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Introduction

Parity ratio of nuclear level densities is an
important ingredient in nuclear astrophysical
applications [1]. It is now well understood that
at moderate excitation energies the parity ra-
tio is not close to unity as assumed in the past.
Recently, a Fermi gas model has been devel-
oped and used for tabulating parity ratios as
a function of excitation energy in large num-
ber of nuclei of astrophysical interest. How-
ever, a good ab-initio theory for parity ra-
tios is not yet available. With the success of
random interaction matrix ensembles (RIMM)
[2, 3], one can argue that the ensembles gener-
ated by parity preserving random interaction
(here after called RIMM-PTY) may provide
some generic results for parity ratios. In ad-
dition, there is also the important recognition
in the past few years that random interactions
generate regular structures [4]. Then a ques-
tion is: why ground states of even-even nuclei
are always of +ve parity. A simple RIMM-
PTY has been identified and analyzed recently
[5] to address the question of ‘abundance of
ground states with positive parity’. Going be-
yond this, we have constructed more general
RIMM-PTY to address the two issues men-
tioned above and also to examine the form of
fixed parity state densities. Here we will give
the definition of RIMM-PTY, a method for its

construction and some first results.
RIMM-PTY Ensemble

Given N, number of positive parity single
particle (sp) states and similarly N_ number
of negative parity states, let us assume for sim-
plicity that the +ve and —ve parity states are
degenerate and separated by energy A (see
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FIG. 1: Parity preserving H with sp spectrum
defining h(1) with the V(2) matrix. Dimension
of the matrices A, B and C are Ny (N4 — 1)/2,
N_(N- —1)/2 and N4 N_ respectively.

Fig. 1). This defines the one-body part h(1)
of the Hamiltonian H with N = N, + N_ sp
states. The matrix for the two-body part V(2)
of H will be a 3 x 3 block matrix in two parti-
cle spaces as there are three possible ways to
generate two particle states with definite par-
ity: (i) both in +ve parity states; (ii) both in
—ve parity states; (iii) one in +ve and other in
—ve parity states. They will give the matrices
A, B and C respectively in Fig. 1. For parity
preserving interactions only the states (i) and
(ii) will be mixed and mixing matrix is D in
Fig. 1.

Many particle states for m fermions in the
N sp states can obtained by distributing m1
fermions in Ny +ve parity sp states and sim-
ilarly mo fermions in the N_ states with
m = mi + ms. Let us denote each distri-
bution of m; fermions by m7 and similarly
mo. In the many particle basis defined by
(m1, m2) the H matrix construction reduces
to the well known spinless fermion problem
[2]. The matrix dimensions (d4) for 4+ve par-
ity states follows from the dimensions for all
(m1, mg) with mg even and similarly for —ve
parity states (d_) with ms odd. For example:
(i) for Ny = N_ =T7and m =6, dy = 1484
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and d_ = 1519; (ii) for Ny = N_ = 8 and
m =6, di = 3976 and d_ = 4032.

The RIMM-PTY is defined by choosing the
matrices A, B and C to be independent GOE’s
with matrix elements variances vZ, v? and v?2
respectively. Similarly the matrix elements
of the mixing D matrix are chosen to be in-
dependent (independent of A, B and C ma-
trix elements) zero centered Gaussian vari-
ables with variance v3. Without loss of gen-
erality we choose A = 1 so that all the v’s
are in A units. Defining the matrix elements
variances of the diagonal blocks A, B and C
to be same (to reduce number of free parame-
ters in RIMM-PTY), we have the RIMM-PTY

model defined by two parameters (7,«) where

2 2 2 2
v v v v
A = A= AE = 72 and = o272, In

the limit 72 — oo (with a? = 1) the model
reduces to the simple model analyzed in [5].

Results and Discussion

Firstly, for Ny = N_ = m = 6 system with
200 members, we have verified (using large val-
ues for 7 and putting @ = 1) that Ry ~ 20%
as given in [5]. Going beyond this, calcula-
tions with 100 members for Ny = N_ =7
and m = 6 system are performed using dif-
ferent values for 7 and « parameters defined
above. We have numerically studied : (i) per-
centage of +ve parity ground states Ry ; (ii)
shapes of +ve (p4) and —ve parity (p_) state
densities; (iii) parity ratio p_/p;. The first
results are as follows. It is seen that with
(1, @) variation, R4 shows variation and for
example: for o = 0.2, R, changes from 100%
to 75% as 7 varies from 0.03 to 0.2 and for
a =2, Ry ~ 100% as 7 varies from 0.03 to
0.2. The state densities p; and p_ and the
ratio p_/p4+ are shown in Fig. 2 for some ex-
amples. For small 7 values, the densities are
multi-modal and as 7 increases to 0.2, they ap-
proach Gaussian form. This is verified for a=
0.2 to 2. We observe considerable structure
in p_/p4+ for small 7 values. For 7 ~ 0.2 and
larger, it is seen that p_ ~ p4 for E—E4s > 0.
Here gs stands for ground state and o is av-
erage width over the ensemble for +ve and
—ve parity state densities. Similarly in Fig.
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FIG. 2: Density of eigenvalues for +ve and —ve
parity states and the corresponding parity ratio.

1, for p; and p_ densities, E. is energy cen-
troid and o is spectral width for the corre-
sponding densities. We are attempting to de-
rive analytical results for spectral variances to
understand Ry variation and also the varia-
tion in p4, p— and p_/py. Also calculations
are being carried out for many different values
of (N4, N_,m) values and for a much larger
range of (7, «). It is important to identify the
range of (N4, N_,m) and (7,«) values appro-
priate for some typical nuclei and then deter-
mine Ry, py, p— and p_/p4 for these system
using RIMM-PTY. This exercise is being at-
tempted.
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