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ABSTRACT: Light rings (LRs) — closed circular orbits of null geodesics — are key features of
both black holes and horizonless ultracompact objects. While unstable LRs are relevant for
the observation of black hole images, stable LRs have been suspected to trigger instabilities,
namely in exotic compact objects that could mimic black holes. The underlying mechanism
behind this instability remains poorly understood, but a key missing piece is how the
backreaction of a perturbation around the stable LR modifies the surrounding spacetime. In
this work, some progress in this direction is provided by examining a conceptually simple,
yet instructive, toy model: continuum-shell stars, supported solely by tangential pressures.
Using both analytical and numerical methods, we show how perturbations around the stable
LR deepen the geodesic potential and shifts its location inward, potentially amplifying any
instability associated with the LR. By then extending the analysis to more general stars
with nonzero radial pressure, we find that the same phenomenon can be expected to persist

under reasonable assumptions.
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1 Introduction

The universe contains extremely dense and massive objects that remain observationally
consistent with the black hole paradigm, and cannot be easily explained by conventional
stellar models [1, 2]. However, a fundamental question remains: are these mysterious objects
truly described by the mathematical black hole solutions of General Relativity, or rather by
something else entirely different? One intriguing possibility is that black hole candidates
are instead described by hypothetical horizonless ultracompact objects which are not black
holes, arising from some unknown physics in the extreme regimes of gravity [3, 4]. If
such alternatives exist, they could potentially mimic black holes so well that they remain
observationally indistinguishable [5-7]. Could such exotic objects be physically viable?
When a massive object is sufficiently compact, its strong gravitational field can bend
the trajectory of null geodesics into closed circular paths, forming light rings (LRs). These
orbits play a crucial role in both theoretical and observational aspects of black hole physics.
In particular, LRs are essential in determining the black hole shadow image, which is one
of the main scientific targets of the Event Horizon Telescope observations [8-11]. In the
gravitational wave (GW) channel, LRs have also been associated with key signatures in the
ringdown phase of a perturbed black hole [12-15], although some studies have suggested



limitations to this connection [16-18]. However, LRs are not unique to black holes. In fact,
they are a ubiquitous feature of highly compact objects and can also exist around horizonless
objects, i.e. those without an event horizon [19].

LRs can be classified based on their orbital stability under small perturbations. In black
hole spacetimes, LRs are typically unstable [20], and these unstable orbits play a crucial role
in shaping the observable properties of black holes. For this reason, they are often referred to
as “standard” LRs. However, in a four-dimensional asymptotically flat spacetime describing
an equilibrium object without a horizon, non-degenerate LRs must appear in pairs: one being
unstable and the other stable [20, 21]. The unstable LR behaves similarly to those found
around black holes and could allow the object to mimic some black hole-like features. In
contrast, the second LR is stable and more exotic. The existence of a stable LR is particularly
intriguing, as it has been linked to potential spacetime instabilities [22]. Such a LR instability
was explicitly observed in fully non-linear numerical simulations of well-motivated horizonless
models [23]. Specifically, the presence of a stable LR was found to trigger the instability,
causing the object to either (i) evolve into a new configuration without LRs or (ii) collapse
into a black hole. Despite the progress in [23], the instability was observed in a specific
class of models. If such instabilities are generic, they could pose a fundamental challenge
to the viability of exotic compact objects as black hole mimickers. However, the underlying
mechanism driving the LR instability is still poorly understood.

A recent breakthrough on this issue was presented in [24], wherein a non-linear scalar wave
was investigated as a simplified model for gravitational perturbations. By numerically solving
the non-linear wave equation on top of a static, spherically symmetric, and asymptotically flat
spacetime with a stable LR, the study in [24] reported a growth in local higher-order metric
derivatives near the stable LR. This growth was driven by a direct energy cascade, transferring
energy to increasingly higher-order modes (see also [25]). While such a cascade could signal
the onset of a broader instability, the analysis in [24] did not explore its backreaction on the
stable LR itself. Intuitively, the accumulation of additional energy near the stable LR could
backreact on the spacetime geometry, further amplifying gravitational perturbations. Since
these perturbations decay slowly around the stable LR, they could initiate a positive feedback
loop, fueling an instability. Thus, to uncover the mechanism behind the LR instability, it
is crucial to examine how an energy buildup around the stable LR affects its properties. A
significant analysis related to this issue was reported in [26], which explored self-gravitating
unstable LRs around a Schwarzschild black hole. In that work, the authors considered a
scenario in which an advanced civilization could artificially populate the black hole’s unstable
LR with a large number of photons. As the photon population grows, its collective mass
becomes significant enough to modify the surrounding spacetime through its backreaction
on the geometry. This accumulation of photon energy leads to the formation of additional
LRs. However, these newly formed structures are dynamically unstable, with even minor
perturbations causing the entire configuration to collapse.

In this work, we shall examine how the backreaction of perturbations around a stable LR
influences the structure of a horizonless spacetime. The results suggest that the existence of
additional energy around a stable LR generally deepens the geodesic potential well and shifts
the LR inward, potentially amplifying the instability associated with stable LRs. To explore
this effect in a controlled setting, we primarily focus on a simple, yet insightful, family of



toy models known as continuum-shell stars. These models provide an analytically tractable
framework to isolate and examine the impact of perturbations around the stable LR. We
introduce this spacetime family in sections 2 and 3. Next, in section 4, we derive small
perturbative effects coming from the additional energy around the stable LR, within the
continuum-shell star framework. In section 5, we apply the analysis to concrete models that
illustrate the consequences of non-linear perturbations induced by the stable LR. Finally,
in section 6, we attempt to generalize these results to more generic spacetimes, leading to
the final discussion and conclusions in section 7. Natural units G = 1 = ¢ and a spacetime
signature (— + ++) are assumed throughout the paper.

2 Static spacetime with multiple shells

We begin by considering a static, spherically symmetric horizonless star composed of n + 1
infinitesimally thin matter shells. Each shell is indexed by k € {0,...,n} and positioned at
a radius r, = 7, k/n, where r,, is the largest shells radius.

Assuming that the regions between these shells are described by vacuum solutions of
General Relativity, Birkhoff’s theorem [27] dictates that each region is described by the
Schwarzschild metric. Consequently, the metric in the k-th region, lying between shells
indexed by k and k + 1, takes the form [26, 28]

2my, dr?

dsp = — (1—) dt* + ———— +7r2dQ*. 2.1

k Ch r 1 —2my/r (2.1)

The k-th region mass my, is (essentially) arbitrary, as long as it satisfies ry > 2my. By

requiring continuity of the metric across adjacent regions, the coefficients (i then satisfy
the recurrence relation:

T — 2Mp_1
Gk = () Ch—1 5 (2.2)
TR — 2Mmyg
where k € {1,...,n}. Imposing asymptotic flatness, we normalize the time-like Killing vector

O; at infinity, implying (, = 1. This condition uniquely determines all remaining values
of (., particularly (p. By introducing the mass of the k-th shell as dmp = mp — mg_1,
equation (2.2) then leads to:

G =G f[ (1 + 25m’“> : (2.3)

P TR — 2Mmyg

with 7 € {0,...,n}. An important observation, which will be relevant in the following
discussion, is that each matter shell is self-sufficient in resisting gravitational collapse through
tangential stresses: since the regions between shells contain no matter, there cannot be any
support in the form of radial stresses from those regions.

3 Continuum-shell stars

A particularly interesting case arises when the number of matter shells increases indefinitely
while keeping the total star mass M finite. In this continuum limit, as both n — oo and
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Figure 1. Illustrative image of how a structure made of numerous spherical shells transforms into a
continuum-shell star, in the limit of an infinite number of shells.

rn, — 00, the individual masses my are promoted to a mass function m(r). As discussed
in [26], the continuous limit of the product (2.3) is provided by a Volterra-type integral [29].
Consequently, equation (2.3) transforms into:

¢ =cew{ [[ 22 i}, (3.1)

where the prime denotes differentiation with respect to function argument. Since (o, = 1,

this implies:

T —2m

C(r) =exp {— /roo 2m’ df} =¥ (3.2)

where the 1 potential is given explicitly by:

< 2m/(F) _
= ————dr. 3.3
vir) = | s (33)
In the continuum-shell limit the metric of the spacetime becomes:
_ 2m(r) dr?
ds? = —e ¥ <1 — —) dt? + ————— +r2d02. 34
8 c r +1—2m(7“)/7“+r (34)

This spacetime describes a continuum-shell star: a structure composed of infinitely many
adjacent matter shells, see figure 1. See also [30], where a similar (albeit different) concept
was recently discussed.

One of the features of this model is that the spacetime depends solely on a single
function: m(r), which can be freely specified as long as r > 2m(r). The energy-momentum
tensor, derived via Einstein’s field equations from the metric (3.4) in Schwarzschild-like
coordinates (¢,r,0, @), is:

11" = diag(—p, p, pr, p1), (3.5)

where p represents the matter density, p the radial pressure, and pr the tangential pressure.
In terms of the metric, these quantities are given by:

_om _o B mm/
" A4mr?’ p=" pr = &mr2(r —2m)

p (3.6)
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Figure 2. Illustrative plot of the function C(r) defined in (3.8) for the mass function (5.1). The roots
of C(r) determine the location of the LRs, with the innermost LR being stable and the outermost
LR unstable. The vertical dotted lines and arrows represent how small perturbations induced by the
stable LR shift the innermost LR inward and the outermost LR outward.

Notably, the radial pressure p is identically zero, which is expected, as the spacetime arises
from the limit of discrete shells supported only by tangential stresses. In addition, if the mass
function satisfies the conditions m > 0, m’ > 0 and r > 2m, then the Weak Energy Condition
(WEC) [31, 32] is always satisfied, since these imply p > 0, as well as p+p > 0 and pr+p > 0.

The motion of null geodesics, which is crucial for the results of this paper, is governed by
an effective potential H, see [21, 33]. With no loss in generality, we can restrict the analysis
to the equatorial plane (§ = 7/2), due to spherical symmetry:

H e~ v(r) m(r
H(r) = /—gng\/ :; <1—2 r()>. (3.7)

LRs, or circular photon orbits, are found by solving the condition H' = 0, which for the

metric (3.4) leads to the compact equation r = 3m(r). The solutions of this equation describe
the locations of stable or unstable circular orbits around the star. It will be useful to introduce
a function C(r), which is zero at the location of the LRs:

C(r)y=r—3m(r). (3.8)

It is worth noting that (3.8) is only valid for the metric (3.4). Close to the star center, as
r — 0, regularity requires m ~ 73, while for large radii the mass function converges to the
total star mass M. Hence C(r) ~ r in both limits. Due to these boundary conditions, if the
star is compact enough to have light rings, any (non-degenerate) zeros of the function C(r)
must appear in pairs, as required by well-known LR results for horizonless stars [20, 21]. This
point is illustrated in figure 2. For the sake of simplicity and clarity, we focus on stars with two
distinct (non-degenerate) LRs, although the conclusions do not depend on this assumption.



Since LRs are defined as the circular orbits of null test particles moving within a
fixed background geometry, a natural question arises: what happens when there is a large
accumulation of null geodesics very close to a LR orbit? As the piled-up energy grows, it
may start to backreact on the spacetime itself. Can we make some general statements about
how this feedback modifies the properties of LRs? This will be the focus of the next section.

4 Small perturbations induced by energy trapped around a stable light
ring

In order to explore how the additional energy around the stable LR affects the star, we will
restrict our analysis to static and spherically symmetric perturbations, and then examine
how they lead to a new equilibrium spacetime configuration for the star. A key goal is to
isolate and decouple the pure backreaction of a LR from other effects that may arise due to
structural changes in the star’s interior. The concept of a continuum-shell star proves useful
here. Since such stars are constructed as the continuous limit of many concentric matter
shells, each individual star layer can be assumed to be composed of an extremely stiff material,
ensuring that it is self-sufficient against gravitational collapse. Under static perturbations, we
can impose that the radial position of each layer remains fized. This constraint is enforced at
the cost of potentially increasing the internal tangential pressures, preventing any significant
restructuring of the star while still capturing the backreaction effects of the stable LR. The
new mass function under such a perturbation becomes:

m(r) = mo(r) + dm(r), (4.1)

where m,(r) is the original unperturbed mass function of the star, while m(r) accounts for
the perturbation function caused by the additional energy located close to the LR.

We can attempt to establish a more precise connection between the accumulation of
energy from trapped photons around the stable LR and the perturbation dm. Since a
superposition of multiple photons, in different orbital planes and at the same radius, can be
effectively modeled as a single thin spherical photon shell with a small mass, then a dense
collection of photons orbiting a stable LR can be represented as a series of concentric photon
shells. How does the presence of these photon shells influence the mass function m? One
might initially consider Birkhoff’s theorem, but it generally does not apply inside a star,
as the region is not vacuum. However, the continuum-shell star model proves useful once
again. Since the star itself can be decomposed into multiple thin matter layers separated by
vacuum, Birkhoff’s theorem can still be applied in the vacuum regions between the star’s
matter shells and the photon shells. These photon shells are not necessarily static, and could
potentially move over the thin matter layers of the star. The radii of the photon shells could
oscillate periodically, expanding and contracting around the stable LR. Despite this motion,
Birkhoff’s theorem does apply in the vacuum regions between the shells, even if some are
moving. If we consider a sufficiently large number of such photon shells, each with different
oscillation amplitudes and phases, their collective effect can produce a static contribution
dm(r) to the mass function (see also [34, 35]).



Notice that while the mass function m obeys a form of linear superposition, the metric
function 1 defined by (3.3) generally does not, which reflects the inherent non-linear nature
of General Relativity.

In the following subsections, we will explore how small perturbations dm affect both
the location of the light rings (LRs) and the potential H.

4.1 Shift of the LR location
The additional energy near the LR naturally affects some properties of the star, particularly
shifting the LR’s location. The new LR radius rpr will be given by:

TLR = TER + 5TLR (4.2)

where 0r1r represents the radial shift from the original LR radius rfy. The key question
is whether dr;r and dm can be directly related. Since the LR position is determined by
the condition C(rpr) = 0, one can write:

iR + 0TLR — 3mo (1R + drLr) — 3dmir =0, (4.3)

where dmpr = dm(rpr). By expanding the m, function to first order, it leads to:

OMLR

_— 4.4
1/3 —=ml|i g’ (4.4)

5TLR ~

where m|; z = m,(rfg). Provided the reasonable assumption that dmyr > 0, the sign of the
drpg is determined by the sign of (1/3 —m/) = C’/3 at the LR location. A direct inspection
of the derivative C’ via figure 2 then leads to the conclusion that:

5rsLt§ble <0 and 5rﬁlf§table > 0. (4.5)

Thus, the accumulation of additional energy near the LR causes the stable LR to shift
tnwards, while the unstable LR is pushed outwards, as represented in figure 2. This result
follows from minimal assumptions, and applies to a wide class of continuum-shell stars.

4.2 Modification of the LR potential well

The perturbation dm will also affect the depth of the potential H at the stable LR’s location:
H(rir) = Ho(rig) + 0Hir (4.6)

where H,(r) represents the unperturbed potential function H. Can we make any generic
prediction for how this potential is modified? Rather than following the same approach as in
the previous subsection, we shall adopt a different method. Since the shift in LR position,
dTLR, scales with dm — see eq. (4.4) — we introduce a small dimensionless parameter h,
where h < 1. This allows us to express the perturbations in a rescaled form:

"R =7ip + Rh, m(r) =mo(r) + €(r) h, (4.7)



where R is an auxiliary radius, and €(r) is an auxiliary function, such that Rh = drpg and
e(r) h = dm(r). By enforcing that the functional derivative of the LR condition vanishes with
respect to h, we would recover the exact same relation in eq. (4.4):

d

fC(TLR)

- =0. (4.8)

h=0

This technique can now be applied to determine how the perturbation §m modifies the
potential at the stable LR. The variation in H is given by:

d
OHir >~ h %H(TLR) o

— _Hy(riR) ( / T _om@) dr) . (4.10)

LR [F - 2m0(f) ]2

(4.9)

Finally, under the assumption that ém > 0 the integral in (4.10) must be positive definite,
and so we conclude that d Hrg < 0. In other words, the perturbation deepens the potential
well at the stable LR, making it more pronounced.

5 Non-linear perturbative regime

In order to better understand how the presence of a stable LR impacts the properties of a
star, we now examine a concrete example. A convenient choice for the unperturbed mass

function and corresponding density is:

3
r 9
m r) = , r) == —m—m—. 5.].

o(7) 3+73 po(r) A7 (r3 + 3)2 (5-1)
This mass profile is somewhat arbitrary, but it offers the advantage of allowing some
computations to be carried out analytically. Additionally, it satisfies the weak energy condition,
since me > 0, m., > 0 and r > 2m,, (see section 3). The total mass M has been normalized to
unity. Notably, this continuum-shell star hosts two LRs. In the following subsections, we shall
introduce and analyse two different perturbation models, referred to as Model 1 and Model 2.

5.1 Model 1

In this first model, we introduce a localized perturbation by assuming a Dirac delta distribution
for the energy density, centered at the stable LR:

p(r) = po(r) + ( . ) o(r —rLR) (5.2)

47 T%R
m(r) = mo(r) +p O(r — rLr) - (5.3)

Here, O(z) is the Heaviside step function, and the unperturbed mass and density functions,
mo(r) and po(r), are given in eq. (5.1). The total mass of the star under this perturbation
becomes my, = M = 1+ u, where p > 0 is a free parameter controlling the strength of the
perturbation. Importantly, u is not necessarily small. The quantity rr represents the radius



of the stable LR, determined by the condition C'(rpr) = 0. Using the property ©(0) = 1/2,
we obtain the following 4th-order polynomial equation for rpr:

20t — 13 (6 +3u) +6r —9u=0. (5.4)

This equation has an exact analytical solution, with the relevant root provided in appendix A.
The metric function ¥ (r), defined by eq. (3.3), simplifies in this model to:

w(r) = /Oo Py dr + M 0(rn - 1), (5.5)
r TLR
where we have defined:
F(r) = 2mo(r) (5.6)

r—2mo(r) — 2 O(r — rLR)

To further simplify the expressions, we introduce the indefinite integral I(r):

I(r) = / " F(F) dr. (5.7)

This integral can also be solved analytically, yielding:

4 4
I,(r) =log (3 + r3) = Z P(ay) log(r — ax) H (ar, —a;)"t. (5.8)
k=1 i=1
ik

Here P(x) = 3z%(z — 2 — 21 )\), and the coefficients a;, € C above are detailed in appendix B.
These coefficients depend on both the perturbation parameter y and on an index A € {0,1},
which acts as a control parameter for I, and affects both aj and P(x). The final expression
for the metric function ¢ (r) takes the piecewise form:

o if r > ryR:

Y(r)=—1,_,(r), (5.9)
o if r =ryR: 3

¥(r) =—I,_,(rer) + — (5.10)
o ifr <rpgr: ;

00r) = Ly (i) = T (r) = Ly (i) + (5.11)

The geodesic potential H(r), defined in eq. (3.7), is represented in figure 3 for different
values of p in Model 1, with quantities normalized to the total mass M =1+ pu. In all cases,
the potential has two local extrema: a maximum corresponding to the unstable LR, and a
minimum at the location of the stable LR. From figure 3 it is clear that larger perturbations
deepen the potential well around the stable LR. Additionally, as u increases, the stable
LR consistently shifts inward. These trends were anticipated in section 4.1 and section 4.2,
though only in the regime of small perturbations. Here, however, we extend the analysis to
larger perturbations, where non-linear effects can become significant. In Model 1 the value of
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Figure 3. Plot of the geodesic potential H(r) for different values of the perturbation mass scale p
in Model 1. The unperturbed potential has ; = 0. The stable LRs are represented by a blue circle.
Both r and H are normalized to the total mass M of the spacetime.

1 can be increased up to approximately u ~ 0.2. Beyond this threshold the spacetime ceases
to be horizonless, making larger values incompatible with the assumed setup.

Perhaps not surprisingly, both the potential H(r) and the metric function v exhibit
a discontinuity at rpr. However, this discontinuity is not visually apparent from figure 3.
This discontinuity arises from the localized delta-like nature of the perturbation and it is
merely an artifact of assuming an idealized delta function. In the next subsection, we
shall introduce Model 2, where the perturbation is more spread out, effectively smoothing
out this discontinuity. However, this refinement comes at the cost of requiring numerical
methods, whereas Model 1 allows a fully analytical treatment. Critically, the results of
Model 1 can still be recovered as a limiting case of Model 2, by considering increasingly
sharp perturbation distributions.

5.2 Model 2

In the second model, we introduce a more dispersed perturbation by assuming a Gaussian
distribution for the energy density, centered at the stable LR:

plr) = polr) + eI (5.12)

Here, o represents the standard deviation, controlling the width of the perturbation. Unlike
Model 1, where the perturbation was highly localized, this approach spreads the energy
more evenly. The corresponding mass function m(r) can be obtained by integrating expres-
sion (5.12), though the full analytic expression is lengthy and not particularly illuminating.
For details, the reader is referred to appendix C. To ensure that the total mass of the
perturbed spacetime yields 1 + u, we introduced a normalization factor A, with the explicit
details also provided in appendix C.

,10,
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Figure 4. Plot of the geodesic potential H (r) for different values of the perturbation mass scale p in
Model 2 with 0 = 0.5. The unperturbed potential has 4 = 0. The stable LRs are represented by a
blue circle. Both » and H are normalized to the total mass M of the spacetime.

The Gaussian is initially centered at some radius r,, which we treat as a free parameter.
However, to ensure consistency, r, must ultimately coincide with the location of the stable
LR. This adjustment is necessary because the exact position of the LR under the perturbation
is not known beforehand. Instead, the new stable LR radius, rgr, must be determined
numerically by solving the following coupled equations for (rpr,7o):

C(rr) =0 and rpgp =1,. (5.13)

This approach ensures that the perturbation remains properly centered on the corrected
LR position.

Figure 4 displays the geodesic potential H(r) for Model 2 with o = 0.5. To facilitate
comparison, we can choose the same values of y as in figure 3. While the potentials in figure 4
closely resembles those of figure 3, a key difference emerges: in Model 2, the potential-well
is not as deep for the same p. This difference is likely due to the perturbation mass being
more spread out in Model 2, compared to the more localized distribution in Model 1. Despite
this distinction, both models yield qualitatively very similar results. In fact, as o — 0,
Model 2 smoothly transitions into Model 1.

6 Beyond continuum-shell stars

Throughout this article, we have focused on continuum-shell stars: a broad class of stellar
models characterized by zero radial pressure (p = 0). However, these stars are only a special
case within the wider family of static, spherically symmetric spacetimes. How does our
analysis change when considering a more general setup with p % 07

Consider the most generic form of a static and spherically symmetric metric:

i 2m(r) dr?
2 _ _ —Y(r) Al 2, e 2 102
ds® = —e <1 " ) dt” + = 2m(r)/r + r2dQ”, (6.1)

— 11 —



which is structurally similar to eq. (3.4), except for the replacement ¢ — 1, where 1) is

now given by:

~ 0 2m/(7) + 8772 p(7)

= dr. 6.2
o) = [ TR T (62)
Unlike the continuum-shell models, stars described by this metric generally have non-zero
radial pressure (p # 0), meaning that eq. (3.8) no longer applies. Instead, the locations of

the LRs are now determined by the roots of the modified function C(r):

C(r) =r —3m(r) — 4xr3 p(r) . (6.3)

Similar to the continuum-shell case (section 3), C scales as ~ 1 near the star’s center
and in the asymptotic limit, assuming the spacetime is asymptotically flat.! This scaling
implies that LRs still appear in pairs (see figure 2), with the stable LR satisfying C’ < 0.
The question now is: how do these locations shift under a small, static, and spherically
symmetric perturbation?

Following the approach in section 4.2, we introduce perturbations to the mass and
pressure profiles, due to the additional energy around the stable LR:

rLr =71igr + Rh, (6.4)
m(r) = me(r) +€(r) h,
p(r) = po(r) + P(r) h, (6.6)

where P(r) is an auxiliary function characterizing the perturbation in pressure, with dp(r) =
h P(r). To ensure that the LR condition remains satisfied under these perturbations, we
impose that:

d ~
27 C (riw) =0 (6.7)

This leads to the following expression for the LR shift:

30miR +4m [rER]S OpPLR

OrLR = (6.8)

!
LR
Here, the subscript LR indicates that the quantity is computed at the original LR radius r7y.

To isolate the effects of the extra energy trapped around the stable LR, we first assume that
the star’s matter is extremely stiff. This rigidity ensures that the original matter distribution
remains unchanged despite the additional gravitational pull from the extra mass dm.

If om > 0, it is natural to expect that the star’s interior would respond by increasing its
pressure, op > 0, to maintain equilibrium. This behaviour could follow from some plausible
equation of state p = p(p), which relates radial pressure to density. Since the derivative dp/dp
yields the square of the radial sound speed [36], it must remain positive to ensure mechanical
stability. In other words, it is reasonable to expect that an increase in mass at the LR should
naturally be accompanied by an increase in pressure. Let us then assume that both dmpg > 0

! Asymptotic flatness requires r2 p(r) — 0 as r — oo.

— 12 —



and dprr > 0. Since CV’ICR < 0 at the stable LR location, then eq. (6.8) implies that drpg < 0,
meaning the stable LR shifts inward. This result is consistent with section 4.1.

Similarly to section 4.2, we can compute how the depth of the potential-well changes
under a static perturbation. Considering the modified potential H (r), obtained by the
replacement ¢ — 1 in (3.7), we obtain:

SHig ~ — (W) / " ar F), (6.9)

where we have defined

8712 p(T) 26m(7) [1 + 8772 po(7)] '

F) T — 2me(T) [ — 2me(F)]?

(6.10)

If we assume both dm > 0 and dp > 0, then a sufficient condition for the potential
to deepen, Hig < 0, is that the unperturbed (radial) pressure is positive: p, > 0. This
assumption is well-motivated, as it holds in many physically realistic star models. While
it is theoretically possible to construct stars with negative radial pressure, sustained solely
by tangential stresses, such configurations are likely to be unstable under non-spherical
perturbations. Indeed, a negative radial pressure would likely introduce stronger instabilities
than a simple absence of radial pressure (p = 0), which is the case of thin matter shells.
The latter have been shown to be generically unstable to non-spherical perturbations in
the Newtonian limit [37].

In a more realistic scenario, the behavior of dm and dp are not necessarily straightforward.
If the star’s internal matter is allowed to redistribute under the new equilibrium, both dm and
dp could, in principle, take on negative values. This would introduce additional complexity,
as the shift in the LR location would then depend on the specific details of the perturbation
and how the star’s structure adjusts in response. Nevertheless, the fundamental mechanism
driving the LR shift should, in principle, persist in more complex scenarios.

7 Discussion and final remarks

In this work, we investigated how perturbations affect the structure of light rings (LRs)
in horizonless spacetimes, with a primary focus on continuum-shell stars as a useful toy
model. Using both analytical and numerical methods, we demonstrated that perturbations
consistently deepen the geodesic potential at the stable LR, while shifting its location inward.
This reinforces the idea that the backreaction of additional energy trapped around the
stable LR can fundamentally modify the spacetime. In contrast to the unstable structures
created in [26] by a massive collection of photons around the unstable LR, the modifications
induced by perturbations around the stable LR are not immediately destroyed: if a massive
accumulation of photons at the stable LR was perturbed, it would simply oscillate around
the stable LR location, as expected from its stability.

Toward the end of the paper, we have also attempted to extend the analysis to more real-
istic scenarios, with nonzero radial pressure. The core conclusions have remained unchanged,
provided some additional assumptions. The consistency of these results across different
models strongly suggests that they are an intrinsic feature of the backreaction of trapped
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energy around the stable LR. However, further work is needed to explore how additional
internal degrees of freedom of the star might modify these conclusions.

As a final remark, the plots in figure 3 and figure 4 bear a striking resemblance to
figure 6 of ref. [23]. The latter depicts the null geodesic potential H evolving over time
for a Proca star affected by the LR instability. This data, coming from a fully non-linear
time evolution of a horizonless Proca star, displays the deepening of the potential-well over
time around the stable LR, at least initially. This similarity suggests that the nonlinear
dynamics in ref. [23] align with the expectations presented in this work for the backreaction of
perturbations around the stable LR. Understanding the latter is thus essential for uncovering
the mechanism driving LR instability, and to whether exotic horizonless spacetimes could
be viable black hole mimickers or not.

A Solution to the LR radius from quartic equation

As detailed in section 5.1, the stable LR radius rr is obtained by solving a polynomial
equation of the 4th order:

2r* — 3 (6 4+ 3u) +6r —9u=0. (A1)

The relevant root is given by:

1 3 m 1 27 u>2 27 (1+ p/2)* — 24
TLR_Q\/EJr 4<1+2> 2\/ B+ <1+2 + NG . (A2)

where

_1 A 1/3 9 L 2 9 1/3 3,&
B:3(2> +4(1+2> +9(A> <1—2>, (A.3)

2
2187 w2 2187 w2
A=243-", (1+E 243 - —pu(1+E
3 2“’<+2>+J 3 2“(+2)

It is worth noting that A, B € C, while r,g € R.

4 {27_821“]3' (A.4)

B Expression for the coefficients ay

The coefficients aj with k € {1,2,3,4}, introduced in section 5.1 are defined as:
VB 1tux | B
= g + 5 + 5

2

JB

\I—B+3 (14 pA) + =22 (1 4 pa)® - 3] (B.1)

where we have defined:

) 1[4 2

B=(0+p\)+ (= = 1 —3u\ B.2
~ 2 3

A=243 — 648X\ (14 p)® + \/(243—648MA [1+p?) —4(18-54)) . (BS3)
ak:1—26k1—25k2, (B4)
B =1—20k1 — 2043 . (B.5)

The parameter A can be 1 or 0. One can note that aj, A, B € C. However, I(r) e R.
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C Mass function of Model 2

The mass function m(r) of the perturbed spacetime in Model 2, see 5.2, is:

m(r) = mo(r) + M_jﬂﬂ{ﬁ <02 + 7"?,) {Erf (T\/_i:)) + Erf <\/T§OU)] + (C.1)

+ V20 {ro e/ (1 4 1) e*(’“*“’)Q/(ZUW } ;

where Erf is the Gaussian error function. The normalization coefficient A is given by:

A= 23on {\@J o e IC 4 /7 (62 417) [1 + Erf( "o )] } L (o)
V2
This coefficient ensures that in the far-away limit » — oo, the mass function approaches
the total mass M = 1+ pu.
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