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Abstract
Within a relativistic quantum formalism we examine the role of second-order corrections caused
by the application of magnetic fields in two-dimensional topological and Chern insulators. This
allows to reach analytical expressions for the change of the Berry curvature, orbital magnetic
moment, density of states and energy determining their canonical grand potential and transport
properties. The present corrections, which become relevant at relatively low fields due to the small
gap characterizing these systems, determine the zero-field diamagnetic susceptibility of non-zero
Berry curvature systems and unveil additional contributions from the magnetic field.

1. Introduction

One of the most special features of the topological insulators (TIs) is the presence of protected helical states
on their boundaries which are responsible for their singular transport properties [1, 2]. Just as their
robustness against non-magnetic impurities or external fields, the quantization of their transport properties
also depend directly on the topology by means of a topological invariant which can be defined according to
the intrinsic symmetries of the system and its dimensionality [3–6]. In time-reversal symmetry broken
systems as well as in two-dimensional TIs this invariant is the first Chern number C obtained throughout
the integral of the Berry curvature over the momentum space [7–9]. Besides the well-known relation
between the electric conductivity and polarization with the topological invariant [10–12], great and original
advances have been done to address the thermoelectric response of systems with non-zero Berry curvature
in presence of electric and magnetic fields [13–19]. These studies, which not only include the previously
mentioned topological materials but also graphene-like systems and Weyl semimetals, take the
semi-classical equations of motion for the Bloch electrons or a non-relativistic quantum formalism to
derive magnetization and electric and thermal currents for a wide variety of compounds. These are the
bases used to study planar Hall and chiral anomaly effects in TIs and Weyl semimetals through Boltzmann
transport equation with in-plane magnetic fields [20, 21].

Recently, the original studies have been extended by addressing second-order corrections through the
Lagrangian formalism [22, 23]. However, determining these quantities in a purely quantum way for the
special case of TIs and Chern insulators, which present a non-trivial Berry curvature, involves some
difficulties. First, we have to deal with a relativistic system described through a Dirac Hamiltonian [9, 24],
where spin and angular momentum are no longer good quantum numbers of the system and the velocity
differs from the momentum as in their usual non-relativistic form v = p/m. Secondly, the evolution of
eigenstates needs to be considered adiabatically; i.e. keeping the final and initial states of the system the
same along the perturbation to preserve Berry phase effects. This leads us to treat with gauge dependent
and divergent corrections to the system eigenstates that are identified and removed to get the usual
equations of motion for non-zero Berry curvature systems in an adequate relativistic context for these
materials at low energies.

Directly from a Dirac Hamiltonian, we give analytical expressions to show how the introduction of a
perpendicular magnetic field in 2DTIs and Chern insulators produces a modulation of the Berry curvature,
which can affect its shape dramatically, but keeping the Chern number C of the system invariant. Behind

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac29fc
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6666-3080
mailto:daniel.baldomir@usc.es


New J. Phys. 23 (2021) 113002 D Faílde and D Baldomir

these results, we can find the additional contributions to the density of states, orbital magnetic moment and
energy corresponding to second-order corrections in perturbation theory. These terms must be taken into
account at relatively low external magnetic fields due to the small topological gap characterizing these
systems. In particular, we show that for the energy only those terms coming from the modified orbital
magnetic moment, which are associated with the correction to the Berry potential, are necessary, while the
other obtained with the semi-classical Lagrangian formalism in a relativistic particle-hole symmetric system
vanish [23]. Additionally, we observe a modified density of states that is strongly sensitive to the sign of the
magnetic field and whose dispersion differs substantially from its first-order expansion [13]. These results
can be directly introduced to determine explicitly the thermodynamic grand potential and hence the
transport magnitudes in such systems, or in the Dirac oscillator Hamiltonian, as an argument to
demonstrate how certain type of chiral photons or phonons can couple to the topological electrons
preserving their topology and time-reversal symmetry T̂ necessary for the presence of Kramer’s pairs
[25–28]. So it turns out that, besides being sensible to include other interactions and effects, the
perturbative analysis performed gives non-negligible field corrections to the orbital magnetization and
susceptibility while their zero-field expressions are consistent with the different formalism that we
complement and help to generalize considering the Berry curvature as a dynamical magnitude
[19, 23, 29, 30].

2. Results

The quantum-materials version of the Dirac equation substitutes the light velocity c of the particle by the
Fermi velocity of the electrons, as well as in some cases it incorporates a momentum dependence in the
mass 𝕞 associated with the k-dependent energy dispersion,

i�vFγ
μ∂μΨ+𝕞(k)v2

FΨ = 0, (1)

where γμ are the gamma matrices, μ = 1, 2, 3, 4 and ∂μ is the four-gradient. In two-dimensional systems,
where the term proportional to pz disappears, the Dirac Hamiltonian can be decoupled into two
time-reversal symmetry-related copies of a two-level Dirac Hamiltonian which is appropriate to introduce
us to the non-trivial topological formalism [31]. These Hamiltonians represent each one a Chern insulator
as equation (2) which are related by the simple substitution M(k) →−M(k) [9]. Thus, given that they are
non-interacting we can just analyze one of them, H, and all the results obtained will be extrapolated to the
other.

H =

(
M(k) �vFk−
�vFk+ −M(k)

)
. (2)

Here vF is the Fermi velocity, � is the reduced Planck constant, k± = kx ± iky and k =
√

k2
x + k2

y . The term

M(k) = M − Bk2, representing the gap (2M) in the center of the Brillouin zone and its parabolic
dependence, breaks the time-reversal symmetry of the system allowing a suitable characterization of the
topology by means of the topological invariant Chern number C derived from the integral of the Berry
curvature; i.e. C = 1/(2π)

∫
Ωn(k)dk being Ωn = −2 Im 〈∂kx n|

∣∣∂ky n
〉

ẑ the Berry curvature of the
eigenstate n. As it is known, to get a non-zero Chern number C = ±1 for the previous Hamiltonian, M and
B must have the same relative signs (MB > 0), implying that the incorporation of a spin–orbit coupling
gets crucial to produce the crossing between the bands that precede the non-trivial topological regime
[9, 10]. A different condition is defined when working with a Kane–Mele model [32]. The introduction of a
magnetic field B = (0, 0, B) in the z-direction breaks the translational symmetry in x and y directions,
which is evident by choosing an axial gauge A = (−By/2, Bx/2, 0) to enter the perturbation in the
Hamiltonian through the Peierls substitution p → p + eA, being −e the electron charge. In such situation,
the correction to the positive eigenstate by a constant uniform magnetic field has the following form up to
first order

|+〉 → |+〉+ i
eB

2

〈−| v̂y |∂kx+〉
2ξ

|−〉 − i
eB

2

〈−| v̂x

∣∣∂ky+
〉

2ξ
|−〉 (3)

being i the imaginary number and v̂j = (i/�)[Ĥ, r̂j] = �
−1∂kj H = vFσj − 2�

−1Bkjσz the velocity operator

in the j direction. We labeled |+〉 and |−〉 the eigenstates with energy ξ± = ±
√

M(k)2 + �2v2
Fk2 of

Hamiltonian (2), so that in the denominator it appears a factor 2ξ = ξ+ − ξ− provided that H is
particle–hole symmetric. The system eigenstates can be found to be
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|+〉 = 1√
2

⎡
⎢⎢⎢⎢⎣

√
1 +

M(k)

ξ

eiφ

√
1 − M(k)

ξ

⎤
⎥⎥⎥⎥⎦ (4)

|−〉 = 1√
2

⎡
⎢⎢⎢⎢⎣

√
1 − M(k)

ξ

−eiφ

√
1 +

M(k)

ξ

⎤
⎥⎥⎥⎥⎦ (5)

being φ = arctan(ky/kx). For simplicity, we proceed by setting the Hamiltonian parameter B as zero. As it
seems logical, it is worthy to note that the corrections in equation (3) are proportional to the product of the
magnetic field with the z-component of orbital magnetic moment m̂z = −e/2(x̂v̂y − ŷv̂x) of the Bloch
electrons [16, 33, 34].

|+〉 → |+〉+ eB

2

〈−| r̂ × v̂ |+〉
2ξ

|−〉 . (6)

However, in order to get a proper definition of the angular momentum and orbital magnetic moment on
the band n, the previous expression needs to be corrected by m = −e/2

(
r × (v − 〈vn〉)

)
, where

〈vn〉 = 〈n| vn |n〉 = �
−1∂kξ

n is the average velocity of the electrons in band n. This is equivalent to the
addition of the center-of-mass position rc and its velocity in the Lagrangian formalism [22, 23]. In this way,
we can define properly the orbital magnetic moment [13, 14, 16, 34],

mn(k) = −i
e

2�
〈∇kn| × (H − ξn) |∇kn〉 (7)

which results to be mn
z = �

−1eξnΩn for a two-dimensional system as equation (2), and the first-order
corrections to the energy ξn

1 = −m · B. Nevertheless, the difficulties arise in equation (3) when one
computes the matrix elements

〈−|
(

0 1
−1 0

)
|∂kx+〉+ 〈−|

(
0 −i
−i 0

) ∣∣∂ky+
〉
=

1

2k
, (8)

where it appears a divergence at zero particle momentum after gauge dependent terms have been removed.
This behaviour is also present when computing velocity corrections and hence this contribution must be
unphysical given that the force exerted by a magnetic field on a particle at rest is zero. We can solve this
problem by decoupling the different contributions produced by the perturbation through the other
definition of the velocity operator �

−1∂kH. In this way, we can identify the ill-defined terms and properly
obtain the corrections for the electron’s velocity. Rewriting equation (3) by using that

〈m| ∂kj H
∣∣∂kl

n
〉
= ∂kj (H |m〉)∗

∣∣∂kl
n
〉
−
〈
∂kj m

∣∣∣H
∣∣∂kl

n
〉

|+〉 → |+〉+ i
eB

4ξ

[(
1

�
∂kyξ

− 〈−| |∂kx+〉 − 1

�
∂kxξ

− 〈−|
∣∣∂ky+

〉)
+

ξ−

�

(〈
∂ky−

∣∣ |∂kx+〉 − 〈∂kx−|
∣∣∂ky+

〉)

− 1

�

(〈
∂ky−

∣∣H |∂kx+〉 − 〈∂kx−|H
∣∣∂ky+

〉)]
|−〉 (9)

it can be shown that the third term is purely gauge dependent by rotations eiφ of the eigenstates, i.e. for
|n′〉 = e−iφ |n〉 and |m′〉 = e−iφ |m〉 it changes its sign, and thus we can set one in which this term goes to

zero. On the other hand, the first and second terms give a contribution equal to − eBΩ+

4�

�vFk
M and − eBΩ+

4�

M
�vFk

respectively, being Ω+ = −�2v2
FM

2ξ3 the Berry curvature of the conduction band of Hamiltonian (2) and
leading their sum to equation (8) after rearranging terms.

Working with free divergent terms, i.e. the first, which must be considered twice due to the redefinition
of the orbital magnetic moment, we can now easily compute velocity corrections in both directions. In fact,
it is straightforward to see that corrections due to transverse components disappear and only longitudinal
terms remain. Thus, we obtain the following corrections to the velocity which apply to both conduction and
valence band by substituting their associated energy and curvature,

vn
j → 1

�
∂kjξ

n +
1

�
∂kjξ

n eB ·Ωn

�
+O(B2), (10)
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where vn
j = 〈n| v̂j |n〉 the average velocity in the band n for the component j and O(B2) = −1/(4�)

∂kjξ
n(eBΩ/�)2

�
2v2

Fk2/M2 second-order corrections. In a simple way, we are observing the coupling effects
between the magnetic field and the Berry curvature, which can be viewed like a magnetic field in the
k-space on each band of Hamiltonian (2). Thus, introducing a perpendicular B in these systems enhances or
decreases the field felt by their electrons depending on the relative sign between B and Ω. For instance, the
conduction band of Hamiltonian (2) for M < 0 has a positive Berry curvature in the z direction and
therefore an opposite magnetic field will decrease the velocity of their electrons and the Berry curvature
even doing it zero or changing its sign. Given that the Lorentz force is radial this process causes an
accommodation of the charge without involving any net current, as it can be checked by computing the
integral of the previous expression. This is intrinsically related to the renormalization process affecting the
phase-space volume and density of states for non-zero Berry curvature systems as we are going to show [13,
14, 22, 35].

Complementing these effects, we can also consider contributions associated with a slow time
dependence for B which incorporates a transverse term that can be easily transformed through Faraday’s
law into the well-known anomalous velocity using that Ex =

1
2
∂B
∂t y and Ey = − 1

2
∂B
∂t x. The obtained

expression up to first-order

vn
j → vn

j

(
1 +

eB ·Ω
�

)
+

e

�
(E ×Ωn)j (11)

represents the velocity of the electrons in the band n of a Chern insulator equation (2) or in one of the two
branches of a two-dimensional TI in a slowly variant time-dependent magnetic field. In contrast to the first
contribution, the second term is associated with the electromotive force E generated by the variation of B
which couples to the Berry curvature to produce a transverse and non-zero electric current.

Setting aside this latter case, we wondered, as we postulated before if one of the crucial magnitudes for
the topology and the transport, the Berry curvature, has experimented changes under this procedure. For
the calculation it is convenient to employ an axial gauge A = (−By/2, Bx/2, 0) from which, as we showed,
we are able to write the correction to the eigenstates in an easy to handle form

|+〉 → |+〉 − eB ·Ω+

2�

�vFk

M
|−〉 . (12)

Once we formulated the correction of the eigenstates the calculation of the Berry curvature corrections for
the conduction band can be achieved by applying −2 Im 〈∂kx+|

∣∣∂ky+
〉

or ∂kxAy − ∂kyAx in equation (12),
being Ai = i 〈+| |∂ki+〉 the Berry potential and |+〉 the modified eigenstate. In fact, it is straightforward to
show that the obtained corrections to the Berry potential are the same as the theoretically presented in
reference [22] using a Lagrangian formalism. After some algebra, it can be proved that Berry curvature
turns out in the following form

Ω+ → Ω+

(
1 + 2

eB ·Ω+

�

)
− 2Ω+ eB ·Ω+

�

�
2v2

Fk2

M2
(13)

demonstrating how a perpendicular magnetic field B modulates the Berry curvature and the field seen by
the electrons in these topological systems. Besides the familiar first term in equation (13) we have obtained
a second contribution in the corrections which affects the Berry curvature at k out of k = 0. This term is
important at intermediate values whereas it falls to zero when k →∞ and k = 0, although it can be shown
to be tuned and even to disappear if we consider some energy dependence in the field B.

Since the Berry curvature has been modified, the next step is to compute the first Chern number C given
its relation to the transport and hence with different physical observables. With this purpose, we can
consider a uniform magnetic field of the form B ∝ m2

ev
2
F/(�e) just like in reference [28], where the

translation of the Berry curvature into a real field b was made using the magnetic flux quantization of
helical orbits in terms of the Chern. As it has been analyzed, this field is closely related to the critical field Bc

needed to create electron–hole Schwinger pairs in the vacuum. However, this consideration is not necessary
and one can also proceed equally by extracting B from the integral and computing it numerically
(figure 1(a)). Choosing the first option, the term 2eB ·Ω/� can be written as −M3/ξ3 given that M = 𝕞ev

2
F

and hence

C =
1

2π

∫
Ω dk → 1

2π

∫
Ω

(
1 − 2

M3

ξ3
+

M

ξ

)
dk, (14)
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Figure 1. Berry curvature corrections for the conduction band of Hamiltonian (2) for different values of B = (0, 0, B). The inset
shows the numerical calculations of the Chern number C = 1/(2π)

∫
Ω dk. Plot parameters are (a) M = −0.025 eV,

vF = 6.17 × 105 m s−1, B = 0.0 eV Å2 and (b) B = −5.0 eV Å2.

where dk = 2πk dk. By using that Ω± = ±∂/∂k2(M/ξ) it is straightforward to see that the sum of second
and third terms in the integral cancel

1

2

[∫ ∞

0

1

2

∂

∂k2

(
M

ξ

)2

dk2 −
∫ ∞

0

1

2

∂

∂k2

(
M

ξ

)4

dk2

]
=

1

4

M2

ξ2

∣∣∣∣
∞

0

− 1

4

M4

ξ4

∣∣∣∣
∞

0

= 0. (15)

As consequence, the Chern number of the band does not change even though the Berry curvature does it.
This occurs independently of the magnitude and time dependence of B until Zeeman terms and
higher-order effects need to be considered or adiabaticity is lost. These calculations can also be derived for
non-zero but small B values (v2

F � 2BM/�
2). In this case, after neglecting terms in the energy derivative

∂kjξ in equation (9), the curvature corrections turn out into a more tedious expression

Ω+ →Ω+

(
1 + 2

eB ·Ω+

�
M

M − Bk2

(M + Bk2)2

)
− 2Ω+ eB ·Ω+

�

�
2v2

Fk2

(M + Bk2)2

(
1 − 3BM − Bk2

�2v2
F

)
(16)

but for which the Chern number C is constant and well-defined by an integer value, i.e. ±1 if MB > 0 and
0 if MB < 0 (figure 1(b)). Notice that here Ω+ = −�

2v2
F(M + Bk2)/(2ξ3). In both cases, there is a value

(B ≈ −2.5 T for the values of M and vF taken) for which the Berry curvature falls to 0 at the Γ point. This
value is not other than the one delimited by the equation b = 2m2

ev
2
F/(�e) in reference [28] with a

difference of a factor 1/2 which comes from the redefinition of the orbital magnetic moment. This opens
the possibility to enter in a regime where electron–hole pair creation might be experimentally accessible for
certain k values. At the same time, we find that the case with eBΩ/� = −1 making zero the density of states
coefficient D which arises when considering constant the Berry curvature [13], actually does not take place
for k = 0. For these values of B, second-order corrections need to be taken into account and the density of
states writes as D = 1 + eBΩ∗/� with Ω∗ the modified Berry curvature displayed in equations (14) or (16)
[22, 23]. This function has a minimum at k 
= 0 (figure 2) which can be tuned by B becoming zero for
sufficiently high magnetic fields. Nevertheless, the transverse electrical conductivity σxy = −e

(
∂ne/∂B

)
μ

, at

zero temperature and Fermi level μ lying inside the gap, remains to be quantized and equal to −e2/�C

being ne =
∫

dk
(2π)2

(
1 + eBΩ∗

�

)
the electron density [13].
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Figure 2. Modified density of states of the conduction band as a function of k and B. The right panel shows the momentum
dependence of D for the particular case B = −m2v2

F/(e�). The parameters used are the same as in figure 1(a).

Furthermore, we are also in position to write second-order corrections to the energy given that the
matrix element 〈−|ΔH |+〉 = −B 〈−|mz |+〉 has been computed before. Then, we directly obtain that

ξ → ξ − m · B +
1

2

(m · B)2

ξ

�
2v2

Fk2

M2
, (17)

where −m · B is the well-known first-order response and the third term comes from second-order effects.
This formula seems to enter in conflict with the one obtained from a semi-classical Lagrangian theory [23],
in which the energy up to second-order for a relativistic particle-hole symmetric system as equation (2) is

ξ̄ = ξ0 − m · B +
1

4
m · B

eB ·Ω
�

− 1

8
e2εsikεtjlBsBtgijαkl − eB(A∗ × v0), (18)

where gij = Re 〈∂in|
∣∣∂jn

〉
− 〈∂in| |n〉 〈n|

∣∣∂jn
〉

is the quantum metric in the k-space, αkl = ∂klξ0/�
2 the

inverse of the effective mass tensor, v0 = �
−1∂kξ and A∗

j = − eBΩ
�

�vFk
M i 〈n|

∣∣∂jm
〉

is the j component of the
modified Berry potential. But by computing gij and αkl for the positive energy eigenstate

gxx =
1

4

k2
y

k4

�
2v2

Fk2

ξ2
+Ω2 ξ2k2

x

�2v2
Fk2

gyy =
1

4

k2
x

k4

�
2v2

Fk2

ξ2
+Ω2 ξ2k2

y

�2v2
Fk2

gxy = gyx = −1

4

kxky

k4

�
2v2

Fk2

ξ2
+Ω2 ξ

2kxky

�2v2
Fk2

αkl = δkl
v2

F

ξ
− �

2v4
Fkkkl

ξ3

it is worthy to show that actually, the third and fourth terms cancel and only the one coming from the
corrections to the Berry potential holds, recovering the energy dispersion presented in equation (17). In this
way, we can reach the grand potential F determining the transport properties of the TIs in presence of
perpendicular magnetic fields

F = −kBT

∫
d2k

(2π)2

(
1 +

eBΩ∗

�

)
ln(1 + e−(ξ̄−μ)/kBT) (19)

which incorporates the modified density of states and energy obtained with the changes of the Berry
curvature and orbital magnetic moment. From here, we can compute the different transport magnitudes
and coefficients such as, for instance, the system orbital magnetization M and susceptibility χ. Thus, for
μ = 0 and zero temperature, it is immediate to obtain the dependency of M with the external magnetic
field B

M = − e2v2
F

6π |M|B − 3e3
�v4

F

128πM3
B2 +

e4
�

2v6
F

1260π|M|5
B3 (20)

and the orbital magnetic susceptibility χ = −(∂2F/∂B2) with no more ingredients as their band gap 2M
and Fermi velocity. Remarkably, we find a diamagnetic zero field susceptibility χ = −e2v2

F/(6π |M|), which
is identical to that obtained in reference [23] (χ/χ0 = −9π2t/(6π |M|) with t the first-neighbor hopping
parameter), plus additional B-dependent terms which are not negligible for systems with small M. Thus,
despite the first and third terms give always a diamagnetic and paramagnetic susceptibility respectively, the

6
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second is dependent on the sign of the gap and hence it is expected to show differences between the
topological non-trivial and trivial regimes. This stands for individual Chern systems while the linear term in
B in the susceptibility cancels for time-reversal symmetric systems as the change M →−M gives opposite
contributions. Finally, notice that for zero gap systems (M = 0) these corrections are not well-defined since
the Berry curvature vanishes.

One outstanding application behind this relativistic formalism is its implementation to study
thermoelectric features of TIs. In this case, it might not be desirable to introduce magnetic fields given that
they break the time-reversal symmetry necessary for the preservation of Kramer’s pairs, which are
responsible for their high efficient thermoelectric response [36, 37]. Notice that the Hamiltonian of a 2DTI
is formed by two time-reversal copies of Hamiltonian (2), and introducing the same field on both
non-interacting systems implies the breakdown of temporal invariance. However, there exists an equivalent
form to introduce these interactions in a 4 × 4 Dirac Hamiltonian without breaking time-reversal
symmetry. That way is the Dirac oscillator Hamiltonian H = M(k)β +α · (p − imωrβ) [25, 27], which in
essence incorporates a magnetic field B = 2mω/e with opposite signs on each one of the two time-reversal
symmetry-related Hamiltonians given by equation (2) and its time-reversal counterpart H′ = T̂H(k)T̂−1,
being T̂ the time-reversal symmetry operator [9]. The Dirac oscillator is a powerful tool to examine
relativistic interactions between electrons and chiral photons or thermal excitations in TIs [26–28]. Besides
the possibility to study higher-order effects, we have shown that these processes are compatible with the
preservation of the topology and time-reversal symmetry, implying for the transport that at low fields the
electric σ = e2/h(C − C

′
) and electronic thermal conductivities κe = πk2

B/(6�) (C − C′) can remain
quantized, being C and C′ the Chern number of H and H′ respectively [38]. Maintaining and combining
these values with a good Seebeck coefficient and a low lattice thermal conductivity is determinant to obtain
higher efficient thermoelectric devices [36, 37, 39].

3. Conclusions

In summary, we provide a relativistic quantum derivation for two-dimensional topological systems with
non-zero Berry curvature in presence of a perpendicular magnetic field. We have found that the change in
the velocity of the electrons due to the coupling of the magnetic field and the Berry curvature involves new
corrections in their energy and magnetic moment which is associated with their relativistic nature. This is
accompanied by a modulation of the Berry curvature, suitable to work on the Bloch electron dynamics, that
keeps the Chern number of the system invariant opening the door to study higher-order non-trivial
magnetic and thermoelectric effects in Chern and TIs.
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