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Abstract: Axions can be considered as good dark matter candidates. The detection of such light

particles can be achieved by observing axion-induced atomic excitations. The target is in a magnetic

field so that the m-degeneracy is removed, and the energy levels can be suitably adjusted. Using

an axion-electron coupling indicated by the limit obtained by the Borexino experiment, which is

quite stringent, reasonable axion absorption rates have been obtained for various atomic targets The

obtained results depend, of course, on the atom considered through the parameters ϵ (the spin-orbit

splitting) as well as δ ( the energy splitting due to the magnetic moment interaction). This assumption

allows axion masses in the tens of µeV if the transition occurs between members of the same multiplet,

i.e., |J1, M1 = −J1⟩ → |J1, M1 = −J + 1⟩, J1 ̸= 0, and axion masses in the range 1 meV–1 eV for

transitions of the spin-orbit splitting type |J1, M = −J1⟩ → |J2, M2 = −J1 + q⟩, q = −1, 0, 1, i.e.,

three types of transition. The axion mass that can be detected is very close to the excitation energy

involved, which can vary by adjusting the magnetic field. Furthermore, since the axion is absorbed

by the atom, the calculated cross-section exhibits the behavior of a resonance, which can be exploited

by experiments to minimize any background events.

Keywords: axion detection; axion dark matter; atomic excitations; magnetic field induced level

splitting; magnetic moment matrix element; narrow resonances; light absorption; frequency and

magnetic field scan; event rate
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1. Introduction

In the standard model (S-M) there is a source of CP violation from the phase in the
Kobayashi-Maskawa mixing matrix. This, however, is not large enough to explain the
baryon asymmetry observed in nature. Another source is the phase in the interaction
between gluons (θ-parameter), naively expected to be of order unity. The non-observation
of the elementary electric dipole moment of the neutron limits its value to be θ ≤ 10−9.
This has been known as the strong CP problem. A solution to this problem has been the
P-Q (Peccei-Quinn) mechanism. In extensions of the S-M, e.g., two Higgs doublets, the
Lagrangian has a global P-Q chiral symmetry UPQ(1), which is spontaneously broken,
generating a Goldstone boson, the axion (a). In fact, the axion was proposed a long time ago
as a solution to the strong CP problem [1] resulting in a pseudo-Goldstone boson [2,3]. The
two most widely cited models of invisible axions are the KSVZ (Kim, Shifman, Vainshtein,
and Zakharov) or hadronic axion models [4,5] and the DFSZ (Dine, Fischler, Srednicki, and
Zhitnitskij) or GUT axion model [6,7]. This also led to the interesting scenario of the axion
being a candidate for dark matter in the universe [8–10] and it can be searched for by real
experiments [11–14]. For a review see, see, e.g., [15].

It has been recognized a long time ago by Sikivie [16], and others, see, e.g., [17], that the ax-
ion is an ideal cold dark matter candidate, especially in the mass range 10−6 eV≤ ma ≤ 10−3 eV.
Thus, popular experiments hope to detect axions by their conversion to photons in the presence
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of a magnetic field (Primakoff effect); see Figure 1a,b. The produced photons are detected in a
resonance cavity as suggested by Sikivie [16]. In the case of the axion absorption by atoms, see
Figure 1c, the detection can be achieved by directly measuring the photons following the atom
de-excitation or by promoting the axion to a judiciously chosen third level via suitable light
absorption, with a desired pattern of de-excitation as described below.
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Figure 1. (a) The elementary axion−photon interaction. (b) The axion to photon conversion in

the presence of a magnetic field, the Primakoff effect. (c) The axion absorption by an atom at low

temperature via the axion-electron spin-induced interaction. An example of transitions is indicated.

The energy splittings depend on the spin-orbit interaction and the magnitude of the magnetic field

(the levels are not to scale). An electron is moved from an occupied initial level with energy Ei and

quantum numbers nℓji in the substate mi = −ji to a level with energy E f with quantum numbers

nℓj f , provided that m f = −ji + 0,±1, consistent with the angular momentum selection rules (terms

B,C,D). When the total angular momentum of the two states is the same (A-term), the splitting is

small and due to the magnetic moment operator. In all cases, the splitting is proportional to the

magnetic field. The picture is drawn for one-electron configurations, but it can be generalized to

multi-electron configurations. In all cases, only states with the same radial and orbital quantum

numbers can be connected via the spin operator.

In fact, various experiments (heavier axions with larger mass in the 1eV region pro-
duced thermally (such as via the aπππ mechanism), e.g., in the sun, are also interesting
and are searched by CERN Axion Solar Telescope (CAST) [18]. Other axion-like particles
(ALPs), with broken symmetries not connected to QCD, and dark photons form dark matter
candidates called WISPs (Weakly Interacting Slim Particles), see, e.g., [19], are also being
searched) such as the ADMX and the ADMX-HF collaborations [11,13,20,21] are planned
and ongoing to search for them. In addition, the newly established Center for Axion and
Physics Research (CAPP) has started an ambitious axion dark matter research program [22],
using SQUID and HFET technologies [23]. Their strategy is to run several experiments
in parallel to explore a wide range of axion masses with sensitivities better than the QCD
axion models [24–26].

The allowed parameter space has been presented in a nice slide by Raffelt [27] in the
Multidark-IBS workshop and, focusing on the axion as dark matter candidate, by Stern [20],
derived from Figure 3 of ref. [20].



Particles 2024, 7 98

Recently, some exclusions on the axion masses have been obtained by the ADMX
experiments in the range of 2.66–2.81 µeV [28], 2.81–3.39 µeV [29] and 3.3–4.2 µeV [30]
leading to the exclusion of a wide range of axion-photon coupling values predicted in
benchmark models of the invisible axion, which solves the strong CP problem of quantum
chromodynamics.

Since, however, the mass of the axion is not known, it is important to consider other
processes for its detection, which may be accessible to a wider window of axion mass. Such
may involve, e.g., axion detection via atomic excitations [31–33].

In this paper, we are going to discuss the possibility of axion detection by observing
directly axion-induced atomic excitations, measuring the photons produced in the de-
excitation with sensitivity to axion masses ranging 10−5 eV and up close to 1 eV. More
specifically the relevant procedure, suggested by Sikivie [34], involves an atom cooled at
low temperature, which utilizes three energy levels. The first is the ground state, |1⟩. The
second, |2⟩ is completely empty, chosen such that the energy difference between the two
is close to the axion mass. Under the spin-induced axion-electron interaction, an electron
is excited from the first to the second level. The presence of such an electron in |2⟩ can be
confirmed by exciting it further via the radiation of suitably chosen photon energy to a third
level |3⟩, which is also empty and lies at higher excitation energy. From the observation of
the subsequent de-excitation of level |3⟩, one infers the presence of the axion.

The magnetic field employed is used to split the magnetic m-substates so that the
transition energies involved can be suitably adjusted. Furthermore, by suitably adjusting
its size, it can determine a window of axion masses to be searched in a given experiment.

A crucial parameter in the axion-induced atomic excitations is the axion electron
coupling gea/ fa. The dimensionless quantity gea has been studied in axion models. The
quantity fa with dimension of mass is not known, but it is believed to be inversely propor-
tional to the axion mass. Limits on the axion electron coupling have been extracted from
recent astrophysical data [35–37]. In the present calculation, we are going to adopt a value
gea/ fa, which coincides with the stringent limit obtained in the Borexino experiment [38].
We will see that this value leads to a very small cross-section. Fortunately, we will find
that experiments involving dark matter axions are not doomed to be unobservable since
the axion number density in our vicinity of the galaxy is quite large, owing to the small
axion mass.

Our paper will be organized as follows. In Section 2 we will derive expressions yielding
the rates for axion absorption by atoms; in Section 3 we will discuss the axion-electron
coupling and the range of the axion masses obtained from Borexino limit in conjunction
with reasonable axion model parameters gea, in Section 4 we will study the obtained axion
widths, in Section 5 we will summarize the needed atomic physics input, in Section 6
we will consider the low-temperature requirements for the success of the experiments,
in Section 7 we will present our results for the expected rates and in Section 8 we will
summarize our conclusions.

2. Expressions for Rates for Axion Absorption by Atoms

We remind the reader that the axion, a, is a pseudoscalar particle, and its coupling to
the electron can be described by a Lagrangian of the form:

L =
gae

fa
i∂µaψ̄(p′, s)γµγ5ψ(p, s), (1)

where gae is a coupling constant and fa a scale parameter with the dimension of mass. For
an axion with mass ma it is easy to show that in the non-relativistic limit:

• The time component µ = 0 is given by:

L = ⟨ϕ|Ω|ϕ⟩, Ω =
gaema

2 fa

σ.q

me
, q = p′ − p, (2)

which is negligible for ma << me.
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• The space component, µ ̸= 0, is

Laee = ⟨ϕ|Ω|ϕ⟩, Ω =
gae

2 fa
σ.q, q = p′ − p, (3)

where p and p′ are the initial and final electron momenta, fa the axion decay constant
and σ the spin of the electron.

An interaction of the form of Equation (3) has been proposed by Sikivie [34] as a way
of detecting the axion by causing atomic excitations, with gae the relevant coupling constant
to be determined by the experiment.

The target is selected so that there exist two levels, say |J1, m1⟩ and |J2, m2⟩ which
result from the splitting of the atomic levels by the magnetic field and they are characterized
by the same n and ℓ so that they can be connected by the spin operator. Thus J2 = J1 or
J2 ̸= J1, in which case J2 is the spin-orbit partner of J1. The lower one |J1, m1 = −J1⟩ is
occupied by electrons, but the higher one |J2, m2⟩ is completely empty at a sufficiently low
temperature, see Figure 1c. J2 can be populated only by exciting an electron to it from the
lower level by the axion field. The occurrence of such excitation is monitored by a tuned
laser beam, which excites such an electron from |J2, m2⟩ to a higher state |J3, m3⟩, which
cannot be reached in any other way by observing its subsequent decay.

In the present case we are interested in the case that the states |J1, m1⟩ and |J2, m2⟩
can be connected via the spin operator, i.e., the two states must have the same orbital
structure, and angular momenta (for single-particle states, J1 = j1, J2 = j2, they must have
the same n and ℓ quantum numbers). In other words we must evaluate the matrix element
⟨α1 J2m2|σm2−m1

|α1 J1m1⟩, where α1 denotes any additional quantum number needed to
specify the states.

As an illustration, let us consider a single particle transition. The relevant matrix
element for the transition j1, m1 → j2, m2 takes the form

⟨nℓj2m2|q.σ|nℓj1m1⟩ = Cℓ,j1,m1,J2,m2
qm1−m2 Inℓ(q) (4)

where Cℓ,j1,m1,J2,m2
depends on the atomic levels [39] and it will be given below (see

Section 5) and Inℓ(q) is given by

Inℓ(q) =
∫

d3pϕnℓ(p + q)ϕnℓ(p). (5)

Since the momentum transfer q is small, Inℓ(q) ≈ 1. It can be shown that a similar result
holds in the case of multi-particle configurations. So, the matrix element becomes

|ME(q)|2 =

(

ge

2 fa

)2
(

Cℓ,J1,m1,J2,m2

)2
(

δm1,m2 q2
0 +

1

2
(q2

1 + q2
2)(1 − δm1,m2)

)

, (6)

where q is the momentum transfer to the atom with q0 its component in the direction of the
axis of quantization and q1, q2 along the other two axes.

The cross-section becomes

σ =
1

υ

1

2ma
|ME(q)|2

∫ ∫

d3pA

(2π)3
(2π)3δ(q − pA)2πδ(ma +

q2

2ma
+ Ei − E f ) (7)

where pA the momentum transfer to the atom. 2ma is the usual normalization for a
boson field. In the above expression, we have neglected the tiny recoiling energy of the
atom. Thus:

σ =
1

υ

1

2ma

(

ge

2 fa

)2(

Cℓ,j1,m1,j2,m2

)2
(

δm1,m2 q2
0 +

1

2
(q2

1 + q2
2)(1 − δm1,m2)

)

2πδ(ma +
q2

2ma
+ Ei − E f ). (8)
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We will now fold the cross-section with the axion velocity distribution, assuming that
with respect to the galactic center it is of the Maxwell–Boltzmann type:

fg(υ
′) =

1

υ3
0

1

π
√

π
e
−
(

υ′
υ0

)2

. (9)

In the local frame, ignoring for the moment the motion of the Earth, we have υ
′ → υ + υ0ẑ

fℓ(υ) =
1

υ3
0

1

π
√

π
e−(y2+2yξ+1), y =

υ

υ0
. (10)

This can be cast in the form:

⟨yσ⟩ = 1

2ma

(

ge

2 fa

)2(

Cℓ,j1,m1,j2,m2

)2
Λ, (11)

where

Λ =
1

υ0

∫

y f (υ)d3
υ

(

δm1,m2 q2
0 +

1

2
(q2

1 + q2
2)(1 − δm1,m2)

)

2πδ(ma(1 +
1

2
υ2) + Ei − E f ) (12)

or

Λ =
∫

ydyy2(maυ0y)22πδ(ma(1 +
1

2
υ2

0y2) + Ei − E f )J1
1

(
√

π)3
(13)

with

J1 =
∫

dΩe−(y2+2yξ+1)
(

δm1,m2 ξ2 +
1

2
(1 − ξ2)(1 − δm1,m2)

)

. (14)

So the integration over the angles yields:

J1 = 2π J, J = e−1−y2
∫

dξe−2yξ

(

δm1,m2 ξ2 +
1

2
(1 − ξ2)(1 − δm1,m2)

)

. (15)

The integration over ξ can be performed analytically yielding

J = e−1−y2

(

δm1,m2

(

2y2 + 1
)

sinh(2y)− 2y cosh 2y

2y3
+ (1 − δm1,m2)

2y cosh 2y − sinh 2y

4y3

)

. (16)

The integration over the magnitude of the velocity is trivial due to the δ function appearing
in Equation (14). We thus obtain:

Λ = 4
√

πma
1

υ0
Fm1,m2(X) (17)

with X given by

X =
c

υ0

(
√

2

(

E f − Ei

mac2
− 1

)

)

(18)

and

Fm1,m2(X) =

1
2 Xe−X2−1

((

2X2 + 1
)

sinh(2X)− 2X cosh(2X)
)

, m1 = m2

1
4 Xe−X2−1(2X cosh(2X)− sinh(2X)), m1 ̸= m2

. (19)

The extra factor of X4 in going from Equation (16) to Equation (19) is the result of the
integration over the velocity.

Sometimes, we prefer to normalize the function Fm1,m2(X). Then we write

Λ = 4
√

πma
1

υ0
Nm1,m2 FN

m1,m2
(X), Nm1,m2 =

1
2

√
πerf(1), m1 = m2

e
√

πerf(1)+2
8e , m1 ̸= m2

(20)
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and in Equation (20) FN
m1,m2

(X) given by

FN
m1,m2

(X) =











Xe−X2−1((2X2+1) sinh(2X)−2X cosh(2X))√
πerf(1)

, m1 = m2

2Xe−X2
(2X cosh(2X)−sinh(2X))

e
√

πerf(1)+2
, m1 ̸= m2

(21)

Thus, one obtains:

⟨yσ⟩ = 1

2

1

υ0

(

ge

fa

)2

4
√

π
(

Cℓ,j1,m1,j2,m2

)2
Fm1,m2(X). (22)

The event rate associated with a flux of particles with velocity υ (per atom in the target)
is given by:

R = Φa⟨yσ⟩ (23)

where Φa is the axion flux given by Φa = ρa
ma

υ0 with ρa the axion matter density in our
vicinity of the galaxy. In this work, we will assume that all dark matter in our vicinity is
composed of axions. So, it is obtained from the rotation curves and employed in standard
dark matter searches, i.e., ρa = 0.3 Gev/cm3. This leads to a large axion particle density

ρa
ma

due to the smallness of the axion mass.
Thus Equation (23) for N atoms in the target becomes

R = R0(ma)
(

Cℓ,j1,m1,j2,m2

)2
Fm1,m2(X),

R0(ma) = Φ0(ma)σ0, Φ0(ma) = N
ρa

ma
υ0, σ0 = 2

√
π

1

υ0

g2
ae

f 2
a

. (24)

R0(ma) is written as a product of two constants, one with the dimension of the flux, which
varies inversely proportional to the axion mass, and the other yields the scale of the
cross section.

3. The Axion Electron Coupling

A crucial parameter in the present work is
gae

fa
. In the past, this parameter was derived

from existing axion models. In this work, we are going to consider limits obtained from a
robust experiment [38] which are as follows:

|gAe × mA| ≤ 2.0 × 10−5eV, |gAe × g3AN | ≤ 5.5 × 10−13eV. (25)

These can be interpreted to be the axion-electron and the isovector axion-nucleon coupling,
which in our notation are written:

|gae × ma| ≤ 2.0 × 10−5eV, |g3
aN | ≤ 2.8 × 10−8eV (26)

Using now the equation
ma fa ≈ 6000 MeV2, (27)

found in [40,41], we obtain

gae

fa
≤ 3.3 × 10−12 GeV−1,

g3
aN

fa
≤ 4.7 × 10−15 GeV−1. (28)

These couplings are indeed very small. This perhaps explains why for the Borexino 5.5 MeV
axion flux on Earth, resulting from the second relation of the equation, is very small. This
is the reason why, in our recently published paper [41] we had to admit that the nuclear
excitations were not detectable. Anyway, we will assume the equality sign, i.e., the above
limits correspond to the actual values of these quantities, and we will employ this electron-
axion coupling in the present work.

The coupling gae is not known. However, it has been investigated [42,43], in particular
in the context of the DFSZ axion models [7,9]. This leads to:
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gae =
1

3

(

1 − tan2 β

1 + tan tan2 β

)

, tan β =
υ2

υ2
or gae =

1

3
cos2 β, (29)

where tan β is the ratio of the vacuum expectation values of the two doublets of the model.
The parameter β is not known.

In the present work, we will assume that the upper limit of Equation (26) corresponds
to the actual value of gaema. Then, since the overall coupling in Equation (26) depends
on both the axion mass and the coupling gae, we obtain a range for the axion mass, see
Figure 2a. Having such a range of axion masses, it is amusing to note that once the axion
mass is determined one can determine the ratio β = v2

v1
, see Figure 2b.
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Figure 2. (a) The axion mass ma allowed by the coupling given in Equation (26) as a function of

gae. This covers almost the whole range of ma of interest in this work. (b) The ratio β = v2
v1

of the

expectation values of the Higgs doublets of the DFSZ axion model discussed in the text as a function

of the axion mass ma.

Anyway, from Equation (26), one finds R0(ma) = (NΦ0σ0) = 2.551eV
ma

per mol-y.
Thus, the main axion mass dependence of the event is as shown in Figure 3. Additional
axion mass dependence, which can be exploited by experiment, is contained in Fm1,m2(X)
through X, see Equation (18).
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Figure 3. The main axion mass dependence R0(ma). This sets the scale of the event rate as a function

of the axion mass.
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4. The Axion Absorption Widths

Since the axion is absorbed, one expects the cross-section to exhibit a resonant behavior.
This is exhibited by considering the function FN

m1,m2
(X) in the variable X, which depends

on the energy difference of the atomic levels, the axion mass, and the velocity of the sun
around the center of the galaxy. The energy difference depends, of course, on the magnetic
quantum numbers m1 and m2 of the states involved.

The overall behavior of the functions FN
m1,m2

(X) is exhibited in Figure 4. In fact, we
find that the characteristics of the resonance are:

{

Γ = 1.35, ⟨X⟩ = 1.9, local frame, m1 = m2

Γ = 1.35, ⟨X⟩ = 1.7, local frame, m1 ̸= m2
, (30)

where ⟨X⟩ is the location of the maximum
We have seen that we have resonant behavior in the variable X. At the location of the

maximum, from the relation ⟨X⟩ = c
υ0

(
√

2
(

E f −Ei

mac2 − 1
)

)

, we find that

ma = (E f − Ei)(1 − χ), χ = 0.27 × 10−6⟨X⟩2 i.e.,
χ = 0.97 × 10−6, m1 = m2

χ = 0.78 × 10−6, m1 ̸= m2
(31)

For all practical purposes the axion mass is equal to the excitation energy. Furthermore

E f − Ei

ma
= (1 + χ), χ = 0.27 × 10−6⟨X⟩2 i.e.,

χ = 0.97 × 10−6, m1 = m2

χ = 0.88 × 10−6, m1 ̸= m2
(32)

Similarly, we can find the width in the energy space for both types of transitions. Thus,

X1 = 1.067 ↔
(

E f − Ei

ma

)

1

=
(

1 + 0.306 × 10−6
)

,

X2 = 2.417 ↔
(

E f − Ei

ma

)

2

=
(

1 + 1.566 × 10−6
)

and therefore

ΓE =

(

E f − Ei

ma

)

2

−
(

E f − Ei

ma

)

1

=
((

1 + 1.566 × 10−6
)

−
(

1 + 0.306 × 10−6
))

= 1.26 × 10−6. (33)

At X = 0, i.e., at
E f −Ei

ma
= 1, the distribution vanishes. On the other hand at X = 2.84 i.e.,

for
E f −Ei

ma
= 1 + 2 × 10−6, the distribution almost vanishes (there is no need to go to values

of X > yesc = 2.84, since velocities above the escape velocity, υ > υesc = yescυ0, in the
Maxwell–Boltzmann distribution have been excluded). In other words, the distribution
vanishes at X = 0 and at X = 2.84 after having gone very rapidly through ⟨X⟩ with a width
as given by Equation (33). In any case, the above picture emerges more clearly by plotting
the function F(X) as a function of the energy (E f − Ei)/mac2, see Figure 5.

We have seen that the axion mass is very close to the excitation energy. Since the
resonance is so narrow, however, special care is required not to miss it. Some experimental
arrangements to facilitate the observation of such a narrow resonance from the expected
atomic spectra will be considered below; see Section 7. Furthermore, to this end, the
experience gained with the axion to photon conversion experiments involving resonant
cavities, such as ADMX and ADMX-HF collaborations [11,13,20,21] and CAPP [22–26],
may be very helpful. For the observation of the resonance, it is very important, among
other things, to discriminate against background. It is very unlikely that background events
will simulate a similar resonance pattern with that obtained here, reflecting not only the
Maxwell–Boltzmann distribution, but the momentum dependence of the axion-electron
system as well. Furthermore, given enough counts, one can exploit, if it becomes necessary,
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the extra signature, provided by the fact that the resonance width exhibits time dependence,
i.e., an annual modulation due to the motion of the Earth, see [44] and the Appendix A.

F
N m

1
,m

2
(X

)
→
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X →

F
(X

)
→
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X →

(√

Figure 4. (Top): The normalized distribution FN
m1,m2

(X) as a function of X, X = c
υ0

(√

2
(

E f −Ei

mac2 − 1
)

)

with υ0 the velocity of the sun around the center of the galaxy in natural units, 0.7 × 10−3c. The solid

line holds for m1 = m2, while the dashed line for m2 = m1 ± 1. The widths are the same, Γ = 1.35,

for both cases. The corresponding values of ⟨X⟩ are 1.9 and 1.7 for the solid and dashed curves,

respectively. (Bottom): For comparison the normalized distribution F(X) X = c
υ0

(√

2
(

ω
mac2 − 1

)

)

,

with ω the photon energy, in the case of the standard axion to photon conversion is presented, as

obtained with the same halo parameters as in the top panel, in the galactic frame (solid curve) and

local frame (dashed curve).

Figure 5. The cross-section exhibits resonant behavior. Shown is F(X) as a function of
(

(E f −Ei)

mac2 − 1
)

.

The solid line corresponds to m1 = m2, while the dashed line corresponds to m1 ̸= m2, both in the

local frame.

Before completing this section we should mention that resonance plots, correlated
with the event rate, will be specialized in Section 7 for the various atomic targets considered
in this work.
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5. Atomic Physics Considerations

We will now consider some atomic targets which possess two features. The ground
state is composed of a multiplet of the form n2S+1LJ1

while the excited state is of the form
n2S+1LJ2

with |J1 − 1| ≤ J2 ≤ J + 1, so that it can be reached by spin excitations.
The following types of excitations are in principle possible:

• |J1,−J1⟩ → |J1,−J1 + 1⟩, indicated as type A
• |J1,−J1⟩ → |J2,−J1 − 1⟩, indicated as type B
• |J1,−J1⟩ → |J2,−J1⟩, indicated as type C
• |J1,−J1⟩ → |J2,−J1 + 1⟩, indicated as type D

As we will see below some of these types may not be allowed by the angular mo-
mentum selection rules. Thus, e.g., for states s1/2 single-particle states only the A type is
possible. For many electron configurations see Section 5.2.

5.1. Single-Particle Spin-Orbit Partners

The ground state of a single particle state is of the form nℓj1, j1 = |ℓ− 1/2| while the
state nℓj2, j2 = ℓ+ 1/2 is empty. Such examples can be found in the atomic data.

Since this is one body transition, J1 = j1, J2 = j2 the relevant matrix element takes
the form:

Cℓ,j1,m1, j2,m2
= ⟨j1 m1, 1 m2 − m1|j2 m2⟩

√

(2j1 + 1)3
√

2ℓ+ 1
√

6







ℓ 1
2 j1

ℓ 1
2 j2

0 1 1







(−1)m1−m2 (34)

i.e., it is simply expressed in terms of a Glebsch–Gordan coefficient and the nine-j symbol.
We are interested in the case j1, m1 = j1 − 1. The relevant coefficients are tabulated in
Table 1.

(i) First we will consider a target with the ground state being a single p1/2 orbital,
while the p3/2 is empty. Let us suppose that the spin-orbit splitting is ϵp. In the presence
of a magnetic field, the m-degeneracy is removed, and the ground state is in the state
|j1, m1⟩ = |1/2,−1/2⟩. Then we have the following spin-induced transitions:

|1/2,−1/2⟩ → |1/2, 1/2⟩, |1/2,−1/2⟩ → |3/2,−3/2⟩, |1/2,−1/2⟩⟩ →

|3/2,−1/2⟩, |1/2,−1/2⟩ → |3/2, 1/2⟩
indicated as above, i.e., A,B,C, and D, respectively. The g-factors for the j = 1/2 and
j = 3/2 p-levels are 2/3 and 4/3, respectively. Thus the transition energies (not to be
confused with m the magnetic quantum number) are

m =

{

2

3
δ, ϵ − 5

3
δ,− δ

3
+ ϵ, δ + ϵ

}

, ϵ = ϵp (35)

where we have included both the spin and orbital magnetic moments with δ = BµB with µB

the Bohr magneton and B the magnetic field. For a field of 1T we find δ = 5.788× 10−5 eV, i.e.,

δ = 5.788 × 10−5 B

1T
eV (36)

A good candidate for such a transition is 13Al, involving the orbitals 3p1/2 and 3p3/2. From
existing tables (https://www.nist.gov/pml/atomic-spectra-database, accessed on 19 January
2024) we find ϵp = 0.0139 eV. The spin-induced matrix elements are as follows

C = {2/9, 4/3, 8/9, 4/9} for the A, B, C, D respectively

https://www.nist.gov/pml/atomic-spectra-database
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Table 1. The coefficients
(

Cj1,m1,j2,m2,ℓ

)2
connecting via the spin operator a given initial state

|i⟩ = |nℓ, j1,−j1⟩ with all possible states | f ⟩ = |nℓ, j2, m2⟩, for ℓ = 0, 1, 2, 3.





























































|i⟩ | f ⟩
ℓ j1 m1 j2 m2 C2

j1,m1,j2,m2,ℓ

0 1
2 − 1

2
1
2

1
2 2

1 1
2 − 1

2
1
2

1
2

2
9

1 1
2 − 1

2
3
2 − 3

2
4
3

1 1
2 − 1

2
3
2 − 1

2
8
9

1 1
2 − 1

2
3
2

1
2

4
9

2 3
2 − 3

2
3
2

1
2

6
25

2 3
2 − 3

2
5
2 − 5

2
8
5

2 3
2 − 3

2
5
2 − 3

2
16
25

2 3
2 − 3

2
5
2 − 1

2
4

25
3 5

2 − 5
2

5
2 − 3

2
10
49

3 5
2 − 5

2
5
2 − 7

2
12
7

3 5
2 − 5

2
5
2 − 5

2
24
49

3 5
2 − 5

2
5
2 − 3

2
4

49





























































(ii) Next we will consider a target with the ground state containing a single d3/2 orbital,
while the d5/2 is empty. Let us suppose that the spin-orbit splitting is ϵd. In the presence
of a magnetic field, the m-degeneracy is removed, and the ground state is in the state
|j1, m1⟩ = |3/2,−3/2⟩. Then we have the following spin-induced transitions:

|3/2,−3/2⟩ → |3/2, 1/2⟩, |3/2,−3/2⟩ → |5/2,−5/2⟩, |3/2,−3/2⟩ →

|5/2,−3/2⟩, |3/2,−3/2⟩ → |5/2,−1/2⟩
indicated again as A, B, C and D, respectively. The g-factors for the j = 3/2 and j = 5/2
d-levels are 4/5 and 6/5, respectively. Thus, the excitation energies are:

m =

{

4δ

5
, ϵ − 9δ

5
,−3δ

5
+ ϵ,

3δ

5
+ ϵ

}

, ϵ = ϵd (37)

where we have included both spin and orbital magnetic moment.
Our best candidate found in the above-mentioned reference with the NIST tables is the

target 21Sc involving the 3d3/2 → 3d5/2 transitions with ϵd = 0.0209 eV. Other candidates
can also be found in the same reference, e.g., Z = 39 (Y I, 4d3/2d5/2, ϵd = 0.0658 eV) and
Z = 71 (Lu I, 5d3/2, d5/2, ϵd = 0.2472 eV) where I indicates that it is a neutral atom.

Thus, we can use Equation (37) with the appropriate value of ϵd and the spin-induced
|ME|2

C = {4/25, 8/5, 16/25, 4/25}
(iii) s1/2 states. Such states exist in many atomic targets. In all such cases

m = 2δ, C = 2.

We note the relatively large spin matrix for single particle excitations.
Note that, in the case of s1/2 and the A type transitions, the lowest value of the axion

mass required for the process to take place is very small since the spin-orbit splitting does
not appear. If such a configuration exists in the ground state of the atom considered, the
obtained results are independent of the atom.

The transition energy is also small for the other type of transitions if the spin-orbit
splitting is small, e.g., in the case of all 3d-transitions considered here.
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5.2. More Than One-Electron Configurations

5.2.1. Two-Electron Configurations

The simplest possible case is two-electron configurations. Now, the needed states are
spin−symmetric. The antisymmetry of the wave functions requires the space part to be
antisymmetric, i.e., a wave function of the form

ψ = ϕ2
nℓ(r)[L = odd,S = 1]J = L − 1, L, L + 1

i.e., spin triplet and L odd states.
Of special interest are the cases involving the functions:

ψ = ϕ2
nℓ(r)

3PJ , ϕ2
nℓ(r)

3FJ

Then the spin matrix element can be cast in the form:

CL,J1,m1, J2,m2
= ⟨3LJ2m2

|σ|3LJ1m1
⟩ = ⟨J1m1, 1m2 − m1|J2m2⟩⟨3LJ2

||σ|| 3LJ1
⟩√

2J2 + 1
, L = P, F (38)

The ⟨3LJ2
||σ|| 3LJ1

⟩ is the spin−reduced matrix element, and it can be calculated by tech-
niques familiar to atomic physics.

Good candidates are the following:
(i) L = 1.
In this case, the ground state (gs) of the carbon atom is of the form 2s22p2 3P0, while

the excited state, which can be populated by spin excitations, is 3P1 at 16.41671 cm−1, about
0.002 eV. It may be useful to note that the silicon atom (Si I) has the same structure, except
for the gs radial quantum number n = 3 and the fact that ϵ = 0.00956 eV. The radial
quantum number does not affect the calculations performed here, while the fine structure
splitting can be selected on the basis of the axion mass being searched. That being said, the
experimenters can choose whichever is more appropriate for them.

So since in both cases, the initial state is not degenerate, only the excitations 0 → m
caused by the spin σm operator appear. Furthermore, one needs to consider of the splitting
of the final multiplet 2s22p2 3P1, which is given by

{

−3δ

2
, 0,

3δ

2

}

for m = −1, 0, 1 respectively.

Thus in the case of carbon

m =

{

−3δ

2
+ ϵ, 0,

3δ

2
+ ϵ

}

, ϵ = 0.002 eV. (39)

(ii) L = 3
A good such candidate is the Ti atom. In this case the gs is of the form 4s23d2 3F2. The

excited state that can be reached is 3F3 at 170.134, cm−1 = 0.02 eV. Another good candidate
is the neutral Zirconium (Zr I) atom. This has the same structure, except for the radial
quantum number being n = 5, which is irrelevant for our calculations, and the fact that
ϵ = 0.0707 eV. The latter affects the axion mass to be extracted by the experimenters. So
the choice of the target can be selected on the basis of the same criteria as above. Thus, for
both cases

m =

{

28δ

9
,

121δ

72
+ ϵ,

115δ

36
+ ϵ,

113δ

24
+ ϵ

}

, (40)

including both the spin and the orbital magnetic moment.
The relevant spin matrix element is given in Table 2.
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Table 2. The coefficients ⟨3PJ2
||σ|| 3PJ1

⟩, ⟨3FJ2
||σ|| 3FJ1

⟩ and ⟨5DJ2
||σ|| 5DJ1

⟩ as well as the correspond-

ing total matrix elements |ME|2 relevant to the present work. Note that the initial sub-state is of the

form |j1, m1⟩ = |J1,−J1⟩.

J1 J2 ⟨3PJ2
||σ|| 3PJ1

⟩ m1 q
⟨J1,m11,1q|J2,m1+q⟩√

2J2+1
|ME|2

0 1 2
√

2 0 ±1, 0 1√
3

8/3

J1 J2 ⟨3FJ2
||σ|| 3FJ1

⟩ m1 q
⟨J1,m11,1q|J2,m1+q⟩√

2J2+1
|ME|2

2 2 −2
√

10
3 −2 1 − 1√

15
8
9

2 3 −4
√

5√
3

−2 −1 1√
7

80
21

2 3 −4
√

5√
3

−2 0 1√
21

80
63

2 3 −4
√

5√
3

−2 1 1√
105

16
63

J1 J2 ⟨3PJ2
||σ|| 3PJ1

⟩ m1 q
⟨J1,m11,1q|J2,m1+q⟩√

2J2+1
|ME|2

2 2
√

30 −2 1 − 1√
15

2

2 1
√

10 −2 1 1√
5

2

J1 J2 ⟨5DJ2
||σ|| 5DJ1

⟩ m1 q
⟨J1,m11,1q|J2,m1+q⟩√

2J2+1
|ME|2

4 4 6
√

5 −4 1 − 1
3
√

5
4

4 3 6 −4 1 1
3 4

5.2.2. More Than Two-Electron Configurations

(i) The oxygen atom.
In this case, the gs is of the form 2s22p4 3P2, while the excited state, which can be populated
by spin excitations, is 3P1 at 158.265 cm−1, about 0.0196 eV. This target is appropriate at the
low temperatures we consider since it is no longer a gas. Otherwise, one might consider
the atom of Sulfur (S I), which has the same configuration but with n = 3 instead of n = 2.
Returning to the oxygen atom, we will consider the splitting of the ground state multiplet
2s22p4 3P2, as well as of the final state multiplet 2s22p4 3P1

By angular momentum selection rules only the A and the D terms are allowed. Thus
one finds

m =

{

5δ

3
, 0, 0,

5δ

3
+ ϵ

}

, ϵ = 0.0196 eV. (41)

including the contribution of both the spin and orbital magnetic moment.
(ii) The 26Fe atom.

The ground state is of the form 3d64s2 5D4, while the excited state that can be populated by
spin excitations is the first excited one 5D3 at 415.933 cm−1 = 0.0516 eV. The calculation of
the reduced spin and orbital angular momentum matrix elements is a bit complicated, but
it can be simplified by making use of the symmetries of the wave functions. The spin part
is characterized by the SU(2) symmetry [5, 1] while antisymmetry requires the orbital part
to be [2, 14] under SU(5). The relevant matrix elements can be evaluated using standard
techniques, see, e.g., [45], table B.19. Since only the transitions of the type A and D appear
in this case, one finds

m =

{

16δ

5
, 0, 0,

16δ

5
+ ϵ

}

, ϵ = 0.0516 eV (42)

including both the spin and the orbital magnetic moments.
The needed spin-induced transition matrix elements ⟨3PJ2m2

|σ| 3PJ1,−J1⟩2

and ⟨3FJ2m2
|σ| 3FJ1,−J1⟩2 and ⟨5DJ2m2

|σ| 5DJ1,−J1⟩2 are shown in Table 2.
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6. Low Temperature Requirements

As we have mentioned, the detection of very light axions in the regime of a few µeV
mass crucially depends on the condition that the second level must be essentially free of
electrons. To achieve this condition the target material should be brought at cryogenic
temperatures. The critical temperature depends on the axion mass to be explored. The ratio
of the probabilities of finding an accidental electron in the second level relative to the prob-
ability of finding one in the first level is given by the Boltzmann distribution probability:

Pi, f = e−ma/kT (43)

Suppose that we demand
Pi, f = e−ma/kT < 10−x. (44)

Then we find that

T ≤ 0.434ma

kx
(45)

The condition on the temperature is given in Figure 6.

T
→

K

10
-4

0.001 0.010 0.100

0.01

0.10

1

10

100

1000

ma →eV

Figure 6. The temperature in degrees Kelvin to be achieved is the region below the above curves so

that the population of the excited state by thermal electrons can be neglected. The continuous curve

corresponds to relative probability of 10%, the long dash to 1% and the sort dash to 0.1%

We thus see that, for axion mass ma = 0.4 × 10−4 eV associated with a magnetic field
B = 1 T, T ≤ 0.1 K may be required. The situation may improve, of course, for larger
magnetic fields. Typical laboratory fields, however, are sometimes not sufficiently weak for
the Zeeman effect adopted here to apply. If B is typical but strong, either an intermediate
case applies or the Paschen–Back effect. Here, throughout the paper it is assumed that the
Zeeman effect always applies, but, strictly speaking, this holds only when the B-induced
splittings are small as compared to the fine structure ones, say

δ ≤ ϵ

4
→ B < 0.25

ϵ

µB
. (46)

In particular, when ϵ is of the order of meV and the Zeeman corrections are of the order of
10−5 eV, we are certainly on the safe side. On the other hand for axions heavier than 0.1 eV,
truly cryogenic temperatures are not required.

Accidental backgrounds causing the excitation may be rejected from the resonant
behavior since it is unlikely that they are going to have a velocity distribution similar to
that of the axions in the local frame.

There remains, however, an additional problem. For very light axions, one has to
develop target materials, which, at these cryogenic temperatures, exhibit atomic structure.
Ordinary atoms do not suffice. One demands that the ions of the crystal still exhibit atomic
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structure involving the bound electrons, as, e.g., the CUORE detector of Crystalline 130TeO2

at cryogenic temperatures. The electronic states probably will not carry all the important
quantum numbers as their corresponding neutral atoms, but they should possess the
configurations connected by the spin excitations considered here. So, one may prefer to
consider targets that contain appropriate impurity atoms in a host crystal, e.g., chromium
in sapphire. As a matter of fact, it is very encouraging that already there exist proposals
involving rare-earth ions doped into solid-state crystalline materials [46] at cryogenic
temperatures. In fact, if ion impurities are doped in crystals, one has to choose the target
atoms in such a way that the corresponding ions can be isoelectronic to the atoms presented
here and have the same configurations and terms. Since, as we shall see below, the expected
rates for light axions are quite large, small impurities of 1 to 1000 or even 1/10,000 may be
adequate, or one may relax the condition on the relative probability Pi, f , see Equation (44).

It is also possible that one may be able to employ at cryogenic temperatures some
exotic materials used in quantum technologies (for a review see [47]) like nitrogen-vacancy
(NV), i.e., materials characterized by spin S = 1, which in a magnetic field allow transitions
between m = 0, m = 1, and m = −1.

7. Some Estimates on the Expected Rates

We have seen that the event rate is given by Equation (24). Its scale, computed with a
cross-section σ0 = 2.0 × 10−47cm2, extracted from the Borexino data, is shown in Figure 3.
We are now going to compute the total rates incorporating the spin-induced matrix elements
(

Cj1,m1,j2,m2,ℓ

)2
and the effects of the resonance. Our results will be presented in the form

of suitable plots.
In the plots, the resonant behavior will be apparent, but the location of the reso-

nance, as well as its width, depends on the atom considered through the parameters
mi, i = A, B, C, D, which are functions of the spin-orbit splitting ϵ as well as the energy δ
due to the magnetic moment. These are given in Section 5. We should also indicate the
event rate on the resonance for each type of transition A, B, C, D, which will not be the same
for all of them due to the different axion mass and the spin-induced matrix elements. For
compactness of presentation, we will put all this information for a given atomic target in
the same plot. The event rate will be most economically presented for all transition types in
the same figure as a function of r = ∆

ma
− 1, with ∆

ma
covering the range of values allowed in

the interval between X = 0 and X = 2.84, as discussed in Section 4, in a fashion analogous
to that of Figure 5. The picture, in this case, will necessarily be more complicated, but we
hope that, with the information provided, it will be understood after the discussion of
Section 4.

Before we proceed further with the details of the rates of various atoms we should
mention that the condition for the resonance given by Equation (31) must be satisfied. It
can now be written as

ma = mi(1 − χ),
χ = 0.97 × 10−6, i = C
χ = 0.78 × 10−6, i = A, B, D

(47)

7.1. One-Electron Configurations

We will consider the following cases:
(i) s-orbitals.

For such atoms the obtained rate is shown in Figure 7.
(ii) p-orbitals.

The event rate is exhibited in Figure 8.
(iii) d-orbitals.

The obtained event rates are shown in Figures 9–11.
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Figure 7. The only possible transition is of A type. Now the transition energy is ∆ = 6× 10−5 B
1T (1+ r)

eV. The extracted axion mass is given by the value of r0 at the location of the maximum,

ma = MA(1 − r0), analogous to that of Equation (47). The width is determined by Γ = r2 − r1,

where r2 and r1 are the locations at half maximum.

Figure 8. The rate as a function of r = ∆

ma
− 1, for transition types A, B, C, D indicated by a long dash,

short dash, solid line, and intermediate dash, respectively. Note that to make the type A fit in the

picture, we have suppressed it by the factor Cg = 1/5, i.e., its actual value is 5 times larger. In these

plots, the shape is essentially determined by the velocity distribution. The extraction of the axion

mass and the width of the resonance are determined as in Figure 7, except that mow r0 → ri
0, r1 → ri

1

and r2 → ri
2, i = A, B, C, D. The obtained results for the axion mass and the extracted width may not

agree exactly with those of Equations (47) and (33), respectively, due to the fact that the resonances

here are not normalized. The parameters mi are as follows: mA = 2δ
3 , mB = ϵ − 5δ

3 , mC = ϵ − δ
3 ,

mD = δ + ϵ. In the case of 13Al considered here ϵ = 0.0139 eV. For any other single particle p-orbitals

only ϵ may be different.
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Figure 9. The same as in Figure 8 in the case of the atom 21Sc. The parameters mi are as follows:

mA = 4δ
5 , mB = ϵ − 9δ

5 , mC = ϵ − 3δ
5 , mD = ϵ + 3δ

5 , with ϵ = 0.0209 eV.

Figure 10. The same as in Figure 9 in the case of the atom 39Y, which also involves d-orbitals, but in

this case ϵ = 0.0658 eV . For transition type A, the suppression factor Cg = 1/10 was employed, i.e.,

the corresponding rate must be multiplied by 10.
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Figure 11. The same as in Figure 9 in the case of the atom 71Lu, which also involves d-orbitals,

but in this case ϵ = 0.2472 eV . Again, for transition type A, the suppression factor Cg = 1/50

was employed.

7.2. Two-Electron Configurations

In this case we will consider the two systems discussed in Section 5.2.1, namely carbon
and 22Ti.

In the first case the transition is 3P0 →3 P1, i.e., since the initial initial state is a J = 0,
the A type transition is not available. The obtained rates are exhibited in Figure 12. It may
be useful to note that the Si atom has the same structure, except for the radial quantum
number, which is irrelevant here, and the fact that ϵ = 0.00956 eV. Otherwise, the situation
is the same as in Figure 12.

Figure 12. The same as in Figure 8 but for the C atom, with mi as follows: mB = ϵ − 3
2 δ, mC = ϵ,

mD = ϵ + 3
2 δ, ϵ = 0.002 eV. The patterns B and D coincide, while the type A transition is not present.

For the second target 22Ti, the transition is 3F2 →3 F3, with the splitting of the spin-
orbit partners being relatively small. The obtained results are exhibited in Figure 13. The
use of such a target, however, may suffer from the fact that 22Ti normally exists in metallic
form. It may be useful to note that the neutral Zr (Zr I) atom has the same structure, except
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for the radial quantum number, which is irrelevant here, and the fact that ϵ = 0.0707 eV.
Otherwise, the situation is the same as in Figure 13.

 

Figure 13. The same as in Figure 8 but for the Ti atom. For transition type A, the suppression factor

Cg = 1/5 was employed, i.e., the corresponding rate must be multiplied by 5. Now mi given by

mA = 28δ
9 , mB = 121δ

72 + ϵ, mC = 115δ
36 + ϵ , mD = 113δ

24 + ϵ, ϵ = 0.0211 eV. The The type D transition

is not visible.

7.3. Many-Electron Configurations

In this case, we will consider the two targets described in Section 5.2.2.
(i) Transitions of the type 3P2 →3 P1.

The simplest such system is the oxygen atom with n = 2. As has already been mentioned,
one may also consider sulfur (S I), which has the same configuration but a different n, i.e.,
n = 3.

(ii) The second interesting example of many particle configurations is that of 26Fe,
allowing the transition 5D4 →5 D3.
The obtained results presented in Figure 14.

Figure 14. The same as in Figure 8 but for the iron target. The A term has been suppressed by a factor

of 1/500, i.e., its actual value is 500 times larger. Now mi, i = A, D with mA = 16
5 δ, mD = ϵ + 16

5 δ,

ϵ = 0.0516 eV. The other two transition types B, C do not occur.
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At this point, we should mention that, for the configurations with more than a sin-
gle electron, some of the rates are enhanced due to the large spin interaction involved,
see Table 2.

7.4. A Summary of the Obtained Results

We have exhibited the results for the axion-induced excitations for a number of atomic
targets; see Figures 7–15. Similar results are expected for targets involving different radial
functions with the same angular momentum structure, e.g., single-particle structures
involving s, p, and d orbitals or many-particle configurations, Si instead of C, Zr instead of
Ti, etc. The expected event rates, the width of the resonance, and the dependence on the
magnetic field will be the same. Only the extracted value of the axion mass from the B, C,
and D terms will be different since it depends on the experimentally determined spin-orbit
splitting ϵ.

 

Figure 15. The same as in Figure 8 but for the oxygen target. The A term has been suppressed

by a factor of 1/500, i.e., its actual value is 500 times larger. Now mi, i = A, D with mA = 5
3 δ,

MD = ϵ + 5
3 δ, ϵ = 0.0196 eV. The other two transition types B, C do not occur. The other two

transition types B, C do not occur.

We have seen that in all atoms considered, the expected resonances are very narrow,
and since we have no experimental or theoretical information about the axion mass, they
might be missed by experiments. The location of the resonance, however, depends on
the magnetic field employed. One, thus, may consider a magnetic field whose magnitude
is changing periodically from a minimum to a maximum value many times during the
experiment. The oscillation period must be as short as possible and, in any case, very much
shorter than the run time of the experiment. The duration of the run must be longer than the
time implied by the predicted event rate to compensate for the fact that only a fraction of the
time, the equipment is going to be at the right state of sensitivity for axion detection. With
this arrangement, one can perhaps see the axion provided its mass lies between mi|B=Bmin

and mi|B=Bmax for i = A, B, C, D. This range depends on the atom considered. The most
favored case is the one with as large as possible magnetic moment splitting. Thus in the
case of the iron target, one can detect light axion masses through the A term in the range
of 16

5 (δ/n) ≤ ma ≤ 16
5 δ, with n an integer. In particular for n = 100 and B = 1T one can

detect axions in the mass range 2 × 10−6eV ≤ ma ≤ 2 × 10−4 eV. This range is a bit wider
than that of the dedicated experiments involving resonant cavities, such as the well-known
ADMX, ADMX-HF, and CAP [22], searching for axion masses, see, e.g., [15,17,20]. For
a summary, see [27] and a recent review [48] giving the range 10−6 eV ≤ ma ≤ 10−4 eV
(values ma ≤ 4.4 µeV have recently been excluded by ADMX [30]).

Similarly, for heavier axions through the D term, one obtains a relation depending on
the spin-orbit splitting, in this case, 0.05 + 2 × 10−6 eV ≤ ma ≤ 0.05 + 2 × 10−4 eV.



Particles 2024, 7 116

The width of the above window can, of course, increase if larger magnetic fields
are employed, consistent, of course, with the constraints discussed in Section 6, and the
minimum can be selected to be the convenient one. We should add that, after consultation
of our diagram of Figure 6 and Table 3, we obtain for an axion mass of 1 meV a required
temperature between 1.5 and 5 Kelvin. This temperature range is almost identical to the
one investigated experimentally by Braggio et al. [46], with the final verdict being that
efficient heat dissipation for such conditions is quite feasible. Thus, there are no laser
heating problems for the 1 meV to 1 eV range. We recognize that, for the <1 meV range,
it would be certainly more challenging. Given, however, the numerous studies on cold
atoms where temperatures of the order of hundreds of µKelvins are achieved (admittedly
for small samples) we believe it would be still feasible to achieve at least 0.1 Kelvin, even
when dealing with large samples (axion masses around 10−4 eV, see our Figure 6).

Table 3. The maximum in Kelvin temperature acceptable as a function of the axion mass for the

condition that the Boltzmann factor given by Equation (43) must be less than 10−x.

ma → µeV 0 50 100 150 200

x = 1 0 0.383 0.766 1.149 1.532
x = 2 0 0.191 0.383 0.574 0.766
x = 3 0 0.128 0.255 0.383 0.511

Anyway, such windows of axion mass can be open in atomic physics detection,
provided that the sweep in frequency is smooth and gap-less, exploiting the feasibility of a
simultaneous scan of the frequency of the exciting radiation (presumably delivered by a
laser) for the transition of |2⟩ → |3⟩ as suggested by Sikivie and that of the magnetic field
in a prescribed way (see, e.g., [49,50]).

This way one would think that the narrowness of the signal is beneficial rather than
problematic, yielding an advantage of the atomic experiments against the background.

8. Conclusions

In this paper, we considered the possibility of direct detection of axion as a dark
matter candidate by measuring the rates for axion-induced atomic excitations. The essential
input in our calculations was the strength of the axion electron interaction gae/ fa and
the axion flux on the detector. For the latter, we have used the standard halo parameters
with a Maxwell–Boltzmann distribution transformed in the local frame. The strength of
the interaction gae/ fa was assumed to be equal to the limit obtained from the Borexino
experiment. This assumption allows axion masses in the range that can be exploited by
spin-induced atomic transitions. That is tens of µeV within members of the same multiplet,
i.e., |J1, M1 = −J1⟩ → |J1, M1 = −J + 1⟩, J1 ̸= 0 of the type A, and axion masses in the
range 1 meV–1 eV involving transitions of to the type |J1, M = −J1⟩ → |J2, M2 = −J1 + q⟩,
q = −1, 0, 1(types of B, C and D) allowed by the angular momentum selection rules.

Furthermore, since the axion is absorbed by the atom, the calculated cross-section
exhibits resonant behavior. The resulting pattern reflects the parameters of the velocity
distribution in the local frame and the momentum dependence of the axion-electron in-
teraction. The obtained results depend, of course, on the atom considered through the
parameters ϵ (the spin-orbit splitting) and δ (the energy splitting due to the magnetic
moment interaction). These two parameters determine the axion mass that can be detected,
which is very close to the excitation energy. In addition the resonant behavior can be
exploited by experiments in minimizing any background events.

In the special case of the type A transitions the obtained rates, as shown at the top of
the resonance, are quite large as a result of the large axion flux. The highest rates obtained
occur in the case of light axions. They involve all the s1/2 transitions in any atom and
the A type transitions and for the many-electron configuration atoms like Oxygen and

28Fe, namely R = 7.0 × 103 and R = 1.4 × 104 per mole-y, respectively. The experimental
detection difficulty, in this case, is not connected with the expected rate but, as explained in
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Section 6, with the cryogenic temperature behavior of the target. The excited state must
be essentially empty of electrons. For the A-term, the largest mass that can be detected is
185 µeV. The highest temperature in Kelvin that can be tolerated depends on x, and ma is
shown in Table 3. Furthermore, the target must exhibit atomic behavior at such cryogenic
temperatures. It may be an advantage that such high rates allow one to consider the atom
of interest in the form of an impurity at the level 1/103 or even 1/104 in an otherwise
inert target.

For the B, C, and D type transitions the temperature requirements are not very strin-
gent. The expected rates, as appearing at the tops of some of the B, C, D patterns in
the figures, are much smaller than those of the A terms, see Figures 8–14, but perhaps
detectable. In the case of the 22Ti a rate as high as R = 5.0 × 102 per mole-y is obtained.

As we have mentioned in the introduction, the axion-electron coupling can be ex-
tracted from astrophysical observations, e.g., from recent astrophysical data [35–37]. These
experiments do not extract this coupling directly, but, with the aid of suitable axion mod-
els, they determine it from a selection among processes like the Primakoff effect shown
in Figure 1b, photon conversion into an axion in the electric field of electrons or ions in
the plasma:

γ + Ze → a + Ze (48)

as well as Compton scattering:

a + A(Z) → A′(Z) + γ. (49)

These authors present their results in terms of a dimensionless coupling constant
gAe(we intentionally use the capital letter A to avoid confusion with gae employed in the
present work). The obtained limits are: gAe = 4 × 10−13 [35], gAe = 1.48× 10−13 [36] and
gAe = 1.2× 10−13 [37]. Transforming these to the units employed in this work, via the rela-
tion gAe/me = gae/ fa with the mass of the electron in GeV, we obtain 7.83× 10−10 GeV−1,
2.90× 10−10 GeV−1 and 2.35× 10−10 GeV−1, respectively. These must be compared with the
value given by Equation (28) employed here, which has been obtained from direct experiments.

We should mention that the obtained rates vary quadratically with the elementary
axion-electron coupling. This affects both the light and the heavier axions. Thus, proceeding
as above for the discussion for impurity target, if the impurity is not too small, in the case
of light axions, we can tolerate a coupling about 100 times smaller. In the case of the heavy
axions, however, even with favorable targets like 22Ti, we estimate that the coupling should
not be more than an order of magnitude smaller for such axions to be detectable. This is
really an experimental problem since it depends on some factors like the size of the target.

The main experimental problem for all types of transitions is due to the fact that
all resonances are very narrow and they might be missed by the experiments. This is,
unfortunately, so since there is no experimental or theoretical guide about the expected
value of the axion mass. We have seen, however, that if a suitable periodic magnetic field is
selected, whose magnitude is in an appropriate range and its period is very much smaller
than the experimental run time, a window of axion mass in the range of a fraction of an
meV wide, becomes open, which may be adequate.
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Appendix A. The Modulation of the Widths

The modulation of the widths can be simply included by making the local frame
the replacement:

F0(X) → e−δ cos α−δ2
F0

(

X

(

1

2
δ cos α + 1

))

, (A1)

where α is the phase of the Earth, α = 0 around June 3rd, and δ the ratio of Earth’s velocity
around the sun divided by the sun’s velocity around the galaxy, δ ≈ 0.135. We thus obtain
a time variation of the width shown in Figure A1. We see that the effect is small, the
difference between the maximum and the minimum is less than 3%, almost the same with
that obtained in the axion to photon conversion [44]. We note, however, that, in addition to
the seasonal dependence, we have a dependence on the magnetic quantum numbers of the
states involved. The variation in the case of m1 ̸= m2 is almost twice as large compared to
that with m1 = m2.
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Figure A1. In the top panel we exhibit the modulation of the width Γ, relative to its average value,

as a function of the phase of the Earth. The solid line corresponds to the case δm = 0 (no change

in the magnetic quantum number) while the dashed one corresponds δm = ±1. For comparison,

we present in the bottom panel the modulation curve obtained in the case of the standard axion to

photon conversion, obtained with the same halo parameters [44].
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It is amusing to know that the dispersion σ =
√

⟨X2⟩ − ⟨X⟩2 also exhibits a time
dependence (see Figure A2).

σ
→
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0.550

0.555

0.560

0.565

✵�✁✂✵

✵�✁✂✁

α →

Figure A2. The time variation of the width for axion absorption by an atom due to the motion of the

Earth. The notation for the curves is the same as in Figure A1.
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