinglasers (as considered in [72]) is also of interest. In those cases the threshold is fora switch in polarisation of the atoms, and so at most one photon can be scatteredper atom. In the Dicke model case multiple scattering events can occur from eachatom. Coupling between the spin and velocity would be via those scattering events

36It is interesting to discuss, and a significant part of the original work, what happens for a single beamand for the case of the co-propagating lasers. With λ− = 0, the situation is a Tavis-Cummings model andso naïvely we would anticipate a complete switching of the state to the inverted phase for any non-zero
λ+ . In reality, the inhomogeneous broadening and spin length decaying processes delay this thresholdto a higher value of λ+ . For the co-propagating case then the two cross terms (i.e. those with λ−λ+ asthe coefficient) are zero and so we are left with two expressions. Similarly to the single beam case thiscan lead to a transient pulse as the state switches from normal to inverted, and again that threshold isat some non-zero λ. For the particular situation ω0 is zero, then that threshold becomes infinite. In bothof these cases, the match to the experimental data is excellent, and so it is with confidence that we cansay that the Doppler broadening plays a significant role in defining transitions. Our understanding isthat it is this threshold that was being measured in [88] rather than the Dicke model phase transition asoriginally thought.
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and so it makes sense that our treatment would be more accurate for situations withcontrolled scattering. There are of course other experimental concerns, not factoredinto our treatment, that could impact the critical coupling.
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Chapter 6

Extreme spin squeezing in the
steady state of a generalised
Dicke model

Generally, research on cavity engineered Dicke models either wishes to minimise orneglect the dispersive shift, Ŝz â† â. This non-linearity can somewhat complicate thephase transition behaviour and the dynamics of the system, at the very least beingan added parameter of which to keep track. Once it becomes large it completelychanges the behaviour of the system. In this Chapter, we consider what happenswhen that term is allowed to dominate the Hamiltonian. What we find is extremelyslow dynamics from any state eventually trending towards a highly entangled atomicstate: the central Dicke state |N/2, 0〉. We propose methods to access this state: asimple heralded probabilistic method and a more complicated protocol involving atime-dependent Hamiltonian. This work is presented in the form of a paper publishedin Physical Review A. It has been reformatted for this thesis, with added subsectionheadings, minor changes to some figures and some notation and spelling alteredto provide consistency throughout the thesis, but is available in its original form athttps://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.023822.
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6.1 Introduction

Atom interferometers are useful for making precision measurements of acceleration,time, rotation, and, potentially, even gravitational waves [89]. Interferometers employ-ing uncorrelated states of N atoms have a variance limited by the standard quantumlimit (SQL), which scales like 1/N , but suitably entangled atomic states could poten-tially reach the Heisenberg limit, where scaling like 1/N2 becomes the lower boundfor the variance [90, 91]. Spin squeezed states [17, 19–22, 92] are a popular choice totry and make measurements that are below the SQL and potentially approach theHeisenberg limit. Successful spin squeezing experiments have been carried out usingatomic collisions in Bose-Einstein condensates [14,93–100], quantum non-demolitionmeasurements [101–107], and various other methods [108–112]. The best of theseexperiments have exceeded the SQL by 100-fold [107], but for the large numbers ofatoms that were involved, this is still nowhere near the corresponding Heisenberglimit. If this limit could be approached, then the actual number of atoms required forsignificant gains in precision could in fact be relatively small.
6.1.1 Metrology of Dicke states

A class of idealised states that can potentially reach the Heisenberg limit are theso-called Dicke states [113,114], which are simultaneous eigenstates of the collectiveangular momentum operators Ŝ2 and Ŝz , denoted by |S,m〉. Here we shall consideronly symmetric Dicke states, for which the wavefunction is symmetric under particleexchange.Dicke states do not lend themselves well to characterisation by conventionalspin squeezing measures, which generally rely on a well-defined polarisation of thespin state. Instead, to characterise the squeezing we consider the Dicke squeezingparameter [23],
ξD = N (∆Ŝz )2 + 1/4

〈Ŝ2
x + Ŝ2

y〉
. (6.1)

This parameter gives us access to the metrological sensitivity relative to the SQL.For Mach-Zehnder interferometry, the variance is bounded by β(ξD/N), where βis a factor of order one [23]. The parameter also provides a lower bound for theentanglement depth of dξ−1
D − 2e [24], where dxe denotes the minimum integer noless than x . Considering this bound, we can see that the limit for entanglement, andthus metrological gain, is ξD = 1/2.For a Dicke state |N/2, m〉, the Dicke squeezing parameter is given by

ξD = 1
N + 2− 4m2

N
. (6.2)
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This means that the Dicke states offer near Heisenberg limited metrological sensitiv-ity for N � {2, m}. In addition, for m <

√
N/2 the entanglement depth must be thesize of the entire atomic ensemble. There have been proposals for schemes to pre-pare Dicke states of an atomic ensemble (see, e.g., [115–122]), typically based uponconditional or probabilistic processes and possibly also feedback of some sort. Alter-natively, schemes using collisions in spin-1 Bose-Einstein condensates are possibleand have been implemented [123–125].

6.1.2 Summary of the Chapter

Here we propose an approach that can, in principle, prepare an arbitrary Dicke stateas the steady state of a cavity QED system with a suitably engineered atom-cavityinteraction. In particular, this interaction is described by the so-called generalisedDicke model, which may be engineered, as described in Chapter 5, in an opticalcavity QED setting with alkali atoms, via laser- and cavity-driven Raman transitionsbetween ground-state electronic sublevels of the atoms [53, 71, 72, 80, 81].We describe the model and the specific parameter regime in which the desiredsteady-state behaviour - a near pure Dicke state - is obtained, as well as explainingthe mechanism that allows that steady state to exist. We then explain how that samemechanism means that reaching that steady state through natural evolution is anextremely slow process, which leads us to consider modified schemes. The first ofthese produces the state heralded by the detection of a single photon in the outputchannel, while the second makes use of time variation of one of the parameters ofthe model. These methods allow for the preparation of the state on much fastertimescales. We conclude with a discussion of a specific realisation in an opticalcavity QED system and show that significant squeezing and high fidelity states canbe achieved with feasible experimental conditions.

6.2 System & model

We consider a generalised Dicke model for N two-level atoms and a single mode ofthe electromagnetic field, as described by the master equation [51, 53, 72, 79–81]
ρ̇ = −i[Ĥ, ρ] + κD [â]ρ (6.3)

with the Hamiltonian
Ĥ = ω0Ŝz + ωâ† â+ λ√

N
(â+ â† )(Ŝ+ + Ŝ−) + U

N Ŝz â
† â (6.4)
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where D [â]ρ represents the superoperator

D [â]ρ = 2âρâ† − â† âρ − ρâ† â. (6.5)
Here â (â† ) is the annihilation (creation) operator for the quantised cavity mode,and Ŝi are collective atomic spin operators satisfying the usual angular momentumcommutation relations. The linear atom-field coupling strength is denoted by λ, thenon-linear (or dispersive) coupling strength is given by U , ω and ω0 are the cavityand atomic resonance frequencies, respectively, and κ is the cavity field decay rate.This system possesses a rich phase diagram, which has been studied both semi-classically [78, 79] and quantum mechanically [80]. In [80], it was noticed that as Ubecomes very large compared to the other parameters, the atomic state can becomestrongly squeezed in the Ŝz spin component. The present work looks more closelyat, and provides an explanation for, this large U behavior.Before continuing, we note that our Hamiltonian is similar in structure to that putforward in [126], where a method based on time-varying parameters was proposedfor preparing Dicke states of donor nuclear spins in silicon. The discrete steppingmethod we describe in Section 6.6 can be viewed as parallel to the method in [126].
6.3 Steady-state behaviour

6.3.1 Expectation values

We consider the steady-state behaviour of the master equation in Equation 6.3 aswe vary U . Figure 6.1a displays various properties of the system as U is variedfor several different values of (linear) coupling strength λ. In particular, it plotsthe steady-state values of the mean intracavity photon number, 〈â† â〉, the collectiveatomic inversion, 〈Ŝz〉, and the Dicke squeezing parameter, ξD .For small |U| we see that the properties of the system depend rather sensitivelyon U and λ. However, for large |U| we observe a simpler, monotonic dependence:the mean photon number reduces steadily, becoming very small, the atomic inversionconverges quite rapidly to zero, while the Dicke squeezing parameter approachesthe value 1/(N + 2). This indicates that the system settles predominantly into theDicke state |N/2, 0〉, corresponding to genuine multipartite entanglement of the en-tire ensemble and Heisenberg limited metrological sensitivity. The relative lack ofsensitivity to the coupling strength λ is in direct contrast to the traditional and well-known superradiant behaviour of the Dicke model that occurs when U is small ornegligible [51, 53, 71, 72, 78–81, 127]In Figure 6.1b we plot 〈â† â〉, 〈Ŝz〉, and ξD as a function of U/N for severaldifferent values of N and observe that the same general pattern holds. We do note,
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(a)

(b)

Figure 6.1: (a) Steady-state expectation values for {ω, ω0 } /κ = { 1.0, 0.2 } and N = 10, with λ/κ = 0.05(red solid line), λ/κ = 0.2 (blue dashed) and λ/κ = 0.4 (green dash-dotted). The black lines in the plot of
ξD are the standard quantum limit (solid) and the ideal limit of 1/(N+2) = 1/12 (dashed). (b) Steady-stateexpectation values for {ω, ω0, λ } /κ = { 1.0, 0.2, 0.1 } with N = 4 (red solid line), N = 8 (blue dashed),and N = 12 (green dash-dotted). Here the Dicke squeezing parameter, ξD , is given in proportion to theideal limit, 1/(N + 2).
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though, that for a given (large) value of U/N the Dicke squeezing parameter is closerto its ideal limit of 1/(N + 2) for smaller N , though it should be noted that theabsolute squeezing is still larger for higher N .
6.3.2 Dicke state preparation - |N/2, 0〉
If we consider the energy level structure of the system in the limit of large |U| (seeFigure 6.2), and consider the possible transitions between states as allowed by theatom-cavity coupling Hamiltonian and by cavity photon emission, then it is possibleto understand why the steady atomic spin state |N/2, 0〉 emerges. Let us use thenotation |N/2, m, n〉 = |N/2, m〉 ⊗ |n〉, where |n〉 is the n-photon Fock state of thecavity mode.Now, consider the state |N/2, m, 0〉 with m < −1. The only processes by which atransition from this state may occur are described by the terms â† Ŝ+ and â† Ŝ− in theHamiltonian. The corresponding transitions are |N/2, m, 0〉 → |N/2, m+ 1, 1〉 and
|N/2, m, 0〉 → |N/2, m − 1, 1〉, respectively. For large U (i.e., U much larger than anyof the other parameters), both of these transitions are off-resonance by ∼ U(m±1)/N .Whilst both transitions are strongly off-resonant, for negative m, the former is lessso by an amount ∼ 2U/N , and will therefore be favoured, causing a net evolutiontowards states of larger m (in combination with cavity photon emissions, which causethe transitions |N/2, m+ 1, 1〉 → |N/2, m+ 1, 0〉). Similarly, for m > 1, transitionsvia â† Ŝ− will be preferred, causing a net evolution towards states of smaller m.

Figure 6.2: Approximate level diagram for large positive U � ω,ω0, λ. The dominant evolution pathwayis illustrated.
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Hence, whatever its initial state, the system will evolve towards the centre of thespin angular momentum ladder.On reaching the states |N/2, ±1, 0〉, “inward” transitions to the state |N/2, 0, 1〉become approximately resonant (for λ ∼ ω ∼ ω0), and, following emission of the cavityphoton, the state |N/2, 0, 0〉 is prepared. Importantly, provided U/N � {ω0, ω, λ, κ},transitions out of the state |N/2, 0, 0〉 to |N/2, ±1, 1〉 (followed by photon emissionto |N/2, ±1, 0〉) will be much weaker, due to the much larger energy gap (∼ U/N),than the inward transitions. Hence, the system essentially becomes “trapped” in theDicke state |N/2, 0, 0〉.
6.3.3 Dicke state preparation - |N/2, m〉
If we rewrite the Hamiltonian as

Ĥ = ω0Ŝz + â† â
(
ω + U

N Ŝz
)+ λ√

N
(â+ â† )(Ŝ+ + Ŝ−) (6.6)

then we see that for U = −ωN/m (with ω � κ) the states |N/2, m, n〉 are degeneratefor all n. This means that the transitions |N/2, m ± 1, 0〉 → |N/2, m, 1〉 are nowthe resonant transitions. Following the same arguments as given above, one findsthat this shifts the trapped state to |N/2, m, 0〉. Hence, by tuning parameters, thesteady state can be adjusted to an arbitrary Dicke state. Figure 6.3 illlustrates thispossibility in the form of Dicke squeezing “resonances” occurring at U/ω = −N/m(m = ±1, . . . , ±5) for N = 10.
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Figure 6.3: Steady-state Dicke squeezing parameter ξD as a function of U/ω for {ω, ω0, λ } /κ =
{ 100.0, 0.2, 0.2 }, with N = 10. The dashed lines are those predicted by Equation 6.2.
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6.4 Dynamic behaviour

A problem with using the above approach to produce Dicke states is the timescaleinvolved with reaching the steady state. To estimate the timescale of some transition
|N/2, m, 0〉 → |N/2, m+ 1, 0〉, we consider an analytic quantum trajectory approachwith a state

|ψ(t)〉 = α(t) |N/2, m, 0〉+ β(t) |N/2, m − 1, 1〉+ γ(t) |N/2, m+ 1, 1〉 , (6.7)
where α(0) = 1, β0 = γ(0) = 0, and we assume that no more than one photon ispresent in the cavity mode. We then calculate the Schrödinger evolution of the statewith an effective Hamiltonian

Ĥeff. = Ĥ − iκâ† â (6.8)
where Ĥ is the generalised Dicke model given in Equation 6.4. The cavity output fluxis proportional to |β(t)|2 + |γ(t)|2 and so, taking U � {ω,ω0, λ, κ }, the timescale forthe transition |N/2, m, 0〉 → |N/2, m ± 1, 0〉 (except for m = ±1) can be calculatedapproximately as

Tm ≈
U22Nκλ2 (m+ 1)2

N/2(N/2 + 1)−m(m+ 1) . (6.9)
The total time will thus scale as U2 and so be extremely large in the parameter regimeconsidered. For constant U/N , more atoms increases the time due to requiring moresteps to reach m = 0.Evolution from the fully polarised states |N/2, ±m〉 requires the entire populationto undergo every single step to |N/2, 0〉. However, we could instead use an initialcoherent spin state (CSS) [16],

|η〉 = (1 + |η|2)−j j∑
m=−j

(
N

j +m

)1/2
ηj+m |j , m〉 (6.10)

where η = e−iφ tan (θ/2) and {θ, φ} are spherical coordinates. With a suitable choiceof η (e.g., η = 1), this improves the evolution time because much of the population inthis state overlaps with or is close to the steady state, while very little of the stateis in or near the fully polarised end states. Such an initial state also immediatelyshows Dicke squeezing upon evolution, whilst the fully polarised initial state firstevolves to an anti-squeezed state before slowly approaching the squeezed steadystate.Whilst the initial coherent spin state improves the short term generation of Dickesqueezing, the time for significant squeezing to appear is still very large even for
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very small ensembles. Remembering that increased N or U dramatically increasesthis time, even with an optimised initial state, the evolution to the steady state islikely to be prohibitively slow.
6.5 Probabilistic preparation

One potential method for preparing the steady state in a shorter time span involvesusing an initial CSS for the atomic ensemble and probabilistic photon detection. Aphoton detection collapses the state into a superposition weighted by how likely thestates in the initial superposition were to have produced a photon. The resultantsuperposition is dominated by the resonant state, as its neighbours are by far themost likely states to produce photons. Single-photon detection can thus produceextremely high fidelity Dicke states in very short time frames. The production ofhighly non-classical states via heralded single-photon detection schemes has beenproposed and implemented in other systems [128–136].The probability of creating the steady state |N/2, m, 0〉 with this method is thesum of the populations in the states |N/2, m ± 1, 0〉. For example, if the desired stateis |N/2, 0, 0〉 then a CSS with η = 1 maximises the overlap and the probability ofsuccess is
P = 2−N [( N

N2 + 1
)+( N

N2 − 1
)]

. (6.11)
For small atomic ensembles this proves to be a fairly efficient method. The resultsof trajectory simulations are shown in Table 6.1. Here we see reasonably highsuccess rates that decline with N , and match reasonably with those predicted inEquation 6.11 (e.g., for N = 10(100) the prediction is 41.3% (15.6%)). The fidelityis extremely high and, since the rate of these resonant transitions is independent of
U , can be made arbitrarily higher without increasing the time taken or reducing thesuccess probability. We also see very strong squeezing and high levels of multipartiteentanglement. For N = 100, the squeezing has metrological sensitivity -19.39dBimproved over the SQL. This means that this method can produce competitive levelsof squeezing with a relatively high success probability in a very short time span formuch smaller numbers of atoms than usual spin squeezing techniques.However, creating significantly better squeezing comes at a cost. To match the
∼ 3000 depth multipartite entanglement in [132] would require a Dicke state |1500, 0〉with an associated success rate of 2.9%, though we note much stronger entanglementcould be created. With 106 atoms the probability has become a fractional 0.16%. Apotentially useful fact is that the speed at which the transition occurs scales as 1/Nfor central Dicke states. If the CSS could be recreated very quickly then it might be
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N Efficiency Fidelity ξ̄D (ED) Within 1% Within 10%10 40.3% 99.94% 0.0839 (10) 91.8% 98.7%20 31.8% 99.91% 0.0460 (20) 81.3% 97.6%50 20.8% 99.89% 0.0197 (49) 42.0% 95.2%100 15.5% 99.52% 0.0115 (85) 0.0% 89.2%

Table 6.1: Properties of 5000 trajectories (1000 for N = 100) for various N with {ω, ω0, λ, U/N } /κ =
{ 1.0, 0.2, 0.1, 100 }. All properties except the efficiency are only for successful trajectories, i.e., trajectoriesthat have exactly one jump before κt = 52. Fidelity is the average fidelity with the Dicke state |N/2, 0〉,
ξ̄D is the average Dicke squeezing, ED is the minimum entanglement depth and within 1% (10%) is thepercentage of trajectories with squeezing within 1% (10%) of the ideal limit for Dicke squeezing.

possible to do more iterations with higher N , and thus help to account for some ofthe inefficiency. Alternatively, a spin squeezed state aligned along the equator of thecollective Bloch sphere will have enhanced population in the central Dicke states,including |N/2, ±1〉, and so the use of a spin squeezed initial state could enhancethe efficiency of this probabilistic scheme.There is a special case for this method for which the efficiency would be unity.If parameters are set such that the resonant transition is between |N/2, ±N/2, 0〉 →
|N/2, ±N/2∓ 1, 1〉 then preparing the initial state in |N/2, ±N/2〉 would alwaysmean a jump within a short time frame. These so-called W states [137] (symmetricDicke states with a single excitation) have numerous applications in quantum infor-mation [138–140] and here we have a method that can produce them with close tounit efficiency on a short timescale and in the steady state. The error in the fidelitycan be approximated by the probability that two photons have been created whichgives an error of

ε ≈ 15g2N24U2 . (6.12)
We can see that the error is kept approximately constant for constant U/N , and, sincethe transition time here is independent of U and N , this method scales very well tolarger atomic ensembles.
6.6 Time dependent parameters

We have shown that, by correct choice of parameters, the steady state can be tunedto a desired Dicke state. We have also shown that if the system is one Dicke stateeither side of the steady state, then the evolution to that state is very fast. Thus,with complete control of the parameters, it should be possible to step the systemfrom |N/2, −N/2, 0〉 → |N/2, −N/2 + 1, 0〉 → ... → |N/2, 0, 0〉. This requires timedependence in ω.Successful runs can be postselected based on the number of photons emitted. Ifthat number is equal to the total number of steps necessary then the trajectory is
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Figure 6.4: The time evolution of 〈Ŝz〉 with photon detections (vertical lines) for a successful trajectory(blue) and a failure (red), parameters of {ω0, λ, U } /κ = { 0.2, 0.2, 1000.0 }, N = 20 and ω linearly variedas ω(t)/κ = 470− 0.2κt .

deemed successful, otherwise it is a failure. Experimentally, this would require anextremely efficient single-photon detector. However, it is also possible to differentiatesuccesses and failures by the pattern of the photon emissions. If the state is “dragged”all the way to the middle, then the photons should come at relatively frequent intervalsthroughout the length of the experiment. This means that if a photon is detected nearthe end of the trajectory then all the photons that came before can be inferred, asshown in Figure 6.4.Linear variation of ω, such that the system is initially resonant for creation ofthe W state, and then ends at zero, such that the final resonant transition is to the
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Figure 6.5: For 2958 successful trajectories, parameters of {ω0, λ, U } /κ = { 0.2, 0.2, 500.0 }, N = 10 andtime dependent ω discretely stepped such that it makes each transition from |0, −5〉 → |0, −1〉 resonantin turn. The system is held at each step for κth = 52. (a) Time evolution of Dicke state populationswith blue, green, red, cyan and pink (or peaks from left to right) denoting m = −5, −4, −3, −2, and
−1 respectively and (b) histogram of final squeezing. The vertical lines are the ideal limit (dotted) andsteady-state squeezing (dashed).
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central Dicke state, thus has some probability of producing that central Dicke statewith very high fidelity. For ten atoms, an ensemble of quantum trajectories producesa 58.0% success rate, a best squeezing of ξD = 0.086 and an average squeezing of
ξ̄D = 0.100.More successful, if perhaps more experimentally challenging, is discretely step-ping ω, i.e., implementing the time dependence

ω(t) = −UN
(
−N2 + j

) for th(j − 1) ≤ t < thj (6.13)
where th is the time the system is held at each step and j is an integer steppingfrom 1→ ∆m. We know that the slowest transition is the first one, and so we set thsuch that the first transition will almost certainly have occurred.The population transfer and squeezing for this discrete stepping approach with
N = 10 are shown in Figure 6.5. The best squeezing is ξmin

D = 0.086, but witha greatly improved average squeezing of ξ̄D = 0.087. There are also much highersuccess rates, with 98.6% of 1000 trajectories being successful. This scales well with
N as well, with a success rate of 98.5% (83.9%) for N = 20 (50).
6.7 Cavity QED realisation

6.7.1 Microscopic parameters

We now consider the optical cavity QED realisation of the Dicke model describedin [53, 72, 80] (see Figure 6.6). The necessary Hamiltonian is produced via resonantRaman transitions in an ensemble of 87Rb atoms interacting with a high finesse opticalcavity mode. Here the effective parameters are given in terms of the microscopicparameters by [72]
ω0 = ω1 − 12 (ωs − ωr )

+ 16
(Ω2

r∆r
− Ω2

r∆r − ω1 −
Ω2
s∆s

+ Ω2
s∆s + ω1

) (6.14)
ω = ωc −

12 (ωr + ωs) + N3
(
g2∆s

+ g2∆r

) (6.15)
U = 2N3

(
g2∆s
− g2∆r

) (6.16)
λr,s = √3NgΩr,s12∆r,s

(6.17)
where {λr , λs} are the Raman coupling strengths for the rotating and counter-rotatingterms, respectively, and ω and ω0 are the effective cavity and atomic frequencies,
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Figure 6.6: Level scheme for the implementation of the generalised Dicke model with 87Rb atoms. Tran-sitions are driven with Raman transitions composed of a cavity mode (red) and σ+- (green) and σ−- (blue)polarised laser fields. Raman transitions are detuned on either side of the excited manifold to maximisethe non-linear term.

respectively, defined by combinations of detunings and light shifts. Specifically,
ωc is the cavity frequency, ω1 is the frequency difference between the two activestates, g is the single-atom-cavity coupling, and ωr,s is the frequency of the σ−−and σ+−polarised lasers, respectively with ∆r,s and Ωr,s being the related detuningsand single-atom-laser coupling strengths, respectively. By setting ∆s = −∆r wecan maximise U and greatly reduce ω. If we choose g = 20(2π)MHz, Ωr,s =500(2π)kHz, κ = 50(2π)kHz37, and |∆r,s| = 3.5(2π)GHz and assume full tuneabilityof the small frequency offsets and magnetic field strength that define ω and ω0,then we could reach a regime of effective parameters {ω, ω0, U/N, λ/√N } /κ =
{ 0.01, 0.01, 3.0, 0.01 }. Whilst this regime does not offer the idealised squeezingabove, it does still offer significant metrological gain over a coherent state.

37See, e.g., [141,142], although we choose a smaller κ than realised in these experiments. However, wenote that good squeezing is still possible with larger κ .
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6.7.2 Unresolved Dicke squeezing

We use these parameters with the atomic ensemble initiated into a coherent spinstate centred on the equator of the Bloch sphere. Here, considering single quantumtrajectories, we calculate the squeezing immediately after each photon detection. Asin the ideal case, the probability of a photon arising from population in the centralstates is higher than from the outer states, but due to the lower value of U , thedifference is much less sharp. This means that the measurement of a photon tightensthe distribution around the central state rather than “resolving” a single Dicke state(see Figure 6.7). Due to this, each photon detection shortly afterwards tightens thespread further. In between photon detections, the backaction of the null measurementdrains population from the central states and the degree of squeezing worsens. Assuch, the optimal squeezing is likely to come when a number of photon detections aremeasured in a short amount of time. This means that a protocol where one waits fora certain number of photon detections in a certain time frame can achieve substantialDicke squeezing. It should be noted that such a protocol could also work with highefficiency. For 1000 atoms and the parameters described above, 38.9% of trajectoriesrun had 12 or more jumps.
6.8 Conclusion

We have shown the existence of strong spin squeezing and entanglement depth inthe steady state of an open generalised Dicke model. We have shown that thisarises from the collective atomic state being “pumped” towards the highly entangledDicke state |N/2, 0〉, in a manner reminiscent of resolved sideband cooling of atomstrapped in harmonic potentials. By altering the Dicke model parameters, it is alsopossible to instead pump towards an arbitrary Dicke state |N/2, m〉. This means thatentanglement between every atom in an ensemble could be achieved in steady state,rather than as a transient or probabilistic phenomenon. The steady-state nature ofthe entanglement, even when accessed via a probabilistic method, means that theproduced Dicke state is stable. The possibility of producing such a stable entangledstate has obvious benefits for quantum information and quantum computing protocols.While the timescale involved in preparing these states through natural evolutionis very large, we have also shown that it is possible to access the steady state ona much shorter timescale via either a single-photon-heralded, probabilistic schemeor by suitable time variation of a parameter of the model. The squeezing is at theHeisenberg limit for the ideal case, but we show that substantial squeezing is stillpossible with realistic cavity QED parameters.This work highlights the stark change in dynamics that can occur with the additionof a non-linear term to the Dicke model. The interplay of the linear terms with a
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(a)

(b)

Figure 6.7: For a single trajectory with N = 1000 and {ω, ω0, λ, U } /κ = { 0.01, 0.01, 0.316, 3000.0 },(a) squeezing with the times of photon detection events represented by red vertical dashed lines and (b)populations initially (top) and after the first jump (middle) and twelfth jump (bottom).
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simple non-linear shift of energy levels has been shown here to give rise to exoticsteady states. This raises the question of what other possibilities might arise fromsimilar non-linear terms in, for example, models involving atoms of higher spin asdiscussed in Chapter 7. In particular, the spin-1 derivation in Chapter 7 introducesa term of the form n̂0â† â, where n̂0 is the number operator for the |m = 0〉 stateof the spin-1 atoms. If this term is allowed to dominate, then we might expect theensemble to be pumped to states with no atoms in the |m = 0〉 state; i.e., to a familyof states containing completely classical states, such as |m = ±1〉⊗N , as well ashighly entangled states such as the Dicke state |N, 0〉 with the atoms exactly splitbetween the two states |m = ±1〉.
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Chapter 7

Generalisation of the Dicke
model to integer-spin particles

The study of the Dicke model as an ensemble of two-level systems is most simplyconsidered in a collective picture of a single large spin. As such, the makeup ofthat internal spin is not necessarily of importance. This means that it is possible toengineer a Dicke model using an ensemble of spinor particles and it will respondidentically to the two-level ensemble case. In the first section of this Chapter, Iderive a Dicke model built from alkali atoms isolated to an entire ground-statehyperfine manifold. I initially show the structure of a generic treatment, before morespecifically showing how this works for the F = 1 manifold in 87Rb. This derivationwas performed following a concept conceived in collaboration with Murray Barrettand Scott Parkins. The second section, in somewhat of an aside from the discussion ofthe experiment, discusses what can happen if the state is initiated such that a singlelarge spin is not a suitable picture. Returning to the single large spin picture, thefinal section discusses the implementation of this scheme at the Centre for QuantumTechnologies, and in particular the use of such a scheme to study phase transitionswith imbalanced couplings. This experimental work was carried out by ZhiqiangZhang, Chern Hui Lee, Ravi Kumar, Kyle Arnold and Murray Barrett. My theoreticalmodelling, informed by that experiment and carried out under the supervision of ScottParkins, follows.
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7.1 Deriving the Dicke model for integer spins

Here I derive the Dicke model using the same scheme of cavity-assisted Ramantransitions used in Chapter 5, except instead of isolating two active states, an entirehyperfine manifold F is used for the active states. This means that each atom is nowan effective spin-F particle rather than a spin-1/2 particle. Initially this treatmentis kept as general as possible before focussing in on a specific case of the F = 1manifold in 87Rb. It is this treatment that is used in the experiment and in ourproposals.
7.1.1 Derivation for a generic integer-spin manifold

We take an arbitrary ground-state hyperfine manifold in an alkali atom. This couldbe F = 1 (available for 87Rb), F = 2 (87Rb or 85Rb), F = 3 (85Rb or 133Cs) or
F = 4 (133Cs). These are coupled with laser and cavity modes via some excited-state manifold as shown in Figure 7.1. In contrast to the two-level scheme, whereeach laser-cavity mode pair drives one Raman transition from |0〉 ↔ |1〉, each pairof beams now drives a set of transitions. As in that scheme, the σ+-polarised laserRaman transition is a raising (or lowering) operator for both the collective spin andthe cavity field, meaning it drives the counter-rotating terms in the derived Dickemodel. Conversely, the σ−-polarised laser transition drives the rotating terms. Inboth cases, the generalisation just means that the σ̂i operators are now for spin-Fparticles rather than the spin-1/2 Pauli matrices.Denoting the ground states |F ,mF = j〉 ≡ |gj〉 and denoting the excited states
|F ′ = k,mF ′ = l〉 ≡ |ek,l〉 then, for a single atom, the full Hamiltonian can be written

Figure 7.1: Level diagram to produce a spinor Dicke model using an entire hyperfine level as the activelevels. The levels form effective spin-F particles with detuned Raman transitions driven between them,via some set of excited states, by a cavity mode (red arrows) and σ+-polarised (green) and σ−-polarised(blue) lasers. Here each pair of beams operates two or more Raman transitions. Different F levels andthe associated schemes of light fields necessary are shown in different intensities.
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in the form

Ĥ = ωcâ† â+ ωz
+F∑
j=−F j |gj〉 〈gj |+

F+1∑
k=F−1

+k∑
l=−k ωk |ek,l〉 〈ek,l|

+Ω−2 e−iω−t +F∑
j=−F

F+1∑
k=F c

(−)
jk |ek,j−1〉 〈gj |+ Ω+2 e−iω+t +F∑

j=−F
F∑

k=F−1 c
(+)
jk |ek,j+1〉 〈gj |

+ gâ
+F∑
j=−F

F+1∑
k=F−1 c

(π)
jk |ek,j〉 〈gj |+ h.c. (7.1)

where h.c. means Hermitian conjugate and is meant for all the transitions terms. Inthis equation ωc is the cavity frequency, ωz is the linear Zeeman splitting of theground states38, |F , 0〉 is chosen as zero energy and ωk is the energy of the excited-state manifold F ′ = k , where Zeeman splittings within those hyperfine manifolds areignored. ω±,Ω± are the bare frequencies and Rabi frequencies respectively of thetwo lasers and g is the single-atom coupling strength normalised on some transition.The coefficients c(X )
jk are then the dipole matrix elements for transitions betweenthe ground state |gj〉 and an excited state in the F ′ = k manifold for X-polarisedradiation normalised on the same transition as g and Ω±.Even in this extremely generic form it is possible to see the structure of theHamiltonian. The energy associated with the cavity occupation and the state of theatom appear on the first line. Interactions raising the atom from ground states toexcited states are driven by the two lasers and the cavity mode, while interactionslowering the atom from excited states to the ground states are given by the Hermitianconjugates of those terms. Note here that each laser or cavity field now explicitlydrives whole sums of transitions.The elimination of excited states, wherever it appears during this thesis, wasperformed using the method laid out in [143]. The Hamiltonian is first moved to theinteraction frame of the active states and the cavity mode. We build an operator, Q̂,which is a sum over transition terms that raise the system to the excited manifold. Inthis frame we have

Ĥ =∑e ωe |e〉 〈e|+ Q̂ + Q̂† . (7.2)
A second operator Q̂′, which is the same sum but divided by the detuning of that term(i.e. the frequency of the laser or cavity mode driving the term minus the relevantexcited-state frequency), is also constructed. In the limit of large detuning, and thussmall excited-state populations, the excited states can be adiabatically eliminated

38Any quadratic Zeeman shift would survive the elimination process, and so its presence would resultin something other than a true effective Dicke model. It is thus assumed to be zero here.



7.1. DERIVING THE DICKE MODEL FOR INTEGER SPINS 115
leading to an effective Hamiltonian [143]

Ĥeff = Q̂† Q̂′. (7.3)
More explicitly, we create operators

Q̂ =Ω−2 +F∑
j=−F

F+1∑
k=F c

(−)
jk e−i(ω−+jωz )t |ek,j−1〉 〈gj |

+Ω+2 +F∑
j=−F

F∑
k=F−1 c

(+)
jk e−i(ω+jωz )t |ek,j+1〉 〈gj |

+gâ +F∑
j=−F

F+1∑
k=F−1 c

(π)
jk e−i(ωc+jωz )t |ek,j〉 〈gj | (7.4)

and
Q̂′ =Ω−2 +F∑

j=−F
F+1∑
k=F c

(−)
jk

e−i(ω−+jωz )t
ω− − ωk + jωz

|ek,j−1〉 〈gj |

+Ω+2 +F∑
j=−F

F∑
k=F−1 c

(+)
jk

e−i(ω++jωz )t
ω+ − ωk + jωz

|ek,j+1〉 〈gj |

+ gâ
+F∑
j=−F

F+1∑
k=F−1 c

(π)
jk

e−i(ωc+jωz )t
ωc − ωk + jωz

|ek,j〉 〈gj | . (7.5)
This leads to a time-dependent Hamiltonian with a variety of different terms. Arotation removes the time dependence and grouping of terms into spin-F operatorsleaves a mixture of expected Dicke model terms and higher spin operator terms. Fora specific example of this see Section 7.1.2, where the derivation produces variousspin-1 specific terms.These additional terms offer physics not available to spin-1/2 systems, and socould be of interest for further study. In this Section, a limit where those terms dropout is found, reducing the effective Hamiltonian to a Dicke model. That limit turnsout to be that the detunings of the Raman transitions from the excited-state manifoldsmust be much larger than the internal level splittings of that manifold.In such a limit, then, for all the species mentioned above, all terms except forthose in the Dicke model reduce to zero. Summing over N of these spin-F atoms weare left with the Hamiltonian
Ĥ = ωâ† â+ ω0Ŝz + λ−√2FN (Ŝ+â+ Ŝ−â† ) + λ+√2FN (Ŝ−â+ Ŝ+â† ) (7.6)

where the parameters are determined by Raman transition rates, detunings and light
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shifts. Note here that, unlike all current cavity-based spin-1/2 formulations for theDicke model, there is no extra term of the form Ŝz â† â [53,66–68,72,78,79,144]. Thespin-1 derivation in Section 7.1.2 shows that this shift is actually quadratic in naturefor that case, but that it vanishes under the large detuning approximation. This canbe reasoned by the fact that the excited-state manifolds do still produce cavity drivenlight shift but some with different signs to others, such that the sum of the shifts iszero.
7.1.2 Derivation for the F = 1 manifold in 87Rb

We now use the specific case of the F = 1 manifold in 87Rb with transitions drivenvia the D1 line, shown in Figure 7.2. This example is chosen because it is the choiceof levels in the derivations for Chapters 8, 10 and 11. Whilst the experiment describedin Section 7.3 used the same active levels, Raman transitions were driven via the D2line instead. This results in minor changes to some of the final parameters, but is forthe most part completely equivalent to this derivation.We use notation |mF 〉 for active levels and |F ′, mF ′〉 for excited states in the F ′excited hyperfine level. Our full Hamiltonian is then
Ĥ = Ĥ0+Ĥe + g√12 (âĤc + â† Ĥ†c

)
− Ω+2√12 (e−iω+tĤ+ + eiω+tĤ†+) + Ω−2√12 (e−iω−tĤ− + eiω−tĤ+) (7.7)

Figure 7.2: Level diagram to produce a spinor Dicke model using hyperfine states in 87Rb. The entire
F = 1 manifold forms effective spin-1 particles with detuned Raman transitions driven between them viathe D1 line made from a cavity mode (red arrows) and σ+-polarised (green) and σ−-polarised (blue) lasers.
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where

Ĥ0 = ωcâ† â+ ωz (|1〉 〈1| − |−1〉 〈−1|) (7.8)
Ĥe = ∑

F ′=1,2
+F∑

mF′=−F ωF
′ |F ′, mF ′〉 〈F ′, mF ′ | (7.9)

Ĥc = |1, −1〉 〈−1|+√3 |2, −1〉 〈−1|+ 2 |2, 0〉 〈0| − |1, 1〉 〈1|+√3 |2, 1〉 〈1|(7.10)
Ĥ+ = |1, 0〉 〈−1|+ |2, 0〉 〈−1|+ |1, 1〉 〈0|+√3 |2, 1〉 〈0|+√6 |2, 2〉 〈1| (7.11)
Ĥ− = −√6 |2, −2〉 〈−1|+ |1, −1〉 〈0| − √3 |2, −1〉 〈0|+ |1, 0〉 〈1| − |2, 0〉 〈1| .(7.12)

Here ωc is the cavity frequency, ωz is the Zeeman splitting of the F = 1 manifoldworking around the energy of |0〉 being zero, and ωF ′ is the energy assumed for theentire F ′ hyperfine manifold. ω±,Ω± are the bare frequencies and Rabi frequenciesrespectively of the two lasers and g is the single-atom coupling strength normalisedon the 87Rb D2 line cycling transition.
Ĥ0 gives the energy associated with population in the cavity mode and in theground atomic states. Ĥe gives the energy associated with population in excitedatomic states, where we have assumed that the linear Zeeman shifts of those levelscan be neglected. Ĥc and Ĥ± tell us how the cavity and laser fields move the atombetween states weighted with the associated Clebsch-Gordan coefficients.Once again, we move to an interaction picture around Ĥ0 and build operators inline with the derivation laid out in [143]. The first of these operators is

Q̂ = ge−iωct√12 âQ̂c −
Ω+e−iω+t2√12 Q̂+ + Ω−e−iω−t2√12 Q̂− (7.13)

with
Q̂c = eiωz t (|1, −1〉 〈−1|+√3 |2, −1〉 〈−1|) + 2 |2, 0〉 〈0|

+ e−iωz t (− |1, 1〉 〈1|+√3 |2, 1〉 〈1|) (7.14)
Q̂+ = eiωz t (|1, 0〉 〈−1|+ |2, 0〉 〈−1|) + |1, 1〉 〈0|+√3 |2, 1〉 〈0|+ e−iωz t√3 |2, 1〉 〈1| (7.15)
Q̂− = −eiωz t√6 |2, −2〉 〈−1|+ |1, −1〉 〈0| − √3 |2, −1〉 〈0|+ e−iωz t (|1, 0〉 〈1| − |2, 0〉 〈1|) . (7.16)

The second is
Q̂′ = ge−iωct√12 âQ̂′c −

Ω+e−iω+t2√12 Q̂′+ + Ω−e−iω−t2√12 Q̂′− (7.17)
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with
Q̂′c = eiωz t ( |1, −1〉 〈−1|

ωc − ω1 +√3 |2, −1〉 〈−1|
ωc − ω2

)+ 2 |2, 0〉 〈0|ωc − ω2+ e−iωz t (−|1, 1〉 〈1|ωc − ω1 +√3 |2, 1〉 〈1|ωc − ω2
) (7.18)

Q̂′+ = eiωz t ( |1, 0〉 〈−1|
ω+ − ω1 + |2, 0〉 〈−1|

ω+ − ω2
)+ |1, 1〉 〈0|ω+ − ω1 + √3 |2, 1〉 〈0|

ω+ − ω2+ e−iωz t√3 |2, 1〉 〈1|ω+ − ω2 (7.19)
Q̂′− = −eiωz t√6 |2, −2〉 〈−1|

ω− − ω2 + |1, −1〉 〈0|
ω− − ω1 −

√3 |2, −1〉 〈0|
ω− − ω2+ e−iωz t ( |1, 0〉 〈1|ω− − ω1 −

|2, 0〉 〈1|
ω− − ω2

)
. (7.20)

From here our effective Hamiltonian is given by
Ĥ = Q̂† Q̂′ ≡

+1∑
i,j=−1Ci,j |i〉 〈j| . (7.21)

Introducing a detuning ∆i = ωi − ω1 and the excited-state hyperfine splitting as
ζ = ω1 − ω2, we have a full set of coefficients
C−1,−1 = g212∆c

â† â+ g24(∆c + ζ) â† â+ Ω2+48∆+ + Ω2+48(∆+ + ζ) + Ω2
−8(∆− + ζ) (7.22)

C0,0 = g23(∆c + ζ) â† â+ Ω2+48∆+ + Ω2+16(∆+ + ζ) + Ω2
−48∆− + Ω2

−16(∆− + ζ) (7.23)
C+1,+1 = g212∆c

â† â+ g24(∆c + ζ) â† â+ Ω2+8(∆+ + ζ) + Ω2
−48∆− + Ω2

−48(∆− + ζ) (7.24)
C−1,0 = gΩ−ei(ωc−ω−−ωz )t24

( 1∆− − 3∆− + ζ

)
â† − 2gΩ+ei(ω+−ωc−ωz )t24(∆c + ζ) â (7.25)

C0,+1 = gΩ+ei(ω+−ωc−ωz )t24
( 1∆c

− 3∆c + ζ

)
â − 2gΩ−ei(ωc−ω−−ωz )t24(∆− + ζ) â† (7.26)

C0,−1 = gΩ−ei(ω−−ωc+ωz )t24
( 1∆c

− 3∆c + ζ

)
â − 2gΩ+ei(ωc−ω++ωz )t24(∆+ + ζ) â† (7.27)

C+1,0 = gΩ+ei(ωc−ω++ωz )t24
( 1∆+ −

3∆+ + ζ

)
â† − 2gΩ−ei(ω−−ωc+ωz )t24(∆c + ζ) â (7.28)

C+1,−1 = Ω+Ω−ei(ω−−ω++2ωz )t48
( 1∆+ −

1∆+ + ζ

) (7.29)
C−1,+1 = Ω+Ω−ei(ω+−ω−−2ωz )t48

( 1∆− − 1∆− + ζ

)
. (7.30)

The first three equations can be simplified using σ̂z = |1〉 〈1| − |−1〉 〈−1|, σ̂zz =
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|1〉 〈1|+ |−1〉 〈−1|39 and the identity 1 = |−1〉 〈−1|+ |0〉 〈0|+ |1〉 〈1|.Equations 7.25-7.28 require four degrees of freedom, of which the first two aresimply σ̂+ = √2 (|1〉 〈0|+ |0〉 〈−1|) and σ̂− = √2(|−1〉 〈0| + |0〉 〈+1|). The othertwo are single-atom elements of the nematic tensor operator: q̂xz = √2(|+1〉 〈0| +
|0〉 〈+1| − |0〉 〈−1| − |−1〉 〈0|) and iq̂yz = √2(|1〉 〈0| − |0〉 〈1| − |0〉 〈−1|+ |−1〉 〈0|).The last two terms can be very easily simplified using σ̂ 2

− = 2 |−1〉 〈1| and
σ̂ 2+ = 2 |1〉 〈−1|.Ignoring a shift to the vacuum energy (i.e. terms proportional to 1) then theHamiltonian can be reduced to this simpler form. We first rotate about the axis

R̂ = (−ωc + ω+ + ω−2 )
â† â+ (−ωz + ω+ − ω−2 )

Ŝz (7.31)
to remove time dependence and we make the assumption that all detunings are similar(i.e. ∆−1

c ≈ ∆−1
± = ∆−1). This leaves us with the Hamiltonian

Ĥ = ωâ† â+ ω0σ̂z + ωqσ̂zz + δq2 σ̂zz â† â+ λ1√2 (σ̂+â+ σ̂−â† ) + λ2√2 (σ̂−â+ σ̂+â† )
+ ξ1q̂xz (â+ â† ) + iξ2q̂yz (â − â† ) + h(σ̂ 2+ + σ̂ 2

−) (7.32)
where we have parameters

ω = g23(∆ + ζ) + ωc −
ω+ + ω−2 (7.33)

ω0 = Ω2+ − Ω2
−96
( 5∆ + ζ −

1∆
) + ωz + ω− − ω+2 (7.34)

ωq = Ω2+ + Ω2
−96
( 1∆ + ζ −

1∆
) (7.35)

δq = g26
( 1∆ − 1∆ + ζ

) (7.36)
λ1 = gΩ−48

( 1∆ − 5∆ + ζ

) (7.37)
λ2 = gΩ+48

( 1∆ − 5∆ + ζ

) (7.38)
ξ1 = gΩ−96

( 1∆ + ζ −
1∆
) + gΩ+96

( 1∆ − 1∆ + ζ

) (7.39)
ξ2 = gΩ−96

( 1∆ + ζ −
1∆
) + gΩ+96

( 1∆ + ζ −
1∆
) (7.40)

h = Ω+Ω−96
( 1∆ − 1∆ + ζ

)
. (7.41)

Clearly this is not exactly equivalent to the spin-1/2 model. There is something akin
39This is actually σ̂2

z or a shifted version of the element of the nematic tensor Q̂zz for a single atom.
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to a quadratic Zeeman shift (σ̂zz could be trivially expressed in terms of constantsand n̂0), a quadratic version of the dispersive term, and exchange terms where thecavity mode and the atoms exchange excitations in ways that do not exist for spin-1/2systems. There is also a full flip term whereby atoms can be taken between |±1〉with no intervention from the cavity mode.Some of these terms could lead to interesting physics. For example, in one limit,we can produce a system that switches randomly between superradiance and beingcompletely dark. A discussion of this phenomenon is given in Section 12.2.2. Thefull potential of these terms is yet to be explored, but is discussed in Section 12.2.1.For the purposes of this Section, we instead want to get rid of the spin-1terms. This can be done by taking the limit that ∆ � ζ . In that limit all of
{ωq, δq, ξ1, ξ2, h } → 0 and the Hamiltonian reduces to

Ĥ = ωâ† â+ ω0σ̂z + λ1√2 (σ̂+â+ σ̂−â† ) + λ2√2 (σ̂−â+ σ̂+â† ). (7.42)
Summing over an ensemble of N atoms yields

Ĥ = ωâ† â+ N∑
i=1
{
ω0σ̂ (i)

z + λ1√2 (σ̂ (i)+ â+ σ̂ (i)
− â† ) + λ2√2 (σ̂ (i)

− â+ σ̂ (i)+ â† )} (7.43)
= ωâ† â+ ω0Ŝz + λ−√2N (Ŝ+â+ Ŝ−â† ) + λ+√2N (Ŝ−â+ Ŝ+â† ) (7.44)

where we have effective parameters
ω = Ng23∆ + ωc −

ω+ + ω−2 (7.45)
ω0 = Ω2+ − Ω2

−24∆ + ωz + ω− − ω+2 (7.46)
λ− = −√NgΩ−12∆ (7.47)
λ+ = −√NgΩ+12∆ (7.48)

and we have defined collective spin operators
Ŝz = N∑

i=1 σ̂
(i)
z , Ŝ± = N∑

i=1 σ̂
(i)
± . (7.49)

This is the Dicke model, with no dispersive shift and full independence of the couplingterms. This means that, if the treatment of an ensemble of spin-1 particles (or spin-Fparticles going back to the general proposal) as a single large spin is valid, thismethod produces a cleaner version of the Dimer et al proposal [53] with the sameflexibility to study the Dicke model that that proposal introduced.
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7.1.3 Spin-1 Dicke model simulation

We now simulate the Dicke model in the bosonic mode representation
Ĥ = ωâ† â+ ω0

(
b̂†1 b̂1 − ˆb†−1b̂−1

)
+ λ−√2N [(b̂†1 b̂0 + b̂†0 b̂−1)â+ (b̂†−1b̂0 + b̂†0 b̂1)â†]
+ λ+√2N [(b̂†−1b̂0 + b̂†0 b̂1)â+ (b̂†1 b̂0 + b̂†0 b̂−1)â†] . (7.50)

We will compare that to the single large spin models of the semi-classical model. Tobegin with we assume a fully polarised initial state. The initial state, in the bosonicmode representation, is |N, 0, 0〉 and in the Dicke state basis |N,−N〉.Figure 7.3 shows that these two pictures are equivalent. The bosonic modesimulation returns the same results as the Dicke state basis. As expected, this meansthat our integer-spin Dicke model, if initiated into a fully polarised initial state, isequivalent to a two-level ensemble Dicke model.
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Figure 7.3: Dicke model simulations in two different bases. Spinor basis uses a bosonic mode populationpicture to describe the atomic state. Dicke state basis uses a long spin picture. In both cases a singletrajectory (blue) and an ensemble average (green) are shown. Parameters used were {ω, ω0, λ } =
{ 1.0, 1.0, 1.0 } with a spin length equivalent to 20 spin-1 atoms.

7.2 Spin-1 Dicke model without a fixed spin length

A fully polarised initial state will act as a single large spin regardless of what issummed over to produce that large spin. However, if the initial state is not fullypolarised, that is not necessarily the case. With two-level systems, there is noproduct state of N indistinguishable atoms that does not have maximal spin length
N/2. For a non-polarised state, there is a coherent spin state which still has maximalspin length and still responds to the Dicke model in the same way. For spin-1 atoms,
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there are options where we still have indistinguishability but the spin length is notmaximal; in particular, states where the spin length is in a superposition can exist.
7.2.1 |0〉 product state

A π-polarised laser operating near the F = 1 → F ′ = 1 transitions will exciteatoms in |±1〉 but not |0〉 because selection rules do not allow such a transition.This means that the atoms in |±1〉 are excited to |F ′ = ±1, mF ′ = ±1〉, where theycan undergo spontaneous emission events that either take them back to |±1〉 wherethe process repeats or into |0〉 where they will stay confined. This optical pumpingmeans that the product state |0〉⊗N can be easily prepared. Such a state is nottrivially represented with Dicke states. This is due to the way in which the spinsadd. Two |1, 0〉 particles add to a collective sum as
|1, 0〉 ⊗ |1, 0〉 = √23 |2, 0〉 −

√13 |0, 0〉 . (7.51)
For spin-1 particles we can iterate this process one atom at a time using the Racah
formula, which tells us how angular momentum states add. For the case of |J, 0〉 ⊗
|1, 0〉, the Racah formula simplifies very neatly to

|J, 0〉 ⊗ |1, 0〉 = √ J + 12J + 1 |J + 1, 0〉 −√ J2J + 1 |J − 1, 0〉 . (7.52)
If we take our two atom state then we can iterate to a third atom as
|1, 0〉 ⊗ |1, 0〉 ⊗ |1, 0〉 = (√23 |2, 0〉 −

√13 |0, 0〉
)
⊗ |1, 0〉 (7.53)

= √23 |2, 0〉 ⊗ |1, 0〉 −
√13 |0, 0〉 ⊗ |1, 0〉 (7.54)

= √23
√35 |2 + 1, 0〉 −√23

√25 |2− 1, 0〉 −√13 |0 + 1, 0〉 .(7.55)
Since |2− 1, 0〉 and |0 + 1, 0〉 are the same collective spin state, but different in thefull space, their coefficients add vectorially such that

|1, 0〉 ⊗ |1, 0〉 ⊗ |1, 0〉 = √25 |3, 0〉 −
√35 |1, 0〉 . (7.56)

This process can be iterated for N atoms and gives
|1, 0〉⊗N = bN/2c∑

k=0 cN−2k |N − 2k, 0〉 (7.57)
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where bN/2c means to round down if N is odd. The coefficients alternate in signand are generally not particularly easy to find analytically. However, for any size
N , two of the coefficients have obvious analytic forms. Firstly, it is clear from theiteration that

|cN |2 = N∏
J=1

J + 12J + 1 (7.58)
which for large N will approach 2−N and so high spin length populations becomevanishingly small in that limit. Secondly,

c0 = √ 1
N + 1 for N even, c1 = √ 3

N + 2 for N odd. (7.59)
These become small for large N but are still much more significant contributionsthan the large N states.For 10 atoms the superposition state is
|1, 0〉⊗10 = √ 25646189 |10, 0〉−√ 1282717 |8, 0〉+

√ 32187 |6, 0〉
−
√ 48143 |4, 0〉+

√ 50143 |2, 0〉 −
√ 111 |0, 0〉 . (7.60)

We can see that the bulk of the population is in states |2, 0〉 , |4, 0〉 and |6, 0〉. Even forthis small number of atoms, the population in the maximal spin state is just 0.6%. Thepopulations for 1000 atoms are shown in Figure 7.4. In that case, the vast majority of
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Figure 7.4: Populations |cS |2 for even S in the collective Dicke states |S, 0〉 for the product state
|mF = 0〉⊗N of N = 1000 spin-1 atoms. Populations for states beyond S = 200 are not shown as thetotal sum of these populations is ∑S>200 |cS |2 = 1.34× 10−9 .
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the state is contained at relatively low spin lengths compared to the polarised state.The maximal spin length has a very low population.
7.2.2 Initiation of the Dicke model in the |0〉 product state

If we think of what these lower states would do under the action of the Dicke model,we can easily identify that, due to the form of the ladder operators for different spinlengths, the response is muted for lower spin lengths. To calculate this we can consultthe semi-classical threshold calculation. There, where we normalised the spin peratom to 0.5, we can now take that to be 0.5χ where χ = S/N < 1. Note that we nownormalise the semiclassical parameters in Equations 5.12-5.14 by 2N rather than N .This shortening of the normalisation condition gives a new critical threshold relatedto the old one as
λ′c = 1

√χ λc. (7.61)
This means that some states in the superposition might be below the threshold whenothers are above.The average response is the weighted average of the responses of all the spinlengths. We can calculate this by simulation in different Dicke bases and thentaking the weighted average of those results. What we might hope to see is a seriesof transitions as we increase the coupling as different states become superradiant.Instead, as shown in Figure 7.5a, we see a steady rise with no distinct threshold atall. This is because, for 10 atoms, we do not have a particular sharp transition evenif we do start in a polarised state. Sharp transition behaviour requires more atoms.Figure 7.5b shows 200 atoms around the transition points of the most populatedspin lengths and, despite the increased atom number, the weighted average still does
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Figure 7.5: Average photon number over a single long trajectory from the initial atomic state |S,−S〉 forparameters {ω, ω0 } /κ = {√3,√3 } with (a) N = 10 and (b) N = 200 atoms. Parameters are chosensuch that for χ = S/N , λc /κ = 1/√χ . In both cases the weighted average is weighted by the initialcontributions of those states to the state |0〉⊗N .
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not feature any sharp transitions. The semi-classical model requires the thermody-namic limit of large N , but more specifically, it requires a large spin length. 200atoms might be enough for the polarised state to follow the semi-classical modelquite closely, but for the |0〉 product state the peak spin states have spin length
S ∼ 10− 20 which certainly do not have such sharp transitions.We require a number of atoms such that the highest population states havesignificant spin length. This introduces a new problem. For large numbers of atoms,the transition points for the different spin lengths become closer and closer together.This means that the necessary “sharpness” to be visible in the weighted averagebecomes higher and higher. The necessary values of λ needed to make S = 200superradiant for 2× 105 atoms is 31.62 times the usual critical coupling values. For
S = 198 it is 31.78 times. For the sorts of values used in the experiments, this wouldmean that there would need to be extraordinary control over the laser powers, andthus λ, and the measurements to be able to see anything. The necessary laser powerrequired to reach those couplings would be extremely large40.Our conclusion was that this initial state would not offer particularly interestingresults with regards to phase transitions. With a small ensemble the reaction isdistinctly outside of the thermodynamic regime where the critical threshold is pre-dicted and so the different spin states’ individual “thresholds" overlap significantly.The more atoms we have, the smaller the region in which the transition must occurto avoid overlap, and so those transitions still blur together despite the increasedatom number. The required laser power to make such systems work also becomesinfeasibly high. If we did use an atom number where the peak spin lengths reactsemi-classically, then that system would most probably just do nothing since the ma-jority of the population would be so far below threshold for feasible coupling strength
λ. What is of much more interest is the individual trajectory case, where the spinlength can be projected out by a photon counting measurement. This discovery ledto the work in Chapter 8.
7.3 Experimental implementation of imbalanced coupling

The experiment at the CQT used the spinor model to study the Dicke model withimbalanced driving [71]. The setup allows for independent control of the rotating (byaltering λ−) and counter-rotating (by altering λ+) terms. This is an aspect of thesemethods where they have an advantage over the BEC method of producing the Dicke
40Of course there are other parameters that could be altered to improve that coupling. Different atomicspecies have different Clebsch-Gordan coefficients which can change the numerical factor in the coupling,though not by orders of magnitude. The individual atom-coupling g can be larger than used in the CQTexperiments, though again not by several orders of magnitude. The detuning can be reduced, thoughcare would have to be taken that it does not become so small that the excited-state hyperfine splittingbecomes a factor. Careful manipulation of those microscopic parameters with the right choice of speciesmight enable the range of possible couplings to increase by an order of magnitude or two.
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Figure 7.6: Figure reproduced from [71]. Upper plots show (a) experimental and (b) theoretical resultsfor the steady-state phase map of the imbalanced Dicke model. States are as follows: normal (white),inverted (grey), oscillations (yellow) and superradiance (red). Below this are examples of (c) experimentaland (d) theoretical runs for particular data points indicated on the phase maps.

model [67–70]. It should be noted that the study of imbalanced driving certainly canbe, and in fact was, implemented in the two-level system version.Much like the experiment described in Section 5.2.5, the experiment involves87Rb atoms in a cavity with parameters { g, κ, γ } = { 2π } × { 1.1, 0.1, 3 } MHzand a detuning of −2π × 127 GHz from the D2 transition line. These atoms arecooled and loaded into an optical lattice within the cavity. They are then pumpedinto the |F = 1, mF = 1〉 level, which is given the notation |−1〉 in this analysis,with approximate fidelity of 94%. Around 2 × 105 atoms are used for each run,with the experimental run triggered once such a value is inferred. As with theDicke model phase transition investigation, transitions are driven by two counter-propagating lasers which drive the different coupling terms41. The two lasers driving
41In the experiment, both lasers actually contribute both σ± laser fields. These are tuned in such a waythat only the desired component of the polarisation drives the Raman transitions, though the other partdoes also produce light shifts. This, and the fact the experiment is performed on a different line to ourderivation, is why the form of the parameters given above vary slightly to the parameters in the paper.
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the couplings are ramped up with a fixed ratio λ+/λ− to some preset value wherethey remain for 3ms as the dynamics are observed.The dynamics are categorised as one of four options: superradiance, oscillations,transient pulse and nothing. The transient pulse is characterised by its length beingshorter than 250 µs and amounts to when the initial state and steady state areopposite trivial states (i.e. in this experiment, when the steady state is the inversestate). The oscillatory phase is characterised by a peak in the Fourier transform ofthe output signal, while the superradiant phase is characterised by significant andprolonged cavity output without oscillations. These results were then used to create aphase map for the model, shown in Figure 7.6. Whilst there is qualitative agreementbetween theory and experiment, significant differences in the onset of each phaseand its region in phase space are obvious. These are discussed in Section 7.4.4.The signal is measured with a single-photon counting module (SPCM) which hasa gate time of 5 µs. Theoretically predicted oscillations have a higher frequency thansuch a gate time would measure and so the measured frequencies are aliased. TheSPCM also saturates at ∼ 100 counts / gate time, which means that analysis of thephoton number is also not possible.
7.4 Theoretical modelling of imbalanced coupling

7.4.1 Semi-classical dynamics

The majority of our theoretical modelling uses the semi-classical model described inSection 5.1.1 with U = 0
α̇ = −κα − iωα − iλ+β − iλ−β∗ (7.62)
β̇ = −iω0β + 2iλ+αγ + 2iλ−α∗γ (7.63)
γ̇ = iλ+(α∗β − αβ∗) + iλ−(αβ − α∗β∗). (7.64)

For this treatment, we renormalised for N spin-1 atoms, but they can actually befurther generalised to N spin-F particles as
α = 〈â〉√2FN , β = 〈Ŝ−〉2FN , γ = 〈Ŝz〉2FN , |β|2 + γ2 = 0.25. (7.65)

We can see in Figure 7.6 that the four phases reported by the experiment can alsobe found with the semi-classical equations. The response in the superradiant andtrivial phases can be seen to feature decaying oscillations to the relevant steadystate, while the oscillatory phase has decaying oscillations to a steady orbit.In reality, these equations offer an extremely rich phase diagram with a widevariety of phase transitions, broken symmetries and different exotic attractors [82].
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7.4.2 Oscillatory phase: analysis of the frequency

Further study of the oscillatory phase shows that all of the semi-classical parametersoscillate, and they do so at some fixed frequency. We can see from Figure 7.7 thatthis frequency is very cleanly picked out by the Fourier transform, and appears at
∼ 40 (2π) kHz for this particular set of experimental parameters. This would givethe oscillations a period ∼ 4 µs, making the gate time slightly more than a periodof the oscillations. This puts it outside the resolvable frequencies of the SPCM andso the measurement produces an aliased frequency.It is possible to predict the behaviour of the oscillations either side of the tran-sition. Figures 7.7c and 7.7d show properties of the system as it passes throughthe various transitions. The boundary between normal and superradiant phases ismarked, as expected, by a rise from zero of the cavity occupation. Perhaps lessexpected, since it happens as we increase the coupling, is the boundary between su-perradiant and oscillatory phases. Here, the average photon number actually startsto decrease instead. This boundary is also marked by a change in the frequency of

(a) (b)

(c) (d)

Figure 7.7: For semi-classical evolution in the Dicke model with parameters {ω, ω0 } /κ = { 1.0, 0.7 }and (a,b) { λ+, λ− } /κ = { 1.5, 1.2 } or (c,d) fixed ratio λ−/λ+ = 0.8, (a,c) average photon number peratom through the evolution, (b) Fourier transform of the photon number through a long evolution and (d)dominant frequency of a Fourier transform of the photon number. With the Fourier transforms, analysis isof the oscillations around the mean photon number.
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the oscillations, which in the superradiant phase are decaying and at increasing fre-quencies for increasing coupling, but plateau to a specific frequency at the oscillatoryboundary.Unfortunately, it was not possible to study either of these predictions in theexperiment due to the saturation and gate time of the SPCM. However, it shouldbe noted that these marked differences between the states do exist. This meansthat, with a detector with resolution able to measure the amplitude and frequencyaccurately, these signatures could be searched for to mark the phase boundaries.This would allow the transitions to be mapped out without having to “bin” the resultssolely according to the photon number, negating some of the issues associated withappropriately deciding which phase the result belongs to, as discussed in Section7.4.4.
7.4.3 Oscillatory phase: quantum vs. semi-classical

The work above indicates that every aspect of the system oscillates. From a semi-classical standpoint, this can be thought of purely mathematically as the real partof the eigenvalue going to zero, and the system entering a stable orbit. None ofthat is particularly unusual. However, for the actual system, this would involve theself-organisation of atoms not only into a steady state, but into an evolving steadystate that maintains self-organisation. We therefore wish to check that, given themore unusual steady state, the semi-classical assumptions are still valid.Figure 7.8 shows that a single quantum trajectory in the oscillatory phase notonly oscillates, but it does so at the same frequency the semi-classical analysispredicts. Note that the ensemble average does not oscillate, as the starting time ofthe oscillations will vary due to noise, washing out the oscillations. The quantum

(a) (b)

Figure 7.8: For quantum trajectory evolution of the Dicke model for 100 atoms with parameters
{ω, ω0, λ+, λ− } /κ = { 1.0, 0.7, 1.5, 1.2 }, (a) photon number through the evolution and (b) Fourier trans-form of the photon number through a long evolution compared to the semi-classical case for the sameparameters. With the Fourier transforms, analysis is of the oscillations around a rolling mean.
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picture also gives us another interesting insight into the oscillatory phase. Perhapsunsurprisingly, the makeup of the state is a superradiant state. There are two op-posite phase solutions that exist in superposition. The oscillatory phase is thus asuperradiant state, but one that oscillates in magnitude. As with the Dicke model,measurement with a homodyne detector would pick out a particular phase of thecavity output field and so the system would pick one of the two solutions randomly.This means that going from the inverted phase into the oscillatory phase meansto go through a symmetry breaking bifurcation in exactly the same way as the su-perradiant phase transition. However, the boundary between the superradiant andoscillatory phases, where the system goes from two stable orbits to two stable points,does not feature symmetry breaking. If the system is in the superradiant phase, andthe couplings are changed such that we move towards and into the superradiantstate, we have slower decaying orbits until they do not decay and we have stableorbits. In dynamical systems, this phenomenon is known as a Hopf bifurcation.
7.4.4 Problems with the phase map

The primary modelling task for this work was to produce a phase map that predictedthe regions where the experiment would see the different phases. This involved inte-grating the semi-classical equations to some large time and then making a judgementon which state had been reached. Given that, with U = 0, exact calculation of thesuperradiant state is possible, direct comparison can be made to all three of thesteady-state solutions. Our map, given in Figure 7.6, has some significant differ-ences, which we try to explain in this section.There are three key areas where the phase map for the experiment differs: thenormal to superradiant boundary is shifted to much higher coupling, the oscillatoryphase is much larger and the inverted to oscillatory boundary is at a much lowerratio. Our explanation of the first of these is the same as the explanation of why theDicke model transition is at higher coupling than originally predicted. single-atomeffects, and in particular inhomogeneous Doppler broadening due to atomic motion,push the phase transition away from the semi-classical prediction.We believe that the other two differences, where the oscillatory phase is exag-gerated and appears at lower coupling ratio, can be explained by the same reason.In the oscillatory phase the eigenvalues are purely imaginary. This means that inthe vicinity of the boundary with the oscillatory phase, the real component of theeigenvalues must tend towards zero. This means that the decay of the oscillations,induced by that real part, is a very slow process. Figure 7.9 shows that in eachcase, the output looks like stable oscillations for different sets of parameters nearthe transition even at times on the order of κt = 1000, which is ≈ 1.6 µs for theexperiment. This value is on the order of the length of the pulse emitted by the
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(a) λ+/κ = 1.8, λ−/λ+ = 0.528 (b) λ+/κ = 1.16, λ−/λ+ = 0.55

(c) λ+/κ = 1.27, λ−/λ+ = 0.82 (d) λ+/κ = 1.85, λ−/λ+ = 0.96
Figure 7.9: Photon number per atom for semi-classical evolution of the Dicke model with parameters
{ω, ω0 } /κ = { 1.0, 0.7 } and couplings as shown for each plot.
experiment and so the decaying oscillations give a frequency peak in the Fouriertransform and the state is deemed oscillatory. Throwing in experimental noise andthe SPCM saturation on top of this means that we would not expect the clean peaksof the semi-classical Fourier transforms in any case, and so separating out a peak inamongst noise due to decaying or actual noise is incredibly difficult. Theoretically,we simulate out to much larger times such that the true steady state emerges. Webelieve that this difficulty in correctly making judgements on the output measurementexplains the exaggeration of the oscillatory phase area.This explanation raises a further question. The experiments show the superradiantstate area happening for lower and lower ratios as the coupling strength increases.This seems contrary to the previous argument. The reason for this is in the saturationthreshold for the SPCM. Any oscillations at these high coupling values still happenat high photon numbers, with the troughs still being too high to be seen by theSPCM.
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Chapter 8

Rapid production of many-body
entanglement in spin-1 atoms
via cavity output photon
counting

A perfect Dicke model made of integer spins bears no differences to an ensemble oftwo-level systems only if initiated in a maximal spin length state, most obviouslythe normal or inverted phase. If instead the system is initiated in a superposition ofdifferent spin lengths then the response is markedly different and the cavity output isexpected to vary significantly from shot to shot. Whilst any study of the Dicke modelbecomes difficult in these limits, there are still interesting possibilities. The cavityoutput projects the atomic state into a particular spin length, which, unless the spinlength is maximal, means the atoms are entangled. In this particular work, we focussedon a Tavis-Cummings model. In that case an exact photon number is expected fordifferent spin lengths. We showed that with perfect photon detection efficiency, theresultant states offer Heisenberg scaling in the quantum Fisher information. Withimperfect photon detection it is still possible to generate metrological sensitivitybeyond the standard quantum limit, and we showed how repeated measurementscould further refine the knowledge of the spin length and approach the Heisenberglimit. This work is presented in the form of a Letter published in Physical ReviewLetters. It has been reformatted for this thesis, with the Letter separated into sections,some notation and spelling altered to provide consistency throughout the thesis, andparts of the supplemental material included in the text, but is available in its originalform at https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.103601.
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8.1 Introduction

Entanglement is a fundamental property of quantum mechanics. Two-body or two-mode entanglement is now readily producible and well studied, but study of many-body entangled systems and routine production of large many-body entangled en-sembles are still open problems. The generation of such states is of interest notonly to fundamental science, but for the use of such states as a resource for quan-tum information tasks and quantum metrology. In this latter context, there has beensignificant progress in the production of spin squeezing [20, 22]. For N particles ina non-correlated ensemble, the variance on measurements is limited by the standardquantum limit (SQL), which scales like 1/N . In spin squeezing, entanglement is in-duced in an ensemble of atomic spins such that measurements of classical propertiescan be done more precisely. The fundamental limit on measurements with an ensem-ble allowing for entanglement is the Heisenberg limit with minimum variance scalinglike 1/N2.A wide variety of spin squeezing techniques have been used to show sub-SQLvariances. A common method involves the “one-axis twisting” mechanism [19, 93,94, 96, 97, 103]. Other procedures have produced up to a 100-fold reduction in thespin variance compared to classical states [107]. These states have also been used forproof-of-principle, quantum-enhanced implementations of atomic clocks [100,145] andmagnetometers [97,105], and to measure microwave fields [96]. Other proposals, suchas the two-axis counter-twisting scheme [19], offer a route to achieving Heisenberglimited metrological sensitivity, but these are yet to be implemented experimentally.The present work concerns entanglement in an ensemble of spin-1 atoms, which,compared with spin-1/2 atoms, clearly require more degrees of freedom to de-scribe, but concomitantly offer more degrees of freedom to entangle [146–148]. In-deed, proposals [15, 149–153] including the work in Chapter 10, and experiments[14, 95, 99, 100, 124, 154–160] with spinor Bose-Einstein condensates (BECs) predictor have produced entanglement either on the Bloch sphere (e.g., squeezing in one of
Ŝx , Ŝy, or Ŝz , where Ŝi is the i-component of the collective atomic spin operator) orin the additional spinor degrees of freedom.
8.1.1 Quantum Fisher information

The metrological sensitivity of a quantum state can be captured by the quantumFisher information (QFI). The variance of a measured phase θ imprinted by a classicalparameter is bounded by (∆θ)2 ≥ F−1 where F is the QFI. As such, the SQL statesthat for an optimal classical state the QFI scales as N while the Heisenberg limit issignified by a QFI that scales like N2. For pure states, the QFI over some generator
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Ĝ is

F = 4(∆Ĝ)2. (8.1)
More generally, for a density matrix ρ, decomposed into eigenstates as

ρ =∑
i
ξi |ei〉 〈ei| (8.2)

the QFI is given by
F = 2∑

i,j

(ξi − ξj )2
ξi + ξj

| 〈ei| Ĝ |ej〉 |2. (8.3)
Typically these quantities would be maximised over a set of generators to findthe best possible QFI. In this work, given that the state generation protocol wepropose produces varying, heralded states, we choose a single generator to consider:

Q̂xx − Q̂yy. Here, Q̂ is the nematic tensor operator and [14, 15]
Q̂ij = N∑

n=1 σ̂
(n)
i σ̂ (n)

j + σ̂ (n)
j σ̂ (n)

i − (4/3)δij (8.4)
where i, j ∈ { x, y, z }, σ̂ (n)

i are spin-1 angular momentum operators for a single atom,and δij is the Kronecker delta function. This generator, in a bosonic mode operatorpicture where b̂i(b̂†i ) is the annihilation (creation) operator for a particle in state
|mF = i〉, is given by

Ĝ = 2(b̂†+1b̂−1 + b̂†−1b̂+1) (8.5)
and so involves a transfer of atoms between the |mF = ±1〉 states. If we were toconsider only these two states, reducing the atoms to effective two-level systems,then the algebra would give this as 2Ŝx 42.
8.1.2 Summary of the Chapter

In this Chapter, we propose a new method to produce entanglement in an ensembleof spin-1 atoms. We use interactions mediated by cavity-assisted Raman transitions,building on previous work for generating such interactions with two-level (spin-1/2)atoms [53, 72, 161, 162]. This approach has previously been followed to produce aneffective Dicke model, as described in Chapters 7 and 10, and spin-exchange interac-tions, as discussed in [163,164] and Chapters 10 and 11, for spinor (spin≥ 1) atoms.Here, we engineer instead an effective Tavis-Cummings (TC) model for an ensembleof spin-1 atoms, which, as we show, can be used to herald, via a photon countingmeasurement on the cavity output field, the production of one of a family of highly
42It should be noted that this factor of 2 means that the maximum QFI of the system is 16N2 ratherthan the 4N2 usually available to N spin-1 atoms [22].



8.2. METHODS 137
entangled, many-body quantum states. We show further that the average result ofthis procedure, for ideal photon detection, in fact gives Heisenberg scaling of the QFI,while for non-ideal photon detection, the method still retains metrological sensitivitybeyond the SQL and with scaling significantly better than linear. We also show thatby alternating between TC and anti-Tavis-Cummings (anti-TC) interactions, so as toproduce a sequence of cavity output pulses and corresponding photon counting mea-surements, it is in principle possible to regain Heisenberg scaling even with finitedetection efficiency.
8.2 Methods

8.2.1 Model

For a specific system, we consider N 87Rb atoms confined tightly within an opticalcavity and pumped into the F = 1 ground hyperfine level43. As shown in Figure 8.1,we use a scheme of cavity-assisted Raman transitions on the D1 line to introduceeffective interactions between the atoms and the cavity mode. With both lasers onand detuning ∆ much larger than the width of the excited-state hyperfine structure,the model of the system reduces to an effective, dissipative Dicke model for the cavitymode and an atomic spin-1 ensemble (~ = 1),
ρ̇ = −i[Ĥ, ρ] + κ(2âρâ† − â† âρ − ρâ† â) (8.6)

where ρ is the density matrix for the composite atom-cavity system, κ is the cavityfield decay rate, â is the cavity mode annihilation operator, and
Ĥ =ωâ† â+ ω0Ŝz + λ−(âŜ+ + â† Ŝ−) + λ+(âŜ− + â† Ŝ+) (8.7)

where we have introduced collective spin operators Ŝz,±, which are sums of N spin-1operators. The coefficients in Equation 8.7 are given by
ω = ωc −

ω− + ω+2 + Ng23∆ (8.8)
ω0 = ωz −

ω− − ω+2 + Ω2+ − Ω2
−24∆ (8.9)

λ± = gΩ±12√2∆ . (8.10)
Here ωc is the frequency of the cavity mode, ω± and Ω± are the bare and Rabifrequencies, respectively, of the σ±-polarised laser fields, ωz is the Zeeman splitting

43We note that the scheme works equally well with pumping into the F = 2 level, in which case werealise an ensemble of spin-2 atoms. With, e.g., caesium, one could similarly realise the scheme withspin-3 or spin-4 atoms, as discussed in Chapter 7.
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Figure 8.1: Implementation of an effective Dicke model using the F = 1 ground state of 87Rb. Interactionsare mediated by detuned Raman transitions on the D1 line mediated by a cavity mode (red) and σ−- (blue)and σ+- (green) polarised lasers.

of the F = 1 levels, g is the single-atom-cavity coupling strength (for the 87Rb D2line cycling transition), and ∆ is the detuning of the fields from the atomic resonance.
8.2.2 Initial state

We consider this system with an initial atomic state |mF = 0〉⊗N . This state does nothave a certain spin length. Rather, it is given by a superposition of states of differentspin lengths, which, in a representation of Dicke states |S, 0〉, can be written
|mF = 0〉⊗N = N∑

S=0 cS |S, 0〉 . (8.11)
For even numbers of atoms, cS = 0 for all odd S . Odd numbers of atoms insteadhave cS = 0 for even S .We build this superposition by using the Racah formula, which for |S, 0〉 ⊗ |1, 0〉reduces to

|S, 0〉 ⊗ |1, 0〉 = √ S + 12S + 1 |S + 1, 0〉 −√ S2S + 1 |S − 1, 0〉 . (8.12)
We calculate the coefficients {cS} of the superposition in Equation 8.11 by iteratingthis formula N − 1 times. An example of the resulting distribution of |cS |2 valuesis shown in Figure 8.2 for N = 1000. One sees that the dominant constituents ofthe state actually have much shorter spin length than the maximum possible value of
S = N , with the peak of the distribution centered at S ' √N .
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Figure 8.2: Populations |cS |2 for even S in the collective Dicke states |S, 0〉 for the product state
|mF = 0〉⊗N of N = 1000 spin-1 atoms. Populations for states beyond S = 200 are not shown as thetotal sum of these populations is ∑S>200 |cS |2 = 1.34× 10−9 .
8.3 Production of entanglement

8.3.1 Entanglement of Dicke states

The states of the atomic ensemble that result from this measurement are Dicke states.We consider the entanglement witness from [148],
(∆Ŝx )2 + (∆Ŝy)2 + (∆Ŝz )2 ≥ N. (8.13)

Any state that breaks this inequality must be entangled. This can be rearranged to
〈Ŝ2〉 − 〈Ŝx〉2 − 〈Ŝy〉2 − 〈Ŝz〉2 ≥ N. (8.14)

For any state with definite spin length S , this inequality reduces to
S(S + 1)− S2 = S ≥ N. (8.15)

This is clearly broken for all except the maximal spin length, i.e., S = N . This meansthat the individual elements of the initial superposition given by Equation 8.11 are
on their own entangled, though the superposition of them is not. Our proposal is thusto project out one element of the superposition and so generate entanglement in theensemble. For reasonably large N , |cN |2 ≈ 2−N becomes negligible, and so, with
essentially unit efficiency, the atomic ensemble would be projected into a many-bodyentangled state.
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8.3.2 Generation of entanglement between the ensemble and the

output

The Hamiltonian conserves excitations, while cavity decay removes excitations, sothe steady state of the system is trivially calculated: no excitation in either the fieldor the ensemble. So, if we consider a state of definite spin length S , then the finalstate must be |S,−S〉 ⊗ |0〉cav , where |n〉cav represents a Fock state of n photons inthe cavity mode.If we have an initial state |S, 0〉⊗ |0〉cav , then evolution under the open TC modelleads to the final state |S,−S〉 ⊗ |0〉cav . This means that the S excitations in theatomic ensemble must have left the system via the cavity decay, meaning that we canwrite the state as |S,−S〉 ⊗ |0〉cav ⊗ |S〉out, where |n〉out represents the state with nphotons in the cavity output channel. This is shown in Fig. 8.3, where we plot theoutput photon flux from the cavity, 2κ〈â† â〉, versus time, as well as the cumulative,mean output photon number, 2κ ∫ t

0 〈â† â〉t dt . Different initial states |S, 0〉 producepulses of precisely S photons in the cavity output channel.By considering the steady states above, the initial state given in Equation 8.11will evolve to a final state (where we omit the empty cavity)
|mF = 0〉⊗N → N∑

S=0 cS |S,−S〉 ⊗ |S〉out . (8.16)
The open TC model thus entangles the state of the ensemble with the state of thecavity output channel.
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Figure 8.3: Master equation simulations of the open Tavis-Cummings model from initial states |S, 0〉 ⊗
|0〉cav with S equal to even numbers from 0 to 24 (ranging from S = 24 as the highest curve on both plotsto S = 0 at the bottom) with parameters {ω, ω0, λ } /κ = { 0.0, 0.0, 0.1 }. Results show the output photonflux (a) over time and (b) cumulatively.
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8.3.3 Collapsing the superposition

A measurement of the number of photons in the output channel, which gives a resultof S photons with probability |cS |2, will collapse the state of the atomic ensemble to
|S,−S〉.A few examples of this are shown in Fig. 8.4. We use quantum Monte-Carlotrajectories [165] to simulate a monitored cavity output, with (non-Hermitian) effectiveHamiltonian

Ĥeff = ωâ† â+ ω0Ŝz + λ(âŜ+ + â† Ŝ−)− iκâ† â, (8.17)
and a jump operator √2κâ, corresponding to photon detection in the cavity output.We see that a certain number of “jumps” simulated by the trajectory, correspondingto that number of photons counted in the output channel, produces a state with definitespin length. In the three examples shown for N = 24 spin-1 atoms initially preparedin the |mF = 0〉 state, the final atomic states produced are |12, −12〉, |8, −8〉, and
|6, −6〉, each of which is a highly entangled atomic state (S � N).It is important to note that it is the measurement that produces the entanglement
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Figure 8.4: Three individual quantum Monte-Carlo trajectory simulations of the open Tavis-Cummingsmodel for N = 24 spin-1 atoms initiated in the |mF = 0〉 state with parameters {ω, ω0, λ } /κ =
{ 0.0, 0.0, 1.0 }. Results show (a) the number of photon counts, (b) the spin length (found by taking
〈Ŝ2〉 = S(S + 1) and solving for S) and (c) 〈Ŝz〉.
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in the atomic ensemble rather than the interaction. The interaction instead producesentanglement between the output field and the atomic ensemble. This entanglementmeans that the output field contains information about the state of the atoms which ourprotocol accesses. The protocol is thus an example of metrological enhancement in anatomic ensemble through the measurement of an auxiliary optical system [166–170].For √Sλ− . κ/2, the duration of this pulse is tpulse ' (Sλ2

−/κ)−1, while for√
Sλ− > κ/2 the timescale is set simply by κ (i.e., a few times 1/κ). Given thenegligible initial population in the state |N,−N〉, the probability of not producing astate, 1− |cN |2, is also negligible. This protocol thus provides a simple and efficientmethod of producing entangled atomic states.

8.4 Metrological sensitivity of the states

8.4.1 Ideal photon counting

To calculate the average entanglement this process introduces in the ensemble, weconsider the average QFI of a single run. For a perfect photodetector this is simply
F̄ = N∑

S=0 |cS |
2F (|S,−S〉) (8.18)

Figure 8.5: Average QFI on the generator Q̂xx − Q̂yy of states |S,−S〉 weighted by initial populations
|cS |2 of the states |S, 0〉 in Equation 8.11. Even and odd numbers are represented differently due to theirslightly different dependence on N . The inset shows the populations and QFI of the individual states
|S,−S〉 for N = 40.
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where F (|S,−S〉) is the QFI of state |S,−S〉 with respect to the generator Q̂xx−Q̂yy.Figure 8.5 shows that this quantity increases with N in a quadratic fashion. For even
N , a fit of the data gives the average QFI as F̄ = 6.52N2.02. For odd N we find
F̄ = 5.17N2.09. The fits imply a slightly better than quadratic scaling, but we believethat this is due to the contributions of lower order terms; for sufficiently large N theseshould be negligible and the scaling should return to being purely quadratic. So,we find that our heralded state has optimal scaling for quantum metrology on thegenerator Q̂xx − Q̂yy. In fact, there are a range of generators for which we canshow quadratic scaling. These generators are all higher order operators than theangular momentum operators, showing that this entanglement is a distinctly spinorphenomenon.
8.4.2 Realistic photon counting

Now consider the more realistic case in which we have a detector of finite photondetection efficiency η. The state resulting from our measurement scheme can then bemodelled as a mixed state, i.e., given the photodetector records n photons in a singlerun, the resultant state can be written as
ρn = N∑

S≥n
p(S|n) |S,−S〉 〈S,−S| (8.19)

with p(S|n) = |cS |2
(
S
n

)
ηn(1− η)S−n

N∑
k≥n
|ck |2

(
k
n

)
ηn(1− η)k−n (8.20)

where the sum is only over states that can produce n or more photons.Actually, this is somewhat of a simplification, as the times at which the photonsare detected could in principle provide extra information related to the likelihood ofeach state. We choose to ignore this aspect of the detection process, but note that,since this information would improve knowledge of the state, using it would onlyenhance our scheme. We also ignore a possible dark count rate for the photodetector.However, this could be included by assigning a finite probability to the possibilityof detection events being the result of dark counts.The states given by Equation 8.19 are not perfect projections, but they do havea reduced width in S and, for N � 1, are entangled with virtual certainty, as onlythe state |N,−N〉 does not feature entanglement and |cN |2 ∼ 2−N ' 0. In otherwords, even with finite photodetector efficiency, entanglement is still produced withessentially unit efficiency.
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Figure 8.6: Average QFI on the generator Q̂xx − Q̂yy of states ρn weighted by the probability p(n) ofmeasuring n photons, as given by Equations 8.21 and 8.22, for various photodetector efficiencies η.

As with the perfect detector, we can consider an average QFI where now
F̄ = N∑

n=0 p(n)F (ρn) (8.21)
with p(n) = N∑

S≥n
|cS |2

(
S
n

)
ηn(1− η)S−n. (8.22)

This average is shown in Figure 8.6. The scaling of the QFI is still better thanlinear, but it is no longer quadratic. Nevertheless, for η = 0.9 the data is fitted by
F̄ = 7.56N1.91, while for η = 0.5 the scaling is still ∼ N1.58.
8.4.3 Producing multiple pulses

Significantly, using an imperfect detector does not in fact rule out the possibility ofHeisenberg scaling. The flexibility of our engineered atom-cavity interaction offersa straightforward means of improving our knowledge of the spin length. Followingthe first output pulse of photons resulting from the effective TC interaction, one canswitch the polarisation of the laser field such that, in the model given in Equation8.7, one now has λ− = 0 and λ+ 6= 0, corresponding to an anti-TC model. The steadystates are now |S,+S〉 ⊗ |0〉cav , and the resulting transfer |S,−S〉 → |S,+S〉 willproduce an output pulse of 2S photons. Detection of this pulse provides a secondmeasurement and subsequent, further narrowing of the distribution in S .In fact, we can consider a sequence of alternating TC and anti-TC interac-
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tions, producing a corresponding sequence of pulses and measurements {n} =
{n, n1, n2, ..., ni−1}. The density matrix conditioned upon a further measurementof ni photons can be written

ρ{ n },ni = N∑
S≥Smin

p(S| { n } , ni) |S,±S〉 〈S,±S| (8.23)
with probabilities

p(S| { n } , ni) = p(S| { n }) (2S
ni

)
ηni (1− η)S−ni

N∑
k≥Smin p(S| { n })

(2k
ni

)
ηni (1− η)k−ni (8.24)

where Smin is the largest value in the set { n, n1/2, . . . , ni/2 }. That is, we iterativelyproduce a state conditioned on a sequence of binomially-distributed photon numbers.A numerical example of such a sequence is shown in Figure 8.7 and it clearlyillustrates that with each measurement we gain more knowledge about the state,narrowing the distribution in S . After enough polarisation switches and output pulseswe have, with almost certainty, projected out a state of definite spin length.Taking a sampling approach, Figure 8.8 shows that for lower efficiency moreswitches and their associated output pulses are necessary. However, eventually, a
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Figure 8.8: Sample mean QFI on generator Q̂xx −Q̂yy , for N = 16, of 1000 states produced by randomlyselecting a spin length S and a sequence of binomially-distributed measured photons given the initialstate and a photon detection efficiency η respectively.

state of definite spin length is always generated, and so the average QFI simplyreduces to the result for an ideal detector. This means that, in principle, we canachieve Heisenberg level scaling for the metrological sensitivity in spite of finitephotodetector efficiency.For our scheme, we note also that if both lasers are on (λ+ = λ− > 0), then werealise an effective Dicke model, in which case the different S states are heralded bythe output photon flux. This flux could be sensitively measured through heterodynedetection, with longer averaging times providing the mechanism for narrowing thedistribution in S .
8.4.4 Potential experimental parameters

Finally, we consider briefly some potential experimental parameters and timescales.Given, e.g., cavity QED parameters {g, κ, γ}/(2π) = {10, 0.2, 6}MHz and N = 104atoms, one finds tpulse ' (Sλ2
−/κ)−1 ' 10 µs with the choice Ω−/∆ = 0.01, and setting

S = √N (which corresponds to the most probable spin length in the initial atomicstate). Hence, the timescale for preparation of the entangled state is potentiallyvery fast, and, indeed, orders of magnitude shorter than the characteristic timescalesassociated with the generation of entangled spin states via collisional dynamics oradiabatic ground-state transformations in spin-1 BECs.



Chapter 9

Engineering spinor physics in a
cavity QED system

Spinor physics - the study of particles with integer spin - has received relatively littleattention in quantum optics. However, there is a rich recent history of extraordinaryexperiments within the Bose-Einstein condensate (BEC) community. The collisionaldynamics inherent to such experiments offer a wide range of fascinating physicsinvolving the interaction of spinor particles. The aim was to combine this areaof atomic physics with quantum optics. We did this by derivation of engineered“collisional” dynamics using cavity-assisted Raman transitions. The methods beginwith the work of Chapter 7. Taking these engineered integer-spin Dicke modelsand eliminating the cavity mode produces a Hamiltonian which mimics collisionaldynamics. The interactions are now mediated by the exchange of photons withlaser and cavity fields rather than collisions of the atoms and so offer higher energyscales, greater flexibility and the option to extend these methods well beyond what ispossible with Bose-Einstein condensates. The first section of this Chapter deals witha brief introduction to the specifics of spinor Bose-Einstein condensates relevant toour proposals. The second shows the derivation of similar dynamics in a cavity QEDsetup, and is reworked from the Supplementary Material of [171].
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9.1 Introduction to spinor Bose-Einstein condensates

Bose-Einstein condensates were briefly introduced in Section 3.3.3. Here I discussthe case where multiple magnetic sub-levels of the atom are condensed simultane-ously. This gives a quantum fluid with both spatial and spin degrees of freedom.There is the possibility of using such systems to study the evolution of a spinormany-body gas, as I focus on here, but also of the coupling between the spinor andspatial degrees of freedom. The description here is kept fairly brief and focuses onthe relevant limit for the rest of the thesis; for reviews see [172, 173].
9.1.1 Spinor collisions

We consider the Hamiltonian for a system of trapped spin-1 atoms
Ĥ =∑

α

∫ d3rΨ̂†α (r) (−∇22M + V̂ (r)) Ψ̂α (r)
+ ∑

α,β,µ,ν
Ωα,β,µ,ν

∫ d3rΨ̂†α (r)Ψ̂†β (r)Ψ̂µ(r)Ψ̂ν (r) (9.1)
where Ψ̂α (r) is the annihilation operator for an atom in spin state α at a position r,
M is the mass of a single atom, V̂ (r) contains the trapping potential and the magneticfields and Ωα,β,µ,ν is the collisional interaction between spins.The first term is the non-interacting part which is identical for all the spin statespecies. Interactions can generally be reduced to s-wave scattering collisions. Thesehappen for atoms at the same point in space with a coupling constant to the spin-Fchannel of

gF = 4π~2
M aF (9.2)

where aF is the scattering length for that channel. These scattering lengths can bemanipulated making use of Feshbach resonances [172].This interaction can be split into two types of terms: energy shifts and exchangeinteractions. Energy shifts are the result of collisions between the atom changing theenergy of each state without changing the state of the atoms. At some point in space,a particle in state α collides with a particle in state β and one particle leaves in
α and the other in β . Note that due to the exchange symmetry of indistinguishablebosons it is equivalent, and unknowable, if the particles have remained unchangedor swapped their spins. This has the effect of changing the potentials for the states,shifting their energies. Exchange interactions involve two particles colliding andchanging their spin states. A particle in state α collides with a particle in state βand the particles leave in other states µ and ν .Using the s-wave scattering conditions to calculate the coefficients for these terms,
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it is possible to expand out the Hamiltonian above for different spins. Defining

λs = g0 + 2g23 (9.3)
λa = g2 − g03 (9.4)

then, for spin-1 atoms, we can give form to the interactions expanding the Hamiltonianto give [174, 175]
Ĥ =∑

α

∫ Ψ̂†α (r) (−∇22M + V̂ (r)) Ψ̂α (r)d3r + λs2 ∑
α,β

∫ Ψ̂†α Ψ̂†β Ψ̂αΨ̂βd3r
+ λa2

∫ Ψ̂†1 (r)Ψ̂†1 (r)Ψ̂1(r)Ψ̂1(r) + Ψ̂†−1(r)Ψ̂†−1(r)Ψ̂−1(r)Ψ̂−1(r)
+ 2Ψ̂†1 (r)Ψ̂†0 (r)Ψ̂1(r)Ψ̂0(r) + 2Ψ̂†−1(r)Ψ̂†0 (r)Ψ̂−1(r)Ψ̂0(r)
− 2Ψ̂†1 (r)Ψ̂†−1(r)Ψ̂1(r)Ψ̂−1(r) + 2Ψ̂†0 (r)Ψ̂†0 (r)Ψ̂1(r)Ψ̂−1(r)+ 2Ψ̂†1 (r)Ψ̂†−1(r)Ψ̂0(r)Ψ̂0(r)d3r. (9.5)

The first line is symmetric under interchange of the spin component indices whilethe other is anti-symmetric. This means we have two parts to the Hamiltonian. Thefirst of these treats all spins identically and so does not change the spin degreeof freedom. The other deals with interactions where the form of the spin is impor-tant and thus contains all non-global shifts to the energy levels and spin-changinginteractions.

9.1.2 Single-mode approximation

In many species, g2 ∼ g0 and so λs � λa. In others, the scattering lengths can bemanipulated to meet that criterion. In those cases, the system is primarily ambivalentas to the spin degree of freedom as the Hamiltonian is dominated by the symmetricpart. This means we can assume that the spatial degree of freedom is defined solelyby the symmetric part of the wavefunction, and so is the same for all modes. Thismeans it decouples from the spin degree of freedom [175]. This is called the single-
mode approximation. Mathematically, we show this as

Ψ̂α (r)→ b̂αφ(r). (9.6)
We make substitutions

n̂α = b̂†α b̂α and N̂ =∑
α
n̂α (9.7)
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and use the angular momentum operators instead of the bosonic mode operators usingthe relations described in Section 3.4.7. The symmetric part of the Hamiltonian forthe spin degree of freedom

Ĥs = µN̂ − λsN̂(N̂ − 1) (9.8)
where we have introduced the chemical potential

µφ ≡
(
−∇

22M + V̂ + λ′sN|φ|2
)
φ (9.9)

and the collisional spinor interaction energy per particle integrated over the conden-sate
λ′i ≡

λi2
∫ d3r|φ(r)|4. (9.10)

The anti-symmetric part is now
Ĥa = λ′a

(
Ŝ2 − 2N̂) . (9.11)

If we take the particle number to be conserved, then we can drop the operatornotation such that N̂ → N and so terms related to the particle number reduce toshifts to the vacuum energy. The full Hamiltonian can then be written
Ĥ = λ′a

(
Ŝ2
x + Ŝ2

y + Ŝ2
z

)
. (9.12)

Under the single-mode approximation, the complicated dynamics of the spatial andspin degrees of freedom reduces to an extremely simple form.The presence of a magnetic field adds linear and quadratic Zeeman shifts
Ĥ = λ′a

(
Ŝ2
x + Ŝ2

y + Ŝ2
z

) + ωzŜz + qn̂0. (9.13)
The interplay of the various parameters leads to a rich variety of ground states[124, 150–152, 159], which we take advantage of for our proposal in Chapter 11. Itis also worth noting that this Hamiltonian conserves Ŝz and so both 〈Ŝ2

z 〉 and 〈Ŝz〉must be constants of the motion. This means we can omit them from the Hamiltoniangiving us
Ĥ = λ′a

(
Ŝ2
x + Ŝ2

y

) + qn̂0. (9.14)
This Hamiltonian describes the evolution of a spinor Bose-Einstein condensatein a magnetic field under the single-mode approximation.Our aim was to emulate this system by engineering an effective Hamiltonianwhich acts in the same way. However, instead of collisions, in our proposal spin-exchange interactions are mediated by photons.
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9.2 Cavity engineering of the collisional Hamiltonian

To emulate the spinor collisional Hamiltonian, we start with the spin-F Dicke modelHamiltonian we derived in Section 7.1.1
Ĥ = ωâ† â+ ω0Ŝz + λ−√2FN (Ŝ+â+ Ŝ−â† ) + λ+√2FN (Ŝ−â+ Ŝ+â† ). (9.15)

We want to move to a limit where the cavity can be adiabatically eliminated. Thiscould be because the energy of creating a single photon is prohibitively high - com-paratively large ω - or that the photons leave the cavity immediately - comparativelylarge κ - or more specifically the limit √ω2 + κ2 � ω0, λ±.
We split our Hamiltonian into two parts Ĥ = Ĥ0 + Ĥi where

Ĥ0 = ωâ† â+ ω0Ŝz (9.16)
Ĥi = λ−√2FN (Ŝ+â+ Ŝ−â† ) + λ+√2FN (Ŝ−â+ Ŝ+â† ) (9.17)

and move to the interaction picture defined by
ρ′(t) = eiĤ0tρ(t)e−iĤ0t . (9.18)

It follows that
∂ρ′
∂t = −i[Ĥ ′i , ρ′] + Lcρ′(t) (9.19)

where
Lcρ ≡ κ

(2âρâ† − â† âρ − ρâ† â) (9.20)
and our interaction Hamiltonian is
Ĥ ′i = eiĤ0tHie−iĤ0t

= 1√2FN [âe−iωt (λ−Ŝ+eiω0t + λ+Ŝ−e−iω0t ) + â†eiωt (λ−Ŝ−e−iω0t + λ+Ŝ+eiω0t )]
= âe−iωtX̂ (t) + â†eiωtX̂† (t) (9.21)

where
X̂ (t) = λ−√2FN Ŝ−e−iω0t + λ+√2FN Ŝ+eiω0t . (9.22)

We want ρ′s = trc{ρ′}, and so, in the second-order Born-Markov approximation, wehave that
∂ρ′s
∂t = − t∫

0
dt′trc {[Ĥ ′i , eLc (t−t′)[Ĥ ′i (t′), ρ′s(t′)⊗ ρ′c(t′)]]} . (9.23)
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Expanding this out, neglecting terms with ââ and â† â† due to the unlikeliness oftwo photons in the cavity mode, gives

∂ρ′s
∂t = − t∫

0
dt′trc{+ âe−iωtX̂† (t)eLc (t−t′)â†eiωt′ X̂ (t′)ρ′s(t′)⊗ ρ′c(t′)

− âe−iωtX̂† (t)eLc (t−t′)ρ′s(t′)⊗ ρ′c(t′)â†eiωt′ X̂ (t′)
− eLc (t−t′)â†eiωt′ X̂ (t′)ρ′s(t′)⊗ ρ′c(t′)âe−iωtX̂ (t)+ eLc (t−t′)ρ′s(t′)⊗ ρ′c(t′)â†eiωt′ X̂ (t′)âe−iωtX̂† (t)+ â†eiωtX̂ (t)eLc (t−t′)âe−iωt′ X̂† (t′)ρ′s(t′)⊗ ρ′c(t′)
− â†eiωtX̂ (t)eLc (t−t′)ρ′s(t′)⊗ ρ′c(t′)âe−iωt′ X̂† (t′)
− eLc (t−t′)âe−iωt′ X̂† (t′)ρ′s(t′)⊗ ρ′c(t′)â†eiωtX̂ (t)+ eLc (t−t′)ρ′s(t′)⊗ ρ′c(t′)âe−iωt′ X̂† (t′)â†eiωtX̂ (t)}. (9.24)

We can then draw several terms out of the trace and, using the cyclical definition ofthe trace (i.e. tr(ABC ) ≡ tr(BCA)), rearrange to
∂ρ′s
∂t = − t∫

0
dt′X̂† (t)X̂ (t′)ρ′s(t′)trc{âeLc (t−t′)â†ρ′c(t′)}e−iω(t−t′)
−X̂† (t)ρ′s(t′)X̂ (t′)trc{âeLc (t−t′)ρ′c(t′)â†}e−iω(t−t′)
−X̂ (t′)ρ′s(t′)X̂† (t)trc{âeLc (t−t′)â†ρ′c(t′)}e−iω(t−t′)
+ρ′s(t′)X̂ (t′)X̂† (t)trc{âeLc (t−t′)ρ′c(t′)â†}e−iω(t−t′)
+X̂ (t)X̂† (t′)ρ′s(t′)trc{â†eLc (t−t′)âρ′c(t′)}eiω(t−t′)
−X̂ (t)ρ′s(t′)X̂† (t′)trc{â†eLc (t−t′)ρ′c(t′)â}eiω(t−t′)
−X̂† (t′)ρ′s(t′)X̂ (t)trc{â†eLc (t−t′)âρ′c(t′)}eiω(t−t′)
+ρ′s(t′)X̂† (t′)X̂ (t)trc{â†eLc (t−t′)ρ′c(t′)â}eiω(t−t′). (9.25)

We can then use
trc{âeLc (t−t′)â†ρ′c(t′)} = 〈â(t)â† (t′)〉 = e−κ(t−t′) (9.26)trc{âeLc (t−t′)ρ′c(t′)â†} = 〈â† (t′)â(t)〉 = 0 (9.27)trc{â†eLc (t−t′)âρ′c(t′)} = 〈â† (t)â(t′)〉 = 0 (9.28)trc{â†eLc (t−t′)ρ′c(t′)â} = 〈â(t′)â† (t)〉 = e−κ(t−t′) (9.29)

to simplify the integral, where we assume that the cavity mode is essentially in thevacuum state.
We further assume that we can set X̂ (t′) ≈ X̂ (t) and ρ′s(t′) ≈ ρ′s(t), so that it only
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remains to evaluate

t∫
0

dt′e−(κ+iω)(t−t′) = 1
κ + iω

(1− e−(κ+iω)t)→ 1
κ + iω , (9.30)

where we assume t is large enough to neglect the exponential. Thus, we have
∂ρ′s
∂t =− 1

κ + iω X̂
† (t)X̂ (t)ρ′s(t) + 1

κ + iω X̂ (t)ρ′s(t)X̂† (t)
+ 1
κ − iω X̂ (t)ρ′s(t)X̂† (t)− 1

κ − iωρ
′
s(t)X̂† (t)X̂ (t)

= 2κ
κ2 + ω2 X̂ (t)ρ′s(t)X̂† (t)− κ − iω

κ2 + ω2 X̂† (t)X̂ (t)ρ′s(t)− κ + iω
κ2 + ω2 ρ′s(t)X̂† (t)X̂ (t)

=i[ ω
κ2 + ω2 X̂† (t)X̂ (t), ρ′s(t)]+ κ

κ2 + ω2
(2X̂ (t)ρ′s(t)X̂† (t)− X̂† (t)X̂ (t)ρ′s(t)− ρ′s(t)X̂† (t)X̂ (t)) . (9.31)

We rotate back out of the interaction picture to give
∂ρs
∂t = −i[Ĥ, ρs] + κ

κ2 + ω2 (2X̂ρsX̂† − X̂† X̂ρs − ρsX̂† X̂ ) (9.32)
where

Ĥ = ω0Ŝz − ω
κ2 + ω2 X̂† X̂ , X̂ = λ−√2FN Ŝ− + λ+√2FN Ŝ+. (9.33)

Substituting in X̂ , assuming λ± are real, we have the Hamiltonian
Ĥ = ω0Ŝz − ω2FN(κ2 + ω2) (λ−Ŝ+ + λ+Ŝ−)(λ−Ŝ− + λ+Ŝ+)

= ω0Ŝz − ω2FN(κ2 + ω2) [(λ− + λ+)2Ŝ2
x + (λ− − λ+)2Ŝ2

y + (λ2
− − λ2+)Ŝz] . (9.34)

If we take λ+ = 0 then we have a master equation
∂ρs
∂t = −i[Ĥ, ρs] + κλ2

−2FN(κ2 + ω2) (2Ŝ−ρsŜ+ − Ŝ+Ŝ−ρs − ρsŜ+Ŝ−) (9.35)
with an effective Hamiltonian that emulates the spinor collisional Hamiltonian

Ĥ = ω′0Ŝz + Λ2FN (Ŝ2
x + Ŝ2

y) (9.36)
with parameters

Λ = − ωλ2
−

ω2 + κ2 , ω′0 = ω0 + Λ2FN , Γ = −κωΛ. (9.37)
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For spin-1 atoms, we can add an effective quadratic Zeeman shift to this Hamil-tonian with the addition of a weak π−polarised laser field acting near the F ′ = 1line. The transition |F = 1, mF = 0〉 ↔ |F ′ = 1, m′F = 0〉 is forbidden and so sucha field does not shift |0〉 but does add light shifts to |±1〉. Due to the symmetryof the dipole operator, the light shifts added to |±1〉 are equal in magnitude andsign, exactly like a quadratic Zeeman shift. This means that we can emulate the fullrange of the collisional Hamiltonian in a magnetic field for a spinor BEC under thesingle-mode approximation.
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Chapter 10

Spin-nematic squeezing via
cavity-assisted Raman
transitions

Spin squeezing is a generic term for introducing certain types of quantum corre-lations between an atoms in an ensemble. Numerous experiments have been car-ried out showing that these spin squeezed states feature entanglement and prop-erties useful for quantum metrology. While these experiments have initially fo-cussed on two-level systems confined to the surface of the Bloch sphere, there areviable alternatives using spinor systems that have no such limitations. This Chap-ter discusses our proposal to produce one such type of squeezing: spin-nematicsqueezing. Following experiments in spinor Bose-Einstein condensates, our pro-posal details how we can emulate such experiments on much faster timescales. Thiswork is presented in the form of a Letter published in Physical Review Letters. Ithas been reformatted for this thesis, with the Letter separated into sections, mi-nor changes to some figures and notation and spelling altered to provide consis-tency throughout the thesis, and parts of the supplemental material relevant to thespin-nematic squeezing included in the text, but is available in its original form athttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.213601.

157



158 CHAPTER 10. SPIN-NEMATIC SQUEEZING



10.1. INTRODUCTION 159
10.1 Introduction

Gases of ultracold Bose atoms possessing internal spin degrees of freedom - spinorBose gases - offer a remarkable variety of possibilities for the investigation of quantumfluids, in contexts that include, for example, magnetism, superfluidity, and many-bodyquantum dynamics [172,173]. In this latter context, tremendous experimental progresshas occurred in recent years based upon collision-induced spin-mixing dynamics inspinor Bose-Einstein condensates (BECs) [14,95,99,100,124,154–159,176–186]. Suchsystems have allowed for the generation of quantum spin squeezing and entangledstates [14,99,100,124,154–158,160,187] following a range of proposals [146,149–151,188, 189] as well as the study of quantum phase transitions [124, 159, 180–182, 186]and the parametric amplification of quantum spin fluctuations [158, 183–185, 190].
10.1.1 Spinor Bose-Einstein condensates

Spinor BECs in which atoms in all magnetic sublevels of a single hyperfine groundstate (e.g., the F = 1 ground state of 87Rb) are condensed correspond to ensemblesof integer-spin particles. For small, tightly confined condensates, one may assumethat the different atomic states have the same spatial wavefunction - the single-mode approximation - after which one can show that the collisional spin dynamicsis described by a Hamiltonian of the form λŜ2 where Ŝ = (Ŝx , Ŝy, Ŝz ) is the totalspin vector (operator) and λ is the collisional spin interaction energy per particleintegrated over the condensate [174, 175]. The spinor dynamical rate is c = 2Nλ,where N is the number of atoms, and is typically on the order of 10 Hz for 40,000 87Rbatoms [14]. If the longitudinal magnetisation 〈Ŝz〉 is a constant of the motion (e.g.,zero), then this Hamiltonian can be reduced further to λ(Ŝ2
x +Ŝ2

y). With the addition ofa magnetic field, the Hamiltonian gains a linear Zeeman shift pŜz (which can also beassumed to be a constant of the motion) and a quadratic Zeeman shift qN̂0, where N̂0is the population in the m = 0 state. The ratio q/c describes a rich phase diagram,with highly entangled ground states in several limits [124,150,151,159]. In particular,if |q| � c > 0, the ground state is the spin singlet state44, which has fundamentalinterest due to its high entanglement but also applications ranging from precisionmeasurements [191] to no-classical solution quantum information processing [192]. Inaddition, the transitions between these different phases are of interest with respectto the Kibble-Zurek mechanism [186, 193, 194].
10.1.2 Summary of the Chapter

In this Chapter, we propose an alternative scheme to producing spin-mixing dynam-ics in a gas of integer-spin atoms that uses cavity-mediated Raman transitions to
44A proposal to make use of our schemes to produce the spin singlet makes up Chapter 11 of this thesis.
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engineer the required spinor dynamics. Our proposal borrows from earlier schemesfor engineering effective Dicke models of collective two-level-atom ensembles cou-pled strongly to a quantised cavity mode [53, 161, 162] but considers an arguablysimpler configuration and limit, which yields a Dicke model for integer-spin (alkali)atoms. This approach has in fact been demonstrated very recently in a study of non-equilibrium phase transitions in this model [71]. In the dispersive limit of this model,where the cavity mode is only virtually excited, the resulting Hamiltonian mimicscollisional interactions in a spinor BEC.
10.2 Model

We consider an ensemble of alkali atoms tightly confined (e.g., by a three-dimensionaloptical lattice) inside a high-finesse optical cavity. The atomic ensemble is considereddilute enough to exclude direct atom-atom interactions, while the atoms are coupleduniformly to cavity and laser fields. As illustrated in Figure 10.1, we consider ascheme of cavity-assisted Raman transitions in which the fields are very far detunedfrom the relevant excited-state manifold. Here, instead of isolating effective spin-1/2systems [81], we consider transitions within a complete hyperfine ground state, in thisinstance, the F = 1 ground state of 87Rb. Adiabatic elimination of the atomic excitedstates then creates an effective model for an ensemble of spin-1 atoms coupled to acavity mode (see Section 7.1.2 for the full derivation).In the limit that the detunings of the fields are very large - in particular, muchlarger than the energy separations of the excited-state hyperfine levels (e.g., as

Figure 10.1: Level diagram for the implementation of an effective Dicke model using the F = 1 groundstate of 87Rb. Interactions are engineered via Raman transitions on the D1 line mediated by a cavity mode(blue dashed line) and σ+- (green dotted line) or σ−- (red dot-dashed line) polarised laser fields.
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in [71], where the detuning is 127 GHz) - then the internal structure of the excited-state manifold becomes unimportant, and symmetries in the dipole operator cause theeffective Hamiltonian to simplify greatly. Considering an open quantum system, withthe cavity field decay rate given by κ (but atomic spontaneous emission neglecteddue to the large detuning), this model is described by the master equation for theatom-field density operator ρ:

ρ̇ = −i[Ĥ, ρ] + κD [â]ρ, (10.1)
where â is the cavity mode annihilation operator, D [â]ρ = 2âρâ† − ρâ† â − â† âρ,and

Ĥ = ωâ† â+ ω0Ŝz + λ−√2N (âŜ+ + â† Ŝ−) + λ+√2N (âŜ− + â† Ŝ+). (10.2)
Here, Ŝ± are the spin-1 collective raising and lowering operators, while the coeffi-cients of the various terms (for the F = 1 manifold in 87Rb coupled via the D1 line)are given by

ω = ωc −
ω− + ω+2 + Ng23∆ (10.3)

ω0 = ωz −
ω− − ω+2 + Ω2+ − Ω2

−24∆ (10.4)
λ± = √NgΩ±12∆ . (10.5)

Here ωc is the frequency of the cavity mode, ω± (Ω±) are the bare frequencies(Rabi frequencies) of the σ±-polarised laser fields, ωz is the Zeeman splitting of the
F = 1 levels (due to an applied magnetic field, if present), g is the single-atom-cavitycoupling strength (for the 87Rb D2 line cycling transition), and ∆ is the detuning ofthe fields from the atomic resonance.This configuration provides a “clean” and tuneable system with which to studythe Dicke model, as demonstrated in [71]. In particular, it has the independence ofcouplings λ± not present in BEC formulations of the Dicke model [67–70, 76], whileit also avoids a non-linear coupling term of the form Ŝz â† â that features in all thecurrent spin-1/2 versions of the Dicke model [53, 66–68,78, 79, 81, 144]. We note thatit can also be applied to other hyperfine ground states in alkali atoms, enabling,e.g., tuneable interactions for ensembles of effective spin-2 (87Rb or 85Rb), -3 (85Rb,133Cs), or -4 (133Cs) atoms.While most previous work has considered many-body cavity QED with two-level systems [65,195], the generalisation to integer-spin ensembles offers a range ofinteresting physics not available to spin-1/2 systems. Integer spins have more degreesof freedom, which means that there are different ways to manipulate excitations and
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constrain the state. In particular, a coherent ensemble of integer spins is not limitedto the surface of the angular momentum Bloch sphere. This allows for novel entangledstates such as the spin singlet, two-mode squeezed spin states or, as discussed inmore detail below, the redistribution of quantum noise into degrees of freedom thatare simply not present in two-level systems [147, 148, 196].
10.3 Tracing out the cavity mode

We now consider the dispersive limit in which the Raman transitions are themselvesoff-resonant, i.e., ω � ω0, λ±, in which case we can also adiabatically eliminate thecavity mode to yield the reduced master equation
ρ̇ = −i[Ĥ, ρ] + κ2N(ω2 + κ2)D [λ−Ŝ− + λ+Ŝ+]ρ (10.6)

with
Ĥ = [ω0 − ω(λ2

− − λ2+)2N(ω2 + κ2)
]
Ŝz −

ω2N(ω2 + κ2) [(λ− + λ+)2Ŝ2
x + (λ− − λ+)2Ŝ2

y

]
.

(10.7)
If we set λ+ = 0 and λ− = λ then Equation 10.6 becomes

ρ̇ = −i[Ĥ, ρ] + Γ2ND [Ŝ−]ρ (10.8)
where

Ĥ = ω′0Ŝz + Λ2N (Ŝ2
x + Ŝ2

y) (10.9)
with parameters given by

ω′0 = ω0 + Λ2N , Λ = − ωλ2
ω2 + κ2 , Γ = −κωΛ. (10.10)

Note that, by choosing the sign of ω, it is possible to produce ferromagnetic oranti-ferromagnetic behaviour with the same atomic species. An artificial quadraticZeeman shift could also be added to the system by, for example, a weak π-polarisedlaser field acting near the F ′ = 1 line in the excited manifold. Then, in the limit thatΓ/Λ � 1, the atoms will undergo spin-mixing interactions with dynamics of the sortfound in spinor BECs. However, here the relevant dynamical rate is set by Ramantransition rates, light shifts, and detunings and can therefore be orders of magnitudelarger than in spinor BECs. Consider, e.g., the feasible experimental parameters
{ g, κ, γ } /2(π) = { 10, 0.2, 6 } MHz (see, e.g., [71, 141, 142]), where γ is the atomicspontaneous emission linewidth. With N = 104 atoms, values of λ/(2π) ≈ 200 kHzare then readily achievable, which, with ω/(2π) ≈ 4 MHz, lead to Λ/(2π) ≈ 10 kHz
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and Γ = 0.05Λ. This means that such a system can emulate the dynamics of a spinorBEC but orders of magnitude faster.This Hamiltonian gives the opportunity to study a range of models, such as theLipkin-Meshkov-Glick model, where, unlike in the spin-1/2 case, the spin-1 casefeatures quantum chaotic behaviour [197]. Similar studies have shown that spin-2models can offer very different dynamics again [198].The methods described above are not limited to emulations of spinor BEC physics.Since this is an open system, there is also flexibility to deliberately engineer aparticular dissipative evolution or monitor the cavity output to gain information aboutthe evolution without destroying the spinor gas45.It is also possible to produce Hamiltonians which do not naturally arise in spinorBECs. For example, by setting λ− = λ+ we obtain a Hamiltonian ∼ Ŝ2

x , whichproduces squeezing via one-axis twisting in two-level systems [19,93, 94,96,97,103].By adding more cavity and laser modes, an even wider range of Hamiltonians ispossible [162,199], with, for example, the possibility of a two-axis twisting Hamiltonian
∼ Ŝ2

x − Ŝ2
y [19], which can offer Heisenberg limited metrology, but has yet to beimplemented experimentally. Such systems with spin-1 (or higher) particles offer thesame squeezing possibilities but should also allow further novel, many-body groundstates and dynamical phenomena.The principle behind our scheme could also be applied to the emerging field ofquantum simulation with cold atoms coupled to a photonic crystal waveguide [200].Atoms coupled to the waveguide, but with the atomic resonance frequency locatedwithin a photonic band gap, enable localised excitations at the atom trapping sites,while the tunnelling of excitations between neighbouring sites produces effectiveatom-atom interactions. While work to date has focussed on spin-1/2 systems, theapplication of our approach should enable the generalisation of this work to integer-spin lattice models with engineered interactions that could be tuned in form, strength,and range, allowing, for example, the exploration of Haldane physics [201].

10.4 Generation of spin-nematic squeezing

Now, we consider an example of how our scheme can be used to emulate spinorBEC physics. In particular, we consider the model given by Equation 10.8 andthe preparation of “spin-nematic squeezing” in an ensemble of spin-1 atoms that areinitially prepared in the m = 0 sublevel [14,15]. With a suitable choice of microscopicparameters, it is possible to set ω′0 = 0 (or at least approximately so). We note,however, that initially 〈Ŝz〉 = 0, and since Ŝz is conserved by the Hamiltonian, thisterm should not have any significant impact on the evolution, provided that the cavity-
45Chapter 8 looks at using the cavity output from a spin-1 many-body cavity QED system to heraldentanglement within the ensemble.
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mediated damping of the spin (which does not conserve Ŝz ) is weak, i.e., κ � ω, whichmeans Γ � Λ. With this condition met, the Hamiltonian is an active generator ofspin-nematic squeezing.Spin squeezing is a well-established method to produce a metrological enhance-ment (for reviews, see [20, 22]). In particular, atom interferometers can be used forprecision measurements of acceleration, time, rotation, and, potentially, even gravita-tional waves [89]. If the input states to these interferometers are uncorrelated statesof N atoms, then the precision of the measurement is limited by the standard quantumlimit, which scales as 1/√N . However, by generating suitable entanglement withinthe atomic ensemble, it is possible to exceed this and approach the Heisenberg limit,which scales like 1/N .Considering ensembles of N two-level, or spin-1/2, atoms with internal spin de-grees of freedom, spin squeezing involves a redistribution of quantum noise on theangular momentum Bloch sphere in such a way as to produce reduced quantum fluc-tuations along one coordinate axis. Integer-spin systems possess additional degreesof freedom associated with the quadrupole or nematic tensor operator

Q̂ij = N∑
n=1 σ̂

(n)
i σ̂ (n)

j + σ̂ (n)
j σ̂ (n)

i −
43δij (10.11)

where { i, j } ∈ { x, y, z }, σ̂ (n)
i are spin-1 angular momentum operators for a sin-gle atom, and δij is the Kronecker delta function. Spin-nematic squeezing involvesthe redistribution of quantum noise in the subspaces { Ŝx , Q̂yz , Q̂zz − Q̂yy } and

{ Ŝy, Q̂xz , Q̂zz − Q̂xx } [14]. Focussing on the first of these subspaces, the degreeof spin-nematic squeezing can be characterised by a parameter ξx , which gives themetrological precision relative to the standard quantum limit for Ramsey interferom-etry and is calculated by minimising the following expression over the angle θ:
ξ2
x = 2 〈[∆(Ŝxcos θ + Q̂yzsin θ)]2〉

| 〈Q̂zz − Q̂yy〉 |
(10.12)

with ξ2
x < 1 indicating spin-nematic squeezing.

10.4.1 Finite sized ensemble

Figure 10.2 shows the development of spin-nematic squeezing with and withoutdamping for an ensemble of N = 120 atoms. These results are obtained fromquantum trajectory simulations of Equation 10.8, in which we make use of a rep-resentation in terms of bosonic mode operators, b̂m, for the three Zeeman states
m = 0, ±1. In particular, b̂m(b̂†m) annihilates (creates) an atom in state m, and, e.g.,
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Figure 10.2: (a) Time evolution of the spin-nematic squeezing for N = 120 atoms without damping (redline) and, with damping rate Γ = 0.05Λ, an ensemble average of 1000 trajectories (dark blue) and asingle trajectory in which no jumps occur (dashed dark blue). The phase angle in each case is just below
θ = 170◦ . (b) Populations in each of the states m = ±1 for Γ = 0 (solid line) and Γ = 0.05Λ (dashedlines). (c) Optimised squeezing scaling with atom number with and without damping. With damping,ensemble averages of 1000 trajectories were used to estimate the master equation result.

Ŝ− = √2(b̂†0 b̂1 + b̂†−1b̂0). This allows the Hamiltonian to be rewritten in the form
Ĥ = Λ2N (2b̂†1 b̂†−1b̂0b̂0 + 2b̂†0 b̂†0 b̂−1b̂1 + b̂†0 b̂0(1 + 2b̂†1 b̂1 + 2b̂†−1b̂−1)) . (10.13)

We start our simulations with an initial state in which the entire population is in the
m = 0 state and use a Monte-Carlo wavefunction method to simulate the system.An average over an ensemble of trajectories is used to estimate the master equationresult for the various moments required to calculate ξ2

x . The presence of the term
b̂†1 b̂†−1b̂0b̂0 + b̂†0 b̂†0 b̂−1b̂1 highlights explicitly the link to squeezing via four-wavemixing in light [14, 15].
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With Γ = 0 the system simply follows the Hamiltonian evolution, and we seesignificant squeezing generated on a timescale (Λ/2)−1. After this time, squeezingreduces and ultimately turns into anti-squeezing. This turnaround correlates with agrowing number of atoms in the m = ±1 states, resulting in a reduction in |Q̂zz−Q̂yy|.With the addition of a small rate of damping, which causes (infrequent) quantumjumps with Ŝ−, we find that the trajectories can be split into two categories. Firstare those that reach the point of peak squeezing without a jump having occurred.Interestingly, these have squeezing at a slightly higher level than with Γ = 0, meaningthat the null measurement backaction (which essentially adds an imaginary elementto the spin-nematic squeezing generator) actually improves the squeezing. Second,when there is a jump before that point, the squeezing is substantially reduced, andso, on average, the presence of damping does decrease the degree of squeezing.However, for sufficiently small κ/ω, such jumps should be rare. In addition, sincethese jumps are mediated by the cavity mode (i.e., they correspond to the emissionof a photon from the cavity mode), then, by monitoring that output and postselectingbased on the absence of a photon measurement, it would be possible to remove someof the runs with non-optimal squeezing (allowing for finite detection efficiency).Figure 10.2 also illustrates more clearly how the best achievable squeezing varieswith the number of atoms, with results obtained from trajectory simulations of Equa-tion 10.8. For Γ = 0, we find that ξ2

x ∼ N−0.673 in the range of atom numbers thatwe consider. This indicates that this spin-nematic squeezing scales very similarly toone-axis twisting (where the squeezing scales at best as N−2/3). Note that we havealso considered spin-nematic squeezing in spin-2 particles, as would be relevant tothe situation in which the present scheme is applied to the F = 2 ground states ineither 85Rb or 87Rb, and find similar results.
10.4.2 Visualising the atomic state

We describe squeezing that takes place on a sphere with axes { Ŝx , Q̂yz , Q̂zz − Q̂yy }(or equivalently { Ŝy, Q̂xz , Q̂xx − Q̂zz }, with an equivalent derivation to here). Withspin squeezing, it is useful to be able to visualise the state with the atomic Q-function.Analogously to the Q-function for electromagnetic modes, an overlap is taken withcoherent states over the space of interest. Since we consider squeezing on the SU(2)sphere { Ŝx , Q̂yz , Q̂zz − Q̂yy }, we build coherent states of that space. We build thesein the same way as coherent spin states of spin-1/2 particles: a binomial distributionacross the eigenstates of the z-axis [16,17], which in this case is Q̂zz −Q̂yy. In termsof the bosonic annihilation and creation operators, this is
Q̂zz − Q̂yy = −2b̂†0 b̂0 + b̂†+1b̂+1 + b̂†−1b̂−1 + b̂†+1b̂−1 + b̂†−1b̂+1. (10.14)
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It is easy to see that the initial state |0, N, 0〉 is an eigenstate of this operator witheigenvalue −2N . We define this lowest energy eigenstate as the South Pole of oursphere and notate it as |0〉. To generate the other eigenstates we use the ladderoperators

Ŝ± = Ŝx ± iQ̂yz = 2√2b̂0(b̂†+1 + b̂†−1). (10.15)
Applying this operator to our lowest energy eigenstate gives us the rest of the eigen-states, and we can then build coherent states as

|M〉 = (Ŝ+)M |0〉 , (10.16)
where we have omitted a normalisation factor. We then build coherent states as

|η = eiφtan(θ/2)〉 = N∑
M=0

(
N
M

)1/2
ηM |M〉 (10.17)

where we again omit the normalisation factor. Our atomic Q-function is described by
Q(η) = 〈η| ρ |η〉 (10.18)

and (θ, φ) are mapped as the polar and azimuthal angles onto the surface of a sphere.As discussed above, our squeezing generator is analogous to that in four-wavemixing. Correlated pairs of atoms in the m = ±1 states are created from a reservoirof atoms in the m = 0 state. Unlike in the optical analogy, here the reservoirhas a finite number of atoms in it, and so the squeezing takes place on a sphereinstead of a plane. As pairs are created, | 〈Q̂zz − Q̂yy〉 | begins to reduce. In termsof the atomic Q-function plots this can be seen as the ends of the state travellingup the sphere. At some point this effect reduces | 〈Q̂zz − Q̂yy〉 | at a faster rate thanthe squeezing generator is reducing the variance, and so the squeezing parameterbegins to increase. We also see a slight “twist” developing in the state where theextreme ends are at slightly exaggerated angles.

(a) Λt = 1.8 (b) Λt = 2.7 (c) Λt = 4.5
Figure 10.3: Atomic Q-functions on the space { Ŝx , Q̂yz , Q̂zz − Q̂yy } looking from the South Pole, for120 atoms with Γ = 0.
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10.4.3 Large ensemble limit

In Figure 10.4, we plot the squeezing parameter as a function of both the time andphase angle θ for N = 120 atoms and in the limit of large N . For that limit weassume that the m = 0 state is essentially undepleted and b̂0 can be replaced by√
N , so that the Hamiltonian becomes

Ĥ = Λ2 (2b̂†+1b̂†−1 + 2b̂+1b̂−1 + 1 + 2b̂†+1b̂+1 + 2b̂†−1b̂−1) (10.19)
while in the damping term

Ŝ− →
√2N(â†−1 + â+1) and Ŝ+ → √2N(â−1 + â†+1). (10.20)

Equations of motion for the various moments required to compute ξ2
x can bededuced from the master equation, but we choose to work instead with the equivalentquantum Langevin equations for b̂±1, which, defining a vacuum noise operator b̂in(t)that satisfies [b̂in(t), b̂†in(t′)] = δ(t − t′), take the simple linear forms

db̂+1dt = −(Γ + iΛ)(b̂+1 + b̂†−1)−√2Γb̂in(t) (10.21)
db̂−1dt = (Γ− iΛ)(b̂−1 + b̂†+1) +√2Γb̂†in(t). (10.22)

To calculate the squeezing parameter ξ2
x we require two combinations of these: Â =

b̂+1 + b̂†−1 and B̂ = b̂+1 − b̂†−1. These have Langevin equations
dÂdt = 0 (10.23)
dB̂dt = −2(Γ + iΛ)Â − 2√2Γb̂in(t) (10.24)

which are readily integrated to give
Â(t) = Â(0) (10.25)
B̂(t) = B̂(0)− 2(Γ + iΛ)Â(0)t − 2√2Γ t∫

0
dt′b̂in(t′). (10.26)

The specific operators of interest are given by
Ŝx (t) = √N2 (Â(t) + Â† (t)), Q̂yz (t) = i

√
N2 (B̂(t)− B̂† (t)) (10.27)

and using the results for Â(t) and B̂(t) (and assuming that we can set Q̂zz − Q̂yy =
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Figure 10.4: Values of ξ2
x (in dB) as a function of time and phase angle for Γ/Λ = 0.05 with (a) N = 120atoms and (b) in the undepleted mode approximation (N →∞) given by Equation 10.28.

−2N) we obtain
ξ2
x = (cos θ + 2Λt sin θ)2 + (1 + 2Γt)2 sin2 θ. (10.28)

The formula above correctly predicts the angular dependence, and, at shorter times,also matches quite accurately the degree of squeezing for the N = 120 case. Forlarger N it should provide a good model of the squeezing for longer times, whereit predicts that the degree of squeezing will continue to increase for a suitablechoice of phase angle θ. Note also that Equation 10.28 is unchanged if a term
ω′0Ŝz = ω′0(b̂†+1b̂+1 − b̂†−1b̂−1) is added to the Hamiltonian.
10.4.4 Spontaneous emission rates

Finally, we note that the rate of atomic spontaneous emission due to off-resonantexcitation of the 52P1/2 state is estimated, for our configuration, as Γsp = γ(Ω2/12∆2),which gives Γsp/(Λ/2) ≈ 48ω/(NCκ), where C = 2g2/(κγ) is the single-atom cooper-ativity. For the parameters discussed above, this ratio is ∼ 0.0006. With more atomsand/or increased cooperativity, this can evidently be reduced even further.
10.5 Conclusion

In conclusion, we have proposed a method for engineering spinor dynamics usingcavity-mediated Raman transitions and demonstrated that such a scheme could beused to produce spin-nematic squeezing in an ensemble of spin-1 atoms. We believethis work opens up a range of exciting possibilities for emulating spinor BEC dynamicson much shorter timescales and extending this to explore a much wider range of spinorphysics with significant flexibility.
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Chapter 11

Preparing the spin singlet state
of a spinor gas in an optical
cavity

The spinor collisional Hamiltonian is of great interest because adjusting parameterscan give a variety of ground states, varying from trivially prepared initial states tohighly entangled many-body states. One particular ground state of interest is astate of zero spin length: the spin singlet. This can, in theory, be prepared byadiabatically varying parameters. Such approaches have so far yielded either statesruined by noise because the sweep is too long, or states with imperfect fidelitybecause the sweep was not truly adiabatic. In this Chapter, we present how such a“quasi-adiabatic" sweep could be performed using a cavity QED setup. The presenceof the cavity also allows a different method to production: the spin singlet is adark state to the cavity QED system. Therefore, a null measurement in the cavityoutput will prepare the spin singlet, and it will do so with a probability proportionalto the initial population in that state. We show that using an imperfect sweepto increase the overlap with the spin singlet allows a greatly enhanced efficiencyfor our dissipative preparation scheme. The two methods used one after the othercould thus prepare the spin singlet with remarkably high efficiency and near-perfectfidelity for very large ensembles. This work is presented in the form of a paperpublished in Physical Review A. It has been reformatted for this thesis, with addedsubsection headings, minor changes to figures and some notation and spelling alteredto provide consistency throughout the thesis but is available in its original form athttps://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.013819.
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11.1 Introduction

Spinor Bose gases - in particular, ensembles of ultracold Bose atoms with internalspin degrees of freedom - offer a remarkable platform for the study of quantumfluids and phenomena such as quantum phase transitions and superfluidity [172,173].One reason for this is the rich variety of collision-induced, spin-mixing dynamicsthat are possible in spinor Bose-Einstein condensates (BECs), together with theexotic quantum states that may result from these dynamics. Of particular interest inthis context, driven in part by potential application to quantum-enhanced metrology,have been highly entangled (e.g., spin squeezed) states [146, 149, 150, 188, 189], andremarkable experimental progress has been made in this field of research [14,99,100,124, 125, 154–159].One system that has been of interest is a small, tightly confined BEC of spin-1 atoms in the presence of a magnetic field. In the single-mode approximation,the interplay between collisions and the quadratic Zeeman shift is modelled by theHamiltonian
Ĥ = Λ

N Ŝ2 + qN̂0 (11.1)
where Ŝ = { Ŝx , Ŝy, Ŝz } and Ŝi are collective angular momentum operators for theensemble of N spin-1 atoms, N̂0 is the population operator for the m = 0 state, and Λand q characterise the interaction strength and quadratic Zeeman shift, respectively.
11.1.1 The spin singlet

Despite its apparent simplicity, the Hamiltonian in Equation 11.1 admits a variety ofground states dependent on the signs and relative magnitudes of Λ and q. One ofthose ground states is the macroscopic spin singlet. This is a state of N atoms wherethe collective angular momentum is zero. This state features strong entanglementand is given by the superposition
|S = 0〉 = N/2∑

j=0 cj |j , N − 2j , j〉 (11.2)
using the notation |n−1, n0, n+1〉 for ni atoms in the magnetic state m = i and withcoefficients given by

c0 = 1√
N + 1 , cj = −√N − 2j + 2

N − 2j + 1cj−1. (11.3)
This state features genuine multipartite entanglement of the entire ensemble [147,148]. This entanglement is useful for quantum metrology [191] and could be of use infields including quantum memory [202] and quantum information processing [192,203].



174 CHAPTER 11. SPIN SINGLET
Preparing the spin singlet of a BEC as the ground state of the Hamiltonian givenby Equation 11.1 is, in practice, a very challenging prospect, given the extremelysmall energy scales involved [173]. However, other methods have been proposed toproduce the spin singlet state. One such method involves a sequence of quantum non-demolition measurements using pulses of light to probabilistically prepare a highlyentangled macroscopic spin singlet [106, 204, 205].

11.1.2 Summary of the Chapter

In this work, we propose a method to produce the macroscopic spin singlet via in-teractions mediated by cavity-assisted Raman transitions. The imbalanced Dickemodel for spin-1 atoms, as discussed in Chapters 7 and 10, or more simply a Tavis-Cummings model, as discussed in Chapter 8, can probabilistically produce the spinsinglet heralded by the absence of measured photons in the cavity output. This pro-tocol works with an efficiency equal to the overlap between the initial state and thespin singlet, which, however, is 1/(N+1). We thus propose the use of quasi-adiabaticsweep techniques - an established method for these systems in spinor BECs - to en-hance that initial overlap. We then show that a protocol of a quasi-adiabatic sweepfollowed by the probabilistic distillation of the state using a Tavis-Cummings modeloffers a method to produce a singlet state with very high fidelity and a reasonablyhigh efficiency.

11.2 Setup & model

11.2.1 General model

We consider an ensemble of 87Rb atoms held tightly within an optical cavity. Weassume that the ensemble is sufficiently dilute that we can ignore any direct atom-atom interactions, and instead engineer effective interactions via cavity-assisted Ra-man transitions [53, 161, 162], as illustrated in Figure 11.1. Here, as demonstratedrecently in [71], we consider transitions within the complete F = 1 hyperfine groundstate. In the limit that the detunings of the Raman transitions are much larger thanthe energy separations of the excited-state hyperfine levels, this gives an effectiveopen Dicke model for an ensemble of spin-1 particles. In that case, as discussedin Chapter 7, the evolution of the density operator can be described by the masterequation
ρ̇ = −i[Ĥ, ρ] + κD [â]ρ (11.4)
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Figure 11.1: Implementation of an effective spin-1 Dicke model using the F = 1 ground state of 87Rb.Interactions are mediated by detuned Raman transitions on the D1 line composed of a cavity mode (red)and σ−- (blue) and σ+- (green) polarised lasers.

where â is the cavity mode annihilation operator, D [â]ρ = 2âρâ† − ρâ† â − â† âρ,and
Ĥ = ωâ† â+ ω0Ŝz + λ−√2N (âŜ+ + â† Ŝ−) + λ+√2N (âŜ− + â† Ŝ+). (11.5)

The coefficients of the various terms are determined by light shifts and Raman tran-sition rates; in particular,
ω = ωc −

ω− + ω+2 + Ng23∆ (11.6)
ω0 = ωz −

ω− − ω+2 + Ω2+ − Ω2
−24∆ (11.7)

λ± = √NgΩ±12∆ . (11.8)
Here ωc is the frequency of the cavity mode, ω±(Ω±) are the bare frequencies (Rabifrequencies) of the σ±-polarised laser fields, ωz is the linear Zeeman splitting of the
F = 1 levels, g is the single-atom-cavity coupling strength (for the 87Rb D2 linecycling transition), κ is the cavity field decay rate, and ∆ is the detuning of the fieldsfrom the atomic resonance. Note that we assume that the atoms all couple to thecavity mode with the same strength g, which can in practice be achieved by confiningthe atoms tightly at cavity mode anti-nodes in an optical lattice potential (which maybe created via another, far-detuned cavity mode at twice the wavelength of the othermode [71, 72]).
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11.2.2 Dissipative limit

By turning off the σ+-polarised laser and choosing ω = ω0, the above model reducesto the resonant Tavis-Cummings model for spin-1 atoms. We will consider this modelin Section 11.4 in the context of a dissipative, probabilistic scheme for preparing thespin singlet state.
11.2.3 Hamiltonian limit

Alternatively, we can consider the above model in a dispersive limit, such that ω �
ω0, λ±, in which case the cavity mode can be adiabatically eliminated. Consideringagain the case where Ω+ = 0, as shown in Chapter 9, the model can then be reducedto [163, 164]

ρ̇ = −i[Ĥ, ρ] + Γ
ND [Ŝ−]ρ, (11.9)

with
Ĥ = ω′0Ŝz + Λ

N (Ŝ2
x + Ŝ2

y) (11.10)
and in terms of the Dicke model parameters given above, we define new parameters

ω′0 = ω0 + Λ
N , Λ = − ωλ22(ω2 + κ2) Γ = −κωΛ. (11.11)

By manipulating the microscopic parameters, it is possible to (at least approximately)set ω′0 = 0, but given that we consider a system initiated with all atoms in the m = 0level (i.e., with 〈Ŝz〉 = 0), and that Ŝz is conserved by the Hamiltonian evolution,this term does not impact the evolution in the absence of photon detections, whichwe show is the heralding condition for the production of the singlet. Hence, we seethat the cavity-mediated, coherent spin interactions described by Equation 11.10 canemulate the collisional interactions of BECs in the single-mode approximation.Further to this, an artificial quadratic Zeeman shift can, for example, be producedby a weak, auxiliary π-polarised laser field acting near the F ′ = 1 excited manifold.This shift is considered to be time dependent, and could be adjusted either by movingit closer or further from resonance, or by adjusting the power of the weak field. Thisleaves us with a Hamiltonian of the form
Ĥ = Λ

N (Ŝ2
x + Ŝ2

y)− q(t)N̂0. (11.12)
11.3 Entanglement criteria

Due to the additional degrees of freedom for particles with spin > 1/2, entanglementin spinor particles can be quantified by a range of different inequalities [147, 148].
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From [148], we have that an ensemble of spin-1 particles with no entanglementsatisfies (∆Ŝx )2 + (∆Ŝx )2 + (∆Ŝx )2 ≥ N. (11.13)
Therefore, if an ensemble breaks the less strict bound

〈Ŝ2
x 〉+ 〈Ŝ2

y〉+ 〈Ŝ2
z 〉 ≥ N → 〈Ŝ2〉 ≥ N (11.14)

then that ensemble is entangled. This measure thus has two purposes: it showsus how the spin length decreases as well as acting as an entanglement witness.Furthermore, 〈Ŝ2〉 gives a bound on the maximum number of atoms that are notentangled [204].
11.4 Dissipative evolution

We consider the master equation given in Equation 11.4 with ω = ω0 = 0. An initialstate with all the atoms in the m = 0 state can be decomposed into a superpositionof Dicke states |S, 0〉 with different spin lengths as (for even N 46)
|n = 0〉 ⊗ |0, N, 0〉 = |n = 0〉 ⊗ N/2∑

k=0 dk |2k, 0〉 (11.15)
where the distribution {dk} is strongly peaked around k ' √N , as shown in Chapter8. Excitations are produced in the cavity in conjunction with a spin ladder operator,i.e., via terms in the Hamiltonian of the form â† Ŝ±, and that ladder operator doesnot operate on the spin singlet (i.e., Ŝ± |0, 0〉 = 0). This means that entanglementis generated between the cavity mode and the atoms: an empty cavity with the spinsinglet, and non-zero photon numbers with the states of non-zero spin length occur-ring in Equation 11.15. Any photon emitted from the cavity must therefore collapsethe state into a superposition of spin states not containing the spin singlet, while anull measurement will project the atomic state into the spin singlet. Monitoring thecavity output thus gives some probability of projecting the state into the spin singlet;the probability is simply the overlap of the initial state with the spin singlet, whichis 1/(N + 1) for the state given in Equation 11.15.If we turn off one of the lasers; in particular, if we set λ+ = 0, then an initialatomic state |2k, 0〉 will evolve, subject to Equations 11.4 and 11.5 (i.e., the dampedTavis-Cummings model, when λ+ = 0), to a steady state |2k,−2k〉, with the emissionof 2k photons from the cavity, as discussed in Chapter 8. An ideal way to in which to

46Our scheme also works for the F = 2 hyperfine ground state, i.e., an ensemble of spin-2 atoms,where the initial state |m = 0〉⊗N has a finite overlap with the spin singlet state regardless of whetherthe number of atoms is even or odd. Spin-1 atoms are considered here for simplicity.
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(a) (b)

Figure 11.2: Spin length, found by calculating 〈Ŝ2〉 = S(S + 1) and solving for S , (a) over time and (b)at κt = 10 in 1000 quantum Monte Carlo trajectories for N = 10 atoms under the master equation givenby Equation 11.4 with λ− = 6κ , and ω = ω0 = λ+ = 0.
study this behaviour is to use the method of Monte Carlo wave function simulations(or quantum trajectories) [165], and in Figure 11.2 we present results of this approachapplied to the model of Equations 11.4 and 11.5, where each “jump” in the simulationscorresponds to the emission of a photon from the cavity. Figure 11.2a shows that,after a few cavity lifetimes, the state is always cleanly projected to a definite spinlength. After a time κt = 10 with N = 10 atoms, the overlap with the spin singlet iseither (essentially) one or zero, depending on the output photon record (see Figure11.2b).The projection, for the parameters of Figure 11.2, occurs on a timescale on theorder of the photon lifetime in the cavity, 1/κ . This is because the production ofphotons in the cavity due to coupling to the atoms happens on a much faster timescalethan cavity loss, and the rate of photon emission follows the rate of the slower process.For this to hold for arbitrary atom number we require that photon production happensfor all states at a rate faster than κ . The slowest state to produce photons is
|S = 2, 0〉, and so we require λ−

√3/N � κ . If that is not the case, the rate willinstead be governed by the intracavity photon production rate, and so the singletwould be heralded by the absence of photon detections over some timescale morethan a few cavity lifetimes.With a more realistic photon detection scheme that has an efficiency η, the ab-sence of emitted photons from the Tavis-Cummings system would project to a mixedstate (a normalising factor is omitted):
ρ = |d0|2 |0, 0〉 〈0, 0|+ N/2∑

k=1(1− η)2k |dk |2 |2k,−2k〉 〈2k,−2k| . (11.16)
For reasonably high efficiencies (in particular high enough such that (1−η)2|d2|2 �
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|d0|2), this should still be dominated by the spin singlet. Alternatively, the Dickemodel (λ+ = λ−), which produces a continuous stream of photons, could be used. Thiswould allow for very high fidelity singlet production even without perfect detectionefficiency. It should be noted that very high effective atom-cavity coupling, λ±, orvery long measurement times would be necessary to project out the lower spin statecontributions.The probability of this procedure working is simply the initial overlap with thesinglet state, 1/(N + 1). For small numbers of atoms this process offers an efficientmethod to prepare a highly entangled state. However, for 1000 atoms, the maximumefficiency would be 0.1%. Other experimental considerations, such as photon detectionefficiency, would further reduce the overall efficiency.This may be mitigated somewhat by multiple runs with a single atomic ensemble.Using a feedback system conditioned on a photon detection (or some threshold de-pending on dark count rates), switching back on the repumping system to reinitialisethe state into the state |0, N, 0〉 would reintroduce an overlap with the spin singlet.Since the time required for each run is relatively short, this should allow for multipleruns over the course of the lifetime of the ensemble.
11.5 Quasi-adiabatic methods in spinor BECs

If we want to improve the efficiency of our procedure, we need to improve the overlapbetween the initial state and the spin singlet. To do so, we can make use of the variousground states admitted by the spin-collisional Hamiltonian in Equation 11.1. In thelimit where the quadratic Zeeman shift dominates over the collisional interaction, i.e.,
|q| � |Λ|, and q is negative, the ground state of the system has all atoms in the
m = 0 state, i.e., |0, N, 0〉, which is of course readily prepared via suitable opticalpumping. If, instead, q is positive, then the ground state is degenerate between allstates for which there are no atoms in the m = 0 state. Depending on the spreadthrough the Ŝz states that satisfy this, the degeneracy includes entangled states, suchas the twin Fock state |N/2, 0, N/2〉, as well as completely classical states such as
|N, 0, 0〉 or coherent combinations.In the other limit, where instead the collisional interaction dominates over thequadratic Zeeman shift, i.e., |Λ| � |q|, there are again two ground states. Withferromagnetic interactions (Λ < 0, as for 87Rb) the ground state is degenerate for allstates with a maximum spin length N . As above, this can range from a highly entan-gled Dicke state to a completely classical state, depending on how Ŝz is constrained.For anti-ferromagnetic interactions (Λ > 0, as for 23Na), there is only one groundstate: the spin singlet.The existence of these different ground states allows, in theory, for preparation ofentangled states by adiabatic passage. For example, an ensemble can be prepared
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in the (unentangled) state |0, N, 0〉, which is the ground state for large, negative
q. An adiabatic sweep from there to q = 0 produces, depending on the sign of Λ,either the spin singlet [150, 159] or, due to the conservation of Ŝz , the Dicke state
|S = N,Sz = 0〉 [125]. Alternatively, an adiabatic sweep through to large, positive
q would prepare the twin Fock state |N/2, 0, N/2〉 [124, 150].

However, a key issue with performing this experimentally is maintaining adia-baticity throughout the sweep. At the phase transition points, the energy gap be-tween the ground and first excited states becomes extremely small (zero in the limit
N → ∞). Since an adiabatic sweep requires parameters to change on a timescalevery slow compared to the inverse of the energy gap, the sweep has to be extremelyslow through the transition. Hence, a true adiabatic sweep typically faces severechallenges associated with achievable experimental run times.

Hoang et al. [159] used an ensemble of 40000 atoms and a sweep time of 35 s(the minimum time for true adiabaticity). After such a long time, less than 25% ofthe original BEC remained trapped. Due to the noise that atom loss induces in themagnetisation, no measurable entanglement was left in the ensemble. The alternateapproach is to ramp faster than adiabatic, introducing a small amount of energy tothe system. This moves the state out of the true ground state, but into states nearthe ground state that still feature high entanglement. Luo et al. [124] instead rampedin 3 s to high negative q attempting to produce the twin Fock state, finding just 4%of the atoms remained in the m = 0 state. Such a quasiadiabatic sweep has alsobeen shown to produce metrologically useful entanglement in a BEC [125].
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Figure 11.3: Simulations for N = 40 atoms. (a) Spin length squared and (b) overlap with the spinsinglet state for a sweep q(t)/Λ = 7.0e−0.08Λt with and without losses. Results with losses, i.e., non-zeroΓ, are plotted as an ensemble average of 1000 trajectories. Inset zooms in on the overlap at later timesconditioned on zero jumps.
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11.6 Hamiltonian evolution

We now consider evolution with the engineered master equation in Equation 11.9 withthe Hamiltonian given by Equation 11.12. Here, the intention is to emulate resultsfrom BECs by sweeping the quadratic Zeeman shift, characterised by q, from somelarge value to essentially zero. To truly maximise the overlap, we should optimisethe sweep such that it is as close to adiabatic as possible in the given timeframe[124,125,159]. However, in the interest of simplicity, we have instead considered justsweeps that are straightforward in form, but which still greatly enhance the overlapwith the spin singlet. We find that an exponential decay, q(t)/Λ = q0e−ξΛt , producesa much higher fidelity spin singlet compared to linear-in-time or reciprocal-in-timedecays.In Figure 11.3 we use an average over an ensemble of quantum trajectories toapproximate the master equation solution and show that the sweep greatly increasesthe overlap with the spin singlet and, concomitantly, greatly reduces the spin length.We also see that the non-adiabaticity adds energy to the system, resulting in largeoscillations of the spin length during the sweep. These oscillations, and, in particular,their phase as they are “frozen out” by the quadratic Zeeman shift settling at zero,add considerable noise to the resultant spin length and overlap.Using quantum trajectories, we find that the results can be split into two cate-gories: with jumps and without jumps. With even a single jump, corresponding to theemission of a cavity photon, the overlap with the spin singlet becomes zero. This isbecause the spin singlet is a dark state to the jump operator, Ŝ−. Trajectories withouta jump exhibit high overlap with the singlet state; in fact, for some sweep parameters,the overlap is higher than without losses. This is because the null measurementback-action increases the overlap with the dark state of the system: the spin singlet.In line with the work in Section 11.4, there is the possibility of postselecting runswith a null photon output measurement, i.e., no jumps. As the spin length increases,so does the number of photons such a state produces. In particular, due to the spreadof spin length, certain states in the initial superposition can release huge numbers ofphotons, greatly increasing 〈Ŝ2〉 for that trajectory. For example, with Γ/Λ in Figure11.3, we find that 829 of the 1000 trajectories have no jumps and so have very highoverlap with the spin singlet. Of other 171 trajectories, there are 139 with 〈Ŝ2〉 ≈ 6,i.e., S ≈ 2, commensurate with the production of one or two photons. All bar twotrajectories have 〈Ŝ2〉 < 40, with the remaining two having a final value 〈Ŝ2〉 ∼ 1600.These states therefore each contribute a significant portion of the ensemble-averagedresult, but, even with a realistic single photon detector, could easily be discared bypostselection, since they emit ∼ 40 photons to attain such a spin length.Considering Figure 11.3, we obtain, with Γ = 0, a state with all 40 atoms en-tangled, while with Γ > 0 (i.e., finite cavity decay), we have more than 30 atoms
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(a) (b)

Figure 11.4: Simulations for N = 40 atoms. (a,b) Final overlap with the spin singlet with zero emittedphotons and (insets) postselection efficiency (i.e., no photons emitted) given (a) q(t)/Λ = q0e−0.08Λt , or(b) q(t)/Λ = q0e−ξΛt with Γ/Λ = 0.001. Postselection efficiencies are the percentage of 1000 trajectoriesthat would produce zero photons.
entangled by the criterion introduced in Equation 11.14. Notably, the entanglementbound is strongly violated even for the master equation result, i.e., with no postselec-tion, and even with the highest considered cavity-mediated damping Γ/Λ = 0.005.Choosing the parameters for the sweep involves striking a balance between a slowramp, finishing with the quadratic Zeeman shift close to zero, and limiting the cavity-mediated losses. However, clear dependences are not obvious due to the oscillationsintroduced by the non-adiabatic sweep. Instead, wide regions of sweep parametersoffer reasonable results. We can see in Figure 11.4a that it is difficult to pinpointan ideal value of the initial quadratic Zeeman shift q0, with a general trend that
q0 & 4Λ produces higher overlap. However, higher q0 reduces the probability of atrajectory without photon loss. Figure 11.4b shows that the rate of the exponentialdecay, ξ , is also difficult to choose so as to optimise the overlap, though, broadlyspeaking, higher ξ gives a higher success probability.We note that, of course, optimising the quasi-adiabatic sweep in more complexways should enhance the overlap of successful trajectories. However, such optimisedsweeps might not necessarily be ideal for the probability that the sweep is successfuland so that would need to be taken into consideration for the optimisation process.
11.7 Combination

We now show that for large atom numbers, the dissipative scheme can offer reasonableefficiency if it is preceded by the sort of quasi-adiabatic singlet preparation discussedabove. The total efficiency of the scheme is now the postselection efficiency of thesweep (i.e., the probability of no photons being emitted during the sweep) multipliedby the efficiency of the dissipative scheme, which is the overlap at the end of the
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sweep:

p = ps| 〈ψ|S = 0〉 |2. (11.17)
Since we are only interested in the final overlap with the singlet state, we canreduce our basis to those states accessible before a jump has occurred; that is,states with an exact number of pairs in the m = ±1 states, |k, N − 2k, k〉. Such areduction in basis allows us to greatly increase the number of atoms we simulate.We model the backaction of the null measurement by adding a non-Hermitian termto the Hamiltonian,

Ĥ = Λ − iΓ
N (Ŝ2

x + Ŝ2
y) + q(t)N̂0 (11.18)

and calculate the probability of a successful run from the jump operator expectationvalue,
ps = tmax/dt∏

i=0
{1− 2Γ 〈Ŝ2

x + Ŝ2
y〉ti dt} (11.19)

where 〈Ô〉ti is the expectation of the operator at time t = i dt . This means thatnot only do we vastly reduce the basis size, but we also only have to integrate theSchrödinger equation once, rather than running a large number of trajectories.
Figure 11.5 shows the overlap and postselection efficiency for N = 1000 atoms.We can see a smooth relationship between the sweep parameters and the successprobability. Simply, the sweep should be fast and from a small, non-zero q0. Optimi-sation of the overlap is more complicated, though we see a wide range of parametersfor which that overlap is significantly enhanced. The product of these thus gives awide region of sweep parameters for which the total efficiency to produce a spinsinglet of near perfect fidelity for 1000 atoms would be ∼ 10 − 20%. Even allow-ing for experimental reductions to this efficiency, such a method would produce thestate frequently enough to allow for study and, potentially, use of the many-bodyentangled state.
For potential parameters, we consider parameters for the Tavis-Cummings modelof { λ−, κ } /(2π) ' { 300, 10 } kHz. Large ω/2π ' 10 MHz would then producethe spinor collisional model necessary for the quasi-adiabatic sweep. Switching tothe dissipative method can then be performed by rapidly changing ω → 0. Froma microscopic perspective, this involves shifting the frequency of the σ−-polarisedlaser closer to the cavity frequency. In this limit, we have an open Tavis-Cummingsmodel, which would perfectly project the singlet state on the order of 1 ms or less.With these parameters, the scenario of Figure 11.5 corresponds to a sweep that lasts3.2 ms, and hence to a time for the total procedure of approximately 4 ms.
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Figure 11.5: Simulations for N = 1000 atoms, with a sweep q(t) = q0e−ξΛt , to a final time Λt = 200.0.(a) Overlap with the spin singlet, (b) probability of no photons being emitted during the sweep, and (c)the product of those two, giving the efficiency of a combination of sweep and dissipative distillation.

11.8 Conclusion

We have proposed a method to prepare the spin singlet state of an ensemble ofinteger-spin atoms. Despite great interest in such a state, the production of the singletis an open problem. Its preparation in spinor BEC experiments faces significantchallenges; one potential method is that of adiabatic transformation, but this is madevery difficult by the tiny energy gap at the phase transition, which greatly inflatesthe required timescales, as well as by the need to thoroughly minimise any residualmagnetic field.Our methods bypass these issues by using an alternative approach based uponengineered dynamics and projective measurement in cavity QED. Using a schemeof cavity-assisted Raman transitions to produce an effective spin-1 Tavis-Cummings
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model, we make use of the fact that the spin singlet is a unique dark state of thesystem. This means that the production of the singlet state is heralded by the absenceof photons detected in the cavity output channel.Using a slightly modified scheme of cavity-assisted Raman transitions enablesus to emulate spinor BEC dynamics and thereby implement a quasi-adiabatic trans-formation to enhance the overlap of the atomic state with the singlet state prior toimplementing the effective Tavis-Cummings model, thus enhancing the probabilisticdistillation of the singlet state through monitoring of the dissipative output channel.We believe that this approach offers a realistic possibility of reliably producing thespin singlet state experimentally, and that it highlights the potential of augmentingspinor interaction models with dissipative channels such as cavity modes.
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Chapter 12

Future extensions

This thesis has introduced a set of methods of how to engineer interactions betweena cavity mode and an ensemble of spinor atoms or interactions within an ensembleof spinor atoms mediated by a cavity mode. My research focussed on using suchmethods to produce entanglement, in particular, metrologically useful entanglement.My experimental colleagues at the Centre for Quantum Technologies, and thus thetheoretical work regarding those experiments, focussed on phase transition behaviourin fundamental models of physics. Of course, these engineered models have a greatflexibility which opens up all sorts of possibilities that I did not have time to fullyexplore. In this Chapter, I discuss a few of the possibilities our methods might offer inthe context of spinor physics, spinor Dicke models and spin-1 atoms in other quantumoptics settings.

187
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12.1. SPINOR PHYSICS BEYOND COLLISIONS 189
12.1 Spinor physics beyond collisions

In this thesis, when I have considered models of interacting spinor particles, theprimary focus has been on the emulation of experiments in spinor BECs. However,the engineered schemes are certainly not limited in this way. Whilst experiments inspinor BECs are at a much more advanced stage than our proposals, it should benoted that there are distinct advantages to engineered schemes over spinor BECs.
• Speed. As pointed out in Chapters 10 and 11, these engineered models allowfor much faster dynamics than collisional models. We proposed the productionof the same types of entangled states that have been produced in spinor BECs,only with our methods we have access to them, and can thus use them formetrological purposes, much quicker. This could allow for “snapshot” measure-ments as a response to a change in environment, or a series of measurementstracking changes with a repetition rate much faster than available in BECs.
• Dissipation. When emulating spinor BEC dynamics, dissipation is an un-wanted extra. Dissipation events break certain symmetries of the system, suchas the conservation of 〈Ŝz〉. However, it is precisely that breaking of the sym-metry which allows for the production of the entangled states in Chapter 8 andthe distillation of the spin singlet in Chapter 11. Without dissipation, the su-perposition of different spin length states is retained throughout the dynamics.With dissipation, elements of the superposition are heralded by the measure-ment of that dissipation. The addition of dissipative dynamics can allow us toprepare dark states of the system, but it could also be used to probe the stateof the system non-destructively.
• Flexibility. We are not limited to spinor collisional physics. Instead, our Hamil-tonian can simulate Ŝ2

x , Ŝ2
y or sums of them. The Hamiltonian Ŝ2

x has beenmentioned multiple times during this thesis as the one-axis twisting Hamil-tonian, meaning that we could produce spin squeezed states in that mannerusing our methods [199]. The same Hamiltonian also allows for the productionof Schrödinger cat states [206]. Using such a scheme on a single large spincomposed of a fully polarised ensemble of spinor atoms would allow for theproduction of a macroscopic superposition of a large atomic cloud [207].
• Potential for extension. If we overlay two copies of the Raman transitionschemes on the same ensemble, we gain even greater flexibility allowing forfully arbitrary combinations of the operators Ŝ2

x and Ŝ2
y [161,162]. This allowsus to produce the two-axis counter twisting Hamiltonian Ŝ2

x −Ŝ2
y [161,162,199].As discussed in Chapter 10 and in [161, 162], this range of Hamiltonians alsoencompasses the various Lipkin-Meshkov-Glick models, where spinor particles
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offer fascinating possibilities [197,198]. This could be done, for example, makinguse of multi-mode cavity implementations [75].
• Other spinor phenomena. Our methods used in this thesis operated in a limitwhere the “spinor” nature of the spins was suppressed in the Hamiltonian,arising only in the initial states we considered instead. If we operate withlower detuning, then we introduce distinctly spinor terms. The form of suchsystems is much more complex, and thus allows for far greater flexibility in theengineered interactions for the spins. It does not seem far-fetched to speculatethat interesting and distinctly spinor physics could be found there, and that suchphysics would prove useful for the generation of exotic many-body quantumstates or the study of many-body quantum dynamics.

12.2 Extensions to the Dicke model

The Dicke model and schemes of cavity-assisted Raman transitions that emulatesuch a model, or similar models, have generated lots of interest in recent years[51,84,85,208], with extensions such as the combination of spin and spatial degrees offreedom [73,74,209], multiple cavity modes [74,75] or even multiple cavities [76,77], andimplementations in other schemes [210, 211], in particular in trapped ions [212–216].Motivations for such research includes the interest in phase transitions and novelstates of matter described in this thesis [76, 77, 217–219], as well as being ableto engineer spin glass physics [74, 75, 220, 221] and quantum chaotic systems [216,222,223] that could potentially act as simulators for information scrambling in blackholes [216,224,225]. The addition of spinor physics to these many-body cavity QEDmodels, and the range of possibilities that would bring, is something that is juststarting to be explored with experiments [163] and theory [164], along, of course,with the work detailed in this thesis. In this Section I discuss the flexibility thatthe methods in this thesis allow in terms of adding extra terms, in particular spinorterms, to the Hamiltonian. I talk in general terms about the resultant possibilities,as well as considering one specific limit where preliminary investigation has foundinteresting physics.
12.2.1 Augmenting the Dicke model with extra terms

Chapter 6 showed how the addition of the dispersive coupling can produce interestingand novel dynamics to the Dicke model. Chapter 7 discussed the extra intrigue addedto the dynamical systems picture by simply relaxing the condition λ+ = λ−. Thequestion is then what other additional terms can do.Modulation of the coupling can be shown to destabilise the superradiant statesuch that increasing the coupling strength takes the system into superradiance, out
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of superradiance and then back into a second region of superradiance [226–228].Such a scheme could be easily produced using a toolbox of cavity-assisted Ramantransitions.There is a huge variety of additional terms that can be added to such modelswith creative use of the tools available in cavity QED. One might expect that thismeans there is a huge variety of exciting and novel physics waiting to be explored.Given the nature of this thesis, and its focus on spinor particles, the addition ofdistinctly spinor operators to the Dicke model is an obvious place to start. Our fullderivation for the spin-1 Dicke model, before our assumption of a large detuning,included terms such as a quadratic cavity mediated light shift, operators that couplethe two atomic end states without cavity involvement, and exchanges of excitations inentirely new ways. Terms of the form âq̂xz , for example, annihilate a cavity excitationwhilst moving the atomic population in a superposition of both directions. A Dickemodel including those terms would therefore evolve in ways that the two-level systemversion cannot. This might allow for fundamentally different phases for the system,or perhaps alter the phase transition behaviour between different phases. We nowgive an example of how these extra terms produce different physics.
12.2.2 Superradiance shelving

Let us consider a single spin-1 atom under the Dicke Hamiltonian where we havetaken ω0 = 0 and added a quadratic Zeeman shift
Ĥ = ωâ† â+ q |0〉 〈0|+ λ√2 (â† + â)(σ̂+ + σ̂−). (12.1)

Let us assume initially that the cavity field is empty, and that we start with the atomin one of the end magnetic states |±1〉. The action of the Hamiltonian is then
Ĥ |0〉 ⊗ |−1〉 = λ |1〉 ⊗ |0〉 (12.2)
Ĥ |0〉 ⊗ |+1〉 = λ |1〉 ⊗ |0〉 . (12.3)

Both states produce a single photon and move to the central magnetic state. If weinstead start with the superposition √1/2(|−1〉 − |1〉) then we can see that thesetwo contributions will destructively interfere. This means that this anti-symmetriccombination, due to the symmetry of the Hamiltonian in the two states, is blockedfrom producing any photons. If we start in the state |−1〉, we are half overlappedwith that dark state and so the evolution will produce such a state half of the timeheralded by the cavity output flux, as shown in Figure 12.1a.We now consider the addition of a small ω0 and direct coupling between |−1〉 ↔
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|1〉 at strength h

Ĥ = ωâ† â+ ω0σ̂z + q |0〉 〈0|+ λ√2 (â† + â)(σ̂+ + σ̂−) + h(σ̂ 2+ + σ̂ 2
−). (12.4)

The addition of the linear Zeeman shift does not break the coexistence of the brightand dark state, but instead provides a small coupling between the two that allowsthe state to jump between them. The dark state is destabilised and switches backto the bright state reasonably quickly, whilst the bright state appears to be muchmore stable. A significant value for h helps promote symmetry in the superradiantstate and so encourages switches and stabilises the dark state. Figure 12.1b showswe have periods of strong emission interspersed with shorter periods without anyemission. The process behind this is similar to electron shelving [229–231], yet here,the emission is superradiant in nature.This quadratic Zeeman shift could be added with an auxiliary field, and the Ramantransitions between |−1〉 ↔ |1〉 could also be added on top of the Dicke model, butboth of those terms also arise naturally in our model if we reduce the detuning suchthat the separation between the excited-state hyperfine levels is important. We canthus consider what the other terms in Equation 7.32 do to our picture. The quadraticcavity mediated light shift surely enhances the robustness of the system since itis similarly symmetric to |±1〉 and inhibits the production of photons. q̂yz is alsosymmetric to the two outer magnetic states, so should not impact the existence ofeither state. q̂xz is not symmetric and so will also couple the dark and bright statesslightly. This means that the full system of our derived Dicke model, with ω0 ≈0, automatically gives us this superradiant blinking if we move to lower detuning.Simply adding spinor terms to the Hamiltonian creates a distinct change in responsefrom the model.
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Figure 12.1: The presence of (a) a bright state and dark state in a completely symmetric modeland (b) switches between them with a slight asymmetry added to the Hamiltonian. Parame-ters for (a) are {ω, ω0, q, λ, h } /κ = { 1.0, 0.0, −2.0, 1.0, 0.0 } and (b) are {ω, ω0, q, λ, h } /κ =
{ 1.0, 0.05, −2.0, 1.0, 2.0 }.
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The interest in this result is the implication that this symmetric Dicke modelprotects anti-symmetric combinations for the spin. Moving to a collective picture, wewould like to investigate whether such anti-symmetric dark states exist, and, if theydo, their properties and the feasibility of preparing them.

12.3 Implementations in alternative configurations

This thesis used “traditional” cavity QED configurations throughout. However, themethods we describe are certainly not limited in such a way. We could insteadtrap atoms in the evanescent fields of, for example, nanoscale or photonic crystalwaveguides. Whilst such systems have much more difficulty trapping large arrays asdiscussed in much of this thesis, the coupling for the atom to the field can be muchstronger. This means that, even with the large detunings our methods generally use,we are not reliant on the √N enhancement of the effective coupling. Instead, we canachieve interesting physics with small ensembles or even a single atom. This allowsus to think of very different regimes. In this Section, I discuss examples of how ourmethods might be applied to such systems.
12.3.1 Superradiant pulses of exact photon number

The concept is fairly simple: trap a single 133Cs atom next to a nanoscale cavity, whereatom-cavity coupling of several GHz is possible [29, 30]. Alternatively, fabrication ofcavities formed by polished optical fibre ends, such that the outputs of the cavity leaddirectly into a propagating fibre, have shown promising coupling strengths [232–234].In both cases, we wish for the light to be emitted in one direction and so one of themirrors should be much more transmissive than the other, as in [30].Once we have such a system, we drive detuned Raman transitions with a laserand the fibre mode. If we pump our 133Cs atom into the F = 4 manifold, we canthus produce a Tavis-Cummings model and, with an initial state |4, 4〉, an associatedsuperradiant decay for a single atom. We can thus simulate the collective behaviour ofa small, in this case eight spin-1/2 particles, ensemble without the added complexityof actually trapping and coupling a small ensemble.In the direction of propagation, we have a superradiant pulse of exactly eightphotons. Alternative preparation of the state into other magnetic sub-levels allowsfor different numbers of photons in that output pulse. An atom in a superpositionstate produces a superposition of Fock states, and so this method allows for theproduction of arbitrary Fock states and superpositions of Fock states with smallphoton numbers [235].If we were to move to a multi-atom picture, this would allow for larger effectiveensembles and the production of larger Fock states. Producing superpositions of
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Fock states with multiple atoms becomes more complex because of the more complexcollective picture for spinor particles. We would require superpositions of the mag-netic number, not of the spin length. Each spin length produces a Fock state in theoutput field, but correlated to the final state of the spins such that the superpositionof spin length states produces a mixed state of Fock states in the output field.There are also other species outside of the alkali atom family with higher spin.Assuming these species have the same intrinsic symmetries to the dipole operatorthat allows us to simplify the higher spin model to a Dicke model, as in Section7.1.1, then implementing the discussed scheme would allow an even larger effectiveensemble size for a single atom. If we consider, for example, dysprosium atoms, whichhave electron spin J = 8, we might expect to be able to consider the generation ofarbitrary superpositions of Fock states with a basis size up to 16.
12.3.2 Spinor models with tuneable range interactions

An emerging field in quantum optics is the interaction of trapped atoms with photoniccrystal waveguide systems [200, 236–239]. One option in such systems is to trap anatom in the evanescent field of the waveguide where the atomic transition is withinthe band gap of the photonic crystal waveguide. This means that light of the atomictransition frequency cannot propagate along the waveguide. Instead, the photon mustremain localised around the position of the atom, at which point the “defect” of theatom allows the photon to exist. If another atom is placed a short distance awayalong the waveguide, the photon can tunnel between the atoms. Thus, in a way thatmay sound familiar given what has been discussed in the thesis, the atoms interactmediated by photons.Our engineered spinor models allow for interactions tuneable in form and instrength, but they are intrinsically infinite range because the atoms are coupled tothe same cavity mode. Photonic crystal waveguides allow for interactions tuneablein form, strength and range. The interactions are mediated by the tunnelling, andthe tunnelling interaction has an exponential form, so our range has exponentialfalloff. This could be tuned such that tunnelling happens only over one site, orthat the interactions are effectively infinite range. It can also be theorised that, byoverlapping different drives, sums of those exponentials can be used to approximateother types of interactions [200]. We note that non-infinite range interactions mayalso be possible with multimode cavity QED, where the different shapes of the variousmodes allow for atoms to have a different set of couplings to those modes [75, 220].Such a setup is also amenable to our methods.With a toolbox of atoms coupled to a 2D photonic crystal waveguide and interac-tions that we can tune so precisely, we can engineer all sorts of models for interactingspins. Using spinor atoms in this context, we could build spinor interaction models
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with all of this flexibility. This could be used to simulate condensed matter physics,probe topological physics and potentially explore new realms of physics interestingand useful in their own right.
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Chapter 13

Conclusion

The interaction of light and matter has informed and influenced some of the mostfamous experiments in the history of physics. From Newton’s use of a prism to splitout the spectrum of light to the discovery of the photoelectric effect, and all the way tomodern day searches for dark matter and the size of an electron, table top experimentsmaking use of matter and light have been able to tell us fundamental truths about thevery makeup of the universe. I do not, of course, wish to compare the research in thisthesis with such lofty accomplishments; I fear that the thesis would not hold muchweight under such comparisons. I instead wish to make the point of the fundamentalimportance of understanding and applying these light-matter interactions.This thesis has described simulations of fundamental models of physics and pro-posed how to apply those methods and discoveries. The states that could be preparedusing these proposals have practical applications, but are also of great interest tofundamental science. These many-body entangled states are one of the more mys-terious areas of quantum mechanics and so, efficient production of such states wouldgive scientists a resource to investigate the fundamental nature of entanglement.The methods and concepts developed in our research have a wide range of ap-plications. These applications could provide resources for quantum metrology andquantum information, but also resources to help answer questions on such variedtopics as macroscopic superposition states, topological matter and chaos theory. Un-locking the secrets of the universe may seem like a grandiose and imposing goal, butwhen considered one problem at a time through the right lens with the right toolbox,it is, perhaps, one that is not so impossible after all.
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