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Abstract.
We review the Sudakov results on the double logarithmic asymptotics of the electron
form-factor which were based on his parametrization of the virtual particle momenta in
the Feynman diagrams. The high energy amplitudes for various QED and QCD pro-
cesses in the double-logarithmic approximation are obtained by using the Bethe-Salpeter
approach and the evolution equations. The ultraviolet divergency of the graviton Regge
trajectory allows to derive the infrared evolution equation for the graviton-graviton scat-
tering amplitude with a double-logarithmic accuracy. The asymptotic behavior of this
amplitude depends essentially on the rank N of the super-symmetry.

1 Introduction

The investigation of scattering amplitudes at high energies
√

s in QED was initiated by Vladimir
Vasil’evich Sudakov 60 years ago in his paper [1], devoted to the asymptotic behavior of the vertex
function in the double logarithmic approximation (DLA) valid in the region

α ln2 s
me
∼ 1 , α =

e2

4π
≪ 1 , s = (pe + pe)2 , (1)

where pe and pe are momenta of initial electron and positron. Really V. Sudakov considered the case
of the high energy scattering of the virtual electron off a charged center. In the case of the real electron
there are infrared divergencies which can be removed by the introduction of the photon mass λ. These
divergencies are canceled in the inclusive cross-section for the inelastic scattering with the emission
of an arbitrary number of photons [2]. In one loop approximation the vertex function γ(1) for the e+e−

annihilation in a photon with the large virtuality s can be calculated with the Sudakov parametrization
of the momentum k (see Figure)

k = α p′e + β p′e + k⊥ , pe = p′e +
m2

e

s′
p′e , pe = p′e +

m2
e

s′
pe , k⊥p′e = k⊥p′e = 0 ,

d4k =
|s′|
2

d α d β d2k⊥ , |α| ≪ 1 , |β| ≪ 1 , s′ = 2p′e p′e ≈ s , −k2
⊥ ≪

√
s .
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According to V. Sudakov the vertex function γ(1) after its integration over k⊥ can be written as follows

γ(1)

γBorn
= − e2

8π2

∫ 1

0

∫ 1

0

d α dβ θ(sαβ − λ2)(
α + m2

e
s β
) (
β + m2

e
s α
) = −

e2 ln s
m2

e

8π2


ln s

m2
e

2
+ ln

m2
e

λ2

 .

One can derive the evolution equation for γ in the infrared cut-off λ in DLA

∂γ

∂ ln m2
e/λ

2 = −
e2

8π2 ln
s

m2
e
γ .

Its solution allows to calculate the Sudakov vertex function in the DL approximation

γ = γBorn exp

−
e2 ln s

m2
e

8π2


ln s

m2
e

2
+ ln

m2
e

λ2


 . (2)

The probability for the emission of n additional soft photons obeys the Poisson distribution

wn = e−a an

n!
, a = 2

e2 ln s
m2

e

8π2


ln s

m2
e

2
+ ln

m2
e

λ2

 , (3)

but one should take into account the energy conservation for the total frequency ω of the emitted
photons. It turns out, that the QED radiative corrections to the production of narrow resonances
are large. For example, the double-logarithmic result for the cross-section of the inclusive Z-boson
production in the e+e− collisions at

√
s − MZ ≪ MZ has the form (cf. [3])

σe+e−→Z+photons =

∫ MZ

0
σ(W − ω)

dω
ω

4α
π

ln
W
me

(W
ω

)− 4α
π ln W

me
, W =

√
s , (4)

where σ(W) is the well known Born cross-section of the Z-boson production in the e+e− collisions

σ(W) =
3π
M2

Z

ΓeēΓtot

(W − MZ)2 +
Γ2

tot
4

. (5)

Note, that σe+e−→Z+photons does not depend on λ and behaves as ∼ 1/(W − MZ) above the resonance.

2 Backward Compton scattering and electron reggeization

A.A. Abrikosov in ref. [2] and in subsequent papers of 1956 investigated the backward γe scattering
at high energies and fixed momentum transfers (k and k′ are initial and final momenta of the photon)

s = (k + p)2 ≫ u = (k′ − p)2 ∼ m2
e .
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e .
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He obtained the simple Sudakov-type result for the corresponding amplitude in DLA

ADL(s, u) = AB exp
(
− α

2π
ln

s
m2

e
ln
|u|
λ2

)
.

Ten years later M. Gell-Mann with collaborators discovered, that A(s, u) for fixed u ∼ λ2 has the form

A(s, u) = AB

(
s

m2
e

)ω(u)

, u = −|q|2⊥ ,

where the Regge trajectory ω(ω) in one loop is given below

ω(u) =
α

2π
(q̂ − me)

∫
d2k⊥
π

1
k2
⊥ − λ2

q̂⊥ − k̂⊥ + me

(q − k)2
⊥ − m2

e
.

V. G. Gorshkov, V. N. Gribov and G. V. Frolov performed similar calculations in the real case λ → 0
and found, that the integration region k2

⊥ ≪ q2 over the virtual photon momenta gives an universal
contribution and produces a divergent factor in the amplitude. The universality of this factorization
for small k⊥ was proven by V.N. Gribov with the use of the dispersion relations also for the case of the
QED corrections to the strong interactions in the Regge kinematics. Below we shall apply the Gribov
arguments for the derivation of the non-linear evolution equations for the amplitudes in DLA.

3 Charge particle scattering and annihilation in QED

The forward scattering of charged particles in QED is related to the Pomeranchuk singularity respon-
sible for the high energy behavior of total cross-sections which does not contain double logarithms.

But one can consider the process e+e− → µ+µ− in the kinematics when µ− flies along e−

s = (pe + pē)2 ≫ t = (pe − pµ)2 ∼ m2 .

It turns out [4], that the amplitude for this process is factorized in DLA

ADL(s) = ABorn f (s) , f (s) = f (s, p2)p2=m2

and the main contribution to it goes from ladder diagrams satisfying the Bethe-Salpeter equation [4]

f (s, p2) = 1 +
α

2π

∫ s

m2

ds′

s′

∫ s′

max(m2,p2 s′
s )

dp′2

p′2
f (s′, p′2) .

The solution of this equation allows to find f (s) on the mass shell p2 = m2 in DLA [4]

f (s) =
∫ a+i∞

a−i∞

d j
2πi

( s
m2

) j 2

j +
√

j2 − 2α
π

= I0

(√
α

π
ln

s
m2

)
.

For the e+e− backward scattering in the Regge kinematics

s = (p1 + p2)2 ≫ u = (p1 − p′2)2 ∼ m2
e

the amplitude is also factorized

ADL(s) = ABorn f (s) , f (s) = f (s, p2)p2=m2 .

3

EPJ Web of Conferences 164, 01033 (2017)	 DOI: 10.1051/epjconf/201716401033
ICNFP 2016



EPJ Web of Conferences

In this case apart from the ladder diagrams a large contribution appears also from the Sudakov-type
photon insertions. The corresponding Bethe-Salpeter equation is more complicated but it can be
solved explicitly, which allows one to obtain the corresponding amplitude on the mass shell [5]

f (s) = 4
∫ a+i∞

a−i∞

d l
2πi

elρ d
d l

ln D− 1
4
(l) , ρ =

√
2α
π

ln
s

m2 .

Here we omitted the Sudakov factor from soft photons with k⊥ ≪ m and used the expression

Dp(x) =
e−

x2
4

Γ(−p)

∫ ∞
0

dt
t1+p e−xt− t2

2 .

for the parabolic cylinder function.

4 Infrared evolution equations

A simple approach for the derivation of scattering amplitudes in QED and QCD at DLA was suggested
in the paper [6]. It is based on the introduction of the infrared cut-off µ at the transverse momenta of
virtual particles in the Feynman diagrams

|k⊥|2 > µ2

and the subsequent construction of the evolution equation in µ for the amplitudes on the mass shell.
This method is similar to the renormalization group approach in the Sudakov interpretation [7].

For example, for the e+e− forward scattering the µ2-evolution equation can be written as follows

f (s, µ2) = 1 + e2
∫ ∞
−∞

dsα
sα

dsβ
sβ

∫
µ

d2k⊥
i(2π)4 f (sα, |k⊥|2)

|k⊥|2
(sαβ − |k⊥|2)2 f (sβ, |k⊥|2) .

With the transition to the j-representation it can be reduced to the algebraic relation

f (s, µ2) =
∫ a+i∞

a−i∞

d j
πi


(
− s
µ2

) j

+

(
s
µ2

) j f j

j
, f j = 1 +

α

2π

f 2
j

j2
,

which leads to the above result for f (s) expressed in terms of the Bessel function I0(x).
In an analogous way the evolution equation for the backward e+e− scattering amplitude is reduced

to the differential equation which can be easily solved in terms of the parabolic cylinder function [6]

f j = 1 +
2α
π

d
d j

f j

j
− α

2π

f 2
j

j2
,

f j

j
= 4
√
π

2α
d
dl

ln
(
el2/4D−1/4(l)

)
.

In this equation the non-linear term corresponds to the ladder contribution and the term with the
derivative describes the soft Sudakov photons attached to the external legs according to the Gribov
factorization theorem discussed above.

In QCD the large logarithms of Q2 in the electron-proton scattering are summed with the help of
the DGLAP equation [8]. At x→ 0 this equation for a non-singlet parton distribution

d
d ln Q2 nq(Q2, x) =

n2
c − 1
2N2

c

αc(Q2)
2π

∫ 1

x

dβ
β

nq(Q2, β)

4
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can be modified by a simple deformation of the integration region

nq(Q2, x) = δ(x − 1) +
n2

c − 1
2N2

c

αc

2π

∫ 1

x

dβ
β

∫ Q2 β
x

m2

dk2

k2 nq(k2, β) .

Its solution corresponding to the non-singlet quark distribution in DLA is given below

nq(Q2, x) =
∫ a+i∞

a−i∞

d j
2π

(
1
x

) j jγ( j)
N2

c−1
2Nc

α
2π

(
Q2

m2

)γ( j)

, jγ( j) =
N2

c − 1
2Nc

α

2π
+ γ2( j) .

In a similar way one can modify and solve the equations at x → 0 for the singlet quark and gluon
distributions in DLA [9].

5 Graviton Regge trajectory and scattering amplitudes in super-gravity

The graviton Regge trajectory in LLA was calculated many years ago [10]

ω(q2) =
α

π

∫
q2 d2k

k2(q − k)2 f (k, q) , α =
κ2

8π2 ,

where γ = κ
2

8π is the Newton constant and

f (k, q) = (k, q − k)2
(

1
k2 +

1
(q − k)2

)
− q2 +

N
2

(k, q − k) .

Here N is the number of different gravitinos appearing in the corresponding action

S 3/2 = −
1
2
ϵµνρσ

∫
d4x

N∑
r=1

ψ̄r
µγ5γν∂ρψ

r
σ.

The graviton Regge trajectory contains infrared and ultraviolet divergencies

ω(q2) = −α|q|2
(
ln
|q|2
λ2 +

N − 4
2

ln
|Λ|2
|q|2

)
.

The ultraviolet divergency is fictive, because in one loop the gravity is a renormalizable theory. The
cut-off Λ2 should be substituted by s, which leads to an appearance of double-logarithmic terms in
the corresponding scattering amplitude. The summation of all such terms is performed below [10].

It is convenient to use the Mellin representation of the graviton-graviton scattering amplitude

A(s, t) = ABorn s−α|q|
2 ln |q|

2

λ2 Φ(ξ) , Φ(ξ) =
∫ a+i∞

a−i∞

dω
2πiω

(
s
|q|2

)ω
fω .

The partial wave fω satisfies the infrared evolution equation similar to the QCD case [11]

fω = 1 + b
d

dω
fω
ω
− b

N − 6
2

f 2
ω

ω2 , b = α|q|2 , α = κ
2

8π2 , ξ = α |q|
2 ln2 s

|q|2 .

Its solution in the perturbation theory is

Φ(ξ) = 1 − N − 4
2
ξ

2
+

(N − 4)(N − 3)
2

ξ2

4!
− N − 4

8
(5N2 − 26N + 36)

ξ3

6!
+ ... .

5
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The analytic solution of the equation can be constructed in terms of the parabolic cylinder function

f (N)
ω

ω
=

2
6 − N

1
√

b

d
d x

ln d(N)(x) , d(N)(x) = e
x2
4 D 6−N

2
(x) , x =

ω
√

b
.

One can verify [11], that the quantity A(s, t)/ABorn grows with energy for N < 4 and tends to zero at
s→ ∞ for N > 4.
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