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Abstract

The interaction of matter with an electromagnetic field is an old problem. We per-
formed theoretical modelling for experiments simulating a fundamental model of this
interaction: the Dicke model. We then made use of this model, and the methods used
to simulate it, to propose the production of a variety of entangled many-body states
of an atomic ensemble.

Our research focussed on engineering interactions between a gas of cold atoms
and light, in particular laser fields and modes of an optical cavity. These interactions
are engineered via cavity-assisted Raman transitions: two-photon transitions where
one photon is provided by a laser field and the other is associated to a mode of an
optical cavity. Two types of interactions were considered: between the cavity mode
and the gas, and within the gas via the cavity mode.

Results of our research included contributions to the experiments of our collabo-
rators, who mapped out phase boundaries of the Dicke model, giving a fundamental
insight into how atoms interact with a field. Using these methods in the context of a
generalised Dicke model with an added non-linear coupling, we discovered the pres-
ence of strong entanglement for atoms in steady state and proposed how to access
such entanglement.

A key concept of the thesis is the introduction of spinor atoms - i.e. atoms with
integer spin - to many-body cavity QED. We showed that the Dicke model, and
more simply a Tavis-Cummings model, acting on a particular state of spin-1 atoms
produces highly entangled states heralded by measurement of the cavity output. In
the context of interactions within the gas, we proposed the emulation and extension
of physics currently accessible only to spinor Bose-Einstein condensates. We then
proposed the use of those engineered interactions to emulate a particular experiment
performed in spinor Bose-Einstein condensates, creating a novel type of squeezing
and entanglement in a spinor gas.

Our research has not only helped explain how light and matter interact and given
specific methods to produce interesting many-body states using those interactions,
but it also implies a rich field of novel results for spinor atoms in many-body cavity
QED systems.
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Glossary of terms

This is a list of technical terms frequently used in this thesis. The list is not intended

to be exhaustive. Where relevant, links to useful parts of the text are included.

Adiabatic elimination....... Tracing over part of a system which has time evolution
on a much different scale to the rest of the system.

Adiabatic transformation .... Manipulating the ground state of a system by varying
Hamiltonian parameters slowly enough that the sys-
tem wavefunction adapts to the new Hamiltonian and

remains in the ground state.

Annihilation operator....... An operator that removes one excitation from a bosonic
field, see Section @
Bloch sphere............... Visual representation that maps the state of a two-level

system to a sphere, see Section B41] For a collec-
tive spin of fixed length, the atomic Q-function on the
collective Bloch sphere can be used, see Section @

Bose-Einstein condensate... A state of matter where the atoms belong to the same
macroscopic state, see Section @

Cavity ... A device that confines light into a small volume, most
typically with mirrors, see Section FEI

Cavity mode ............... Resolved mode of the electromagnetic field with a par-
ticular frequency and polarisation that can exist within
a cavity, see Section m

Clebsch-Gordan coefficients. Numbers that describe angular momentum couplings, rel-
evant to this thesis as the relative strength of angular

momentum transitions.

Coherent states ............ States of a bosonic field formed by the displacement of
the vacuum, see Section @

Coherent spin states........ States of a collective spin analogous to coherent states,
see Section @

Creation operator........... An operator that adds one excitation to a bosonic field,

see Section |T_ZZ|
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Dark state .................

Degeneracy................

Detuning ..................

Dicke model ...............

Dicke states ...............

Dipole trap ................

Doppler shift...............

Dressed states .............

Entanglement..............

Entanglement depth ........

Environment ...............

Fock states ................

Heisenberg limit ...........

Heralding..................

Hyperfine level.............

Jaynes-Cummings model . . ..

Jump operator........... ...

An eigenstate of the Hamiltonian that is decoupled from
dissipation, see Section @

When more than one eigenstate of an operator has the
same eigenvalue.

Difference in frequency between an atomic transition and
an electromagnetic field mode.

A fundamental model of the interaction of a single mode
of the electromagnetic field with an ensemble of two-
level systems, see Section FEI

Collective states of an atomic ensemble with a definite
total angular momentum and magnetic projection, see
Section @

Trap that uses the dipole force to attract atoms to points
of maximum intensity, see Section

Shift in frequency observed by a moving system due to the
expansion or compression of the observed oscillations.

A composite picture where excitations are shared be-
tween field and atoms, see Section

Phenomenon where the wavefunction of two systems
needs to be described compositely such that measure-
ments of the two systems have quantum correlations
between them, see Section |T|_7|

Number of atoms in the largest set where all atoms in
the set are entangled to all other atoms.

Everything the considered quantum system interacts with
that is not part of the system, see Section |Z_T|'|

States of a bosonic field with an exact number of excita-
tions, see Section

The fundamental limit to precision for an atomic ensemble
allowing for entanglement, see Section @

A protocol that is deemed successful by a particular mea-
surement of the output.

A level with particular angular momentum summed over
the angular momentum and spin of the electron and the
spin of the nucleus, see Section

A fundamental model for the interaction of a single mode
of the electromagnetic field with a single two-level sys-
tem, see Section F;ZI

Operator that acts on the system as part of the interaction

with the environment, see Sections @ and @
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Ladder operator............

Light shift..................

Markovianity...............

Master equation............

Multipartite entanglement. ..

Nematic tensor.............

Number operator...........

Optical lattice..............

Phase sensitivity ...........

O-function.................

Quantum Fisher information.

Rabi frequency.............

Rabt oscillations ...........

Raman transitions ..........

Resonant ..................

Schrodinger equation. .. .. ..

Operators that move the magnetic projection of a spin up
or down by one quanta, see Section @

Shift to an energy level of an atom caused by the pres-
ence of a light field, see Section m

Property of an environment such that any information
sent there is lost, see Section @

Describes the evolution of a system in the presence of un-
monitored losses to an environment, see Section @

Entanglement between a set of more than two particles.
Genuine multipartite entanglement is where any patr
of atoms in that set are entangled.

A higher order operator that describes properties of a

spin-1 atom, see Section @
An operator that counts the number of excitations in a

bosonic field, see Section @

A pattern of dipole traps that forms a periodic lattice for
the atoms, see Section @

Precision available to a state for the estimation of a phase
imprinted on that state.

A visual representation of a bosonic field state formed by
mapping out the overlap with the coherent states, see

Section @

A measure of the phase sensitivity available to a system,
see Section m

The use of quantum correlated states to perform precision
measurements.

Describes the stochastic evolution of a system in the
presence of monitored losses, see Section @

Instantaneous change of a Hamiltonian parameter that
takes the system across a phase transition.

The frequency of oscillations driven between the levels
of a two-level system, see Section

Oscillations, driven by a light field, between the levels of
a two-level system, see Section @

Two-photon transitions that move an atom between two
states via some intermediary state, see Section @
Matched frequencies of an atomic transition and an elec-

tromagnetic field mode.
Describes the evolution of a system in the absence of

losses, see Section m
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Self-organisation........... Process by which atoms in a cavity move to a particu-
lar pattern, for example, to optimise scattering into the
cavity, see Section m

Shelved state .............. A state which is not strongly coupled to the active levels
of the system such that the atom stays there.

Single-mode approximation . Where the spin states of a spinor Bose-Einstein conden-
sate have the same spatial wavefunction such that it
can be integrated out, see Section m

Spin......oo Intrinsic angular momentum of fundamental particles, see
Section

Spinor physics . ............ Study of atoms with integer spin, see Section

Spinsinglet................ Collective state of an ensemble of atoms with zero col-
lective angular momentum, see Section m

Spin squeezing............. Redistribution of noise from one angular momentum com-

ponent of a collective spin to another such that the for-
mer features quantum correlations and entanglement,
see Section @

Spontaneous emission ... ... Process by which a system transitions from an excited
state to a lower energy state by emission of a photon,
see Section @

Squeezing ................. Redistribution of noise from one variable to another non-
commuting variable such that the former features quan-
tum correlations, see Section |T_ﬂ'|

Standard quantum limit. .. .. The limit to precision for an atomic ensemble without

accounting for quantum correlations, see Section @

Superoperator.............. A generalised function that performs a set of operations
on a state.

Superradiance ............. Collective enhancement of emission into a shared field,
see Sections [43]and

Tavis-Cummings model. .. ... A fundamental model for the interaction of a single mode

of the electromagnetic field with an ensemble of two-
level systems under the rotating wave approximation,
see Section

Thermal states ............. States of a bosonic field at equilibrium at a non-zero
temperature, see Section

Thermodynamic limit ....... Where the number of atoms is taken to be so large as
to be able to ignore quantum fluctuations, strictly only
true with infinite atom number.

Zeeman shift............... Shift of the atomic energy level caused by the presence
of a magnetic field, see Section @
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Glossary of abbrevations

This is a list of abbreviations used in this thesis. The list is not intended to be

exhausted.
BEC........... Bose-Einstein condensate
COT........... Centre for Quantum Technologies
CSS......... .. Coherent spin state
MOT .......... Magneto-optical trap
QED .......... Quantum electrodynamics
QFI. ........... Quantum Fisher information
SPCM......... Single-photon counting module
SQL........... Standard quantum limit
TC Tavis-Cummings
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Glossary of symbols

This is a list of symbols commonly used in this thesis. The list is not intended to
be exhaustive. Every effort has been made not to use symbols for more than one
purpose; where that is not possible both definitions are listed here and it should be

clear from context which definition is relevant.

a,at oo Annthilation and creation operator for a photon

B ............. Magnetic field vector

b, BE Annthilation and creation operator for atoms with magnetic quantum
number m

C o Speed of light, 2.9979 x 10 m/s

D Dissipative superoperator

Dipoooooii. Transition lines

E.o.oo.o Energy

E ... Electric field vector

€. Elementary charge, e = 1.6022 x 10719C

Foooi Total angular momentum quantum number

F oo Quantum Fisher information

S Cavity finesse

G Generator over which the Quantum Fisher information s calculated

G Single atom-cavity coupling

gty . Second-order correlation function

[ Hamiltonian operator

H oo Hilbert space

h oo Planck constant, h = 6.6261 x 1073%Js

oo Reduced Planck constant, i = h/2m = 1.0546 x 10~3* Js/rad

Lo Nuclear spin quantum number

S Electron angular momentum quantum number

T Jump operator

koo Wavevector

kg............. Boltzmann constant, kg = 1.3806 x 10~23J/K

L. Liouvillian superoperator
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Lo Angular momentum quantum number

Moo Mass of a single atom

m............. Magnetic quantum number

Me oo Mass of the electron, 9.1094 x 103" kg

ME .o Total magnetic quantum number
N Number of atoms

2 Principal quantum number

n oo Number of quanta in a bosonic field
o Average occupation of a thermal bosonic field
N Number operator for a bosonic field

[n)y ... Fock state of n bosons

O . Generic operator

Oy Expectation value of an operator

(AOY . ... Variance of the expectation value of an operator
/:DWA ........... Projector operator for a state |¢)

Q0 .......... Sums of transition terms necessary for adiabatic elimination of the

excited states in a detuned Raman transition scheme

Q. ............ Nematic tensor for an ensemble

@i/ ............ Element of the nematic tensor for an ensemble

G Quadratic Zeeman shift

'+ [ Nematic tensor for a single atom

Gij- oo Element of the nematic tensor for a single atom

Mo Position, r = (x, y, z) or r = (r, 6, ¢) depending on chosen coordinates
S Collective angular momentum quantum number

S Collective spin operator

ng .......... Collective spin operator on the x, y, z-axis

S Collective ladder operator

|S,m)y .. ....... Dicke state with angular momentum S and magnetic projection m
S Spin quantum number

T Temperature

b Time

tr(s) .o Trace

U...oooooo Cavity-driven light shift in the effective Dicke model

Voo Potential operator

Vo Route mean-square velocity of a Maxwell-Boltzmann distribution
la) oo Coherent state with eigenvalue « for the annthilation operator
o Cavity-mediated decay rate on the collective spin operator after adi-

abatic elimination of the cavity mode
)28 Spontaneous emission rate

Ao Detuning between a light field and an atomic transition
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Oij oo Kronecker delta function, zero for i # j and one for i =

€0 i Permittivity of free space, 8.8542 x 10~ "?F/m

7 I Quantum efficiency of a single-photon detector

1) P Coherent spin state centred on spherical coordinates (6, ¢)
Koo, Half width of the cavity

N Effective interaction strength for spinor models after adiabatic elimi-

nation of the cavity mode

Ao Wavelength

Ao Collective coupling of an ensemble of atoms to a cavity mode, A =
VNg

Acooiiiiiii. Critical coupling in the Dicke model above which superradiance exists

A Ay oo Collective coupling for the rotating and counter-rotating terms of the
Dicke model respectively

Ho - Permeability of free space, 471 x 10~"H/m

oo Dicke squeezing parameter

& Spin squeezing parameter for Ramsey interferometry

& Spin squeezing parameter

& Spin-nematic squeezing parameter

P o Density matrix of the system

Oz Spin operator on the x, y, z-axis for a single atom

Op oo, Ladder operators for single spins

[y oo Wavefunction of the system

|rec) oo Wavefunction of the system conditioned on a particular scattering
record

Q..o Rabi frequency

W oo Frequency of an electromagnetic field

Wy Linear Zeeman shift

77 P Frequency difference of a two-level system

Gl Frequency difference between the £ =1 and F = 2 lines

[—1)y. ... Lowest magnetic state of a spin-1 atom

0).......... .. Ground state of a two-level system or central magnetic state of a
spin-1 atom

[Ty oo Excited state of a two-level system or highest magnetic state of a
spin-1 atom

1. Identity matrix
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Chapter 1

Introduction

Over the last few decades, progress in experimental atomic and quantum optical
physics has gone from groundbreaking proof of principle experiments to a point where
precisely manipulating and measuring such systems can be performed on an almost
routine basis. As recently as the early 1990s, there was discussion as to whether
Bose-Einstein condensates could even exist, yet now they can be created for a
wide variety of atomic species and controlled with exquisite precision. Similarly,
the ability to strongly couple atoms to single modes of the electromagnetic field
was a tremendous breakthrough only a few decades ago. Now we can build such
systems, not only with atoms between mirrors as in those first experiments, but in
a variety of equivalent setups. They can be built making use of extremely thin
optical fibres or tiny donut shaped resonators where the atoms are trapped in, and
coupled to, an evanescent field. Even more exotic architectures can be used, such as
superconducting circuits and tiny dots of semiconductor material where the "atoms”
are actually quantised elements of a macroscopic system.

These advances allow us to test fundamental aspects of quantum mechanics. We
know now that the properties of two particles, even if separated by huge distances,
can be correlated in ways that make no sense in terms of a 19" century understanding
of physics. We know that a single particle can create interference patterns with itself.
We know that two particles can arrive at two inputs to a beamsplitter and exit through
the same output every single time. It was these fascinating, and, quite frankly, weird
phenomena that first piqued my interest in quantum physics.

Modern techniques have now brought us to a point where we can not only test
the correctness of quantum mechanics, we can harness quantum mechanics. We store,
transfer and manipulate bits of information held in quantum states. We make chains
of trapped ions answer maths questions. We measure time with an error of a fraction
of a second in the age of the universe. We have made Schrédinger’s infamous cats,

though obviously not with actual cats. A focus on the cool stuff belies the fact that
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quantum physics underlies huge swathes of technology used around the world every
single day. Computers, phones, GPS, internet traffic, DVD players, MRI machines,
and even those low-wattage environmentally friendly light bulbs that save the planet
and your wallet at the same time. All those things could not have been invented
without our understanding of quantum physics. A century ago, quantum mechanics
was just an interesting mathematical theory, but now, without our understanding of
it, my thesis would have been written on a typewriter and, let's face it, would be a
lot less interesting.

As our experimental prowess advances, the quest for new understanding and
new technologies advances with it. This thesis deals with my contributions to both
aspects. These contributions include theoretical modelling of experiments performed
at the Centre for Quantum Technologies in Singapore of the simulation of a classic
model for the interaction of light and matter, first discussed in 1954 but only recently
realised. | also propose methods to engineer other models, some of which can be
used to produce exotic quantum states useful for precision measurements.

In theory, if read (thoroughly) from front to back, the thesis should be accessible
to anyone with a basic knowledge of physics. However, practical concerns mean
that this may not be quite as simple as intended. In particular, the introduction to
many key concepts is somewhat brief and so a rudimentary understanding of quantum
mechanics and atomic physics is probably very useful if not essential. A reasonable
understanding of certain aspects of classical physics, in particular classical optics
and electromagnetism, is assumed. It is necessary, given the nature of the thesis, for
there to be significant mathematical content. Long derivations are presented more
in the vein of transparency to the methods than as essential content. For those with
less interest or knowledge in the mathematical side of the work, a physical intuition
of the equations is given where it is deemed necessary.

Chapters [2] ] and [ act as an introduction, providing the background material
needed to understand the rest of the text. Chapter [ introduces the key aspects of
quantum mechanics and quantum optics, and the mathematical frameworks used both
in the rest of the text and to perform the majority of the computational work. Chapter
Bl is an introduction to atomic physics. This includes the electronic level structure of
atoms and how those atoms interact with light. | then introduce the basics of how
to prepare cold atoms for experiments, as well as the mathematical structures used
to describe those atoms theoretically. In Chapter 4] | introduce the field of cavity
quantum electrodynamics. | will show how the building blocks of alkali atoms and
optical cavities can be used to build the types of experiments discussed throughout
the rest of the thesis, as well as simple models for its behaviour that will also be of
relevance later.

Chapters [f] and [7] describe the experiments performed at the Centre for Quantum

Technologies and my contributions to that work. This includes a brief explanation of



those experiments and the results, and a more in-depth discussion of my theoretical
modelling of both systems. Chapter|[7]is an introduction to perhaps the most important
and fundamental development of the PhD: the combination of many-body spinor
physics and cavity QED systems. Chapter [0l moves to a limit where the cavity mode
itself becomes a tool by which to engineer interactions between the particles and so
create “pure’ spinor systems.

Chapters [0] [8] [T0] and [TT] describe proposals for experiments, all of which are
presented as papers published during the course of the PhD. These have been re-
formatted to fit with the aesthetic of the thesis and in some cases have had minor
edits such as the insertion of supplemental material into the main text or alterations
to notation so as to be consistent with other sections of the thesis. All such changes
are noted in the introductions to those Chapters.

In Chapter [T2] | discuss how this project might be extended. This includes dis-
cussion of speculative ideas on the range of physics accessible with the methods
developed in the thesis, as well as more specific ideas that arose during the PhD
and are currently being further explored.

This introduction, in its frequent use of technical terms that are yet to be intro-
duced, may immediately undermine the intention for the thesis to be accessible from
front to back. However, | hope that it gives some sense of why this field is so exciting
and the broad motivation behind my work. | hope it gives an idea of the value of my
work and perhaps even the motivation to read the thesis. | hope those who do read it
come away with at least a grasp on how these ideas are of interest to the scientific
community. At the very least, | hope any reader can come back and understand those

technical terms...
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Chapter 2

Quantum mechanics & quantum

optics

Quantum physics is inherently based on the concept of quantisation: the idea that
the measurement of things results in discrete quantities. These things might be a
particle’s energy, its angular momentum or the projection of that angular momentum
on some spatial axis. Upon measurement, the particle can only exist with those
discrete properties. In between, the particle can exist in one of those states or in
some superposition of them. It is this fundamental principle, which dates back to
Boltzmann, Planck and Einstein, that underlies much of quantum mechanics. In this
Chapter | dissect the key postulates of quantum mechanics, as well as introducing
the mathematical framework necessary to understand them. | discuss how to describe
the quantum state of a particle or system, how that state can feature superpositions
and entanglement, how to define variables, and how to describe measurement. | then
quantise the electromagnetic field, discuss useful states associated with that photon

picture and introduce how to evolve states in quantum optics.
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2.1 Postulates of quantum mechanics

Quantum mechanics relies on certain postulates upon which our understanding is
based. Here | introduce those postulates, how | will represent them mathematically

and their important implications with respect to this thesis.

2.1.1 States

Associated to any system is a wavefunction that describes all information that can

be known about the system.

The global wavefunction of a system describes every aspect of the system. How-
ever, in general, there will be some aspects of the system that we are interested
in, and others which are neither relevant nor coupled to those interesting aspects.
The wavefunction, |(/J>|] will thus describe the relevant aspects of the system. The
wavefunction of a system lives in a Hilbert space, defined as the space that contains
all possible wavefunctions.

Wavefunctions evolve over time and take different forms over the course of that
evolution. We can denote, for example, a set of possibilities for the state as { | ¢;) }.
If any possible wavefunction for the system can be expressed using the members of
that set then the set is complete. If the set is such that (¢;|¢;) = 0;;, where §;; is the
Kronecker delta function, then that set is orthonormal and that expression is unique.
If both are true, then we have a complete orthonormal basis of the Hilbert space.

The system can obviously take on any one of these basis states but also super-

positions of them. For simplicity, we consider two states such that

) = al¢r) + Bld2) (21)

where a, B are any complex numbers that are normalised such that |a?| + |B]° = 1.
More generally, such superpositions can be of anywhere from two states to an infinite
space with the condition that {¢/|¢) = 1. For two different states, the overlap between
them is given by the modulus square of the inner product | (¢x|yn) |°.

These superpositions are a fundamental part of quantum mechanics. It is not
the relic of some lack of statistical knowledge on the part of the observer, it is that
without observation the state truly lives in this unknown sum of different possibilities.

Some statistical lack of knowledge is also possible. The introduction of this
statistical mixture can be thought of as information about the state either being lost

or accessible but unobserved. In some sense, that information is no longer within the

"Dirac notation (or bra-ket notation) is a general formulation of expressing a quantum state. This
notation offers great flexibility and allows for complicated states and equations to be represented extremely
simply. The ket, |if), describes a state and can generally be represented as a column vector. The bra, (¢,
is its adjoint, or Hermitian conjugate, denoted as (| = (|¢))T.
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system and is not known by the observer. A more general formalism for the quantum
state which allows for this statistical lack of knowledge is the density matrix. The

relationship between the density matrix and the wavefunction is given by

p=1) Yl (22)

Note the existence of a wavefunction means a density matrix exists, but the opposite
is not necessarily true. The normalisation condition above means that here we need
tr(p) = 1 where tr(-) means to take the trace. A state which can be represented as
a wavefunction is referred to as a pure state, while any state that exists with some

statistical mixture is a mixed state. A pure state has the property that
tr(p?) =1 (2.3)

and so the density matrix allows us to calculate the purity for the system.

In some circumstances we have two systems, or two parts of the same system, that
interact and, by the postulate above, there is a wavefunction that describes everything
about the composite system. If the individual systems have states |(4) and |5) then

our composite system can be given by

|Wags) = [ga) ® [s) (24)

where ® is the tensor product. |ags) lives in the composite Hilbert space Ha®@ Hg.
We can find the state in space Hx by tracing over Hg.

This decomposition is not necessarily possible, i.e. [ags) + [Ya) ® |Ys). Some-
times tracing out one of the systems leaves the other in a mixed state. This means
that we have an entangled state with correlations between the systems that require a
composite description. Information about system B is contained in system A and vice
versa. Tracing out one of the systems introduces a statistical mixture to the system
because that information has been removed. Two systems are thus entangled if there

is more mixture in an individual system than in the composite system

tr(pes) > tr(pA 5)- (25)

2.1.2 Operators

Associated to any observation or action on the system is an operator.

Properties of the state are described by operators, O. In the linear algebra form

these are matrices, while in Dirac notation they are formed by sums over ket-bra
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pairs. In some orthonormal basis { ¢; } we express an operator as
O =2 cylen) (4 (26)
i
and its action on a state
Ol) =) ciyld) (¢l axle)
i k
= cua ). (27)
ik

That is, the action of an operator is to map states in a Hilbert space to other states
in the Hilbert space, |¢;) — |¢;), with some coefficient ¢;;. The equivalent form for
the density matrix is

Oy) — OpO. (2.8)

Like any matrix, these operators can have eigenstates and eigenvalues given by
Oley=&le) < 0= &le)(el. (2.9)
i

Physical observables, such as position or momentum, must have real eigenvalues.
Therefore, the operators that describe these physical observables must be Hermitian,

meaning that they are their own adjoint

A

O =07 (2.10)

Eigenstates of Hermitian operators form a complete orthonormal basis for the
system they act uporﬂ which in composite systems may only be a part of the system.
This means any state in that system can be written in terms of the eigenstates of
any physical observable of the system.

Operators that act on the same system can have different eigenstates, allowing
for different representations of the state. Whether two operators O and P share

eigenstates can be found by considering the commutator of the two

A A A A

0,P] = OP —PO. (2.11)

If this is zero then the two operators share eigenstates. If instead it is non-zero, then
we note that they have separate eigenstates and the order in which the operators
act upon the state is important.

In composite systems, operators may act on all or part of the Hilbert space. If we

2Non-Hermitian operators need not have real eigenvalues, or even have eigenstates at all and so are
not necessarily useful as a basis.



10 CHAPTER 2. QUANTUM MECHANICS & QUANTUM OPTICS
have an operator that acts only on Hy, @A, then we have that

Oallihn) ® |1h5)) = (Oa |tha)) @ |is5) (212)

Similarly, any operator that only acts on Hg allows for |¢4) to be factored out. This

means if we act with both operators then we have

(Oa® Op)(|a) ® |t5)) = (O l1ha)) ® (O |¢s)). (213)

It does not matter which order we write down these operations since they act on
different parts of the Hilbert space, and so operators that act on different spaces will

always commute.

2.1.3 Measurement

Measuring a physical observable collapses the wavefunction to an eigenstate of the

operator associated with that measurement.

If we make a measurement with some Hermitian operator O then the only results
we can get are the eigenvalues associated with the eigenstates of the operator. We
can define operators which collapse the state onto a single eigenstate

P = le:) (el (2.14)

where the sum of the full set of these projectors is the identity, 1. A measurement of
the observable on a wavefunction results in the action of one of the set { /5[} on the

system with a probability given by

pi= (Y| Pilg). (215)

If the state can be recreated and measured multiple times, then the statistics of this
random collapse can be interrogated. If we were to make infinite measurements, then

the mean would be given by the expectation value

A,

(0) = WOy <  (0)=tr(p0). (2.16)

These expectation values do not necessarily need to be eigenvalues of the operators
and tracking their evolution can give a useful picture of how the system evolves.
The action of two measurements on the same system one after the other is an
important concept. If we have an operator O with eigenstates, |¢1) and |¢,), then a
measurement of some superposition gives one of these states. If we have a second

operator P which has different eigenstates, t.e. it does not commute with O, then a
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measurement of that observable collapses the state into this new basis, destroying
the information gained by the first measurement. Measurement of non-commuting
operators cannot be performed simultaneously and full information about both cannot
be known at the same time. It is this fact that leads to Heisenberg's famous uncertainty

principle. For two operators O and P with commutator relation
0,P]=iQ (2.17)

then the product of their standard deviations is bounded by

1

BOPBP) > £ (0. (2.18)

EN

Note that Q is kept as an operator here, but it is a constant in many cases.

A projective measurement, as described above, of @ means nothing can be known
about P as its variance must become infinite to satisfy the inequality. So-called
weak measurements are possible, where the system is coupled to some external
system and measurements of that are performed [1]. This gives some information
about the desired observable with a comparatively small perturbation of the state.
This allows information about both observables to be known at the same time, but
with error bars that meet the above equality.

The inequality also describes the statistics of the state itself. When the in-
equality becomes an equality, we have a minimum uncertainty state, which can have
the uncertainty equally split between the two observables, or squeezed such that
one variable contains more noise than the other. These squeezed states cannot be

described by classical physics and so are inherently quantum.

2.1.4 Evolution
Between measurements the wavefunction evolves according to the time-dependent

Schrddinger equation.

When the system is not being measured it evolves coherently according to the

Schrodinger equation. For a wavefunction |¢) this is

mO L) = A1) o L = (g (219)

where we have introduced the Hamiltonian operator H and R is the reduced Planck
constant.

We can solve the Schridinger equation for the wavefunction such that

(t)) = e 0% |4(0)) . (2.20)
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For that process to be reversible, and time-symmetry tells us it must be, then changing
t — —t must produce the inverse. This is equivalent to saying that e=/" must be
unitary - meaning its conjugate transpose is its inverse such that Ut0=1-as only

these can describe reversible time evolution. For the Hamiltonian we require
e eI o)) — [(0))  — eI 1 [ =T 221)

The Hamiltionian is Hermitian and that means it represents some physical observ-
able. In fact, this quantum mechanical operator is a direct descendent from classical

Hamiltonian mechanics. As there we have that
H=T+V (2.22)

where T is the kinetic energy operator and V is the potential operator. Usually,
the Hilbert space of the system is restricted to a subset of properties such that this
historical picture is not particularly useful. Instead, the idea that the Hamiltonian is
the “energy operator” that describes the evolution of the system is more intuitive.

We diverge from classical mechanics because, as a Hermitian operator, the Hamil-
tonian here has a series of eigenstates and eigenvalues. These eigenvalues tell us
about the energy levels of the system, and so the lowest eigenvalue gives us the
ground state and its energu.

The Hamiltonian can also tell us about the evolution of operators. The expectation
value of an observable at some time t is given by

(O), = ((0)] PO |y 0)). (223)

If the operator and the Hamiltonian commute then we can move that operator out of

the centre and, cancelling the unitaries to the identity, we find that
(0), = (0)y. (224)

That is, if an operator commutes with the Hamiltonian, then the observable it rep-
resents must be conserved. This includes, of course, the Hamiltonian itself and so

energy conservation is intrinsically built into this picture.

2.2  Photon statistics

Quantum optics deals with light at the level of single quanta - photons - and their
interaction with matter. The idea of a quantised light field can be traced back to
Planck and his attempts to explain the spectral distribution of thermal light. Further

evidence came with Einstein's explanation of the photoelectric effect. What we think
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of as quantum optics began more earnestly with the experiments of Hanbury Brown
and Twiss and their observation of photon bunching in thermal light [2]. A full quantum
picture of coherent light fields was then introduced by Glauber and Sudarshan [3-5).
In this Section we discuss that theory and its implications. Many of the details and
derivations are left out in exchange for brevity. More comprehensive descriptions can

be found in [6], or for a more complete mathematical treatment see [1}|7].

2.2.1 Quantisation of the electromagnetic field

We begin with Maxwell's equations, specifically Ampére’s circuital law

[Jov x B = 60% (225)

where B and E are the magnetic and electric fields, and iy and gg are the permeability

and permittivity of free space. The vector potential A(r, t) relates the fields as

JdA
B=VxA E=-—— (2.20)
ot
and we operate in the Coulomb gauge where the vector potential satisfies
V-A=0 - va—laz—A (2.27)
B S 2 ot? '

where we show that Ampeére’s circuital law becomes a wave equation for the vector
potential and use ¢ = 1/y/tp€g is the speed of light in a vacuum.

We now split the vector potential into two complex terms

Alr, t) = AT(r, t) + A~ (r, ) (2.28)
where  A*(r, ) =Y Gauglr)e ™, A~ = (A*) (2.29)
k

and electromagnetic modes of frequency wy have spatial functions ug(r). Following

on from the gauge condition, V - ug(r) = 0, and from the wave equation

Y
(V + CZ) ug(r) = 0. (2.30)
The form of these spatial modes depends on the boundary conditions of the relevant
volume and they form a complete orthonormal set over the space indexed by k which

sums over both space and polarisation. The vector potential is now given by

112
A(r,t)—Z( n ) [akuk(r)e*fwmra[uz(r)e"wkf] (2.31)
k

Zwk&)
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where we normalise the equation such that the amplitudes a; are dimensionless and

that the energy in the field is commensurate with the Planck-Einstein relation.

The electric field is then given by

1/2
E(r =) (z‘:ok) [akuk(r)e-w - a[u;(r)ew] A (2.32)
k

In classical electromagnetism these amplitudes ay are complex numbers. Quantisa-
tion of the electromagnetic field is accomplished by designating these as operators.

Photons are bosons and so these operators obey
Tal)=0 [ox, 6]]= 0w (2.33)

This quantisation describes the electric field as a sum of independent harmonic oscil-
lators. Operators for different modes commute because they act on different Hilbert
spaces. This lets us consider a relevant set of single modes of the electromagnetic
fleld without considering the full spectrum. For the same mode the operators do not

commute meaning they are non-Hermitian.

The Hamiltonian for the electromagnetic field is given by
1
H=>5 / (£0E? + 1 ' B?) dr (2.34)

which by following through the above conditions and expanding out gives
. AFa 1
H—ghwk(akak—l—z), (2.35)

67[@ is the number operator and so the energy of the field is a sum over the energy
in each mode: the energy per photon multiplied by the number of photons plus one
half. This half represents the energy of the vacuum fluctuations in each mode. Since
there are infinite modes, this means that with zero photons in all modes we still have
infinite energy in the field. This may seem counterintuitive, but experiments measure

a change in energy so this infinite background does not influence measurements.

2.2.2 Fock states

For simplicity we now consider a single mode with a specific polarisation and fre-

quency w. Our Hamiltonian is then

ﬁ/_hw(afa+ ) (2.36)

N —
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This has obvious eigenstates: exact numbers of photons. These states are called
Fock states (or number states) and are written simply as |n). Clearly they are
eigenstates of the number operator with eigenvalues n. The ground state is that with

zero photons. The action of these operators on the Fock states is
alny=+nln—="1), a'|lny=Vn+1|in+1), a'aln)=nln). (237

We can see that & and a7 are annihilation and creation operators respectively. That
is, their action on a state removes or adds a photon to the state.

The Fock states form a complete basis for the mode. We can define a state
) = no |0) + i [1) +ny |2)- an| (2.38)
and write our operators as
a=10)(1]+ V212 +V312) (3] + - Zf|l—1 (239)

= 10|+ V212) (1| + V3[3) (2| + - - Z¢ Tli+ 1) (240)

i=0

ata =111 +212) 2] +33) (3] + -- Z |i) (2.41)

This clearly shows that the annihilation and creation operators are not Hermitian

and that the number operator is Hermitian with the Fock states as eigenstates.
Fock states make sense from a mathematical perspective and are physically in-

tuitive, but, in experiments, Fock states above a few photons are difficult to produce.

Most fields are a superposition or a mixed state of Fock states.

2.2.3 Coherent states

A useful basis for many situations are the coherent states |a). These are eigenstates

of the annthilation operator & with eigenvalues o
ala) =ala). (2.42)

This means subtracting photons from a coherent state returns the exact same state.
Since @ is non-Hermitian these eigenvalues can be complex.

Coherent states can be expressed in Fock states as

|O"2”

e~lal’i2 Z - p(n) = ie““, (2.43)

n!
n= 0
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Figure 2.1: O-function plots for different states of light.

where p(n) is the probability distribution of the photon number. This distribution
is Poissonian and the expectation value is (47@) = |a|’. Coherent states can be

thought of as a shift on the vacuum, formed by acting with the displacement operator
D(a) = elea"=) (2.44)

A pair of coherent states are not necessarily orthogonal. Whilst they can form
a basis for the states, they are overcomplete. This means that any state of the field
can be represented in multiple different combinations of coherent states. This allows
us to construct a useful visual representation for an electromagnetic field state: the

Q-function. This is given by
alpla
Qla) = talpla) (2.45)

b
Figure [27] shows Q-function plots of states discussed so far.

Defining the position and momentum operators for the harmonic oscillator as

qg= %(a—ﬁ-af), p=i 7(0—0”, (2.46)
we calculate variances on the coherent states as
h hw
NGy ==, (AP = = 247
(Ag)"=5-. (&p) > (2.47)

The product of the standard deviations is then i/2, showing that coherent states are

mintmum uncertainty states.

2.2.4 Squeezed states

If we take a coherent state and redistribute noise between two orthogonal axes, we
can create squeezed states. This is done with the squeezing operator

5(&) = elra e (2.48)
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where ¢ is a complex number. The squeezing takes the form of correlated pairs of
photons being added to and removed from the mode. A squeezed vacuum thus only
has contributions from even photon numbers. The magnitude and phase of ¢ tell
us about the degree to which noise is redistributed and the axis about which it is
squeezed, as shown in Flgure@

Two-mode squeezed states are formed by the alternate operator

5(8) = Q& ar—galal)2

(2.49)
where instead of pairs of photons correlated in a single mode, the pair is split
between two modes. The quantum correlations are thus between two modes rather

than between the populations of a single mode.

() 5(& = 1e)|0) (b) 5(& = 2e)|0) (0) 5(¢ = 2e)|0)

Figure 2.2: O-function plots for different squeezed vacuum states of light.

2.2.5 Thermal states

Another class of states that are important to consider are thermal states. These are
states that do not satisfy the minimum-uncertainty relation. Instead, their population

statistics follow the Bose-Einstein distribution
1 no\"
=— | — 250
pin) n+1 ( n+1 ) ( )
where 7 is the expectation value of the number operator and, for a temperature T

and mode of frequency w, is given by

1
= ————————. 2.51
" oplhwlks ) — 1 (251)
where kg is the Boltzmann constant.
For cold enough temperatures and large enough frequencies then this is approx-
imately the vacuum. For lower frequencies or higher temperatures, these thermal

photons must be taken into account.
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It is possible to create thermal coherent and squeezed states simply by applying
the displacement or squeezing operator to this thermal state instead of the vacuum.
Figure[2Z3]shows that, instead of displacing the state, larger thermal states simply
enlarge the uncertainties. For any A, the most probable photon number is still zero,
but the average photon number increases as the size of the spread increases. Note

that there is no phase information associated with the thermal state.

(b) n =2 (©Ar=5

Figure 2.3: Q-function plots for different thermal states of light.

2.2.6 Photon counting statistics

Important information about the state can be gained by looking at the counting
statistics. For light incident on a photon detector, we can measure the times of
arrival of the photons and so the correlations in these times can be studied. We can
do this with photon correlation measurements. We define the second-order correlation

function
GP(1) = (aT(t + t)aT(ta(t + D)a(t)) . (252)

Intuitively, this is the probability of measuring a photon at a time ¢ + 7 conditioned
on having measured a photon at time ¢. Often this is normalised by the probability

of measuring that first photon,

(at(t + T)aT(Ha(t + 1)a(t))
(at(t)a(r)’ '

g?(t) = (253)

For the rest of this analysis we will focus on ¢'?(0), i.e. the probability of measur-
ing two photons simultaneously relative to the probability of measuring one photon

squared. This can be written in the forms

/\1-/\1-/\ A
g?(0) = <iaiac>]20 ) (254)
=1+ (AA) — (7). (255)

()’
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The easiest case to decipher is that of coherent states. The statistics of Poisso-
nian distributions, such as the photon number probability distribution of a coherent
state, intrinsically apply to random processes. If a coherent beam or source produces
photons at random intervals, there cannot be correlation between the photon mea-
surements. A coherent state has Af = m which clearly leads to g?(0) = 1.
There are no correlations between photon counts since the probability of measuring
a second photon is the same as measuring the first. Remembering that coherent
states are eigenstates of the annihilation operator, this makes perfect sense. The
measurement of the first photon does not impact the statistics of measuring a second

photon because the annihilation operator does not change a coherent state.

Thermal light produces what is known as super-Poissonian light. The variance
of a thermal state follows the relation An > m and so g?/(0) > 1 and so there
the measurement of one photon makes it more likely to have a second. This is often
called bunched light as photons will tend to come closer together with longer pauses
between those “bunches”. As i increases, the average population of the thermal state

increases and so the bunching effect becomes stronger.

A Fock state |n) gives the result

g?0)=1- 1 (2.56)
n

For a single photon this is zero, which makes sense given that measuring one photon
negates any possibility of measuring a second. For higher photon numbers then
g'?(0) tends towards unity but is always less. Measuring a photon makes it less
likely to measure a second photon and so we have an example of something we call
anti-bunched light. Bunching and random statistics can both be perfectly explained
with classical statistics, but anti-bunching is a distinctly quantum phenomenon. This
means any state with g©?)(0) < 1, or equivalently An < ~/(f) is inherently quantum.

2.3 Open system evolution

A problem with simulating quantum systems is that the system in which we are
interested in is always coupled in some way to the environment around it. That
interaction thus needs to be included in the simulation, but including the environment
in the simulation makes the Hilbert space far too large. Of course, the environment
also has its own interactions with its environment and so on. Instead, we need to trace
out the environment in some way. In this Section, | discuss methods of doing this in
quantum optics that will be used in the rest of the thesis. Much of the mathematical
detail here is skipped over since it is covered in much more detail elsewhere. Each

case has relevant references to where those details can be found.
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2.3.1 Master equation

The first method to discuss is the quantum optical master equation [7/H9]. Here, we

take a total Hamiltonian
H = Hs + He + Hse (2.57)

where S stands for system, £ for environment and SE for the system-environment
interaction. The density matrix P for both the system and environment follows the
equation '

P = —%{H, P]. (2:58)

What we want is
plt) = tre (P(1)). (2.59)

We transform to the interaction picture such that

P/(t) _ ei(/:/5+/:/5)t/hp(t)efi(/:/sﬂ%)l/ﬁ and /://SE(t) _ e[(/:/5+ﬁlg)t/hlﬁlsE(t)efi(/:/5+ﬁ/5)[/h'

(2.60)
This gives us an evolution equation
P — —% [ﬁ/gE, P’] . (2.61)
We can integrate this and substitute that result in to give
t
P [P0, P10 - 5 [ ar [t [Pt o] 262
0

At this stage no assumptions have been made and so the form is exact.

The first assumption is that at t = 0 there is no correlation between the system
and its environment. This means that P’(0) = p(0)£(0) where we introduce E as the

environment density matrix.

The second assumption is that the environment is very large and weakly coupled
to the system such that it remains virtually unaffected by that coupling. We then
make a Born approximation, neglecting all terms to more than second order in Hse

and so, after both assumptions, we have
’ ¢
pll) = —— ] dt' e (| Hse (o), [ Fse (). 2 () E0)]]) (263)
0

This equation is interesting because the evolution of p’(t) is related to its own past
since we integrate over p/(t'). This means that two identical system states may
evolve differently depending on the path they took to that state. This makes the
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system non-Markovian.

Throughout this work, we assume that this is not the case. This Markovian
approximation states that the evolution of the state cannot be affected by the past
state. This is equivalent to saying that any information sent into the environment is
lost. This makes sense for most systems, where the environment is very large and
thermal such that changes in it would be washed away quickly.

We make the assumption that the environment is composed of a set of electromag-
netic modes {7, }. The system interacts with the environment through an exchange
of energy between some system operator J, which we later refer to as the jump or

loss operator, and those modesﬂ

fle =Y hwflt, Flse =Y h (K;‘%f + K,-M,-) . (2.64)
J J

The density matrix for the environment is then taken as in thermal equilibrium at
temperature T as the product of thermal states in each of the set of modes. We then
expand out the master equation given in Equation [2.62] under these approximations
and calculate the correlations within the environment. A full treatment of this is given
in [8]. Here, we summarise the key aspects. Each of the modes is assumed to have
no correlations to other modes. Environment operators for each mode are related to
themselves at other times with a correlation function that decays much faster than the
timescale associated with the evolution of the system operator. By then integrating
over the environment to account for the summation of modes and moving back out of

the interaction picture we arrive at the quantum optical master equation (2 = 1)

p=—i [H, ,o] + % (27p77 — jfjp — p]Tj) +yn (]pﬁ + jfpj - jfjp - p]ﬁ)
(2.65)
where
y = 271G (wo)| k(wo)|? (2.66)

and g(wp) and «(wp) are, respectively, the density of states in the environment and the
coupling between environment and system to each of those states at the frequency of
the emission wp. In essence, y tells us about the rate of excitations being exchanged
between the system and its environment. If 7 is non-zero, then excitations can enter
the system at rate yn and leave at an enhanced rate y(n + 1). If the environment
is very cold relative to the energy of the photons, then 7 can be assumed as zero,
as it will be throughout this thesis, and that exchange is one-sided - excitations can

leave the system but no excitations will enter - and happens at a rate y. The master

30f course, the same derivation is valid for any form of environment that can be expressed in terms of
harmonic oscillators. Moreover, the specific form of the environment is not actually necessary 8] However,
for the purposes of much of quantum optics, and certainly for this thesis, this is a suitable picture and it
provides more intuition than a more general derivation.
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equation used throughout these thesis will then beﬂ

p=—iFp] + Y Y (el = Wp—pl0) =L 267
i
where L is a set of operations on the state known as a superoperator. Note that
these dissipative terms in the sum will generally be referred to using a superoperator
defined by
Dlilp = (20ipl = hp = p10) (268)

The density matrix evolves according to Equation[267] and so at each time step we
have a mixture of coherent Hamiltonian evolution and scattering to the environment.
That scattering to the environment entangles it with the system. Information about
the system is held within that scattering record. That record is traced over when we
trace out the environment, and so the information is lost. Defining a state conditioned

on a particular scattering record as |¢rec) then the master equation result is

plt) = ) prec [drec(t)) (drec(®)] (2:69)

REC

where we sum over every single possible scattering record.

2.3.2 Quantum trajectories

The master equation produces a mixed state of all the possible paths of loss and
no loss that the initial state can take as it evolves in the system. An alternative
method is to stochastically choose a single path: a Monte-Carlo quantum trajectory.
We choose to either evolve the system dissipatively or coherently at each time step
rather than the mixture of both prescribed by the master equation. The physical
interpretation for this is the placing of a detector outside the system that measures
whether or not there is a loss event. Such a move provides information about the
environment and so the mixture caused by the information lost to the environment
in the master equation is removed. The measurement disentangles the system from
its environment, and so returns a pure state. Each trajectory has a unique record
of times (and locations) of each loss measurement and the average of all possible

trajectories returns the master equation result, as shown in Figure [24]

A strict and thorough mathematical description of trajectories and how they relate

to the master equation is given in [10]. Here, | briefly discuss the key points of such

4t should be noted that this master equation assumes that the loss processes are all completely
independent. This is an assumption that, while it does hold for the work considered in this thesis, is not
necessarily always true. When it is not, the master equation cannot be written in this simple form and
instead y is a matrix.
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Figure 2.4: A comparison of quantum trajectories and the master equation for spontaneous emission from
a single atom (see Section @for more details). The master equation result is an exponential decay,
while individual trajectories instead “jump” to the ground state at a particular time. Averaging over those
times returns an exponential decay.

a derivation. We take our master equation and split £ into two partsﬂ
p—I(Lc+Ls)p (270

~ T [ ain A A A oA
Lep=—ifl.pl- 5 (ﬂ/p + pﬂj) L Lp=Ip)t. (271)

The first of these superoperators, L, represents coherent evolution. We can write

its action on the density matrix in the form
Lop=—i(He ) (] — ) (Y] H;) where  Fe = — 1], (272)

The state evolves according to a Schrodinger equation (A = 1)

dlg(n)
dt

——ific|pe)  — o) = (eI oy, @73y

The fact the Hamiltonian is now non-Hermitian means that states with non-zero
values for Oﬁ) will “decay”. This subtlety can be of great importance, and creates a
distinctly different evolution to the usual unitary Schrodinger equation.

Let us consider a state such that A |¢s) o< ) and (] JT] ) = 0. These states
do not decay and, as eigenstates of the Hamiltonian, they do not evolve beyond a

global phase rotation. This means such states are decoupled from the evolution.

5For the sake of simplicity in this derivation we consider one jump operator, but the treatment is easily
generalised to any number.
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The backaction of the null measurement in the photon emission channel projects the
system into such a state, since the measurement of no photons over long times is not
commensurate with the system being anywhere else. Due to this absence of emission,
they are called dark states. Multiple dark states can exist for the same system. In
that case, the scattering record before the emergence of the dark state might signal
which dark state has been reached.

If the system has several dark states or a dark state and a stable “bright” state, the
master equation gives us a statistical mixture of the various solutions. If those dark
states are not obvious or are obscured by bright states, then it is often ambiguous
what the underlying physics is. The ambiguity is broken by considering Monte-Carlo

trajectories where a single trajectory shows a single specific attractor.

The action of £, is even simpler to consider
Lip— ). (2.74)

We act with the jump operator on the state.

For an initial pure state, this means that both superoperators in Equation [2.70]
can be replaced by reqular operators acting on a pure state. Our stochastic choice of
which operator to apply thus leads us through the time evolution with a pure state.
Herein lies the practical benefit of using quantum trajectories. For a Hilbert space
of size M then a pure state formalism involves a differential equation for a vector of
M complex numbers. The master equation approach requires the density matrix, for
which the differential equation is now for a matrix of M? complex numbers. Evolving
the master equation thus takes M times more computational time than a trajectory.
Therefore, running a large number of trajectorlesﬂ is still substantially faster than

one master equation integration for large systems.

The Monte-Carlo algorithm to move from |(t)) — |¢i(t) + ot) is as follows:

1. Generate a uniformly distributed random number between zero and one, R.
2. Calculate the probability that the jump operator occurs in the time step

p() = (w(] T |g(1)) ot. (2.75)

3. (a) If p(J) > R then
(e + 5t)) =T (1)) (276)

5]t should also be noted that trajectories are trivially parallelised since each trajectory is completely
separate. This parallelisation allows for a trajectory to be run on each CPU simultaneously, and so as
many trajectories as the computer has CPUs can be run at once. This means that trajectories can offer a
greatly improved speed at finding evolution even when it is the master equation result that is desired.
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(b) If p(J) < R then
l(t + ot)) = (1 + ét;i/:/) l(t)) . (2.77)

4. Normalise the state.

By iterating this process we can go from some initial state through to some final state
|drec) uniquely defined by the record of when (a) and (b) were choserﬂ Remember-
ing that the master equation returns a weighted average over all possible records, it
is intuitive from this picture to see how a sample average of trajectories returns an

approximation of the master equation result.

2.3.3 Other stochastic methods

The quantum trajectory theory has limitations. One of the more obvious relates to
the measurement of the systems output. Perfect photon detection, as described by
the formalism above, is not currently feasible. Instead, excitations are lost that are
never measured. In a lot of cases, the intuition gained from trajectories is enough
to predict what would happen with a realistic detector. However, there are also
methods of adapting quantum trajectories to allow for a true mathematical picture.
These methods are not used explicitly in this thesis, and so the discussion of them is
kept brief and is included solely to illustrate how the assumptions made above can
be worked around. For a detailed mathematical approach to such methods see [9].

Firstly, we continue to assume detection of single quanta that escape the system
but that measurement is done with efficiency n. This means that 1 of those quanta are
measured and 1 — n are not. This means that we can run the Monte-Carlo algorithm
above with a simple tweak: we now have two jump operators \ﬁ] and \/m]
The first of these is measured so still performs stochastic jumps on the system. The
second is not and so, in between jumps, a master equation must be used instead of
coherent evolution. These stochastic master equations therefore unravel some of the
system-environment entanglement but not all of it.

Alternative measurement schemes are also possible. For photon fields, measuring
signals mixed with a strong coherent field is often advantageous for practical reasons.
Even with a perfect detection scheme, the noise associated with that coherent field
needs to be modelled on top of the measurement. This leads to stochastic Schrodinger
equations where coherent evolution exists in parallel with noise elements. Of course,
such systems can be modelled with imperfect schemes as well, where we return to a

form of stochastic master equation.

’For systems with multiple jump operators then this set of steps is followed for each operator at each
time step.
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Chapter 3
Atomic physics

To study quantum mechanics, we need quantum systems that can be contained and
controlled. One of the more obvious options, and most conceptually simple, is that
of single atoms - in particular, the outermost electron of a single alkali atom. That
electron lives in particular orbits around the nucleus, giving us a set of quantum
states for the electron to live in. In this Chapter, | describe the structure of those
electronic levels, and how through interaction with modes of the electromagnetic field
the electron can move between them. | then discuss the cooling of the atoms down
to temperatures where their motion is restricted, enabling more control over those
interactions. Finally | discuss the algebra of two-level systems and integer spins, how
to describe ensembles of atoms and the idea of squeezing in a finite size ensemble.

27
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3.1 Atomic level structure

Manipulating the state of atoms is a key component of the work in this thesis, and
so it is necessary to explain what those states are. | start from the traditional place
- the single hydrogen atom - and go through the corrections and field shifts that
provide the rich structure of states used by atomic physicists. These explanations
draw from [11] and that is an excellent place to seek further details.

3.1.1  Gross structure

The Hamiltonian eigenvalue equation for the spatial wavefunction, ¢s(r), of the electron

in a hydrogen atom is

2 2
- h » e
2me 4regr

) = Ed(r) (31)

where the electron is assumed to be in a Coulomb potential created by the nucleus
and we introduce the mass and charge of the electron as m, and —e respectively.
We cast to spherical coordinates {r, 8, ¢ }, in which the solution must be sepa-

rable, ¢(r) = R(r)Y(8, ), due to the spherically symmetric potential. We have

10 [ ,0R\  2me.r? g by
R&r(rar)_ SV -6) =Py - Pr=cy (2

where we have simplified the angular dependence to the orbital angular momentum
squared, h212, and used that each side now depends on different variables and so
both equal the same constant, C.

For the ¢ component, ®(¢), the result is somewhat trivial
— = x® = b =AM Be M (33)

Physical solutions require ¢(r), and thus ®, to be continuous in space and so ®(¢ +
2) = ®(¢). This means that m must be an integer. We can now introduce the
operator 1,. This operator is the projection of the orbital angular momentum onto the
z-axis and is given by
hl, = _in (3.4)
dep
Clearly this operator has eigenvalues m with ® = e!™® the eigenfunctions.
The 6 dependence, ©(0) is more complicated. One method to find these solutions

makes use of the ladder operators, which increase or decrease m, defined by

A A A A - 5} 0
Ly =L, £ ily, [, =e*? i@ + icotQ% . (35)
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Repeated application of the raising or lowering operator does not continue indefi-
nitely. The maximum value that can be achieved is =m and action to move the state

beyond that gives zero. Making use of this and defining that maximum m as [
1,Y=0 — Yosin el (3.6)
To find an arbitrary combination of [ and m, we can then use the lowering operatorﬂ
n [—m | |
Vi o (1,) sin! Gell?. (37)

Y1 m gives us the value of the constant: C = [(L + 1). This gives us two quantum
numbers by which to cateqgorise the anqular dependence of the state: [ is the angular
momentum quantum number and m is the magnetic quantum number.

We can now consider the radial component of the distribution. We make the
substitution P(r) = rR(r) to simplify the equation and use the constant from above

P [ ((+1) e
. [——E]Po. (38)

We can make the equation dimensionless using the substitution

2m.|E|r? 2P (+1) A
2 _ e _ - —
R panbrtal Ul (3.9)

where we define a constant A that characterises the Coulomb interaction strength as

e? 2me

~ deo \| R2|E|

(3.10)

The solution to such an equation requires finite term polgnomlalsﬂ and it is found

that these converge when A = 2n. This gives energies

meet 1

£y ——— et
167T2€§h2 n?

(3.11)
Here we have defined another quantum number - n - the principal quantum num-
ber. This energy is independent of [ and m making those states degenerate. The
polynomial defining the radial state does depend on [ and so limits 0 < [ < n.

We can thus describe the positional state of the electron of a hydrogen atom with

three quantum numbers: |n, [, m) = R, (r)Yi.m(6, ).

8The resultant functions are actually well known functions called spherical harmonics. They form a
complete orthogonal set for states living on a sphere.

9These polynomials are Laguerre polynomials. They form an orthogonal set for the radial component
of the electron’s wavefunction. This means that between these polynomials and the spherical harmonics
we have an orthogonal set to describe the state in 3D.
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3.1.2 Fine structure

The electron itself has its own intrinsic angular momentum: spirm This means that
our hydrogen electron needs two more quantum numbers |n, [, m;, s, ms) where s is
the spin and my its z-axis projection. For an electron, s is 1/2 and so m can be
+1/2=1or —1/2=].

Electrons moving around the nucleus create magnetic fields. The electron spin
provides an intrinsic magnetic moment and so the electron responds to the magnetic
field created by its own motion. This phenomenon is referred to as spin-orbit coupling.
This extra term in the Hamiltonian gives an energy shift proportional to (5 - f) We

can calculate this by considering the total angular momentum of the electron
ji=l+s - 26 h=0{ - &)=+ U+ —s(s+1). (312

The sum is either j = [ &+ 1/2. We thus break the degeneracy of the different { states
and we might think we split those [ states into two j states too. However, due to
relativistic considerations, a full calculation actually recreates degeneracy between
states with the same n and j. This degeneracy is slightly broken by the Lamb shift
which includes vacuum fluctuations of the electromagnetic field. These shifts are on
the order of a tenth of the fine structure splitting. For the alkalt atoms, which we

focus on in this thesis, the different [ states are split by another effect.

3.1.3 Hyperfine structure

The above work all assumes the nucleus is a fixed charge that can be treated com-
pletely classically. However, protons and neutrons also have spin and so the nucleus
has its own spl This means that the nucleus spin, i, is also affected by the mag-
netic field produced by the moving electron. This hyperfine splitting is proportional

A~

to <i 1) Defining a total angular momentum of the atom

AoA A A

F=i+l = 20 =F)—()—{) =FF+1)=I(1+1)—j(j+1). (313)

That means that different vector sums of / and j are split. For the hydrogen atom
(assuming the common isotope with zero neutrons) then / = 1/2 and so for each level
we have a split into two hyperfine levels. For atoms with higher values of / then we

have |/ — j| < F < I+ j where we also satisfy F = |/ — j| + n with n an integer.

10AlL elementary particles have spin angular momentum. Protons, neutrons and electrons are all spin-1/2
particles, also called fermions. This means they have an intrinsic spin of //2. Pauli's exclusion principle
states that no two fermions can have the same wavefunction. Photons are bosons or spin-1 particles. They
have an intrinsic spin of /& and no exclusion principle. A physical intuition to spin is difficult to obtain
since these elementary particles are points and therefore cannot really be thought of as literally spinning.
Instead, this intrinsic angular momentum needs to be taken as mathematical and experimental fact.

Summing over the spin of many nucleons can give a variety of total nuclear spin. However, one of
these total spins is generally the most stable and so for each isotope there is a fixed nuclear spin value.
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3.1.4 Zeeman & light shifts

In the presence of a low strength external magnetic field, the energy of the levels
shift proportional to F.B. If we define the z-axis along the magnetic field then
the shift is proportional to Bmg, where mg is the magnetic quantum number of the
total angular momentum. The magnetic field splits states with different magnetic
numbers, removing the last layer of degeneracy. This effect is linear and so the shifts
on |F,£mr) are equal in magnitude and opposite in sign and so the gaps between
neighbouring states are the same. For higher fields a second effect becomes relevant
due to the coupling between the spin and orbital angular momentum that results in a
shift proportional to the square of the previous shift. This shift is called the quadratic
Zeeman effect and it shifts states |F, =mf) the same amount with the same sign.

An electromagnetic field also shifts the levels. These light shifts are most relevant
to this work in the limit where the field is strongly detuned from the transition. In
that case the light shift is given by Q?/4A, where A is the detuning and Q is the
Rabi frequency introduced in Section B.2.1]

3.1.5 Full structure

We now have states uniquely identified by the quantum numbers |n,(,j, F, mg).
Generally states are not written in this format. In chemistry the spin effects are not

generally important and so states are written with the first two quantum numbers
nl (3.14)

where [ is generally represented by letters. For example, [ = 0 is the S orbital and

[ =1 is the P orbital. With fine structure and hyperfine structure we will write

nli|F, me). (3.15)

3.1.6 Electronic structure of alkali atoms

Everything above is for the hydrogen atom, and all other atoms have multiple elec-
trons. These electrons interact and so performing analysis like above becomes very
difficult. The majority of this thesis considers alkali atoms - primarily ® Rb. Rubidium

has 37 electrons. We can express the first 36 electrons in ground state as
1522S%2Pf3523pP3D194524pP0 (3.16)

where the superscripts are the number of electrons in that level. This means that the
electrons fill all the levels except for one spare electron; the same holds for all other

alkali atoms. A surprisingly powerful picture is to then think of the atom as a single
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electron outside of a core - which includes the nucleus and the other 36 electrons -
of charge +e. This core creates a Coulomb potential with the same charge, though
a different mass, to the hydrogenic case.

There are other differences to take into account. The orbitals are probability
distributions with different shapes, so for different { orbitals the amount of the distri-
bution contained within the core is different. The lower [ orbitals penetrate the core
more and so the approximation of a hydrogenic potential is less accurate. This means
that they, on average, see a deeper potential than they would in hydrogen, and so
those orbitals are shifted to lower energies. For higher [ the orbitals are closer to
the hydrogenic forms. This means that the different { orbitals are shifted away from
each other; in fact, the shift is substantial enough that for rubidium the 5S level has
a lower energy than the 4D level, and so it is filled first. The second key difference
is that, due to more nucleons being added, the nuclear spin is not necessarily 1/2
any more. This can lead to much richer structure than the hydrogen atom.

It is this picture which will be used in much of this thesis. There is an inner
core of electrons and the nucleus, and a single electron that is manipulated. %Rb
has a nuclear spin of 3/2 and so the ground state 5S is split into two hyperfine
levels 5°Si |[F =1, mF) and 5°Sq2 |F = 2, mg), where the superscript is 2s + 1.
The relevant excited states are then those with { = 1, which we separate into two
sets of states due to the fine structure splitting: the Dy line 5°Pq;; and the D, line
5?P3p. The fine structure splitting is large enough that these lines can be considered
separately. The hyperfine splitting, which allows for F = 1,2 in the D; line and
F=0,1,2,3 in the D, line, is considerably smaller and so it is often necessary to
consider the full structure of the line for the work in this thesis.

3.2 Interactions of atoms & light

| now introduce a key concept for this thesis: how light can be used to manipulate
the state of the outer electron of an alkali atom.

3.2.1 Rabi oscillations

Let us consider a single atom exposed to a single-mode oscillating electric field at
frequency w, for example, a single-mode laser. We assume that the frequency and
polarisation match such that the field acts on a single transition. This means that
we can consider the atom as a two-level system with a ground and an excited state,
which we label as |0) and |1) respectively, as shown in Figure This gives us a
Hamiltonian (A = 1)

F1 = wq [0) (O] + we [1) (1] (317)
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The atom has an electric dipole —ef and so the interaction with the field gives

an extra Hamiltonian term
H(t) = wo [1) (1] + ef - Eq cos(wt) (3.18)

where we have moved to a reference frame where wy = 0 and wy = we — wy is the

transition frequency between the two-levels.

Our wavefunction for the atom lives in some state

(1)) = ¢4(6)[0) + ce(t) [1) (3.19)

and the Hamiltonian’s action upon that state gives us
Cg=—i=e%ce, to=—i—e Mg, (3.20)

where we have moved to a rotating frame, defined the detuning A = w — wp and the
Rabi frequency
Q= (0]ef - Eg|1). (3.21)

Combining these coupled differential equations gives a second order equation for ¢,

d’ce dee  |Qf
N— + —co. = 0. 322
dt? o dt T (3.22)

Taking c4(0) = 1 then the population in the excited state oscillates

2
|ce(t)]? = & e (VW) where W2 = Q% + A% (3.23)

wo

|0> V A 4

Figure 3.1: Diagram of a two-level system driven between |0) < |1) by a coherent field at Rabi frequency
Q and with detuning A.
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Figure 3.2: Populations in the ground and excited states of a two-level atom driven with coherent radiation
with Rabi frequency Q with time in units Q7'

At resonance, A = 0, these Rabi oscillations reduce to
Qt Ot
|ce(t)]> = sin’ (2) - |cg(t)]* = cos? (2) : (3.24)

Quite simply the atom oscillates completely between the two states with the Rabi
frequency. This allows us to prepare specific superpositions of the two states. Allow-
ing Qt = s prepares the atom entirely in the excited state, while Qt = /2 prepares
an equal superposition of the two. These are called 7- and w/2-pulses respectively.

Figure 3.2 shows this resonant behaviour. We also see that with a non-zero
detuning then we still have oscillations but some population always remains in the

ground state and the oscillations occur on a faster timescale.

3.2.2 Spontaneous emission

Rabi oscillations imply entirely coherent interactions between the field and the atom.
This ignores an important fact: spontaneous emission. The excited state is by nature
unstable and so decays back to the ground state by emitting a photon. This happens
on a time-scale defined by the spontaneous emission rate [11]

2e’w] 5
= f . 325
V= i (gl fle)| 529

We can include this in a master equation for the Rabi oscillation picture
. P 14
p = —iH. pl+ 5Dllg) (ellp. (320)

Figure 33| shows that spontaneous emission damps the oscillations. When y > Q
then this emission process dominates and there are no oscillations and we reach a

steady state quickly. This steady state is the balance of how much population is on
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Figure 3.3: Populations in the ground and excited states of a two-level atom with spontaneous emission
rate y driven with resonant coherent radiation at Rabi frequency Q with time in units Q.

average excited before an emission. Thus for high y, that steady state is primarily
the ground state. With y < Q and zero detuning, then we see decaying oscillations
to some steady state much closer to an even split between the states.

Mapping to the trajectory picture shows that the oscillations are still present
and continue indefinitely. The difference is that the spontaneous emission events
reset the oscillations. This means the master equation, which is the average over
all possible trajectories, is the average of oscillations with different phases. After
a timescale allowing for a few events, then the phase of the oscillations is evenly
distributed. This means that a single trajectory may show oscillations, but the average

will completely destructively interfere, producing a steady state.

3.2.3 Selection rules

So far we have considered just two states and for both the coherent and dissipative

cases we have to evaluate quantities related to the electric dipole moment

(gltle). (3-27)
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For real atoms these quantities can be non-zero or zero, i.e. allowed and forbidden
transitions. Due to the symmetries of the systems, the parity of the state must
change. We also have to conserve angular momentum. This gives us the following

set of rules [6]:

e Al = +1. The parity of the azimuthal wavefunction is given by (—1)! and so
this must change by one to flip parity. This forbids, for example, S <> S or

S < D transitions.

e Am depends on the polarisation of the light. For linear z- or, as it will called
henceforth, m-polarised light Am = 0. For o.- and o_-polarised light then
Am = +1, —1 respectively. For x— or y—polarised light, we can think of them
as a combination of both g. and so Am = +1.

e As = 0. Light does not interact with the spin of the electron and so this cannot

change. This limits the change of anqgular momentum to either zero or 1.

Remembering the relevant set of levels for a ®Rb atom this means that the two
lower hyperfine levels, 5?Sy |F = 1,2) cannot be coupled because they have the
same [ and so the |F = 2) state does not decaE Those ground states can be
coupled to the states in the Dj or D, line provided that AF = 0, £1 and, making

use of the correct light polarisations, Amg = 0, 1.

3.2.4 Raman transitions

A key component for the work in this thesis is that of Raman transitions. We couple
our ground and excited states |0) and |1) via some intermediary state |m), as shown
in Figure 34 These could be driven by the same laser, or by two separate lasers.
In the latter case, either the frequency of the drives, the polarisation of the drives, or

both might be different. Moving to the interaction picture, we have a Hamiltonian
A~ Qo O
= 7°elﬂuf Im) (0] + %e’A” Im) (1] + h.c. (3.28)

where h.c. means Hermitian conjugate and therefore provides the reverse processes
and Qg1 and Ag,1 are the Rabi frequencies and detunings for the two transitions.
From the form of the Hamiltonian, it can be seen that there is no direct coupling
between |0) <> |1).

If both drives are resonant and we start in the ground state, as in Figure 35
then we can see that the population moves through |m) to |1) and back. Oscillations

2 reality, there are other types of transitions possible. Magnetic-dipole and electric-quadrupole
transitions do not need to change the parity and so the F = 2 states can decay via those processes.
However, such transitions generally occur on much longer timescales than electric-dipole transitions and
so we can consider the F = 2 level as a metastable “ground state” over the timescales considered in this
thesis.
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Figure 3.4: Diagram of a Raman transition between |0) <> |1) formed via Rabi oscillations between an
intermediary state |m) and both states. The driving fields have Rabi frequencies Qg 1 and detunings Ag 1.

10 — Ground 10
—— Excited
—— Intermediary
0.8 038
206 206
5 5§ —— Ground
= 5 —— Excited
2 F —— Intermediary
204 204
0.2 02
0.0 0.0
0 2 4 6 8 10 0 200 400 600 800 1000
Time Time
@@ A=0 (b) A = 100Q
1.0
0.8
206
5 — Ground
k! —— Excited
3 —— Intermediary
& 0.44
0.2
0.0
4 200 400 600 800 1000
Time

(c) A=100Q, y =Q

Figure 3.5: Populations in the ground, excited and intermediary states of an atom undergoing Raman
transitions. Both driving fields have Rabi frequency Q with time in units of Q="
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between the ground state and the excited state are complete, though they are not
sinusoidal due to the intermediary step.

However, if the detunings are instead large then the same process happens but
with significantly lower population in the intermediary level and on a much slower
timescale. The intermediary state is only slightly excited by the process, yet the full
population is transferred to the excited state. What we have looks a lot like Rabi
oscillations between the ground and excited state, yet there is no direct coupling
between the two. Instead, we have two-photon transitions where a photon is ab-
sorbed from the first mode and emitted into the second via a virtual excitation of the
intermediary state.

Since the intermediary state is only virtually excited we can adiabatically elimi-
nate the state from the Hamiltonian, i.e. since there is almost no population there, we
can trace it out. The Hamiltonian for the remaining two-level system then effectively
describes Rabi oscillations between those states where the rate is dependent on the
true Rabi frequencies and detunings as well as the mismatch between the two light
fields.

Of course we can also get Rabi oscillations between two states directly, so why
is this technique useful? Raman transitions allow us to couple two states between
which a direct transition is forbidden. This means that both are stable, and there is
no spontaneous emission from |1) — |0} (or vice versa). This allows us to produce
systems without dephasing due to spontaneous emission events as the only dephas-
ing in this system comes from spontaneous emission from the intermediary state.
Remaining in the three state system we can include spontaneous emission from that
intermediary state. Figure shows that the effective Rabi oscillations dephase
after a significantly larger number of oscillations than if we used an excited state.
For most of this thesis we operate in a hierarchy of scales A 3> Q > y and so the

rate of spontaneous emission is so small that we can disregard it.

3.3 Cold atoms & Bose-Einstein condensates

To be able to manipulate and monitor the internal states of these atoms requires them
to be “contained”. This cannot happen if the atom is moving around. This means the
atoms need to be cooled and held in some sort of trap. In this Section, | give a brief

explanation of these processes. More detail can be found in [6)[11].

3.3.1 Laser cooling

Much of laser cooling relies on the recoil force of an atom scattering photons. A
photon carries momentum %k, where |k| = 27/A is the wavevector and A is the

wavelength of the photon. Momentum is conserved and so, if an atom absorbs a photon
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with momentum #k then the atom gains 2k momentum. Equivalently, spontaneous
emission carries away momentum. Spontaneous emission is randomly distributed, so
this momentum "kick” is randomly distributed.

Initially, we consider a beam of atoms travelling in a single specific direction
which takes them into a laser beam. Atoms travelling into the laser beam thus
absorb photons travelling in the opposite direction to them which slows them down.
They then emit and are able to absorb again. Absorbing multiple photons eventually
means this process should slow the photons down to velocities limited by the random
walk process induced by the spontaneous emission.

However, the atoms are travelling and so they see a Doppler shifted version of
the light. This means that light resonant for the atom initially, once it has been
slowed and sees a different Doppler shifted frequency, is no longer resonant for
that atom. There are two methods to deal with this: a Zeeman slower and chirp
cooling. The Zeeman slower is a tapered solenoid that, due to the changing magnetic
fleld, Zeeman shifts the relevant states to compensate for the slowing. Chirp cooling
involves changing the frequency of the laser to compensate instead.

In three dimensions, a similar technique known as optical molasses is used. This
involves three pairs of counter-propagating laser beams at the same frequency. The
frequency is chosen with negative detuning, A = w — wy, such that the Doppler shift
causes the atom to see the laser beam it is travelling into to be closer to the resonant
frequency than its pair. The momentum is on average reduced rather than increased
as the atom preferentially interacts with the field of direction opposite to its direction.

The heating caused by the random spontaneous emission can be balanced against
the cooling to find the limit of such a technique. For a spontaneous emission rate y

the optimal detuning is A = —y/2 and the Doppler cooling limit is

Dy

Ty = -~
T

(3.29)

This is not the ultimate limit of laser cooling. The two counter-propagating lasers
interfere to produce a standing wave. If they have orthogonal polarisations then the
standing wave has a modulated polarisation pattern. This polarisation gradient means
that different magnetic states of the atom see a different modulated light shift and
therefore a different potential.

Consider an atom travelling through that potential; it must convert potential en-
ergy to and from kinetic energy. An atom at its largest potential will have its lowest
kinetic energy and vice versa. The laser can be tuned such that the atom is most
likely to absorb a photon at this point of highest potential. It can then emit a photon
with polarisation such that it leaves the atom in a different magnetic state. This state
sees a different modulation to the potential and so it is not at its maximum potential

energy. This means that the spontaneously emitted photon has to have carried off
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some of that potential energy. This process means that the most likely outcome is for
the atom to climb a potential hill and then lose some (or all) of the potential energy
it has gained and start back over again at low potential. This repeated climbing of
hills only to lose the gained energy has lead to this process being given the rather
poetic name of Sisyphus cooling.

This process works until the energy of the atoms is such that the kinetic energy
is lower than the potential barrier. This means that, up to some limit, the smaller
that barrier can be made, i.e. large detuning, the colder the atoms become. The limit
is actually still set by the random recoils from the spontaneous emission events, but
in this case it is set by a single recoil rather than the random walk process and so
the limit is much lower

kP

Tr = 4
R= (3:30)

where M is the mass of the atom.
To cool atoms down to temperatures useful for quantum optics experiments the

following procedure might be followed:

1. Create a beam of atoms and pass that beam through a Zeeman slower into an
optical molasseﬂ with detuning A = —y/2.

2. Detuning is held long enough for the ensemble to approach the Doppler limit.

3. Greatly increase the detuning and reduce the intensity such that Sisyphus

cooling takes over.

3.3.2 Trapping

Our discussion of Sisyphus cooling already implies the concept behind trapping:
reducing the velocity in a potential such that the atoms do not have the kinetic energy
to move out of the potential dip. The first type of trap to discuss is a magneto-optical
trap (MOT). This uses optical molasses with a magnetic field gradient. The field is
zero at the centre and linearly increases in all directions. This field is not what
directly traps the atomﬂ the field creates Zeeman shifts on the levels providing an
imbalance in the scattering forces that encourages the atom to move back towards
the centre. Often a MOT will be overlapped with the optical molasses at the time of
collection from the slowed beam, then turned off once the atoms have accumulated to

allow them to be further cooled.

BFor those atoms not suitably slowed by the Zeeman slower, their velocity will simply be too large to
be “captured” by the optical molasses and they will be lost. Overlapping a trap over the optical molasses,
as discussed in Section allows us to increase that capture velocity.

"Magnetic trapping, where the atoms are directly trapped by the field, is also possible. Here the
magnetic dipole provides a force on the atom o< —mpdB/dz. For cold atoms it is possible for these
trajectories to bend round to form closed loops, localising the atoms. This of course only works for one
sign of magnetic state mr and so cannot be used for the sorts of experiments described in this thesis.
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A second type of trap uses the other force exerted by light on atoms: the dipole

force. The energy of a dipole in an electric field is

1 ou oE
U=§er-E - FZ=—EO<E$A (331)
If the radiation propagates along that axis we have a force
0E
F, = —ex (Tzo cos(wt — kz) + kEq sin(wt — kz)] . (332)

Taking time averages of these two terms and following the derivation through gives
us that the second term is related to the scattering force that we discussed with
laser cooling [11] The first term is the dipole force and is important when the field
gradient is strong. The dipole force for large detuning can be shown to be equal to
the derivative of the light shift. This means that if we have a gradient on the light
shift, then the potential follows that gradient as

hQ?

Udipole = N (3.33)

If the detuning is negative then this potential is at a minimum at points of high
intensity and the atoms are attracted to the points of highest intensity.

An extension of this dipole force is that it can form a lattice potential. Forming a
standing wave with counter-propagating lasers creates a pattern of maximum intensity
and zero intensity. The gradient is high since that change happens over half a
wavelength and so forms a pattern of potential wells for an ensemble of atoms in 1D,
2D, or 3D. If the potential is deep then the atoms will be strongly localised to one
site, while if the filling factor for the lattice - i.e. the average occupation per site - is
low then the atoms should be spatially separated. This means that the atoms should
not interact with each other or move around too much, allowing manipulations of the
internal states with light without concern for the external states of the atomsEl

3.3.3 Bose-Einstein condensation

When the temperature of the atoms is reduced to extremely low temperatures then

a different type of physics appears. At some critical temperature, Bose-Einstein

5This is the limit useful for the work in this thesis, but it should be noted that optical lattices are
much more than a tool to isolate atoms. Indeed, atoms in optical lattices are an interesting enough field
for books (or at least one book) to have been written about them [12]. They can be described by a rich
Hamiltonian that allows atoms to hop between sites and includes a wide variety of possible ways the
atoms can interact with one another. Those interactions might be, for example, that two atoms cannot
be on the same site, or perhaps that atoms prefer to be sat next to atoms with the opposite spin. The
evolution of the system depends on the strengths and forms of those terms, as well as the filling factor
and the shape and dimensions of the lattice. This interplay can produce complex dynamics and a wide
range of ground states, offering a fascinating window into fundamental many-body quantum mechanical
behaviour.
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condensation takes place. In a Bose-Einstein condensate (BEC), the vast majority of
atoms occupy the same ground state and have to be thought of as a single macroscopic

flutd. This is because the de Broglie wavelength, defined as,

A= h (3.34)

p
increases considerably as the velocity is reduced. At some velocity this delocalisation
of the atoms is on a similar scale to the spacing between atoms in the gas. At this
point, thinking of the gas as an ensemble of localised individual atoms is not accurate;
there is a global wavefunction that governs the entire fluid and follows a non-linear

Schrodinger equation called the Gross-Pitaevskii equation.

Reaching the temperatures needed for Bose-Einstein condensation requires an
extra form of cooling: evaporative cooling. Much simpler in concept than laser cooling,
evaporative cooling involves trapping and cooling atoms and then reducing the depth
of that trap sharply. The atoms with high velocities then escape taking their energy
with them. The rest of the gas assumes a new Maxwell-Boltzmann distribution with
a lower average energy and therefore a lower velocity. Repeated changes of the trap
depth cool the atoms further, but it is necessary for the atoms to be laser cooled first
to leave significant population after evaporative cooling. In such a way, this acts as
an extra step to the cooling process described in Section

BECs have been at the forefront of atomic physics since they were first produced
in 1995 and many of those experiments have considered a problem that this thesis
focuses on - many-body dynamics in atomic gases. The proposals discussed in
this thesis do not require BECs. However, many of them were inspired by BEC
experiments and many of them could be implemented in a BEC. Discussions on the
most important BEC experiments to this work are found in Sections [4.4.3] and [0.1]

3.4 Atomic state representations

We now know the full set of states available to the atoms and that they can be cooled
and trapped. This is the toolbox necessary for experiments on alkali atoms. We now
need a mathematical framework to deal with them algebraically and computationally.
The atoms are complex sets of many levels, but to treat them that way is generally
infeasible. Instead, we want to approximate their wavefunction to discrete subsets of
those levels. | have discussed how to carefully control excitations with light fields
and so restrict the atom to a subset to very good approximation. In this Section, |
introduce a formalism to describe the states of single atoms in such subsets as well

as ensemble of atoms.
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3.41 Two-level systems

For a single atom, the simplest possible system is to isolate two states, making the
atom a pseudo spin-1/2. Our basis is then just two states: |0) and |1) (alternatively
these states can be labelled |]),|T)) and our atomic wavefunction then lives in some
superposition

) =al0)+B1) = (B) (3.35)

where a, B are complex numbers that satisfy @’ 4+ 5% = 1. More generally, it exists

in some density matrix

o= Coo  Co1 (3.36)
Clo €11
where for the pure state above we have
a |a?| ap*
p= 1)l = o B = : (3.37)
ol F1 oo o

For a spin-1/2 particle any operator acting on the state can be described by some

combination of the Pauli operators (and the identity)

6X—|0><1|+1><0|—(? ;) (339
ag=i<|0><1|—1><0|)=(_0[ 0) 339)
cArz=|1><1|—0><0|=(‘01 ?) (340)

Note that the ladder operators introduced in Section B.11] can be formed as they

were there: &, = 0, £ (0.

These matrices each have two eigenstates with eigenvalues +1. These are

1
) = (100 1) (341)
lya) = éuomm) (342)
22y =10), |z2) = 1. (343)

In the same way that the Pauli operators span the operator space, any of these
eigenstate pairs span the state space. The three pairs, and thus the state, can also

be mapped to the axes of a sphere of unit radius. Our state on the sphere is given
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simply by solving
|y = sin (g) |0) + e cos (2) [1) (3.44)

where 6 and ¢ define spherical coordinates in the usual way. This is the Bloch

sphere and the state described in this way is the Bloch vector.

3.4.2 Spinor systems

Let us now consider a three level, or spin-1, atom. Our basis now has three states:

[—1), [0) and |+1). Our wavefunction lies in some superposition

a
) =al-1)+B[0)+Vv|[+1)= | B (3.49)
Y

with the more general density matrix for such a state obtained in the usual way.

We can define spin operators for these spin-1 atoms just like the Pauli matrices

described the two-level systems

01 0
1 1
O = —=(0)(+1]+ |=1) O] + |[+1) O] + |0} (1) = —= |1 0 1 (3.46)
V2 V2 01 0
‘ /0 1 0
L L
0y = —= ([0) (+ 1+ [=1) O = [+1) (O = [0) (1) = —= | =1 0
V2 V2 0 -1 0
(3.47)
-1 0 0
o, =N =]-1(=1=1]0 0 0]. (3.48)
0 0 1

Generally speaking the ladder operators will be used more frequently in this thesis

and these are defined as

0 0 0

o = V2(0)(+1|+ |- (O)=|v2 0 0 (3.49)
0 V2 0
0 V2 0

b = V2(0) (=1 + ]+ O)=0 0 V2. (3.50)
0 0 0

The form of the ladder operators is reminiscent of the annihilation and creation
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operators for the electromagnetic field. Both feature off diagonal terms that move
populations one rung of a ladder up or down. &, plays the role of the number
operator in this picture, in that it is proportional to the number of “excitations” in the
system. The key difference of course is that these atomic operators act on a finite
Hilbert space, whereas there is no bound to the number of photons in a field.
Unlike the spin-1/2 case these do not form a complete set of operators. For
example, the operator for the population in the |0) state, |0) (0|, cannot be formed
from these operators. The third degree of freedom in the state means we require
more operators to describe action upon the states. A full set can be formed with the

three operators above, the identity and the following [13]

0 0 1
Guy=1il 0 0 0 (351)
100
/0 1 0
L
gy =—=|—-1 0 —1 (352)
2
V2 0 1 0
Lo 1o
gou=—4=|1 0 =1 (3.53)
2
V2 0 -1 0
00 1 1
ny— 0 0 O =§(elxx_67yg) (3.54)
10 0
1
p— o 2 0 —L(ZA — G — Gyy) (3.55)
\/§ 2\/§ qu qu qgg .

0

where we have defined the nematic tensor § with elements [13415]
. i a4
§ij = 0,0 + 0;0; — gd‘/- (3.56)

For higher spin particles the number of degrees of freedom for the state increases
and so the number of operators required increases too. In the few cases in this thesis
that spin-2 or higher particles are considered, the states are confined in such a way

that these extra operators are not necessary.

3.4.3 Dicke states

This thesis generally concerns ensembles of atoms and so a collective basis is needed.

Let us consider an ensemble of N atoms each in some state |¢;). The collective
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wavefunction is then the product state |W) = 1) ® |¢n) ® [¢3) ® --- @ |¢n). The
basis size to properly describe such a state for N two-level atoms scales like ~ 2V
which limits us to very small numbers of atoms. A more restricted subset of the

possibilities is necessary.

In the vast majority of this work, we rely on the fact that these atoms are indis-
tlngulshable{ﬂ This is equivalent to saying that the global spin state is symmetric
under particle exchangem or more simply, the state does not change if the labels of

any two atoms are switched.

This insistence on symmetric states reduces the Hilbert space to a set of states
known as Dicke states. These are collective states with a known collective angular
momentum length S and z—projection m: |S, m). This means that, for a fixed spin

length S, we reduce our basis size to 2S5 + 1.

Let us consider N two-level atoms all in the same state |0). Remembering
that a two-level system is mathematically equivalent to a spin-1/2 particle, |0) =
|S =1/2, m = —1/2). The wavefunction for the ensemble in the collective picture is
then |W) = [1/2, —1/2)®" which is equivalent to the Dicke state |S = N/2, m = —N/2).
This is a definite total spin of N/2 with a definite z-projection —N/2.

This picture lets us consider an ensemble of atoms as equivalent to a single large
spin. A single large spin has its own ladder operators 5. which add and subtract
one to the magnetic quantum number. Let us consider the action of 5, on the Dicke
state |S = N/2,m = —N/2),

S S=N2,m=—N2)x|S=N2,m=—N2+1). (357)

The total magnetic quantum number has increased by one. This is interesting when
we move back to the picture of individual spins, where, since the atoms are indistin-
guishable and thus equally likely to have been excited, the wavefunction is now a
balanced superposition of all possible combinations of exactly one atomic excitation

in the ensemble
1
VN

Instead of raising a single atom, we have spread the excitation throughout the en-

INRZ,~NR2+1) = ——= (1) ®|0)®[0)@ -+ [0) @ [1) ®[0) -- - +---). (358)

semble. Note that this is not the same as the product of each atom being partially

00 theory, the atoms are held at different points of a lattice such that they could be distinguished.
However, we consider them to be identically coupled to the fields that drive them such that to those fields
they are indistinguishable. Where we consider processes that can break that indistinguishability, we do
not operate in a Dicke state basis.

70f course, this is not strictly true. For fermions, the total wavefunction should in fact be anti-symmetric
under particle exchange due to Pauli's exclusion principle. For the purposes of this thesis, we assume the
global spin wavefunctions to be symmetric, and that the anti-symmetry is instead in the spatial degree of
freedom that we do not consider.
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excited as the state insists on exactly one excitation. The state for each atom is

N —1 1
pi=—— 10) (0] + (11 (359)

Note that this is a density matrix whilst the collective state was a pure state. This
is because the Dicke states, excluding |N/2, £N/2), are entangled. They feature an
exact number of excitations, and so, like the Fock states, are inherently non-classical.
As with Fock states, they are a useful basis for calculation but are not trivial to
produce in the laboratory. This is the motivation behind our work on producing

Dicke states for an atomic ensemble found in Chapter [f]

3.4.4 Collective spin operators

The Dicke states allow us to consider the ensemble as a large spin of length S with
associated operators S, and S,. These operators are formed by summing over the
individual spin operators, for example,
N
5,=> da" (3.60)

i=0

More useful is the form of these in the basis of Dicke states where

S
S5.= Y mlS,m)(S,m| (361)
m=—S
S
Se= > VSS+N)—mmEN[S, m=1)(S, m|. (3.62)

m=—5S

Note that 5. |S, £S) = 0 and so the boundary conditions are met. This equation
shows that the ladder operators act strongest on states with m close to zero, with
coefficients ~ S, and weakest on those that are near fully polarised, with coefficients
~ V/S. This effect is thus more pronounced for larger spins, or, in the case of an

ensemble, more spins.

3.45 Coherent spin states

It is also useful to consider unentangled pure states of the ensemble: a coherent spin
state (CSS). Let us take the product state

)= [sin (5] 00+ cos  5) |1>]®N. 363)
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(

(a) Coherent spin state (b) Dicke state (c) One-axis twisted state

Figure 3.6: Atomic Q-function plots of different atomic ensemble states.

Clearly such a state is also symmetric to particle exchange and so can describe a
state in our indistinguishable system. We can calculate this state in the basis of
Dicke states as [16}|17]

112

% N 0 N[2+m ) N[2—m v
6, ¢) = s () sin | = el NIZHme N2 m)
N2 +m 2 2
m=—N/2
1 N2 N 112
n=e%tan(6/2)) = ———==5 ) N2 INGR2 4+ m) . (3.64)
(1+[n]?) v \NI2Z+m

where we have used that the statistics of the product states will follow a binomial
distribution with probabilities given by the superposition of the single atom. Note
that, as with the vacuum, the Dicke states |S, £S) are also CSSs with 6 = 0, .

These states are defined by two angles and a definite length, meaning that they
can be mapped to a sphere. Like coherent states of light, CSSs are not orthogonal
and so we can define an atomic Q-function. This atomic Q-function lives on a sphere
rather than the plane and is formed by the overlap with CSSs [17//18]

Qn) = (nlpln) - (3.65)

Examples of this are given in Figure B:6] CSSs appear as circles, like their light
analogy, while Dicke states appear as rings similarly to the circles of the Fock states.

3.4.6 Spin squeezing

A sequence of N uncorrelated measurements of some property gives a sample mean
and an associated sample variance that scales as 1/N. Simultaneous measurement
of N uncorrelated particles thus gives a variance with ideal scaling 1/N, called
the standard quantum limit (SQLE A measurement of N correlated particles is not

8The standard quantum limit is just that, a limit, rather than the scaling of any ensemble measurement.
Other sources of noise associated with the ensemble, the experiment or the measurement may increase
with N such that the scaling is actually worse than 1/N.
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constricted by the same bound but instead by the Heisenberg limit 1/N?. This means
that the precision available to quantum states exceeds that for classical states.

If there is some property that we wish to measure precisely, we can couple that
property to a quantum system such that the property imprints a phase proportional to
its magnitude on the quantum state. This phase is then measured so as to estimate the
magnitude of the desired property. For this reason, often the metrological precision
available is referred to as the phase sensitivity. Here | discuss how to characterise
the metrological properties of an ensemble of spins.

To think about spin squeezing we need to consider the commutator relations for

the angular momentum components
15.5,]=i5, [5.,5]=i5 and [5,5]=i5, (3.66)

A squeezing parameter based solely on these relations does not correctly capture
the physics because of the fact there are three dimensions. Instead of noise being
hidden in a different component, it can simply be that the vector points more along
one of the two axes than the other.

A more useful spin squeezing parameter is defined around the mean-spin direc-
tion. Here, we use the Heisenberg relation above, but for a set of axes defined by the
mean-spin direction and two vectors perpendicular to that direction and each other.
Introduced by Kitagawa and Ueda, the spin squeezing parameter is [19)20]

&= —5 (3.67)

A state is spin squeezed if, along some axis perpendicular to the mean spin direction,
the variance on the spin is smaller than the length of the spin. It can be shown that

for a CSS E% =1 1If Eé < 1 then the state is entangled.
A subtly different term, first proposed by Wineland et al [21], is given as

, N min (Aéﬁ)
$p=——F5—". (3.68)
[{S)I?

Whilst the differences to 5% are subtle, it offers a distinct advantage. Instead of
considering the variances in relation to the uncertainty principle, this parameter
tells us directly about the improved phase sensitivity of the state over a CSS for
a particular type of phase measurement called Ramsey interferometry. While &2
is a witness to entanglement, & is a witness to useful metrological improvement
over a classical state. In many cases, including for the indistinguishable ensemble
considered above, the length of the spin is given by S and so the two are equivalent.

Kitagawa and Ueda [19] also introduced a commonly used method to spin squeeze.
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The first of these is one-axis twisting, which has been produced in various systems

[20,22). This involves operating upon the Dicke state |S, —S) with the Hamiltonian

A

=52 = %(S{ +524+5,5 +55,) (3.69)

It is clear from the form on the right hand side that this Hamiltonian creates and
annihilates pairs of excitations, analogously to the squeezing operator. However,
due to the finite size of the Hilbert space, the squeezing is limited to a variance
1/N?B improved over a CSS. Kitagawa and Ueda also introduced two-axis twisted
squeezed states [19], which offer Heisenberg limited precision but are yet to be
realised experimentally.

There are lots of other methods used to produce spin squeezed states. These
include, but are certainly not limited to, the transfer of squeezed light onto an en-
semble, quantum non-demolition measurements and adiabatic state preparation of
ground states [20)22].

For the specific case of the Dicke states we run into an issue using either of these
spin squeezing parameters as they require a mean-spin direction. The Dicke states
have a definite S, and so, by the uncertainty principle, cannot have any information
in either of the other coordinates. Considering the atomic Q-function plot in Figure
[3:6b] we see that the Dicke state is a ring. The mean point of a ring is the centre of
it, which has no direction and length of zero. Instead, for Dicke states and entangled
states in the vicinity of such states we can use the Dicke squeezing parameter |23]

(AS,)2 +1/4

B =N—F———. (3.70)
(5¢+57)

For a pure Dicke state |S, m) this is

2 !

DT NT2—4m?/N (371)

and so for m ~ 0 and large N offers significant squeezing. This parameter gives us
access to the metrological sensitivity equivalently to the Wineland parameter, given in
Equation 3.68] and so those central Dicke states offer Heisenberg limited metrology.
This parameter also gives access to a minimum bound to the entanglement depth of
the system [&;" — 2] [24]. The entanglement depth quantifies the minimum size of a
subset of atoms that are genuinely entangled between all members of the subset.
Another complication arises if we consider an ensemble of spinor particles. As
discussed in Section 347} such an ensemble does not necessarily have maximal spin
or live on the surface of the collective Bloch sphere. In such cases, other measures
of the phase sensitivity can be used, as in Chapter [g] or a different set of axes can

be found to define a sphere that the state does live on, as in Chapter[10]
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3.4.7 Bosonic mode picture

For collective spinor states initialised into a fully polarised state - tLe. |i1>®N -

then the Dicke model picture above works ﬁne{ﬂ However, for states involving the
zero mode this picture is not suitable. The issue is that two bosons in the |0) state

do not have a set collective spin. Instead

1,o>®|1,o>=\/§|z,o>—\£|o,oy (372)

This means that, for any product state of indistinguishable spinor atoms with any

population in the zero mode, there will be a spread of different angular momentum
length states and so a Dicke state representation does not simplify the basis in
the same way. The full properties of such superpositions of angular momentum are
encountered in many sections of this thesis, and exploiting them is the basis of the
proposal in Chapter [§]

Instead of tracking the spin length and polarisation, we track the populations in
each state. Simply, each state of our spin-1 atom, |m), has an annihilation operator
b, and creation operator bl These have exactly the same form and statistics as the
photon annihilation and creation operators and so, for example, the number operator
in each case is given by blby. Using a basis of Fock states in each state, our

wavefunction for N atoms is then given by the superposition

|g) = Z Cono |M)_1 @ |N)g®|0) 4 ¥V m,n,0st. m+n+o0=N. (373)

m,n,o

Our operators need to be recast in terms of angular momentum operators
Si= (b7, bl bT,)é& | bo (3.74)

where S is the collective equivalent of the single-atom operator 6;. Note that re-

placing §; with G;; produces the elements of the collective nematic tensor.

19From the work that follows, it should be stated that this treatment is valid if neither the Hamiltonian
nor the dissipation couples different angular momentum length states. In that case then the bosonic mode
representation described in the following text would also be needed.



Chapter 4

Cavity quantum electrodynamics

The interaction of an electron and the electromagnetic field in free space is inherently
very weak. Using light to manipulate the atoms in the ways we desire requires a
much stronger interaction. We can do this by using very strong fields or by increasing
the strength of the interaction. The simplest method is to use high quality optical
resonators. These confine the light into very small volumes, such that an atom placed
inside that space has a greatly enhanced interaction with the confined light. | will
discuss this as well as briefly discussing less obvious architectures that produce
equivalent systems. | then discuss the simplest model of a single atom interacting
with a single mode of the electromagnetic field: the Jaynes-Cummings model. For an
ensemble of atoms, such a model can be generalised to the Tavis-Cummings model.
In a somewhat different limit, that interaction can be described by the Dicke model.
| include a discussion of the historical origins of that model, as well as much more

recent attempts to recreate the model in a Bose-Einstein condensate.
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CHAPTER 4. CAVITY QUANTUM ELECTRODYNAMICS
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4.1 Optical cavities

The Rabi oscillations and Raman transitions described in Section considered
single modes of the electromagnetic field coupled strongly to single atoms. However,
photons interact very weakly with such small dipoles. When thinking of lasers, we
have interactions between the atom and lots of indistinguishable photons building
up to be substantial. When thinking of cavities, we can think of a single photon that
is reflected back and forth lots of times and so interacts multiple times to build up

the substantial interaction.

41.1 Cavity modes

The simplest form of an optical cavity is a planar, or Fabry-Pérot, cavity and involves
two very highly reflective mirrors with a spacing L. If light of wavelength A is

introduced to the cavity then, after one round trip, the light accumulates phase

6= (4.1)

where we assume the refractive index of the intracavity medium is unity. A second
round trip doubles that accumulated phase. With light bouncing back and forth in
the cavity, these different phase shifts will interfere. If ¢ = 27j, where j is an
integer, then that interference will be constructive. These are resonant modes of the
cavity. For any other frequency, it will destructively interfere after some number of
trips. If the cavity has some transmission, then the confined light does not perform
infinite round trips and so wavelengths with ¢ ~ 2/ will have interference that
is not completely destructive. This gives the cavity resonances a linewidth which

translates to a deviation of the accepted round trip phase shift with full width at half

Figure 4.1: An atom contained within a planar cavity. Light is confined between two mirrors and an atom
is placed inside. The atom is coupled to the cavity light, and both the atom and cavity can emit excitations
into free space.
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maximum [6]

(R Rz)”4
=21 h = =
A¢p /§ where § 1 >

and we have defined the cavity finesse § and the reflectivity of the two mirrors Ry ».

(4.2)

If the finesse is high enough, then we have isolated a series of single frequencies

Wy = mﬂTc with spectral width  Aw = % (4.3)

A high finesse leads to sharp lines while a small cavity length is important to create
well separated lines.

If we have a single photon in the cavity then after a round trip there isa 1T— R R>

chance of the photon remaining. This allows us to construct an average timescale a

photon would be expected to remain in the cavity

L 1
= =— 44
T —VRR) 77 (44)
where we have defined k as the decay rate for the cavity. Comparison of this to the

spectral width of the line shows that, if R, = 1, then
Awy, = 2k (4.5)

where we now define k = /2 as the half width of the cavity. This value will be used
henceforth and will just be called «.

This means that the cavity has just two important characteristics: its finesse
and its frequencies. For a more general system, where defining reflectivity is not

necessarily simple, the finesse is replaced with the quality factor [11]
Q=—=—. (4.6)
It means we can also create a master equation formulation for the cavity as

p = —ilH, p| + «Dld]p. (4.7)

4.1.2 Cavity enhanced interactions

We now introduce an atom into the cavity. There are now three important rates: the
decay rates of the atom and cavity governed by y and «, as well as the coupling
between the two of them, g. We have no external field and so the interaction strength
is the energy of the interaction between the cavity vacuum mode and the electric
dipole, —ef, of the atom

hg = [n2€] (4.8)
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where p1; = —e (1]1|2) and € is the vacuum field strength [0]

Fw 1/2 U]zzw 12
_ — 4 49
£ (260\/) -9 (Zeth) (*+9)

where V' is the mode volume.

For the types of experiments we consider in this thesis, we want the coupling

strength g to be larger than the decay rates x and y. The first requirement means

v 112
0> (605(;' ) A (4.10)
2u7,

we want a quality factor

A high quality factor is required, but the requirement can be relaxed somewhat by
an increased vacuum field strength. This can be done by choosing transitions with
high w12, though that also raises the spontaneous emission rate, or by confining the
light in a very small mode volume@l

One method of enhancing the coupling is simply to use more atoms. For N atoms
initiated in the collective Dicke state |N/2, —N/2) the coupling is enhanced by VN
over a single atom |1/2,—1/2). This can be trivially seen by the form of S, in
Equation 3.67 This then allows us to have strong coupling for the ensemble even
when the cavity does not have strong coupling for a single atom. This is particularly
useful for the work described in this thesis as we need to overcome the reduction in

effective coupling strength caused by operating at high detunings.

4.1.3 Alternative architectures

There are alternative architectures that can help increase the coupling to losses
ratio. An example would be a cavity embedded into a tapered optical fibre |25]26].
In sub-wavelength diameter fibres the majority of the electromagnetic field travels
outside the fibre as an evanescent wave. Evanescent fields decay exponentially with
distance from the surface and so the majority of the field is close to that surface and
thus has a very small mode volume. Trapping atoms near such a surface thus allows
very strong interactions. Other systems that use an enhancement via such evanescent
fields include micro-resonators [27/{28] and photonic crystal waveguides [29,30].
Using a different medium as the two-level system “atoms” is also a possibility.
Those systems might be atomic defects in crystal structures, such as rare earth ion
dopants [31] or nitrogen-vacancy centres in diamond [32]. There are also macroscopic
sized objects that have quantised degrees of freedom that can be used. Supercon-

ducting circuits have energy levels that are quantised elements of the circuit [33].

200f course, in lots of architectures, the mode volume is the volume of the cavity and so decreasing the
volume and the length come hand in hand. If all we do is decrease the cavity length, L, then the coupling
increases as ~ L~ 12 while the cavity decay rate increases as ~ L~ and so the ratio of g/ will decrease.
If we need to reduce the volume, we require a more clever manner than making the cavity smaller.
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Often these levels have a strong non-linearity and so it is easy to isolate a two-level
system that can be coupled to microwave resonators. Dots of semiconductor material,
of a size on the order of nanometres, have levels defined by the band structure of the
semiconductor. These can be grown on, for example, a photonic crystal waveguide
structure allowing for a single fully integrated “cavity QED” system.

All of these architectures have their benefits and flaws and so are suitable for
different purposes. In this thesis, we focus on a traditional cavity QED system with
a large ensemble of atoms. However, some of our proposals could be implemented
in other architectures. Making use of the different advantages of alternative systems,
there are a range of other possibilities building on the methods we introduce here.

A brief discussion of some of these ideas is given in Section [T23]

4.2  The Jaynes-Cummings model

The simplest model of a single atom in a cavity is the Jaynes-Cummings model [34)35].
A two-level system is coupled to a cavity mode with a Hamiltonian

H = wata + wod, + gla + aT)(6- + 6,). (4.11)

The first two terms are simply the energy associated with photons in the field and the
state of the atom. The interaction term involves the exchange of excitations between

the field and the atom. Transforming the Hamiltonian to the interaction picture gives
H =g (e7 @G 4 e~ lga, 4 e iaTg 4 elrliala ) (412)

Two of these terms rotate at &(w + wp) and two at &(w — wp). If w ~ wp then those
second terms are close to resonant and the first terms rotate at an extremely high
frequency and so are strongly suppressed [/]. This allows us to make the rotating

wave approximation and so, coming out of the interaction picture, we have
H = wala + woo, + glad, + ao.). (4.13)

The interaction has been simplified to those that conserve the number of excitations.
An atomic excitation turns into a field excitation and vice versa.

The obvious states to consider are Fock states coupled to the bare levels, |0) and
[1), of the two-level system. If we take these states, with notation |n) ® |0) = |n, 0)
and |n) ® |1) = |n, 1), then the action of the Hamiltonian (where we transform

o, — |1y (1] for simplicity) is

Fn,0) = nw|n,0) + ng|n —1,1) (4.14)
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Hin—=1,1) = ((n — Nw + w) |n —1,1) + v/ng |n, 0) (4.15)

and so we have a closed set. Of course, this should be expected, due to the excitation
conservation of the Hamiltonian. This means that we can form eigenstates which

have n excitations split between the field and the atom
|y =Aln,0)+B|n—1,1) (4.10)
upon which the action of the Hamiltonian, defining A = w — wy, gives us
H|¢) = [Awn + Bgv/n] |n,0) + [Blwn — A) + Ag/n] [n —1,1) (4.17)

If w = wp then the eigenstates are

|¢/in>=\/z(|n,0>+|n—1,1>) with  EL, = nw = gv/n. (4.18)

Without the coupling, |n,0) and |n —1,1) are both eigenstates and are degenerate.
The coupling creates two new dressed states which have an energy difference of
2g+/n. Note that the energy gap between the pair of dressed states increases with
the number of excitations in the sgstelﬂ

If w = wp then, defining A = w — wy, the eigenvalues are

A A
2 2

2

Fip=nw— ==+ ) +g?n (4.19)
and the eigenstates are now imbalanced superpositions of the states. The split
between the dressed states is now even larger, which makes sense since the bare
cavity and atomic excitations are now at different frequencies as well. If A is positive
then there is less energy in the atomic excitation, and so the lower energy dressed
state has more of the atomic excitation in it. For negative A the opposite is obviously
true. As A, and thus the split, increases, the eigenstates become focussed more and
more to one side. In the large detuning limit, A > g+/n, the eigenvalue equation
shows that the two “dressed” states have gone back to the undressed picture. We
thus require near resonance between the cavity and atom frequencies to notice the
splitting caused by the interaction.

If we initiate the system with an excited atom, as in Figure[d.2a] then the excitation

21 This fact can be used to generate single photons. If we drive the system in its ground state with light
at a frequency w + g then we excite the upper of those dressed states. The next pair of excited states
has its upper level w + (1 — v/2)g above this first rung, meaning it is out of resonance. As such, if the
driving is weak, the system cannot gain more than one excitation. This so-called photon blockade |36)37|
thus produces one photon as it drops back to the ground state and then has a dead time while the driving
re-excites the system. This means that a weakly driven Jaynes-Cummings system - higher driving does
break the blockade [38] - can produce only single photons separated by at least the time taken to re-excite
the system following emission.
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oscillates between the two components. With a detuning, that oscillation exists but
not for the entire population. Adding dissipation to the system makes |0, 0) the only
stable state as the excitations leave via the losses and so we have oscillations until
the excitation decays. This is reminiscent of the Rabi oscillations discussed in Section
B:21] except with an interesting difference: these Rabi oscillations are self-driven.

The only excitation in the system is the original excitation of the atom.

We can prepare the system in different levels of the ladder. Figure [£.2b] shows
that the oscillations are at higher frequencies at higher rungs. Comparing to Rabi
oscillations from a coherent drive, we see that, for n excitations, Q = \/ng. If we start
the cavity mode in a coherent state, then the oscillations induced by different photon
numbers will become out of phase and destructively interfere. Figure [£.2d shows
that this is exactly what happens, except with the curious feature that after some
time the oscillations come back. This collapse and revival is because the important
contributions have come back around to being in phase again and is a distinct feature

of discrete systems.

If we prepare the cavity in its vacuum and a ground-state atom, |0, 0), and then
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Figure 4.2: Plots of different phenomena in the Jaynes-Cummings model. In all cases the atom and field
are considered resonant. (a,b,c) show the population in the excited state over time in units g~, (d) shows
the steady-state photon number. Where used, losses are y = k = 0.044.
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drive the system with a laser field of strength = with frequency near the first pair
of states, then we can directly measure the splitting. We consider the Hamiltonian
in the interaction picture of this driving, assuming resonance between the atom and
mode

H=nAata+glao, +aT6.)+=(a + aT) (4.20)

defining A = w — wy with wy the drive frequency. Figure [£.2d] shows the response
of the system. The presence of losses does give the two resonances a finite width
and so g > «k,y is required to observe the splitting. Observations of this splitting
have been performed for a single atom falling through a cavity [39] and later for
a single atom trapped in a cavity [40]. Observations have since been made for all
sorts of other architectures including Rydberg atomﬂ in microwave resonators [41],

superconducting qubits [42] and quantum dots [43].

4.3 The Tavis-Cummings model

The Hamiltonian for N atoms under the rotating wave approximation is
H=wata + wS, + g(aS, +a75.), (4.21)

where we have replaced the two-level operators with collective operators. Due to
the presence of these collective operators, the coupling is enhanced by VN and this
enhancement can be used to observe an enhanced vacuum Rabi splitting of 2g/N.
This makes the splitting much larger, and so was observed before the single-atom
case [44]. This splitting can actually be used to determine either g or N if one is
known. Indeed, in the experiments described in Chapters [5] and [7] the vacuum Rabi
splitting was used to quantify the effective coupling rate for a given laser power.

For higher ladder levels the n excitations can be distributed in the field mode
and the ensemble in a variety of ways. Figure shows how an initially empty
cavity and an ensemble of excited atoms evolves. The evolution shows complicated
oscillations of excitations and the field. This is because of the different frequencies
that different numbers of excitations in each state exchange energy. We can see that,
in the absence of losses, these oscillations continue indefinitely, conserve the total
number of excitations and are never complete.

As above, dissipation makes an empty cavity and a fully polarised ensemble the
only ground state. However, the complicated structure above that ground state leads
to interesting transient behaviour. Taking that excited ensemble and allowing it to

decay means that excitations leave the system. The way in which they do is extremely

22Rydberg atoms are atoms where the outer electron has an extremely high principal quantum number.
In [41] the two-level system is between the principal quantum numbers n = 50 <> 51. For these orbits, the
difference in energy is much smaller and so the relevant frequencies of light are in the microwave regime.
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Figure 4.3: Plots of different phenomena in the Tavis-Cummings model. (a) Excitations in the ensemble
and field from an initial state [0)® [e)®™ and no losses and (b) photon number in the field from an initial

state [0) ® \e)®N with k = 5g. In both cases the atoms and field are considered resonant and time is in

units of g~

interesting. We consider the so-called "bad-cavity” limit, where « > g, y.

Let us first consider an ensemble of atoms that are not strongly coupled to a shared
mode; the atoms emit into free space and so each undergoes a simple exponential
decay. The sum over the ensemble thus gives a collective exponential decay, ie.
the master equation would give an expectation value for the remaining excitations of
Nexp(yt) and the average peak emission will be at t = 0 and will be yN.

Strongly coupling the atoms to a mode means the atoms will exchange their
excitations with that shared mode. Since we are in the bad-cavity limit, the excitations
will generally leave via the cavity decay. Figure [A3b] shows this cavity-mediated
decay process. Instead of an exponential decay, we have an increase in the cavity
mode population, which we note is directly proportional to the cavity output flux.
This increase continues until, at some non-zero time, it reaches a peak ~ N?. The
presence of a shared mode allows the atoms to decay collectively, with a greatly
enhanced rate. This superradiance was first introduced by Dicke in 1954 [45].

This can be explained by a chain reaction caused by the combination of the
two operators that form the important interaction: aT5_. Both of these act with
increasing strength as we populate the field. If we consider the form of the creation
operator we can see that the impact of the operator is enhanced for higher photon
states by a factor V/n + 1. This means as the field builds up, the interaction term
aTS_ increases in effective “strength”. Essentially, the production of photons in the
cavity mode enhances the rate of producing more photons. Similarly, the ladder
operators for the ensemble, §i, have higher coefficients for states away from the
polarised states. The ensemble losing excitations thus also increases the power of
the interaction term and the rate at which the cavity mode is populated. Of course,

after passing through the central point, this rate decreases until the cavity decay
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becomes a faster process and the field depopulates instead.

4.4 The Dicke model

We have so far assumed that we operate in a situation close to resonance - w = wy
- where we can make the rotating wave approximation. If we are far from resonance,
or if the coupling is extremely strong, then that approximation does not necessarily
hold. For an ensemble of atoms that means we have the Dicke model Hamiltonian

N A A A A

fl=wi'a+wS, + <= (a+a7) (5 +5,) 422
where A = v/Ng and the factor of 1/v/N is introduced as a normalising factor that
is useful for analysis of the equation. This model, and variations of it, form the basis

for much of the work in this thesis and so a brief history is provided.

4.41 Steady-state superradiance

This equation is fundamentally different to the Tavis-Cummings model because it does
not conserve the number of excitations. There are two terms, 45_ and its conjugate,
that respectively destroy and create an excitation in both the field and the ensemble.
This means our states are not limited to the ladder we found in the Tavis-Cummings
model; states can now be spread between different levels and energy can be created
or destroyed by the Hamiltonian.

We can look at the ground state of the system by splitting the Hamiltonian into
two parts: one that describes the energy of the system and the other the interaction
terms. With small A < w, wp, the energy part dominates. Our ground state is then
the ground state for those terms, which is the same as for the Tavis-Cummings model:
a fully polarised state with the entire ensemble in the lower energy level and an
empty cavity mode. For very high A > w, wy, then instead the ground state should
be decided by the interaction part. The interaction part is symmetric for the two
energy levels of the atoms and so it does not have a preferred “direction” to move
the ensemble. As such, it should be that the ground state there is halfway between
the two atomic levels. This is where the collective operator acts strongest and so
amounts to steady-state superradiance [46H51).

Between these two phases is a second order phase transition |[46H48| that has

generated a lot of interest ever since it was first proposeﬂ As A increases, the

2|t should be noted that the first predictions of steady-state superradiance were for the Tavis-Cummings
model at non-zero temperatures. The critical point was thus dependent on the coupling strength and the
temperature. It was not until [49/50] that the counter-rotating terms were included in the calculations. There
are subtle differences to the physics around the transition depending on whether it is a thermodynamic or
quantum, that is zero temperature, transition. This is excellently summarised in [51].
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Figure 4.4: Q-function of the cavity field for a typical state of the Dicke model above threshold.

system undergoes a distinct change. In the thermodynamic ['Lmi@ this happens at a

critical point
1
Ae = 5V ww. (4.23)

Above this threshold the atoms cohere via the cavity mode.

If we move to an open system for the cavity mode, ignoring spontaneous emission,
we have the Dicke model master equation
s . 1 w? 4 K?
p=—iH, p|+kDlalp — A= 5\ wo—r— (4.24)
The presence of losses from the cavity mode changes the threshold equation. A
physical intuition is that the formation of the coherence between the atoms becomes
more difficult because the channel by which that process occurs is now lossy. Above
this threshold, we still have steady-state superradiance.

Figure 44 shows a typical state of the field above threshold. The field is a
a)

and |—a). Associated to each of these coherent states are coherent spin states of

mixed state of two coherent states of the same magnitude and opposite phase,

equal magnitude and opposite phase,

n) and |—n). The steady-state wavefunction is

then an entangled superposition of these correlated coherent field and spin Statesﬁ

24The thermodynamic limit is a term used in this thesis, and quantum optics more broadly, to mean that
the size of the system is infinite. This allows us to ignore quantum fluctuations in our treatment of the
system. In this thesis, the thermodynamic limit means to assume an infinite sized ensemble, though the
quantum results often approach the thermodynamic limit for surprisingly small N.

Bt can actually be shown at small superradiant state amplitudes that there is Einstein-Podolsky-Rosen
entanglement between the atoms and field [52/53).



44. THE DICKE MODEL 65

Again, coherences between the atoms are formed through the cavity mode.

Both the master equation and quantum trajectory pictures produce the entangled
superposition described above. Since the two terms have the same photon number,
observing the photon output flux is not enough to break the superposition. If instead
the cavity is monitored with a phase sensitive detection system, such as a homodyne
detector, we can collapse the state according to the phase of the field. This random
choice of phase following the transition is referred to as symmetry breaking. The
system undergoes a bifurcation, moving from a single ground state to two degenerate

ground states.

4.4.2 An important correction

This picture should have alarm bells ringing. What was a fundamental description
of the interaction between an ensemble of emitters and an electromagnetic mode
resulted in self-sustaining superradiance in the presence of losses. At zero tempera-
ture, we predict an ensemble will produce photons into the environment in perpetuity.
The system has no energy put into it and yet creates energy indefinitely. This would
seem to break a lot of rules of thermodynamics.

In fact, this problem is something that is still debated in quantum optics literature.
An initial resolution was presented by Rzazewski et al [54] There, it was explained
that the approximation of the dipole interaction is too simple to capture this system.
Essentially, there is a second order term that, at least in the case of atoms, blocks
the steady-state superradiance described above. A second treatment provided an
alternative proof of the lack of a superradiant threshold [55]. However, in more recent
years, alternative models for the electromagnetic field, or in some cases alternative
architectures, have questioned or confirmed those results [56H61].

Much of this discussion does not treat an open system, or considers very particular
configurations and architectures. One thing that does seem certain is that we should
not simply put atoms in a cavity and expect superradiance. Luckily, to study the

Dicke model we can bypass these fundamental questions with a little creativity.

4.4.3 Implementation in a Bose-Einstein condensate

Self-organisation is a process where atoms coupled to a cavity mode arrange them-
selves spatially so as to maximise their collective emission into the cavity [62-65] The
mapping of a self-organisation process to an effective Dicke model was proposed [66]
and then performed with a Bose-Einstein condensate in a cavity [6770]. These
experiments used detuned Raman transitions between different momentum states of
the BEC. The ground state of the atoms is the momentum ground state, while the
excited state is a symmetric superposition of one quanta of momentum in the x— and

z—direction. The Raman transitions are via the states with a quanta of momentum
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in either of those directions, providing the two paths which can be mapped to the
quanta conserving and non-conserving terms.

In this case, superradiance happens if the atoms are spatially arranged such that
their emission into the cavity happens with the same phase. The atoms self-organise
to this pattern through the cavity mode. This process feeds back on itself. The field
creates a square lattice that the atoms sit in, while the enhanced scattering of atoms
in that pattern feed the field. The atoms sit in a two-dimensional square lattice in a
chequerboard pattern where no two atoms sit next to each other. This chequerboard
pattern has two possibilities: the black squares or the white squares. Instead of
the correlations between coherent field and atomic states, we have correlations be-
tween a particular spatial pattern for the atoms and the phase of the coherent field.
Measurement of the photon number shows the distinct phase transition [67] while
the use of a homodyne detector shows the spontaneous symmetry breaking at the
transition [68].

An effective Dicke model can also be produced using spin states of a dilute gas of
cold atoms [71][72], as discussed in Chapters [ and [7] of this thesis. Combining these
ideas such that the atoms self-organise in both the spatial and spin components is
also possible |73[[74]. One interesting extension to these models is to use multiple
modes of the cavity such that the position of the atomic cloud impacts the critical
threshold [/5]. An alternative extension is the addition of a second cavity, such that
the atoms will self-organise with respect to one cavity or the other or some arbitrary

superposition of the two [76}[77].



Chapter 5

Engineering the Dicke model in

a cavity QED setup

The Dicke model is one of the simplest examples of how light and matter can interact,
and yet it describes a peculiar trait that many-body systems can self-organise and
offer amplified behaviour. Interest in its implementation is thus driven by a fundamen-
tal interest in light-matter interactions, quantum phase transitions and many-body
physics. In this Chapter, | discuss a method used to study the Dicke model at the
Centre for Quantum Technologies in Singapore. The first section of this Chapter
discusses the theoretical origins of this work over a decade ago. The second section
describes the specific setup and results of the Dicke model experiment carried out
by Zhigiang Zhang, Chern Hui Lee, Ravi Kumar, Kyle Arnold and Murray Barrett.
The third section describes my theoretical modelling of the experiment performed
under the supervision of Scott Parkins. Some of the work in this section was actually
performed in response to the experiment described in Chapter |/| but discussion is
included here as the results are relevant to both cases. The final section describes
a treatment of the experiment allowing for atomic motion performed in collaboration
with Murray Barrett, Zhigiang Zhang and Scott Parkins.
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5.1 The Dicke model via cavity-assisted Raman transi-

tions

In Section [F:43] we discussed experiments that simulated the Dicke model using the
momentum states of atoms in a BEC as the two-level systems. The Dicke model can
also be realised using cavity-assisted Raman transitions between atomic spin states.
Dimer et al [53] proposed confining an ensemble of atoms within a circular cavity,
also known as a ring cavity.

Figure 5.1]shows that such a scheme requires four states of the atoms: two ground
states |0) and |1), which become the two-level systems, and two excited states |e)
and |f), via which Raman transitions are driven. These states are chosen such that
|0) <> |e) and |1) <> |f) are driven by a cavity mode, while |0) < |f) and |1) <> |e)
are driven by different laser fields respectively. By matching the frequencies correctly,
we can drive Raman transitions between |0) < |1).

In the limit that the transitions are significantly detuned, then the excited states
can be adiabatically eliminated. We are left with the exchange of photons between
a cavity mode and two laser fields driving the atoms between |0) and |1). If certain
selection rules are met, there are two different routes between the two states. One
laser drives from |0) — |1) depositing a photon into the cavity mode, but requires a
photon to be taken from the cavity mode to drive from |1) — |0). The other laser has

the opposite effect. Thus, one of the Raman transitions produces the rotating terms,

a75_ and &5, and the other the counter-rotating terms, 675, and a5_.
le) A

)
1

IAf
.
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Figure 5.1: Level diagram to produce the Dicke model via the Dimer et al proposal , Two ground-state
levels, |0) and |1) have Raman transitions driven between them via two excited states |e) and |f) using a
cavity mode (red arrow) and two laser modes (blue, green).
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For a single atom the system in Figure [5.T] can be written in the Hamiltonian

form

H=waTa+w 1) (1] + we |e) (e| + wr ) {f]

Qr Qe 5 5
+ e N 0]+ Ste o) (1] 4 gele) (0] & + g 1) (1] 6 +he. (5.1)

where h.c. means Hermitian conjugate and applies to all the transition terms. Here
wc is the cavity mode frequency, and so the first term describes the cavity mode
occupation energy. wy £ r are the frequencies of the levels |1),]e),|f) respectively
and the frequency of |0) is assumed to be zero. These terms therefore describe the
atomic energy. wer, Q. are the bare frequencies and Rabi frequencies respectively
of the two lasers and so these terms describe the atom's stimulated absorption and
emission into the laser modes. g, r are the single-atom coupling strengths normalised
on their transitions and so these terms describe the exchange of quanta between the
atom and cavity mode. Adiabatic elimination of the excited states and summation

over the ensemble then leads to the master equation [53]

p = —ilf, p|+ xDldlp (52)
with a Hamiltonian
H=wala+ wS, + Ae (S5.0+5 af)+i(§ b+ S af)+ﬂ§ ata (53)
z \/N + — \/N — + N z .

B W + We N gg g%
w=we— (5 + 3 (Ae A, 64
B Wf — We 1 Q% Q%

2 (20
A= \/Nge,er,f (5 6)
ef 2Ae,f .

2 2
9e 9
U==—"=—-=". 57
A A (57)
One can see that if A = Ay and U = 0 then the effective system represents

a Dicke model as discussed in Section Whilst removing the dispersive term
(ile. U = 0) is possible through manipulation of the microscopic parameters, it is
not strictly necessary. Provided it is small in comparison to w, wp (most relevantly
< 2w) then its impact on the phase transition point is well understood [/8H81]. The

derivation of the superradiant phase transition in the presence of this non-linearity
is given in Section 5.1.2]
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5.1.1 Semi-classical equations

In the thermodynamic limit, we can neglect quantum fluctuations and factorise oper-

ator products (e.g. (5_a) — (5_)(&)) giving the semi-classical equations |53/78|79)|

a=—«ka—iwa—iUay —iAp—iA_B* (5.8)
B = —iwB — iU|al’B + 2iA,ay + 2iA_a*y (5.9)
y=iA(a"B—aB’)+ir(aB—aB") (5.10)
where . .
_ {a) _(52) _ {52) 2,2
afﬁ, B—T, y="N |8l + vy =0.25. (5.11)

These equations offer two trivial solutions: @ = B = 0 and y = £0.5. This means
an empty cavity and all spins in one state, i.e. the collective spin aligned along
the z-axis of the Bloch sphere. y = —0.5 is the normal phase, while y = 0.5 is
the inverted phase. These trivial solutions represent the sub-threshold ground states
with positive (normal) and negative (inverted) wp.

Outside of these two solutions, the behaviour of these equations is extremely rich
and complex, something explored in much detail in [79] and in the specific case of
imbalanced coupling in Section [/-3] and [82)

5.1.2 Superradiant phase transition

We now consider the specific case of the Dicke model and so A- = A, = A This
reduces the above equations to

a=—ka—iwa— iUay — iAB + BY) (5.12)
B = —iwpB — iU|a|*B + 2iAay + a*y) (5.13)
V= iAa*B — aB* + aB — a*BY). (5.14)

We are interested in the steady-state solutions to these equations so the left hand
side is set to zero. The third equation reduces to a form that means that either the
real part of & or the imaginary part of 8, which corresponds to g, = <§y> IN, must
be zero. It also follows from the second equation that it be 5, since there is no
imaginary part on the right hand side.

We can then combine and solve those two equations for y to give [78,79]

2 AR VAN 2
w W(%} L?) — woUk?. 515

- X4
Y=TUT U2(woU + 422)

We can find the real part of B from the normalisation condition and then « follows
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from the form of the ensemble.
The threshold occurs when the equation above allows for physical solutions, te.

ly| < 0.5 and real. Setting y = —0.5 should thus give the boundary between the
normal state and the onset of superradlanceEl This gives the critical coupling as

[ w—uRp

Below this point the system is fully polarised in |0) (or |1) if wpy is negative), and
above it the atoms self-organise their spin degree of freedom through the cavity
mode and the system becomes superradiant. At the transition, from a dynamical
system perspective, the system goes through a supercritical pitchfork bifurcation [82);
one solution splits into three, with the original solution becoming unstable and two
new stable solutions emerging. In this case, these two new solutions differ through a
choice of sign in B and of the cavity field, highlighting the broken symmetry. Dynamic
simulations of these equations have to choose one of these superradiant solutions, as
this semiclassical picture does not allow for the quantum result of a superposition of

the two solutions nor the ensuing entanglement between the atoms and cavity field.

If we return to the original Dicke model, where U = 0, the above threshold

reduces to
1 w? + K?
)\C = i wo .

If instead |U| > 2w then the above treatment is not accurate. This has been studied

(5.17)

in [79H81] and the limit of very large U is explored in Chapter[f] of this thesis.

5.2 Experimental implementation

5.2.1 Switch to a Fabry-Pérot cavity

The original proposal of Dimer et al [53] makes use of a circular cavity, but the
same model can be implemented in a Fabry-Pérot cavity. Here the laser fields are
perpendicular to the cavity mode, with the only complication that the laser fields
must be counter-propagating, i.e. the two lasers must illuminate the atoms from
opposite directions, as shown in Figure fZ] With co-propagating lasers, a phase
factor is introduced that, averaged over the spatial distribution of the entire ensemble,
removes the presence of the phase transition and any superradiant behaviour [72).
This is discussed in Section E24

%y — 1+0.5 will give the boundary between the inverted and superradiant states if that is the ground
state. This means that for negative wy the threshold equations still produce a real critical coupling.
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Figure 5.2: Experimental setup to produce the Dicke model in a Fabry-Pérot cavity. Here we have two
counter-propagating lasers illuminating an ensemble of 8Rb atoms confined within the cavity.

5.2.2 Choice of levels in ®Rb

Here, we consider 3Rb, choosing the specific hyperfine states |0) = |F =1, mf = 1)
and [1) = |F =2, mp = 2) as the two-level systems (see Figure p3). Selection
rules allow for two separate Raman transitions made of a 7—polarised cavity mode
and a oy-polarised laser field. These can then be driven on either the Dy or D
lines, though here we consider the D; line. As such |f) = |F' =2, mp = 2) and |e)
is actually the pair of states |[F" =2, mp = 1) and |F/ =1, mg = 1) which we take

5°Py2 - o
At 1AL
S
[} Q, :
o Q1
g g\
w_ ! we by
] N
T —— w |
) v
mp= -2 -1 0 +1 2

Figure 5.3: Level diagram to produce the Dicke model using hyperfine states in 8Rb. The two-level
systems are made from the states |F =1, mr = 1) and |F = 2, mg = 2) with detuned Raman transitions
driven between them via the D, line made from a cavity mode (red arrows) and o -polarised (green) and
o_-polarised (blue) lasers. For the experiment the relevant scales are w, ~ 7 x 21 GHz, AL ~ 100 x 271
GHz and w1+ ~ 50 x 27 THz. Note also that both lasers drive both states, which produces a light shift
on the levels and that the diagram is not to scale.
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to be at the same energy due to the large detuning. There are also other relevant
excited states, such as |F’ =0, mp = 0), which are coupled to only one active state

and so result in a light shift on the active state.

5.2.3 Full model

Using these levels and notation such that |F =1, mFp =1) = |0), |[F =2, mp =2) =

|1) and |F" =i, mp = j) = |i, j), we have a full Hamiltonian
fl=wetta+w 1)1+ w o) (e + et \f|o><z 2|+\/71><3 ]
C z - e 2 4 ’ 2 ’
Q- ., \ﬁ 5 1
+ e ( £ 10){0,0] 1/ 210)(1,0] +/ 5 10} 2.0
Qo [ /1 1 1
v e (\/Zomm,u Vs 1 @1+ 55 1) 3.1]
rgo? (Y2 me eyt mea-yiinea
ga Vg P gl 6!/ 6! /"

where h.c. means Hermitian conjugate and is meant for all the transition terms. In

+ h.c.

(5.18)

this equation wc is the cavity frequency, w, is the splitting between the two active
states, Y sums over the excited manifold with w, being their frequency relative to

the eneregg of [1,1) which is taken to be zero. wy, Q. are, respectively, the bare
frequencies and Rabi frequencies of the o.-polarised lasers and g is the single-atom
coupling strength normalised on the D, cycling transition. The coefficients on each
of the interaction terms are the dipole-matrix coefficients for the transitions [83].

Adiabatic elimination of the excited states (an example of how this can be done
is given in Section m gives a master equation

p = —i[H, p]+ kD|d]p (5.19)

with an effective Hamiltonian summed over N atoms

. A A s p Ay oo P U,
H=wata+ wS, + —=(S,a+5a")+ =(S_a+S5,6")+=S,a"a (520
0 \/N( + ) \/N( + ) N ( )
and parameters given by |72

1 9 9
wa—Z(W++w)+3(A++A (521)

1 1(Q2 Q2
=w,— =(wy —w )+ = [——— 22
wo = w 2(w+ w)+6(A A+) (5.22)
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V 3NQ¢Q

b = o (5.23)
B 2N gZ gZ
U—3(A+—A (5.24)

where A are the detunings from the excited states of the 0. lasers.

5.2.4 Co-propagating vs. counter-propagating lasers

The Hamiltonian given in Equation [5.18] omits a phase factor to the laser coupling
terms introduced by the positional spread of the atoms. Following the derivation with

such a phase factor left in for a single atom gives us coupling terms [72]
eff(k, r)6_+a + ei(k;r)a.ﬁa?" + ei(k+‘r)a—+aT + e*l‘(k%r)a—ia (525)

where ka. is the wavevector of the g.-polarised laser fields and r is the position of
the atom. If the driving laser fields are counter-propogating then k_ ~ —k, = k and
we can make the rotation &, — &, e’ to remove this atom-by-atom phase factor. If
instead the lasers are co-propagating then k_ =~ k; and no such rotation is possible.
In that case, once we sum over the entire ensemble and its uniform distribution in

that phase, we do not have a superradiant threshold.

5.2.5 Experimental procedure & results

The experiment at the Centre for Quantum Technologies [/2] used this method to mea-
sure the transition threshold, A, as a function of various parameters. Their experiment
involved 8Rb atoms in a cavity with parameters { g, k,y } = 27 x{1.1,0.1,3 } MHz
and a detuning of =27 x 127 GHz from the D, transition line. The atoms are cooled
and around 5 x 10° are loaded into a one-dimensional optical lattice within the
cavity. This lattice is created by a laser driving along the cavity axis at twice the
wavelength of the cavity resonance used in the Raman transition scheme. This pins
the atoms to positions such that they have identical coupling to the cavity mode.
Once loaded, the atoms are allowed to evaporate until a specific number of atoms,
fixed from run to run, are left in the cavity, achieved by a non-destructive measurement
of the dispersive shift on the cavity frequency, which is proportional to the atom
number. The experimental sequence is triggered once the desired number of atoms
is inferred. This sequence involves slow ramplnﬂ of the coupling lasers until the
output from the cavity field, measured by a single-photon counting module (SPCM),
is deemed to show that the transition has been crossed. This is done simply by
comparing the output photon flux to some threshold. By varying parameters in the

2This is done for reasons of practicality. Further discussion of this ramp is presented in Sectlonm
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Hamiltonian in Equation [5.20] it is thus possible to compare the behaviour of the
measured threshold with Equation [5.76]

The results of the experiment show that there is a range of wp for which the
threshold predicted in Equation [5.10] is accurate, as shown in Figure [5.4] reproduced
from [72]. However, there are also significant regions where this is not true. In
particular, Equation 5T6] predicts a critical coupling of zero for wp = 0 but in reality
the threshold tends to infinity as wp — O.

This could be due to effects such as spontaneous emission, collisions and evapo-
ration. All of these things decay the length of the collective spin, either by breaking
the indistinguishability or literally by removing atoms. The impact of such an effect
has been considered in where their methods lead to a new transition point of

(5.26)

L] Wi+ y? (w— U2+ k2
2V =206 )wy w—UR

where y quantifies the decay of the collective spin and (8,) = (5,) /N is the ex-
pectation value of an individual spin initially, allowing for imperfect initial state

preparation which will also decrease the spin length.

Qualitatively, such a formula can be explained in the same way that the introduc-
tion of cavity decay was explained. Introducing an atomic decay means that there is
something more for the atomic ensemble to overcome to self-organise. Such a formula
can be fitted, by varying y, to the data. However, the value of y needed for that fit is
much larger than any estimated rate of the cause of such a collective spin decay, Le.
the rates of evaporation, spontaneous emissions or collisions. Moreover, the length of
the pulses emitted by the experiment gives their own indication of the decay of the
spin length. These pulse lengths indicate that the spin length decay rate is on the

order of the spontaneous emission and collision processes, supporting the estimated

le)

we== 120 kHz w == FH) kHx

w == B0 kH=z

e = 50 kHz v = 67 kHz e = G0 kHz

0.0 0.1 0.2 0.0 0l 0.2 0,300 0.1 0.2 0.3
wy (MHz) wo (MHz whiy (MHz)

Figure 5.4: Figure reproduced from . Measured threshold for varying wy for different fixed values of
w. Comparison to theoretical fits from the traditional threshold of Equation[5.16] (black line), the threshold
including spin length decay given by Equation with fitted y and (6,) = —0.5 (grey) and the derived
threshold including motion given in Equation [2.40] (solid coloured lines). For the experimental data, the
trap depth is 219 pK giving a Doppler broadening y; = kv = 2 x 59kHz for the motional threshold.
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rates of those processes. This implies that there is something else going on, which
delays the onset of superradiance without decaying the spin length or altering the
length of the output pulses.

Our interpretation was that the differences were actually caused by the motion
of the atoms. Since the atoms are thermal, rather than in a condensate, the atoms
have residual thermal motion. This motion produces a Doppler shift to the frequency
and so, since the atoms move at different velocities, wy varies between atoms, causing
a blurring of the phase transition point for different atoms. The subsequent delay
in the onset of superradiance can be explained qualitatively by this inhomogeneous
broadening meaning that the atoms want to self-organise differently, again acting as
an extra barrier for the system to overcome to become superradiant. We believe that
this is why the predicted threshold is less accurate for small wp, where this Doppler
broadening is comparatively Large@ A mathematical approach to this problem is
given in Section 5.4

5.3 Theoretical modelling of the experiment

5.3.1 Comparison of quantum & semi-classical simulations

Much of this Section, and the earlier derivation of the phase transition point, relies on
integration of the semi-classical equations discussed earlier in Section [5.11] These
equations rely on two key assumptions: operator product factorisation and infinite
atom number. Of course, no experiment can have an infinite atom number, but at
what point does this become a reasonable approximation? Given the entanglement
between the field and the atomic ensemble, can we simply factorise those operator
products without losing information?

Figure [5.5] shows a comparison between a quantum treatment of the system and
a semi-classical approximation of the dynamics. The quantum side of the compar-
ison is presented in two ways: a single trajectory and an ensemble average of
100 trajectories. We can see that for a single trajectory, the photon measurement
record introduces a significant amount of noise on the photon number in the cav-
ity. However, this noise clearly is centred on some photon number. An ensemble of
trajectories thus shows a rise to some final photon number. The semi-classical equa-
tlons are integrated from an initial state slightly perturbed from the normal phase
(ie. {a, B, vy} =1{0.001,0.0,—0.5}) and multiplied by N for comparison. They also
show a rise to a steady photon number. The approximation is clearly better for higher

atom number. Indeed, for N = 80 atoms the master equation estimate even appears

8Note also that, perhaps coincidentally, the fitted parameter for the decaying spin length threshold
is remarkably close to the Doppler broadening. This is also true for the lower trap depth for which
measurements were made. This could be arqgued to be extra evidence that indeed it is the inhomogeneous
Doppler broadening that shifts the threshold.
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to have decaying oscillations of around the same frequency that the semi-classical
method predicts. Therefore, for the system above threshold the semi-classical model
accurately predicts the dynamics and the steady state, even for quite small atom
numbers. For the large numbers of atoms used in the experiments, ~ 10° atoms, this

would be an excellent approximation.

Below threshold is a somewhat different situation. Figure [5.6]shows two examples
of below threshold behaviour. Clearly the perfect normal phase one would expect is
not present. Instead, noise creates population in the cavity mode, and by considering
g%(0) we can see that this field is thermal in nature. The size of the ensemble does
not seem to change either the average photon number of the thermal state nor its
g°(0) value (which should characterise the size of the thermal fluctuations). This
implies that again, noise on the system below threshold tends towards zero photons
(and thus atomic excitations) per atom as the atom number increases, bringing it in
line with the semi-classical predictions.

We now turn our attention to the focus of much of the experimental study of this
system: the phase transition. The semi-classical prediction is that below threshold

there is no cavity field and above we have a sudden increase in the photon number.
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Figure 5.5: Comparisons between a single quantum trajectory (blue), an ensemble average of 100 quantum
trajectories (green) and the semi-classical result (red) for the Dicke model above threshold with different
size atomic ensembles. In each case the parameters are { w, wo, A, U} [k = {1.0,1.0,1.0,0.0 }.
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Figure 5.6: (a,b) Comparisons between a single quantum trajectory (blue), an ensemble average of 100
quantum trajectories (green) and the semi-classical result (red) for the Dicke model above threshold with
different size atomic ensembles. (c) Average of 100 trajectories g%(0) for different atomic ensemble size.
(d) Average photon number over a single long trajectory (average over xt = 100 — 1000) and its scaling
with atomic ensemble size. In all cases the parameters are { w, wp, A, U} [k = {1.0,1.0,0.5,0.0 }.

In reality, we know this cannot be exactly true for the quantum treatment as below
threshold we have a small thermal state rather than a vacuum. Any transition in the
semi-classical picture also requires some “fluctuation” away from the normal state,

which is still a solution above threshold, albeit an unstable one.

This is an area in which the semi-classical picture fundamentally cannot tell us
what is going on. In reality, those fluctuations could be quantum in nature. The
experimental results for the BEC formulation of the Dicke model support the idea
of quantum density fluctuations seeding the transition [67-70] In our system, the
temperature is high enough that vacuum fluctuations may seed the cavity mode with
enough photons to drive the transition. What drives this transition is actually of some
importance to our understanding of what happens in the experiment. In particular,
the source of the fluctuations, characterised by a realistic set of initial conditions
for the semi-classical integration, has a significant impact on the rise time once the
system crosses the threshold. Due to the way the lasers are ramped up until the
threshold is deemed to have been crossed, any delay in self-organisation leads to

an overestimate of the critical coupling.
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Figure [5.7] shows the photon number around the threshold for a variety of atom
numbers. We can see that with a small atomic ensemble size the transition is
smoothed out quite considerably, but as we increase the atom number we see sharper
behaviour. This again indicates that for the atom numbers considered in the ex-
periment, the shape of the transition is accurately predicted by the semi-classical

equations.

5.3.2 Ramping the laser powers

The experimental sequence involves a slow ramp of the laser powers until the cavity
output indicates the transition has been crossed. Why? It can be argued that this
slow ramp provides time for atoms to undergo collisions, spontaneous emission or
evaporate, and thus decay the spin length and delay the threshold. This delay
would be higher for higher thresholds and so create an exaggerated profile for the
transition. Why is it not a better idea to simply quench the system to different values
of A and make the judgement on whether the state is superradiant or not at each
point? The simple answer is one of experimental practicality: the experiment works
better if ramped [80]. We aim to explain why this ramp is preferred by considering
the reaction of the semi-classical equations.

For the semi-classical approach, we begin at the theoretical transition and turn
on the ramp. Starting at zero would allow the initial perturbation on the state to
decay such that at threshold the perturbation would vary depending on the ramp

speed. Regardless of the source of this perturbation in the experiment, it should not
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Figure 5.7: Average photon number over a single long trajectory for different atomic ensemble sizes. In
all cases the parameters are { w, wp, U} [k = {1.0,1.0,0.0}
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be dependent on the ramp, and so we choose initial conditions such that we ensure
that the state is the same as it crosses the threshold in each case.

Figure [5.8] shows the response of the system given an abrupt switch, or quench,
to a value above threshold, and the same response with a slow ramp to that value.
We see that the response in the case of the ramp is significantly smoother. We
believe that it is this smoother reaction that creates a more stable experiment. Given
that the system starts with near vacuum in the cavity mode and a fully polarised
atomic ensemble, it seems fair to state that in the initial spike of population, the
predominant active term is a75,. Thus that initial reaction to an imbalance in
population is scattering predominantly from one Raman beam. Each event produces
a momentum kick on the atom due to the absorption and emission of photons, and
so, if most are from one beam, most of them give a momentum kick in the same
direction. The expectation value of S, of the atomic ensemble therefore tells us how
much momentum is being put into the system and its derivative can tell us the ratel?l

If that initial imbalance between the steady state and current state is large, as it
is when a quench is performed, then a large momentum kick is given to the ensemble.
The plot shows that this adjustment happens in a very short period of time (the first
transfer of population takes around «t = 5, or 8us with k = 100 x 21 kHz). Further
than that, we can see that the initial reaction to a quench is an overcompensation
followed by an overcorrection, followed by another smaller overcompensation and
another smaller overcorrection, etc.. This means the state oscillates around the steady
state with a decaying amplitude and so the large initial kick is larger than is even
necessary and is followed by a sequence of smaller kicks. Momentum is transferred
in a very short period of time, such that lots of kinetic energy is put into the system
without much opportunity for dissipation of that energy.

If instead the system is reacting to very small changes in the steady state, as it
does when following a ramp, then those momentum kicks are much fewer, and the
level of response is more in line with the imbalance. It can clearly be seen that there
is some initial period whereby the system adjusts to the threshold being crossed, but
that it does so much more gradually than with the quench. Even for the fastest ramp
considered here the peak of the derivative of (5,) is an order of magnitude lower
than for the quench. Once the system has adjusted to the steady state it follows
it reasonably closely, with a constant derivative for the atomic response, until it is
turned off. This means that the momentum put into the experiment is much more
spread out and so the introduced kinetic energy is smaller. We believe that this

29The other term that produces atomic excitations is ﬁ§+ which is operated by the other Raman beam.
However, if we consider the origin of the actual term it relates to the conversion of a cavity photon into
a o photon in that laser mode. The predominant term, §+67L, relates to the conversion of a o, laser
photon into a cavity photon. This means that both processes give the atoms a momentum kick in the same
direction if the lasers are counter-propagating. Similarly, both 5_ terms give the atoms a kick in the
opposite direction. Therefore, the time derivative of (§Z> is directly proportional to the time derivative of
the momentum delivered into the system along the axis of laser propagation.
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Figure 5.8: Semi-classical simulations for the Dicke model with parameters {w, wp, U}k =
{1.0,1.0,0.0} beginning with A/x = 1/7/2 and ending at A/k = 1.0 either by quench or by a linear
ramp categorised by a total ramp time x7. Plotted are (a) the average photon number per atom, (b) the
population inversion per atom and (c,d) its derivative.

is why the ramp provides a more stable response. Essentially the quench puts too
much momentum into the system in too short a period of time for it to respond and
this leads to significant increases in collisions and evaporation and therefore a much

shorter and less reproducible output pulse.

5.3.3 Impact of single-atom effects

The Dicke model derivation above assumes all atoms are coupled indistinguishably
to the cavity mode, allowing us to treat the atomic ensemble as one large collective
spin. This is true only if there is nothing that affects single atoms. A true treatment
of the experimental system must therefore include single-atom events, either through
evaporation or atoms being scattered into non-contributing states by collisions or
spontaneous emission events. This can be accounted for reasonably simply in the
semi-classical model by simply putting a decay on all components of the spin. At
some point, the number of atoms is too small to support a superradiant state, and the

remaining atoms return to the normal phase.
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This collective spin treatment cannot be modified to account for spontaneous
emission events, which break the indistinguishability criterion. These events can
either decay or increase the spin length (of course not above N/2), and as described
in [84l/85), increase the value of the critical coupling. Here we discuss the impact
of these spontaneous emission events on a small ensemble, and, using this insight,
discuss the idea of using a laser to repump atoms scattered into other states back
into the active states.

We consider a simplified model to deal with spontaneous emission. Since we con-
sider the system around threshold and as it self-organises, we assume the majority
of the population is in [0) = |F =1, mr = 1) and the cavity mode is near unpop-
ulated. This means that the only source of spontaneous emission events is the o,
laser driving off-resonant Rabi oscillations with |F' =2, mp = 2)@ That state can
F=2mr=1)
(Is)) and |F =1, mr =1) (]0)). In our effective system where the excited states

undergo three emission processes: decay to |F =2, mg = 2) (|1)),

have been eliminated the three processes can be represented as follows: the first is
[1) (0] = &, the second she[veﬂthe atom outside of the Dicke model scheme which
we will call &5 and the third is a dephasing process |0) (0] which we call 8;. The
rates for these are in a fixed ratio given by the Clebsch-Gordan coefficients for the
relevant levels [83]. The rate at which these happen can be stated in terms of the

Raman transition rates, detuning and the cavity co-operativity [/1].

The Hamiltonian in this treatment is unchanged, but the master equation now

features these three loss terms on each atom,
- Y. 12 2
. e N Al 1 Al s Al
p=—ifi.pl+xDlalp+Y_ (5Di6!"lo+ EDio"lo + LDialp) . (527)
=0

where we assume that each process can be distinguished.

The impact of the shelving process is the easiest to consider, as its impact is the
same as atoms leaving the trap. As above, this simply puts an exponential decay
on the spin length and so any superradiance achieved will be temporary. Clearly a
state with all atoms in the inactive state |s) is uncoupled from the Hamiltonian and
so with that term active the only possible steady state is all atoms in this dark state.
Figure 59]shows this clearly. A superradiant state is formed, and then slowly decays

until there are not enough atoms in the active states to support superradiance.

For the six atoms considered here, then, with coupling A/k = 1.0, a state of spin

300f course spontaneous emission from the other Raman process is also possible. These events would
add extra shelving processes, as well as a dephasing process for |2,2) and a traditional spontaneous
emission term |1,1)(2,2|. The impact of such terms would be much the same as for their equivalent
processes discussed in the text and so they are omitted for the sake of simplicity.

31 The atom being “shelved” means that the atom has been put into an inactive state, in this case
|F =2,mr =1), from which there are no active Raman transitions.
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Figure 5.9: Dicke model simulation for six atoms with { w, wp, A, U} [k = {1.0,1.0,1.0,0.0 } where for
each atom a spontaneous emission term is simulated by a loss term &5 at a rate ys/k = 0.05. Shown are
two individual trajectories (blue, green) and an ensemble average of 200 trajectories (red). Plotted are
(a) the photon number in the cavity mode while (b) shows the expectation value of a projector into the
shelved state |s). The atomic jumps in the individual trajectories can be seen by jumps in the population
of the shelved state, with the system expected to be below threshold once the number of shelved atoms is
greater than half of the total number of atoms.

length S = 3/2 would be at exactly the semi-classical thresholﬂ All states with
larger spin length than that would support a superradiant state, with the maximal
spin length meaning the largest magnitude of superradiant state. States with spin
length below S = 3/2 will be below threshold, which for six atoms means thermal
fluctuations about the normal phase. The lower the spin length the smaller these
fluctuations, with zero spin length leading to no movement at all. Therefore, as the
spin length decays, so does the magnitude of the cavity field occupation leading to
a measured output of a pulse of finite length. This is what is seen in the experi-
ments, though of course other causes of spin length decay in the experiment will also
contribute to this.

The impact of the other two spontaneous emission processes is more complex.
Figure B.10] shows that the response of the system is a decay of the spin length to
some non-zero steady state. However, an individual trajectory shows that individual
events do not necessarily lower the spin length. Some events decrease the spin
length, some do not alter it and some even increase it. In fact, the spin length can
be reduced to below superradiance but then another event can seemingly bring the
superradiance back. In the experiments, this is not seen. This is because other
processes, including the shelving processes shown above, also decay the spin length
irreversibly. This means that any “resuscitation” comes too late. However, the reason
why this can happen when those processes are ignored gives a fundamental insight
into the impact of these single-atom effects.

The change in the collective spin length happens because of the way different

32An explanation of this and a more in-depth consideration of the impact of the spin length on the
response of the system is given in Section[7.2]
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Figure 5.10: Dicke model simulation for six atoms with { w, wp, A, U} /k = {1.0,1.0,1.0,0.0} where
for each atom a spontaneous emission term is simulated by a loss term (a,b) &4 or (cd) &7, at rates
yilk = 0.01. Shown is an individual trajectory (blue) and its jumps (blue vertical lines) and an ensemble
average of 200 trajectories (red). Plotted are (a,c) the photon number in the cavity mode while (b,d) shows
the magnitude of the spin vector S found by calculating (52 + ég +52) = S(S +1) and solving for S.
The system is expected to be below threshold when the spin length is below 3/2.

spin states combine to form a collective spin, whereby the length of some product
51 ® S, is not necessarily the sum 51 + S;. The state after, for example, the first
0, event is something of the form p = py_1 ® |1) where py_1 represents N — 1
indistinguishable atoms in some collective state. The length of py_1, due to this
being the first event, is (N — 1)/2, and the length of |1) (in this basis) is 1/2. This
means that the length of p is some superposition of S = (N — 1)/2 & 1/2 with the

coefficients decided by the particular states occupied by the atoms.

The cavity output field is different for each of these spin length contributions, and
so, in a quantum trajectory picture, one of them is projected out by the cavity output
measurement. Thus, the first event can cause the spin length to drop or stay maximal.
If a drop has occurred, and the spin length now sits at some sub-maximal length Sy_1,
then the subtraction and re-addition of the spin-1/2 particle add separately. This
gives the length of the total spin as some superposition S = Sy_1£1/24+1/2 (where
the two =+ are independent). This means the event can cause the spin to jump up

one, jump down one or stay the same.
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The jump to a superposition, and the subsequent measurement backaction, occur
after every event, and so on an individual trajectory we have a sequence of events,
each followed by the spin length being projected into a state below, above or the same
as the one it was in before. On average, this trends down to some steady-state value.
At this point, the superposition imposed by each event does not on average change
the spin length because the average of the states in the post-jump superposition is
that of the steady state. Of course individual trajectories must choose a specific state
of the superposition and so will jump around the steady state. It should be noted
that this steady-state spin length is always less than maximal. We see that the &,
events have a lower steady-state spin length and reach that value faster. This can
be explained by the fact that the impact of &7 events is lower given that most of the
atoms are in that state as it is.

If the loss of atoms by scattering into non-active states, in particular |s) as

discussed above, is a major source of the decay in the spin length, then it would seem
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Figure 5.11: Dicke model simulation for six atoms with { w, wp, A, U} [k = {1.0,1.0,1.0,0.0 } where for
each atom a spontaneous emission term is simulated by a loss term 05 at a rate ys/k = 0.05 and a repump
laser is simulated by the repump terms |1,1) (2, 1| at rate y/k = 10.0 and |2, 2) (2, 1] at rate v/2/3y. Shown
are two individual trajectories (blue, green) and an average of 200 trajectories (red). Plotted are (a) the
photon number in the cavity mode while (b) shows the expectation value of a projector into the shelved
state |s) and (c) shows the magnitude of the spin vector S found by calculating (52 + §§ +52) = S(S+1)
and solving for S. For the individual trajectory the jumps into and out of the shelved state can be seen in
the value of the shelved state projector. The system is expected to be below threshold for S < 3/2.
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that repumping from that state into the two active states would help. Essentially, a
strong laser can be added to the scheme, driving transitions from |s) to some excited
state. The resultant emissions from there will drop the atom down into down into
either of the other states (or back to |s) where the process repeats). The excited
state could be, for example, |F' =2, mg = 2) in the D4 L‘meEl To simulate this we
take Equation5.27]and add two extra dissipative terms for each atom [0) (s| at a rate
yr > s and |1) (s| at a rate \/2[3y;.

Figure p.TT]shows that this does not necessarily help. One trajectory is stabilised
but the other quickly decays. We can use the insight garnered above to explain this:
pumping atoms back into states that do not match the global state does not necessarily
replenish the spin length. This is in line with limited results from the experiments [87],
where the addition of the repump laser sometimes helped and sometimes did not help

and was thus not used in the collection of data for [/2].

5.4 Impact of motion on the phase transition

As discussed in[5.25] there are discrepancies between the theoretical and experimen-
tal results, with particular inaccuracy for low wp. Our interpretation of this mismatch
is that it is caused by the atomic motion. Different atoms move at different speeds,
and so the Doppler shift on wp is a spectrum across the ensemble. This inhomo-
geneous broadening means that different atoms see different transition points. This
means that the self-organisation of the spins, which is required for superradiance, has
more to overcome and so the transition is shifted to higher couplings. The following
text is adapted from the Appendix of [72).

We assume that the internal atomic and cavity dynamics are much faster than the
timescales of the atomic motion, and so treat the position as a classical parameter

not tied to the other dynamics. The Hamiltonian, summing over individual atoms, lﬂ

VN

N N

N A

H = wéfé—kwog / E ( ‘¢"aa +ea” ())
j=1 j=1

i( “oatel v eael ). (528)

3\

The phases on each atom are given by ¢; = K- rj(t) where K is the wavevector of the

Bt is important that this laser is not close in frequency to the Dicke model configuration laser and
cavity modes, as otherwise the repump laser would also create Raman transitions and thus impact the
active states and the Dicke model configuration. Choosing an excited state in a different hyperfine manifold
avoids that issue.

3 Note that in this derivation U is assumed to be zero for the sake of simplicity, but if it is non-zero,
and its magnitude less than 2w, then it can be easily accounted for. Since we are only interested in the
transition point, where 0, = £0.5 depending on the ground state, then the derivation can be edited such
that w — w £ UJ2.



88 CHAPTER 5. CAVITY QED DICKE MODEL

laser beanﬁ and so the only relevant part of the position, and thus motion, is the
single dimension along the path of the lasers and so the dot product becomes kr;(t).

We make a Holstein-Primakoff approximation 8! ~ b, where b; is the anni-
hilation operator for an excitation on atom j. Such an approximation is valid for
[A)]T[AJ/ & 1, Le. below threshold where the number of atomic excitations is very low

We can then build quantum Langevin equations

N
. A
b= —(k+iwa— 2= Z k0 ‘—+ e 0D 4 Voka(t)  (5.29)

A A A iA )
b = —iwpb; — \‘fNe*l“/“’a - ‘ﬁe*‘kﬂmaf (530)

The formal solution to the second of these is

t

A efikr/([/)efium(fft/)a(t/)dt/

bj(t) = eth,(0) — N
0

t
Ay / ik () a—iwo(t—t) AT 1\ 44
— — [ ettt a’(t)dt 5.31
~ ) (') (5.31)

and this can be substituted into the field annthilation operator equation giving

N
A . N l)\— ik — t lA+ ik
0=—(k+iwai— — ell’/ (WOb LI’, +lu)0[b 0
(ki = 753 } 0

2 N
+V2ti(t) — % Z/d etk iunlt—) /)
=170
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+N+ Z/dt/eﬂk[ S (6)—ri () iwo(t— t)a(t)
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:
Mz

1

/d e n(t=r () iwnt=t) gt ¢y | (532)
=19

We now consider r;(t) = r; + v;t, such that r; is the initial position and the velocity

v; is assumed unchanged through the length of the experiment. This means that the

SThe signs of the phases in the Hamiltonian here take the counter-propagation of the lasers into
account. In the co-propagating case the phases in the AL term are switched. This has strong implications,
primarily that in two of the integrals introduced in Equation [5:32] the positions no longer cancel. This
introduces an integral over the positions which cancels those terms to zero. This reduces the entire
problem to something more akin to a single-beam.
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initial position dependence drops out of every one of the integrals. The velocities are

assumed to follow a one-dimensional Maxwell-Boltzmann distribution such that

lZf(vv)f ! 7ex g (5.33)
N/’=1 T V2 P\ ‘

where 7 is the route-mean-square (rms) velocity. Thus all the above integrals become

a variant on the single integral

1 fe's) t VZ , n ,
T [ v (g e @

t
2205 2 _ o
- /exp [kv(;t)] eiwlt=t) (O(¢)yde (5.34)

0

where & represents @ or &7. We then take the Laplace transform

t

i~ 20205 _ 2 X
/ et /exp [—k Y (t2 f ]eﬂwot D(O)dt' b dt
0

_ kZ Z t/)z —stiwy(t—t') /7 /

= [exp e (O(t')) dtdt (5.35)
t/
{ exp t*” ]e<5+"w0>(”’>dt e (O(t')dt’ (5.36)

I
| = T—g Tz 0\8

-

= kv\/; exp(72)erfc(z.) (O(s)) (5.38)

where (O(s)) is the Laplace transform of (O(t)), zo = (s % iwo)/(kvV/2) and erfc(z)

is the complementary error function.

) e(s+iwo)rdT] e*Sf’ <@(t/)> dt’ (5.37)

Considering initial expectations <B/'(O)> = (Bf(O)) = 0 and noise {(@,(t)) = 0
then the Laplace transform of Equation .32]is given by

2 2
(s + k + i) (a(5)) — (6(0)) = — iv\/?f(m a(s) + 2\@ flz)(a(s))

AAy | . AAy m .
- R e atin + 225 3 e ) )
(539)

where we have defined f(z) = exp(z?)erfc(z).
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For the Dicke model A, = A_ = A and so the above can be translated to two
coupled equations for (a(s)) and its conjugate. If any of the poles of (a(s)) have
a positive real part, the solution describes an amplification procesﬂ This means
that the cavity field becomes non-zero, and so the threshold has been reached. The
threshold is thus the smallest value of A for which a pole crosses the imaginary axis.
For these equations, the poles can be found as the roots of the determinant. This

gives us the threshold expression

V2kv(w? + «?)

A = (5.40)
8wF ( ﬁokv)
where F(y) is the Dawson function defined by
2 y 2
Fly) =e™Y / e* dx. (5.41)
0

This method still underestimates the transition, but the shape seems much more
accurate in comparison to the traditional threshold given in Equation In com-
parison to Equation .20 the fit for this method is perhaps somewhat less convincing.
However, given our lack of explanation of the high fitting parameter required for
that method to match the data, it would seem like our method is a much more solid
explanation.

There are several reasons why our treatment is still not perfect, including the
assumption that velocities do not change over the length of the experiment, and that
they are not coupled to the cavity field or the spins. The motional fit is also more
convincing for the lower trap depth considered in [72]. At lower temperatures, the
atomic velocities are smaller, and so perhaps the assumptions made about the velocity
distribution are more accurate.

The fact that the fit is also more convincing with a single-beam or co-propagating
lasers (as considered in [72]) is also of interest. In those cases the threshold is for
a switch in polarisation of the atoms, and so at most one photon can be scattered
per atom. In the Dicke model case multiple scattering events can occur from each

atom. Coupling between the spin and velocity would be via those scattering events

t is interesting to discuss, and a significant part of the original work, what happens for a single beam
and for the case of the co-propagating lasers. With A_ = 0, the situation is a Tavis-Cummings model and
so naively we would anticipate a complete switching of the state to the inverted phase for any non-zero
A4. In reality, the inhomogeneous broadening and spin length decaying processes delay this threshold
to a higher value of A,. For the co-propagating case then the two cross terms (i.e. those with A_Ay as
the coefficient) are zero and so we are left with two expressions. Similarly to the single beam case this
can lead to a transient pulse as the state switches from normal to inverted, and again that threshold is
at some non-zero A. For the particular situation wp is zero, then that threshold becomes infinite. In both
of these cases, the match to the experimental data is excellent, and so it is with confidence that we can
say that the Doppler broadening plays a significant role in defining transitions. Our understanding is
that it is this threshold that was being measured in [88] rather than the Dicke model phase transition as
originally thought.
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and so it makes sense that our treatment would be more accurate for situations with
controlled scattering. There are of course other experimental concerns, not factored

into our treatment, that could impact the critical coupling.
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Chapter 6

Extreme spin squeezing in the

steady state of a generalised
Dicke model

Generally, research on cavity engineered Dicke models either wishes to minimise or
neglect the dispersive shift, S,aTa. This non-linearity can somewhat complicate the
phase transition behaviour and the dynamics of the system, at the very least being
an added parameter of which to keep track. Once it becomes large it completely
changes the behaviour of the system. In this Chapter, we consider what happens
when that term is allowed to dominate the Hamiltonian. What we find is extremely
slow dynamics from any state eventually trending towards a highly entangled atomic
state: the central Dicke state [N/2,0). We propose methods to access this state: a
simple heralded probabilistic method and a more complicated protocol involving a
time-dependent Hamiltonian. This work is presented in the form of a paper published
in Physical Review A. It has been reformatted for this thesis, with added subsection
headings, minor changes to some figures and some notation and spelling altered
to provide consistency throughout the thesis, but is available in its original form at
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.023822.
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6.1 Introduction

Atom interferometers are useful for making precision measurements of acceleration,
time, rotation, and, potentially, even gravitational waves [89]. Interferometers employ-
ing uncorrelated states of N atoms have a variance limited by the standard quantum
limit (SQL), which scales like 1/N, but suitably entangled atomic states could poten-
tially reach the Heisenberg limit, where scaling like 1/N? becomes the lower bound
for the variance [90}|91]. Spin squeezed states |17)[19-22)92] are a popular choice to
try and make measurements that are below the SQL and potentially approach the
Heisenberg limit. Successful spin squeezing experiments have been carried out using
atomic collisions in Bose-Einstein condensates [14//93-100], quantum non-demolition
measurements [1014107], and various other methods [108H112]. The best of these
experiments have exceeded the SQL by 100-fold [107], but for the large numbers of
atoms that were involved, this is still nowhere near the corresponding Heisenberg
limit. If this limit could be approached, then the actual number of atoms required for

significant gains in precision could in fact be relatively small.

6.1.1 Metrology of Dicke states

A class of idealised states that can potentially reach the Heisenberg limit are the
so-called Dicke states [113|[114], which are simultaneous eigenstates of the collective
angular momentum operators $2 and S,, denoted by |S, m). Here we shall consider
only symmetric Dicke states, for which the wavefunction is symmetric under particle
exchange.

Dicke states do not lend themselves well to characterisation by conventional
spin squeezing measures, which generally rely on a well-defined polarisation of the
spin state. Instead, to characterise the squeezing we consider the Dicke squeezing

parameter [23],

AS,? +1/4

%=NL€Lii_ (6.1)

(58 +59)
This parameter gives us access to the metrological sensitivity relative to the SQL.
For Mach-Zehnder interferometry, the variance is bounded by B(&p/N), where B
is a factor of order one |23]. The parameter also provides a lower bound for the
entanglement depth of [&5" — 2] [24], where [x] denotes the minimum integer no
less than x. Considering this bound, we can see that the limit for entanglement, and

thus metrological gain, is &p = 1/2.

For a Dicke state |N/2, m), the Dicke squeezing parameter is given by

1
- 62
<p Nt (6.2)
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This means that the Dicke states offer near Heisenberg limited metrological sensitiv-
ity for N > {2, m}. In addition, for m < V/NJ2 the entanglement depth must be the
size of the entire atomic ensemble. There have been proposals for schemes to pre-
pare Dicke states of an atomic ensemble (see, e.q., [115H122]), typically based upon
conditional or probabilistic processes and possibly also feedback of some sort. Alter-
natively, schemes using collisions in spin-1 Bose-Einstein condensates are possible
and have been implemented [1234125].

6.1.2 Summary of the Chapter

Here we propose an approach that can, in principle, prepare an arbitrary Dicke state
as the steady state of a cavity QED system with a suitably engineered atom-cavity
interaction. In particular, this interaction is described by the so-called generalised
Dicke model, which may be engineered, as described in Chapter [B] in an optical
cavity QED setting with alkali atoms, via laser- and cavity-driven Raman transitions

between ground-state electronic sublevels of the atoms [53[71}[72/8081)

We describe the model and the specific parameter regime in which the desired
steady-state behaviour - a near pure Dicke state - is obtained, as well as explaining
the mechanism that allows that steady state to exist. We then explain how that same
mechanism means that reaching that steady state through natural evolution is an
extremely slow process, which leads us to consider modified schemes. The first of
these produces the state heralded by the detection of a single photon in the output
channel, while the second makes use of time variation of one of the parameters of
the model. These methods allow for the preparation of the state on much faster
timescales. We conclude with a discussion of a specific realisation in an optical
cavity QED system and show that significant squeezing and high fidelity states can

be achieved with feasible experimental conditions.

6.2 System & model

We consider a generalised Dicke model for N two-level atoms and a single mode of

the electromagnetic field, as described by the master equation [51}/53}[7279-81]
p = —ilf, p|+ xDldlp (63)

with the Hamiltonian
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where D]d]p represents the superoperator

Dlalp = 2apaT —aTap — pata. (6.5)
Here & (&7) is the annihilation (creation) operator for the quantised cavity mode,
and 5; are collective atomic spin operators satisfying the usual angular momentum
commutation relations. The linear atom-field coupling strength is denoted by A, the
non-linear (or dispersive) coupling strength is given by U, w and wp are the cavity
and atomic resonance frequencies, respectively, and « is the cavity field decay rate.

This system possesses a rich phase diagram, which has been studied both semi-
classically [78)79] and quantum mechanically [80]. In [80], it was noticed that as U
becomes very large compared to the other parameters, the atomic state can become
strongly squeezed in the S, spin component. The present work looks more closely
at, and provides an explanation for, this large U behavior.

Before continuing, we note that our Hamiltonian is similar in structure to that put
forward in [126], where a method based on time-varying parameters was proposed
for preparing Dicke states of donor nuclear spins in silicon. The discrete stepping
method we describe in Section can be viewed as parallel to the method in [126].

6.3 Steady-state behaviour

6.3.1 Expectation values

We consider the steady-state behaviour of the master equation in Equation [6.3] as
we vary U. Figure displays various properties of the system as U is varied
for several different values of (linear) coupling strength A. In particular, it plots
the steady-state values of the mean intracavity photon number, (47 @), the collective
atomic inversion, <§Z> and the Dicke squeezing parameter, &p.

For small |U] we see that the properties of the system depend rather sensitively
on U and A. However, for large |U| we observe a simpler, monotonic dependence:
the mean photon number reduces steadily, becoming very small, the atomic inversion
converges quite rapidly to zero, while the Dicke squeezing parameter approaches
the value 1/(N + 2). This indicates that the system settles predominantly into the
Dicke state |N/2,0), corresponding to genuine multipartite entanglement of the en-
tire ensemble and Heisenberg limited metrological sensitivity. The relative lack of
sensitivity to the coupling strength A is in direct contrast to the traditional and well-
known superradiant behaviour of the Dicke model that occurs when U is small or
negligible [5153)(71}/72,/78H81}/127]

In Figure we plot (a7a), (5,), and & as a function of U/N for several

different values of N and observe that the same general pattern holds. We do note,
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Figure 6.1: (a) Steady-state expectation values for { w, wp } /k = {1.0,0.2 } and N = 10, with A/k = 0.05
(red solid line), A/x = 0.2 (blue dashed) and A/x = 0.4 (green dash-dotted). The black lines in the plot of
¢p are the standard quantum Llimit (solid) and the ideal limit of 1/(N+2) = 1/12 (dashed). (b) Steady-state
expectation values for { w, wp, A} /k = {1.0,0.2,0.1} with N = 4 (red solid line), N = 8 (blue dashed),
and N = 12 (green dash-dotted). Here the Dicke squeezing parameter, <p, is given in proportion to the
ideal limit, 1/(N + 2).
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though, that for a given (large) value of U/N the Dicke squeezing parameter is closer
to its ideal limit of 1/(N + 2) for smaller N, though it should be noted that the
absolute squeezing is still larger for higher N.

6.3.2 Dicke state preparation - |[N/2,0)

If we consider the energy level structure of the system in the limit of large |U| (see
Figure [0.2), and consider the possible transitions between states as allowed by the
atom-cavity coupling Hamiltonian and by cavity photon emission, then it is possible
to understand why the steady atomic spin state |N/2,0) emerges. Let us use the
notation [N/2, m, n) = [N/2, m) ® |n), where |n) is the n-photon Fock state of the
cavity mode.

Now, consider the state |N/2, m, 0) with m < —1. The only processes by which a
transition from this state may occur are described by the terms a5, and 675_ in the
Hamiltonian. The corresponding transitions are |N/2,m,0) — |[N/2,m + 1,1) and
IN/2,m,0) — |N/2, m —1,1), respectively. For large U (ie., U much larger than any
of the other parameters), both of these transitions are off-resonance by ~ U(m£1)/N.
Whilst both transitions are strongly off-resonant, for negative m, the former is less
so by an amount ~ 2U/N, and will therefore be favoured, causing a net evolution
towards states of larger m (in combination with cavity photon emissions, which cause
the transitions |[N/2,m +1,1) — |N/2,m 4+ 1,0)). Similarly, for m > 1, transitions

via 475_ will be preferred, causing a net evolution towards states of smaller m.

- ==%» Non-resonant transiton | =

\/\> Cavity emission
/-\ Resonant transiton ~ { e

—— Dicke state and no photons
------- Dicke state and one photon

Figure 6.2: Approximate level diagram for large positive U > w, wp, A. The dominant evolution pathway
is illustrated.
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Hence, whatever its initial state, the system will evolve towards the centre of the
spin angular momentum ladder.

On reaching the states |[N/2, £1,0), “inward" transitions to the state |N/2,0, 1)
become approximately resonant (for A ~ w ~ wp), and, following emission of the cavity
photon, the state [N/2,0,0) is prepared. Importantly, provided UIN > {wo, w, A, k},
transitions out of the state |[N/2,0,0) to [N/2, £1,1) (followed by photon emission
to [N/2,+1,0)) will be much weaker, due to the much larger energy gap (~ U/N),
than the inward transitions. Hence, the system essentially becomes “trapped” in the
Dicke state [N/2,0,0).

6.3.3 Dicke state preparation - |N/2, m)

If we rewrite the Hamiltonian as
a+ah)5.+5) (6.6)

then we see that for U = —wN/m (with w > «) the states |[N/2, m, n) are degenerate
for all n. This means that the transitions [N/2,m £1,0) — |N/2,m, 1) are now
the resonant transitions. Following the same arguments as given above, one finds
that this shifts the trapped state to [N/2, m,0). Hence, by tuning parameters, the
steady state can be adjusted to an arbitrary Dicke state. Figure [6.3]illlustrates this
possibility in the form of Dicke squeezing “resonances” occurring at U/w = —N/m
(m=%1,..., +5) for N =10.

10"

Ujw

Figure 6.3: Steady-state Dicke squeezing parameter &p as a function of Ulw for {w, wp, A}k =
{100.0,0.2,0.2}, with N = 10. The dashed lines are those predicted by Equation
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6.4 Dynamic behaviour

A problem with using the above approach to produce Dicke states is the timescale
involved with reaching the steady state. To estimate the timescale of some transition
IN/2,m,0) = [N/2,m +1,0), we consider an analytic quantum trajectory approach

with a state
[(t)) = a(t)INJ2,m,0) + B(t) N2, m —1,1) + y(t) IN]2,m+1,1), (6.7)

where a(0) = 1, B0 = y(0) = 0, and we assume that no more than one photon is
present in the cavity mode. We then calculate the Schrodinger evolution of the state
with an effective Hamiltonian

He = H— ikaTa (6.8)

where H is the generalised Dicke model given in Equation The cavity output flux
is proportional to |B(f)|* + |y(t)]* and so, taking U > { w, wp, A, k }, the timescale for
the transition [N/2,m,0) — |[N/2,m £ 1,0) (except for m = 1) can be calculated
approximately as

U? (m+1)?

Tn ™ SRR NN + ) — mim +7)° (©.9)

The total time will thus scale as U? and so be extremely large in the parameter regime
considered. For constant U/N, more atoms increases the time due to requiring more
steps to reach m = 0.

Evolution from the fully polarised states |N/2, =m) requires the entire population
to undergo every single step to |[N/2,0). However, we could instead use an initial
coherent spin state (CSS) [16],

112
], m) (6.10)

J
Iy = (Va7 )

m=—j

J+m

where n = e % tan (6/2) and {0, ¢} are spherical coordinates. With a suitable choice
of n (e.g, n = 1), this improves the evolution time because much of the population in
this state overlaps with or is close to the steady state, while very little of the state
is in or near the fully polarised end states. Such an initial state also immediately
shows Dicke squeezing upon evolution, whilst the fully polarised initial state first
evolves to an anti-squeezed state before slowly approaching the squeezed steady
state.

Whilst the initial coherent spin state improves the short term generation of Dicke

squeezing, the time for significant squeezing to appear is still very large even for
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very small ensembles. Remembering that increased N or U dramatically increases
this time, even with an optimised initial state, the evolution to the steady state is

likely to be prohibitively slow.

6.5 Probabilistic preparation

One potential method for preparing the steady state in a shorter time span involves
using an initial CSS for the atomic ensemble and probabilistic photon detection. A
photon detection collapses the state into a superposition weighted by how likely the
states in the initial superposition were to have produced a photon. The resultant
superposition is dominated by the resonant state, as its neighbours are by far the
most likely states to produce photons. Single-photon detection can thus produce
extremely high fidelity Dicke states in very short time frames. The production of
highly non-classical states via heralded single-photon detection schemes has been
proposed and implemented in other systems [128-136)

The probability of creating the steady state |N/2, m, 0) with this method is the
sum of the populations in the states [N/2, m £ 1,0). For example, if the desired state
is [INJ2,0,0) then a CSS with n = 1 maximises the overlap and the probability of

success (s

N
541

N

N
N1

p=2N (6.11)

For small atomic ensembles this proves to be a fairly efficient method. The results
of trajectory simulations are shown in Table [T} Here we see reasonably high
success rates that decline with N, and match reasonably with those predicted in
Equation [6.17] (e.g., for N = 10(100) the prediction is 41.3% (15.6%)). The fidelity
is extremely high and, since the rate of these resonant transitions is independent of
U, can be made arbitrarily higher without increasing the time taken or reducing the
success probability. We also see very strong squeezing and high levels of multipartite
entanglement. For N = 100, the squeezing has metrological sensitivity -19.39dB
improved over the SQL. This means that this method can produce competitive levels
of squeezing with a relatively high success probability in a very short time span for
much smaller numbers of atoms than usual spin squeezing techniques.

However, creating significantly better squeezing comes at a cost. To match the
~ 3000 depth multipartite entanglement in |132] would require a Dicke state |1500, 0)
with an associated success rate of 2.9%, though we note much stronger entanglement
could be created. With 10° atoms the probability has become a fractional 0.16%. A
potentially useful fact is that the speed at which the transition occurs scales as 1/N

for central Dicke states. If the CSS could be recreated very quickly then it might be
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N[ Efficiency | Fidelity | & (Ep) | Within 1% | Within 10%
70 | 403% | 99.94% | 0.0839 (10) | O91.8% 08.7%

20 | 318% | 9991% | 00460 (20) | 813% 07.6%
50 | 208% | 99.89% | 00197 (49) | 420% 05.2%
700 | 155% | 9952% | 0.0115 (85) |  0.0% 89.2%

Table 6.1: Properties of 5000 trajectories (1000 for N = 100) for various N with {w, wo, A, UIN } |k =
{1.0,0.2,0.1,100 }. All properties except the efficiency are only for successful trajectories, i.e., trajectories
that have exactly one jump before xt = 52. Fidelity is the average fidelity with the Dicke state |[N/2,0),
&p is the average Dicke squeezing, £p is the minimum entanglement depth and within 1% (10%) is the
percentage of trajectories with squeezing within 1% (10%) of the ideal limit for Dicke squeezing.

possible to do more iterations with higher N, and thus help to account for some of
the inefficiency. Alternatively, a spin squeezed state aligned along the equator of the
collective Bloch sphere will have enhanced population in the central Dicke states,
including |N/2, £1), and so the use of a spin squeezed initial state could enhance
the efficiency of this probabilistic scheme.

There is a special case for this method for which the efficiency would be unity.
If parameters are set such that the resonant transition is between |[N/2, £N/2,0) —
INJ2, £NJ2F1,1) then preparing the initial state in [N/2, £N/2) would always
mean a jump within a short time frame. These so-called W states [137] (symmetric
Dicke states with a single excitation) have numerous applications in quantum infor-
mation [138H140] and here we have a method that can produce them with close to
unit efficiency on a short timescale and in the steady state. The error in the fidelity
can be approximated by the probability that two photons have been created which

gives an error of

_ 15g°N?
T4

We can see that the error is kept approximately constant for constant U/N, and, since

(6.12)

the transition time here is independent of U and N, this method scales very well to

larger atomic ensembles.

6.6 Time dependent parameters

We have shown that, by correct choice of parameters, the steady state can be tuned
to a desired Dicke state. We have also shown that if the system is one Dicke state
either side of the steady state, then the evolution to that state is very fast. Thus,
with complete control of the parameters, it should be possible to step the system
from [NJ2,—=NJ2,0) — [NJ2,=N/[2+1,0) — ... = |N/2,0,0). This requires time
dependence in w.

Successful runs can be postselected based on the number of photons emitted. If

that number is equal to the total number of steps necessary then the trajectory is
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1% " s00 1000 1500 © 2000
Kt

Figure 6.4: The time evolution of (§7) with photon detections (vertical lines) for a successful trajectory
(blue) and a failure (red), parameters of { wo, A, U } [k = {0.2,0.2,1000.0 }, N = 20 and w linearly varied
as w(t)/k =470 — 0.2«t.

deemed successful, otherwise it is a failure. Experimentally, this would require an
extremely efficient single-photon detector. However, it is also possible to differentiate
successes and failures by the pattern of the photon emissions. If the state is “dragged”
all the way to the middle, then the photons should come at relatively frequent intervals
throughout the length of the experiment. This means that if a photon is detected near
the end of the trajectory then all the photons that came before can be inferred, as
shown in Figure [6.4]

Linear variation of w, such that the system is initially resonant for creation of

the W state, and then ends at zero, such that the final resonant transition is to the
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Figure 6.5: For 2958 successful trajectories, parameters of { wg, A, U} [k = {0.2,0.2,500.0 }, N = 10 and
time dependent w discretely stepped such that it makes each transition from |0, —5) — |0, —1) resonant
in turn. The system is held at each step for «t, = 52. (a) Time evolution of Dicke state populations
with blue, green, red, cyan and pink (or peaks from left to right) denoting m = —5, —4, -3, -2, and
—1 respectively and (b) histogram of final squeezing. The vertical lines are the ideal limit (dotted) and
steady-state squeezing (dashed).
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central Dicke state, thus has some probability of producing that central Dicke state
with very high fidelity. For ten atoms, an ensemble of quantum trajectories produces
a 58.0% success rate, a best squeezing of {p = 0.086 and an average squeezing of
&p = 0.100.

More successful, if perhaps more experimentally challenging, is discretely step-
ping w, L.e., implementing the time dependence

w(t):f% (/;/+j) for th(j—1) <t < tyj (6.13)

where t; is the time the system is held at each step and j is an integer stepping
from 1T — Am. We know that the slowest transition is the first one, and so we set t,
such that the first transition will almost certainly have occurred.

The population transfer and squeezing for this discrete stepping approach with
N = 10 are shown in Figure The best squeezing is &" = 0.086, but with
a greatly improved average squeezing of & = 0.087. There are also much higher
success rates, with 98.6% of 1000 trajectories being successful. This scales well with
N as well, with a success rate of 98.5% (83.9%) for N = 20 (50).

6.7 Cavity QED realisation

6.7.1 Microscopic parameters

We now consider the optical cavity QED realisation of the Dicke model described
in [531[7280] (see Figure . The necessary Hamiltonian is produced via resonant
Raman transitions in an ensemble of ¥Rb atoms interacting with a high finesse optical
cavity mode. Here the effective parameters are given in terms of the microscopic

parameters by [72]

Wy = Wy — i(ws wy)
2 2 2 2
555w s we) 614
W= W, ;(w,—i—ws)—l—/;/(i—i—i) (6.15)
/\—\/fgo (617)

where {A;, As} are the Raman coupling strengths for the rotating and counter-rotating

terms, respectively, and w and wp are the effective cavity and atomic frequencies,



106 CHAPTER 6. DICKE SQUEEZING

Figure 6.6: Level scheme for the implementation of the generalised Dicke model with 8 Rb atoms. Tran-
sitions are driven with Raman transitions composed of a cavity mode (red) and o - (green) and o_- (blue)
polarised laser fields. Raman transitions are detuned on either side of the excited manifold to maximise
the non-linear term.

respectively, defined by combinations of detunings and light shifts. Specifically,
wc is the cavity frequency, wq is the frequency difference between the two active
states, g is the single-atom-cavity coupling, and w, s is the frequency of the o_—
and o, —polarised lasers, respectively with A, s and Q, s being the related detunings
and single-atom-laser coupling strengths, respectively. By setting As = —A, we
can maximise U and greatly reduce w. If we choose g = 202m)MHz, Q. =
500(2m)kHz, « = 50(271)kH2E| and |A; 5| = 3.5(27)GHz and assume full tuneability
of the small frequency offsets and magnetic field strength that define w and wy,
then we could reach a regime of effective parameters { w, wp, U/N,)\/\/N}/K =
{0.01,0.01,3.0,0.01 }. Whilst this regime does not offer the idealised squeezing

above, it does still offer significant metrological gain over a coherent state.

¥See, eg, [141)142], although we choose a smaller « than realised in these experiments. However, we
note that good squeezing is still possible with larger «.
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6.7.2 Unresolved Dicke squeezing

We use these parameters with the atomic ensemble initiated into a coherent spin
state centred on the equator of the Bloch sphere. Here, considering single quantum
trajectories, we calculate the squeezing immediately after each photon detection. As
in the ideal case, the probability of a photon arising from population in the central
states is higher than from the outer states, but due to the lower value of U, the
difference is much less sharp. This means that the measurement of a photon tightens
the distribution around the central state rather than “resolving” a single Dicke state
(see Figure [6.7). Due to this, each photon detection shortly afterwards tightens the
spread further. In between photon detections, the backaction of the null measurement
drains population from the central states and the degree of squeezing worsens. As
such, the optimal squeezing is likely to come when a number of photon detections are
measured in a short amount of time. This means that a protocol where one waits for
a certain number of photon detections in a certain time frame can achieve substantial
Dicke squeezing. It should be noted that such a protocol could also work with high
efficiency. For 1000 atoms and the parameters described above, 38.9% of trajectories
run had 12 or more jumps.

6.8 Conclusion

We have shown the existence of strong spin squeezing and entanglement depth in
the steady state of an open generalised Dicke model. We have shown that this
arises from the collective atomic state being “pumped” towards the highly entangled
Dicke state [N/2,0), in a manner reminiscent of resolved sideband cooling of atoms
trapped in harmonic potentials. By altering the Dicke model parameters, it is also
possible to instead pump towards an arbitrary Dicke state |N/2, m). This means that
entanglement between every atom in an ensemble could be achieved in steady state,
rather than as a transient or probabilistic phenomenon. The steady-state nature of
the entanglement, even when accessed via a probabilistic method, means that the
produced Dicke state is stable. The possibility of producing such a stable entangled
state has obvious benefits for quantum information and quantum computing protocols.

While the timescale involved in preparing these states through natural evolution
is very large, we have also shown that it is possible to access the steady state on
a much shorter timescale via either a single-photon-heralded, probabilistic scheme
or by suitable time variation of a parameter of the model. The squeezing is at the
Heisenberg limit for the ideal case, but we show that substantial squeezing is still
possible with realistic cavity QED parameters.

This work highlights the stark change in dynamics that can occur with the addition

of a non-linear term to the Dicke model. The interplay of the linear terms with a
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Figure 6.7: For a single trajectory with N = 1000 and { w, wp, A, U } /x = {0.01,0.01,0.316,3000.0 },
(a) squeezing with the times of photon detection events represented by red vertical dashed lines and (b)
populations initially (top) and after the first jump (middle) and twelfth jump (bottom).
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simple non-linear shift of energy levels has been shown here to give rise to exotic
steady states. This raises the question of what other possibilities might arise from
similar non-linear terms in, for example, models involving atoms of higher spin as
discussed in Chapter [/} In particular, the spin-1 derivation in Chapter [7] introduces
a term of the form AgaT@, where Ag is the number operator for the |m = 0) state
of the spin-1 atoms. If this term is allowed to dominate, then we might expect the
ensemble to be pumped to states with no atoms in the |m = 0) state; Le, to a family

of states containing completely classical states, such as |m = i1>®N, as well as
highly entangled states such as the Dicke state |N,0) with the atoms exactly split

between the two states |m = £1).
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Chapter 7

Generalisation of the Dicke

model to integer-spin particles

The study of the Dicke model as an ensemble of two-level systems is most simply
considered in a collective picture of a single large spin. As such, the makeup of
that internal spin is not necessarily of importance. This means that it is possible to
engineer a Dicke model using an ensemble of spinor particles and it will respond
identically to the two-level ensemble case. In the first section of this Chapter, |
derive a Dicke model built from alkali atoms isolated to an entire ground-state
hyperfine manifold. | initially show the structure of a generic treatment, before more
specifically showing how this works for the / = 1 manifold in #Rb. This derivation
was performed following a concept conceived in collaboration with Murray Barrett
and Scott Parkins. The second section, in somewhat of an aside from the discussion of
the experiment, discusses what can happen if the state is initiated such that a single
large spin is not a suitable picture. Returning to the single large spin picture, the
final section discusses the implementation of this scheme at the Centre for Quantum
Technologies, and in particular the use of such a scheme to study phase transitions
with imbalanced couplings. This experimental work was carried out by Zhigiang
Zhang, Chern Hui Lee, Ravi Kumar, Kyle Arnold and Murray Barrett. My theoretical
modelling, informed by that experiment and carried out under the supervision of Scott

Parkins, follows.

111
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7.1 Deriving the Dicke model for integer spins

Here | derive the Dicke model using the same scheme of cavity-assisted Raman
transitions used in Chapter [5] except instead of isolating two active states, an entire
hyperfine manifold F is used for the active states. This means that each atom is now
an effective spin-F particle rather than a spin-1/2 particle. Initially this treatment
is kept as general as possible before focussing in on a specific case of the F =1
manifold in Rb. It is this treatment that is used in the experiment and in our

proposals.

7.1.1  Derivation for a generic integer-spin manifold

We take an arbitrary ground-state hyperfine manifold in an alkali atom. This could
be £ =1 (available for /Rb), F = 2 (¥Rb or ™Rb}, F = 3 (¥Rb or ¥'Cs) or
F=4 (133Cs). These are coupled with laser and cavity modes via some excited-
state manifold as shown in Figure m In contrast to the two-level scheme, where
each laser-cavity mode pair drives one Raman transition from |0) < |1), each pair
of beams now drives a set of transitions. As in that scheme, the o, -polarised laser
Raman transition is a raising (or lowering) operator for both the collective spin and
the cavity field, meaning it drives the counter-rotating terms in the derived Dicke
model. Conversely, the o_-polarised laser transition drives the rotating terms. In
both cases, the generalisation just means that the &; operators are now for spin-F
particles rather than the spin-1/2 Pauli matrices.

Denoting the ground states |F, mr = j) = |g;) and denoting the excited states

|F" =k, mp = [) = |ex,) then, for a single atom, the full Hamiltonian can be written

Excited states

Active states

Figure 7.1: Level diagram to produce a spinor Dicke model using an entire hyperfine level as the active
levels. The levels form effective spin-F particles with detuned Raman transitions driven between them,
via some set of excited states, by a cavity mode (red arrows) and o -polarised (green) and o_-polarised
(blue) lasers. Here each pair of beams operates two or more Raman transitions. Different F levels and
the associated schemes of light fields necessary are shown in different intensities.
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in the form
F+1 4k
szcaf + w Zjlgj g/|+ Z Zwk‘ek |
j==F k=F—11
+F F+1
_ + )
iw_t Z Z /< |9k/ 1 g/|+ lwyt Z Z /k ‘ek/+1 <g/|
j=—F k=F j=—F k=F—1
+F  F+1
+gay Y e (gl +he (77)
j=—F k=F—1

where h.c. means Hermitian conjugate and is meant for all the transitions terms. In
this equation w. is the cavity frequency, w, is the linear Zeeman splitting of the
ground stateﬂ |F,0) is chosen as zero energy and wy is the energy of the excited-
state manifold F” = k, where Zeeman splittings within those hyperfine manifolds are
ignored. w4, Q4 are the bare frequencies and Rabi frequencies respectively of the
two lasers and g is the single-atom coupling strength normalised on some transition.
The coefficients C/(')k() are then the dipole matrix elements for transitions between
the ground state |g;) and an excited state in the £/ = k manifold for X-polarised

radiation normalised on the same transition as g and Q..

Even in this extremely generic form it is possible to see the structure of the
Hamiltonian. The energy associated with the cavity occupation and the state of the
atom appear on the first line. Interactions raising the atom from ground states to
excited states are driven by the two lasers and the cavity mode, while interactions
lowering the atom from excited states to the ground states are given by the Hermitian
conjugates of those terms. Note here that each laser or cavity field now explicitly

drives whole sums of transitions.

The elimination of excited states, wherever it appears during this thesis, was
performed using the method laid out in [143]. The Hamiltonian is first moved to the
interaction frame of the active states and the cavity mode. We build an operator, @
which is a sum over transition terms that raise the system to the excited manifold. In

this frame we have

=3 wele)(e|+ 0+ 0" (7.2)

A second operator O/, which is the same sum but divided by the detuning of that term
(ie. the frequency of the laser or cavity mode driving the term minus the relevant
excited-state frequency), is also constructed. In the limit of large detuning, and thus
small excited-state populations, the excited states can be adiabatically eliminated

3BAny quadratic Zeeman shift would survive the elimination process, and so its presence would result
in something other than a true effective Dicke model. It is thus assumed to be zero here.



7.1. DERIVING THE DICKE MODEL FOR INTEGER SPINS 115
leading to an effective Hamiltonian [143]
He = OT0O'. (7.3)

More explicitly, we create operators

qQ b
0= > cleT @ e ) (g
j=—F k=F
Q. £
FSEY Y et e ) (g
j=—F k=F—1
+F F41
+g8 e N e ) (g, 7.4
j=—F k=F—1
and
N 0O +F A =) ef[(war/'wz)t
/:7 C: _— e i .
73 /‘_Zpk_zp " w*_wk""]'wz‘ =149
F F . ,
Q. « (o el
+— C,) — ek’. 1 .
7 L L g e

+F P4 —i{we+jw,)t

A (n)__®
' ga/Z_F k:ZF—1 i we — wi + fuw o) {9l 73

This leads to a time-dependent Hamiltonian with a variety of different terms. A
rotation removes the time dependence and grouping of terms into spin-F operators
leaves a mixture of expected Dicke model terms and higher spin operator terms. For
a specific example of this see Section [/1.2] where the derivation produces various
spin-1 specific terms.

These additional terms offer physics not available to spin-1/2 systems, and so
could be of interest for further study. In this Section, a limit where those terms drop
out is found, reducing the effective Hamiltonian to a Dicke model. That limit turns
out to be that the detunings of the Raman transitions from the excited-state manifolds
must be much larger than the internal level splittings of that manifold.

In such a limit, then, for all the species mentioned above, all terms except for
those in the Dicke model reduce to zero. Summing over N of these spin-F atoms we

are left with the Hamiltonian

= (5,6 + 5 af) Ar (S_a+S5.a)  (76)

+
2FN V2FN

where the parameters are determined by Raman transition rates, detunings and light

H=wata + wS, +

3



116 CHAPTER 7. SPINOR DICKE MODEL

shifts. Note here that, unlike all current cavity-based spin-1/2 formulations for the
Dicke model, there is no extra term of the form 5, afa ..—.... . The
spin-1 derivation in Section [7.1.2] shows that this shift is actually quadratic in nature
for that case, but that it vanishes under the large detuning approximation. This can
be reasoned by the fact that the excited-state manifolds do still produce cavity driven
light shift but some with different signs to others, such that the sum of the shifts is

zero.

7.1.2 Derivation for the F = 1 manifold in ¥Rb

We now use the specific case of the £ = 1 manifold in #Rb with transitions driven
via the Dy line, shown in Figure[72] This example is chosen because it is the choice
of levels in the derivations for Chapters[8|[T0]and[TT] Whilst the experiment described
in Section[Z3 used the same active levels, Raman transitions were driven via the D,
line instead. This results in minor changes to some of the final parameters, but is for
the most part completely equivalent to this derivation.

We use notation |mp) for active levels and |F/, mg) for excited states in the F’

excited hyperfine level. Our full Hamiltonian is then

VTN 9 apy oL atiyt
B = Fot+F. + \F(GHC+0HC)
Q. —iwit [ iwst [T Q_ —iw_t [ iw_t [
— e WHTHL e T HL ) + e W TH 4 e TH 77
2m( ’ +) zm( ) 77
52P1/2 y ¢
2,
5251/2 :2&02
mrp= =2 -1 0 +1 +2

Figure 7.2: Level diagram to produce a spinor Dicke model using hyperfine states in 8Rb. The entire
F =1 manifold forms effective spin-1 particles with detuned Raman transitions driven between them via
the Dy line made from a cavity mode (red arrows) and o -polarised (green) and o_-polarised (blue) lasers.
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where
Fo = weaTa + w, (1) (1] = [=1) (=1]) (7.8)
+F
He: Z Z U)F/‘F/ymF/><F/,mF/| (79)

F'=12mp=—F
H, = |1, =) (1] + \/§|2,—1><—1\ + 212,000 — 11,1 (1] + \@|2,1><1|
(7.10)

Fy o= 11,00 (=1] + 12,00 (=1] + |1, 1) (0] + V3|2, ) (0| + V6|2, 2) (1] (7.11)

F_ = —V61]2,=2) (1] + |1, =1)(0] — V3|2, =1) (0] + [1,0) (1| — ]2,0) (1] .
(7.12)

Here wc is the cavity frequency, w, is the Zeeman splitting of the £ = 1 manifold
working around the energy of |0) being zero, and wr: is the energy assumed for the
entire £/ hyperfine manifold. w., Q. are the bare frequencies and Rabi frequencies
respectively of the two lasers and g is the single-atom coupling strength normalised
on the #Rb D; line cycling transition.

Fo gives the energy associated with population in the cavity mode and in the
ground atomic states. He gives the energy associated with population in excited
atomic states, where we have assumed that the linear Zeeman shifts of those levels
can be neglected. H. and A, tell us how the cavity and laser fields move the atom
between states weighted with the associated Clebsch-Gordan coefficients.

Once again, we move to an interaction picture around o and build operators in

line with the derivation laid out in [143] The first of these operators is

R geﬂ'w[t A Q+efiw+t R Q,ef[w*t R
= aQ, — + 713
=" 0 e Ot s 713

with

O = e (11, =1) (=11 + V3]2.=1) (=1]) + 2]2.0(0]
+er et (— LA+ V3R 1)) 7.14)
Oy = e (|1,0) (=1] + 2,00 {=1[) + 1, 1) (0] + V312, 1) (0]
+e w312, (1] (715)
O- = —e"VB |2, =2) (=1] + 1, =1)(0] = V312, =1) (0]
+e ™ (1,0) (1] — [2,0) (1]). (7.16)

The second is

—lwyt —lw_t
Qe Qe A,

2V12 Gt 2V12 - 747
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with
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From here our effective Hamiltonian is given by
+1
A=0T0'= ) G;lil. (7.21)
ij=—1
Introducing a detuning A; = w; — wy and the excited-state hyperfine splitting as
( = w1 — wy, we have a full set of coefficients
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A= oA Ot R Y  sa g Taes Tmps g VY
goie[(w(—w,—wz)t 1 3 - 2gQ+e[(w+—w(—wz)t N
Ciop=————|—— — 7.25
10 7 A TA ¢ Z Ve R
gQ+e[(wA7w(7w,)t 1 3 . Zgo_e[(wrfw,fw,)t At
G =—7—|—-— — 7.26
0.4+1 52 A A+c)? 240-+¢ 7:20)
Q. ((W——we+w, )t 1 3 200 ((We—w+w, )t
G =L=—=__ ( - ) o — Pt® ot (727)
24 A A+ C 24(A+ + Q)
gQ+ei(w(7w++w,)t 1 3 At 2gQ_ei(w,7w(+w,)t .
Corn = I — 7.28
+1,0 54 Ar A+ ¢ a 24(Ac + Q) ¢ 7.28)
Q+Qfei(“’*"“++2‘”z)t 1 1
Civq = — — 7.29
+1,-1 78 A A G< (7.29)
Q+Q_ei(a}+7w,72w,)t 1 1
Cip1 = — - 7.30
ks 48 (A A+C) 7.30)

The first three equations can be simplified using &, = |1) (1| — |=1)(—1|, 6,, =
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1) (1] + 1) (=17 and the identity 1 = [—1) (=1| + |0) (0] + |1) (1].

Equations [725H7:28] require four degrees of freedom, of which the first two are
simply &, = V2(]1) (0] + |0) (1) and 6_ = V2(|—1) (0| + [0) (+1]). The other
two are single-atom elements of the nematic tensor operator: §,, = V2(|+1) (0] +
10) (+1] = [0) (—1] — | 1) (O]) and G, = V2([1) (0] 0} (1] —0) {—1| + |1} (0]).

The last two terms can be very easily simplified using 62 = 2|—1)(1| and
02 =2[1)(-1].

Ignoring a shift to the vacuum energy (i.e. terms proportional to 1) then the

Hamiltonian can be reduced to this simpler form. We first rotate about the axis

Wy — W_\ 2~

— )5 (7.31)

R = —wc+7w+;w7)

ate + (—wz +

to remove time dependence and we make the assumption that all detunings are similar

(le. AZ" = A" = A™"). This leaves us with the Hamiltonian

Doata 4+ =66+ 6 aT)+ =(6_a + 6,47

V2

+ 81000 + 67) + 188y,(6 — aT) + h(67 + %) (7.32)

where we have parameters

w:afrz+%‘gi;t (7.33)
wo:Qig_()QZ (Ai( ;)+wz+‘”;w* (7.34)
wquingz— (Al(_;) (7.35)
5‘7_%2(;_A1+C) (7.36)
A1—gf‘;(;A5+Z) (7.37)
b = g% (;_Ai() (7.38)
R B] o
B (o () e
2k

Clearly this is not exactly equivalent to the spin-1/2 model. There is something akin

3This is actually 82 or a shifted version of the element of the nematic tensor O, for a single atom.
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to a quadratic Zeeman shift (0,, could be trivially expressed in terms of constants
and fg), a quadratic version of the dispersive term, and exchange terms where the
cavity mode and the atoms exchange excitations in ways that do not exist for spin-1/2
systems. There is also a full flip term whereby atoms can be taken between |+1)
with no intervention from the cavity mode.

Some of these terms could lead to interesting physics. For example, in one limit,
we can produce a system that switches randomly between superradiance and being
completely dark. A discussion of this phenomenon is given in Section [T222] The
full potential of these terms is yet to be explored, but is discussed in Section [T2.27]

For the purposes of this Section, we instead want to get rid of the spin-1
terms. This can be done by taking the limit that A » . In that limit all of
{wq. 04, &1, &2, h } — 0 and the Hamiltonian reduces to

(6.0 + 06 aT)+ “=(0_a+6.a7). (7.42)

N
A A i i
H=wala+ {woay) +LoVa +6%am) + 22 0Va + A‘”af)} (7.43)
; f + \/z +
= wbTé + wpS +)‘—*(A a+5.am)+ A (5.6 + 5,47 (7.44)
VN - V2N T " '
where we have effective parameters
Ng? Wy + w_
W= + we — — (7.45)
Qi — 27 W_ — Wy
wo San + w, + 5 (7.46)
VNgQ_
A=Y (7.47)
12A
VINgQ,
Ay =— A (7.48)

and we have defined collective spin operators

N N
5= 06l 5.=3 ol (7.49)

i=1 i=1

This is the Dicke model, with no dispersive shift and full independence of the coupling
terms. This means that, if the treatment of an ensemble of spin-1 particles (or spin-F
particles going back to the general proposal) as a single large spin is valid, this
method produces a cleaner version of the Dimer et al proposal [53] with the same

flexibility to study the Dicke model that that proposal introduced.
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7.1.3 Spin-1 Dicke model simulation

We now simulate the Dicke model in the bosonic mode representation

)\_ A A AN N N A4 A
= [(bfbo +bIb_y)a+ (b7 by + bgm)eﬁ]

2N

A Tt b B ha o (BT he o+ BTE at
+m[(b4bo+bob1)a+(b1 bo + bIh_1)a ] (7.50)

We will compare that to the single large spin models of the semi-classical model. To
begin with we assume a fully polarised initial state. The initial state, in the bosonic
mode representation, is [N, 0,0) and in the Dicke state basis [N, —N).

Figure [73] shows that these two pictures are equivalent. The bosonic mode
simulation returns the same results as the Dicke state basis. As expected, this means
that our integer-spin Dicke model, if initiated into a fully polarised initial state, is

equivalent to a two-level ensemble Dicke model.

10 10

8 8
N 6 N 6
S <
< S
Vg Vo4

2 2

0 0

0 10 20 30 40 50 0 10 20 30 40 50
Kt Kt
(a) Spinor basis (b) Dicke state basis

Figure 7.3: Dicke model simulations in two different bases. Spinor basis uses a bosonic mode population
picture to describe the atomic state. Dicke state basis uses a long spin picture. In both cases a single
trajectory (blue) and an ensemble average (green) are shown. Parameters used were {w, wg, A} =
{1.0,1.0,1.0} with a spin length equivalent to 20 spin-1 atoms.

7.2 Spin-1 Dicke model without a fixed spin length

A fully polarised initial state will act as a single large spin regardless of what is
summed over to produce that large spin. However, if the initial state is not fully
polarised, that is not necessarily the case. With two-level systems, there is no
product state of N indistinguishable atoms that does not have maximal spin length
N/2. For a non-polarised state, there is a coherent spin state which still has maximal

spin length and still responds to the Dicke model in the same way. For spin-1 atoms,
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there are options where we still have indistinguishability but the spin length is not

maximal; in particular, states where the spin length is in a superposition can exist.

7.21 |0) product state

A g-polarised laser operating near the F = 1 — F’ = 1 transitions will excite
atoms in |+1) but not |0) because selection rules do not allow such a transition.
This means that the atoms in |£1) are excited to |F" = £1, mp = £1), where they
can undergo spontaneous emission events that either take them back to |+1) where
the process repeats or into |0) where they will stay confined. This optical pumping

N

means that the product state |0)®" can be easily prepared. Such a state is not

trivially represented with Dicke states. This is due to the way in which the spins

add. Two |1,0) particles add to a collective sum as

1,o>®|1,o>—\/§|2,0>\/i|0,0>. (7.51)

For spin-1 particles we can iterate this process one atom at a time using the Racah
formula, which tells us how anqular momentum states add. For the case of |/,0) ®
|1,0), the Racah formula simplifies very neatly to

J+1 J
1.0)®|1,0) = WUJFT,(D* metO}. (7.52)

If we take our two atom state then we can iterate to a third atom as

(\/zz,om@o,m

ﬁ|z,o>®|w,0>—\@0,0>®l1,0> (7.54)

_ﬁ\/?“1'O>_\/§\E|2_1'0>_\E|0+1'0>'
(

755)

11,00® [1,0)®|1,0) ® |1,0) (7.53)

Since |2 —1,0) and |0+ 1,0) are the same collective spin state, but different in the
full space, their coefficients add vectorially such that

|1,o>®|1,0>®1,o>—\/g|3,0>\/zm,oy (7.56)

This process can be iterated for N atoms and gives

[N/2]
11,00°Y = > cn-ac [N = 2k,0) (757)
k=0
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where | N/2] means to round down if N is odd. The coefficients alternate in sign
and are generally not particularly easy to find analytically. However, for any size

N, two of the coefficients have obvious analytic forms. Firstly, it is clear from the

iteration that
Ny
en|* = (758)
I 2/ +1

which for large N will approach 27N and so high spin length populations become

vanishingly small in that limit. Secondly,

[ 1 3
=\ forN =1/ for Nodd 7.
o N eriNeven N1o o odd (7.59)

These become small for large N but are still much more significant contributions

than the large N states.

For 10 atoms the superposition state is

®10 _ 20 _
.9 36189 100 =\ 2737

48 50 1
—\/;4,0>+\/;|20>—\E|O,0>. (7.60)

We can see that the bulk of the population is in states |2,0), |4,0) and |6, 0). Even for

256 128 32
8,0) +1/ =57 16.0)

this small number of atoms, the population in the maximal spin state is just 0.6%. The

populations for 1000 atoms are shown in Figure[7:4] In that case, the vast majority of
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Figure 7.4: Populations |cs|? for even S in the collective Dicke states |S,0) for the product state
Ime = 0>®N of N = 1000 spin-1 atoms. Populations for states beyond S = 200 are not shown as the

total sum of these populations is §_¢. 500 |cs|? = 1.34 x 1077
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the state is contained at relatively low spin lengths compared to the polarised state.

The maximal spin length has a very low population.

7.2.2 Initiation of the Dicke model in the |0) product state

If we think of what these lower states would do under the action of the Dicke model,
we can easily identify that, due to the form of the ladder operators for different spin
lengths, the response is muted for lower spin lengths. To calculate this we can consult
the semi-classical threshold calculation. There, where we normalised the spin per
atom to 0.5, we can now take that to be 0.5y where ¥ = S/N < 1. Note that we now
normalise the semiclassical parameters in Equations [5.12H5.174] by 2N rather than N.
This shortening of the normalisation condition gives a new critical threshold related
to the old one as

No=—. (7.67)
VX

This means that some states in the superposition might be below the threshold when
others are above.

The average response is the weighted average of the responses of all the spin
lengths. We can calculate this by simulation in different Dicke bases and then
taking the weighted average of those results. What we might hope to see is a series
of transitions as we increase the coupling as different states become superradiant.
Instead, as shown in Figure [/.5a] we see a steady rise with no distinct threshold at
all. This is because, for 10 atoms, we do not have a particular sharp transition even
if we do start in a polarised state. Sharp transition behaviour requires more atoms.

Figure [75b] shows 200 atoms around the transition points of the most populated
spin lengths and, despite the increased atom number, the weighted average still does

S=12
S=14
S=16
Weighted average

B ®o AN
w

0
ghted average

Sohonononn

sSvuunun

N

Mean photon number
o]

Mean photon number
w

0.5 1.0 15 2.0 2.5 32 3.4 3.6 3.8 4.0 42
A A

(@) (b)

Figure 7.5: Average photon number over a single long trajectory from the initial atomic state |S, —S) for
parameters { w, wy } [k = {V/3,v/3} with (a) N = 10 and (b) N = 200 atoms. Parameters are chosen
such that for y = SIN, Ac/k = 1/\/x. In both cases the weighted average is weighted by the initial

contributions of those states to the state [0)®".
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not feature any sharp transitions. The semi-classical model requires the thermody-
namic limit of large N, but more specifically, it requires a large spin length. 200
atoms might be enough for the polarised state to follow the semi-classical model
quite closely, but for the |0) product state the peak spin states have spin length
S ~ 10 — 20 which certainly do not have such sharp transitions.

We require a number of atoms such that the highest population states have
significant spin length. This introduces a new problem. For large numbers of atoms,
the transition points for the different spin lengths become closer and closer together.
This means that the necessary “sharpness” to be visible in the weighted average
becomes higher and higher. The necessary values of A needed to make S = 200
superradiant for 2 x 10° atoms is 31.62 times the usual critical coupling values. For
S =198 it is 31.78 times. For the sorts of values used in the experiments, this would
mean that there would need to be extraordinary control over the laser powers, and
thus A, and the measurements to be able to see anything. The necessary laser power
required to reach those couplings would be extremely large@l

Our conclusion was that this initial state would not offer particularly interesting
results with regards to phase transitions. With a small ensemble the reaction is
distinctly outside of the thermodynamic regime where the critical threshold is pre-
dicted and so the different spin states’ individual "thresholds” overlap significantly.
The more atoms we have, the smaller the region in which the transition must occur
to avoid overlap, and so those transitions still blur together despite the increased
atom number. The required laser power to make such systems work also becomes
infeasibly high. If we did use an atom number where the peak spin lengths react
semi-classically, then that system would most probably just do nothing since the ma-
jority of the population would be so far below threshold for feasible coupling strength
A What is of much more interest is the individual trajectory case, where the spin
length can be projected out by a photon counting measurement. This discovery led
to the work in Chapter [g]

7.3 Experimental implementation of imbalanced coupling

The experiment at the CQT used the spinor model to study the Dicke model with
imbalanced driving [71]. The setup allows for independent control of the rotating (by
altering A_) and counter-rotating (by altering A;) terms. This is an aspect of these

methods where they have an advantage over the BEC method of producing the Dicke

400f course there are other parameters that could be altered to improve that coupling. Different atomic
species have different Clebsch-Cordan coefficients which can change the numerical factor in the coupling,
though not by orders of magnitude. The individual atom-coupling g can be larger than used in the CQT
experiments, though again not by several orders of magnitude. The detuning can be reduced, though
care would have to be taken that it does not become so small that the excited-state hyperfine splitting
becomes a factor. Careful manipulation of those microscopic parameters with the right choice of species
might enable the range of possible couplings to increase by an order of magnitude or two.



126 CHAPTER 7. SPINOR DICKE MODEL

(2)2.0 (b)2.0 ;
!
%1.0 1.0f | ,,i = =
< (0 K”’
]
- S 10
-
0055 10 140 170 0055 110 140 170
Max{x,,A_1} (kHz) Max{A,.,A_} (kHz)
© ) (1) (D) (Iv)
g 0L (kW TR H H L. Lo
un
v
‘T 60f-
@)
s
8 30F- il L R
[%p]
0 ; ; ; ; ; ; ; ; ; NN
@ 05 1.0 15 05 1.0 15 05 1.0 15 05 1.0 15
0.6 r.______ S S . -
~ 04 ; L
S
0.2 b ]
0.0 i H H H H H i i H i H
01 03 05 01 03 05 01 03 05 0.02 0.05 0.08

time (ms) time (ms) time (ms) time (ms)

Figure 7.6: Figure reproduced from . Upper plots show (a) experimental and (b) theoretical results
for the steady-state phase map of the imbalanced Dicke model. States are as follows: normal (white),
inverted (grey), oscillations (yellow) and superradiance (red). Below this are examples of (c) experimental
and (d) theoretical runs for particular data points indicated on the phase maps.

model . It should be noted that the study of imbalanced driving certainly can
be, and in fact was, implemented in the two-level system version.

Much like the experiment described in Section 5.25] the experiment involves
8Rb atoms in a cavity with parameters {g,k,y} = {27} x {1.1,0.1,3} MHz
and a detuning of =27 x 127 GHz from the D, transition line. These atoms are
cooled and loaded into an optical lattice within the cavity. They are then pumped
into the |F =1, mg = 1) level, which is given the notation |—1) in this analysis,
with approximate fidelity of 94%. Around 2 x 10° atoms are used for each run,
with the experimental run triggered once such a value is inferred. As with the
Dicke model phase transition investigation, transitions are driven by two counter-

propagating lasers which drive the different coupling termﬂ The two lasers driving

#n the experiment, both lasers actually contribute both o laser fields. These are tuned in such a way
that only the desired component of the polarisation drives the Raman transitions, though the other part
does also produce light shifts. This, and the fact the experiment is performed on a different line to our
derivation, is why the form of the parameters given above vary slightly to the parameters in the paper.
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the couplings are ramped up with a fixed ratio A;/A_ to some preset value where
they remain for 3ms as the dynamics are observed.

The dynamics are categorised as one of four options: superradiance, oscillations,
transient pulse and nothing. The transient pulse is characterised by its length being
shorter than 250 ps and amounts to when the initial state and steady state are
opposite trivial states (i.e. in this experiment, when the steady state is the inverse
state). The oscillatory phase is characterised by a peak in the Fourier transform of
the output signal, while the superradiant phase is characterised by significant and
prolonged cavity output without oscillations. These results were then used to create a
phase map for the model, shown in Figure [7:6] Whilst there is qualitative agreement
between theory and experiment, significant differences in the onset of each phase
and its region in phase space are obvious. These are discussed in Section [/44]

The signal is measured with a single-photon counting module (SPCM) which has
a gate time of 5 ps. Theoretically predicted oscillations have a higher frequency than
such a gate time would measure and so the measured frequencies are aliased. The
SPCM also saturates at ~ 100 counts / gate time, which means that analysis of the

photon number is also not possible.

7.4 Theoretical modelling of imbalanced coupling

7.41 Semi-classical dynamics

The majority of our theoretical modelling uses the semi-classical model described in
Section BT with U =0

o= —Kka —iwa —ir B — il B (7.62)
B = —iwB + 2 ay + 2 a*y (7.63)
y = iAi (@B —aB¥) + iA_(aB — a*BY). (7.64)

For this treatment, we renormalised for N spin-1 atoms, but they can actually be

further generalised to N spin-F particles as

(@)
V2FN'

We can see in Figure [7.0] that the four phases reported by the experiment can also

R N
B=rt V=t RV =025 (769)

be found with the semi-classical equations. The response in the superradiant and
trivial phases can be seen to feature decaying oscillations to the relevant steady
state, while the oscillatory phase has decaying oscillations to a steady orbit.

In reality, these equations offer an extremely rich phase diagram with a wide

variety of phase transitions, broken symmetries and different exotic attractors [82].
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7.4.2 Oscillatory phase: analysis of the frequency

Further study of the oscillatory phase shows that all of the semi-classical parameters
oscillate, and they do so at some fixed frequency. We can see from Figure [/7] that
this frequency is very cleanly picked out by the Fourier transform, and appears at
~ 40 (2or) kHz for this particular set of experimental parameters. This would give
the oscillations a period ~ 4 ps, making the gate time slightly more than a period
of the oscillations. This puts it outside the resolvable frequencies of the SPCM and
so the measurement produces an aliased frequency.

It is possible to predict the behaviour of the oscillations either side of the tran-
sition. Figures and [77d] show properties of the system as it passes through
the various transitions. The boundary between normal and superradiant phases is
marked, as expected, by a rise from zero of the cavity occupation. Perhaps less
expected, since it happens as we increase the coupling, is the boundary between su-
perradiant and oscillatory phases. Here, the average photon number actually starts

to decrease instead. This boundary is also marked by a change in the frequency of
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Figure 7.7: For semi-classical evolution in the Dicke model with parameters { w, wo } /x = {1.0,0.7 }
and (ab) { A+, A_}/k = {1.5,1.2} or (cd) fixed ratio A_/A;+ = 0.8, (a,c) average photon number per
atom through the evolution, (b) Fourier transform of the photon number through a long evolution and (d)
dominant frequency of a Fourier transform of the photon number. With the Fourier transforms, analysis is
of the oscillations around the mean photon number.
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the oscillations, which in the superradiant phase are decaying and at increasing fre-
quencies for increasing coupling, but plateau to a specific frequency at the oscillatory
boundary.

Unfortunately, it was not possible to study either of these predictions in the
experiment due to the saturation and gate time of the SPCM. However, it should
be noted that these marked differences between the states do exist. This means
that, with a detector with resolution able to measure the amplitude and frequency
accurately, these signatures could be searched for to mark the phase boundaries.
This would allow the transitions to be mapped out without having to “bin" the results
solely according to the photon number, negating some of the issues associated with

appropriately deciding which phase the result belongs to, as discussed in Section

744

7.4.3 Oescillatory phase: quantum vs. semi-classical

The work above indicates that every aspect of the system oscillates. From a semi-
classical standpoint, this can be thought of purely mathematically as the real part
of the eigenvalue going to zero, and the system entering a stable orbit. None of
that is particularly unusual. However, for the actual system, this would involve the
self-organisation of atoms not only into a steady state, but into an evolving steady
state that maintains self-organisation. We therefore wish to check that, given the
more unusual steady state, the semi-classical assumptions are still valid.

Figure [738 shows that a single quantum trajectory in the oscillatory phase not
only oscillates, but it does so at the same frequency the semi-classical analysis
predicts. Note that the ensemble average does not oscillate, as the starting time of

the oscillations will vary due to noise, washing out the oscillations. The quantum
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Figure 7.8: For quantum trajectory evolution of the Dicke model for 100 atoms with parameters
{w, wp, Ay, A=} [k ={1.0,0.7,1.5,1.2}, (a) photon number through the evolution and (b) Fourier trans-
form of the photon number through a long evolution compared to the semi-classical case for the same
parameters. With the Fourier transforms, analysis is of the oscillations around a rolling mean.
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picture also gives us another interesting insight into the oscillatory phase. Perhaps
unsurprisingly, the makeup of the state is a superradiant state. There are two op-
posite phase solutions that exist in superposition. The oscillatory phase is thus a
superradiant state, but one that oscillates in magnitude. As with the Dicke model,
measurement with a homodyne detector would pick out a particular phase of the
cavity output field and so the system would pick one of the two solutions randomly.

This means that going from the inverted phase into the oscillatory phase means
to go through a symmetry breaking bifurcation in exactly the same way as the su-
perradiant phase transition. However, the boundary between the superradiant and
oscillatory phases, where the system goes from two stable orbits to two stable points,
does not feature symmetry breaking. If the system is in the superradiant phase, and
the couplings are changed such that we move towards and into the superradiant
state, we have slower decaying orbits until they do not decay and we have stable

orbits. In dynamical systems, this phenomenon is known as a Hopf bifurcation.

7.44 Problems with the phase map

The primary modelling task for this work was to produce a phase map that predicted
the regions where the experiment would see the different phases. This involved inte-
grating the semi-classical equations to some large time and then making a judgement
on which state had been reached. Given that, with U = 0, exact calculation of the
superradiant state is possible, direct comparison can be made to all three of the
steady-state solutions. Our map, given in Figure [76] has some significant differ-
ences, which we try to explain in this section.

There are three key areas where the phase map for the experiment differs: the
normal to superradiant boundary is shifted to much higher coupling, the oscillatory
phase is much larger and the inverted to oscillatory boundary is at a much lower
ratio. Our explanation of the first of these is the same as the explanation of why the
Dicke model transition is at higher coupling than originally predicted. single-atom
effects, and in particular inhomogeneous Doppler broadening due to atomic motion,
push the phase transition away from the semi-classical prediction.

We believe that the other two differences, where the oscillatory phase is exag-
gerated and appears at lower coupling ratio, can be explained by the same reason.
In the oscillatory phase the eigenvalues are purely imaginary. This means that in
the vicinity of the boundary with the oscillatory phase, the real component of the
eigenvalues must tend towards zero. This means that the decay of the oscillations,
induced by that real part, is a very slow process. Figure [7.9] shows that in each
case, the output looks like stable oscillations for different sets of parameters near
the transition even at times on the order of xt = 1000, which is ~ 1.6 ps for the

experiment. This value is on the order of the length of the pulse emitted by the
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Figure 7.9: Photon number per atom for semi-classical evolution of the Dicke model with parameters
{w,wp}/k=1{1.0,0.7} and couplings as shown for each plot.

experiment and so the decaying oscillations give a frequency peak in the Fourier
transform and the state is deemed oscillatory. Throwing in experimental noise and
the SPCM saturation on top of this means that we would not expect the clean peaks
of the semi-classical Fourier transforms in any case, and so separating out a peak in
amongst noise due to decaying or actual noise is incredibly difficult. Theoretically,
we simulate out to much larger times such that the true steady state emerges. We
believe that this difficulty in correctly making judgements on the output measurement
explains the exaggeration of the oscillatory phase area.

This explanation raises a further question. The experiments show the superradiant
state area happening for lower and lower ratios as the coupling strength increases.
This seems contrary to the previous argument. The reason for this is in the saturation
threshold for the SPCM. Any oscillations at these high coupling values still happen
at high photon numbers, with the troughs still being too high to be seen by the
SPCM.
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Chapter 8

Rapid production of many-body
entanglement in spin-1 atoms
via cavity output photon

counting

A perfect Dicke model made of integer spins bears no differences to an ensemble of
two-level systems only if initiated in a maximal spin length state, most obviously
the normal or inverted phase. If instead the system is initiated in a superposition of
different spin lengths then the response is markedly different and the cavity output is
expected to vary significantly from shot to shot. Whilst any study of the Dicke model
becomes difficult in these limits, there are still interesting possibilities. The cavity
output projects the atomic state into a particular spin length, which, unless the spin
length is maximal, means the atoms are entangled. In this particular work, we focussed
on a Tavis-Cummings model. In that case an exact photon number is expected for
different spin lengths. We showed that with perfect photon detection efficiency, the
resultant states offer Heisenberg scaling in the quantum Fisher information. With
imperfect photon detection it is still possible to generate metrological sensitivity
beyond the standard quantum limit, and we showed how repeated measurements
could further refine the knowledge of the spin length and approach the Heisenberg
limit. This work is presented in the form of a Letter published in Physical Review
Letters. It has been reformatted for this thesis, with the Letter separated into sections,
some notation and spelling altered to provide consistency throughout the thesis, and
parts of the supplemental material included in the text, but is available in its original
form at https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.103601.
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8.1 Introduction

Entanglement is a fundamental property of quantum mechanics. Two-body or two-
mode entanglement is now readily producible and well studied, but study of many-
body entangled systems and routine production of large many-body entangled en-
sembles are still open problems. The generation of such states is of interest not
only to fundamental science, but for the use of such states as a resource for quan-
tum information tasks and quantum metrology. In this latter context, there has been
significant progress in the production of spin squeezing [20}22]. For N particles in
a non-correlated ensemble, the variance on measurements is limited by the standard
quantum limit (SQL), which scales like 1/N. In spin squeezing, entanglement is in-
duced in an ensemble of atomic spins such that measurements of classical properties
can be done more precisely. The fundamental limit on measurements with an ensem-
ble allowing for entanglement is the Heisenberg limit with minimum variance scaling
like 1/N?.

A wide variety of spin squeezing techniques have been used to show sub-SQL
vartances. A common method involves the “one-axis twisting” mechanism [19}(93]
94]196,/97/[103]. Other procedures have produced up to a 100-fold reduction in the
spin variance compared to classical states [107]. These states have also been used for
proof-of-principle, quantum-enhanced implementations of atomic clocks [100}/145] and
magnetometers [97]105], and to measure microwave fields [96]. Other proposals, such
as the two-axis counter-twisting scheme [19], offer a route to achieving Heisenberg

limited metrological sensitivity, but these are yet to be implemented experimentally.

The present work concerns entanglement in an ensemble of spin-1 atoms, which,
compared with spin-1/2 atoms, clearly require more degrees of freedom to de-
scribe, but concomitantly offer more degrees of freedom to entangle [146H148]. In-
deed, proposals [15}[149+153] including the work in Chapter and experiments
[14,195}/99//100,124}[154160] with spinor Bose-Einstein condensates (BECs) predict
or have produced entanglement either on the Bloch sphere (e.g., squeezing in one of
S, gy, or 5,, where 5; is the i-component of the collective atomic spin operator) or

in the additional spinor degrees of freedom.

8.1.1  Quantum Fisher information

The metrological sensitivity of a quantum state can be captured by the quantum
Fisher information (QFI). The variance of a measured phase 6 imprinted by a classical
parameter is bounded by (A9)? > F~" where F is the QFI. As such, the SQL states
that for an optimal classical state the QFI scales as N while the Heisenberg limit is

signified by a QFI that scales like N?. For pure states, the QF| over some generator
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F =4AG). (8.1)

More generally, for a density matrix p, decomposed into eigenstates as
p=2 Sile el (8.2)

the QFI is given by
P i RYN TN Y 83)
Iy i+ 4 !

Typically these quantities would be maximised over a set of generators to find
the best possible QFI. In this work, given that the state generation protocol we
propose produces varying, heralded states, we choose a single generator to consider:

Oy — éyy- Here, Q is the nematic tensor operator and [14)[15]
N
Qij = Z 6[(n)67}n) + Aj(n)a[(n) - (4/3)51/ (8:4)
n=1

where (,j € {x,y,z}, @(") are spin-1 angular momentum operators for a single atom,
and ¢;; is the Kronecker delta function. This generator, in a bosonic mode operator
picture where [AJ,([)LT) is the annihilation (creation) operator for a particle in state
|mF = i), is given by

G=20bT by +bT,b.y) (85)

+1

and so involves a transfer of atoms between the |mp = 1) states. If we were to
consider only these two states, reducing the atoms to effective two-level systems,
then the algebra would give this as 25,

8.1.2 Summary of the Chapter

In this Chapter, we propose a new method to produce entanglement in an ensemble
of spin-1 atoms. We use interactions mediated by cavity-assisted Raman transitions,
building on previous work for generating such interactions with two-level (spin-1/2)
atoms [53[[72|[161}[162]. This approach has previously been followed to produce an
effective Dicke model, as described in Chapters[7]and[T0} and spin-exchange interac-
tions, as discussed in [163)164] and Chapters and for spinor (spin > 1) atoms.
Here, we engineer instead an effective Tavis-Cummings (TC) model for an ensemble
of spin-1 atoms, which, as we show, can be used to herald, via a photon counting

measurement on the cavity output field, the production of one of a family of highly

42|t should be noted that this factor of 2 means that the maximum QFI of the system is 16N? rather
than the 4N? usually available to N spin-1 atoms [22].
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entangled, many-body quantum states. We show further that the average result of
this procedure, for ideal photon detection, in fact gives Heisenberg scaling of the QFI,
while for non-ideal photon detection, the method still retains metrological sensitivity
beyond the SQL and with scaling significantly better than linear. We also show that
by alternating between TC and anti-Tavis-Cummings (anti-TC) interactions, so as to
produce a sequence of cavity output pulses and corresponding photon counting mea-
surements, it is in principle possible to regain Heisenberg scaling even with finite

detection efficiency.

8.2 Methods

8.2.1 Model

For a specific system, we consider N #Rb atoms confined tightly within an optical
cavity and pumped into the F =1 ground hyperfine levelEl As shown in FLgure
we use a scheme of cavity-assisted Raman transitions on the D; line to introduce
effective interactions between the atoms and the cavity mode. With both lasers on
and detuning A much larger than the width of the excited-state hyperfine structure,
the model of the system reduces to an effective, dissipative Dicke model for the cavity

mode and an atomic spin-1 ensemble (A = 1),
p=—iH,p|+ kRapaT —aTap — pata) (8.6)

where p is the density matrix for the composite atom-cavity system, « is the cavity

fleld decay rate, @ is the cavity mode annihilation operator, and

N

H=wato + wS, + A_(65. + aTS_ )+ A, (a5_ +aT5)) (8.7)

where we have introduced collective spin operators §Z,i, which are sums of N spin-1

operators. The coefficients in Equation [.7] are given by

w_ +w. Ng’

W= We— > A (8.8)
W —wy Q2 —-Q%

Wy = W, 5 + SaA (89)

L= 99 (810)

1220

Here w, is the frequency of the cavity mode, wy and Q. are the bare and Rabi

frequencies, respectively, of the o.-polarised laser fields, w, is the Zeeman splitting

BWe note that the scheme works equally well with pumping into the F = 2 level, in which case we
realise an ensemble of spin-2 atoms. With, e.g, caesium, one could similarly realise the scheme with
spin-3 or spin-4 atoms, as discussed in Chapterm
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Figure 8.1: Implementation of an effective Dicke model using the F = 1 ground state of % Rb. Interactions
are mediated by detuned Raman transitions on the Dy line mediated by a cavity mode (red) and o_- (blue)
and o;- (green) polarised lasers.

of the F = 1 levels, g is the single-atom-cavity coupling strength (for the %Rb D>

line cycling transition), and A is the detuning of the fields from the atomic resonance.

8.2.2 Initial state

We consider this system with an initial atomic state [mg = 0>®N. This state does not
have a certain spin length. Rather, it is given by a superposition of states of different

spin lengths, which, in a representation of Dicke states |S,0), can be written

N
Ime =0)*N =3 ¢5[S,0). (8.11)
S=0

For even numbers of atoms, ¢cs = 0 for all odd S. Odd numbers of atoms instead
have c¢s = 0 for even S.
We build this superposition by using the Racah formula, which for |S,0) ® |1, 0)

reduces to

S+1 S

5.0)@11.0) = /5= 1S+ 1.0) /557

1S—1,0). (8.12)

We calculate the coefficients {cs} of the superposition in Equation by iterating
this formula N — 1 times. An example of the resulting distribution of |cs|? values
is shown in Figure [82) for N = 1000. One sees that the dominant constituents of
the state actually have much shorter spin length than the maximum possible value of
S = N, with the peak of the distribution centered at S ~ v/N.
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Figure 8.2: Populations |cs|? for even S in the collective Dicke states |S,0) for the product state
[me = 0)®N of N = 1000 spin-1 atoms. Populations for states beyond S = 200 are not shown as the
total sum of these populations is Y ¢. 500 |cs|? = 1.34 x 1077

8.3 Production of entanglement

8.3.1 Entanglement of Dicke states

The states of the atomic ensemble that result from this measurement are Dicke states.

We consider the entanglement witness from [148],
(AS)? + (AS,) + (AS,) > N. (8.13)

Any state that breaks this inequality must be entangled. This can be rearranged to

A

A2 a2 a2
(57) = (50 = (5) = (5) = N. (8.14)
For any state with definite spin length S, this inequality reduces to
S(S+1)=S?=S>N. (8.15)

This is clearly broken for all except the maximal spin length, e, S = N. This means
that the individual elements of the initial superposition given by Equation are
on their own entangled, though the superposition of them is not. Our proposal is thus
to project out one element of the superposition and so generate entanglement in the
ensemble. For reasonably large N, |cy|? = 27N becomes negligible, and so, with
essentially unit efficiency, the atomic ensemble would be projected into a many-body

entangled state.
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8.3.2 Generation of entanglement between the ensemble and the

output

The Hamiltonian conserves excitations, while cavity decay removes excitations, so
the steady state of the system is trivially calculated: no excitation in either the field
or the ensemble. So, if we consider a state of definite spin length S, then the final
state must be |S,—S) ® |0)
the cavity mode.

where |n)_ represents a Fock state of n photons in

cav’ cav

If we have an initial state |S,0) ® |0)
leads to the final state |S, —S) ® |0)
atomic ensemble must have left the system via the cavity decay, meaning that we can
write the state as |S,—S)®0).,, ® |S)
photons in the cavity output channel. This is shown in Fig. [8.3] where we plot the

then evolution under the open TC model

cav’

v This means that the S excitations in the

where |n). . represents the state with n

out’ out

output photon flux from the cavity, 2x(a7a), versus time, as well as the cumulative,
t

mean output photon number, ZK/ (aTa), dt. Different initial states |S, 0) produce
0
pulses of precisely S photons in the cavity output channel.

By considering the steady states above, the initial state given in Equation [B.11]

will evolve to a final state (where we omit the empty cavity)

N
me=0)*" =) ¢5[S,=S)®S),, - (8.16)
5=0
The open TC model thus entangles the state of the ensemble with the state of the

cavity output channel.

2k(a'a)
IS
Expected photon counts

(a) (b)

Figure 8.3: Master equation simulations of the open Tavis-Cummings model from initial states |S,0) ®
|0)., With S equal to even numbers from 0 to 24 (ranging from S = 24 as the highest curve on both plots
to S = 0 at the bottom) with parameters { w, wp, A } [k = {0.0,0.0,0.1}. Results show the output photon
flux (a) over time and (b) cumulatively.
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8.3.3 Collapsing the superposition

A measurement of the number of photons in the output channel, which gives a result
of S photons with probability |cs
|S,—=S).

A few examples of this are shown in Fig. [B4 We use quantum Monte-Carlo

trajectories |[165] to simulate a monitored cavity output, with (non-Hermitian) effective
Hamiltonian

2 will collapse the state of the atomic ensemble to

Feog = waTa + woS, + X065, +a75_) —ikata, (8.17)
and a jump operator V2«ka, corresponding to photon detection in the cavity output.
We see that a certain number of “jumps” simulated by the trajectory, corresponding
to that number of photons counted in the output channel, produces a state with definite
spin length. In the three examples shown for N = 24 spin-1 atoms initially prepared
in the |mg = 0) state, the final atomic states produced are |12, —12), |8, —8), and
|6, —6), each of which is a highly entangled atomic state (S <« N).

It is important to note that it is the measurement that produces the entanglement

Spin length
w

Photon counts
®

(a) (b)

)
|
&

Figure 8.4: Three individual quantum Monte-Carlo trajectory simulations of the open Tavis-Cummings
model for N = 24 spin-1 atoms initiated in the |mp = 0) state with parameters {w, wp, A}/ =
{0.0,0.0,1.0}. Results show (a) the number of photon counts, (b) the spin length (found by taking
(82) = S(S + 1) and solving for S) and (c) (5,).
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in the atomic ensemble rather than the interaction. The interaction instead produces
entanglement between the output field and the atomic ensemble. This entanglement
means that the output field contains information about the state of the atoms which our
protocol accesses. The protocol is thus an example of metrological enhancement in an
atomic ensemble through the measurement of an auxiliary optical system [166(170].

For v/SA_ < «/2, the duration of this pulse is toulse = (SA2 k)", while for
VSi_ > k|2 the timescale is set simply by « (i.e, a few times 1/«). Given the
negligible initial population in the state [N, —N), the probability of not producing a
state, 1 — |cn?, is also negligible. This protocol thus provides a simple and efficient

method of producing entangled atomic states.

8.4 Metrological sensitivity of the states

8.4.1 Ideal photon counting

To calculate the average entanglement this process introduces in the ensemble, we

consider the average QFI of a single run. For a perfect photodetector this is simply

N
F=) lesPF(S,-5) (818)
5=0
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Figure 8.5: Average QFI on the generator Oy — @yy of states |S, —S) weighted by initial populations
|cs|? of the states |S, 0) in Equatlon Even and odd numbers are represented differently due to their
slightly different dependence on N. The inset shows the populations and QFI of the individual states
|S,=S) for N = 40.
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where F(|S, —S)) is the QFI of state |S, —S) with respect to the generator @Xxféyy.
Figure[B5]shows that this quantity increases with N in a quadratic fashion. For even
N, a fit of the data gives the average QFI as F = 6.52N?% For odd N we find
F =517N*%. The fits imply a slightly better than quadratic scaling, but we believe
that this is due to the contributions of lower order terms; for sufficiently large N these
should be negligible and the scaling should return to being purely quadratic. So,
we find that our heralded state has optimal scaling for quantum metrology on the
generator @XX — é)yy. In fact, there are a range of generators for which we can
show quadratic scaling. These generators are all higher order operators than the
angular momentum operators, showing that this entanglement is a distinctly spinor
phenomenon.

8.4.2 Realistic photon counting

Now consider the more realistic case in which we have a detector of finite photon
detection efficiency n. The state resulting from our measurement scheme can then be
modelled as a mixed state, i.e., given the photodetector records n photons in a single

run, the resultant state can be written as

N
por =7 _p(SIn)[S,=S)(S, =S (8.19)

S>n

S
) ’7’7(1 _ ’7)5_”
n

N p (8.20)
g |ci]? (n) n"(1 — n)k=n

where the sum is only over states that can produce n or more photons.

Actually, this is somewhat of a simplification, as the times at which the photons
are detected could in principle provide extra information related to the likelihood of
each state. We choose to ignore this aspect of the detection process, but note that,
since this information would improve knowledge of the state, using it would only
enhance our scheme. We also ignore a possible dark count rate for the photodetector.
However, this could be included by assigning a finite probability to the possibility
of detection events being the result of dark counts.

The states given by Equation [BT9] are not perfect projections, but they do have
a reduced width in S and, for N 3> 1, are entangled with virtual certainty, as only
the state [N, —N) does not feature entanglement and |cn|? ~ 27N =~ 0. In other
words, even with finite photodetector efficiency, entanglement is still produced with

essentially unit efficiency.
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Figure 8.6: Average QFI on the generator O — éyy of states p, weighted by the probability p(n) of
measuring n photons, as given by Equations B2 and [82] for various photodetector efficiencies .

As with the perfect detector, we can consider an average QFI where now

N
F=> pnFpn) (8.21)
n=0
N 5
with p(n) =) |es|’ ( ) n"(1—n)>". (822)
S>n n

This average is shown in Figure B8] The scaling of the QFI is still better than
linear, but it is no longer quadratic. Nevertheless, for n = 0.9 the data is fitted by
F =7.56N"91 while for n = 0.5 the scaling is still ~ N1-58,

8.4.3 Producing multiple pulses

Significantly, using an imperfect detector does not in fact rule out the possibility of
Heisenberg scaling. The flexibility of our engineered atom-cavity interaction offers
a straightforward means of improving our knowledge of the spin length. Following
the first output pulse of photons resulting from the effective TC interaction, one can
switch the polarisation of the laser field such that, in the model given in Equation
[B7] one now has A_ = 0 and A, # 0, corresponding to an anti-TC model. The steady
states are now |S,+S) ® |0),,, and the resulting transfer |S, —S) — |S, +S) will
produce an output pulse of 2S photons. Detection of this pulse provides a second
measurement and subsequent, further narrowing of the distribution in S.

In fact, we can consider a sequence of alternating TC and anti-TC interac-
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tions, producing a corresponding sequence of pulses and measurements {n} =
{n,nm,n2, ...,ni—1}. The density matrix conditioned upon a further measurement

of n; photons can be written

N
Piata = Y pSI{n} . n)|S £5)(S, =5 (8.23)
525"\\“

with probabilities

2S
p(SI{n}) (n‘ ) (=)
p(SI{n}, ni)= ‘ (824)
N 2k L
> p(SIH{n} (1= )t
k>Spin i
where Sy, is the largest value in the set {n, ny/2,...,n;/2}. That is, we iteratively

produce a state conditioned on a sequence of binomially-distributed photon numbers.
A numerical example of such a sequence is shown in Figure and it clearly
illustrates that with each measurement we gain more knowledge about the state,
narrowing the distribution in S. After enough polarisation switches and output pulses
we have, with almost certainty, projected out a state of definite spin length.
Taking a sampling approach, Figure [8:8] shows that for lower efficiency more

switches and their associated output pulses are necessary. However, eventually, a
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Figure 8.7: Population as a function of spin length S for a varying total number of output (multiphoton)
pulses generated by a sequence of TC and anti-TC interactions. Each pulse is simulated with a binomially-
distributed registered photon number using a detection efficiency of n = 0.7 and an assumed actual photon
number based on a spin length S = 30.
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Figure 8.8: Sample mean QFI on generator Ox — @yy, for N =16, of 1000 states produced by randomly
selecting a spin length S and a sequence of binomially-distributed measured photons given the initial
state and a photon detection efficiency n respectively.

state of definite spin length is always generated, and so the average QFI simply
reduces to the result for an ideal detector. This means that, in principle, we can
achieve Heisenberg level scaling for the metrological sensitivity in spite of finite
photodetector efficiency.

For our scheme, we note also that if both lasers are on (AL = A_ > 0), then we
realise an effective Dicke model, in which case the different S states are heralded by
the output photon flux. This flux could be sensitively measured through heterodyne
detection, with longer averaging times providing the mechanism for narrowing the

distribution in S.

8.4.4 Potential experimental parameters

Finally, we consider briefly some potential experimental parameters and timescales.
Given, e.g, cavity QED parameters {g, «, y}/(27) = {10,0.2,6} MHz and N = 10*
atoms, one finds fpyise (SA? [k)™" =~ 10 ps with the choice Q_/A = 0.01, and setting
S = /N (which corresponds to the most probable spin length in the initial atomic
state). Hence, the timescale for preparation of the entangled state is potentially
very fast, and, indeed, orders of magnitude shorter than the characteristic timescales
associated with the generation of entangled spin states via collisional dynamics or

adiabatic ground-state transformations in spin-1 BECs.



Chapter 9

Engineering spinor physics in a

cavity QED system

Spinor physics - the study of particles with integer spin - has received relatively little
attention in quantum optics. However, there is a rich recent history of extraordinary
experiments within the Bose-Einstein condensate (BEC) community. The collisional
dynamics inherent to such experiments offer a wide range of fascinating physics
involving the interaction of spinor particles. The aim was to combine this area
of atomic physics with quantum optics. We did this by derivation of engineered
“collisional” dynamics using cavity-assisted Raman transitions. The methods begin
with the work of Chapter [/] Taking these engineered integer-spin Dicke models
and eliminating the cavity mode produces a Hamiltonian which mimics collisional
dynamics. The interactions are now mediated by the exchange of photons with
laser and cavity fields rather than collisions of the atoms and so offer higher energy
scales, greater flexibility and the option to extend these methods well beyond what is
possible with Bose-Einstein condensates. The first section of this Chapter deals with
a brief introduction to the specifics of spinor Bose-Einstein condensates relevant to
our proposals. The second shows the derivation of similar dynamics in a cavity QED
setup, and is reworked from the Supplementary Material of [171].
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9.1 Introduction to spinor Bose-Einstein condensates

Bose-Einstein condensates were briefly introduced in Section 333} Here | discuss
the case where multiple magnetic sub-levels of the atom are condensed simultane-
ously. This gives a quantum fluid with both spatial and spin degrees of freedom.
There is the possibility of using such systems to study the evolution of a spinor
many-body gas, as | focus on here, but also of the coupling between the spinor and
spatial degrees of freedom. The description here is kept fairly brief and focuses on

the relevant limit for the rest of the thesis; for reviews see [172}[173].

9.1.1  Spinor collisions

We consider the Hamiltonian for a system of trapped spin-1 atoms
N 30t AV .
H= d’r¥ ——+V Y,
> [ ¢ m( o+ <r>) "

+ QG,B,U,V/d%@;‘(r)@g(r)@u(r)%(r) (9.1)

a,B.uv

where LTJ(X(r) is the annihilation operator for an atom in spin state o at a position r,
M is the mass of a single atom, \A/(r) contains the trapping potential and the magnetic
fields and Q4 g, is the collisional interaction between spins.

The first term is the non-interacting part which is identical for all the spin state
species. Interactions can generally be reduced to s-wave scattering collisions. These
happen for atoms at the same point in space with a coupling constant to the spin-F

channel of )
4k
gr = o (92)

where ar is the scattering length for that channel. These scattering lengths can be
manipulated making use of Feshbach resonances [172].

This interaction can be split into two types of terms: energy shifts and exchange
interactions. Energy shifts are the result of collisions between the atom changing the
energy of each state without changing the state of the atoms. At some point in space,
a particle in state o collides with a particle in state B and one particle leaves in
a and the other in B. Note that due to the exchange symmetry of indistinguishable
bosons it is equivalent, and unknowable, if the particles have remained unchanged
or swapped their spins. This has the effect of changing the potentials for the states,
shifting their energies. Exchange interactions involve two particles colliding and
changing their spin states. A particle in state o collides with a particle in state B
and the particles leave in other states py and v.

Using the s-wave scattering conditions to calculate the coefficients for these terms,
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it is possible to expand out the Hamiltonian above for different spins. Defining

A= +3292 03)
92— go

g, = J2790 94

3 (94)

then, for spin-1 atoms, we can give form to the interactions expanding the Hamiltonian
to give |[174,175]

+ 207 (7, () Po(r)Po(r)d’r. (95)

The first line is symmetric under interchange of the spin component indices while
the other is anti-symmetric. This means we have two parts to the Hamiltonian. The
first of these treats all spins identically and so does not change the spin degree
of freedom. The other deals with interactions where the form of the spin is impor-
tant and thus contains all non-global shifts to the energy levels and spin-changing

interactions.

9.1.2 Single-mode approximation

In many species, g2 ~ go and so As 3> Aq. In others, the scattering lengths can be
manipulated to meet that criterion. In those cases, the system is primarily ambivalent
as to the spin degree of freedom as the Hamiltonian is dominated by the symmetric
part. This means we can assume that the spatial degree of freedom is defined solely
by the symmetric part of the wavefunction, and so is the same for all modes. This
means it decouples from the spin degree of freedom [175]. This is called the single-

mode approximation. Mathematically, we show this as
Wo(r) = ba(r). (9.6)
We make substitutions

hog =bth, and N=Y 7, (9.7)
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and use the angular momentum operators instead of the bosonic mode operators using
the relations described in Section [3:47] The symmetric part of the Hamiltonian for
the spin degree of freedom

A A

Hy = uN — A NN = 1) (9.8)

where we have introduced the chemical potential

2

e = (—ZVM+ VH;NW) 6 (99)

and the collisional spinor interaction energy per particle integrated over the conden-

sate

A= %/dBr\¢(r)|4. (9.10)
The anti-symmetric part is now
ﬁ/a:A;(éZ—zfv). (9.11)

If we take the particle number to be conserved, then we can drop the operator
notation such that N — N and so terms related to the particle number reduce to

shifts to the vacuum energy. The full Hamiltonian can then be written

F=x50+5+52). (9.12)
Under the single-mode approximation, the complicated dynamics of the spatial and
spin degrees of freedom reduces to an extremely simple form.

The presence of a magnetic field adds linear and quadratic Zeeman shifts
Fl= X, 52+ 50+ 52) + w.S, + qho. (9.13)

The interplay of the various parameters leads to a rich variety of ground states
[124)[150H4152}|159], which we take advantage of for our proposal in Chapter It
is also worth noting that this Hamiltonian conserves S, and so both (52) and (5,)
must be constants of the motion. This means we can omit them from the Hamiltonian
giving us

B=a (§5+§j) + qho. (9.14)

This Hamiltonian describes the evolution of a spinor Bose-Einstein condensate
in a magnetic field under the single-mode approximation.

Our aim was to emulate this system by engineering an effective Hamiltonian
which acts in the same way. However, instead of collisions, in our proposal spin-

exchange interactions are mediated by photons.
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9.2 Cavity engineering of the collisional Hamiltonian

To emulate the spinor collisional Hamiltonian, we start with the spin-F Dicke model
Hamiltonian we derived in Section [Z11]

n A )L, A A /\ A Ja
A =wata + wyS, + Sa+Sah)+ ——(5.a+5.a". 9.15
0 \/ﬁ( + ) \/ﬁ( + ) ( )

We want to move to a limit where the cavity can be adiabatically eliminated. This
could be because the energy of creating a single photon is prohibitively high - com-
paratively large w - or that the photons leave the cavity immediately - comparatively
large k - or more specifically the limit Vw? + 2 > wy, As.

We split our Hamiltonian into two parts H = Fy + H; where

Fo = wata + wyS, (9.16)
R A s A o
[:\/m(5+a+5_af)+ \/2;_7/\/(5_0+5+07L) (9.17)

and move to the interaction picture defined by

o) = el p(p)e=ifor, (9.18)
It follows that
apl NN /
F T —{H;, p'l+ Lep'(t) (9.19)
where
Lp=«(2apa” —aTap—pa'a) (9.20)

and our interaction Hamiltonian is

/_/l/ _ eL/‘/ot/_/ieleof

1 Gt e . : . A
= Ge WA S, et 4 ), S om0ty 4 aTelW() § emiwnt 4 ) § plwol
s oo s ; ) ( (Spetn)]
= e X(t) + aTe X7 (1) (9.21)
where ) )
X(t) = —E==5 e it 4 L _§ glwnl, 9.22
(® V2FN V2EN T (922

We want p. = tr.{p’}, and so, in the second-order Born-Markov approximation, we
have that

t
%_ / L1 Lot—=t) Lyl v 1
e R | S AN AGEVALS]| | B EE
0
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Expanding this out, neglecting terms with @& and @7&" due to the unlikeliness of
two photons in the cavity mode, gives

t

dp! N , Ca
Ps — —/dt’trf{ + de W KT (et at e X (¢)pl(t') @ pl(t))

ot
0

A‘*wﬂ%*<) S0P @ prt)aT e X(H)
— ef T X ()pl(t) @ pi (1) ae ™ X(1)
+e “fp(>®p4> e () ae KTt
+aTe X (t)et " Nae X7 (¢)pl (1) @ pi(f
—“WWm“”p(mmu
—eflTae KT (1) pl () @ pl(t)aTe X 1
+ et () @ p (e KT ()aTe (1) (0.24)

We can then draw several terms out of the trace and, using the cyclical definition of
the trace (ie. tr(ABC) = tr(BCA)), rearrange to

t

ap. o ¢ ,
== [ R OR O {peE e e A
0

=X (pl )X (
—X(t) T(¢t

X(t)p
+p4(t
X)X

tr { L= o (¢)aT Fe—ilt—")
tr{aef=aT pl () }e’“‘”*t)
trC{A L((tfr’)p/ / Af}e—zw(lft’)

)
t )
)
)t { 7" L(t—t) apl }elw(t—t’)
)
)
)

L)X
JX()XT(t
'/'(t/

+X(OXT(t) P,
tr {aTef =1 pl(¢)a}el 1)
trc{éfeﬁ (t=t) ap }e"“("”
+ol (VX ()X (D)t {aT E =0 pl(¢)a ettt (9.25)

We can then use

tr{aef=aTpl ()} = (a(t)aT(t)) = e =0 (9.26)
tre{ae " p()aT} = (aT(¢)a(r) = 0 (9.27)
tre{at et ap (i)} = (aT(1)a(t) = 0 (9.28)
tr{atef = (t)a} = (a(t)aT (1) = e <=1 (9.29)

to simplify the integral, where we assume that the cavity mode is essentially in the

vacuum state.

We further assume that we can set X(t') ~ X(t) and p.(t') ~ pl(t), so that it only
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remains to evaluate

t

/dt/ef(lﬁriw)(tft’) _ L (1 _ e—(x+iw)t) N
K+ iw

1
K+ iw'

(9.30)
0

where we assume t is large enough to neglect the exponential. Thus, we have

e - - X006 + KR (0
b KL (0) — AT (010
2 X087 ~ SERT 0% - S AT 0k
=il = XX (1), (0]
S — (2Kl X710 = K Ol — Pl 0K 0K () - (031)

We rotate back out of the interaction picture to give

0ps N K

= —iH, p. 2Xp XT — XTXpo — p XTX 9.32
ot (H, pel + -5 (2Xp ps—p ) (9.32)
where
n N w TN A A 4 A a
H = wS, — XtX, X = S+ L5, 933
K+ 2FN. V2EN 53

Substituting in X, assuming A are real, we have the Hamiltonian

~ ~ w ~ ~ n n
H = (U()SZ — m(}\75+ + )\+Sf)()\757 + )\+S+)
e w 282 e 2 3232
=S = SN T [(A, + APl 4 = AP SE (0 =) ] . (9.34)
If we take A, = 0 then we have a master equation
dps o KA A A A A P
FT —iH, ps] + m(ZS—PsS+ —5:5.ps — psS+5-) (9.39)

with an effective Hamiltonian that emulates the spinor collisional Hamiltonian

p ¢ N a2, &
H = w,S, + W(SX +5;) (9.36)
with parameters
P | Y S ) (9.37)
w2 0= YT PN  w ‘
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For spin-1 atoms, we can add an effective quadratic Zeeman shift to this Hamil-
tonian with the addition of a weak s—polarised laser field acting near the F’ =
line. The transition |F =1, mr =0) « |F' =1, m = 0) is forbidden and so such
a field does not shift |0) but does add light shifts to |+1). Due to the symmetry
of the dipole operator, the light shifts added to |£1) are equal in magnitude and
sign, exactly like a quadratic Zeeman shift. This means that we can emulate the full
range of the collisional Hamiltonian in a magnetic field for a spinor BEC under the

single-mode approximation.
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Chapter 10

Spin-nematic squeezing via
cavity-assisted Raman

transitions

Spin squeezing is a generic term for introducing certain types of quantum corre-
lations between an atoms in an ensemble. Numerous experiments have been car-
ried out showing that these spin squeezed states feature entanglement and prop-
erties useful for quantum metrology. While these experiments have initially fo-
cussed on two-level systems confined to the surface of the Bloch sphere, there are
viable alternatives using spinor systems that have no such limitations. This Chap-
ter discusses our proposal to produce one such type of squeezing: spin-nematic
squeezing. Following experiments in spinor Bose-Einstein condensates, our pro-
posal details how we can emulate such experiments on much faster timescales. This
work is presented in the form of a Letter published in Physical Review Letters. It
has been reformatted for this thesis, with the Letter separated into sections, mi-
nor changes to some figures and notation and spelling altered to provide consis-
tency throughout the thesis, and parts of the supplemental material relevant to the
spin-nematic squeezing included in the text, but is available in its original form at
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.213601.

157
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10.1 Introduction

Gases of ultracold Bose atoms possessing internal spin degrees of freedom - spinor
Bose gases - offer a remarkable variety of possibilities for the investigation of quantum
fluids, in contexts that include, for example, magnetism, superfluidity, and many-body
quantum dynamics . In this latter context, tremendous experimental progress
has occurred in recent years based upon collision-induced spin-mixing dynamics in
spinor Bose-Einstein condensates (BECs) [14/95/99/100/124[154-159176H186]. Such
systems have allowed for the generation of quantum spin squeezing and entangled
states [14/99|100(124)154H158|160/187] following a range of proposals
as well as the study of quantum phase transitions
and the parametric amplification of quantum spin fluctuations [158|[1834185|[190].

10.1.1  Spinor Bose-Einstein condensates

Spinor BECs in which atoms in all magnetic sublevels of a single hyperfine ground
state (e.q, the £ = 1 ground state of Rb) are condensed correspond to ensembles
of integer-spin particles. For small, tightly confined condensates, one may assume
that the different atomic states have the same spatial wavefunction - the single-
mode approximation - after which one can show that the collisional spin dynamics
is described by a Hamiltonian of the form AS? where § = (§X,§g, §Z) is the total
spin vector (operator) and A is the collisional spin interaction energy per particle
integrated over the condensate . The spinor dynamical rate is ¢ = 2NA
where N is the number of atoms, and is typically on the order of 10 Hz for 40,000 8 Rb
atoms . If the longitudinal magnetisation (S,) is a constant of the motion (e.qg,
zero), then this Hamiltonian can be reduced further to )\(§XZ+§§) With the addition of
a magnetic field, the Hamiltonian gains a linear Zeeman shift pS, (which can also be
assumed to be a constant of the motion) and a quadratic Zeeman shift q/%, where K
is the population in the m = 0 state. The ratio g/c describes a rich phase diagram,
with highly entangled ground states in several limits . In particular,
if |g] < ¢ > 0, the ground state is the spin singlet statelfl which has fundamental
interest due to its high entanglement but also applications ranging from precision
measurements [191] to no-classical solution quantum information processing [192]. In

addition, the transitions between these different phases are of interest with respect

to the Kibble-Zurek mechanism [186}[193/[194].

10.1.2 Summary of the Chapter

In this Chapter, we propose an alternative scheme to producing spin-mixing dynam-

ics in a gas of integer-spin atoms that uses cavity-mediated Raman transitions to

#A proposal to make use of our schemes to produce the spin singlet makes up Chapter of this thesis.
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engineer the required spinor dynamics. Our proposal borrows from earlier schemes
for engineering effective Dicke models of collective two-level-atom ensembles cou-
pled strongly to a quantised cavity mode but considers an arquably
simpler configuration and limit, which yields a Dicke model for integer-spin (alkali)
atoms. This approach has in fact been demonstrated very recently in a study of non-
equilibrium phase transitions in this model . In the dispersive limit of this model,
where the cavity mode is only virtually excited, the resulting Hamiltonian mimics

collisional interactions in a spinor BEC.

10.2 Model

We consider an ensemble of alkali atoms tightly confined (e.g., by a three-dimensional
optical lattice) inside a high-finesse optical cavity. The atomic ensemble is considered
dilute enough to exclude direct atom-atom interactions, while the atoms are coupled
uniformly to cavity and laser fields. As illustrated in Figure we consider a
scheme of cavity-assisted Raman transitions in which the fields are very far detuned

from the relevant excited-state manifold. Here, instead of isolating effective spin-1/2

systems , we consider transitions within a complete hyperfine ground state, in this
instance, the F = 1 ground state of 8 Rb. Adiabatic elimination of the atomic excited
states then creates an effective model for an ensemble of spin-1 atoms coupled to a
cavity mode (see Section [71.2] for the full derivation).

In the limit that the detunings of the fields are very large - in particular, much

larger than the energy separations of the excited-state hyperfine levels (e.g, as

52Py ) HI

5251/2 * 2w,
mg= -2 -1 0 +1 +2
Figure 10.1: Level diagram for the implementation of an effective Dicke model using the F = 1 ground

state of %Rb. Interactions are engineered via Raman transitions on the Dy line mediated by a cavity mode
(blue dashed line) and o~ (green dotted line) or o_- (red dot-dashed line) polarised laser fields.
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in [71], where the detuning is 127 GHz) - then the internal structure of the excited-
state manifold becomes unimportant, and symmetries in the dipole operator cause the
effective Hamiltonian to simplify greatly. Considering an open quantum system, with
the cavity field decay rate given by « (but atomic spontaneous emission neglected
due to the large detuning), this model is described by the master equation for the

atom-field density operator p:
p = —ilH, p]+ kDlap, (10.1)

where @ is the cavity mode annihilation operator, D[d|p = 2apa’ — paTa — a7 ap,

and

A
V2N

H=woTa+ wS, + (a5, +a75.) + a5 +a'sy). (10.2)

V2N

Here, 5. are the spin-1 collective raising and lowering operators, while the coeffi-
cients of the various terms (for the F = 1 manifold in Rb coupled via the D; line)

are given by

w_+wy  Ng?

W= W, — > A (10.3)
_ wo—wp QL -Q7
Wy = Wy 5 + SAn (10.4)
\/NgQ+
Iy = — 2= 10.
+ A (105)

Here w, is the frequency of the cavity mode, wy (Q) are the bare frequencies
(Rabi frequencies) of the o.-polarised laser fields, w, is the Zeeman splitting of the
F =1 levels (due to an applied magnetic field, if present), g is the single-atom-cavity
coupling strength (for the 8Rb D5 line cycling transition), and A is the detuning of
the fields from the atomic resonance.

This configuration provides a “clean” and tuneable system with which to study
the Dicke model, as demonstrated in [/1]. In particular, it has the independence of
couplings A+ not present in BEC formulations of the Dicke model [67H70l|76], while
it also avoids a non-linear coupling term of the form S,aT6 that features in all the
current spin-1/2 versions of the Dicke model [53|[0668)78|79/81)/144]. We note that
it can also be applied to other hyperfine ground states in alkali atoms, enabling,
e.g. tuneable interactions for ensembles of effective spin-2 (2’Rb or ®Rb), -3 (¥°Rb,
133Cs), or -4 (BCs) atoms.

While most previous work has considered many-body cavity QED with two-
level systems [65}{195], the generalisation to integer-spin ensembles offers a range of
interesting physics not available to spin-1/2 systems. Integer spins have more degrees

of freedom, which means that there are different ways to manipulate excitations and
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constrain the state. In particular, a coherent ensemble of integer spins is not limited
to the surface of the angular momentum Bloch sphere. This allows for novel entangled
states such as the spin singlet, two-mode squeezed spin states or, as discussed in
more detail below, the redistribution of quantum noise into degrees of freedom that

are simply not present in two-level systems [147[148|/196].

10.3 Tracing out the cavity mode

We now consider the dispersive limit in which the Raman transitions are themselves
off-resonant, i.e., w > wp, Ay, in which case we can also adiabatically eliminate the

cavity mode to yield the reduced master equation

A K A ~
h = —i[H ————DAS +2 106
10 [[ 'p]+ 2N(w2+K2) [ S + +S+]p ( )
with
H=|w _ W A 5 fL[u + A5+ (= )ZSZ]
O T OON(w? + k) | T 2N(w? K2y LV T e e A 2y |
(10.7)
If we set A, =0 and A_ = A then Equation [T0.6] becomes
. o e
p=—{H pl+ 55D[5-Jp (10.8)
where A
H=wyS, + ﬂ(SX2 +57) (10.9)
with parameters given by
Wy = wo+ =— /\——wiA2 F=—2A (10.10)
0T MOTONT T W T W '

Note that, by choosing the sign of w, it is possible to produce ferromagnetic or
anti-ferromagnetic behaviour with the same atomic species. An artificial quadratic
Zeeman shift could also be added to the system by, for example, a weak m-polarised
laser field acting near the F' = 1 line in the excited manifold. Then, in the limit that
/A « 1, the atoms will undergo spin-mixing interactions with dynamics of the sort
found in spinor BECs. However, here the relevant dynamical rate is set by Raman
transition rates, light shifts, and detunings and can therefore be orders of magnitude
larger than in spinor BECs. Consider, e.g, the feasible experimental parameters
{g,k,y}/2(n) = {10,0.2,6 } MHz (see, e.g, |71}[141/142)), where y is the atomic
spontaneous emission linewidth. With N = 10" atoms, values of A/(27) = 200 kHz
are then readily achievable, which, with w/(27) = 4 MHz, lead to A/(27) = 10 kHz
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and [' = 0.05A. This means that such a system can emulate the dynamics of a spinor
BEC but orders of magnitude faster.

This Hamiltonian gives the opportunity to study a range of models, such as the
Lipkin-Meshkov-Glick model, where, unlike in the spin-1/2 case, the spin-1 case
features quantum chaotic behaviour [197]. Similar studies have shown that spin-2
models can offer very different dynamics again [198].

The methods described above are not limited to emulations of spinor BEC phuysics.
Since this is an open system, there is also flexibility to deliberately engineer a
particular dissipative evolution or monitor the cavity output to gain information about
the evolution without destroying the spinor gaslﬂ

It is also possible to produce Hamiltonians which do not naturally arise in spinor
BECs. For example, by setting A- = A, we obtain a Hamiltonian ~ §XZ which
produces squeezing via one-axis twisting in two-level systems |19}(93}(94}/961/97]/103].
By adding more cavity and laser modes, an even wider range of Hamiltonians is
possible [162/199], with, for example, the possibility of a two-axis twisting Hamiltonian
~ §XZ — §5 [19], which can offer Heisenberg limited metrology, but has yet to be
implemented experimentally. Such systems with spin-1 (or higher) particles offer the
same squeezing possibilities but should also allow further novel, many-body ground
states and dynamical phenomena.

The principle behind our scheme could also be applied to the emerging field of
quantum simulation with cold atoms coupled to a photonic crystal waveguide [200].
Atoms coupled to the wavequide, but with the atomic resonance frequency located
within a photonic band gap, enable localised excitations at the atom trapping sites,
while the tunnelling of excitations between neighbouring sites produces effective
atom-atom interactions. While work to date has focussed on spin-1/2 systems, the
application of our approach should enable the generalisation of this work to integer-
spin lattice models with engineered interactions that could be tuned in form, strength,

and range, allowing, for example, the exploration of Haldane physics [201].

10.4 Generation of spin-nematic squeezing

Now, we consider an example of how our scheme can be used to emulate spinor
BEC physics. In particular, we consider the model given by Equation [T08] and
the preparation of “spin-nematic squeezing” in an ensemble of spin-1 atoms that are
initially prepared in the m = 0 sublevel [14]15]. With a suitable choice of microscopic
parameters, it is possible to set wy = 0 (or at least approximately so). We note,
however, that initially <§Z> =0, and since S, is conserved by the Hamiltonian, this

term should not have any significant impact on the evolution, provided that the cavity-

45Chapter looks at using the cavity output from a spin-1 many-body cavity QED system to herald
entanglement within the ensemble.



164 CHAPTER 10. SPIN-NEMATIC SQUEEZING

mediated damping of the spin (which does not conserve §Z) is weak, e, Kk < w, which
means [ <« A. With this condition met, the Hamiltonian is an active generator of
spin-nematic squeezing.

Spin squeezing is a well-established method to produce a metrological enhance-
ment (for reviews, see [20l/22)). In particular, atom interferometers can be used for
precision measurements of acceleration, time, rotation, and, potentially, even gravita-
tional waves [89]. If the input states to these interferometers are uncorrelated states
of N atoms, then the precision of the measurement is limited by the standard quantum
limit, which scales as 1/v/N. However, by generating suitable entanglement within
the atomic ensemble, it is possible to exceed this and approach the Heisenberg limit,
which scales like T/N.

Considering ensembles of N two-level, or spin-1/2, atoms with internal spin de-
grees of freedom, spin squeezing involves a redistribution of quantum noise on the
angular momentum Bloch sphere in such a way as to produce reduced quantum fluc-
tuations along one coordinate axis. Integer-spin systems possess additional degrees

of freedom associated with the quadrupole or nematic tensor operator

N
p 5050l o) 4
Oy =) 8"6" + 0" 0] — 30y (10.11)
n=1
where {i,j} € {x,y,z}, 8" are spin-1 angular momentum operators for a sin-
gle atom, and ¢;; is the Kronecker delta function. Spin-nematic squeezing involves
the redistribution of quantum noise in the subspaces {§X,©gz, @ZZ— ny} and
{§g, O, 0,, — @XX} [14]. Focussing on the first of these subspaces, the degree
of spin-nematic squeezing can be characterised by a parameter &, which gives the
metrological precision relative to the standard quantum limit for Ramsey interferom-

etry and is calculated by minimising the following expression over the angle 6:

2 2([A(5xcos 0 + Oy,sin O)F)
) ‘ <©zz - @yy> |

(10.12)

with & < 1 indicating spin-nematic squeezing.

10.4.1 Finite sized ensemble

Figure [T0.Z] shows the development of spin-nematic squeezing with and without
damping for an ensemble of N = 120 atoms. These results are obtained from
quantum trajectory simulations of Equation [T0.8] in which we make use of a rep-
resentation in terms of bosonic mode operators, B,n, for the three Zeeman states

m = 0,+1. In particular, [A),T,(IA)Z:) annihilates (creates) an atom in state m, and, e.qg.,
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Figure 10.2: (a) Time evolution of the spin-nematic squeezing for N = 120 atoms without damping (red
line) and, with damping rate ' = 0.05/\, an ensemble average of 1000 trajectories (dark blue) and a
single trajectory in which no jumps occur (dashed dark blue). The phase angle in each case is just below

= 170°. (b) Populations in each of the states m = £1 for ' = 0 (solid line) and [ = 0.05A (dashed
lines). (c) Optimised squeezing scaling with atom number with and without damping. With damping,
ensemble averages of 1000 trajectories were used to estimate the master equation result.

[ = =~ (2bTb7 ,bobo + 2bfb] b 1b1 + bl bo(1 + 2b] by +2bT, b 1)) . (10.13)

We start our simulations with an initial state in which the entire population is in the
m = 0 state and use a Monte-Carlo wavefunction method to simulate the system.
An average over an ensemble of trajectories is used to estimate the master equation
result for the various moments required to calculate &. The presence of the term
BIBLBOBO + 555557151 highlights explicitly the link to squeezing via four-wave

mixing in light .
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With I = 0 the system simply follows the Hamiltonian evolution, and we see
significant squeezing generated on a timescale (A/2)~". After this time, squeezing
reduces and ultimately turns into anti-squeezing. This turnaround correlates with a

growing number of atoms in the m = &1 states, resulting in a reduction in |©ZZ—(AQ%|.

With the addition of a small rate of damping, which causes (infrequent) quantum
jumps with S_, we find that the trajectories can be split into two categories. First
are those that reach the point of peak squeezing without a jump having occurred.
Interestingly, these have squeezing at a slightly higher level than with " = 0, meaning
that the null measurement backaction (which essentially adds an imaginary element
to the spin-nematic squeezing generator) actually improves the squeezing. Second,
when there is a jump before that point, the squeezing is substantially reduced, and
so, on average, the presence of damping does decrease the degree of squeezing.
However, for sufficiently small «/w, such jumps should be rare. In addition, since
these jumps are mediated by the cavity mode (i.e, they correspond to the emission
of a photon from the cavity mode), then, by monitoring that output and postselecting
based on the absence of a photon measurement, it would be possible to remove some

of the runs with non-optimal squeezing (allowing for finite detection efficiency).

Figure[T0.Z]also illustrates more clearly how the best achievable squeezing varies
with the number of atoms, with results obtained from trajectory simulations of Equa-
tion [10.8) For I = 0, we find that & ~ N~0%73 in the range of atom numbers that
we consider. This indicates that this spin-nematic squeezing scales very similarly to
one-axis twisting (where the squeezing scales at best as N=?/%). Note that we have
also considered spin-nematic squeezing in spin-2 particles, as would be relevant to
the situation in which the present scheme is applied to the F = 2 ground states in
either ®Rb or #Rb, and find similar results.

10.4.2 Visualising the atomic state

We describe squeezing that takes place on a sphere with axes { §X, éyz' @ZZ — éuu }
(or equivalently {§y @XZ, @XX — @ZZ }, with an equivalent derivation to here). With
spin squeezing, it is useful to be able to visualise the state with the atomic Q-function.
Analogously to the Q-function for electromagnetic modes, an overlap is taken with
coherent states over the space of interest. Since we consider squeezing on the SU(2)
sphere { §X, (A?yz' @ZZ — ©yy }, we build coherent states of that space. We build these
in the same way as coherent spin states of spin-1/2 particles: a binomial distribution
across the eigenstates of the z-axis [16}[17], which in this case is 0,,— f)yg. In terms
of the bosonic annthilation and creation operators, this is

0, — Oy = —2b1bo + b7 by + b by + b7 by + b7 by (10.14)
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It is easy to see that the initial state |0, N, 0) is an eigenstate of this operator with
eigenvalue —2N. We define this lowest energy eigenstate as the South Pole of our
sphere and notate it as |0). To generate the other eigenstates we use the ladder

operators
8. =5,+i0,, = 2V2bo(bT, + b)) (10.15)

Applying this operator to our lowest energy eigenstate gives us the rest of the eigen-

states, and we can then build coherent states as
M) = (8:)"10), (10.16)

where we have omitted a normalisation factor. We then build coherent states as

N
n = e®tan(6/2)) = 5 ™ M) (10.17)

where we again omit the normalisation factor. Our atomic Q-function is described by

Q(n) = (nl pln) (10.18)

and (0, ¢) are mapped as the polar and azimuthal angles onto the surface of a sphere.

As discussed above, our squeezing generator is analogous to that in four-wave
mixing. Correlated pairs of atoms in the m = £1 states are created from a reservoir
of atoms in the m = 0 state. Unlike in the optical analogy, here the reservoir
has a finite number of atoms in it, and so the squeezing takes place on a sphere
instead of a plane. As pairs are created, | (0,, — Q)| begins to reduce. In terms
of the atomic Q-function plots this can be seen as the ends of the state travelling
up the sphere. At some point this effect reduces | (0., — @yy> | at a faster rate than
the squeezing generator is reducing the variance, and so the squeezing parameter
begins to increase. We also see a slight “twist” developing in the state where the

extreme ends are at slightly exaggerated angles.

0 0 0

(@) At =1.8 (b) At =27 () At =45

Figure 10.3: Atomic Q-functions on the space {§X, ng, @ZZ — Guu} looking from the South Pole, for
120 atoms with [ = 0.
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10.4.3 Large ensemble limit

In Figure [T0:4] we plot the squeezing parameter as a function of both the time and
phase angle O for N = 120 atoms and in the limit of large N. For that limit we
assume that the m = 0 state is essentially undepleted and by can be replaced by
\/N, so that the Hamiltonian becomes

A A At oA PN PRTIIN PRTIN
f=3 2bT,BT 4+ 2b by + 14 2T by + 2675 (10.19)

while in the damping term

S V2N@T, +a4) and 5. — V2N(a_y + a7 ). (10.20)

+1

Equations of motion for the various moments required to compute & can be
deduced from the master equation, but we choose to work instead with the equivalent
quantum Langevin equations for b+, which, defining a vacuum noise operator /Aj-m(t)

that satisfies [bi(t), b

mn

(t')] = o(t — t'), take the simple linear forms

dzf = (T + iN(by1 + b)) — VT by(t) (10.21)
db_ s A
— = (T — iNb- + BT,) + V2TBL (1) (1022)

To calculate the squeezing parameter & we require two combinations of these: A=

[A)H + [AJL and B = B+1 — [Ajf1 These have Langevin equations

dA

5 =0 (10.23)
dB . .

5 = A+ iNA- 2V 2T bi(t) (10.24)

which are readily integrated to give
A(t) = A(0) (10.25)

B(t) = B(0) — 2T + iNA(O)t — 2v/2T / dt’biu(t)). (10.26)
0

The specific operators of interest are given by

2 N - 5 ~ N ~
SNURS \E(Am +AT(0). Oplt) = i\E(Bu) - B'(1) (1027)

and using the results for A(t) and B(t) (and assuming that we can set 0,, — éyy =
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Figure 10.4: Values of & (in dB) as a function of time and phase angle for I'/A = 0.05 with (a) N = 120
atoms and (b) in the undepleted mode approximation (N — oo) given by Equatlon@

—2N) we obtain

&2 = (cos O + 2\t sin 0)? 4 (1 + 2 t)? sin” 6. (10.28)

X

The formula above correctly predicts the angular dependence, and, at shorter times,
also matches quite accurately the degree of squeezing for the N = 120 case. For
larger N it should provide a good model of the squeezing for longer times, where
it predicts that the degree of squeezing will continue to increase for a suitable
choice of phase angle 6. Note also that Equation [T0.28] is unchanged if a term
wpS, = wé(lA)LlA)H — BL b_1) is added to the Hamiltonian.

10.4.4 Spontaneous emission rates

Finally, we note that the rate of atomic spontaneous emission due to off-resonant
excitation of the 52/31/2 state is estimated, for our configuration, as I, = y(02/1 2A2),
which gives s, /(A\/2) = 48w/(NCk), where C = 2¢*/(ky) is the single-atom cooper-
ativity. For the parameters discussed above, this ratio is ~ 0.0006. With more atoms

and/or increased cooperativity, this can evidently be reduced even further.

10.5 Conclusion

In conclusion, we have proposed a method for engineering spinor dynamics using
cavity-mediated Raman transitions and demonstrated that such a scheme could be
used to produce spin-nematic squeezing in an ensemble of spin-1 atoms. We believe
this work opens up a range of exciting possibilities for emulating spinor BEC dynamics
on much shorter timescales and extending this to explore a much wider range of spinor

physics with significant flexibility.
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Chapter 11

Preparing the spin singlet state
of a spinor gas in an optical

cavity

The spinor collisional Hamiltonian is of great interest because adjusting parameters
can give a variety of ground states, varying from trivially prepared initial states to
highly entangled many-body states. One particular ground state of interest is a
state of zero spin length: the spin singlet. This can, in theory, be prepared by
adiabatically varying parameters. Such approaches have so far yielded either states
ruined by noise because the sweep is too long, or states with imperfect fidelity
because the sweep was not truly adiabatic. In this Chapter, we present how such a
‘quasi-adiabatic’ sweep could be performed using a cavity QED setup. The presence
of the cavity also allows a different method to production: the spin singlet is a
dark state to the cavity QED system. Therefore, a null measurement in the cavity
output will prepare the spin singlet, and it will do so with a probability proportional
to the initial population in that state. We show that using an imperfect sweep
to increase the overlap with the spin singlet allows a greatly enhanced efficiency
for our dissipative preparation scheme. The two methods used one after the other
could thus prepare the spin singlet with remarkably high efficiency and near-perfect
fidelity for very large ensembles. This work is presented in the form of a paper
published in Physical Review A. It has been reformatted for this thesis, with added
subsection headings, minor changes to figures and some notation and spelling altered
to provide consistency throughout the thesis but is available in its original form at
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.013819.
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11.1 Introduction

Spinor Bose gases - in particular, ensembles of ultracold Bose atoms with internal
spin degrees of freedom - offer a remarkable platform for the study of quantum
fluids and phenomena such as quantum phase transitions and superfluidity [172|173].
One reason for this is the rich variety of collision-induced, spin-mixing dynamics
that are possible in spinor Bose-Einstein condensates (BECs), together with the
exotic quantum states that may result from these dynamics. Of particular interest in
this context, driven in part by potential application to quantum-enhanced metrology,
have been highly entangled (e.g., spin squeezed) states [146}149)[150//188|/189], and
remarkable experimental progress has been made in this field of research [14/99}100
1241[125]/154H159).

One system that has been of interest is a small, tightly confined BEC of spin-
1 atoms in the presence of a magnetic field. In the single-mode approximation,
the interplay between collisions and the quadratic Zeeman shift is modelled by the
Hamiltonian

/\'\2 ~
— N, 111
/\/S + gNo (11.7)

=
where § = {§X, §y, §Z} and é,- are collective angular momentum operators for the
ensemble of N spin-1 atoms, Ko is the population operator for the m = 0 state, and A

and g characterise the interaction strength and quadratic Zeeman shift, respectively.

11.1.1  The spin singlet

Despite its apparent simplicity, the Hamiltonian in Equation [T1.7] admits a variety of
ground states dependent on the signs and relative magnitudes of A and g. One of
those ground states is the macroscopic spin singlet. This is a state of N atoms where
the collective angular momentum is zero. This state features strong entanglement
and is given by the superposition
NJ2
S=0)=) GliN=2j)) (112)

j=0

using the notation |n_1, no, n41) for n; atoms in the magnetic state m = i and with

coefficients given by

e o N=2j+2 (113)
TN+ T UNZZ ‘

This state features genuine multipartite entanglement of the entire ensemble [147}

148]. This entanglement is useful for quantum metrology [191] and could be of use in

fields including quantum memory [202] and quantum information processing [192]203].
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Preparing the spin singlet of a BEC as the ground state of the Hamiltonian given
by Equation [TT.] is, in practice, a very challenging prospect, given the extremely
small energy scales involved [173]. However, other methods have been proposed to
produce the spin singlet state. One such method involves a sequence of quantum non-
demolition measurements using pulses of light to probabilistically prepare a highly

entangled macroscopic spin singlet |106}{204}[205].

11.1.2  Summary of the Chapter

In this work, we propose a method to produce the macroscopic spin singlet via in-
teractions mediated by cavity-assisted Raman transitions. The imbalanced Dicke
model for spin-1 atoms, as discussed in Chapters [7] and [T0] or more simply a Tavis-
Cummings model, as discussed in Chapter [B] can probabilistically produce the spin
singlet heralded by the absence of measured photons in the cavity output. This pro-
tocol works with an efficiency equal to the overlap between the initial state and the
spin singlet, which, however, is 1/(N+1). We thus propose the use of quasi-adiabatic
sweep techniques - an established method for these systems in spinor BECs - to en-
hance that initial overlap. We then show that a protocol of a quasi-adiabatic sweep
followed by the probabilistic distillation of the state using a Tavis-Cummings model
offers a method to produce a singlet state with very high fidelity and a reasonably

high efficiency.

11.2  Setup & model

11.2.1 General model

We consider an ensemble of %Rb atoms held tightly within an optical cavity. We
assume that the ensemble is sufficiently dilute that we can ignore any direct atom-
atom interactions, and instead engineer effective interactions via cavity-assisted Ra-
man transitions [53}/1611/162), as illustrated in Figure m Here, as demonstrated
recently in |71], we consider transitions within the complete F = 1 hyperfine ground
state. In the limit that the detunings of the Raman transitions are much larger than
the energy separations of the excited-state hyperfine levels, this gives an effective
open Dicke model for an ensemble of spin-1 particles. In that case, as discussed
in Chapter [7] the evolution of the density operator can be described by the master
equation

p = —i[H, p]+ kD|t]p (11.4)
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52P1/2 i v C
A
, y - -
Q,
5251/2 V2w,
mp= =2 -1 0 +1 +2

Figure 11.1: Implementation of an effective spin-1 Dicke model using the F = 1 ground state of 8Rb.
Interactions are mediated by detuned Raman transitions on the D; line composed of a cavity mode (red)
and o_- (blue) and o4~ (green) polarised lasers.

and

(a5 +a's,). (11.5)

The coefficients of the various terms are determined by light shifts and Raman tran-

sition rates; in particular,

w=w - (116)
wo—wy QL —02
o 17
wo = W > o (11.7)
VNgQ
h = (11.8)

Here wc is the frequency of the cavity mode, w.(Q.) are the bare frequencies (Rabi
frequencies) of the o.-polarised laser fields, w, is the linear Zeeman splitting of the
F =1 levels, g is the single-atom-cavity coupling strength (for the Rb D5 line
cycling transition), « is the cavity field decay rate, and A is the detuning of the fields
from the atomic resonance. Note that we assume that the atoms all couple to the
cavity mode with the same strength g, which can in practice be achieved by confining
the atoms tightly at cavity mode anti-nodes in an optical lattice potential (which may

be created via another, far-detuned cavity mode at twice the wavelength of the other

mode ).
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11.2.2 Dissipative limit

By turning off the o} -polarised laser and choosing w = wp, the above model reduces
to the resonant Tavis-Cummings model for spin-1 atoms. We will consider this model
in Section [TT-4] in the context of a dissipative, probabilistic scheme for preparing the

spin singlet state.

11.2.3 Hamiltonian limit

Alternatively, we can consider the above model in a dispersive limit, such that w >
wp, A, in which case the cavity mode can be adiabatically eliminated. Considering
again the case where Q. = 0, as shown in Chapter|§| the model can then be reduced
to [163)[164]

) p [z

p=—iH. pl+ GDI>-lp, (11.9)
with A

H = w5, + N(ﬁf +5)) (11.10)

and in terms of the Dicke model parameters given above, we define new parameters

A wA? K

z

By manipulating the microscopic parameters, it is possible to (at least approximately)
set wy = 0, but given that we consider a system initiated with all atoms in the m = 0
level (Le., with <§Z> = 0), and that éz is conserved by the Hamiltonian evolution,
this term does not impact the evolution in the absence of photon detections, which
we show is the heralding condition for the production of the singlet. Hence, we see
that the cavity-mediated, coherent spin interactions described by Equation [TT:10] can
emulate the collisional interactions of BECs in the single-mode approximation.
Further to this, an artificial quadratic Zeeman shift can, for example, be produced
by a weak, auxiliary s-polarised laser field acting near the F/ = 1 excited manifold.
This shift is considered to be time dependent, and could be adjusted either by moving
it closer or further from resonance, or by adjusting the power of the weak field. This

leaves us with a Hamiltonian of the form

~ VAN A A
H= N(53 +57) — q()No. (11.12)

11.3 Entanglement criteria

Due to the additional degrees of freedom for particles with spin > 1/2, entanglement

in spinor particles can be quantified by a range of different inequalities [147[148].
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From [148], we have that an ensemble of spin-1 particles with no entanglement
satisfies
(AS)? + (AS,)? + (AS,)> > N. (11.13)

Therefore, if an ensemble breaks the less strict bound

A A

(SH+(SH+(SH>N—= (S >N (11.14)

then that ensemble is entangled. This measure thus has two purposes: it shows
us how the spin length decreases as well as acting as an entanglement witness.
Furthermore, (S2) gives a bound on the maximum number of atoms that are not
entangled [204].

11.4 Dissipative evolution

We consider the master equation given in Equation [TT4 with w = wy = 0. An initial
state with all the atoms in the m = 0O state can be decomposed into a superposition
of Dicke states |S, 0) with different spin lengths as (for even /\/@

N/2
In=0)®[0,N,0)=[n=0)®) di|2k0) (11.15)
k=0

where the distribution {d} is strongly peaked around k ~ /N, as shown in Chapter
B Excitations are produced in the cavity in conjunction with a spin ladder operator,
e, via terms in the Hamiltonian of the form aféi, and that ladder operator does
not operate on the spin singlet (e, S, |0,0) = 0). This means that entanglement
is generated between the cavity mode and the atoms: an empty cavity with the spin
singlet, and non-zero photon numbers with the states of non-zero spin length occur-
ring in Equation [TT.75] Any photon emitted from the cavity must therefore collapse
the state into a superposition of spin states not containing the spin singlet, while a
null measurement will project the atomic state into the spin singlet. Monitoring the
cavity output thus gives some probability of projecting the state into the spin singlet;
the probability is simply the overlap of the initial state with the spin singlet, which
is /(N + 1) for the state given in Equation|11.15

If we turn off one of the lasers; in particular, if we set AL = 0, then an initial
atomic state |2k, 0) will evolve, subject to Equations and (e, the damped
Tavis-Cummings model, when A, = 0), to a steady state |2k, —2k), with the emission

of 2k photons from the cavity, as discussed in Chapter[8] An ideal way to in which to

0ur scheme also works for the F = 2 hyperfine ground state, ie, an ensemble of spin-2 atoms,
where the initial state |m = 0>®N has a finite overlap with the spin singlet state regardless of whether
the number of atoms is even or odd. Spin-1 atoms are considered here for simplicity.
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Figure 11.2: Spin length, found by calculating (52) = S(S + 1) and solving for S, (a) over time and (b)

at kt = 10 in 1000 quantum Monte Carlo trajectories for N = 10 atoms under the master equation given
by Equation [TTA|with A- = 6k, and w = wp = A4+ = 0.

study this behaviour is to use the method of Monte Carlo wave function simulations
,and in Figurewe present results of this approach
applied to the model of Equations [TT:4and[TT5] where each “jump” in the simulations
corresponds to the emission of a photon from the cavity. Figure shows that,
after a few cavity lifetimes, the state is always cleanly projected to a definite spin

(or quantum trajectories) [165

length. After a time xt = 10 with N = 10 atoms, the overlap with the spin singlet is
either (essentially) one or zero, depending on the output photon record (see Figure
[IT.25).

The projection, for the parameters of Figure [TT.2] occurs on a timescale on the
order of the photon lifetime in the cavity, 1/x. This is because the production of
photons in the cavity due to coupling to the atoms happens on a much faster timescale
than cavity loss, and the rate of photon emission follows the rate of the slower process.
For this to hold for arbitrary atom number we require that photon production happens
for all states at a rate faster than k. The slowest state to produce photons is
|S =2,0), and so we require A_/3/N > k. If that is not the case, the rate will
instead be governed by the intracavity photon production rate, and so the singlet
would be heralded by the absence of photon detections over some timescale more

than a few cavity lifetimes.

With a more realistic photon detection scheme that has an efficiency 1, the ab-
sence of emitted photons from the Tavis-Cummings system would project to a mixed
state (a normalising factor is omitted):

NJ2
p=|do?10,0)(0,0] + > (1 — n)**|dc|? |2k, —2k) (2k, —2k]| . (11.16)

k=1

For reasonably high efficiencies (in particular high enough such that (1 —n)?|d2|> <«
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|do|?), this should still be dominated by the spin singlet. Alternatively, the Dicke
model (A4 = A_), which produces a continuous stream of photons, could be used. This
would allow for very high fidelity singlet production even without perfect detection
efficiency. It should be noted that very high effective atom-cavity coupling, AL, or
very long measurement times would be necessary to project out the lower spin state
contributions.

The probability of this procedure working is simply the initial overlap with the
singlet state, 1/(N + 1). For small numbers of atoms this process offers an efficient
method to prepare a highly entangled state. However, for 1000 atoms, the maximum
efficiency would be 0.1%. Other experimental considerations, such as photon detection
efficiency, would further reduce the overall efficiency.

This may be mitigated somewhat by multiple runs with a single atomic ensemble.
Using a feedback system conditioned on a photon detection (or some threshold de-
pending on dark count rates), switching back on the repumping system to reinitialise
the state into the state |0, N, 0) would reintroduce an overlap with the spin singlet.
Since the time required for each run is relatively short, this should allow for multiple

runs over the course of the lifetime of the ensemble.

11.5 Quasi-adiabatic methods in spinor BECs

If we want to improve the efficiency of our procedure, we need to improve the overlap
between the initial state and the spin singlet. To do so, we can make use of the various
ground states admitted by the spin-collisional Hamiltonian in Equation [TT.1] In the
limit where the quadratic Zeeman shift dominates over the collisional interaction, i.e,
[g] > |A], and g is negative, the ground state of the system has all atoms in the
m = 0 state, ie, |0, N,0), which is of course readily prepared via suitable optical
pumping. If, instead, g is positive, then the ground state is degenerate between all
states for which there are no atoms in the m = 0 state. Depending on the spread
through the S, states that satisfy this, the degeneracy includes entangled states, such
as the twin Fock state |[N/2,0, N/2), as well as completely classical states such as
IN,0,0) or coherent combinations.

In the other limit, where instead the collisional interaction dominates over the
quadratic Zeeman shift, t.e, |[A] > |q|, there are again two ground states. With
ferromagnetic interactions (A < 0, as for ¥Rb) the ground state is degenerate for all
states with a maximum spin length N. As above, this can range from a highly entan-
gled Dicke state to a completely classical state, depending on how 5, is constrained.
For anti-ferromagnetic interactions (A > 0, as for 2>Na), there is only one ground
state: the spin singlet.

The existence of these different ground states allows, in theory, for preparation of

entangled states by adiabatic passage. For example, an ensemble can be prepared
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in the (unentangled) state |0, N, 0), which is the ground state for large, negative
G. An adiabatic sweep from there to g = 0 produces, depending on the sign of A,
either the spin singlet [150|[159] or, due to the conservation of 5,, the Dicke state
|S=N,S,=0)[125]. Alternatively, an adiabatic sweep through to large, positive
g would prepare the twin Fock state [N/2,0, N/2) [124,1150].

However, a key issue with performing this experimentally is maintaining adia-
baticity throughout the sweep. At the phase transition points, the energy gap be-
tween the ground and first excited states becomes extremely small (zero in the limit
N — o). Since an adiabatic sweep requires parameters to change on a timescale
very slow compared to the inverse of the energy gap, the sweep has to be extremely
slow through the transition. Hence, a true adiabatic sweep typically faces severe

challenges associated with achievable experimental run times.

Hoang et al. [159] used an ensemble of 40000 atoms and a sweep time of 35 s
(the minimum time for true adiabaticity). After such a long time, less than 25% of
the original BEC remained trapped. Due to the noise that atom loss induces in the
magnetisation, no measurable entanglement was left in the ensemble. The alternate
approach is to ramp faster than adiabatic, introducing a small amount of energy to
the system. This moves the state out of the true ground state, but into states near
the ground state that still feature high entanglement. Luo et al. [124] instead ramped
in 3 s to high negative g attempting to produce the twin Fock state, finding just 4%
of the atoms remained in the m = 0 state. Such a quasiadiabatic sweep has also

been shown to produce metrologically useful entanglement in a BEC [125].
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Figure 11.3: Simulations for N = 40 atoms. (a) Spin length squared and (b) overlap with the spin
singlet state for a sweep g(t)/A = 7.0e =008 with and without losses. Results with losses, i.e., non-zero
[, are plotted as an ensemble average of 1000 trajectories. Inset zooms in on the overlap at later times
conditioned on zero jumps.



116. HAMILTONIAN EVOLUTION 181
11.6 Hamiltonian evolution

We now consider evolution with the engineered master equation in Equation[TT.9|with
the Hamiltonian given by Equation [TT12] Here, the intention is to emulate results
from BECs by sweeping the quadratic Zeeman shift, characterised by g, from some
large value to essentially zero. To truly maximise the overlap, we should optimise
the sweep such that it is as close to adiabatic as possible in the given timeframe
[12411125l(159]. However, in the interest of simplicity, we have instead considered just
sweeps that are straightforward in form, but which still greatly enhance the overlap

with the spin singlet. We find that an exponential decay, q(t)/A = goe™ N

, produces
a much higher fidelity spin singlet compared to linear-in-time or reciprocal-in-time
decays.

In Figure [TT3] we use an average over an ensemble of quantum trajectories to
approximate the master equation solution and show that the sweep greatly increases
the overlap with the spin singlet and, concomitantly, greatly reduces the spin length.
We also see that the non-adiabaticity adds energy to the system, resulting in large
oscillations of the spin length during the sweep. These oscillations, and, in particular,
their phase as they are “frozen out” by the quadratic Zeeman shift settling at zero,
add considerable noise to the resultant spin length and overlap.

Using quantum trajectories, we find that the results can be split into two cate-
gories: with jumps and without jumps. With even a single jump, corresponding to the
emission of a cavity photon, the overlap with the spin singlet becomes zero. This is
because the spin singlet is a dark state to the jump operator, S Trajectories without
a jump exhibit high overlap with the singlet state; in fact, for some sweep parameters,
the overlap is higher than without losses. This is because the null measurement
back-action increases the overlap with the dark state of the system: the spin singlet.

In line with the work in Section[TT4] there is the possibility of postselecting runs
with a null photon output measurement, i.e, no jumps. As the spin length increases,
so does the number of photons such a state produces. In particular, due to the spread
of spin length, certain states in the initial superposition can release huge numbers of
photons, greatly increasing <§2> for that trajectory. For example, with ['/A in Figure
[TT.3] we find that 829 of the 1000 trajectories have no jumps and so have very high
overlap with the spin singlet. Of other 171 trajectories, there are 139 with (5?) ~ 6,
te, S = 2, commensurate with the production of one or two photons. All bar two
trajectories have (52) < 40, with the remaining two having a final value (52) ~ 1600.
These states therefore each contribute a significant portion of the ensemble-averaged
result, but, even with a realistic single photon detector, could easily be discared by
postselection, since they emit ~ 40 photons to attain such a spin length.

Considering Figure we obtain, with ' = 0, a state with all 40 atoms en-

tangled, while with ' > 0 (Le, finite cavity decay), we have more than 30 atoms
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Figure 11.4: Simulations for N = 40 atoms. (a,b) Final overlap with the spin singlet with zero emitted
photons and (insets) postselection efficiency (ie, no photons emitted) given (a) g(t)/A = goe 008N or
(b) q(t)I\ = goe~N with /A = 0.001. Postselection efficiencies are the percentage of 1000 trajectories
that would produce zero photons.

entangled by the criterion introduced in Equation [TT.T4] Notably, the entanglement
bound is strongly violated even for the master equation result, i.e,, with no postselec-
tion, and even with the highest considered cavity-mediated damping I"'/A = 0.005.

Choosing the parameters for the sweep involves striking a balance between a slow
ramp, finishing with the quadratic Zeeman shift close to zero, and limiting the cavity-
mediated losses. However, clear dependences are not obvious due to the oscillations
introduced by the non-adiabatic sweep. Instead, wide regions of sweep parameters
offer reasonable results. We can see in Figure that it is difficult to pinpoint
an ideal value of the initial quadratic Zeeman shift go, with a general trend that
go 2, 4N\ produces higher overlap. However, higher go reduces the probability of a
trajectory without photon loss. Figure shows that the rate of the exponential
decay, &, is also difficult to choose so as to optimise the overlap, though, broadly
speaking, higher ¢ gives a higher success probability.

We note that, of course, optimising the quasi-adiabatic sweep in more complex
ways should enhance the overlap of successful trajectories. However, such optimised
sweeps might not necessarily be ideal for the probability that the sweep is successful

and so that would need to be taken into consideration for the optimisation process.

11.7 Combination

We now show that for large atom numbers, the dissipative scheme can offer reasonable
efficiency if it is preceded by the sort of quasi-adiabatic singlet preparation discussed
above. The total efficiency of the scheme is now the postselection efficiency of the
sweep (i.e., the probability of no photons being emitted during the sweep) multiplied

by the efficiency of the dissipative scheme, which is the overlap at the end of the
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sweep:
p=p.l{YlS=0)]. (1117)

Since we are only interested in the final overlap with the singlet state, we can
reduce our basis to those states accessible before a jump has occurred; that is,
states with an exact number of pairs in the m = £1 states, |k, N — 2k, k). Such a
reduction in basis allows us to greatly increase the number of atoms we simulate.
We model the backaction of the null measurement by adding a non-Hermitian term

to the Hamiltonian,

A A — il
-
N

(57 +52) + q(t)No (11.18)
and calculate the probability of a successful run from the jump operator expectation

value,
tmax/dt

pe= 1] {1—2r<§§+§§>r dt} (11.19)

i=0
where <©>n is the expectation of the operator at time t = idt. This means that
not only do we vastly reduce the basis size, but we also only have to integrate the

Schrodinger equation once, rather than running a large number of trajectories.

Figure [TT5] shows the overlap and postselection efficiency for N'= 1000 atoms.
We can see a smooth relationship between the sweep parameters and the success
probability. Simply, the sweep should be fast and from a small, non-zero gg. Optimi-
sation of the overlap is more complicated, though we see a wide range of parameters
for which that overlap is significantly enhanced. The product of these thus gives a
wide region of sweep parameters for which the total efficiency to produce a spin
singlet of near perfect fidelity for 1000 atoms would be ~ 10 — 20%. Even allow-
ing for experimental reductions to this efficiency, such a method would produce the
state frequently enough to allow for study and, potentially, use of the many-body

entangled state.

For potential parameters, we consider parameters for the Tavis-Cummings model
of {A_, k}/(27r) = {300,110} kHz. Large w/2mw =~ 10 MHz would then produce
the spinor collisional model necessary for the quasi-adiabatic sweep. Switching to
the dissipative method can then be performed by rapidly changing w — 0. From
a microscopic perspective, this involves shifting the frequency of the o_-polarised
laser closer to the cavity frequency. In this limit, we have an open Tavis-Cummings
model, which would perfectly project the singlet state on the order of 1 ms or less.
With these parameters, the scenario of Figure [TT.5] corresponds to a sweep that lasts

3.2 ms, and hence to a time for the total procedure of approximately 4 ms.



184 CHAPTER 11. SPIN SINGLET

0.10 0.95 0.10 0.36
0.08 0.85 0.08 0.28
0.06 0.06
- 0.75 “ 0.20
0.04 0.04
0.65 0.12
0.02 0.02
0.55 0.04
0.00 0.00
0O 2 4 6 8 10
)
(a) (b)
0.10f |_m
- :l.l..l.i 0.32
H u_n
olosil:l w0l i | 0.28
W
ok b 024
.. H - I.l | N |
o.oe—;d- —#. - 1 FHo.20
W | -.5-. | 10.16
0_04,I
0.12
0.02 | | {0.08
10.04
0.00k ‘ ‘ ‘ ‘ 4 L
0 2 4 6 8 10
‘()

(c)

Figure 11.5: Simulations for N = 1000 atoms, with a sweep q(t) = goe ", to a final time At = 200.0.
(a) Overlap with the spin singlet, (b) probability of no photons being emitted during the sweep, and (c)
the product of those two, giving the efficiency of a combination of sweep and dissipative distillation.

11.8 Conclusion

We have proposed a method to prepare the spin singlet state of an ensemble of
integer-spin atoms. Despite great interest in such a state, the production of the singlet
is an open problem. Its preparation in spinor BEC experiments faces significant
challenges; one potential method is that of adiabatic transformation, but this is made
very difficult by the tiny energy gap at the phase transition, which greatly inflates
the required timescales, as well as by the need to thoroughly minimise any residual
magnetic field.

Our methods bypass these issues by using an alternative approach based upon
engineered dynamics and projective measurement in cavity QED. Using a scheme

of cavity-assisted Raman transitions to produce an effective spin-1 Tavis-Cummings
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model, we make use of the fact that the spin singlet is a unique dark state of the
system. This means that the production of the singlet state is heralded by the absence
of photons detected in the cavity output channel.

Using a slightly modified scheme of cavity-assisted Raman transitions enables
us to emulate spinor BEC dynamics and thereby implement a quasi-adiabatic trans-
formation to enhance the overlap of the atomic state with the singlet state prior to
implementing the effective Tavis-Cummings model, thus enhancing the probabilistic
distillation of the singlet state through monitoring of the dissipative output channel.
We believe that this approach offers a realistic possibility of reliably producing the
spin singlet state experimentally, and that it highlights the potential of augmenting
spinor interaction models with dissipative channels such as cavity modes.
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Chapter 12

Future extensions

This thesis has introduced a set of methods of how to engineer interactions between
a cavity mode and an ensemble of spinor atoms or interactions within an ensemble
of spinor atoms mediated by a cavity mode. My research focussed on using such
methods to produce entanglement, in particular, metrologically useful entanglement.
My experimental colleagues at the Centre for Quantum Technologies, and thus the
theoretical work regarding those experiments, focussed on phase transition behaviour
in fundamental models of physics. Of course, these engineered models have a great
flexibility which opens up all sorts of possibilities that | did not have time to fully
explore. In this Chapter, | discuss a few of the possibilities our methods might offer in
the context of spinor physics, spinor Dicke models and spin-1 atoms in other quantum

optics settings.
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12.1 Spinor physics beyond collisions

In this thesis, when | have considered models of interacting spinor particles, the
primary focus has been on the emulation of experiments in spinor BECs. However,
the engineered schemes are certainly not limited in this way. Whilst experiments in
spinor BECs are at a much more advanced stage than our proposals, it should be

noted that there are distinct advantages to engineered schemes over spinor BECs.

e Speed. As pointed out in Chapters [T0] and[TT] these engineered models allow
for much faster dynamics than collisional models. We proposed the production
of the same types of entangled states that have been produced in spinor BECs,
only with our methods we have access to them, and can thus use them for
metrological purposes, much quicker. This could allow for “snapshot” measure-
ments as a response to a change in environment, or a series of measurements

tracking changes with a repetition rate much faster than available in BECs.

e Dissipation. When emulating spinor BEC dynamics, dissipation is an un-
wanted extra. Dissipation events break certain symmetries of the system, such
as the conservation of <§Z) However, it is precisely that breaking of the sym-
metry which allows for the production of the entangled states in Chapter[8land
the distillation of the spin singlet in Chapter [TT] Without dissipation, the su-
perposition of different spin length states is retained throughout the dynamics.
With dissipation, elements of the superposition are heralded by the measure-
ment of that dissipation. The addition of dissipative dynamics can allow us to
prepare dark states of the system, but it could also be used to probe the state

of the system non-destructively.

e Flexibility. We are not limited to spinor collisional physics. Instead, our Hamil-
tonian can simulate §X2 éj or sums of them. The Hamiltonian §X2 has been
mentioned multiple times during this thesis as the one-axis twisting Hamil-
tonian, meaning that we could produce spin squeezed states in that manner
using our methods [199]. The same Hamiltonian also allows for the production
of Schrédinger cat states [206] Using such a scheme on a single large spin
composed of a fully polarised ensemble of spinor atoms would allow for the

production of a macroscopic superposition of a large atomic cloud [207].

e Potential for extension. If we overlay two copies of the Raman transition
schemes on the same ensemble, we gain even greater flexibility allowing for
fully arbitrary combinations of the operators §XZ and §5 [161}[162]. This allows
us to produce the two-axis counter twisting Hamiltonian §3—§5 [161)162199).
As discussed in Chapter [T0] and in [161][162] this range of Hamiltonians also

encompasses the various Lipkin-Meshkov-Glick models, where spinor particles



190 CHAPTER 12. FUTURE EXTENSIONS

offer fascinating possibilities [197)198]. This could be done, for example, making

use of multi-mode cavity implementations [/5].

o Other spinor phenomena. Our methods used in this thesis operated in a limit
where the “spinor” nature of the spins was suppressed in the Hamiltonian,
arising only in the initial states we considered instead. If we operate with
lower detuning, then we introduce distinctly spinor terms. The form of such
systems is much more complex, and thus allows for far greater flexibility in the
engineered interactions for the spins. It does not seem far-fetched to speculate
that interesting and distinctly spinor physics could be found there, and that such
physics would prove useful for the generation of exotic many-body quantum

states or the study of many-body quantum dynamics.

12.2 Extensions to the Dicke model

The Dicke model and schemes of cavity-assisted Raman transitions that emulate
such a model, or similar models, have generated lots of interest in recent years
[51))84/85/208], with extensions such as the combination of spin and spatial degrees of
freedom |73]74/209], multiple cavity modes [7475] or even multiple cavities [76]77], and
implementations in other schemes [210,211], in particular in trapped tons [212H216).
Motivations for such research includes the interest in phase transitions and novel
states of matter described in this thesis [76l[77}[2174219], as well as being able
to engineer spin glass physics |[74}|751/220}221] and quantum chaotic systems [216}
222|[223] that could potentially act as simulators for information scrambling in black
holes [216}[224][225] The addition of spinor physics to these many-body cavity QED
models, and the range of possibilities that would bring, is something that is just
starting to be explored with experiments [163] and theory [164], along, of course,
with the work detailed in this thesis. In this Section | discuss the flexibility that
the methods in this thesis allow in terms of adding extra terms, in particular spinor
terms, to the Hamiltonian. | talk in general terms about the resultant possibilities,
as well as considering one specific limit where preliminary investigation has found

interesting physics.

12.2.1  Augmenting the Dicke model with extra terms

Chapter[f] showed how the addition of the dispersive coupling can produce interesting
and novel dynamics to the Dicke model. Chapter[7]discussed the extra intrigue added
to the dynamical systems picture by simply relaxing the condition A = A_. The
question is then what other additional terms can do.

Modulation of the coupling can be shown to destabilise the superradiant state

such that increasing the coupling strength takes the system into superradiance, out
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of superradiance and then back into a second region of superradiance [226(228].
Such a scheme could be easily produced using a toolbox of cavity-assisted Raman

transitions.

There is a huge variety of additional terms that can be added to such models
with creative use of the tools available in cavity QED. One might expect that this

means there is a huge variety of exciting and novel physics waiting to be explored.

Given the nature of this thesis, and its focus on spinor particles, the addition of
distinctly spinor operators to the Dicke model is an obvious place to start. Our full
derivation for the spin-1 Dicke model, before our assumption of a large detuning,
included terms such as a quadratic cavity mediated light shift, operators that couple
the two atomic end states without cavity involvement, and exchanges of excitations in
entirely new ways. Terms of the form @, for example, annihilate a cavity excitation
whilst moving the atomic population in a superposition of both directions. A Dicke
model including those terms would therefore evolve in ways that the two-level system
version cannot. This might allow for fundamentally different phases for the system,
or perhaps alter the phase transition behaviour between different phases. We now

give an example of how these extra terms produce different physics.

12.2.2 Superradiance shelving

Let us consider a single spin-1 atom under the Dicke Hamiltonian where we have

taken wp = 0 and added a quadratic Zeeman shift
H=waTa+ q|0)(0] + —=(a" + a)(6, + o). (12.1)

Let us assume initially that the cavity field is empty, and that we start with the atom

in one of the end magnetic states |+1). The action of the Hamiltonian is then

H|0)y®|-1) = A1) ®]0) (12.2)
HI0)®|+1) = A1) ®|0). (12.3)

Both states produce a single photon and move to the central magnetic state. If we
instead start with the superposition /1/2(]—1) — [1)) then we can see that these
two contributions will destructively interfere. This means that this anti-symmetric
combination, due to the symmetry of the Hamiltonian in the two states, is blocked
from producing any photons. If we start in the state |—1), we are half overlapped
with that dark state and so the evolution will produce such a state half of the time
heralded by the cavity output flux, as shown in Figure [T2.Tq]

We now consider the addition of a small wy and direct coupling between |—1) «
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|1) at strength h

H = wbTa + wob, + q0) (0] + %(af +8) (6, + 6)+ h(62 +6%). (124)
The addition of the linear Zeeman shift does not break the coexistence of the bright
and dark state, but instead provides a small coupling between the two that allows
the state to jump between them. The dark state is destabilised and switches back
to the bright state reasonably quickly, whilst the bright state appears to be much
more stable. A significant value for h helps promote symmetry in the superradiant
state and so encourages switches and stabilises the dark state. Figure [T2Z.7D] shows
we have periods of strong emission interspersed with shorter periods without any
emission. The process behind this is similar to electron shelving [229+231], yet here,

the emission is superradiant in nature.

This quadratic Zeeman shift could be added with an auxiliary field, and the Raman
transitions between |—1) <> |1} could also be added on top of the Dicke model, but
both of those terms also arise naturally in our model if we reduce the detuning such
that the separation between the excited-state hyperfine levels is important. We can
thus consider what the other terms in Equation[/32]do to our picture. The quadratic
cavity mediated light shift surely enhances the robustness of the system since it
is similarly symmetric to |+£1) and inhibits the production of photons. §,, is also
symmetric to the two outer magnetic states, so should not impact the existence of
either state. gy, is not symmetric and so will also couple the dark and bright states
slightly. This means that the full system of our derived Dicke model, with wy =
0, automatically gives us this superradiant blinking if we move to lower detuning.
Simply adding spinor terms to the Hamiltonian creates a distinct change in response
from the model.
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Figure 12.1: The presence of (a) a bright state and dark state in a completely symmetric model
and (b) switches between them with a slight asymmetry added to the Hamiltonian.  Parame-
ters for (a) are {w, wo,q,Ah}/k = {1.0,0.0,-2.0,1.0,00} and (b) are {w, wy, g, A h} Ik =
{1.0,0.05,-2.0,1.0,2.0}.
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The interest in this result is the implication that this symmetric Dicke model
protects anti-symmetric combinations for the spin. Moving to a collective picture, we
would like to investigate whether such anti-symmetric dark states exist, and, if they

do, their properties and the feasibility of preparing them.

12.3 Implementations in alternative configurations

This thesis used “traditional” cavity QED configurations throughout. However, the
methods we describe are certainly not limited in such a way. We could instead
trap atoms in the evanescent fields of, for example, nanoscale or photonic crystal
waveguides. Whilst such systems have much more difficulty trapping large arrays as
discussed in much of this thesis, the coupling for the atom to the field can be much
stronger. This means that, even with the large detunings our methods generally use,
we are not reliant on the /N enhancement of the effective coupling. Instead, we can
achieve interesting physics with small ensembles or even a single atom. This allows
us to think of very different regimes. In this Section, | discuss examples of how our

methods might be applied to such systems.

12.3.1  Superradiant pulses of exact photon number

The concept is fairly simple: trap a single '3*Cs atom next to a nanoscale cavity, where
atom-cavity coupling of several GHz is possible [29)30]. Alternatively, fabrication of
cavities formed by polished optical fibre ends, such that the outputs of the cavity lead
directly into a propagating fibre, have shown promising coupling strengths [232234].
In both cases, we wish for the light to be emitted in one direction and so one of the
mirrors should be much more transmissive than the other, as in [30].

Once we have such a system, we drive detuned Raman transitions with a laser
and the fibre mode. If we pump our '*3>Cs atom into the F = 4 manifold, we can
thus produce a Tavis-Cummings model and, with an initial state |4, 4), an associated
superradiant decay for a single atom. We can thus simulate the collective behaviour of
a small, in this case eight spin-1/2 particles, ensemble without the added complexity
of actually trapping and coupling a small ensemble.

In the direction of propagation, we have a superradiant pulse of exactly eight
photons. Alternative preparation of the state into other magnetic sub-levels allows
for different numbers of photons in that output pulse. An atom in a superposition
state produces a superposition of Fock states, and so this method allows for the
production of arbitrary Fock states and superpositions of Fock states with small
photon numbers [235].

If we were to move to a multi-atom picture, this would allow for larger effective

ensembles and the production of larger Fock states. Producing superpositions of
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Fock states with multiple atoms becomes more complex because of the more complex
collective picture for spinor particles. We would require superpositions of the mag-
netic number, not of the spin length. Each spin length produces a Fock state in the
output field, but correlated to the final state of the spins such that the superposition
of spin length states produces a mixed state of Fock states in the output field.
There are also other species outside of the alkali atom family with higher spin.
Assuming these species have the same intrinsic symmetries to the dipole operator
that allows us to simplify the higher spin model to a Dicke model, as in Section
[711] then implementing the discussed scheme would allow an even larger effective
ensemble size for a single atom. If we consider, for example, dysprosium atoms, which
have electron spin J = 8, we might expect to be able to consider the generation of

arbitrary superpositions of Fock states with a basis size up to 16.

12.3.2 Spinor models with tuneable range interactions

An emerging field in quantum optics is the interaction of trapped atoms with photonic
crystal waveguide systems [200}[236H239]. One option in such systems is to trap an
atom in the evanescent field of the waveguide where the atomic transition is within
the band gap of the photonic crystal waveguide. This means that light of the atomic
transition frequency cannot propagate along the waveguide. Instead, the photon must
remain localised around the position of the atom, at which point the “defect” of the
atom allows the photon to exist. If another atom is placed a short distance away
along the waveguide, the photon can tunnel between the atoms. Thus, in a way that
may sound familiar given what has been discussed in the thesis, the atoms interact
mediated by photons.

Our engineered spinor models allow for interactions tuneable in form and in
strength, but they are intrinsically infinite range because the atoms are coupled to
the same cavity mode. Photonic crystal waveguides allow for interactions tuneable
in form, strength and range. The interactions are mediated by the tunnelling, and
the tunnelling interaction has an exponential form, so our range has exponential
falloff.  This could be tuned such that tunnelling happens only over one site, or
that the interactions are effectively infinite range. It can also be theorised that, by
overlapping different drives, sums of those exponentials can be used to approximate
other types of interactions [200]. We note that non-infinite range interactions may
also be possible with multimode cavity QED, where the different shapes of the various
modes allow for atoms to have a different set of couplings to those modes [75}220].
Such a setup is also amenable to our methods.

With a toolbox of atoms coupled to a 2D photonic crystal wavequide and interac-
tions that we can tune so precisely, we can engineer all sorts of models for interacting

spins. Using spinor atoms in this context, we could build spinor interaction models
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with all of this flexibility. This could be used to simulate condensed matter physics,
probe topological physics and potentially explore new realms of physics interesting

and useful in their own right.
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Chapter 13

Conclusion

The interaction of light and matter has informed and influenced some of the most
famous experiments in the history of physics. From Newton's use of a prism to split
out the spectrum of light to the discovery of the photoelectric effect, and all the way to
modern day searches for dark matter and the size of an electron, table top experiments
making use of matter and light have been able to tell us fundamental truths about the
very makeup of the universe. | do not, of course, wish to compare the research in this
thesis with such lofty accomplishments; | fear that the thesis would not hold much
weight under such comparisons. | instead wish to make the point of the fundamental
importance of understanding and applying these light-matter interactions.

This thesis has described simulations of fundamental models of physics and pro-
posed how to apply those methods and discoveries. The states that could be prepared
using these proposals have practical applications, but are also of great interest to
fundamental science. These many-body entangled states are one of the more mys-
tertous areas of quantum mechanics and so, efficient production of such states would
give scientists a resource to investigate the fundamental nature of entanglement.

The methods and concepts developed in our research have a wide range of ap-
plications. These applications could provide resources for quantum metrology and
quantum information, but also resources to help answer questions on such varied
topics as macroscopic superposition states, topological matter and chaos theory. Un-
locking the secrets of the universe may seem like a grandiose and imposing goal, but
when considered one problem at a time through the right lens with the right toolbox,

it is, perhaps, one that is not so impossible after all.
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