EPJ Web of Conferences 295, 04022 (2024) https://doi.org/10.1051/epjconf/202429504022
CHEP 2023

Gravitational wave alert generation
infrastructure on your laptop

Sara Vallero!*, Roberto De Pietri2, Rhys Poulton3, Pierre Chanial4 , Alessio Fiori® and
Daniele Monteleone!

IINFN Torino, Via Pietro Giuria 1, 10125 Torino, Italy

2INFN gruppo collegato di Parma and Universia di Parma, 43124 PARMA, Italy
3European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
4Université Paris Cité, CNRS, AstroParticule et Cosmologie, F-75013 Paris, France
SINFN Sezione di Pisa, L.go B. Pontecorvo 3, 56127 Pisa, Italy

Abstract. Multi-messenger astrophysics provides valuable insights into
the properties of the physical Universe. These insights arise from the
complementary information carried by photons, gravitational waves,
neutrinos and cosmic rays about individual cosmic sources and source
populations. When a gravitational wave (GW) candidate is identified by
the Ligo, Virgo and Kagra (LVK) observatory network, an alert is sent to
astronomers in order to search for electromagnetic or neutrino
counterparts. The current LVK framework for alert generation consists of
the Gravitational-Wave Candidate Event Database (GraceDB), which
provides a centralized location for aggregating and retrieving information
about candidate GW events, the SCIMMA Hopskotch server (a publish-
subscribe messaging system) and GWCelery (a package for annotating and
orchestrating alerts). The first two services are deployed in the Cloud
(Amazon Web Services), while the latter runs on dedicated physical
resources. In this work, we propose a deployment strategy for the alert
generation framework as a whole, based on Kubernetes. We present a set of
tools (in the form of Helm charts, Python packages and scripts) which
conveniently allows running a parallel deployment of the complete
infrastructure in a private Cloud for scientific computing (the Cloud at
CNAF, INFN Tier-1 Computing Centre), which is currently used for
integration tests. As an outcome of this work, we deliver to the community
a specific configuration option for a sandboxed deployment on Minikube,
which can be used to test the integration of other components (i.e. the low-
latency pipelines for the detection of the GW candidate) with the alert
generation infrastructure in an isolated local environment.

1 Introduction

Multi-messenger astrophysics [1] provides valuable insights into the properties of the
physical Universe. These insights arise from the complementary information carried by
photons, gravitational waves, neutrinos and cosmic rays about individual cosmic sources
and source populations. When a gravitational wave (GW) candidate is identified by the
Ligo [2], Virgo [3] and Kagra [4] (LVK) observatory network, an alert is sent to
astronomers in order to search for electromagnetic or neutrino counterparts. This is
achieved via the Low Latency Alert Generation Infrastructure (LLAI).

* Corresponding author: sara.vallero@to.infn.it

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

mailto:sara.vallero@to.infn.it

EPJ Web of Conferences 295, 04022 (2024) https://doi.org/10.1051/epjconf/202429504022
CHEP 2023

The goal of this work is to deliver to the LVK community a strategy for a sandboxed
deployment of the LLAI as a whole. The proposed solution can be used to develop and test
single LLAI components in an isolated local environment and to test the integration of
other components (i.e., the search pipelines that look for a GW signal in incoming data)
with the LLAI.

In the remainder of this section, we are going to describe how GWs are detected by
means of laser interferometers and the architecture of the LLAI. Section 2 describes the
Mock Event Generator [5], a package developed within the context of this work that is
used to upload real past GW events on a given GraceDB instance. Section 3 describes our
strategy for a sandboxed deployment of the LLAI on Kubernetes. In Section 4 we focus on
a specific application of this work: the automated acceptance tests of one of the LLAI
components.

1.1 Gravitational waves detection

Rapidly changing gravitational fields, like black hole mergers, generate gravitational waves.
Gravitational waves travel at the speed of light and manifest as ripples of curvature in the
fabric of space-time, transverse to the propagation direction [6]. Their effect is to stretch
and squeeze the space between test masses, but since the effect is very small, to be able to
observe them, the originating system should involve huge masses (i.e. 30 solar masses),
relativistic velocities (i.e. 0.6 ¢) and short distances (i.e. 1.4 billion light years).

Gravitational waves are detected by means of laser interferometers (like Ligo, Virgo
and Kagra), which are modified and enhanced versions of the Michelson interferometer.
Each arm of the interferometer ends with a suspended mirror that reflects light and acts as a
test mass. The passage of a GW creates a difference in length of the orthogonal arms, which
translates into a phase difference between the laser beams circulating in the two arms. The
optical signal measured at the detector output is proportional to the GW strain (relative
difference in length of the orthogonal arms) [2].

An array of detectors (currently Ligo Hanford, Ligo Livingston and Virgo) is necessary
to localize the GW source via triangulation and to rule out transient noise, which could
mimic the GW signal but it’s very unlikely to appear at the same time in detectors
positioned at separate geographical locations.

The output signals of the interferometers array are processed by search pipelines, which
are able to identify a GW within ~ 1 minute from the arrival of the data [7]. These pipelines
provide GW candidates, which are the input data products for the LLAI described in the
next subsection.

1.2 The low-latency alert generation infrastructure

The LVK Low Latency Alert Generation Infrastructure (LLAI) is responsible for issuing
astronomical alerts corresponding to GW transient sources (i.e. the merger of a compact
binary system of black holes or neutron stars). The system receives as input candidate GW
events from search pipelines. As depicted in Figure 1, candidate GW events go through four
sequential processing phases:

EPJ Web of Conferences 295, 04022 (2024) https://doi.org/10.1051/epjconf/202429504022
CHEP 2023

- event enrichment: computationally cheap tasks like checking on detector status or data
quality that can be performed on each incoming event

- event aggregation: grouping of events possibly related to the same astrophysical
source into a superevent

- superevent enrichment: computationally intensive tasks like source classification and
sky localisation

- vetting: human or automatic decision concerning the publication or retraction of a GW
detection.

The main components of the LLAI (namely the ones taken into account by this work)

are:

- The Gravitational-Wave Candidate Event Database (GraceDB): provides a
centralized location for aggregating and retrieving information about candidate GW
events. It’s a Django [9] application, integrated with an authentication service (Shibboleth
[10]), a backend web server (Gunicorn [11]), a frontend web server (Apache [12]) and a
backend database (PostgreSQL [13]).

- GWCelery [14]: is the service responsible for the enrichment and aggregation tasks
described above. It is based on the Celery [15] distributed task queue and relies on Redis
[16] as an internal database.

- The SCiMMA Hopskotch server [17]: it’s a publish-subscribe messaging system based
on Apache Kafka [18] and integrated with a custom authentication/authorisation layer.

The (simplified) workflow involving the three components above is the following: when
a new event is uploaded by search pipelines to GraceDB, the database posts a message in a
dedicated Hopskotch server queue (Kafka topic). One of the GWCelery workers constantly
listens to that channel, starts processing any new event and eventually posts the superevent
or any other required annotation to GraceDB. GWCelery is also responsible for sending the
public alert via the Hopskotch server (on a dedicated topic). Alerts are also sent via the
NASA General Coordinates Network (GCN) [19], but this aspect is not covered by the
work presented here. Alerts are sent both in the form of machine readable public notices
and via plain text. The completion of the main GWCelery actions is registered on GraceDB
as a label associated with the corresponding superevent entry.

2 The Mock Event Generator

The Mock Event Generator (MEG) [5] package regenerates past gravitational wave pipeline
events by time-translating them. It fetches already existing events from a GraceDB server
into a cache, shifts the time references as if they were created now and sends a request to
the GraceDB server to create a new event. By specifying a superevent id, all the online
events that are part of it are recreated, either all at the same time, in a specific time interval,
or as they were originally uploaded to GraceDB. This allows the possibility to recreate and
upload the sequence of triggers, associated with detection, that would be generated by
online search pipelines together with their specific delays.

EPJ Web of Conferences 295, 04022 (2024) https://doi.org/10.1051/epjconf/202429504022
CHEP 2023

3 Kubernetes deployment of the low-latency alert generation
infrastructure

In this work, we deploy each of the LLAI components, described in the previous section, as
a Kubernetes [19] application. For each component, we have prepared a separate Helm [20]
chart. User documentation can be found in [21].

The GraceDB chart installs three Kubernetes StatefulSets [19]: one for the web
application, one for Shibboleth and one for PostrgeSQL. A Traefik [22] IngressController
[19] handles the routing to the web and authentication services. GraceDB can be accessed
either via a browser or programmatically through an API. In the latter case, a client
certificate needs to be provided (no Shibboleth authentication) and the Traefik controller is
properly configured to accept certificates signed by the certification authority used by Ligo
(InCommon [23]). The application can be installed either in a distributed or in a single
instance mode. In the first case, the Kubernetes cluster should provide a StorageClass
[19] of type ReadWriteMany (RWX) used to create the volume where the files uploaded to
GraceDB are stored. Moreover, it is possible to choose a configuration option for a
sandboxed deployment, in which a self-signed server certificate is automatically created
leveraging CertManager [24], login to the web Ul is provided by username/password (no
Shibboleth authentication) but users can still be imported from the Ligo LDAP [25] for
programmatic access.

The GWCelery chart has a dependency on the Redis chart distributed by Bitnami [26].
The GWCelery application itself is installed as a set of Kubernetes Deployments [19], one
for each of the Celery workers, besides the worker running the sky localisation which is
installed as a StatefulSet to guarantee persistence of the volume holding the reference
waveform data needed for the computation. For one of the Celery workers, an additional
SidecarContainer [19] is deployed to import some data needed for performing checks and
validation on the flux of real-time streamed detector data from an external Kafka instance.
Moreover, two additional Deployments are started: one for the Flower [27] monitoring of
the Celery tasks and one for a Flask [28] application that provides forms to manually
initiate certain tasks.

The Hopskotch chart installs a simple Deployment based on a Docker container
prepared by the SCIMMA organization [29]. The container includes Kafka, Zookeeper [30]
and the SCIMMA server processes. We consider a possible future activity: the refactoring
of the Hopskotch installation in a microservice-oriented fashion in which these processes
are run as separate containers.

Figure 1 shows a schematic representation of the LLAI deployment on Kubernetes. The
different applications are connected over a private overlay network (L3) provided by
Kubernetes. Within each application, coloured boxes represent either:

- a specific container type like Shibboleth (SSO or Single Sign On), Django (Web) or

the various Celery workers

- a standalone service like PostgreSQL, Redis or the Kafka data importer

- the shared storage

The Helm chart code for each of the services above belongs to a different GitLab
project. The Continuous Integration (CI) pipeline of each of the projects builds the chart

EPJ Web of Conferences 295, 04022 (2024) https://doi.org/10.1051/epjconf/202429504022
CHEP 2023

and uploads it to a central repository whenever a fag is created. The Helm repository is
hosted on GitLab and has been implemented following [31].

GraceDB application

Jprivate
Jprivate
‘ WEB PAGE
/public
Pl
M w m i PROGRAMMATIC

ACCESS
Shared storage (X509 certificate,

Kerberos Keytab)

GWCelery application (())

Celery Celery Hopskotch application
worker worker
Kafka data importer ‘

Kafka

Zookeeper
SCiMMA server process

L3 overlay network.

Fig. 1. Schematic representation of the LLAI deployment on Kubernetes. Coloured boxes
represent either a specific container type, a standalone service or the shared storage.

3.1 CNAF and Minikube deployments

Two instances of GraceDB are currently running at CNAF [32]: one for production and one
for development. In the production deployment, TLS termination is secured by an
InCommon certificate and the use of a client certificate for API access. The development
instance has a sandboxed configuration as described in the previous section.

The production deployment leverages the SCIMMA Hopskotch server on a dedicated
set of topics and is used in conjunction with a test instance of GWCelery deployed on bare
metal at the California Institute of Technology (on which the GWCelery librarians actively
develop and test new features). The development instance leverages local installations of
the Hopskotch server and GWCelery deployed on Kubernetes as described in the previous
section. This development LLAI instance is used to test new features in the Kubernetes
deployment strategy.

The performance of the production and development LLAI deployments at CNAF is
monitored via a Prometheus [33] and Grafana [34] stack installed on the same Kubernetes
infrastructure. Besides monitoring regular container metrics such as CPU, memory and
storage consumption of the different components, for the development instance, we also
import metrics on Celery task execution times and success rates from Flower.

Moreover, we provide a specific configuration option for a sandboxed deployment on a
local machine using Minikube [35]. Minikube is a local single-worker Kubernetes cluster
made for development and testing purposes. It relies on Docker or similar Virtual Machine
engines. The setup has been tested on Linux and macOS. In this case, GraceDB uses a self-
signed certificate and we provide instructions on how to reach the service from the local
machine using a meaningful DNS name and to import the self-signed CA certificate in the

EPJ Web of Conferences 295, 04022 (2024) https://doi.org/10.1051/epjconf/202429504022
CHEP 2023

local browser for a simplified user experience. The installation of all the LLAI services
(GraceDB, the Hopskotch server and GWCelery) requires at least 8 CPU cores and 16 GiB
of RAM.

This sandboxed deployment can be useful for local development of the LLAI
components in a scenario in which the component that needs to be developed is deployed
on bare metal and the other components are easily installed on Minikube. Indeed, the
different LLAI components are tightly interconnected and a standalone deployment would
provide little insight in the correct behavior of the component in its ecosystem.

Moreover, the Minikube deployment in conjunction with MEG is being used for
debugging the LLAI workflow by replaying corner case superevents in which the expected
workflow was not executed correctly.

4 Use-case: automated acceptance tests

We have prepared an integration GitLab project that automatically spins-up the full LLAI
deployment on a Kubernetes cluster and performs automated acceptance tests of the
GWCelery application. These tests consist of checking for the correct creation of the
superevent and validating all the files uploaded and the labels applied by GWCelery to the
new superevent. This is achieved via the project’s CI pipeline running on the Kubernetes
cluster at CNAF. The installation needs an instance of Vault [36] to be available to the CI
pipeline for a secure handling of application passwords and GitLab tokens.

The pipeline has different stages:

- Build: this stage builds the Docker image used to run the GWCelery workers and
pushes it to the Gitlab container registry of the integration project. The Dockerfile [37]
allows for a GWCelery installation either from a specific tag or branch of the code hosted
in GitLab, or from a local directory. The former option is used by the CI pipeline. The
Docker image can be based on a configurable Python version.

- Secrets: at this stage, the CI JSON Web Token (JWT) [38] is saved on Vault for later
retrieval by the jobs running on the Kubernetes cluster. The JWT is used in the Deploy
stage to retrieve the Helm charts from the GitLab repository. Moreover, the GraceDB
authentication credentials are retrieved from Vault and used to generate a proxy client
certificate for GWCelery programmatic authentication to GraceDB. The Kubernetes
Secret [20] containing the proxy certificate is also installed on the cluster.

- Deploy: this stage installs the Hopskotch, GraceDB and GWCelery Helm charts on
the Kubernetes cluster.

- Configuration: this stage creates the GraceDB user account to be used by GWCelery.

- Test: at this stage, MEG is used to upload to the newly created instance of GraceDB
all the events belonging to a past real superevent. Then, a test script performs the
acceptance tests on the GWCelery application.

- Undeploy: this stage uninstalls the Hopskotch, GraceDB and GWCelery Helm charts
on the Kubernetes cluster.

The test script outputs a JSON file containing the timestamps at which the different
labels are applied or files are uploaded. The same information is also provided as a plot, as
in the example provided in Figure 2.

EPJ Web of Conferences 295, 04022 (2024)

CHEP 2023

e e

GCN_ARELIM SENT

+—— EMBRIGHT_READY

-~ mbta.p_astro.jsqn

superevent_id: $2309150x e bayestarhtmi
category: Production |

submitter: emfollow

created: 2023-09-15 14:05:17 UTC|

t_0: 1378821913.44225

—— bayestar.png

+ bayestar.multiorder.fits

T T t
0 50 100 150 200 250 300 350
Seconds since tp

Fig. 2. Output of the automated GWCelery acceptance tests on a sandboxed LLAI installation on
Kubernetes. The top panel shows the times at which labels are applied by GWCelery to a given
superevent in GraceDB. The bottom plot shows the times at which files associated to the superevent
are uploaded to GraceDB. to is the time of the astrophysical event.

5 Conclusions

We have prepared a set of tools (in the form of Helm charts, scripts and packages) to deploy
the LVK Low Latency Alert Generation Infrastructure (LLAI) on a Kubernetes cluster. This
opens the possibility of deploying the LLAI on a broad range of cloud infrastructures,
including private ones dedicated to scientific computing, with the only requirement of
providing a Kubernetes cluster (which nowadays is a very loose constraint).

Moreover, our strategy includes options for a sandboxed deployment that can be used
for the development and testing of single LLAI components in an isolated local
environment, as well as to test the integration of other components.

References

1. M. Branchesi, Multi-messenger astronomy: gravitational waves, neutrinos, photons,
and cosmic rays, J. Phys.: Conf. Ser. 718 022004 (2016)

2. J. Mclver, D. H. Shoemaker, Discovering gravitational waves with Advanced
LIGO, Contemp. Phys. 61:4 229-255 (2020)

3. D. Bersanetti, B. Patricelli, O.J. Piccinni, F. Piergiovanni, F. Salemi, V. Sequino,
Advanced Virgo: Status of the Detector, Latest Results and Future
Prospects, Universe 7 322 (2021)

4. T. Akutsu et al., Overview of KAGRA: Detector design and construction history, Progt.
Theo. Exp. Phys. 5 05A101 (2021)

5. LVK Collaboration, Mock Event Generator, Available at: https://
emfollow.docs.ligo.org/mock-event-generator/, https:/pypi.org/project/mock-event-
generator/

6. M. Maggiore, Gravitational Waves Volume 1: theory and experiments, Oxford
University Press (2008)

7. B.P. Abbott et al., Low-latency Gravitational-wave Alerts for Multimessenger

Astronomy during the Second Advanced LIGO and Virgo Observing Run, Astrophys.
J. 875/2 161 (2019)

https://doi.org/10.1051/epjcont’202429504022

https://emfollow.docs.ligo.org/mock-event-generator/
https://emfollow.docs.ligo.org/mock-event-generator/
https://pypi.org/project/mock-event-generator/
https://pypi.org/project/mock-event-generator/

EPJ Web of Conferences 295, 04022 (2024) https://doi.org/10.1051/epjconf/202429504022
CHEP 2023

8. Django Software Foundation, Django, Available at: https://djangoproject.com

9. M. Needleman, The Shibboleth Authentication/Authorization System, Ser. Rev. 30/3
(2004)

10. B. Chesneau, Gunicorn, Available at: https://gunicorn.org/

11. Apache Software Foundation, Apache HTTP server, Available at: https:/

httpd.apache.org/
12. The PostgreSQL Global Development Group, PostgreSQL, Available at: https://
www.postgresqgl.org/

13. LVK Collaboration, GWCelery, Available at: https://rtd.igwn.org/projects/gwcelery/en/
latest/

14. A. Solem and contributors, Celery, Available at: https://docs.celeryq.dev/en/stable/#
15. Redis Ltd., Redis, Available at: https://redis.io/

16. SCiMMA Collaboration, SCiMMA Hopskotch server, Available at: https://scimma.org/
hopskotch
17. Apache Software Foundation, Apache Kafka, Available at: https://kafka.apache.org/

18. NASA, General Coordinates Network, Available at: https://gcn.nasa.gov/
19. Cloud Native Computing Foundation, Kubernetes, Available at: https://kubernetes.io/

20. Cloud Native Computing Foundation, Helm, Available at: https://helm.sh/
21. LLAI deployment on Kubernetes, Available at: https://virgo.docs.ligo.org/computing/

wp6-multimessengerastronomy-mma/low-latency-test-facility-at-cnaf/igwn-kube-
gracedb/index.html

22. Traefik Labs, Traefik, Available at: https://tracfik.io/traefik/

23. InCommon, Trusted Access for Education and Research, Available at: https://
incommon.org/

24. Cloud Native Computing Foundation, CertManager, Available at: https://cert-
manager.io/

25. Lightweight Directory Access Protocol, Available at: https://Idap.com/

26. Bitnami by VMware, Redis Helm Chart, Available at: https://github.com/bitnami/
charts/tree/main/bitnami/redis

27. M. Movsisyan, Flower, Available at: https:/flower.readthedocs.io/en/latest/
28. Pallets Projects, Flask, Available at: https://palletsprojects.com/p/flask/
29. SCiMMA Collaboration, SCiMMA Hopskotch server container, Available at: https:/

github.com/scimma/scimma-server-container
30. Apache Software Foundation, Zookeeper, Available at: https://zookeeper.apache.org/

31. GitLab, Helm charts in the Package Registry: https://docs.gitlab.com/ee/user/packages/
helm_repository/
32. CNATF: https://www.cnaf.infn.it/en/institute/

33. Cloud Native Computing Foundation, Prometheus, Available at: https:/prometheus.io/

34. Grafana Labs, Grafana, Available at: https://grafana.com/
35. The Kubernetes Authors, Minikube, Available at: https://minikube.sigs.k8s.io/docs/
36. HashiCorp, Vault, Available at: https://www.vaultproject.io/

37. Docker Inc., The Dockerfile reference, Available at: https://docs.docker.com/engine/
reference/builder/

38. Okta Inc., JSON Web Tokens, Available at: https://jwt.io/

https://djangoproject.com
https://gunicorn.org/
https://httpd.apache.org/
https://httpd.apache.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://rtd.igwn.org/projects/gwcelery/en/latest/
https://rtd.igwn.org/projects/gwcelery/en/latest/
https://docs.celeryq.dev/en/stable/#
https://redis.io/
https://scimma.org/hopskotch
https://scimma.org/hopskotch
https://kafka.apache.org/
https://gcn.nasa.gov/
https://kubernetes.io/
https://helm.sh/
https://virgo.docs.ligo.org/computing/wp6-multimessengerastronomy-mma/low-latency-test-facility-at-cnaf/igwn-kube-gracedb/index.html
https://virgo.docs.ligo.org/computing/wp6-multimessengerastronomy-mma/low-latency-test-facility-at-cnaf/igwn-kube-gracedb/index.html
https://virgo.docs.ligo.org/computing/wp6-multimessengerastronomy-mma/low-latency-test-facility-at-cnaf/igwn-kube-gracedb/index.html
https://virgo.docs.ligo.org/computing/wp6-multimessengerastronomy-mma/low-latency-test-facility-at-cnaf/igwn-kube-gracedb/index.html
https://traefik.io/traefik/
https://incommon.org/
https://incommon.org/
https://cert-manager.io/
https://cert-manager.io/
https://ldap.com/
https://github.com/bitnami/charts/tree/main/bitnami/redis
https://github.com/bitnami/charts/tree/main/bitnami/redis
https://flower.readthedocs.io/en/latest/
https://palletsprojects.com/p/flask/
https://github.com/scimma/scimma-server-container
https://github.com/scimma/scimma-server-container
https://zookeeper.apache.org/
https://docs.gitlab.com/ee/user/packages/helm_repository/
https://docs.gitlab.com/ee/user/packages/helm_repository/
https://www.cnaf.infn.it/en/institute/
https://prometheus.io/
https://grafana.com/
https://minikube.sigs.k8s.io/docs/
https://www.vaultproject.io/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://jwt.io/

	1 Introduction
	1.1 Gravitational waves detection
	1.2 The low-latency alert generation infrastructure

	2 The Mock Event Generator
	3 Kubernetes deployment of the low-latency alert generation infrastructure
	3.1 CNAF and Minikube deployments

	4 Use-case: automated acceptance tests
	5 Conclusions
	References

