
Renormalization Group Analysis of
2D O(N) Spin Models

K. R. Ito∗

Institute for Fundamental Sciences
Setsunan University

Neyagawa, Osaka 572-8058, Japan

January 12, 2014

Abstract

The classical O(N) spin models in two dimensions have been believed free from
any phase transitions if N is larger than or equal to 3. We show that if N is large,
then the block-spin-type transformations can be applied through Fourier (duality)
transformation. This enables us to prove the result claimed in the title of this paper.

PACS Numbers 05.50+q, 11.15Ha, 64.60-i

1 Introduction

Though quark confinement in 4 dimensional (4D) non-Abelian lattice gauge theories and
spontaneous mass generations in 2D non-Abelian sigma models are widely believed [1],
we still do not have a rigorous proof. These models exhibit no phase transitions in the
hierarchical model approximation of Wilson-Dyson type or Migdal-Kadanov type [12].

In ref. [14], we considered a transformation of random walk (RW) which appears in
the O(N) spin models [3, 4]. This was extended by the cluster expansion [5, 11, 19, 20],
and we showed in the 2D O(N) sigma model that :

βc

N
≥ const log N (1.1)

In this paper, we apply a block-spin transformation to the functional integral of the
system, and establish the following theorem:

∗email:ito@mpg.setsunan.ac.jp, also ito@kurims.kyoto-u.ac.jp

1



Main Theorem. There exists no phase transition in two-dimensional O(N) invariant
Heisenberg model for all β if N is large enough.

To appeal to the 1/N expansion [17], we scale the inverse temperature β by N . (Nβ
is denoted simply β or βc in [14] and in our bound (1.1).) The ν dimensional O(N) spin
(Heisenberg) model at the inverse temperature Nβ is defined by the Gibbs expectation
values

⟨f⟩ ≡ 1

ZΛ(β)

∫
f(ϕ) exp[−HΛ(ϕ)]

∏
i

δ(ϕ2
i − Nβ)dϕi (1.2)

Here
Λ = Λ0 = [−(L/2)M , (L/2)M )ν ⊂ Zν

is the large square with center at the origin, where L is chosen odd ( e.g. L = 3 ) and
M is a large integer. Moreover ϕ(x) = (ϕ(x)(1), · · · , ϕ(x)(N)) is the vector valued spin
at x ∈ Λ, ZΛ is the partition function defined so that < 1 >= 1. Moreover HΛ is the
Hamiltonian given by

HΛ ≡ −1

2

∑
|x−y|1=1

ϕ(x)ϕ(y), (1.3)

where |x|1 =
∑ν

i=1 |xi|.
First substitute the identity δ(ϕ2 − Nβ) =

∫
exp[−ia(ϕ2 − Nβ)]da/2π into eq.(1.2)

with the condition [3, 4] that Imai < −ν. We set

Im ai = −(ν + m2/2), Re ai =
1√
N

ψi (1.4)

where m2 > will be determined soon. Thus we have

ZΛ = c|Λ|
∫

· · ·
∫

exp[−W0(ϕ, ψ)]
∏ dϕjdψj

2π

= c|Λ| det(m2 − ∆)−N/2

∫
· · ·

∫
F (ψ)

∏ dψj

2π
(1.5)

where

W0(ϕ, ψ) =
1

2
⟨ϕ, (m2 − ∆ +

2i√
N

ψ)ϕ⟩ −
∑

j

i
√

Nβψj (1.6a)

F (ψ) = det −N/2(1 + iαGψ) exp[i
√

Nβ
∑

j

ψj] (1.6b)

α = 2/
√

N (1.6c)

Here c’s are constants being different on lines, ∆ij = −2νδij + δ|i−j|,1 is the lattice Lapla-
cian, G = (m2 − ∆)−1 is the covariant matrix. The two point functions are given by

⟨ϕ0ϕx⟩ =
1

Z̃

∫
· · ·

∫
(m2 − ∆ + iαψ)−1

0x F (ψ)
∏ dψj

2π
(1.7)
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where Z̃ is the obvious normalization constant. Choose the mass parameter m = m0 > 0
so that G(0) = β, where

G(x) =

∫
eipx

m2
0 + 2

∑
(1 − cos pi)

ν∏
i=1

dpi

2π
(1.8)

This is possible for any β if and only ν ≤ 2, and we find that m2 ∼ 32e−4πβ as β → ∞
for ν = 2, which is consistent with the renormalizaiton group analysis, see e.g. [6]. Thus
we can rewrite

F (ψ) = det
−N/2
3 (1 + iαGψ) exp[−⟨ψ,G◦2ψ⟩] (1.9)

for ν ≤ 2, where det 3(1 + A) = det[(1 + A)e−A+A2/2] and G◦2(x, y) = G(x, y)2 so that
Tr(Gψ)2 = ⟨ψ,G◦2ψ⟩. Moreover F (ψ) is integrable if and only if N > 2, and thus ν ≤ 2
and N > 2 are required.

If m is so chosen, the determinant det3(1 + iαGψ)−N/2 may be regarded as a small
perturbation to the Gaussian measure ∼ exp[−⟨ψ,G◦2ψ⟩]

∏
dψ. This is the case if N is

very large or if β is very small (e.g. N log N > β), in which case ∥|αG|| ≪ 1 and we can

disregard det
−N/2
3 (1+ iαGψ) and the model is exactly solvable in this limit. Thus we have

⟨ϕ0ϕx⟩ =
1

Z

∫
(m2

0 − ∆ + iαψ)−1
0x exp[−Tr(Gψ)2]

∏
dψ

≤ (m2
0 − ∆)−1

0x ≤ c exp(−m0|x|) (1.10)

But this argument fails for large β since G is of long-range and the expansion of the
determinant is not justified at all.

On the other hand, this argument can be justified if the main part of the ψ integral
consists of |ψ| < N εβ−1/2 such that

∑
x ψx ∼ 0. In this case, the expansion of the

determinant is justified. Our main argument in this paper is to justify this argument.
The renormalization group (RG) method is the method to integrate the functional

integration recursively introducing block spin operators C and C ′ defined by

ϕ1(x) = (Cϕ)(x)

≡ 1

L2

∑
ζ∈∆0

f(Lx + ζ) (1.11a)

ψ1(x) = (C ′f)(x)

≡ L2(Cf)(x) (1.11b)

where x ∈ Λ ∩ LΛ and ∆0 is the square of size L × L (L ≥ 2)center at the origin. C and
C ′ consist of averaging over the spins in the blocks and the scaling of the coordinates,
i.e., Λ = Λ0 → Λ1. We integrate out the remaining degrees of freedom which we call
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fluctuation fields (ξ and ψ̃) and continue these steps, ϕn → ϕn+1 → · · · , ψn → ψn+1 → · · ·
and Λn → Λn+1 → · · · (n = 0, 1, 2, · · · ). We repeat this process by finding matrices An

and Ãn such that

ϕn = An+1ϕn+1 + Qξn (1.12a)

ψn = Ãn+1ϕn+1 + Qψ̃n (1.12b)

and

⟨ϕn, G−1
n ϕn⟩ = ⟨ϕn+1, G

−1
n+1ϕn+1⟩ + ⟨ξn, Γ−1

n ξn⟩ (1.13a)

⟨ψn, H−1
n ψn⟩ = ⟨ψn+1, Ĥ

−1
n+1ψn+1⟩ + ⟨ψ̃n, Q

+H−1
n Qψ̃n⟩ (1.13b)

where G−1
n and H−1

n are the main Gaussian parts in Wn, and

Gn = CGn−1C
+ = CnG0(C

+)n (1.14a)

(Qξ)(x) =

{
ξ(x) if x ∈ Λ′

n

−
∑

ζ∈∆(x),ζ ̸=x ξ(ζ) if x /∈ Λ′
n

(1.14b)

Λ′
n = Λn\LΛn (1.14c)

where ∆(x) is the square of size L×L center at x (∈ Λn ∩LΛn). Namely Q : RΛ′
n → RΛn

(n = 0, 1, 2, · · · ) is the operator to make zero-average fluctuations Qξn from {ξn(x) : x ∈
Λ′

n}.
In our case, we start with

G0 = (−∆ + m0)
−1(x, y)

∼ β − 1

2π
log |x − y|

H0 =
1

G◦2 (x, y)

∼ 1

|x − y|4

where H−1
0 is derived from the formal N → ∞ limit of F (ψ). Thus we see that

G1(x, y) = (CG0C
+)(x, y) ∼ 1

L4

∑
ζ,ξ∈∆0

log(Lx − Ly + ζ − ξ)

∼ G0(x, y)

H1(x, y) = (C ′H0C
′+)(x, y) ∼

∑
ζ,ξ∈∆0

(Lx − Ly + ζ − ξ)−4

∼ H0(x, y)

as |x − y| ≫ 1. This means that the main Gaussian terms are left invariant by C and C ′

(self-similarity).
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Define

An = A1A2 · · ·An (1.15a)

Ãn = Ã1Ã2 · · · Ãn (1.15b)

φn = Anϕn (1.15c)

zn = AnQξn (1.15d)

Gn = AnGnA+
n (1.15e)

Tn = AnQΓnQ+A+
n (1.15f)

so that

φn = φn+1 + zn (1.16a)

Gn = Gn+1 + Tn (1.16b)

G0 =
∑

Tn (1.16c)

G◦2
0 =

∑
n

(G◦2
n − G◦2

n+1) (1.16d)

=
∑

n

(T ◦2
n + 2Gn+1 ◦ Tn) (1.16e)

Since Tr(Gψ)2 = ⟨ψ,G◦2ψ⟩ in (1.9), we will see that

H−1
n ∼ T ◦2

n + 2Gn+1 ◦ Tn ∼ 2βn+1Tn (1.17)

Here we use the following notation (Hadamard product)

(A ◦ B)(x, y) = A(x, y)B(x, y), T ◦2 = T ◦ T

2 Hierarchical Model Revisited

Before beginning our BST, we study some remarkable features in this model by the
hierarchical approximation of Dyson-Wilson type [13] in which the Gaussian part

exp[−(1/2)⟨ϕn, (−∆)ϕn⟩]

is replaced by the hierarchical one:

exp[−(1/2)⟨ϕn+1, (−∆)hclϕn+1⟩ − (1/2)⟨ξn, ξn⟩], n = 0, 1, · · ·

Put g0(ϕ) = δ(ϕ2 − Nβ). Choosing a box of size
√

2 ×
√

2 at the nth step including two
spins ϕ+ and ϕ− (two ϕn’s in the box), we put ϕ± ≡ ϕ ± ξ, where ϕ = ϕn+1 and ξ = ξn.
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Then 2ξ2 = ϕ2
+ + ϕ2

− − 2ϕ2 and put ϕ = (φ, 0) ∈ R+ × RN−1, ξ = (s, u) ∈ R × RN−1 and
f(x) = gn(x)e−x/4. Then putting x = ϕ2, we have

gn+1(x) = ex/2

∫
f((ϕ + ξ)2)f((ϕ − ξ)2)dsdN−1u

= ex/2

∫
f((φ + s)2 + u2)f((φ − s)2 + u2)dsdN−1u

=
ex/2

√
x

∫
D

f(p)f(q)µ(p, q, x)(N−3)/2dpdq

µ(p, q, x) =
p + q

2
− x − (p − q)2

16x

where D ⊂ [0, Nβ]×2 is defined so that µ(p, q, x) ≥ 0 and

(p − q)2

16x
=

(ϕ2
+ − ϕ2

−)2

16ϕ2
=

⟨ϕ, ξ⟩2

ϕ2
(2.1)

This is a part of the probability that two spins ϕ± ≡ ϕ ± ξ form the block spin ϕ such
that ϕ2 = x. If f(p) has a peak at p = Nβ, exp[x/2 + (1/2)(N − 3) log(p−x)] has a peak
at x = N(β − 1 + O(N−1)).

What we learn from this model is the following which will appear in the real system:

1. The curvature of Vn = − log gn at its bottom x = Nβn is N−1, and then the
deviation of x = ϕ2

n from Nβn is N1/2.

2. βn ∼ β − O(n)

3. The deviation |ϕn(x)ϕn(y) − Nβn| is given by the Gaussian variables u ∈ RN−1 of
short correlation. In fact |ϕn,+ϕn,− − Nβn| = |ϕ2

n+1 − Nβn+1+ : u2 :1 | ∼ N1/2

4. One block spin transformation yields the factor x−1/2 ∼ β
−1/2
n . The factor x−1/2 is

relevant but logarithmic in the action. Thus its effects are negligible.

5. gn+1(x) in analytic in 0 < x < Nβ (N ≥ 3) if so is gn(x). (g1 = (ex/2/
√

x)(Nβ −
x)(N−3/2))

6. The probability such that x = ϕ2 > Nβn0 tends to zero rapidly as (n0 <) n → ∞,
and gn(x) → δ(x). This is the mass generation in the hierarchical model.

Though this model is very much simplified, it is very surprising that this model con-
tain almost all properties and problems which the real system has. The property (3) is
important and related to the N−1 expansion since this means that φn(x)φn(y)/N can
replaced by Gn(x, y).
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One serious problem is that the factor (x)−1/2 = exp[− log(ϕ2)] and log(ϕ2) is relevant
in the terminology of renormalization group analysis, i.e., the coefficient may grow ex-
ponentially fast as n → ∞. To control this, we introduce an artificial relevant potential
gn(ϕ2

n − Nβn)2 which absorb the effects of log(φ2). We note that (ϕ2
0 − Nβ)2 = 0 by the

initial condition δ(ϕ2
0 −Nβ). Thus one of the main tasks in this paper is to show that gn

are uniformly bounded in n.

3 RG Flow of the Real System

We combine two types of block transformations to W0(ϕ, ψ) which is the ν dimensional
boson model of ϕ2ψ type interaction with pure imaginary coupling. In this approach, we
can expect all coefficients are bounded and small through the block spin transformations.
Thus perturbative calculations are useful. We have two types of block spin transforma-
tions. One is the block spin transformation of the N component boson model of mass
m2

0, and the other is the block spin transformation of the auxiliary field ψ. The two
dimensional boson field ϕ is dimensionless and the auxiliary field ψ has the dimension
length−2, and they have different scalings. The ψ field keeps ϕ0 = ϕ on the surface of the
N dimensional ball of radius (Nβ)1/2. We will see that by one step of the BSTs of ϕ and
ψ, the radius is shrinked to (Nβ1)

1/2, where β1 = β − O(1).
We turn to our model and sketch our main ideas and procedures. Our method of

analysis depends on n. For n < log β we can forget the term log ϕ2, but for n > log β this
term is rather large and we cannot disregard V

(1)
n . Assume n > log β and assume that

the Gibbs factor at the step n is given by

exp[−Wn(φn, ψn) −
∑
X

δWn(X; φn, ψn)] (3.1)

where Wn(φn, ψn) is the main term which controls the system and δWn(X; φn, ψn) are
polymers whose supports spread over paved set X ⊂ Λ. δWn(X; φn, ψn) are very small
but analytic domain of φn may be small for large X. Our basic induction assumption is
that the main part Wn(ϕn, ψn) is given by

Wn(ϕn, ψn) =
1

2
⟨ϕn, G

−1
n ϕn⟩Λn +

i√
N
⟨(: ϕ2

n :Gn , ψn⟩Λn + ⟨ψn, H−1
n ψn⟩Λn

+V (1)
n + V (2)

n (3.2a)

V (1)
n =

1

2N
⟨: ϕ2

n :Gn , gn : ϕ2
n :Gn⟩Λn (3.2b)

V (2)
n =

γn

2
⟨: ϕ2

n :Gn , Ãn−1E
⊥G−1

n−1E
⊥Ã+

n−1 : ϕ2
n :Gn⟩Λn (3.2c)

where Ãn is a constant matrix discussed later, E⊥ is the projection operator to the set
of block-wise zero-average functions, i.e. N (C) = {f ∈ RΛ : (Cf)(x) = 0,∀x ∈ Λ1}, and
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: ϕ2
n :Gn is the Wick product of ϕ2

n with respect to Gn. Furthermore we use the notation

⟨f, g⟩ =
∑
x∈Λ

f(x)g(x), ⟨f, g⟩Λn =
∑
x∈Λn

f(xg(x))

The point is that E⊥ acts as a differential operator and G−1
n ∼ −∆. Thus E⊥(−∆)E⊥

contains
∏4

i=1 ∇µi
. The term V

(2)
n corresponds to (p − q)2/16x and is irrelevant.

The relevant terms V
(1)
n is a dummy and is not necessary in principle since ⟨: φ2

0 :G0

, : φ2
0 :G0⟩ = 0 at the beginning. The term V

(1)
n is artificially inserted to control log ϕ2.

This is relevant, but we can show that the coupling constants gn (defined on Λn) stay
bounded. In the case of hierarchical model, we do not need any information of Wn or gn

for ϕ2
n < Nβn since the hierarchical Laplacian is local and (then) we have some a priori

bound for gn which are locally defined. But in the present model, however, it seems to be
convenient to have the term V

(1)
n to control log φ2

n.
We show that the change of the action Wn is absorbed by the parameters βn, gn and

γn. Here

βn = β − const. n + o(n) (3.3a)

gn = O(1) (3.3b)

γn = O((βnN)−1) (3.3c)

H−1
0 = 0, γ0 = 0 and β0 = β and we discarded irrelevant terms.

Remark 1 It is noteworthy that we can put

1

L2n

∑
x∈D∩Λ

f(x)g(x) ≡
∫

D/Ln

f(χ)g(χ)d2χ,

for f and g which are differentiable on the finer lattice space L−nΛ. Here χ is the new
variable x/Ln on L−nΛ.

4 Outline of the Proof

We here sketch our proof which consists of several steps:

[ step 1 ]
Let Λn = L−nΛ∩Z2 and let ϕn be the nth block spin (ϕn+1 = Cϕn): Set ϕn = An+1ϕn+1 +
Qξn, where ξn(x) are the fluctuation field living on Λ′

n = Λn\LZ2 and Q : RΛ′ → RΛ is
the zero-average matrix so that the block averages of Qξ are 0.

⟨ϕn, G−1
n ϕn⟩Λn = ⟨ϕn+1, G

−1
n+1ϕn+1⟩Λn+1 + ⟨ξn, Γ−1

n ξn⟩Λ′
n
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where G−1
n+1 = A+

n+1G
−1
n An+1 and Q+G−1

n Q = Γ−1
n . Namely An+1 = GnC

+G−1
n+1.

[ step 2 ]
We have a relevant term, and then it is convenient to consider the Gaussian integral by
q(z) ≡ 2φnzn+ : z2

n : (not by z) since : φ2
n :Gn=: φ2

n+1 :Gn+1 +q(z). Define

P (p) =

∫
exp[i⟨λ, (p − q)⟩]dµ(ξ)

∏
dλ

zn = AnQΓ1/2
n ξ

dµ(ξ) = exp

[
−1

2
⟨ξ, ξ⟩Λ′

n

]∏ dξ√
2π

Then we have

P (p) =

∫
exp[i⟨λ, p⟩] exp

[
−i⟨λ, (2φn+1(AnQΓ1/2

n ξ)+ : (AnQΓ1/2
n ξ)2 :⟩

]
dµ(ξ)

∏
dλ

=

∫
exp

[
−2i⟨ξ, Γ1/2

n Q+A+
n (λφn+1)⟩ −

1

2
⟨ξ,

[
1 + 2iΓ1/2

n Q+A+
n λAnQΓ1/2

n

]
ξ⟩

]
× exp[i⟨λ, p⟩ + iN⟨λ, Tn⟩]

∏ dξxdλ(x)√
2π

namely

P (p) =

∫
exp[i⟨λ, p⟩ + iN⟨λ, Tn⟩] det −N/2(1 + 2iTnλ)

× exp

[
−2⟨λ, (φn+1φn+1) ◦

(
AnQ

1

Γ−1
n + 2iQ+A+

n λAnQ
Q+A+

n

)
λ⟩

]∏
dλ(x)

(4.1)

We assume that we are outside of the domain wall region Dw(φn) and large field region
defined D(φn) by

(1) Dw(φn) = paved set such that

|φn(x)φn(y) − NGn(x, y)| ≥ k0N
1/2+ε exp[

c

10Ln
|x − y|], ∀x ∈ Dw,∃y ∈ Dw

(2) D(φn) = minimal paved set such that

| : φ2
n(x) :Gn | ≤ k0N

1/2+ε exp[
c

10Ln
|x − y|], ∀x ∈ D(φ),∀y ∈ D(φ)c

where 0 < ε < 1/2 and paved set is a collection of squares {2} each of which consists
of squares ∆ ⊂ Λ of size L × L (in Λn). The power N1/2 is related to the central limit
theorem applied to the sum of N independent Gaussian variables

∑N
i=1 : ξ2

i :. To imagine
why, consider spins φn(x) located on the bottom of (φ2

n −Nβn)2 and put φn = φn+1 + zn.
Thus the parallel component of the fluctuation zn is suppressed and only the orthogonal
fluctuations occur.
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Figure 1: Two wine bottles and the propagation of spin waves which are orthogonal or
perpendicular. It costs energy to change the radius of the bottles but it is easy to fluctuate
perpendicular to the radius. This is caused by ξ, the massive Gaussian field of N − 1
degrees of freedom.

Fluctuations ξn(x) perpendicular to ϕn(x) have N − 1 degrees of freedom of Gaussian
fields. See also the figure caption. We replace φn+1φn+1 by NGn+1 and expand the
determinant up to the second order:

(4.1) =

∫
exp[i⟨λ, p⟩ − N⟨λ, (T ◦2

n + 2Gn+1 ◦ Tn)λ⟩]

× det
−N/2
3 (1 + 2iΓ1/2

n Q+A+
n λAnQΓ1/2

n )

× exp [−2⟨λ, (: φn+1φn+1 :) ◦ Tn)λ⟩ + (higher order terms)]
∏

dλ(x)

∼ exp

[
− 1

4N
⟨p, 1

2Gn+1 ◦ Tn + T ◦2
n

p⟩
]

(4.2)

The terms : φn+1φn+1 : are treated by polymer expansion and yield relevant terms ⟨:
φ2

n+1 :, gn : φ2
n+1 :⟩, which are fractions of log(φ2

n).

Putting p = Ap1 + Q̃p̃ with p1 = Cn+1p and Cn+1A = 1, we see that P (p) is given by

exp

[
− 1

4N
⟨p1,

1

Cn[2Gn+1 ◦ Tn + T ◦2
n ](C+)n

p1⟩Λn+1 −
1

4N
⟨Q̃p̃,

1

2Gn+1 ◦ Tn + T ◦2
n

Q̃p̃⟩
]

(4.3)

Here we remind the reader that

Cn+1Tn(C+)n+1 = 0

Cn+1T ◦2
n (C+)n+1 ∼ 1

Gn+1 ◦ Tn ∼ βn+1Tn
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since Tn = AnQΓnQ
+A+

n , CnAn = 1, CQ = 0 and Tn decays much faster than Gn. This
means that the blockwise constant part p1 of p remains and the zero-average fluctuation
part Q̃p̃ of p is almost absent since it approximately holds that

(2Gn+1 ◦ Tn + T ◦2
n )⌈Q̃ξ= O(L2n)βn+1

though this has to be taken with a grain of salt. (We need a suble discussion on this
point, however.)

[ step 3 ]

We calculate the next order Gibbs factor by multiplying the distribution function
P (p) = Prob(p = q(ξ)) to the previous Gibbs factor. This idea perhaps goes back to [22].

In the present case, however, gn can be large (∼ L2 on Λn) and then we choose p which
minimizes

F (p) =
1

4N
⟨p, 1

2Gn+1 ◦ Tn + T ◦2
n

p⟩ +
1

4N
⟨(: φ2

n+1 :Gn+1 +p), gn(: φ2
n+1 :Gn+1 +p)⟩

(4.4)

= ⟨p, 1

D
p⟩ +

1

N
⟨(: φ2

n+1 :Gn+1 , gnp⟩ +
1

2N
⟨(: φ2

n+1 :Gn+1 , gn : φ2
n+1 :Gn+1⟩ (4.5)

where
1

D
=

1

4N

1

2Gn+1 ◦ Tn + T ◦2
n

+
1

2N
gn (4.6)

To diagonalize this, we again set p = Ap1 + Q̃p̃ where

A = D(C+)n+1[Cn+1D(C+)n+1]−1, Cn+1Q̃ = 0 (4.7)

and

F (p) = F1(p) + F2(p) (4.8a)

F1 = ⟨p1,
1

Cn+1D(C+)n+1
p1⟩Λn+1 +

1

N
⟨(: φ2

n+1 :Gn+1 , gnp⟩

+
1

2N
⟨(E : φ2

n+1 :Gn+1 , gnE : φ2
n+1 :Gn+1⟩ (4.8b)

F2 = ⟨Q̃p̃,
1

D
Q̃p̃⟩ +

1

N
⟨(E⊥ : φ2

n+1 :Gn+1 , gnQ̃p̃⟩

+
1

2N
⟨(E⊥ : φ2

n+1 :Gn+1 , gnE
⊥ : φ2

n+1 :Gn+1⟩ (4.8c)

where E is the projection to block-wise constant functions (block of size Ln+1 × Ln+1)
and E⊥ = 1 − E. We moreover assume that gn is a constant diagonal matrix. Then F1
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and F2 take their minima at the following points:

p1 = − 1

N
CnDgn : φ2

n+1 :Gn+1

=

[
−1 +

1

L2ngn

1

Cn[2Gn+1 ◦ Tn + T ◦2
n ](C+)n

]
Cn : φ2

n+1 :Gn+1 (4.9)

Q̃p̃ = − 1

2N
E⊥Dgn : φ2

n+1 :Gn+1

=

[
−1 +

1

gn

1

2Gn+1 ◦ Tn + T ◦2
n

]
E⊥ : φ2

n+1 :Gn+1 (4.10)

Thus

min F1 =
k

4N
⟨Cn+1 : φ2

n+1 :,
1

Cn+1[2Gn+1 ◦ Tn + T ◦2
n ](C+)n+1

Cn+1 : φ2
n+1 :⟩

min F2 =
1

4N
⟨E⊥ : φ2

n+1 :,
1

2Gn+1 ◦ Tn + T ◦2
n

E⊥ : φ2
n+1 :⟩

We integrate over p1 and p̃ around the points (4.9) and (4.10) (steepest descent
method) and we get some small terms coming from the integrations over p1 and E⊥p̃.

The term min F1 means that the gn term disappears and the coefficient of the relevant
term (: φ2

n+1 :)2 can be regarded as a constant for n > log β since Cn+1 : φ2
n+1 :∼: ϕ2

n+1 :
(field on Λn) and Cn+1[2Gn+1 ◦ Tn + T ◦2

n ](C+)n+1 ∼ 1 (on Λn+1). This also implies that

⟨: φ2
n+1 :Gn+1 +p, ψn⟩ → 1

L2n
⟨: φ2

n+1 :Gn+1 , Eψn⟩ (4.11)

which is consistent with our choice of the scaling of ψ and Ãn. The term min F2 is essen-
tially Fn which is irrelevant. We remark that the log term is expanded and : φn+1φn+1 :

is absorbed by V
(1)
n and the Hamiltonian part of ϕn+1 through

2 : φn+1(x)φn+1(y) :=: φ2
n+1(x) : + : φ2

n+1(y) : − : (φn+1(x) − φn+1(y))2 :

The shifts of the variables p1 and Q̃p̃ are in the admissible deviations of φn+1 and qn.

[ step 4 ]
Thus we can iterate these steps. The most important point is that q =: φ2

n : − : φ2
n+1 :

obeys the Gaussian distribution uniformly in n (CLT) and the coupling constant gn is kept
as a constant on the shell : ϕ2

n :Gn= 0 near which the functional integrals have supports.
This ensures our scenario.

5 Remaining Problems

The following problems remain:

12



1. Prove this for small N .

2. Prove this for quantum spins.

3. Solve the Millennium problem of quark confinement.

The present author hopes that the reader is ambitious enough to attack these problems.
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