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Abstract

The classical O(N) spin models in two dimensions have been believed free from
any phase transitions if N is larger than or equal to 3. We show that if IV is large,
then the block-spin-type transformations can be applied through Fourier (duality)
transformation. This enables us to prove the result claimed in the title of this paper.

PACS Numbers 05.50+q, 11.15Ha, 64.60-i

1 Introduction

Though quark confinement in 4 dimensional (4D) non-Abelian lattice gauge theories and
spontaneous mass generations in 2D non-Abelian sigma models are widely believed [1],
we still do not have a rigorous proof. These models exhibit no phase transitions in the
hierarchical model approximation of Wilson-Dyson type or Migdal-Kadanov type [12].

In ref. [14], we considered a transformation of random walk (RW) which appears in
the O(N) spin models [3, 4]. This was extended by the cluster expansion [5, 11, 19, 20],
and we showed in the 2D O(N) sigma model that :

% > const log N (1.1)

In this paper, we apply a block-spin transformation to the functional integral of the
system, and establish the following theorem:
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Main Theorem. There exists no phase transition in two-dimensional O(N) invariant
Heisenberg model for all 3 if N is large enough.

To appeal to the 1/N expansion [17], we scale the inverse temperature 3 by N. (N3
is denoted simply [ or [, in [14] and in our bound (1.1).) The v dimensional O(N) spin
(Heisenberg) model at the inverse temperature N3 is defined by the Gibbs expectation
values

()=

¢) exp[—Ha(9)] H 3(¢? — NB)de; (1.2)

Here
A=A =[=(L/2)", (L/2)" ) c 2

is the large square with center at the origin, where L is chosen odd ( e.g. L = 3 ) and
M is a large integer. Moreover ¢(z) = (¢p(x)1),--- ¢(x)™N)) is the vector valued spin
at x € A, Z, is the partition function defined so that < 1 >= 1. Moreover H, is the
Hamiltonian given by

Hy=—5 > ¢x)éy), (1.3)

|z—yl1=1

where |z|; = Y0 |2l
First substitute the identity §(¢? — NG) = [exp[—ia(¢? — N3)]da/2n into eq.(1.2)
with the condition [3, 4] that Ima; < —v. We set

1
VN

Ima; = —(v +m?/2), Rea; = Vi (1.4)

where m? > will be determined soon. Thus we have

7y = [ / exp[-Wo(s,v)] [] 22

_ M det(m? — A)-M2 / / d% (1.5)

Wilo.0) = 5(0.(m* = A+ —=0)0) = VNI, (1.60)

F(y) = det ™2(1 4+ iaGy) explivV N Z ;] (1.6b)

where

a = 2/VN (1.6¢)

Here ¢’s are constants being different on lines, A;; = —2v0;; + d);_;|1 is the lattice Lapla-
cian, G = (m?® — A)~! is the covariant matrix. The two point functions are given by

nta) = 5 [+ [ —A+za¢>O;F<¢>Hd% (1.7)



where Z is the obvious normalization constant. Choose the mass parameter m = mqg > 0
so that G(0) = (3, where

iz v

e’ dp;
Gla) = / m3 423 (1 — cosp;) H 27 (18)

=1

This is possible for any 3 if and only v < 2, and we find that m? ~ 32¢=%"% as 3 — oo
for v = 2, which is consistent with the renormalizaiton group analysis, see e.g. [6]. Thus
we can rewrite

F(y) = det;"*(1+iaGy) exp[— (¥, G°*)] (1.9)

for v < 2, where det3(1 + A) = det[(1 + A)e 4T4°/2] and G°?(z,y) = G(z,y)? so that
Tr(Gv)? = (1, G°%). Moreover F(1)) is integrable if and only if N > 2, and thus v < 2
and N > 2 are required.

If m is so chosen, the determinant dets(1 + iaG)™/2 may be regarded as a small
perturbation to the Gaussian measure ~ exp[— (1, G°%*¢)] [] dip. This is the case if N is
very large or if [ is very small (e.g. N'log N > 3), in which case |||aG|| < 1 and we can

disregard detg N/ 2(1 +iaG1)) and the model is exactly solvable in this limit. Thus we have

(0nda) = - [ (= &+ daw)st expl-To(Gy?) [] av
(m

< — A)gt < ¢ exp(—mylx]) (1.10)
But this argument fails for large § since G is of long-range and the expansion of the
determinant is not justified at all.

On the other hand, this argument can be justified if the main part of the 1) integral
consists of |9| < NB71/2 such that Y 1, ~ 0. In this case, the expansion of the
determinant is justified. Our main argument in this paper is to justify this argument.

The renormalization group (RG) method is the method to integrate the functional
integration recursively introducing block spin operators C' and C’ defined by

¢1(z) = (Co)(z)

= i x a

= <€ZAOf(L +¢) (1.11a)
d(z) = (C'f)()

= L*Cf)(z) (1.11b)

where x € AN LA and A is the square of size L x L (L > 2)center at the origin. C' and
C' consist of averaging over the spins in the blocks and the scaling of the coordinates,
ie, A = Ay — A;. We integrate out the remaining degrees of freedom which we call



fluctuation fields (¢ and 1)) and continue these steps, ¢p — Gnp1 — - Y — Pny1 — - -
and A, — Apyy — --- (n=0,1,2,---). We repeat this process by finding matrices A,
and A,, such that

¢n = An+1¢n+1 + an (112&)

¢n = An+1¢n+1 + an (1'12b)
and

<¢na(;;1¢n> - <¢n+&a(;;i1¢n+l>ﬁ_<§nargl£n> (1.13&)

<wn7 Hf”%) = <wn+17 Hr;ilwnJrl) + <wn7 Q+H;1an> (113b>

where G,;! and H, ! are the main Gaussian parts in I,,, and
G, = CG,,Ct=C"Gy(CH)" (1.14a)
() ifx el

x) = . ’ 1.14b

Qo = {92 g dea (1.141)

A, = ANLA, (1.14c)

where A(z) is the square of size L x L center at x (€ A, N LA,,). Namely @Q : R — RA»

(n=0,1,2,---) is the operator to make zero-average fluctuations Q¢, from {{,(x) : x €
ALY

In our case, we start with
Go = (=A+mo) ' (z,y)

1
~ f——1 _
B-5- oglz —y|

1
Hy = @(fﬂ,y)

1
|z —y|*

where H; ! is derived from the formal N — oo limit of (). Thus we see that

Gilwy) = (CGC)(w,y) ~ 25 3 log(Lr — Ly +C~ ©)

¢,6€A0
~ G(](l',y)
Hy(z,y) = (C'HC™)(z,y)~ > (Lo —Ly+(—&~*
C.E€o
~ HO(xay>

as |z — y| > 1. This means that the main Gaussian terms are left invariant by C' and C’
(self-similarity).



Define

A, = AAy--- A, (1.15a)
A, = A4, A, (1.15b)
zn = AnQS, (1.15d)
Gn = AGAS (1.15¢)
7, = AQr,QTAY (1.15f)
so that

On = Pnt1 T 2p (116&)
Go = G+ 7T (1.16b)
Gy = Z'Zz (1.16¢)
o= ) GE -G (1.16d)
= D (" +2Gn4107T,) (1.16¢)

Since Tr(Gv)? = (1, G**Y) in (1.9), we will see that
H e T2 4 261 0 Ty ~ 2601 T, (1.17)

Here we use the following notation (Hadamard product)

(Ao B)(z,y) = A(z,y)B(z,y), T*=ToT

2 Hierarchical Model Revisited

Before beginning our BST, we study some remarkable features in this model by the
hierarchical approximation of Dyson-Wilson type [13] in which the Gaussian part

exp[—(1/2){¢n, (—A)¢y)]
is replaced by the hierarchical one:
exp[_(1/2)<¢n+1a (_A)hcl¢n+1> - (1/2)<€n7 £n>]a n = 07 1, T

Put go(¢) = §(¢> — N3). Choosing a box of size v/2 x v/2 at the nth step including two
spins ¢4 and ¢_ (two ¢,’s in the box), we put ¢. = ¢ + &, where ¢ = ¢,,41 and £ = &,.



Then 262 = ¢2 + ¢* — 2¢° and put ¢ = (¢,0) € Ry x RN, ¢ = (s,u) € R x RN! and
f(z) = gn(l’)e_xM‘. Then putting x = ¢?, we have

Gur(z) = €2 / (6 + ) F((6 — €))dsdu

= @ [ Fo+9 4 (o~ 5 + st

6:c/2

= = [ 10 @ntp.0.0)

pta - (=g’
2 161

wp,q,x) =

where D C [0, NG]*? is defined so that u(p,q,z) > 0 and

(p—q)? (5 —¢2)?  (9,€)?
16z +16¢2 @2 (2.1)

This is a part of the probability that two spins ¢4 = ¢ £ £ form the block spin ¢ such
that ¢*> = x. If f(p) has a peak at p = N3, exp[z/2+ (1/2)(N — 3) log(p — )] has a peak
at x =N(B—1+O(N1)).

What we learn from this model is the following which will appear in the real system:

1.

The curvature of V,, = —logg, at its bottom z = Nf3, is N7!, and then the
deviation of ¥ = ¢2 from Nf3, is N/2.
. Bu~ B —0(n)

. The deviation |¢,(z)é,(y) — N3,| is given by the Gaussian variables u € R¥~! of

short correlation. In fact |¢n ¢n— — NB,| = [¢21 — NBuy1+ : u? 1 | ~ N2

. One block spin transformation yields the factor =2 ~ 8, /%, The factor 2~ /2 is

relevant but logarithmic in the action. Thus its effects are negligible.

. gny1(z) in analytic in 0 < z < NGB (N > 3) if so is g,(x). (g1 = (e*?/\/7)(NS —

) (N=3/2))

The probability such that x = ¢* > N3, tends to zero rapidly as (ng <)n — oo,
and ¢, (x) — d(z). This is the mass generation in the hierarchical model.

Though this model is very much simplified, it is very surprising that this model con-
tain almost all properties and problems which the real system has. The property (3) is
important and related to the N~! expansion since this means that ¢, (z)¢,(y)/N can
replaced by G, (z,y).



One serious problem is that the factor ()2 = exp[—log(¢?)] and log(¢?) is relevant
in the terminology of renormalization group analysis, i.e., the coefficient may grow ex-
ponentially fast as n — oco. To control this, we introduce an artificial relevant potential
gn(¢2 — Nf3,)* which absorb the effects of log(?). We note that (¢ — N3)? = 0 by the
initial condition 6(43 — N3). Thus one of the main tasks in this paper is to show that g,
are uniformly bounded in n.

3 RG Flow of the Real System

We combine two types of block transformations to Wy(¢, ) which is the v dimensional
boson model of ¢1) type interaction with pure imaginary coupling. In this approach, we
can expect all coefficients are bounded and small through the block spin transformations.
Thus perturbative calculations are useful. We have two types of block spin transforma-
tions. One is the block spin transformation of the N component boson model of mass
m2, and the other is the block spin transformation of the auxiliary field ¢. The two
dimensional boson field ¢ is dimensionless and the auxiliary field ¢ has the dimension
length ™2, and they have different scalings. The ¢ field keeps ¢y = ¢ on the surface of the
N dimensional ball of radius (N3)'/2. We will see that by one step of the BSTs of ¢ and
1, the radius is shrinked to (N3;)'/2, where 3, = 8 — O(1).

We turn to our model and sketch our main ideas and procedures. Our method of
analysis depends on n. For n < log 8 we can forget the term log ¢?, but for n > log 3 this
term is rather large and we cannot disregard VY Assume n > log 6 and assume that
the Gibbs factor at the step n is given by

eXp[_Wn(medjn) - Zde<X§¢n7wn>] (3'1>

where W, (¢n,1,) is the main term which controls the system and 0W,,(X;p,, ¥,) are
polymers whose supports spread over paved set X C A. oW, (X;pn,¥,) are very small
but analytic domain of ¢,, may be small for large X. Our basic induction assumption is
that the main part W,,(¢,, ¥, ) is given by

l

\/N« Qﬁ :Gn7¢n>An + <¢m Hﬁlwnﬂn

Wn(gbnad}n) - %<¢n7G;1¢n>An+

+V O v (3.2a)
1
Vn(2) - %< ¢72’L :Gn7 An_lElG;ilELA’v’:—l : ¢12’L :Gn>An (32C>

where A, is a constant matrix discussed later, E+ is the projection operator to the set
of block-wise zero-average functions, i.e. N'(C) = {f € R* : (Cf)(x) = 0,Vx € A}, and
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: 2 g, is the Wick product of ¢? with respect to G,,. Furthermore we use the notation

(f.0) =3 F@g@). (g, = 3 Flag(@))

TEA TEA,

The point is that E+ acts as a differential operator and G,;* ~ —A. Thus E+(-A)E+
contains [[._; V,,. The term V,?) corresponds to (p — ¢)?/16z and is irrelevant.

The relevant terms V,\" is a dummy and is not necessary in principle since (: ¥% :q,
093 :q,) = 0 at the beginning. The term AR artificially inserted to control log ¢2.
This is relevant, but we can show that the coupling constants g, (defined on A,,) stay
bounded. In the case of hierarchical model, we do not need any information of W, or g,
for 2 < Nf3, since the hierarchical Laplacian is local and (then) we have some a priori
bound for g, which are locally defined. But in the present model, however, it seems to be
convenient to have the term VA" to control log ©2.

We show that the change of the action W, is absorbed by the parameters (3,, g, and
V. Here

Bn = [ — const.n+ o(n) (3.3a)
g = O(1) (3.3b)
T = O((BaN)) (3-3¢)

Hy 1'=0, 49 = 0 and By =  and we discarded irrelevant terms.

Remark 1 [t is noteworthy that we can put

S ICE / F00900E .

£EDNA D/L"

for f and g which are differentiable on the finer lattice space L~"™"A. Here x is the new
variable x /L™ on L™"A.

4 Qutline of the Proof

We here sketch our proof which consists of several steps:

[ step 1]

Let A, = L™"ANZ? and let ¢, be the nth block spin (¢, 1 = C¢y): Set ¢, = Api1Gni1+
Q&,, where &,(x) are the fluctuation field living on A’ = A,\LZ? and Q : RY — R is
the zero-average matrix so that the block averages of Q¢ are 0.

(Do, G D, = (Bnt, G;}r1¢n+1>/\n+1 + (§ns Fglfn%\;
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where G, 1 = A G Ayyr and QG 'Q =T, 1. Namely 4,1 = G,C*G, ;.

[ step 2 ]

We have a relevant term, and then it is convenient to consider the Gaussian integral by
q(z) = 2pnzp+ 2 22 1 (not by z) since : @2 g, =: 2.1 ‘G, +¢(2). Define

P) = [ explitn (v - a)ldu(©) TLax

= AQTY%
du(§) = exp [——55 }H

Then we have

Po) = [ explithp)exp [0\ (26, (AQIY0+ : (AQIH?) 3] du(e) [ ax

— / exp [—2¢<£, P2Q% A (Apusn)) — o€, [1+ 2T 2QT A AA,QTY?) £>]

2
¢, d\(z)

x expli(\, p) +iN(A, T,)] H Vo

P(p) = /exp[ A, p) +iN (N, T,,)] det ~N2(1 4 20T, \)

X €Xp |:_2<>‘7 ((pn—‘rl@n—i-l) © <AnQF_1 ¥ QZQiAJ'_)\A QQ+A:) /\>:| Hd/\(l’)
(4.1)

We assume that we are outside of the domain wall region D, (¢,) and large field region

defined D(¢p,,) by

(1) Dy, () = paved set such that
00 (2)0n(y) — NGo(z,y)| > koN'/>*< eXp[loLn! —yl], V& € Dy, 3y € D,
(2) D(p,) = minimal paved set Such that

|1 2(2) i, | < koN'/2+e exp| |z — yl], Vo € D(p),Vy € D(p)°

10L
where 0 < ¢ < 1/2 and paved set is a collection of squares {O} each of which consists
of squares A C A of size L x L (in A,). The power N'/? is related to the central limit
theorem applied to the sum of N independent Gaussian variables Zf\il : €2 .. To imagine
why, consider spins ¢, (z) located on the bottom of (¢? — N3,)? and put ¢, = ©ni1 + 2n.
Thus the parallel component of the fluctuation z, is suppressed and only the orthogonal
fluctuations occur.



Figure 1: Two wine bottles and the propagation of spin waves which are orthogonal or
perpendicular. It costs energy to change the radius of the bottles but it is easy to fluctuate
perpendicular to the radius. This is caused by &, the massive Gaussian field of N — 1
degrees of freedom.

Fluctuations &, (x) perpendicular to ¢, (x) have N — 1 degrees of freedom of Gaussian
fields. See also the figure caption. We replace ¢, 10,11 by NG,i1 and expand the
determinant up to the second order:

@1 = [ expling) = N (T + 20,0 0 TN

x det 3 V/2(1 4 2iCL2Q AT AA,QTL?)
x exp [—2(\, (: @ns1©nt1 1) © T,)A) + (higher order terms)] H d(zx)

INY G, o T, + T2

~ exp {— (4.2)
The terms : @, 10,11 : are treated by polymer expansion and yield relevant terms (:
O2 1 n PR ), which are fractions of log(¢2).

Putting p = Ap; + Qp with p; = C""'p and C"™ A = 1, we see that P(p) is given by

1 1

1
exp {—m@b C"[2G,11 0T, + 7;02](C+)np1>1xn+1

2gn+1 o ZL + 7;102

Qp)
(4.3)

1~

Here we remind the reader that

Cm—&—lzz;l(cr—i—)n—&—l — 0
Cn+1702(0+)n+1 ~ 1
gn+1 o 7;1 ~ ﬂn—&-llz;z
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since 7, = A,QT,Q Al C"A, =1, CQ = 0 and 7, decays much faster than G,,. This
means that the blockwise constant part p; of p remains and the zero-average fluctuation
part p of p is almost absent since it approximately holds that

(2Gni1 0T, + T,%) [Ge= O(L*™) Bs1

though this has to be taken with a grain of salt. (We need a suble discussion on this
point, however.)

[ step 3 ]

We calculate the next order Gibbs factor by multiplying the distribution function
P(p) = Prob(p = ¢q(£)) to the previous Gibbs factor. This idea perhaps goes back to [22].

In the present case, however, g, can be large (~ L? on A,,) and then we choose p which
minimizes

1

1 1
F(p) = m<p7 2G 10 T + T°2p> + m« 907214-1 Gyt +p)7gn<: 9034_1 ‘Gl +p)>
(4.4)
1 1 2 1 2 2
<p7 5p> + N« Pn+1 :Gn+1agnp> + ﬁ« Pr+1 ‘Gny1r9n * Pnya :Gn+1> (45)
where ) . . )
— = — — 4.6
D AN2G 0T, + 72 aN? (4.6)
To diagonalize this, we again set p = Ap; + Qp where
A= DCH" I D(CH)HT ol Q =0 (4.7)
and
F(p) = F(p)+ F(p) (4.8a)
1 1
1
+W<(E : 90314—1 :Gn+17gnE : S0721+1 :Gn+1> (4'8b)
~_ 1 < 1 .
By = (@b 500 + 5 (B": @nit i6uns 9nED)
1
o (BT Pt G BT 0 Ga) (4.8¢)

where FE is the projection to block-wise constant functions (block of size L™™! x L")
and E+ =1 — E. We moreover assume that g, is a constant diagonal matrix. Then F}
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and F5, take their minima at the following points:

1
P = _NCann : 30721-1-1 ‘Gl
1 1
= |—=1 o": 2 4.9
{ + L?ng, C"[2G, 1107, + 7;{’2]((7“‘)”1 Prt1 Gnpr (4.9)
~ 1
Qp = —ﬁELDQn : S0721+1 ‘Gnt1
1 1
= -1+ = E+ .2 4.10
Thus
min F, — i<c«n+l SEI 1 Ot g2
AN CTEL T Ont[2G, 4 0 Ty, + T2 (CF ) T
1
min £ 4N< P+l ’2gn+1 0’2;—1—7;02 Pnt1 >

We integrate over p; and p around the points (4.9) and (4.10) (steepest descent
method) and we get some small terms coming from the integrations over p; and Ep.

The term min F} means that the g, term disappears and the coefficient of the relevant
term (: @2, :)? can be regarded as a constant for n > log 3 since C™"*! : 2 | i~ @2
(field on A,,) and C"*1[2G,, .1 0T, + T°%(CH)"*t ~ 1 (on A,1). This also implies that

1
<: 3024-1 ‘Gl +D, wn) - ﬁ( SOELH :Gn+17E¢n> (4'11>

which is consistent with our choice of the scaling of ¥ and A,.. The term min F, is essen-
tially F,, which is irrelevant. We remark that the log term is expanded and : ¢, 11¢n11 :
is absorbed by Vn(l) and the Hamiltonian part of ¢, through

2 Qni1()n1(y) =1 @ (@) 1+ 0 (Y) = 1 (Pnsa(2) — i (9))*
The shifts of the variables p; and Qp are in the admissible deviations of Yne1 and q,.

[ step 4 ]

Thus we can iterate these steps. The most important point is that ¢ =: @2 : — : @2, :
obeys the Gaussian distribution uniformly in n (CLT) and the coupling constant g, is kept
as a constant on the shell : ¢? :;, = 0 near which the functional integrals have supports.
This ensures our scenario.

5 Remaining Problems

The following problems remain:

12



1. Prove this for small N.
2. Prove this for quantum spins.
3. Solve the Millennium problem of quark confinement.

The present author hopes that the reader is ambitious enough to attack these problems.
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