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Abstract: We are concerned with the Riemann problem for the isentropic Euler equations of mixed

type in the dark energy fluid. This system is non-strictly hyperbolic on the boundary curve of elliptic

and hyperbolic regions. We obtain the unique admissible shock waves by utilizing the viscosity

criterion. Assuming fixed left states are in the elliptic and hyperbolic regions, respectively, we

construct the unique Riemann solution for the mixed-type models with the initial right state in

some feasible regions. Finally, we present numerical simulations which are consistent with our

theoretical results.
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1. Introduction

In this paper, we consider the isentropic Euler equations of gas dynamics as follows:

{

ρt + (ρu)x = 0,

(ρu)t +
(

ρu2 + p(ρ)
)

x
= 0,

(t, x) ∈ R
+ ×R, (1)

with the equation of state (EoS)

p(ρ) = ρ ln ρ, ρ > 0, (2)

where ρ, u, and p represent the density, the velocity, and the pressure, respectively [1].
System (1) with the EoS

p(ρ) = Aρ ln(B
ρ

H2
) + Cρ2 + D

1

ρ
+ Eρ (3)

is called a dark energy fluid system, where A to E are constants, and H denotes the Hubble
rate of our universe [2]. The use of a generalized dark energy EoS (3) makes possible the
existence of de Sitter attractors, which has significant implications for understanding the
nature of our universe. The dark energy fluid (3) is also used to describe the scenarios
of dark matter–dark energy interaction [3]. In our work, we mainly study the Riemann
solutions of dark energy (1) in terms of a logarithmic-corrected power-law fluid, that is, (2),
which is a special form of (3) satisfying A = B = H = 1 and C = D = E = 0. It is
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interesting that the EoS of (2) may have a deep relation with equations of state found in
condensed matter fluids [4].

It is well known that the system (1) is the isentropic Euler equations of gas dynamics.
The pressure p(ρ) varies for different models. The system (1) for the ideal polytropic gas
satisfies p = p0ργ, where p0 > 0 and γ ≥ 1 is the adiabatic exponent. It was well studied
in [1,5–13]. If the pressure p = − a

ρµ , a > 0, µ ∈ (0, 1], it is the generalized Chaplygin gas

model in [14], which is a proposal to explain the origin of dark energy as well as dark
matter through a single fluid. For µ = 1, it is for the Chaplygin gas model, and δ-shock
waves may occur for the Riemann problem [15]. With p = A ln ρ, it has been introduced as
a natural and robust candidate for a new unification of dark matter and dark energy [16].
It is also used to describe our universe filled with a single dark fluid [17]. For the above
models, p(ρ) is strictly increasing, which means that the system is globally hyperbolic.
Noting that the isentropic Euler equations with the terms from (3), such as ρ2, − 1

ρ , and ρ,

have been well studied, we are interested in the Riemann solutions for the isentropic Euler
equations (1) with the EoS (2). To our knowledge, there are no related results. Since (2) is
not monotonous any more, (1) and (2) are the isentropic Euler equations of mixed type.

The pathology of mixed-type systems concerns the ill-posedness [18] of the initial
value problem. More precisely, there is no uniqueness of the Riemann problem if one
considers the whole set of admissible solutions [19]. For example, the pressure of van der
Waals fluid [20,21] is

p =
RT

v − b
− a

v2
, (4)

where v = 1
ρ denotes the specific volume. Considering the Riemann data

(ρ, u)t=0 =

{

(ρl , ul), x < 0,

(ρr, ur), x > 0,
(5)

satisfying ρl < α < β < ρr, where α and β are constants such that p′(ρ) > 0 for ρ /∈ [α, β]
and p′(ρ) < 0 for ρ ∈ (α, β), it was often used to study the phase transitions. In Lagrangian
coordinates, (1) is transformed into

{

vt − ux = 0,

ut + p(v)x = 0,
(6)

which is called a p−system. There exist multiple Riemann solutions for (4) and (6) with (5)
because of the stationary shocks [22] or nonclassical shocks [23]. The nonclassical shocks
violate the classic Lax entropy condition [24] and Liu entropy condition [25]. For more
models which contain both hyperbolic and elliptic regions, the reader is referred to [26–36].

System (1) with (2) is hyperbolic for ρ ≥ 1/e and elliptic for 0 ≤ ρ < 1/e. It is
different from the van der Waals fluid model [19,23]. There is only one hyperbolic region
for (1) with (2). However, in van der Waals fluid, there are two hyperbolic regions (0, α]
and [β,+∞) where the Riemann solvers preserve the kinetic function [19]. In addition,
system (1) with (2) is also different from the hyperbolic conservation laws [37]. The Lax
entropy condition and the Liu entropy condition may not make sense in an elliptic region.
Thus, if the initial left state (5) is in the elliptic region, we need a new entropy condition to
guarantee the uniqueness.

In this paper, we provide the viscosity admissibility criterion to pick the admissible
shock waves when the initial states (5) are in the elliptic region. According to the mono-
tonicity of density ρ in a travelling wave, we obtain an entropy condition which makes
sense for the disconnected Hugoniot curve and self-interaction Hugoniot curve. If the initial
states (5) are in the hyperbolic region, we obtain that it is equivalent to the classical Lax
entropy condition. In addition, we obtain the unique Riemann solutions for the initial data
in the feasible region. Finally, we present the numerical simulations for the solutions. The
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Gibbs phenomenon [38] appears at the boundary of the shock wave in the Euler equations
of mixed type.

The paper is organized as follows. In Section 2, we introduce some basic quantities
and properties for (1) and (2). In Section 3, we obtain the Hugoniot curves by the Rankine–
Hugoniot conditions. Then, we propose an entropy condition by the viscosity criterion to
obtain the admissible shock waves. In Section 4, the rarefaction waves are obtained through
the Riemann invariants. In Section 5, the unique Riemann solutions for the initial states (5)
in the solvable regions are constructed by the elementary waves. In Section 6, we present
numerical tests to verify our theoretical results. In Section 7, we give a discussion about
further work. In Section 8, we give a conclusion.

2. Preliminaries

In this section, we introduce the basic quantities and properties for (1) and (2). For the
smooth solution, we know that (1) is equal to the following equations:

{

ρt + uρx + ρux = 0,

ut +
ln ρ+1

ρ ρx + uux = 0.
(7)

The eigenvalues are

λ1(ρ, u) = u −
√

ln ρ + 1, λ2(ρ, u) = u +
√

ln ρ + 1. (8)

If ρ ≥ 1
e , the system is hyperbolic. In particular, if ρ = 1

e , the system is non-strictly

hyperbolic, that is, λ1

(

1
e , u
)

= λ2

(

1
e , u
)

= u. And if 0 < ρ <
1
e , the system is elliptic.

Hereafter, we take m = ρu. On the (ρ, m) plane, we divide the plane into four pieces as in
Figure 1, where the elliptic region satisfies

E = {(ρ, m)|0 < ρ <
1

e
},

and the hyperbolic region satisfies H = H1
⋃

H2
⋃

H3 with

H1 = {(ρ, m)|ρ ≥ 1

e
, 0 < λ1 < λ2},

H2 = {(ρ, m)|ρ ≥ 1

e
, λ1 < 0 < λ2},

H3 = {(ρ, m)|ρ ≥ 1

e
, λ1 < λ2 < 0}.

ρ

m

1
e

1√
e

E H1

λ2 = 0

0

λ1 = λ2

λ1 = 0

H2

H3

Figure 1. The elliptic region E and the hyperbolic regions H1, H2, and H3.
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The corresponding right vectors are

r⃗1 =

(

−1,

√

ln ρ + 1

ρ

)T

, r⃗2 =

(

1,

√

ln ρ + 1

ρ

)T

. (9)

According to

∇λ1(ρ, u) · r⃗1 = ∇λ2(ρ, u) · r⃗2 =
1

2ρ
√

ln ρ + 1
+

√

ln ρ + 1

ρ
> 0, (10)

we know that this system (1) with (2) is genuinely nonlinear when the states are in the
hyperbolic region. Moreover, according to the definition of the Riemann invariants [37]
which satisfy ∇ωi · r⃗i = 0, i = 1, 2, we obtain the two Riemann invariants as follows:







ω1 = m
ρ + 2

3 (ln ρ + 1)
3
2 ,

ω2 = m
ρ − 2

3 (ln ρ + 1)
3
2 .

(11)

3. Shock Waves

In this section, we devote ourselves to the admissible shock waves. We first obtain the
possible discontinuity curves in Section 3.1. Then, by the viscosity criterion, we propose
the entropy condition (32) in Section 3.2. Finally, for the fixed left state (5) in different
regions, we provide the shock wave curves and their properties on the (ρ, m) phase plane
in Section 3.3.

3.1. Discontinuity Curves

Let x(t) be the discontinuity curve. By the Rankine–Hugoniot (R-H) conditions [37],

{

[ρ]dx
dt = [m],

[m]dx
dt = [m2

ρ + p(ρ)],
(12)

where [a] = a − al , we have that if [ρ] = 0, then it holds that [m] = 0. The trivial solution is
constant. If [ρ] ̸= 0, we have that

[m]2 = [ρ]

[

m2

ρ
+ p(ρ)

]

. (13)

It means that

ρρl

(

m

ρ
− ml

ρl

)2

= (ρ − ρl)(p(ρ)− p(ρl)), (14)

which is called the Hugoniot curve. Thus, the right side of (14) should hold that

(ρ − ρl)(p(ρ)− p(ρl)) ≥ 0. (15)

We now discuss the sufficient condition of (15) with the fixed ρl . According to (2), we
know that p′(ρ) = ln ρ + 1 and p′′(ρ) = 1

ρ . Then, we depict the pressure p in Figure 2.

If 0 < ρl < 1, there is always a ρ∗l satisfying p(ρ∗l ) = p(ρl), that is, ρ∗l ln ρ∗l = ρl ln ρl .
From Figure 2, all the points satisfying ρ > ρ∗l make (15) hold. If the fixed ρl ≥ 1, those
points satisfying ρ > ρl make (15) hold. Then, there are two discontinuity curves satisfying

m

ρ
− ml

ρl
= ±

√

(ρ − ρl)(ρ ln ρ − ρl ln ρl)

ρρl
, (16)
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or

m − ml

ρ − ρl
=

ml

ρl
±
√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
. (17)

ρ

p

ρl(ρ
∗
l )

ρ∗l (ρl)
1
e

p = ρ ln ρ

1

Figure 2. The picture of p = ρ ln ρ, where ρ∗l ln ρ∗l = ρl ln ρl when 0 < ρl < 1.

We depict the Hugoniot curves (16) or (17) as in Figure 3 for three cases with ρl in
different regions: (a) 0 < ρl <

1
e , (b) 1

e ≤ ρl < 1, (c) ρl ≥ 1, respectively.

ρ

m

1
e0 ρlρ

m

1
e0 ρl ρ

m

1
e0 ρl

(a) 0 < ρl <
1
e

(b) 1
e ≤ ρl < 1 (c) ρl ≥ 1

Figure 3. The Hugoniot curves with ρl in different regions. For case (a): 0 < ρl <
1
e and

(b): 1
e ≤ ρl < 1; it holds that ρ > ρ∗l . For case (c): ρl ≥ 1; it holds that ρ > 0.

From Figure 3, if the initial left state is in the hyperbolic region, the Hugoniot curve
of the mixed system (1) with (2) is not a simple curve. The initial left state is the self-
intersection point of the Hugoniot curve. If the initial left state is in the elliptic region, the
Hugoniot curve is not continuous. The initial left state is an isolated point.

3.2. Admissible Criterion

In this subsection, we consider the admissibility of the discontinuity curves by the
viscosity criterion [39]. The viscosity system of (1) takes the form







ρt + mx = ερxx,

mt +
(

m2

ρ + ρ ln ρ
)

x
= 0,

(18)

where ε is the assumed viscosity constant. Assume that (s; ρl , ml ; ρr, mr) satisfies the R-H
conditions (12), where s denotes the shock speed. This discontinuity curve is said to be
admissible according to the viscosity criterion if the wave is a limit as ε → 0+ of the
traveling wave solution (P( x−st

ε ), M( x−st
ε )) of the system (18) with the boundary condition

(P(−∞), M(−∞); P(+∞), M(+∞)) = (ρl , ml ; ρr, mr), (19)
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where (ρl , ml ; ρr, mr) satisfies (16), ρr ̸= ρl and ρr ≥ ρ∗l . For simplicity of notation, we use ζ

instead of x−st
ε . Then, the viscosity system (18) becomes







P′(−s) + M′ = P′′,

M′(−s) +
(

M2

P + P ln P
)′

= 0,
(20)

where ′ = d
dζ . We have that

P′(−s2) +

(

M2

P
+ P ln P

)′
= sP′′. (21)

The integration of the first equation of (20) and (21) from −∞ to ζ coupled with (19) yields

{

(P(ζ)− ρl)(−s) + M(ζ)− ml = P′(ζ),

(P(ζ)− ρl)(−s2) +
(

M2

P + P ln P
)

(ζ)− c = sP′(ζ),
(22)

where c =
m2

l
ρl

+ ρl ln ρl . Then, we have the following result.

Lemma 1. The traveling wave solution P(ζ) of (20), which connects the left state ρl and right
state ρr, is strictly monotonous.

Proof of Lemma 1. We now prove that there is no point such that P′(ζ) = 0. Using proof
by contradiction, we assume that there is a ζ0 satisfying P(ζ0) = P0 and P′(ζ0) = 0, where
P0 ̸= ρl , ρr. Then, at ζ0, we have that

(s − ml

ρl
)2 =

P0(P0 ln P0 − ρl ln ρl)

ρl(P0 − ρl)
(23)

by (22). Because of P′(−∞) = P′(+∞) = 0, it holds that

s =
mr − ml

ρr − ρl
(24)

by the first equation of (22). Connected with (17), we have that

(s − ml

ρl
)2 =

ρr(ρr ln ρr − ρl ln ρl)

ρl(ρr − ρl)
. (25)

Thus, by (23) and (25), it should hold that

ρr(ρr ln ρr − ρl ln ρl)

ρr − ρl
=

P0(P0 ln P0 − ρl ln ρl)

ρl(P0 − ρl)
. (26)

Let

G(ρ) =
ρ(ρ ln ρ − ρl ln ρl)

ρ − ρl
; (27)

then, we know that

G′(ρ) =
ρ(ln ρ + 1)− ρl

ρ ln ρ−ρl ln ρl
ρ−ρl

ρ − ρl
. (28)

Because in (28), ln ρ + 1 represents the slope of the tangent line to the curve p at

the point ρ, and
ρ ln ρ−ρl ln ρl

ρ−ρl
represents the slope of the secant line to the curve p passing

through points ρ and ρl , we next analyze the monotonicity of G(ρ) by using the property
of p. Now, we discuss three cases for the initial data.
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Case 1. If 0 < ρl <
1
e , we know that ρr ≥ ρ∗l > ρl and

ρr ln ρr − ρl ln ρl

ρr − ρl
≥ 0, (29)

which means P0 ≥ ρ∗l > ρl by (26). See Figure 4a. In Figure 4, the solid lines denote the
secant lines which connect the left state ρl and the right state ρr. The dashed lines denote
the tangent line at the right state ρr.

ρ

p

ρlρ∗l ρr
ρ

p

ρlρ∗l
ρrρ

p

ρl ρ∗l
ρr

(a) (b) (c)

Figure 4. The three cases for the initial data in different regions. (a) 0 < ρl <
1
e , ρr > ρ∗l .

(b) ρl >
1
e , ρr < ρl . (c) ρl >

1
e , ρr > ρl .

For all ρ > ρ∗l , we have

ln ρ + 1 >
ρ ln ρ − ρl ln ρl

ρ − ρl
, (30)

where the left side is the slope of the tangent line at ρ, and the right side is the slope of
the secant line from ρl to ρ. Then, it holds that G′(ρ) > 0 . Thus, (26) holds if and only if
P0 = ρr, which contradicts that P0 is different from ρr.

Case 2. If ρl ≥ 1
e , we know that ρr ≥ ρ∗l and (29) holds, which means P0 ≥ ρ∗l by (26).

In this case, ρ∗l ≤ P0 < ρl , then for any ρ∗l ≤ ρ < ρl , it holds that

ln ρ + 1 <
ρ ln ρ − ρl ln ρl

ρ − ρl
, (31)

which means that G′(ρ) > 0. See Figure 4b.
Case 3. If ρl ≥ 1

e and ρr > ρl , which means P0 > ρl , then (30) holds, which also means
that G′(ρ) > 0. See Figure 4c.

In conclusion, (26) holds if and only if P0 = ρr, which contradicts that P0 is different
from ρr. We know that P(ζ) is strictly monotonous from −∞ to +∞.

According to Lemma 1, if P > ρl , then it holds that P′(ζ) > 0. If P < ρl , it holds

that P′(ζ) < 0. Thus, we have that
P′(ζ)
P−ρl

> 0. For any P between ρl and ρr, it holds that

M−ml
P−ρl

− P′(ζ)
P−ρl

<
M−ml
P−ρl

. From the first equality of (22), we have that

s =
mr − ml

ρr − ρl
<

m − ml

ρ − ρl
, as ε → 0+ (32)

for any ρ between ρl and ρr. As the viscosity admissibility criterion for a discontinuity, (32)
is called the entropy condition.

3.3. Admissible Shock Waves

In this subsection, we pick up the unique admissible shock waves by the entropy
condition (32) from the Hugoniot curves (16) and analyze the properties of them. Assume
that the left state is (ρl , ml) and the right state is (ρ, m). To solve the Riemann problem of (1)
by a single shock wave, we categorize the initial data into four distinct cases, as follows:
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I, ρ > ρl ≥ 1
e ; II, ρ >

1
e > ρl ; III, ρl > ρ ≥ 1

e ; IV, ρl >
1
e > ρ. Next, we analyze the shock

waves case by case.
Case I. ρ > ρl ≥ 1

e . It means that the initial data are in the hyperbolic region. To obtain
the admissible shock wave, we pick it from the discontinuity curves (17) satisfying (32).

If the shock wave satisfies

m − ml

ρ − ρl
=

ml

ρl
−
√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
, (33)

we have that














mr−ml
ρr−ρl

= ml
ρl

−
√

ρr(ρr ln ρr−ρl ln ρl)
ρl(ρr−ρl)

,

m−ml
ρ−ρl

= ml
ρl

−
√

ρ(ρ ln ρ−ρl ln ρl)
ρl(ρ−ρl)

,

(34)

where the state (ρ, m) satisfies ρl < ρ < ρr. It holds that G′(ρ) > 0 where G(ρ) satisfies (27).
Thus, it holds that

ρr(ρr ln ρr − ρl ln ρl)

ρr − ρl
>

ρ(ρ ln ρ − ρl ln ρl)

ρ − ρl
, (35)

which means the shock wave satisfies the entropy condition (32). In addition, according to
ρ > ρl >

1
e and

ln ρl + 1 <
ρ ln ρ − ρl ln ρl

ρ − ρl
< ln ρ + 1,

we know that the speed of the shock wave satisfies

s =
m − ml

ρ − ρl
= ul −

√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
< ul −

√

ln ρl + 1 = λ1(ρl , ul). (36)

And it holds that

s =
m − ml

ρ − ρl
= u −

√

ρl(ρ ln ρ − ρl ln ρl)

ρ(ρ − ρl)
> u −

√

ln ρ + 1 = λ1(ρ, u). (37)

Conditions (36) and (37) are the Lax entropy conditions for 1-shock waves.
If the shock wave satisfies

m − ml

ρ − ρl
=

ml

ρl
+

√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
, (38)

we have that














mr−ml
ρr−ρl

= ml
ρl

+

√

ρr(ρr ln ρr−ρl ln ρl)
ρl(ρr−ρl)

,

m−ml
ρ−ρl

= ml
ρl

+

√

ρ(ρ ln ρ−ρl ln ρl)
ρl(ρ−ρl)

,

(39)

where the state (ρ, m) satisfies ρl < ρ < ρr. Taking it into (32), it holds that

ρr(ρr ln ρr − ρl ln ρl)

ρr − ρl
<

ρ(ρ ln ρ − ρl ln ρl)

ρ − ρl
. (40)

It contradicts with (35) for ρr > ρ > ρl >
1
e . Thus, (38) is not an admissible shock wave.
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Based on the above analysis, we obtain the 1-shock wave denoted by S1, which satisfies

S1(ρl , ml) :











m − ml

ρ − ρl
=

ml

ρl
−
√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
, ρ > ρl ≥

1

e
,

λ1(ρ, u) < s < λ1(ρl , ul).

(41)

In addition, along the shock wave S1, we have that

d

dρ
(

m − ml

ρ − ρl
) = − G′(ρ)

2
√

ρlG(ρ)
< 0, (42)

where G(ρ) is defined by (27). Now, we depict the 1-shock wave S1(ρl , ml) for the left state
(ρl , ml) in the hyperbolic region H1 with a solid curve, as shown in Figure 5. Hereafter, we
mark L⃝ as the left state (ρl , ml) shown in Figure 5. The dotted curves denote the shock
waves S1(ρl , ml) from the left state (ρl , ml), which is in hyperbolic region H2 or H3.

ρ

m

1
e

1√
e

E H1

λ2 = 0

0

λ1 = λ2
λ1 = 0

H2

H3

S1L⃝

Figure 5. The first family shock wave S1(ρl , ml) if the left state (ρl , ml) is in the hyperbolic region.

Remark 1. For this case, if the left state is in the region of H1 (see Figure 5), there is a stationary

shock wave such that dx
dt = 0, that is, m = ml and m2

ρ + ρ ln ρ =
m2

l
ρl

+ ρl ln ρl .

Case II. ρ >
1
e > ρl . It means that the left state (ρl , ul) is in the elliptical region and

the right state (ρ, u) is in the hyperbolic region. There exists a unique ρ∗l >
1
e such that

ρ∗l ln ρ∗l = ρl ln ρl . If the discontinuity curve exists, it must hold that ρ ≥ ρ∗l >
1
e > ρl . For

this case, the shock wave which should satisfy (17) is no longer a continuity curve. And
there is a jump from the left state to the right state. Similar to Case I, according to the
entropy condition (32), we obtain the 1-shock wave denoted by SE

1 (see Figure 6) satisfying

SE
1 (ρl , ml) :











m − ml

ρ − ρl
=

ml

ρl
−
√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
, ρ ≥ ρ∗l >

1

e
> ρl ,

λ1(ρ, u) < s ≤ ul .

(43)

In Figure 6, the dotted curves denote the SE
1 from (ρ∗l , m∗

l ) where the left state with
the same ρl and the different ml is in the elliptic region. Along this shock wave SE

1 , we
have that

d

dρ
(

m − ml

ρ − ρl
) = − G′(ρ)

2
√

ρlG(ρ)
< 0. (44)
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ρ

m

1
e

1√
e

E H1

λ2 = 0

0

λ1 = λ2
λ1 = 0

H2

H3

SE
1

L⃝

ρ∗

Figure 6. The first family shock wave SE
1 if the left state (ρl , ml) is in the elliptic region.

Case III. ρl > ρ ≥ 1
e . It means that both left and right states are in the hyperbolic

region. Then, by the entropy condition (32), we obtain the 2-shock wave denoted by S2 (see
Figure 7), which satisfies

S2(ρl , ml) :











m − ml

ρ − ρl
=

ml

ρl
+

√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
, ρl > ρ ≥ 1

e
,

λ2(ρ, u) < s < λ2(ρl , ul).

(45)

The dotted curves denote the S2 from the left state (ρl , ml) in a different hyperbolic
region. Along this shock wave S2, we have that

d

dρ
(

m − ml

ρ − ρl
) =

G′(ρ)

2
√

ρlG(ρ)
> 0. (46)

ρ

m

1
e

1√
e

E H1

λ2 = 0

0

λ1 = λ2
λ1 = 0

H2

H3

S2

L⃝

Figure 7. The second family shock wave S2 if both the left state (ρl , ml) and the right state are in the

hyperbolic region.

Case IV. ρl >
1
e > ρ. It means that the left state (ρl , ul) is in the hyperbolic region and

the right state (ρ, u) is in the elliptical region. There are two subcases.
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Subcase IV.1. If 1
e < ρl ≤ 1, there exists a unique ρ∗l <

1
e such that ρ∗l ln ρ∗l = ρl ln ρl . If

the discontinuity curve exists, it must hold that ρl >
1
e > ρ > ρ∗l . Then, according to the

entropy condition (32), we obtain the 2-shock wave denoted by SE
2 (see Figure 8) satisfying

SE
2 (ρl , ml) :











m − ml

ρ − ρl
=

ml

ρl
+

√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
, ρl >

1

e
> ρ > ρ∗l ,

u ≤ s < λ2(ρl , ul).

(47)

In Figure 8, the dotted curves denote the SE
2 from the boundary of the elliptic region to

the (ρ∗l , m∗
l ), where the left state (ρl , ml) is in a different hyperbolic region with the same ρl

and different ml . Along this shock wave SE
2 , we have that

d

dρ
(

m − ml

ρ − ρl
) =

G′(ρ)

2
√

ρlG(ρ)
> 0. (48)

ρ

m

1
e

1√
e

E H1

λ2 = 0

0

λ1 = λ2
λ1 = 0

H2

H3

SE
2

L⃝

ρ∗l 1

Figure 8. The second family shock wave SE
2 for the left state (ρl , ml) in the hyperbolic region and the

right state in the elliptic region.

Subcase IV.2. If ρl > 1, the 2-shock wave denoted by SĒ
2 (see Figure 9) satisfies

SĒ
2 (ρl , ml) :











m − ml

ρ − ρl
=

ml

ρl
+

√

ρ(ρ ln ρ − ρl ln ρl)

ρl(ρ − ρl)
, ρl > 1 >

1

e
> ρ > 0,

u < s < λ2(ρl , ul).

(49)

In Figure 9, the dotted curves denote the SĒ
2 from the left state (ρl , ul) in the different

hyperbolic region to the original point. Along this shock wave SĒ
2 , we have that

d

dρ
(

m − ml

ρ − ρl
) =

G′(ρ)

2
√

ρlG(ρ)
> 0. (50)

Based on the above analysis, we know that for Case I, the wave is the first family
shock wave which is in the hyperbolic region. For Case II, the wave is also the first family
shock wave, while it is not connected. For case III, the wave is the second family shock
wave which is in the hyperbolic region. For case IV, the wave is the second family shock
wave, while it is not connected. In fact, for case III and case IV, the two shock waves form a
continuity curve for the same left state.
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ρ

m

1
e

1√
e

E H1

λ2 = 0

0

λ1 = λ2

λ1 = 0

H2

H3

SĒ
2

L⃝

1

Figure 9. The second family shock wave SĒ
2 if the left state (ρl , ml) is in the hyperbolic region, while

the right state can be in the hyperbolic region or in the elliptic region.

Remark 2. We illustrate that the notations S, SE, and SĒ all denote the shock waves. But there is
a little difference. If both the left state and right state are in the hyperbolic region, the shock wave
is marked S. If one of the two states is in the hyperbolic region and the other one is in the elliptic
region, the shock wave is marked SE. If one of the states is in the hyperbolic region and the other
state can be in both regions, the shock wave is marked SĒ. For example, for Case III, the shock wave
is S2. For Case IV, the shock wave is SE

2 . Then, it holds that SĒ
2 = S2 ∪ SE

2 .

4. Rarefaction Waves

A rarefaction wave is a continuous solution of (1) of form (ρ, u)(ξ), ξ =
x

t
. The

k-rarefaction wave curves are the sets of states that are connected to (ρl , ml), which means
that the k-Riemann invariants ωk are constants, k = 1, 2. Then, we obtain the equations of
the 1-rarefaction wave denoted by R1 and 2-rarefaction wave denoted by R2 (see Figure 10).
In Figure 10, the dotted curves denote R1 from (ρl , ml) to the boundary of the elliptic region
and R2 from (ρl , ml) to infinity.

ρ

m

1
e

1√
e

E H1

λ2 = 0

0

λ1 = λ2
λ1 = 0

H2

H3

R1 L⃝

R2

Figure 10. The rarefaction waves R1 and R2 if the left state (ρl , ml) is in the hyperbolic region H.

The 1-rarefaction wave R1 satisfies

R1(ρl , ml) :

{

m − ml =
ml
ρl
(ρ − ρl)− 2

3 ρ
(

(ln ρ + 1)
3
2 − (ln ρl + 1)

3
2

)

, ρl > ρ >
1
e ,

ξ = u −
√

ln ρ + 1.
(51)



Mathematics 2024, 12, 2444 13 of 20

Along the R1, we have that











dm
dρ = ml

ρl
− 2

3

(

(ln ρ + 1)
3
2 − (ln ρl + 1)

3
2

)

−
√

ln ρ + 1 = λ1(ρ, u),

d2m
dρ2 = −

√
ln ρ+1

ρ − 1

2ρ
√

ln ρ+1
< 0.

(52)

The 2-rarefaction wave R2 satisfies

R2(ρl , ml) :

{

m − ml =
ml
ρl
(ρ − ρl) +

2
3 ρ
(

(ln ρ + 1)
3
2 − (ln ρl + 1)

3
2

)

, ρ > ρl >
1
e ,

ξ = u +
√

ln ρ + 1.
(53)

Along the R2, we have that











dm
dρ = ml

ρl
+ 2

3

(

(ln ρ + 1)
3
2 − (ln ρl + 1)

3
2

)

+
√

ln ρ + 1 = λ2(ρ, u),

d2m
dρ2 =

√
ln ρ+1

ρ + 1

2ρ
√

ln ρ+1
> 0.

(54)

5. Riemann Solutions

In this section, we construct the Riemann solution for the mixed-type model (1) and (2)
with the initial data (5). For the fixed left state (ρl , ml), we divide the (ρ, m) plane into
several regions by the shock waves in Section 3 and the rarefaction waves in Section 4. In
the following, we will analyze two cases, where the left states are in the elliptic region
(0 < ρl <

1
e ) and hyperbolic region (ρl ≥ 1

e ), respectively.

Case 1. Assuming that (ρl , ul) is in the elliptic region, that is, 0 < ρl <
1
e , we construct

the Riemann solutions for the right state in the solvable regions I and I I, as in Figure 11.
The boundaries of region I are R2(ρ

∗
l , m∗

l ) and SE
1 (ρl , ml) with ρ > ρ∗l . The boundaries

of region I I are SE
1 (ρl , ml), S2(ρ

∗
l , m∗

l ), SE
2 (ρ

∗
l , m∗

l ), Γ and the negative axis of m, where Γ

satisfies

{(ρ, m)|m =
m∗

ρ∗
ρ, m∗ =

ml

ρl
ρ∗ − (ρ∗ − ρl)

√

ρ∗(ρ∗ ln ρ∗ − ρl ln ρl)

ρl(ρ∗ − ρl)
, ρ∗l < ρ∗ < 1,

ρ ln ρ = ρ∗ ln ρ∗, 0 < ρ < ρl}.

(55)

ρ∗l

SE
1

S2

R2

SE
2

ρ

m

1√
e

E

0

λ1 = λ2

L⃝

I

I IΓ

H1

λ2 = 0

λ1 = 0

H2

H3

1
e 1

SĒ
2

Figure 11. The left state (ρl , ml) is in the elliptic region and the right state is in region I or I I.

If the right states (ρr, mr) are located in the region of I, then the solution is constructed as

(ρl , ml)
SE

1−→ (ρ1, m1)
R2−→ (ρr, mr), (56)
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where (ρ1, m1) satisfy











m1−ml
ρ1−ρl

= ml
ρl

−
√

ρ1(ρ1 ln ρ1−ρl ln ρl)
ρl(ρ1−ρl)

,

mr − m1 = m1
ρ1
(ρr − ρ1) +

2
3 ρr

(

(ln ρr + 1)
3
2 − (ln ρ1 + 1)

3
2

)

.
(57)

If the right states (ρr, mr) are located in the region of II, then the solution is constructed as

(ρl , ml)
SE

1−→ (ρ1, m1)
S2 or SE

2 or SĒ
2−−−−−−−→ (ρr, mr), (58)

where (ρ1, m1) satisfy















m1−ml
ρ1−ρl

= ml
ρl

−
√

ρ1(ρ1 ln ρ1−ρl ln ρl)
ρl(ρ1−ρl)

,

mr−m1
ρr−ρ1

= m1
ρ1

+

√

ρr(ρr ln ρr−ρ1 ln ρ1)
ρ1(ρr−ρ1)

.

(59)

Case 2. Assuming that the (ρl , ul) is in the hyperbolic region of H1 = {(ρ, m)|ρ >
1
e , 0 < λ1 < λ2}, we construct the Riemann solutions for the right state in different regions.
There are two subcases.

Subcase 2.1. 1
e ≤ ρl ≤ 1. We construct the Riemann solutions for the right state in the

solvable regions I′, I I′, I I I′, and IV′, as in Figure 12. The boundaries of I′ are R2(ρl , ml)
and S1(ρl , ml) with ρ > ρl . The boundaries of I I′ are R1(ρl , ml), R2(ρl , ml), and R2(

1
e , me),

where ( 1
e , me) is on the curve R1(ρl , ml). The boundaries of I I I′ are R1(ρl , ml), S2(ρl , ml),

SE
2 (ρl , ml) and Γ1, where Γ1 satisfies

{(ρ, m)|m =
m∗

ρ∗
ρ, m∗ =

ml

ρl
ρ∗ − 2

3
ρ∗
(

(ln ρ∗ + 1)
3
2 − (ln ρl + 1)

3
2

)

,
1

e
< ρ∗ < ρl ,

ρ ln ρ = ρ∗ ln ρ∗}.

(60)

The boundaries of IV′ are S1(ρl , ml), S2(ρl , ml), SE
2 (ρl , ml), Γ2 and the negative axis of

m, where Γ2 satisfies

{(ρ, m)|m =
m∗

ρ∗
ρ, m∗ =

ml

ρl
ρ∗ − (ρ∗ − ρl)

√

ρ∗(ρ∗ ln ρ∗ − ρl ln ρl)

ρl(ρ∗ − ρl)
,

ρ ln ρ = ρ∗ ln ρ∗, 0 < ρ < ρ∗l }.

(61)

ρ

m

L⃝

E

S1

S2

R2

SE
2

1
e

R1

H
I′I I′

I I I′
IV′Γ1

Γ2

Figure 12. The left state (ρl , ml) is in the hyperbolic region for 1
e ≤ ρl ≤ 1, and the right state is in

region I′, I I′, I I I′, or IV′.

If the right states (ρr, mr) are located in the region of I′, then the solution is constructed as

(ρl , ml)
S1−→ (ρ1, m1)

R2−→ (ρr, mr), (62)
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where (ρ1, m1) satisfy











m1−ml
ρ1−ρl

= ml
ρl

−
√

ρ1(ρ1 ln ρ1−ρl ln ρl)
ρl(ρ1−ρl)

,

mr − m1 = m1
ρ1
(ρr − ρ1) +

2
3 ρr

(

(ln ρr + 1)
3
2 − (ln ρ1 + 1)

3
2

)

.
(63)

If the right states (ρr, mr) are located in the region of II′, then the solution is constructed as

(ρl , ml)
R1−→ (ρ1, m1)

R2−→ (ρr, mr), (64)

where (ρ1, m1) satisfy







m1 − ml =
ml
ρl
(ρ1 − ρl)− 2

3 ρ1

(

(ln ρ1 + 1)
3
2 − (ln ρl + 1)

3
2

)

,

mr − m1 = m1
ρ1
(ρr − ρ1) +

2
3 ρr

(

(ln ρr + 1)
3
2 − (ln ρ1 + 1)

3
2

)

.
(65)

Similar to case 1, the solution may also be constructed as

(ρl , ml)
S2−→ (ρ1, m1)

R2−→ (ρr, mr). (66)

If the right states (ρr, mr) are located in the region of I I I′, then the solution is con-
structed as

(ρl , ml)
R1−→ (ρ1, m1)

S2 or SE
2−−−−→ (ρr, mr), (67)

where (ρ1, m1) satisfy











m1 − ml =
ml
ρl
(ρ1 − ρl)− 2

3 ρ1

(

(ln ρ1 + 1)
3
2 − (ln ρl + 1)

3
2

)

,

mr−m1
ρr−ρ1

= m1
ρ1

+

√

ρr(ρr ln ρr−ρ1 ln ρ1)
ρ1(ρr−ρ1)

.
(68)

If the right states (ρr, mr) are located in the region of IV′, then the solution is con-
structed as

(ρl , ml)
S1−→ (ρ1, m1)

S2 or SE
2−−−−→ (ρr, mr), (69)

where (ρ1, m1) satisfy















m1−ml
ρ1−ρl

= ml
ρl

−
√

ρ1(ρ1 ln ρ1−ρl ln ρl)
ρl(ρ1−ρl)

,

mr−m1
ρr−ρ1

= m1
ρ1

+

√

ρr(ρr ln ρr−ρ1 ln ρ1)
ρ1(ρr−ρ1)

.

(70)

Subcase 2.2. ρl ≥ 1. We construct the Riemann solutions for the right state in the
solvable regions I′′, I I′′, I I I′′, and IV′′, as in Figure 13. The boundaries of I′′ are R2(ρl , ml)
and S1(ρl , ml) with ρ > ρl . The boundaries of I I′′ are R1(ρl , ml), R2(ρl , ml), and R2(

1
e , me),

where ( 1
e , me) is on the curve R1(ρl , ml). The boundaries of I I I′′ are R1(ρl , ml), SĒ

2 (ρl , ml),
and Γ̄, where Γ̄ satisfies

{(ρ, m)|m =
m∗

ρ∗
ρ, m∗ =

ml

ρl
ρ∗ − 2

3
ρ∗
(

(ln ρ∗ + 1)
3
2 − (ln ρl + 1)

3
2

)

,

ρ ln ρ = ρ∗ ln ρ∗,
1

e
< ρ∗ < 1}.

(71)

The boundaries of IV′′ are SĒ
2 (ρl , ml) and S1(ρl , ml).
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ρ

m

L⃝

E H

S1

R2

SĒ
2

1
e 1

R1

I′′I I′′

I I I′′

IV′′Γ

Figure 13. The left state (ρl , ml) is in the hyperbolic region for ρl ≥ 1, and the right state is in region

I′′, I I′′, I I I′′, or IV′′.

If the right states (ρr, mr) are located in the region of I′′, then the solution is constructed
as (62). If the right states (ρr, mr) are located in the region of I I′′, then the solution is
constructed as (64). If the right states (ρr, mr) are located in the region of I I I′′, then the
solution is constructed as (67). If the right states (ρr, mr) are located in the region of IV′′,
then the solution is constructed as

(ρl , ml)
S1−→ (ρ1, m1)

SĒ
2−→ (ρr, mr), (72)

where (ρ1, m1) satisfy















m1−ml
ρ1−ρl

= ml
ρl

−
√

ρ1(ρ1 ln ρ1−ρl ln ρl)
ρl(ρ1−ρl)

,

mr−m1
ρr−ρ1

= m1
ρ1

+

√

ρr(ρr ln ρr−ρ1 ln ρ1)
ρ1(ρr−ρ1)

.

(73)

Similarly, if the left state is in the hyperbolic region of H2 or H3 with ρl > 1, the unique
Riemann solution can be also constructed. We omit them. In conclusion, we have the
following result.

Theorem 1. For the fixed left states (ρl , ul) and the right states (ρr, ur) in the feasible regions as
described in cases 1 and 2 (see Figures 11–13), the Riemann problems (1), (2), and (5) have a unique
weak solution satisfying the entropy condition (32).

6. Numerical Tests

In this section, we present some numerical tests to verify our theoretical results for
the construction of the Riemann solutions for (1) and (2) with initial data (5). We use the
essentially non-oscillatory (ENO) scheme [40] and third-order Runge–Kutta method with
60 × 60 cells. The CFL = 0.4 and the running time T = 0.2. Many more numerical tests
have been performed to make sure that what are presented are not numerical artifacts.
Here, we present three cases to verify our theoretical solution.

Case 1. In this case, we take the initial Riemann data as

(ρ, u)|t=0 =

{

(1.2, 1) x < 0,

(0.2, 1) x > 0,
(74)

where the left state (1.2, 1) belongs to the hyperbolic region and the right state (0.2, 1)
belongs to the elliptic region.

As marked in Figures 14–16, the red and blue lines in the upper half plane represent
approximate density and velocity, and the yellow and green lines in the lower half plane
represent the exact density and velocity, respectively. From Figure 14, we find that the left
state of (74) is connected to the intermediate state by a rarefaction wave, and then to the
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right state of (74) by a shock wave. This verifies the theoretical solution for Subcase 2.2 in
Section 5 in which the right state is located in region I I I′′ of the left state.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
ENO scheme:  t = 0.2,N=1600

Density

Velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
Exact Riemann Solution

Exact Density

Exact Velocity

Figure 14. Riemann solution for (1), (2), and (74). The left state is in the hyperbolic region, and the

right state is in the elliptic region.

Case 2. In this case, we take the initial Riemann data as

(ρ, u)|t=0 =

{

(0.2, 1) x < 0,

(0.8, 0.1) x > 0,
(75)

where the left state (0.2, 1) belongs to the elliptic region and the right state (0.8, 0.1) belongs
to the hyperbolic region. From Figure 15, the Riemann solution consists of three constant
states separated by two shock waves. Specifically, the left state of (75) is connected to the
intermediate state by a shock wave, and then to the right state of (75) by a shock wave. This
verifies the theoretical solution for Case 1 in Section 5 in which the right state is located in
region I I of the left state.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
ENO scheme:  t = 0.2,N=1600

Density

Velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
Exact Riemann Solution

Exact Density

Exact Velocity

Figure 15. Riemann solution for (1), (2), and (75). The left state is in the elliptic region, and the right

state is in the hyperbolic region.



Mathematics 2024, 12, 2444 18 of 20

Case 3. In this case, we take the initial Riemann data as

(ρ, u)|t=0 =

{

(0.95, 1) x < 0,

(1, 0) x > 0,
(76)

where both the left state (0.95, 1) and the right state (1, 0) are in the hyperbolic region. From
Figure 16, the Riemann solution also consists of three constant states separated by two
shock waves. This verifies the theoretical solution for Subcase 2.1 in Section 5 in which the
right state is located in region IV′ of the left state.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
ENO scheme:  t = 0.2,N=1600

Density

Velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
Exact Riemann Solution

Exact Density

Exact Velocity

Figure 16. Riemann solution for (1), (2), and (76). Both of the initial states are in the hyperbolic region.

It is worth pointing out that the Gibbs phenomenon [38] appears in Cases 1 and 2,
where one of the initial state is in the hyperbolic region, and the other state is in the elliptic
region, while in Case 3, where both of the initial states are in the hyperbolic region, the
Gibbs phenomenon does not appear. It inspires us to find a better numerical scheme to
capture the shock wave in the mixed conservation laws in our further works.

7. Discussion

The shape of the elliptic regions (1) with (2) and the van der Waals models [21]
forms a strip. However, for systems (1) and (2), there is one hyperbolic region, while
there are two hyperbolic regions for van der Waals, whose nonclassical shocks satisfy
a kinetic relation [23]. This difference implies that methods applicable to the study of
the van der Waals models are not suitable for systems (1) and (2). Furthermore, in the
previous studies [29–31,34], we observe that the challenges in studying mixed-type partial
differential equations are contingent upon the shape of the elliptic regions.

From the previous models [29,30,39,41], the uniqueness of the solution of the
hyperbolic–elliptic model could not be obtained by the Lax entropy condition or the Liu
entropy condition. For our models (1) and (2), the Hugoniot curves (13) are not connected
or self-intersecting (see Figure 3). We provide the entropy condition (32) to pick up the
admissible shock waves, including the elliptic region.

In this paper, the feasible regions are contained in Figures 11–13. For the ideal gas
or Chaplygin gas, the systems are hyperbolic. For these models, a vacuum or a delta
shock wave exists in the intractable regions, in which the Riemann solution cannot be
constructed by the shock waves and rarefaction waves [15,37]. However, the dark energy
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fluid (1) with (2) is of mixed type. The methods for investigating the two systems are
different. In our work, there exist intractable regions in each case. This singularity may
result in a vacuum, a delta shock wave, or other types of singularities. This problem is
worth further study.

8. Conclusions

In this paper, we construct the Riemann solutions for the mixed-type isentropic Euler
Equations (1), in which the pressure (2) is a special case of the generalized dark energy
EoS (3). Using the Rankine–Hugoniot conditions for the mixed-type systems (1) and (2),
we find that the discontinuity curves may exist in both elliptic regions and hyperbolic
regions. The classical entropy condition is not applicable. We obtain the unique admissible
shock waves by utilizing the viscosity criterion. The principal element in the construction
is a division of the (ρ, m)-plane into several regions, the division depending upon the
location of (ρl , ml). The solution of the Riemann problem consists of a combination of
admissible shock waves and rarefaction waves, the combination determined by the region
in which (ρr, mr) lies. Finally, we present numerical simulations which are consistent with
our theoretical results.
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