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Abstract

Dimensional reduction of various gravity and supergravity models leads to effec-
tively two-dimensional field theories described by gravity coupled nonli@edd coset
spaceos-models. This Thesis is devoted to an analysis of these models within the
canonical framework, exploiting the close relations to well-known integrable field the-
ories. A complete set of conserved nonlocal charges is derived from the transition
and monodromy matrices of the associated linear system. Their Poisson algebra is a
modified (twisted) version of the semi-classical Yangian double. The classical infinite-
dimensional symmetry group (the Geroch group) is generated by the Lie-Poisson action
of these charges. The structures completely extend to models with local supersymmetry,
taking into account all additional fermionic degrees of freedom. Canonical quantization
of the algebra of charges leads to a twisted Yangian double with fixed central extension
at a critical level. The last chapter collects some results within the so-called isomon-
odromic approach to these models.

Zusammenfassung

Dimensionale Reduktion einer groRen Klasse von Modelleneh-dimensionaler
Gravitation und Supergravitatiomlfirt auf effektiv zwei-dimensionale Feldtheorien, ge-
nauer, auf gravitationsgekoppelte nichtlinear®odelle auf QuotientemtimenG /H.

Die vorliegende Arbeit ist einer Untersuchung dieser Modelle gewidmet. Dies ge-
schieht im kanonischen Zugang, indem die engen Verbindungen zu bekannten integra-
blen Feldtheorien ausgenutzt werden. Ein valtgliger Satz erhaltener, nicht-lokaler
Ladungen &Rt sich aus den Monodromien des zuw&fen linearen Systems ablei-

ten. Die Poisson-Algebra dieser Ladungen ist eine modifizierte (getwistete) Version des
semi-klassischen Yangian-Doppels. Die unendlich-dimensionale klassische Symmetrie-
Gruppe dieser Modelle (die Geroch Gruppe) wird durch die Lie-Poisson Wirkung der
Ladungen erzeugt. &itliche Strukturen erweitern sich auf lokal supersymmetrische
Modelle unter Beucksichtigung aller zwdzlichen fermionischen Freiheitsgrade. Die
kanonische Quantisierung der Algebra nichtlokaler Ladungént &uf ein getwistetes
Yangian-Doppel mit zentraler Erweiterung. Das letzte Kapitel @b#ine Zusammen-
stellung von Resultaten im sogenannten isomonodromen Zugang zu diesen Modellen.
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1 Introduction

The so-called hidden symmetries, appearing in the dimensional reduction of gravity and
supergravity theories, have played an important role in the study of these theories over the last
thirty years. Based on earlier work [32, 93] it was Geroch who first realized the emergence of
an infinite-dimensional symmetry algebra in the two Killing vector field reduction of general
relativity [47]. Later on, this symmetry structure was found to be generic for a broad class
of models of dimensionally reduced gravity and supergravity theories [60, 62].

Upon reduction to two dimensions these models take the forfa /A coset space-
models coupled t@d gravity and a dilaton. Various coset spaces descend from different
models (see e.g. [67, 90, 62, 98, 14, 88, 45]), culminating irfkhes) /SO(16) which origi-
nates from dimensional reduction of maximally extended supergravity in eleven dimensions.
The infinite-dimensional symmetry algebra of these models has been identified with the loop
algebra which is associated with the Lie algepia G; the existence of a central extension
of this algebra has been noted in [61].

The interest in studying this class of two-dimensional models is (at least) a threefold.
First, these models enlarge the list of integrable models, exhibiting a new underlying al-
gebraic structure ((3.60), (3.61) below) which already deserves interest for itself: On the
classical side we face a surprising regularization mechanism of the Poisson algebra of non-
local charges — caused by the space-time coordinate dependence of the spectral parameter
(3.3), which is one of the distinguished properties of the model. On the quantum side, the
main interest is in the resulting algebra (5.5)—(5.9) below, which is a modification of the
well-known Yangian double [28]. The twist by which it differs from the normal Yangian
double essentially requires a new representation theory to be developed.

From the physical point of view, many of these models have received interest in the con-
text of so-called midi-superspace models whose quantization serves as an interesting testing
ground for many issues of quantum gravity. Despite the fact that dimensional reduction
represents an essential truncation of the phase space, the models under consideration are suf-
ficiently complicated to justify the hope that their exact quantization may provide insights
into characteristic features of a still outstanding theory of quantum gravity. In particular,
and in contrast to previously exactly quantized mini-superspace models, they exhibit an in-
finite number of degrees of freedom, which is broadly accepted to be a sine qua non for
any significant model of quantum gravity. Their quantization may thus lead to progress in
understanding the nature of quantum geometry and quantum black holes, reliability of semi-
classical methods, etc. . This belief is e.g. supported by the observation that already rather
simple and exactly soluble two-dimensional models of dilaton-coupled gravity capture and
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allow to further analyze several features that are expected to characterize quantum black hole
solutions of the full four-dimensional theory (gravitational collapse, Hawking radiation, in-
formation loss, etc., see [116] and references therein).

Finally, from a higher-dimensional perspective these models and techniques find appli-
cation in the study of gravitational string backgrounds and their symmetries, or describe the
behavior of extended objects after dimensional reduction. It is further tempting to speculate
about some higher-dimensional interpretation, where in a stringy setting the physical states
of the theory, quantized on the two-dimensional world-sheet, are reinterpreted as the one-
particle excitations of a higher-dimensional theory (see [102] for more speculation in this
direction).

The interest in the symmetries of dimensionally reduced gravity originally arose in the
context of the so-called solution-generating techniques [32, 78, 47, 67, 51]. Over the years,
the point of view has changed. Rather than in producing new solutions to Einstein’s field
equations, nowadays, one is mainly interested in understanding the symmetry structures
themselves. In particular, the analysis of the classical phase space with its full symmetry
structure exhibited, is a necessary prerequisite for quantization. More precisely, a symmetry
group which acts transitively on the phase space while preserving the symplectic structure
may be identified with the classical phase space itself. The irreducible representations of this
group then carry the information about the underlying quantum system.

The understanding of the structure of dimensionally reduced gravity was significantly
improved by the revelation of the linear system [89, 7] which underlies the equations of mo-
tion. This established a first link to the integrable structures found in many two-dimensional
models. It opened the possibility to subsequently make use of the methods and techniques
which were developed in the theory of integrable systems (see [39] and references therein).
In fact, the dimensionally reduced gravitational field equations (the Ernst equation [35] and
its generalization to higher-dimensional Lie algebras) strongly resemble the equations of
motion of the nonlineas-model [86, 121]; the main difference — apart from the coset struc-
ture — comes from the explicit appearance of the additional dilaton field in the gravitational
equations. This field arises as a generic feature of Kaluza-Klein type dimensional reduction,
measuring the size of the compactified (internal) manifolds. Throughout the following, it
turns out to play a pivotal role.

For the nonlinear-models, it was soon realized that the arising (hidden) symmetries
were not symplectic and generated by nonlocal charges which obeyed a new type of charge
addition rules [86, 25], thus making manifest the nontrivial Hopf algebra structures of the
underlying symmetry algebras. Since then, infinite-dimensional quantum groups have ap-
peared to play a major role in lower-dimensional physics, providing a powerful description
of the quantum symmetries of many integrable models and field theories. The classical
symmetry generated by the nonlocal charges gains a natural description in the framework
of Lie-Poisson actions [113, 6]. In particular, this offers new perspectives in quantization
[11, 84] where the classical action turns into the adjoint representations of the underlying
Hopf algebras.

Since it will become important in the following, let us mention a prominent example of
the infinite-dimensional quantum groups, namely the Yangian algéfypassociated with
a simple finite-dimensional Lie algebga Having turned up already in the early days of the
guantum inverse scattering method [114, 37], this algebra was rigorously defined within the

2



1 INTRODUCTION

framework of Hopf algebras by Drinfeld [27], and later on appeared to underlie many two-
dimensional field theories (see [10, 12] and references therein). The Yangian dligghra
may be considered as a deformation of the positive half of a loop algebra with nontrivial Hopf
algebra structure. A deformation of the full loop algebra emerges from the Yangian double
construction [28] which has been introduced in quantum field theory in [82, 11]. Like the
loop algebra, this structure admits a central extension [110].

It is the purpose of this thesis to carry out the canonical framework for the described class
of models of dimensionally reduced gravity by making use of the powerful tools that are pro-
vided by integrability and the emergence of quantum groups. The existence of a (modified)
Yangian symmetry in the classical theory eventually allows the complete quantization. The
results are essentially based on [72]-[77] and [104, 105].

The plan of the thesis is the following. In Chapter 2 we introduce the general class of two-
dimensional coset spaeemodels that shall play the main role in the text. The canonical
formalism is set up, including the fundamental Poisson brackets and the gauge algebra of
constraints. For illustration, we begin with a detailed discussion of the simplest model of the
series — the two Killing vector field reduction of general relativity — and show how in this
case the infinite-dimensional symmetry algebra arises.

Chapter 3 is devoted to the analysis of the classical integrability of the model. Starting
from the linear system, we identify integrals of motion encoded in the associated transition
and monodromy matrices. They are shown to be gauge invariant. We discuss, for which
sectors of the theory this set of nonlocal charges is complete. This is essentially related
to certain assumptions on the global behavior of the dilaton field. In the relevant sector
(corresponding to a cylindrically symmetric setting) the nonlocal charges turn out to carry
the values of the original physical fields on the symmetry axis. The Poisson algebra of
these charges is computed. Again, the dilaton field plays a key role in that it causes the
vanishing of certain ambiguities that are known to arise in the related structures in flat space
o-models. The resulting Poisson algebra is closely related to the Yangian double from which
it differs by a twist which is remnant of the underlying coset structure. We end up with
a reformulation of the classical model in terms of a complete set of nonlocal conserved
charges. This formulation reveals integrability and the classical symmetry structure in a
natural way. The Geroch group is recovered as the adjoint Lie-Poisson action associated
with these nonlocal charges.

Chapter 4 contains the generalization of the structure to the maximally supersymmetric
extension of the model, which gives riseYo= 16 supergravity coupled to a5y /SO(16)
coset space-model. Nonlocal charges may be defined in analogy to the bosonic case. Re-
markably, they turn out to be supersymmetric, i.e. invariant under the full gauge superalge-
bra, and satisfy the same Poisson algebra as their purely bosonic counterparts. The essential
calculations are performed in all fermionic orders, i.e. including all cubic fermionic terms
that have been neglected so far.

In Chapter 5 we address the quantization of the model in terms of the nonlocal charges,
i.e. search for the quantum algebra which reproduces the Poisson algebra in a classical limit
while preserving certain extra properties (again related to the coset structure). We identify
this algebra for the coset spaddgsH = SL(N)/SO(N). The central result is given by the
algebraic structure (5.5)—(5.9) below. In contrast to the well-known centrally extended Yan-
gian double, the quantu®-matrices appear with a relative “twist” in the exchange relations
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which connect the two Yangian halves. A central extension of the algebra is required, whose
value is uniquely fixed.

Finally, Chapter 6 contains several results obtained within the so-called isomonodromic
framework, initiated in [71]. This approach has mainly been motivated by the apparent simi-
larity of the equations of motion in certain sectors of the models under consideration with the
deformation equations of monodromy preserving deformations [58]. Despite the rich mathe-
matical structure which culminates in a link to the Knizhnik-Zamolodchikov equations from
conformal field theory [68] (again slightly modified due to the underlying coset structure),
we have so far not been able to embed this approach into the canonical framework which has
been elaborated in the rest of the thesis.

In Chapter 7 we briefly summarize the solved and some remaining problems.



2 Modelsof Dimensionally Reduced Gravity

In this chapter, we introduce the class of models that we are going to study in the sequel.
Originating from Kaluza-Klein type dimensional reduction of gravity and supergravity theo-
ries, they are casted into the form of two-dimensiddaH coset space-models coupled to
dilaton gravity. We discuss in detail the simplest example of this series, the two Killing vec-
tor field reduction of four-dimensional Einstein gravity, which is embedded into the general
scheme with the particular coset spae¢H = SL(2,R)/SO(2). For this model, we give
an elementary construction of the infinite dimensional symmetry alg?@pcme to Geroch
[47]. In the next chapter, we will recover this symmetry within the general setting. Finally,
we establish the general canonical formalism, including the Poisson brackets of the physical
fields and the conformal gauge algebra.

2.1 Thetwo Killing vector field reduction of Einstein gravity

The existence of two commuting Killing vector fields in four-dimensional general relativity
gives rise to an essential simplification of the field equations and to a remaining model with
a remarkably rich symmetry structure. In the following, we will describe this reduction and
the arising of the symmetries.

Denote the four-dimensional metric lay,,y and consider the decomposition into the
vierbeinE, /!

GMN = EMAENBT]AB ; (21)

with the Minkowski metricnap = diag(1, —1,—1,—1). Vacuum general relativity in four
dimensions is described by the Lagrangian

£l = _LEWR® (2.2)

whereR® and E® denote the curvature scalar@f,;y and the determinant of the vierbein
E,7, respectively. The action is manifestly invariant under diffeomorphisms generated by
vector fields¢:

0By = Y ONE, + Eyt oug™ (2.3)
and Lorentz transformations generated\og SO(1, 3):

oA =E,PAL"Y. (2.4)



2.1 The two Killing vector field reduction of Einstein gravity

Assume now the existence of two commuting Killing vector fields. For definiteness we
take them to be spacelike, one of them with closed orbits. This characterizes spacetimes with
cylindrical symmetry. It is convenient to adopt a coordinate system such that the Killing vec-
tor fields are given along coordinat%and%, respectively. In this system, the coefficients
of the metric depend only on the two remaining coordinatendt. Further fixing the
freedom of Lorentz transformations, the vierbein is casted into the block triangular form:

[0

A_ (e, BL”em“
ni= (4 ) 29

Greek indices, 1 represent the coordinatesand¢ whereas small Roman indicesm
denote the coordinatesand:z associated to the Killing vector fields. We further parametrize
the constituent, * of (2.5) by its determinant = det e, and anSL(2, R) matrix V:

e @ =pi). (2.6)

Inserting (2.5) into the original Lagrangian (2.2) leads after some calculation (see e.g. [13])
and up to surface terms to the following effectively two-dimensional Lagrangian

£® = —1pECR® 4+ LyE®p tr (0,MM™'0,MM™") (2.7)
+ %pE@)h““h”’\anF[[lﬁFﬁ\ + %E(Q)h’“’p_laﬂp&,p ,
with
hy = euaeyﬂnaﬂ

M, = (VVT)mn = pem“enbéab,
Fr = 0,B] —d,B.

The curvature scalak® here corresponds to the two-dimensional melyig £® accord-
ingly denotes the determinant of the zweibejfi.

From a lower dimensional point of view, the Lagrangian (2.7) describes two-dimensional
gravity h,, coupled to scalar and vector matter fields which descend from the remaining
components of the original higher-dimensional metric (2.5). The so-called Kaluza-Klein
vector fieldsB))" enter the Lagrangian only via their field strengtfy§; they will prove to
be auxiliary in the reduced theory. The matfik combines the scalar fields which in two
dimensions appear similar to the nonlineamodel coupled to gravity. They will play the
main role in the sequel. The presence of the dilaton fieildl (2.7) is a typical feature of
Kaluza-Klein type dimensional reduction. In general context, this dilaton field measures the
size of the compactified dimensions of the higher-dimensional space-time (cf. (2.5), (2.6)).

At least locally, the zweibein,* may further be brought into diagonal form (conformal
gauge) exploiting the freedom of the diffeomorphisms and Lorentz transformatiefs in

e, =0, expo, hu =nuexp2o. (2.8)

In the following, we neglect possible global obstructions. We introduce light-cone coordi-
natest* = z%+z' and similarly defind’® = V0 + V' andV, = $(V; + V4) for any vector
V*# and covectol/,, respectively. The two-dimensional mettig, then has components

hy_ = —% exp 20 . (2.9)



2 DIMENSIONALLY REDUCED GRAVITY

In this model, it is not possible to gauge away the conformal facteince the Lagrangian
(2.7) is not Weyl invariant, i.e. it is not invariant under local rescaling of the two-dimensional
metrich,,. Theos-model part of (2.7) is conformally coupled, but neither the coupling of the
Kaluza-Klein vector fields nor the two-dimensional dilaton-gravity part is Weyl invariant.
The reason for the latter is the multiplicative appearance of the dilatonjelais is in
contrast to usuald gravity.

Inherited symmetries of the lower-dimensional theory

Some of the gauge symmetries (2.3), (2.4) of the original theory are still compatible with the
truncation (2.5), (2.8).

e Conformal transformations®(z*) leave the form (2.8) invariant. According to (2.3)
the fields transform as
bexV = £F0LV, (2.10)

5§ip = giaipa
(55:):0' = §i8ia+%8i§i.

e The special diffeomorphisngs’(z*) act as gauge transformations on the Kaluza-Klein
vector fieldsB}":

6B, = 0,™ . (2.11)
e The linear diffeomorphismg* = ¢, 2™ act as constant linear transformationsan
6,V =gV, with ¢ = (g,)") € SL(2,R) . (2.12)

Upon toroidal compactification, i.e. with periodic boundary conditions on the direc-
tionsz™ only a discrete subgroupl(2, Z) appears as gauge symmetry of the original
theory. In any case however, (2.12) remains a symmetry of the lower-dimensional
theory.

e The Lorentz transformations,” = h,”(2*) act onV according to
opYV = Vh(z"),  with h(z") = (h,")(z") € SO(2) . (2.13)

In abstract language, the physical degrees of freedanfuiin parametrize the coset space
G/H = SL(2,R)/SO(2). TheH gauge transformations are given by (2.13); the grGup
acts linearly by (2.12). One may choose a fixed system of representatives of the coset space,
e.g. the triangular matriceis.! The action (2.12) then provides a nonlinear realization of
SL(2,R):

8,V = gV + Vhy(2*) | (2.14)

For general Lie groups one may correspondingly fix the orthogonal part of the Iwasawa decomposition of
the matrixV [52].




2.1 The two Killing vector field reduction of Einstein gravity

where a compensating)(2) rotationh, is required to restore triangularity df. This sym-

metry of the dimensionally reduced theory has been made explicit by Matzner and Misner

[93]. Note that the matrid/ = VYT is invariant under (2.13) and transforms linearly under
(2.12).

Equations of motion

In conformal gauge (2.8) and after rescaling— a+i In p the Lagrangian (2.7) becomes
(up to boundary terms again)

Lo = —aupa“aJr%p(tr (0, MM~ 0" MM~ +e—20’anFg§FW) . (2.15)

where the indiceg, v are raised and lowered with the Minkowskian metjic now. The
explicit appearance of the conformal factoshows, that (2.7) is not Weyl invariant. The
equations of motion for the fields involved are the following:

e The Kaluza-Klein vector field®;" satisfy:
o (672UpanF:,,) =0.

In two dimensions this yields

e’QUpanFZZV = const .

In the following we restrict to that sector of the theory where the constant is zero.
This is e.g. a necessary condition for asymptotically Minkowskian spacefiriis.
Kaluza-Klein vector fields then are (locally) pure gauge (2.11). They may carry phys-
ical degrees of freedom related to nontrivial topology of the two-dimensional surface
parametrized by the*. Neglecting these modes, in the following we restrict to the
case

Br=0. (2.16)

The metric (2.1) then acquires block diagonal form, which is equivalent to hypersur-
face orthogonality of the Killing vectorfields: the surfaces orthogonal to both Killing
vector fields are integrable.

The dilaton fieldp obeys a free field equation:
Op=0. (2.17)

Its general solution is given by(z) = p™(x™) + p~(x~) , and allows to introduce a
dual fieldp

plz) = pt(@") —p~(27), (2.18)

2In addition, there are good arguments to believe that the rich symmetry structure of the model will not be
compatible with nonvanishing cosmological constants of this type [100].
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2 DIMENSIONALLY REDUCED GRAVITY

defined up to a constant. Under finite conformal gauge transformations (2.10), the field
p transforms as

pr=pt(fF (™) +p (f (7)), (2.19)

with arbitrary functionsf™ and f~. Assuming certain monotony behavior @f and
p~, one may fix this residual gauge freedom by identifying the dilaton field with one
of the two-dimensional world-sheet coordinates

pt=at, p- =+ . (2.20)

The upper sign corresponds to a timelike dilaton field which appears e.g. in the context
of the cosmological Gowdy models [49]. The lower sign refers to a spacelike dilaton
field which has commonly been used in the description of gravitational waves with
cylindrical symmetry [69, 79, 3]. With radial coordingte= r, the four-dimensional

line element the takes the familiar form

ds? = e (dt? — dr?) — r My, (7, t)dz™da™ (2.21)

The distinguished coordinates (2.20) are often referred to as the Weyl canonical coor-
dinates.

e The matter fields collected in the matd¥ = VYT fulfill
0y (PO-MM ') +0_ (p0. MM ') =0. (2.22)

This is the so-called Ernst equation [35]. Except for the dilaton figldagrees with
the equations of motion of the nonlinearmodel.

e The conformal factor satisfies two first order equations:
8ip8i& = %p tr (8iMM’18iMM’1) s (223)

with 6 = o — £ 1n(9, pd_p). According to (2.10)¢ transforms as a scalar under con-
formal transformations, making the conformal covariance of (2.23) manifest. Com-
patibility of these equations is ensured by (2.22). They determine the conformal factor
up to a constant, since they are of first degree. Rather than equations of motion of the
usual type, these equations form a set of (first-class) constraints. They are not derived
from (2.15) but descend from variation of the two unimodular degrees of freedom of
the 2d metric h,,, that appear as Lagrangian multipliers in (2.7). The second order
equation of motion for the conformal factor results from variation of the Lagrangian
(2.15) w.r.t.p:

3+a,5 = 3+3,0 = —%tr (8+MM7187MM71) (224)

The consistency of this equation with the first order equations (2.23) can be checked
using (2.17), (2.22) and (2.40).



2.1 The two Killing vector field reduction of Einstein gravity

The dual picture and the Geroch group

In addition to the gauge symmetries collected above, the two-dimensional model possesses a
rich symmetry structure leading to complete integrability. This underlying structure becomes
already manifest in a duality symmetry of the equations of motion, which we will describe
in this subsection. In particular, this implies the existence of a dual of the (gauge) symmetry
(2.12). Together with (2.12), it generates an infinite-dimensional symmetry group — the
Geroch group.

In the next chapter, we will give a closed realization of this infinite-dimensional symme-
try group and its action via the linear system and the associated transition matrices. Never-
theless, here we show how to generate the infinite-dimensional symmetry in an elementary
way by successively commuting the two dual symmetry groups. Apart from giving a his-
torical flavor, a construction of this type may turn out to be useful on the way to implement
further symmetries in absence of a complete picture.

The duality symmetry of this model appears as follows [13]. Parametrize the madgx

o1
=0 D7 ) 229
0 p 2A2

where the gauge freedom (2.13) has been fixed to achieve triangularity. The equations of
motion (2.22) then yield

0, (A9 B) +0_(A%'9,B) = 0,

which gives rise to defining a dual potentig by

3¢BD = :EAprlaiB . (226)
With the further definition [78]
1
_ (1 Bp A2 0
VD:<0 1)(0 A%>’ (2.27)

it follows, that the matrix), satisfies the same equations of motion (2.22) With=V, V7.

This duality has two interesting consequences. First, note the different asymptotic be-
havior of YV and))p atp — oo. E.g. in Weyl coordinates (2.21)4-Minkowski space is
described byA =1, B=0. Thus, at radial infinityp — oo the matrice3’ andV,, behave as

p2 0 10
3 2.28
V—><0p§>,VD—><01>, 229)

for asymptotically Minkowskian spacetimes. In a similar weayand)), differ on the sym-
metry axisp = 0. We can hence describe the same physical situation by equivalent models
with different asymptotics.

3Since the Geroch group appears to be already transitive in the sector which we have described so far, addi-
tional symmetries can only enter when one restores more physical degrees of freedom. A promising candidate
are e.g. the topological degrees of freedom of the Kaluza-Klein vector figltisnd of the two-dimensional
metric h,,,, relaxing (2.16) and (2.8), respectively. Their relevance in the further reduction to one dimension
has already been suggested in [100, 96].
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2 DIMENSIONALLY REDUCED GRAVITY

Second and more important, sing obeys the same equations of motion (2.22), there
is a dual symmetry to (2.14), which we denote $¥(2,R),. Via (2.26) the action of
SL(2,R)p on the original field3’ can be constructed and turns out to be rather nontrivial.
This symmetry has originally been discovered by Ehlers [32] in the three-dimensional re-
duction of4d-Einstein gravity. The most interesting property of the two symmetry groups
SL(2,R) andSL(2,R)p is that they do not commute but span an infinite-dimensional sym-
metry group — the so-called Geroch group [47]. On the algebra leif),ands((2), span
the affine aIgebrE[\Q.

Let us make this more explicit. Denote the generatorg(@f) by h, e, f. According to
(2.14) they act oV by left multiplication with the matrices

=35 ) - e=(00) t=(1 1) (2.29)
0-1 00 10

and a compensating (2)-rotation induced by'. We now turn to the action afi(2), with
generatoré.p, ep, fp. Similarly to (2.14) they act o), as:

S Vb = hVp = (m BD“) G Vb = eV = (0 A) . (2:30)

0 —A"> 0 0
_ 0-AY\  [—BpAr A3
5 Vo = fVD—VD<A 0>_( 0 BDA_%>.

Via (2.26), (2.27), this gives the action oh

_ (AT —pEAIBY _

OnpV = ( ; N ) =0V, 6,V =0, (2.31)
_ (PPBpATE pTiARG,

V= ( 0 —p 2 BpA:

with ¢, defined by
drpp = £ (pA'0LA — p 'A’BILB) . (2.32)

Compatibility of these equations is again ensured by (2.22).

The algebraic structure of the symmetries becomes more transparent in their action on
the currents/,. = V19,V . These are left invariant byi(2) and transform only undefy
according to

-1 A2
6fD']:|: - :l:( 0 _pflAQaiB
= £ [V'eV, Ju+Jl ]| £20,pV eV (2.33)

This immediately gives rise to the next commutators (notedpannihilates/, but notV):

[0¢,61,)0e = £[pV 'Y, Jo+J] | £20.pV 'hV, (2.34)
[07,[67, 07, 0] = F2[VT'EV, Jo+JL | F40.pV 7'V

11



2.2 Two-dimensional coset spaeganodels coupled to gravity and a dilaton

Upon further commuting, these transformations generate the affine afg\@bpas a vector
space this algebra is given by, @ Clz, 2] @ kC, whereC|[z, z!] denotes the set of
Laurent polynomials in a formal variable The algebraic structure is:

[h®2™,e®2"] = 2e@2™" ) [h®2", fR2"] = —2f®2"1", (2.35)
[e®2™, fR2"] = h®Z™" 4 kom0

The element: lies in the center of/[\g and is referred to as the central extension. The subal-
gebrass((2) andsl(2), are embedded intgl, as follows:

h=h®L, e=ex, f=f®, (2.36)
hp=1(h)®2"+k, ep=1(e)®@z "', fo=71(f)®z,

wherer is the algebra-involutiofh— —h, er— — f, f+— —e). These two subalgebras corre-
spond to the two nodes of the associated Dynkin diagram [64]. Together they obviously span
the full algebra (2.35). The transformations from (2.33), (2.34) correspond to the elements
sl(2)®z.

We close this section with a few remarks on properties of the Geroch group, which have
already shown up here.

Remark 2.1 The action of[(2), onV in (2.31) involves two dual potentialB,, (2.26) and

¢p (2.32) whose existence follows from the Ernst equation (2.22). By further commuting
the transformations fromi(2) andsl(2) , an infinite hierarchy of such dual potentials arises.
They have been observed already in the early history of the Geroch group [47, 67]. On the
level of associated charges, the construction of this hierarchy corresponds to the well-known
procedure [15] of successively generating nonlocal charges in two-dimensional integrable
models.

Remark 2.2 Equations (2.31) illustrate another property of the Geroch group. Itis only the
half sl, ® C[z] of the affine algebra (2.35) which acts nontrivially on the physical fields. The
other halfsl, ® C[2 1] describes the freedom of shifting the dual potentials (c.f. the action of
ep in (2.30)). Accordingly, the central extensiénn (2.35) leaved’ invariant. However, it

has been observed by Julia [61] that this central extension acts nontrivially on the conformal
factoro which is determined by only up to a constant (2.23).

Remark 2.3 To honestly prove the existence of the affine symmetry (2.35) at this stage, one
would have to check the corresponding Serre relations between multi-commutators of the
generators (2.36) [100] as well as the absence of further relations between them. We refrain
here from doing so since later on we will present a closed approach which makes the affine
symmetry explicit.

2.2 Two-dimensional coset space o-models coupled to gravity and a
dilaton

Dimensionally reduced pure Einstein gravity described in the previous section already cap-
tures all the features of the class of models we are going to study. It is the simplest example

12



2 DIMENSIONALLY REDUCED GRAVITY

of the G/H coset space-models that arise from dimensional reduction of various gravity
and supergravity models. More generélimensional Einstein gravity witfd —2) com-
muting Killing vector fields [90] gives rise to 8L (d—2, R)/SO(d—2) coset space-model.
Other examples with higher-dimensional coset sp&&¢H come from Einstein-Maxwell
systems [67] and Einstein-Maxwell-dilaton-axion systems [45]. The largest exceptional —
and maybe most fundamental — coset sp8iges)/SO(16) arises from dimensional reduc-
tion of maximally extendedV = 8 supergravity in 4 dimensions [60, 62, 98]. For general
reasons, related to boundedness of the energy, it is always the maximal compact sitbgroup
of G that is divided out in the coset.

Let ¥ be a two-dimensional Lorentzian world-sheet, parametrized by coordimates
Let G be a semisimple Lie group agdthe corresponding Lie algebra with bagis }. The
Cartan-Killing form in the fundamental representation is giveni¥ ¢ z) and used to raise
and lower algebra indices. Denote Hythe maximal compact subgroup Gf, characterized
as the fixgroup of an involution[52]. Lifting 7 to the algebra gives rise to the decomposition

g=hot  with T(g):{ _g ;g:gg? , (2.37)

which is orthogonal with respect to the Cartan-Killing form. For instance, for the coset space
G/H = SL(N,R)/SO(N), the involutionr is defined byr(X)=(XT) ! for X € G and
7(€)=—£T for € € g, respectively.

The physical fields of the model are mappings*) from ¥ into the coset spaca/H,
i.e. they areG-valued and exhibit the gauge freedom of rigfdmultiplication (cf. (2.13))

V — VH. (2.38)
The currenty’ 19,V allow decomposition according to (2.37):

Ju=Jta=V'0,V=Q,+P,; with Q,€bh, P,ct. (2.39)
These currents are subject to the compatibility relations

auQu - auQu + [Qua Qu] + [P/m Pu] =0 ) (240)
D,pP,-D,P, = 0,

with the (H-)covariant derivativéD, P, = 0,P,+[Q,, P,]. Under the gauge transformations
(2.38) they transform as

Q. — H'QH+H'9,H, P, — H'PH, (2.41)
with H=H (z*) € H. The matrix
M=vrV)", (2.42)

is the analogue of the matrix containing the higher dimensional metric coefficients in (2.21).
It is symmetric under

M= (M)~ (2.43)
13



2.3 Canonical formalism

and its current is related to the coset currents from (2.39) by
oMM~ ' =2VP, V' =2D VYV ". (2.44)

It is the separate task of each dimensional reduction to two dimensions to eventually
cast the resulting model into the form of the corresponding coset spatadel. In the last
section this has been shown in detail for pure Einstein gravity with two commuting Killing
vector fields. See [67, 90, 62, 98, 14, 45] for more complicated examples.

The final form of the two-dimensional Lagrangians and the corresponding equations of
motion are a straight-forward generalization of (2.15)—(2.24) inserting the mutrix G
from (2.42). The coset-structure becomes more transparent if we rewrite the currents in
terms of the coset currents from (2.39)M M ' = 2VP, V! =2D,VVY ! Summarizing,
we obtain the Lagrangian

L = —9,p0"0 + sptr (P,P") | (2.45)
and the equations of motion for
the dilaton field:

Op = 0, (2.46)
the conformal factor:
0+p0+6 = 0+p0io — %8i8ip = %p tr (PLPy) , (2.47)
0.0_6 = —itr(PyP.) , (2.48)
and the scalars building the coset space:
D,(pP") = Di(pP-)+D_(pP:) = 0. (2.49)

The discussion accompanying these equationsin (2.17)—(2.24) can be adopted for the general
case here.

Remark 2.4 The Lagrangian (2.45) and the equations of motion for the curf@ntesem-

ble the principal chiral field model (PCM) [86, 38] with the compact gr&upf the PCM
replaced by the noncompact coset manifGldH and arising of the additional dilaton field

p. Itis mainly the appearance pthat accounts for the new features of these models in com-
parison with the flat space models. Equations (2.47) further shovy timaty not be chosen
constant without trivializing the matter part of the solution [99]. Since the Cartan-Killing
formtr(tatp) is positive definite on the cosktd, p=0 would requireP. =0. Itis also seen

from (2.10) that any solution with.p = 0 has some degenerate orbit under the conformal
gauge transformations. There is hence no smooth limit in which the dilaton-coupled model
would approach the PCM.

2.3 Canonical formalism
Poisson structure

In this paragraph, we derive the canonical Poisson structure from the Lagrangian (2.45). For
simplicity, we denote the spatial coordinateby = only and the timelike coordinate by t.

14



2 DIMENSIONALLY REDUCED GRAVITY

Moreover, we drop the argumenin most of the following equations, keeping in mind, that
the Poisson brackets are defined at equal times.
For the conformal factos and the dilaton fielgh we directly obtain:

{po(x),000(y)} = {o(x),00p(y)} = —d(z—~y) , (2.50)

i.e. the conjugate momenta poando coincide withdyo andd, p, respectively. These rela-
tions are equivalent to

{0:p(2),0:0(y)} = F30'(2—y) ,  {0xp(x),0z0(y)} = 0.
In terms of the fieldg andp from (2.18) the brackets (2.50) become

{p(x),000(y)} = {p(x),010(y)} = —6(z—y) . (2.51)

There are also different ways to choose the canonical coordinates among the matrix en-
tries of M. One may e.g. parametrize the matkikby coordinates like in (2.42) which take
into account the group properties and the additional symmetry (2.43) to then extract canon-
ical brackets from (2.45). For higher dimensional gro@&owever, such a set of explicit
coordinates is hard to find and certainly not very practicable. The algebra valued currents
0+ M M~! offer a suitable parametrization but hide the symmetry property (2.43).

It is thus most convenient to consider the currents (2.39) of the maWiessbasic vari-
ables. Definition (2.42) then ensures (2.43). Moreover, the choide a$ fundamental
objects is indispensable for coupling fermions to the model (cf. Chapter 4). The prize for
introducing the additiondH-gauge freedom (2.38) M is the appearance of the associated
constraints (2.55) below.

In a standard way [39], we obtain the canonical Poisson structure with coordihates
Introduce the corresponding momenta

0S S 4

= = __ = ¢t 2.52
T=Tgo+Tp 57, 5(80J1A) , ( )

with
{J(2),7p(y)} = 05 6(z—y) (2.53)

at equal times. The time derivative &f is expressed in terms @f, and P, via the relations
(2.40):

a()(Ql + Pl) = 80J1 = 81J0 + [J1, J()] = V1J0 .

The operatoW, is linear and antisymmetric with respect to the scalar pro(thu(ﬁdx). The
relevant part of the action (2.45) thus reads

%/dxptr (PPy) = %/dxptr (P (00 1))

= -1 /dx tr (8 J1)Vi'(pP)) |
leading to
pPy=—Vim = -0y — [J1,7] .
15



2.3 Canonical formalism

Splitting this expression according to (2.37) implies

pPy, = —517FP—[Q1,TFP]—[P1,TFQ], (2.54)
0 —817rQ— [Ql,ﬂ'Q] — [Pl,ﬂ'p] .

The second equation defines a set of weakly vanishing constraints
® = Dt = O+ [Q1, o] + [Pr,7p] =~ 0, (2.55)
related to the gauge transformations (2.41).

Many calculations in the following are more conveniently performed in the index-free
tensor notation. Denote for some matr¥’:

1

A=A®l and A=I®A.

In components this takes the forfd ® 1) = A%§ed and (I @ A)*d = A5 | Define
accordingly the following matrix notation of Poisson brackets [39]:

(4.8 }ab’Cd = {A® ped) (2.56)

for matricesA®, B LetQ, =t ® t* be the Casimir element gf which due to orthogo-
nality of the decomposition (2.37) allows the splittiflg = €2, +(2¢. The canonical brackets
(2.53) in this notation become

L) fow)} ==y, {Pi@). 7o)} = i)

Equation (2.54) now yields the Poisson brackets for the physical fields:

(o) Po@) .V )} = — V(@) 2b—y), (2.57)
L@ Po@), )} = [0, i)t

[ bo@), B} = [0, i ]ax y)+ % 85— )

(@ hote) Bo} = [0, 60)]sta—0) ~ 0.

Remark 2.5 An important feature to note about these Poisson brackets is the appearance of
a non-ultralocal term in the third equation. In the known flat space integrable models, the
presence of such a term is a good indicator for some breakdown of the conventional tech-
niques at later stage (see e.g. [24] for exploring the fatal consequences of the non-ultralocal
term in the PCM). However, in our model this term shows a surprisingly good behavior and
in fact supports the entire further treatment.
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2 DIMENSIONALLY REDUCED GRAVITY

Constraint algebra

We have already discussed that equations (2.23) do not descend from variation of the La-
grangian (2.45) but rather as constraints from its ancestor (2.7), i.e. before imposing con-
formal gauge (2.8). This structure is the same in the general class of cosevspacels
introduced above.

Diffeomorphism invariance of (2.7) allows to bring thé metrich,,, to conformal gauge
(2.8). This gauge freedom is reflected in (2.7) by the fact that the compdhentsf the
2d energy-momentum tensor arise as constraints with the unimodular parametggs of
as Lagrange multipliers. In the language of canonideagravity, these are the light-cone
combinations of the Hamiltonian constraint (cf. (2.61) below) and the (one-dimensional)-
diffeomorphism constraint; the associated Lagrange multipliers are the lapse and shift func-
tion of the two-dimensional (unimodular) metric [104]. In conformal gauge, these constraints
read

Tj:;: = 28ip8i6—ptr (P:;:P:t) ~ 0. (258)

After fixing the conformal gauge (2.8), the full model is thus given by the Lagrangian (2.45)
and the conformal constrainfs ... As first-class constraints th€.. generate the confor-
mal transformations (2.10) of (2.45). With the canonical Poisson brackets (2.50), (2.57) we
obtain:
{Tes(2),V(y)} = DVé(x—y) = VPid(z—y), (2.59)
W)} = FP:(y)d'(@—y) + DiPrd(z—y),
{Thi(z), Px(y)} = DiPid(z—y),
(W)} = Ospdlz—y),
,0(y)y = 0:60(z—y),

where for the calculation of these equations one has to make use of the relations (2.40) as
well as of the equations of motion (2.49). Thus, the transformations

Ogrp = /dl" E @) {Tes(x), ¢} = —h 026" 0+ € Drop, (2.60)

reproduce (2.10) up to gauge transformations (2.41). The paranhgtehenote the confor-

mal dimensions of the fielgh. This formula illustrates the interplay between the canonical
and the covariant framework. Canonically, the gauge parargétisrdefined as a function

of and integrated over the spatial dimensiorJpon using the equations of motion forand
restoring the time dependence&f according ta),.£T =0, the r.h.s. of (2.60) takes a con-
formally covariant form. In particular, constant time translations are generated by integrating
the Hamiltonian density

H="T,+T |, (2.61)

over spatialr.
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2.3 Canonical formalism

The conformal constraintg,. .. build two commuting copies of the classical Virasoro-
Witt algebra

{Tes(2), Tos(y)} = ¢<Tﬁ($)+Tﬂ(y)> o' (z—y) (2.62)
{Tes(2), Tex(y)} = 0.

In the course of applying the canonical formalism to (2.45), we have further encoun-
tered another set of constraints (2.55), having its origin irlHhgauge freedom (2.38). The
Poisson algebra structure of the generadiorss inherited from the algebrix

{Pa(2), @5(y)} = fai Po(z)d(a—y). (2.63)

In index-free notation (2.56) this reads
1 2 2

{o@), 2w} = [%, o) | dz—y). (2.64)
Under® the fields transform in an infinitesimal version of (2.38), (2.41):

/dm [ir (h(@)a(2)) @1}

/dx [iw(h(@)2(@)). P.} = [Peh].
The conformal constraintB, . are invariant unde®:

{Tes(2),@(y)} = 0. (2.66)

In Dirac terminology [26] this means that all the constraints of the model are of the first
class, thus compatible and responsible for gauge transformations. The full gauge algebra of
constraints is given by (2.62), (2.63) and (2.66).

Oih +[Q1,h], (2.65)

Remark 2.6 The action (2.65) of the constrainbsdoes not describe the full gauge freedom
observed in (2.38). According to the canonical formaligns just a function of the spatial
coordinater and thus carries only half of the gauge degrees of freedom of (2.38). Actually,
the other half has been absorbed by the fact, that the@ighdom (2.39) has not shown up
within the canonical framework. Hence, it appears decoupled from the rest of the theory and
may be consistently put to zero.

Let us finally recall the possibility to fix the gauge algebra (2.62). As discussed in (2.20),
the conformal transformations may be used to map the system (at least locally) to Weyl
canonical coordinates, i.e. to identify the dilaton figldnd its dualp with the coordinates
of the two-dimensional world-sheet. This is the precise analogue of adopting light-cone
gauge in string theory [50]. Reference [3] gives an exhaustive discussion of this gauge
fixing in the canonical treatment of models with cylindrical symmetry (2.21), handling all
the physical boundary conditions with great care. In the following we will mainly — i.e.
whenever necessary — stick to this particular choice of Weyl coordinates. Nonetheless, we
will argue that the essential arising structures are to some extent generic.
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3 Integrability

In this chapter, we exploit the integrability of the model (in technical terms: the existence
of a linear system) to construct nonlocal integrals of motion from the associated transition
matrices. We prove the stronger fact, that these conserved charges are invariant under the
full gauge algebra (2.62), (2.63). In contrast to the nonlimearodel which allows a similar
construction, there arise no ambiguities in the Poisson algebra of nonlocal charges here.
Rather, as a central result we obtain the algebra (3.60), (3.61) which is closely related to
the Yangian algebra known from various two-dimensional field theories [37, 10, 12]. This
is analyzed in detail for the two particular choices of Weyl coordinates (2.20). The infinite
dimensional symmetry group associated to these charges is revealed and their action on the
physical fields is given. The Geroch algebra is recovered as the Lie-Poisson action of the
algebra ofy-valued functions on the complex plane. With some regularity assumptions on the
fields the symmetry group acts transitively. Finally, we illustrate the results for the Abelian
sector of the theory where due to linearization of the field equations the structures simplify
essentially.

3.1 Thelinear system and the monodromy matrix

The model (2.45) is integrable in the sense that it possesses a linear system [7, 89]. l.e. the
equations of motion (2.49) appear as integrability conditions of the following family of linear
systems of differential equations, labeled by the spectral parameter

0:V(w,t,7) = V(x,t,7)Le(z,1,7) (3.1)
with
lj(x,t,v)GG, Li(z,t,y) = Qi—i—liPieg
1+~
In addition, the spectral parametghas to satisfy the differential equations
v 0 = L o, (3.2)

which due to (2.46) are compatible and have the general solution

v(z,t,w) = p<w+p V(W + p)? —p) (3.3)

with a constant of integratiom. This constant may be understood as the underlying constant
spectral parameter of (3.1); in contrast we will referytas the variable spectral parameter.
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3.1 The linear system and the monodromy matrix

Remark 3.1 The original currents contained in. (3.1) determing’ only up to left multi-
plication with a matrix depending on the constant spectral parameter

~ ~

V(z,t,v) = S(w)V(z,t,v), with S(w) e G. (3.4)

Later on we will encounter different possibilities how to eliminate this freedom.

Remark 3.2 The nonlineaw-model admits a similar linear system with constant spectral
parametery [107, 121]. The coordinate dependence afh (3.1) turns out to be essential for
the entire following treatment, here. Its origin lies in the explicit appearance of the dilaton
field p in (2.49).

The spectral parameters

Here, we collect some useful formulas illustrating the interplay between the variable and the
constant spectral parameteranduw.
The parametey lives on the Riemann surface definedyw+ g+ p) (w+ p—p), which
is a twofold covering of the complex-plane with z#-dependent branch-cut. Transition
between the two sheets is performed byyto— % The branch-cut connects the points
w=—p £ p on the reakv-axis, which correspond to(w = —p+p) = £1. The reakw with
|lw+ p| < |p| are mapped onto the unit cirdle| = 1. Realw with |w + p| > |p| are mapped
onto the realy-axis. The image of the axiB(w) = —p is the imaginary axis in the-plane.
Dividing the w-plane into two regionsZ, and thevy-plane into four region., D,
according to Fig. 1D, andD.. lie over H,, respectively.

" b.

Figure 1: The spectral parameter planes

Remark 3.3 Itisimportant that for fixedv ¢ R and continously varying andp, the parame-
ter~ does not cross the boundaries which separate these regions. The limits of its trajectories
are given by

100 =+ {2 w5 { L o) o {0 @9

where the two values correspond to the two sheets of
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3 INTEGRABILITY

Another useful formula is the inverse expressiofy) = %p(%ﬁ) — p, which e.g.
implies
7 10uy = N : (3.6)
p(1—7?)
Two spectral parametefgz, ¢, v) andy(z, t, w) at coinciding coordinates, ¢ are related
by:

g (v(v) =7(w)) (v(v)y(w) ~1) (3.7)

Monodromy matrix

The involutionT which according to (2.37) defines the symmetric sp&dl can be ex-
tended to an involution® which acts orG-valued functions of the spectral parametdyy
combining the action o with a transition between the two sheets)db1]:

70 (9(7)) =7 ()7(5)) . (3.8)

This generalized involution leaves the connectioriy) of the linear system (3.1) invariant.
Thus, it motivates the following definition [13]:

M) = V() (Vi) = Y (V) - (39)

The matrixM is called the monodromy matrix associated vﬁ’my). Due to the invariance
of Ly (v) underr®, the linear system (3.1) implies

IM=0 = M=Muw), (3.10)

thus M depends on the constant spectral parametenly. Its independence of the co-
ordinates in particular implies, that the monodromy matrix does not feetthdependent
branch-cut of Figure 1.

According to Remark 3.1, the monodrom\ is defined only up to the conjugation

M(w) — S(w)M(w)T(S’I(w)) ,

with someS(w) € G. A preferred choice of eliminating this freedom has been introduced
by Breitenlohner and Maison [13] by demanding holomorphy7()f) inside a domain in
the y-plane containing the unit disD, U D_. 4 This uniquely fixes) up to a constant
matrix. Whenever necessary, we will denote the corresponding solution of (Sﬁg,\,by
The absence of singularities in the disc in particular allows to recover the originalfiel

V() = Vem(,7)|5-0 - (3.11)
The corresponding monodromy matrix
Mew(w(7) = Vou(1) 7(Vah() = Vau() 7(Vam(L)) (312)

“Roughly speaking, the invarianeg(y) = w(y~!) allows to reflect all singularities at the unit circle by
multiplying V with a suitableS (w).
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is non-singular as a function of in an annular region containing the unit cirgtg = 1.
The matrixﬁBM(y) may then be recovered frogy, by solving (3.12) as a (generalized)
Riemann-Hilbert anctorization problem on this annulus. Thugsy contains the complete
information aboud’. Since it obeys

Mem(w) = 7 (Mgy(w)) = 7 (Mgy(w)) (3.13)
it can be represented as

Mem(w) = Sgu(w) 7(Sgu(w)) - (3.14)
This implies thagy factorizes into

Vem(7(w)) = Sam(w) Vez(y(w)) , (3.15)

with a matrixﬁBz(y(w)) which also solves the linear system (3.1). Its associated monodromy
(3.9) vanishes, i.e.

982(7) =7 ()782(’)/)> . (3.16)

This solution of (3.1) has been used in the approach of Belinskii and Zakharov [7]. It is
defined up to left multiplication witdH-valued matrices$ (w) (for which 7(.S) = 5).

3.2 Transition matricesand their Poisson algebra

The monodromy matrixMgy, introduced in the previous paragraph, apparently is a good
candidate for generating nontrivial integrals of motion. At least in principle, it carries the
entire information about the original fields However, so far its usage as a canonical object
suffers from the fact that its definition is a rather implicit one, involving the holomorphy of
Vewm In the unity-disc. A priori, it is not clear how to explicitly construct this object from
given fieldsy, thus we miss the information about the symplectic structure of the encoded
integrals of motion. However, in the next section we will be able to idemtify,, in the
canonical framework (cf. (3.40), (3.49), below). In this section, we introduce the transition
matrices of (3.1) as canonical objects. We extract the encoded integrals of motion and derive
their Poisson algebra.

The transition matrices associated to the linear system (3.1) are defined by

Uz, y, t,w) = V' (at,y(x, 6w) Yy, t,y(y, t,w)) (3.17)
Y
- Pexp/ dle(z,t,v(z,t,w)),

which are unique functionals of the connectibn = % (Lot L4) . The integrand in (3.17)
lives on the twofold covering of the complexplane with a branch cut which according to
Figure 1 varies on the real-axis whilez runs fromz to y. Having in mind Remark 3.3, the
transition matrixJ (z, y, t, w) is well defined forw ¢ R. It also lives on the twofold covering
of the w-plane and likeL.. it is invariant under the generalized involutieff introduced

in (3.8). In other wordsy (z, y, t, w) is completely determined by its values on one of the
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3 INTEGRABILITY

sheets; its values on the other sheet are given(by(z, y, ¢, w)). Until explicitly stated, we
shall in the following always consider the sheet wjth D, UD _ inside the unit disc.
The values ol (z, y, t, w) on the realv-axis can be obtained from evaluating the limit

lir% U(z,y,t, wtie) with € € Ry, , (3.18)
e—

which may however give two different results ferand —.

I ntegrals of motion

Inspecting the time dependence of the transition matrices we can conclude how to extract
integrals of motion. Namely, the modified transition matrices

Uz, y, t,w) = V(@)U(z,y, t,w)V (y), (3.19)
satisfy

3t(7(:v,y,t,w) = —Zo(x,t,v(:v,t,w)) U+ ﬁzo(y,t,v(y,t,w)) , (3.20)
with

Ly = VLV = ayV! = 12_7; VRV — 13772 VRV

There are now several possibilities to construct integrals of motion:

e Assuming periodic boundary conditions f&§ and P, on an interval-%, £ ], (3.20)

27 2
shows that the eigenvalues(&’(—%, g, t,w) are time-independent if algpandp are
periodic functions inz. Charges of this type have been studied in [91]. In general
however, assuming periodic boundary conditions on the physical figlds, andp
does not guarantee periodicity of the dual figldlefined by (2.18). The variable
spectral parameterthen is not periodic inv, and it remains an open problem how to
extract proper integrals of motion frobh This is an essential difference to the normal

integrable systems with constant spectral parameter.

e The transition matrixN](acO, Yo, t, w) itself becomes an integral of motion if
Lo(zo,t,y(xo, t,w)) = Lo(yo, t,¥(yo, t,w)) = 0. (3.22)
According to the form of ., this happens in two cases:

- P()(J}()) = Pl(ZU[)) =0 and ’}/(ZL‘()) 7& +1 5 (322)
— Y(zo) =0 and |[Py(zg)| < 0o, |Pi(zg)] < 00, (3.23)

and accordingly for,. The first case (3.22) e.g. occurs for asymptotically vanishing
currents with|z,| — oo. This may describe asymptotically Minkowskian spacetimes
(cf. (2.28)).

The second case (3.23) is even more interesting since it makes use of the field depen-
dence of the variable spectral parameter. According to (3.5) the crucial limits at which

v tends to zero are — 0 and p — +oo. The interpolating transition matrices thus
provide integrals of motion.
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3.2 Transition matrices and their Poisson algebra

e If there is at least one point, in spacetime, where according to (3.22) or (3.23)
Lo(z0,t,v(xo, t, w)) vanishes, the transition matrix

9:1;0(%75,’7(%75,10)) = V($0,t)U($0,I,t,w) (324)

forms a solution of the linear system (3.1). We can then further extract its monodromy
matrix (3.9) as a canonical object, which itself is an integral of motion.

What is still missing of course is the degree of nontriviality of all these integrals of
motion. Assume e.g. that we had identified a solutignin (3.24) then according to (3.16)
its monodromy matrix would carry no information at all. The content of the integrals of
motion will thus have to be checked separately whenever in the following we will construct
integrals of motion according to the procedure described above.

Conformal invariance

So far we have just shown, that certain transition matrices constructed from (3.19) are inte-
grals of motion, i.e. conserved in time. Constant time translation is generated by the integral
over the Hamiltonian density (2.61) (in the language of canonical gravity: by the Hamilto-
nian constraint integrated with a constant lapse function). In fact, meaningful observables
in the sense of Dirac should satisfy much more, namely be invariant under the full gauge
algebra (2.62), (2.63). In this paragraph we show that this is indeed the case for the integrals
of motion obtained above. N

First, we check the transformation behavior of the modified transition matricesler
the H-gauge transformations (2.65). It is

{0(2),0(,9,0)} =0, (3.25)

i.e. the modified transition matrices ake-singlets for arbitrary endpoints andy. This
mainly distinguishes them from the normal transition matrices (3.17), which transform by
conjugation. The transformation behavior under the conformal consti&intsnay be ob-
tained from the general formula (3.29) below and yields

{Tii(z)aﬁ(%,yo,w)} = —Zi(%)ﬁ(%,yo,w)5(3—xo) (3.26)
+ ﬁ(fﬂo,yo,w)zi(yo)é(Z—yo) ;
with
T 1 -1 27 -1
L, =VL, V-0 VYV = F=— VP,V .
14y

This is the direct generalization of (3.20). The r.h.s. of (3.26) vanishes under the very same
conditions onzy, 1, that were discussed for (3.20). l.e. all the integrals of motion obtained
in the previous section are indeed invariant under arbitrary conformal transformations, gen-
erated bt thd’, .
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3 INTEGRABILITY

Let us finally compute the Poisson bracket between the integrals of motion and the con-
formal factoro. An arbitrary transition matrix (3.19) satisfies

{ﬁ(x,y,v) , 810(2')} = —U(z,2,0) 0Ly (z, 7)) U(z,y,v), (3.27)

which in turn follows from (2.50), (3.29) and the fact tligt., = d,L,. By integration we
obtain

{T(@o,50,0), (0(0) (@)} = =0T (w0,50,0) (3.28)

using that the connectioh, vanishes at the critical points, yo. Thus we see, how the
conformal factow at the spatial boundaries provides a derivation operator of the integrals of
motion.

Poisson algebra of transition matrices

This paragraph is devoted to the (rather technical) calculation of the Poisson brackets be-
tween two transition matrices with pairwise distinct endpoints. A similar calculation has
been done for the PCM [24]. The results however differ in two essential points. First, the
underlying coset structure here implies the appearance of a twist in the resulting Poisson
algebra (3.46), (3.47). Second, the calculation for the PCM is obstructed by certain ambi-
guities which arise due to the non-ultralocal contributions of the original Poisson brackets
(2.57). They prevent a well-defined answer for the Poisson brackets between transition ma-
trices with coinciding endpoints. In particular this spoils the Poisson algebra of transition
matrices relating the spatial boundaries. In our model on the other hand, the coordinate de-
pendence of the spectral parameter — caused by the coupling of the dilatgnifi¢R149) —
yields an intrinsic regularization of these ambiguities at the spatial boundaries [77] provided
that we assume the proper asymptotic behavior of the freldsd 5 . We shall describe this
in detail.

Let U(z,y,v) andU(z', ¢, w) be the transition matrices with spectral parameteasd
w, respectively, and pairwise distinct endpointg andz’, 4> The definition (3.17) implies
the relations [39]

Yy
(U)X} = [ Ulez0) (L) X} UG, (3.29)
for an arbitrary function .and
1 2 ! ! Y yl ! 1 2 ! !
{Dpn) G} = [@ [ ar (020 06e) x (330
? ' 2 I 1 2 1o
{1 L) | (Uw0) UE viw)

with y1=7(z,v), 12 =7(z\ w) .

SFor clarity, we drop the coinciding argumenthroughout this calculation. Nonetheless, so far all the
arising objects are time-dependent.
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3.2 Transition matrices and their Poisson algebra

Due to the coset structure of the model, it is a priori not obvious, that the Poisson algebra
of the connectiorl; of the linear system (3.1) is of a closed form. However, this turns out
to be true on the constraint surface (2.55):

{b o) 1a (2, m} _ (3.31)

_P(’Yl—jj)l(vf—%%) {Qh I (%)—Fil (72)] 5(2_21)

N p(1—7§)2(7721(::);()1—7m) [QE’ b (%)} o(z=2)
N p(l—V%)Q(vvll(:j)Q()l—%Vz)Q [QE’ Ly (7;)} o=
- (1—7%%—7%) (71(;;)72) 72(;(;)7 1)> 0:0(2—2)
Inserting this into (3.30) and using (3.7) and definition (3.17) leads to
{[}(I’y’v) ’ 5(39,’?/’“’)} - (3.32)

v o[y 1
—/dz/ dz' 6(z —2") (0, + 0y) Zy

’ v —w

o 275 (1—97)
— dz/ dz' 2 L §(z —2') 0,2
/m s PI=7)(r—7)1-m7%) ( ) 0.5

Y Y 2 2 1— 2
dZ/ dZ, - /71( 72) (S(Z - ZI) az’EE
o PA=7)(n—7)(1-77%)

y v 9(p1 142 (o (12
_/dz/ g 20 @0 ( +%3+p 22)%( 1) =, 0.5(: — ).
T x! (1_71)(1_72)
with
_ 1 2 1 2
oy = U(I,Z,U)U(I,Z,’U}) Qf) U(Z,y,U)U(Z,y,’LU) )
1 2 1 2
S = Ulx,z,0)U (2 2\ w) Qe Uz, y,0)U (2, ¢, w) .

Partial integration of the first three terms reduces the expression to boundary terms. There
arise additional terms from derivatives of the spectral parameter (cf. (3.2)). E.g. the second
term in (3.32) gives a contribution of
8 ((n—)* + (1=m19)%) 2 200p
(I=71)A=7) (71 —72)*(1=772)?
N1+ (=) (1 =n72) +2(0=97) (1 =27172+13))
(11 =72)2(1=7172)?(1=77)(1-13)
26
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3 INTEGRABILITY

the third term yields the same with opposite sign anend~, interchanged. This combines
into a term proportional tp=29, p which is precisely cancelled by the contribution from the

last term in (3.32) (note the different arguments of the dilatpnAltogether, there remain
the following boundary terms

{&(«T,y,v) , é(x', y’,w)} = (3.33)

! X 0(z, ' y) ([1](27 2\ v) Q [}'(x'y v)é(w'y'w))
v —w s Ly s Ly h » Y v Yy

2 1 2
+Wﬁ%y)ﬁﬂﬂ%w)QhU@ywﬂﬁaww»
1 2
_e(xayla y) (U(xaylav)U(xla ylaw) Qh U y y,v )

1

2 2
0y, ) (U @y, 0)U@ysw) @ Uy ylw))

——

00T (o a0y 00 G o) 20 )
S POTD (o) o) e U ) §E521¥éff§§éif§§
LD () 0 Gl WDET )

where we have made use of the abbreviation:

1 forz<y<z
e(x’y’z)_{o else (v #y # 2)

We are mainly interested in the modified transition matrices from (3.19). Their Poisson
brackets acquire additional contributions from

! 2 _ 29(:U,x’,y)7(:v’,v) ! .1 v 2 2 ! v
(T D)} = 2R b 0 D@ 0 U,
e N 20 B b
P o} = 2EEDRE b w0006 k)

etc.
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3.2 Transition matrices and their Poisson algebra

The final result then is

1 2 1 2 1 2
V() v (2) {U(I,yav) , U (), y',w)} V() V() (3.34)
]' ! 1 ! 1 ! 2 ! !
= oty (Do 9 D Utn)
! ! 2 ! 1 2 !
+0(2, z,y) (U(fc,fc,w) Qp U(fv,y,v)U(ff,y,w)>
! 1 ! 2 ! ! L !
—U\r, Y,y z,y,v z,y,w ] y,y,v
o( ) U ) U( ) Qy U( )
1 2 2 .
—0(a 1) (U (0,00 Ulaly,w) Q Ul yiw)
Oz, 2, 1 , 1 2, .,
) ot ,0) (0 (. 0) Q0 U (@ ,0) O (&)
O(z' z,y") 2 1 2 ,
+ﬁf(xavaw <U x I,UJ) QgU(l‘,g,U)U(l‘,?J,lU))
0, y'y)
R ywv( U (2,4, 0) U (&, ¢/, w) Q% U ()9, ))
07y, y) 2,
v — w yavaw ( xr,y,v II,' yaw) QEU(yayaw)>7

with 8 from above and

1—2y(z,w)y(z,v)+~%(z,w)
1_72(1‘71”) ‘

This result superficially resembles the corresponding bracket arising in the PCM [24].
In fact, neglecting the coset structure (i.e. formally puttihg= 2. = €2;) and dropping the
coordinate dependence of the spectral paramaterguation (3.34) explicitly reduces to the
brackets appearing in the PCM.

At first sight, we thus face the same fatal problem: With distinct endpointsy, v’ the
algebra (3.34) is uniquely and well defined, satisfying in particular antisymmetry and Jacobi
identities. The limit to coinciding endpoints on the other hand is obviously ambiguous. E.g.
it is easy to check that

fz,v,w) =

T z—z!
z>z! <z’

1 2 1 2
hIn, {U(l‘,y,?)) ) U(xlaylaw)} 7£ hm { (l‘ Yy, v ),U(:El,yl,’lU)} )

since

f(@,v,w) # flz,w,v) . (3.35)

In the PCM this ambiguity survives in the limit 2’ — —oo, y, 3y’ — oo with no possibility

to cure this in accordance with antisymmetry and validity of the Jacobi identities [86, 24].
The corresponding transition matrices relating the spatial boundaries however are the main
objects of interest, since they encode the integrals of motion. Several procedures have been
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3 INTEGRABILITY

suggested to nevertheless make sense out of the classical Poisson algebra of the PCM [38,
31, 87].

In our model on the other hand, the coordinate dependence of the spectral parameter
changes the situation drastically. Namely, since the functionv, w) inherits this depen-
dence, the ambiguity (3.35) may “fade out” in a certain limit. This happens if at the end-
pointsz, 2’ andy, i/’ the variable spectral parametebecomes independent of the constant
one, such that (3.35) becomes an equality. These possible fixpoints of the spectral parameter
are0, oo and+i (cf. (3.5), (3.6)). In this case equation (3.34) shrinks to an algebra related to
Drinfeld’s Yangian [28]. We shall demonstrate this for the two choices of Weyl coordinates
(2.20) in the next section.

3.3 Nonlocal chargesand their Poisson algebra

In this section, we analyze the integrals of motion obtained above for the two particular cases
of Weyl coordinates (2.20) assuming the vector figld to be globally space- and timelike,
respectively. Evaluating the general result (3.34), we obtain the relevant Poisson algebra of
nonlocal charges. The same fundamental structures arise from somewhat different sides.

Nonlocal chargesfor a spacelike (radial) dilaton

For this paragraph, let us assume that the vector figids globally spacelike. We can then
identify p with a radial coordinate =r € [0, oo[. This is a common coordinate system for
the description of cylindrically symmetric gravitational waves [69, 79, 3]; the symmetry axis
is given byz =0. For pure Einstein gravity, we have already introduced these coordinates in
(2.21). The dual fielgh is identified with the time:

p=x€[0,00], p=t. (3.36)

Let the physical currentsy, P; fall off sufficiently fast at spatial infinityx — oo with
VY — I and behave regularly on the axis= 0. According to (2.28), in four dimensions we
can demand this for the currents which are either related to the original wenoxn (2.25)
or to the matrix), carrying some of the the dual potentials. A physically interesting class of
gravitational waves is e.g. described by restricting to regylasn the symmetry axis [17].

In the sense of (3.22), (3.23) there are thus two interesting pointsx satisfying (3.22)
andz = 0 with (3.23). According to (3.24) they give rise to the following two solutions of
the linear system:

j}o(x,fy(x,w)) = V(0)U(0,z,w) = Vew(z,v(z,w)), (3.37)
Vool (z,7(z,w)) = V(o0)U(co,x,w) .

The second equality in (3.37) follows from the behavior of the moving branch cut (cf. Fig-
ure 1) inV,y (7). The matrix), is the (unique) solution of (3.1) which as a functiomofs
I:l\OlomOI‘phiC in the unit dis®_,UD _ and thus coincides witﬁ’BM from (3.12). The solution
V() on the other hand is the unique one which is holomorphic in the lower half plane
D,UD_ or the upper half plan®_UD.., respectively, depending on the sigrb. In par-
ticular, V. (v(w)) as a function ofw is discontinuous along the reataxis since for: — oo

the branch cut blows up and cuts thglane into two halves (cf. (3.18)).
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3.3 Nonlocal charges and their Poisson algebra

From (3.37) we extract the integrals of motion

Up(w) = )70)70‘01 = U(0,00,w), for we H,, ie.for %wzo, (3.38)

where the indext refers to the discontinuity of,, along the reatu-line. ThelU, (w) are
(G-valued) holomorphic functions i, and H_, respectively, and related by

Uy (w) = U () - (3.39)

According to (3.24), further integrals of motion descend from the monodromy matrices
(3.9) of V, andV,,. They may however be expressed in terms of the matficés): For
realw itis

Mpu(w) = Mo(w
=" lim <9o(x,7(w+ie)) 7'(90—1 (x,fy—l(wnLie))) )

e—0

= lim (ﬁo(x,v(wnLie)) 7'(17[;1 (x,’Y(w—ie))> )

e—0

~—

~

=7 lim <U+(w) Vio(, 7(w+ie)) T(Voo(m(w_ie))U—(w)>_l>
=" Up(w) 7(U7" (w)) (3.40)

Throughout this calculation it is important that> |w+¢|. This ensures that the limits
x— oo ande — 0 interchange as well agw+ie) = v (w—ie).

Vice versa, (3.40) can be understood as the essentially unique (Riemann-Hilbert) factor-
ization of Mgy, into a product of matrices holomorphic in the upper and the lower half of the
complexw-plane, respectively. The symmetry (3.13)%efgy further implies the relation

Up(w) 7(UN(w)) = U(w) 7(UH(w)) . (3.41)

Together with (3.39) this ensures reality of all matrix entrieg\éfy, on the reakv-axis:

Mgm (w) = Mgm (QIJ) . (342)
The monodromyM ., associated t@oo follows from (3.38) and (3.40):
Moo(w) = U (w) Ux(w) forw € Hy . (3.43)

Summarizing, we find that all the the integrals of motion identified according to the
discussion in the previous section can be entirely expressed in terms ©f (th¢. So far,
we have however not answered the question of their physical content. For this purpose, we
bring them into a more illustrative form. Starting from definitions (3.17), (3.38)
0 1 _'_72 2,}/
Ur(w) =V(x=0,1) Pexp/o dx <Q1 t1o v P — T P,
the t-independence may be exploited to calculate this expression forvraathe specific
valuet = —w (assuming regularity of the currents):

Up(w) = V(r=0,t=—w) Pexp /ooda: (Ql(x, —w) £ iPy(x, —w)) . (3.44)

0
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3 INTEGRABILITY

The £-sign on the r.h.s. of (3.44) reflects the different linlita,_, ., y(w=+ie). On the real
w-axis Uy (w) thus naturally factorizes into the product of a real and a compact part. The
monodromy matrixMpgy captures the real part of (3.44):

Mem(w) V(@=0,t=—w) 7(V ' (z=0,t=—w)) (3.45)

242 M(x=0,t=—w) , for weR,
whereasM ,,(w) carries the compact part of (3.44).

Equation (3.45) provides a physical interpretation for the new integrals of motion. They
comprise the values of the original field on the symmetry axis = 0. Having been
defined as spatially nonlocal charges for fixethey gain a definite localization in the two-
dimensional spacetime at fixec?

Moreover, this shows that they contain the entire information about the solution. Together
with the fact thatP; (x = 0) = 0, which follows from the equations of motion (2.49), the
values on the symmetry axis=0 allow to recover the field everywhere. In some sense the
initial values on a spacelike surface have been transformed into initial values along a timelike
surface. Thus, th&, (w) build a complete set of constants of motion for this classical sector
of solutions regular on the symmetry axis.

It remains to compute the Poisson algebra of the integrals of mitign). According to
their definition (3.38) we evaluate the general result (3.34) in the fimit— 0, y, ' — co.
The first four terms become

2y

v —w

CU) Uw)|

for arbitrary indicest at theU's.
The next two terms show the ambiguous behavior at coinciding endpoints. Depending
onz < z’ orxz > z' they give the coefficient

flz,v,w) or f(zw,v),

respectively, leaving to different results for different ways of taking the lirhit z. Here,
the difference with the PCM becomes manifest: Since the spectral parameters depend on the
spatial coordinates, in the limit ' — 0 both f(z, v, w) and f (2, w, v) tend tol (cf. (3.5)).
The sum

lim <9(x', ,y) f(x,v,w) + 0(z, 2" y) f (2, w, v))

z—a!
thus is independent of how this limit is taken, keeping e.g: z' or z > 2/ or alsox = 2’
with 6(z, z, y) =1.

In a similar way, the ambiguity from the last two terms vanishes. In the §mjit— oo,

the combinationg (y, v, w) and f (', w, v) approach the same value. This common value is

8A similar relation holds for the monodromy matrix arising from timelike dimensional reduction (i.e. with
a Euclidean two-dimensional world-she®g} in the regular regions of the spacetime [13]. In that setting,
singularities of the nonlocal charges in the spectral parameter plane are directly translated into singularities of
the original fields in space-time.
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3.3 Nonlocal charges and their Poisson algebra

however sensitive to the choice of indicesat theU’s, i.e. to the relative sign between the
imaginary parts of andw. If v(v) andvy(w) lie in the same of the two regiorg, andD _,
the functionf (y, v, w) tends tol, whereas it tends te 1 otherwise (cf. (3.5)).

Thus, we arrive at the following Poisson algebra:

(i) ) = |2 dwdw)|. (3.46)
o dw) - Bdobw- dotw_. G

with QF = Qy — €, obtained from(),; by applying the involutiorr in one of the two spaces
Q=t'®ts, =1t Y@ts=t"®@1(ta).

Equations (3.46) build two semi-classical copies of the Yangian algebra that is well
known from other2d field theories [10, 11, 12]. By semi-classical we mean as usual that
the Poisson brackets (3.46) coincide with the commutator ofitheaded Yangian algebra
in first ordersi. The mixed relations (3.47) appear “twisted” by the involutionith respect
to those coming from the normal Yangian double.

Note that whereas (3.46) remains regular at coinciding arguments, (3.47) obviously be-
comes singular at=w. However, sincé/, andl_ are defined in different domains, this sin-
gularity appears only in the limit on the real line and thus with a well-defiagualescription.

In other words, the Poisson algebra (3.46), (3.47) is compatible with the holomorphy prop-
erties ofUy (w). For consistency, it may further be checked that the algebra (3.46), (3.47) is
indeed compatible with the the restrictidh (w) € G and with the symmetry (3.41).

Remark 3.4 Letus recall the Poisson bracket (3.28) between the conformal faetod the
integrals of motiori/, (w) obtained above:

{Up(w),o(xr=00)} = —0,Ur(w), (3.48)

where we have assumed that the value of the conformal factor on the symmetry axis is fixed
by the boundary conditions [3]. In the context of cylindrically symmesdcgravity cou-

pled to scalar fields, the conformal facterp o at radial infinity has a well defined physical
meaning. It contains the deficit angle describing the nontriviality of the asymptotically flat
3d metric and provides a measure of the total energy of the system. The simple form of its
Poisson bracket with the new variables may have further consequences upon quantization
[76].

Finally, we can also compute the symplectic structure on the Breitenlohner-Maison mon-
odromy matrixMgy, since we have identified this object within the canonical framework. It
follows from (3.46), (3.47) and (3.40) that its matrix entries form the closed Poisson algebra:

1 2
{ M (o) Aam ()} = (3.49)
0 1 2 1 2 Q
. _gw Mewm (v) Mem (w) + Mewm (v) Mewm (w)v _gw
1 Q; 2 2 Q; 1
— Mawm (U)U ~ 0 Mewm (w) — Mem (w)v _— Mem (v) .

The singularity ab =w is understood in the principal value sense.
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3 INTEGRABILITY

Nonlocal chargesfor atimelike dilaton field

Here, we deal with the case of a globally timelike vector figld, which allows to identify

p with the timet. Accordingly,p now describes the spatial coordinateThe distinguished
locationz =0 which has played the role of the symmetry axis0 in the previous paragraph
becomes now the origih= 0. With periodic spatial topology, this is the setting of the so-
called cosmological Gowdy-models [49)We will, however, just treat the asymptotic case

x € |—o00,00[. The fundamental structures of the preceding section (the spacelike dilaton)
reappear in this context from a somewhat different side. So, for this paragraph we fix

p=t, p=x€]—00,00]. (3.50)
According to (3.24) the transition matrices again provide solutions of the linear system:
Vosolw,y(w)) = V(=00) U(—00,z,w), (3.51)
Vo(,7(w)) = V(00) U(o0,z,w) .

This time, the branch cut of Fig. 1 involved in the definition of the solutions (3.51) moves
along the reatv-axis without changing its length. Both these solutions turn out to be holo-
morphic inside of the unit disPUD_ in thev-plane, thus in fact it is

i}\BM = i}\700 = i}\oo .
In particular, the objects
U (w) = Voo, () V! (2, 7(w)) = 1 (3.52)

superficially analogous to (3.38) are trivial here.
However, again we have identifidd, among the canonical objects. Its monodromy
matrix Mgy (w) for realw is given by

My (w) = lli% ()/}BM (z, v(w+ie)) 7(175,\}' (x,v(w—ie)))) : (3.53)

for |w + x| < t. Unlike (3.40) there is no way to express this matrix directly in terms of
certain transition matrices. This is due to the fact that the lietits0 andx — oo do not
interchange in (3.53).

The matrixMgy (w) can be given more explicitly. Sinckt(w) is independent of and
t, we may evaluate it at=—w and in the limitt — 0. This yields:

Mem(w) = lim (Pexp/mdz[q(z,v) P exp —/mdzT(Ll(z,7)>)

= V(x:—w,t:O)T(V_I(x:—w,t:0)>
= M(z=-w,t=0). (3.54)

Thus, Mgy (w) again coincides with the values of the physical figldat p = 0.

"See [53, 94] for a recent treatment of the Gowdy model in Ashtekar variables. The two Killing vector
field reductions of pure Einstein gravity in terms of Ashtekar variables and the metric variables used here are
equivalent[95, 120]. The explicit formulas of [120] allow to translate the results from one setting into the other.
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3.3 Nonlocal charges and their Poisson algebra

After some calculation, the general result (3.34) further yields the Poisson algebra of the
Mgwm here which turns out to coincide with (3.49):

1 2
{MBM (v) , Mewm (w)} = (3.55)
0 1 2 1 2 Q
y _gw Maewm (v) Mewm (w) + Mpwm (v) Meawm (w)v _gw
1 Q; 2 2 Q; 1
— Mawm (U)v ~ w0 Mawm (W) — Mem (w)v _— Mem (v) .

This is by no means a consequence of (3.49), since the maikitgs in both contexts
descend from rather different definitions.

Via the Riemann-Hilbert decomposition #flgy, discussed in (3.40), one can implicitly
obtain the matrice&l.. They will satisfy the Poisson-structure (3.46), (3.47). Thus, together
with (3.54) the final situation appears rather similar to the previous paragraph.

However, this result must be taken with some caution. Obviously, (3.54) looses its mean-
ing if M (z,t) diverges ag— 0. Starting from arbitrary initial data at finite this divergence
on the other hand is generic. What is actually described with (3.54) and (3.55) is the sec-
tor of the phase space wheké(z,t) behaves regularly &= 0. Note, that the canonical
formulation obviously fails to cope with describing this truncated phase space=Athe
framework breaks down with the vanishing Lagrangian (2.45), whereas atfithigecon-
dition of regularity att =0 poses highly nontrivial implicit relations between the canonical
coordinates and the momenta. Thus, the results of this paragraph should only be understood
as an indication for some fundamental meaning of the Poisson algebra (3.49), (3.55) beyond
the particular choice of Weyl coordinates (3.36).

Finally, let us mention another rather intriguing point of view for the coincidence of
(3.49) and (3.55). Recall the setting of the spacelike dilaton (3.36) addressed above. In addi-
tion to the canonical (equal-time) symplectic structure, we could have derived an alternative
Poisson structure with respect to the radit!sThe calculations of this paragraph show that
these two Poisson structures of one model coincide for the values of the original fields on
the symmetry axis =0, i.e. for a complete set of observables. In this sense, these symplec-
tic structures are essentially equivalent. It is tempting to speculate about further exploiting
the fundamental structure (3.49) even in the case of a timelike dimensional reduction, i.e.
the reduction to stationary axisymmetric spacetimes, where the canonical time is no longer
present.

Summary

We have shown that the model (2.45) in Weyl coordinates (2.20) is completely described by
a set of integrals of motiofl. (w) defined agz-valued functions which are holomorphic in
the upper and the lower half of the complex plane, respectively. They are related by

Us(w) = U(w) , (3.56)

8In a covariant theory this is a quite natural idea which has been discussed in particular to describe static
settings [16]. For the Schwarzschild black hole e.g. one might doubt the distinct role of time in the canonical
formalism sincer andt change their character being space- and timelike, respectively, inside the horizon.
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3 INTEGRABILITY

and subject to the condition

Up(w) 7(U-H(w)) = U-(w) (U (w)) . (3.57)
The physical quantities are encoded in their matrix product

M (w) = Uy (w)r (U~ (w)) | (3.58)
which according to (3.45) coincides with the original fiélf{ =, ¢) on the axisp=0:

Meu(w) = M(p(z,1)=0, p(z,t) =—w) . (3.59)

In particular, (3.56) and (3.57) imply thatlgy (w) is a symmetric matrix with real matrix
entries on the real axis.

This structure has been revealed explicitly for the two definite choices of Weyl coordi-
nates (3.36) and (3.50), i.e. having fixed the gauge freedom of conformal transformations.
Since, according to (3.26), tHé. (w) are invariant under conformal transformations, this
structure extends also beyond these special choices. Its interplay with global properties of
an arbitrary dilaton fielgh remains to be studied.

The Poisson algebra of thié (w) is given by

1 2

i) dw} - |2 dwdw)|. (3.60)
o dw) - Bdobw- dodw_. @6

It gives rise to a closed Poisson algebra of the matrix entriggl gy :

1 2
{MBM (v) , Mawm (w)} = (3.62)
0 1 2 1 2 Q
. _gw Mewm (v) Mewm (w) + Mpm (v) Mawm (w)v _gw
1 Qr 2 2 Qr 1
— Mawm (U)U _gw Mewm (w) — Mem (w)v _gw Mem (v) .

Remark 3.5 Upon formal expansion around = oc, the Poisson algebra (3.60) coincides
with the semi-classical Yangian structure which was introduced by Drinfeld [27] in the
framework of Hopf algebras. To describe the Yangian double [28, 82, 11] it is usually con-
venient to take two copies of (3.60) with formal expansions around 0 andw = oc,
respectively. In (3.60), (3.61) in contrast, the(w) do not arise as formal power series but
as definite functions allowing holomorphic expansion in the upper and the lower half of the
complex plane, respectively. The formal expansions areuad) andw = oo hence are no
appropriate parametrization.
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3.4 Symmetries: The Geroch group revisited

3.4 Symmetries. The Geroch group revisited

With the integrals of motiorl. (w) identified in the previous section, one can study the
symmetries which they generate via their adjoint action in the canonical Poisson structure.
As it turns out [75, 77], this yields a canonical realization of the Geroch group [47] with the
underlying Yangian algebra (3.60), (3.61). The transformations which close into an affine
algebra (the loop algebgg cf. (2.35)) do not preserve the symplectic structure. This is a
particular example of the Lie-Poisson action of dressing groups generated by the transition
matrices of integrable models [113, 6, 84]. For the integrable models studied so far within
the framework of the quantum inverse scattering method, the integrals of motion are encoded
in the eigenvalues of the transition matrices. Here, in contrast, the transition méatrices
themselves are conserved charges.

The Geroch group and thelinear system

In this paragraph, we sketch how the action of the Geroch group may be encoded in an action
on the linear system (3.1). Since our main goal is the canonical realization of the Geroch
group in the next paragraph, we keep the discussion rather brief, referring to [61, 13, 99] for
details.

We have seen the one to one correspondence between soMtafrthe original equa-
tions of motion (2.49) and the associated solutibgg of the linear system (3.1). The latter
allow the factorization (3.15)

9BM(’Y) = Sgm (w))/}Bz(’Y) ; (3.63)

into a matrixSgu (w) living in the w-plane and a matrixA)BZ(y) living in the v-plane and
invariant under the involution> from (3.8). Conversely, this equation shows how to obtain
Vam(7) from Mgy: DecomposeMgy according to (3.14) and determine the unidfge()
invariant underr>, such that the product (3.63) as a functiomois holomorphic inside
the unit disc. Thus, one obtaingy (), which in particular is sufficient to reproduce the
original fieldsy according to (3.11).

This procedure describes the finite transformations of the Geroch group, which generate
an arbitrary solutionVsy from the vacuum solutlofh’B,\,I = I. They are parametrized by
G-valued matricesS(w). The group structure is simply given by matrix multiplication:
On a given solutiorVgy, S(w) acts by left multiplication which in turn induces a right
multiplication to restore the holomorphy inside the upitisc. The monodromy matrix
Mgwm transforms as

Mam(w) = S(w)Mpegu(w) T(S’l(w)) ) (3.64)

On the algebra level, this action takes the following form: Parametrizing the algebra
action by ag-valued meromorphic function(w) we define

SaVem(7) = A(w)Vem(7) + Vau() Ta(7) (3.65)

where Y, () is the unique function invariant undef® which restores the holomorphy of
dxVem(7) inside the unit disc. The infinitesimal version of (3.64) accordingly reads

5AMBM (w) = A(’LU)MBM (’LU) - MBM (w) T(A(w)) . (366)
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We have now associated a finite transformation of the Geroch group to each element of
the phase space, by which it is generated from the vacuum solution. According to (3.63) the
Geroch group is generated by meromorphic functifxs) mapping the complex-plane
into the groupG. Denote this group byz>*. The phase space may be understood as an
infinite-dimensional coset space

G>®/H™ , (3.67)

whereH™ refers to the subgroup @-valued functions on the-plane invariant under>.®
This subgroup describes the freedom of right multiplicatiol’¢f) which leaves the asso-
ciated monodromy matrix (3.9) invariant.

The particular elementggy may be viewed as a certain representative system of this
coset space (3.67). Thdif> gauge freedom is fixed (3.63) by demanding holomorphy in-
side of the unit disc in the-plane. This is a generalization of the triangular gauge discussed
for the finite-dimensional coset spa€e/H in (2.25). The action of the Geroch group as
described above is the action of the coset space (3.67) on itself. In analogy to (2.14) the
linearized action orG> becomes highly nonlinear on the fixed representation sy¥tgm
of the coset space. On the algebra level, the action of the symmetry (3.65) is parametrized
by A € g, while T, € h> is required to restore the generalized triangular gauge.

Let us finally recover the structure of the Geroch group that we have encountered earlier
in the model of pure Einstein gravity. There, the Geroch group has been described as the
affine algebrg (2.35) with the action of the generators givenin (2.14) and (2.33), (2.34). The
algebrag™ of meromorphigg-valued functions is formally related goby Laurent expansion
around a given pointy.

With wy = oo the (truncated) Laurent expansion

A(U}) == AO + U}Al + w2A2 + ... y (368)

yields one half of the affine algebra. Since thé$e) introduce a singularity af = 0 they
require a compensating transformatin according to (3.65) which acts nontrivially on

the physical fields eventually obtained from (3.11). The expansion (3.68) leads to explicit
recurrence relations for this action [99]. A closer check of (3.65) shows that indeed the
parameten; describes the action (2.14) of the zero mogles®, whereas\, corresponds to

the action (2.33), (2.34) of the elemegtsz ing. Thus, (3.65) generalizes the action (2.14)

of the zero modes of (2.35) to that half of the affine algebra which acts nontrivially on the
physical fields (cf. Remark 2.2). The other half of the affine algebra may be associated with
the Taylor expansion of (w) aroundw, =oc [61, 13, 99].

The canonical realization of the Geroch group

Here, we present the relation of the Geroch group described in the previous paragraph with
the integrals of motiort/, (w) that we have obtained in section 3.3. It turns out that this
provides a natural realization of the Geroch group via the canonical Poisson structure. For
definiteness, we assume the Weyl gauge (3.36) whenever necessary, such that, in particular,

9To properly defindI> as a subgroup of> one should regard (3.67) for fixed valuesiofndt, with
andw related by (3.3). See [13, 63] for the mathematical details.
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3.4 Symmetries: The Geroch group revisited

the solutionVewm of the linear system is given by (3.37). As has been discussed above, the
entire symmetry structure also survives relaxing of this gauge choice.

Recall that thd . (w) live in a matrix representation @, in particular each matrix entry
thus represents an element&fG). Define in this representation the matrix valued operator

Gi(w) = adUi(w)Ui_l(w) , (369)

where *ad” denotes the adjoint action via the canonical Poisson structure. To be precise, the
action of G+ (w) on any phase space functigns defined as

GP(w) f = {Ug™w), £} (U™ (w)

in matrix indicesa, b. Since thel/. (w) are integrals of motion, this action is a symmetry
of the equations of motion of the theory. It is illustrative to calculate the transformation
behavior of the monodromy matri&{gy according to (3.58) and (3.60), (3.61):

1 2 Q, 2 2 Qg
Gi(v) Mem(w) = Mewm (w) — Mem (w) : (3.70)
v—w v—w
This motivates the definition of the following symmetry operator
dv dv
GIA] = tr (/M% Aw) G (v) + /Z% Aw) G_(v)> , (3.71)

for any algebra-valued function(w) € g, regular along the realb-axis and vanishing as
w — 00, Where the patld = 7, U /_ is chosen to encircle the realaxis, such that, € H..
andA(w) is holomorphic inside the enclosed area. Then, we obtain from (3.70)

G[A] MBM (’LU) = A(w)MBM (w) — MBM (’LU) T(A(w)) 5 (372)

which coincides with (3.66). This already reproduces the infinitesimal action of the Geroch
group in the canonical framework. Moreover, (3.72) shows that the symmetry group (3.71)
acts transitively among solutions which behave analytically on the symmetrypaxié
(cf. (3.59)). R

Let us check, if we can also recover the action (3.65) on the solufgrof the linear
system. Evaluating the key formula (3.34) according to the definitions (3.71) and (3.37)
leads to:

~ ~

G[A] Vem ($, 12 ’V(w)) = A(w)VBM ($7 12 ’V(w)) - i}\BM (l‘, t V(w)) TA(xﬁ t V(w)) ’
where
T tr(w) = [ gt Ve AVeu], (3.73)
—7*(w) dv 7(v)
/13 2mi

7(w) (v—w) 1=72(v)
[

with the algebra projections], , [.]¢ corresponding to the decomposition (2.37). The matrix
A(w) depends on the constant spectral parametén contrast,Y, (z, ¢, v(w)) depends on
the variable spectral parameteand obviously satisfies

TA(xvtafY(w)) = TOO(TA(xvtafY(w))) = T(TA(xvtafy_l(w))) :
38
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3 INTEGRABILITY

Thus, we find agreement with (3.65) and have in particular obtained a closed expression for
the compensating™—rotationY, (y). Indeed, it follows from the form ot (3.73), that the
right multiplication ofVam With Y, removes all singularities caused by the left multiplication
with A(w) from the unit disc (note that the pattsurrounds the unit disc in theplane).

With the symmetry operator (3.71) at hand, we can directly calculate the infinitesimal
action of the Geroch group on all the original fields of the model. According to the general
formula (3.29) it follows that:

GIA]V(z) = /é % (ﬁlf@) [9B¢A§BML> (3.74)

_/Wg) 2;?7 (V(x) [ﬂ?a_l\}lAﬁBML) .

The currentd?. :%(Po + P,) transform as:

dv 27 ~ o~
GIA] Pe(z) = /Z o [m [VB&AVBM]h,Pi(x)] (3.75)
/g 2mi p2(1 £ 7)2(1 — 12) [VBMAVBM]B .

Equivalent forms of these infinitesimal symmetry transformations of the Geroch group have
been stated in [51, 119, 99].
The symmetry action on the conformal factors given by

GA]o = / oy (AaﬁBMfJg“}l) , (3.76)
J4

2w

in accordance with the formula derived in [99]. Formula (3.76) is easily obtained from (3.27).
The algebraic structure of the symmetry operators (3.71) is most conveniently obtained
from (3.72), which immediately gives rise to

Gl G = G[A A (3.77)

Like in the previous paragraph the symmetry algebra is parametrized by meromgrphic
valued functions. Half of the affine algebra (2.35) may again be recovered by formal Laurent
expansion around = oc.

Recovering the affine algebra
Definition (3.69) together with (3.60) yields

Ga0),Cr ()] = —— [0, G () + G(w)] (3.78)

Vv —w

The commutator on the r.h.s. encodes the half of an affine algebra in its Taylor expansion
aroundv = oo, w=o00 [39]:

1 1
Gi(UJ) = I+—G1:|:—|——2G2j:+ s
w w
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3.4 Symmetries: The Geroch group revisited

which corresponds to the expansion (3.68) in the sense that:
GAw"] = $(Gni+Gy_) .

This relation follows from evaluating (3.71). There is a slight subtlety here, since strictly
speaking the functiona (w) = A,,w™ do not belong to the class of functions for which we
have defined (3.71). As the integrand is singular at infinity, definition (3.71) depends on the
precise choice of the contour in this region, which has not been specified above. Expansion
of (3.74) aroundv = oc Yyields the action of these components on the physical fields. With
the asymptotic behavior

1 1

v(w) = 50 P " 52 PP +... (3.79)

it is possible to expanﬁ’BM according to

~ 1 1
Vam(@,t,7) = V<T+EV1+EV2+...>, (3.80)

with

Y = / dy o)V PV ()

0
Then, (3.74) yields the following action (up to gauge transformations (2.38)):

GlAw]Y = AV, (3.81)
GlAw?]V = [A, YWV Y,
G[A2w2] Pi = F [prlAQV, Pi] F 8ip [Vﬁl(fl})AQV(l’)]k

This coincides with the structure found in (2.31), (2.33) and (2.34g fes((2). In particular,
it may easily be checked, that in this case the mati%)~! indeed covers the first dual
potentials (2.26) and (2.32).

The associated affine charges may be obtained from a formal expansion of the linear
system (3.1) in the following way: Interpreting (3.1) as a formal power series in the
particular transition matri¥’sm(x, ¢, v(w)) from (3.37) admits an expansion according to
(3.80). Performing the limit — oo in each of the coefficients separately leads to a series

U(w)z]+lU1+i2U2+..., with U, = lim V), . (3.82)
The first two chargeu; obtai:ed this way are o
U = [t e Ry @), (3.83)
U, = LU+ / da / dy p(@)o(y) V@) Po(e)V " (1), V) Po(u)V ()
1 [[de P@V@P@V @)+ [t p@)ple V@A@Y ).

It may be checked, that they generate the action (3.81). However, it is important to
notice that in general there is no relation between the formal power défies defined
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3 INTEGRABILITY

in (3.82) and the integrals of motidri,. (w) from (3.38). This is due to the fact, that the
limits w — oo andx — oo do not interchange (manifest in the breakdown of the expansion
(3.79) atw = —t+x). In particular, all thel,, are real, whereas thé, (w) are complex
with (3.56). Nevertheless, the formal serié&uv) generates the same action as the operators
(3.71) defined via théL. (w).

Remark 3.6 The closed expressions (3.74), (3.75) of the symmetry action on the physical
fields contain the pivotal terrﬁ?g,\}lA)A}BM] which is hardly computable explicitly. The affine

expansion (3.68) of the symmetry group has the seeming advantage, that it allows for explicit
expressions of the associated charges (3.83) and the action of the symmetry (3.81). However,
to obtain infinitesimal transformations which are integrated to physically meaningful solu-
tions, the entire formal power series in (3.68) has to be summed up, i.e. the same amount of
work is required. The closed form of (3.71) captures the structure of the full symmetry group.
In particular, it provides precise control over the deviation of this action from a symplectic
one (cf. (3.90) below) which later on becomes essential for the purpose of quantization.

Remark 3.7 We have given the canonical realization of the symmetry algebra (3.65). Ac-
cording to the discussion above this may formally be embedded into that half of the affine
algebrag (2.35) which acts nontrivially on the physical fields. There is no canonical real-
ization of the other half and the central extenslofor the following reason: According to
Remark 2.2, the other half of the Geroch group leaves the physical Hietdgriant and acts

by shifting the dual potentials encoded in a solufioof the linear system (3.1). However,

to set up the canonical framework we had to identify the particular solWdgras a unique
functional of the physical field¥, which e.g. enabled us to obtain the symplectic structure
(3.62). There is hence no canonical object which would transform nontrivially while the
canonical fields are left invariant.

In other words, to incorporate the other half of the affine algebra and the central extension
of (2.35), the phase space would have to be enlarged by additional gauge degrees of freedom
(corresponding t®> in (3.67)). So far, it is not clear how to achieve this canonically, say,
on the Lagrangian level. See [63, 102] for further discussion.

Lie-Poisson actions

Definition (3.71) implies that the action of the Geroch group is not symplectic. Rather,
this type of operator generates a Lie-Poisson action, i.e. an action which does not preserve
the Poisson structure on the phase space but on the direct product of the phase space with
the symmetry group. In this paragraph, we briefly recall the mathematical concept of Lie-
Poisson actions and show how the canonical realization of the Geroch group matches this
framework. For the details and proofs we refer to [6, 84].

The action of a Lie groug: on a symplectic manifold/ is a map

GXM— M; gxm— gm. (3.84)

It naturally induces a map' (M) — C(M) by f — fog; fog(m) = f(gm). The action
(3.84) is called symplectic, if for fixede G it is a Poisson map, i.e. it is compatible with the
symplectic structure on/:

{fiog, faog}={fi,fo}oy,
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for any two functionsf;, f, € C'(M). The infinitesimal version of this condition reads

{X S, oY +{fi, X fo} = X{f1, o}, (3.85)

whereX is the vector field related to the actiongf G and may be understood as an element
of the associated Lie algebga Every infinitesimal action of this kind is locally generated
by a charge

Xfi=A{Q, fi}, (3.86)

and vice versa every action generated as (3.86) is obviously symplectic (due to the Jacobi-
identities). An example of a symplectic action in our model is e.g. given by the action of the
zero modes of the affine algebra (2.14), which is generated by the cliariges (3.83).

For the subsequent generalization it is convenient to also state the dual version of (3.85).
The actionf — X f induces the dual map

§:C(M) = C(M)®g" fréeCM)egh §(Xeg)=XT,
in terms of which a symplectic action (3.85) satisfies:

&y o} {60 =& py - (3.87)

Let the group& now be a Lie-Poisson group, i.e. equipped with a symplectic structure
C(G) x C(G) = C(G), (3.88)

such that the group multiplication is a Poisson map. The Poisson structure naturally induces
a Lie-algebra structure g1t (loosely speaking obtained from the differential of (3.88)). The
space x M then is a symplectic space with the product symplectic structure:

{flan}GXM(gvm) = {fl('vm)an('vm)}G(g)+{fl(gv')va(ga')}M(m) : (389)

To evaluate the r.h.s. the functiofisare understood as functions éhwith parametern

and as functions on/ with parameter, respectively. The action of a Lie-Poisson group on

a symplectic manifold\/ is called a Lie-Poisson action, if (3.84) is a Poisson map, where
G x M is equipped with (3.89). Compared with (3.87), the infinitesimal form of a Lie-
Poisson action gets an additional contribution:

{£f17 fQ} + {f17£f2} = £{f17f2} - [é-fl?é-fZ] . (390)

The commutator on the r.h.s. refers to the Lie-bracket induceagt.ofhis explicitly shows
that a nonabelian Lie-Poisson action is not symplectic.

In our model the action of the generata¥s (w) is precisely of the form (3.90). Evalu-
ating definition (3.69) yields

{Ge(w)fi, fo} +{f1,Ge(w) fo} = Ge(w) {f1, fo} = [G=(w) f1, Ge(w) fo]

where the commutator is understood for the matrix-valued acti@n.¢fv). This coincides
with (3.90). In fact every Lie-Poisson action is at least locally generated by an operator of
the form (3.69) [6, 84]; this is the nonabelian generalization of (3.86).
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In particular, dressing transformations in normal integrable systems are generated by an
operator (3.69) wher& (w) denotes the transition matrix of the Lax connection, the eigen-
values of which give charges in involution. In our model in contrast the matficés)
are integrals of motion themselves and parametrize the entire phase space. Rather than con-
structing the Lie-Poisson action (3.71) we could alternatively consider the pure symplectic
action of the matrix entries of thé, (w) via Poisson brackets. However, though this action
is certainly symplectic, it allows neither explicit exponentiation nor a closed form of the
commutator algebra, in contrast to (3.72) and (3.77).

3.5 TheAbelian sector

The results of this chapter simplify significantly if the groGpis Abelian. In this case, all
equations linearize and allow an explicit solution. Thus, truncating the model to its Abelian
subsector may serve as a simple illustration or may be viewed as a testing ground for issues
like implementing further symmetries or approaching the quantization of the model.

Here, we illustrate this foG =U(1). In the context of four-dimensional Einstein gravity
(2.21) this corresponds to a diagonal mathik,, i.e. cylindrical gravitational waves re-
stricted to collinear polarization. These solutions have already been discovered by Einstein
and Rosen [33]. Quantization of this sector has been studied as a midi-superspace model of
quantum gravity [79, 3, 4]. With Euclidean signature of the two-dimensional world-sheet,
this truncation is the one from stationary to static solutions of Einstein’s equations.

Like in (2.21) we choose Weyl coordinates (3.36), identifying the dilatomith the
radiusz. Parametrizé/ by

M= <6w 0 ) .
0 e?
The Ernst equation (2.22) in this case reduces to the cylindrical wave equation

—lo+a 00+ 0% = 0, (3.91)

with general solution
o(z,1) = / dk(A+(k)Jo(kx)e”“JrA,(k)Jo(kx)e*”“>, (3.92)
0

where J, denote Bessel functions of the first kind. Another representation of the general
solution of (3.91) is given by

2mi 2mi

olat) = 74 W)y o) = — 74 D m(v) In(y(v)) (3.93)

with the spectral parameterfrom (3.3) and a path encircling the moving branch cut in the
w-plane (cf. Figure 1). This representation even allows for an explicit solution of the linear
system (3.1):

e mly)
() = § g I 0 (0), (3.94)
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wherer is one diagonal component ofi V.
The general solution of (3.91) is thus parametrized by a real funetion) or by the
complex functions

Ay (k)y=A_(k) with k>0.

Let us illustrate their relation. On the axis=0 it is

p(r=0,t) = / dk Ay (k)e* + / dk A_(k)e ™ = m(w=—t) .
0 0

This is nothing but the decomposition of a function on the real line into the sum of two

functions holomorphic in the upper and the lower half of the complex plane, respectively.

Comparing this decomposition to the nonabelian case (3.40), (3.45) we see the embedding

of the abelian case according to

Mau(w) = e ("0 5 Y (3.95)
Ur(w) = exp <f000dk Aé(k)eﬂkt — [dk Xi(k)eiikt>

Thus it follows immediately, that»(w) or equivalently thed. (k) form a complete set of
integrals of motion. Let us verify the symplectic structure in these variables. In terms of the
original fieldsy the Poisson structure (2.57) reduces to

o), ()} = ~d(r—y).
With (3.92) this translates into
{As(k1), A_(k2)} = —id(k1—k2) , {As(kr), Ar(k2)} = 0. (3.96)

For the Fourier transforms appearing in (3.95) this implies

{ / dky AL (kp)etFe / deA_(kg)e‘”fW} _ ! :

0 0 v —w

and

{m(v) ,m(w)} = —— . (3.97)

v —w

Upon exponentiation, this leads to the abelian version of (3.60), (3.61) and (3.62).
Moreover the action of the Geroch group takes a simple form in this abelian case. Ac-
cording to (3.90), in the abelian case we expect a symplectic action which is generated by

dv
GIA = § 5% Alv)adnc
with some functiom\(v). In the representation (3.93) this is easily seen to give rise to
dw _
GlAl i = § 5 Alw) v (w). (3.98)
¢ &7l

44



3 INTEGRABILITY

This coincides with the abelian version of (3.74).
Quantization of the abelian sector is straightforward [3]. The Poisson algebra (3.96)
gives rise to a representation in terms of creation and annihilation operators

A|0y=0  with A =A". (3.99)

Coherent quantum states may be constructed basically in the same way as in flat space quan-
tum field theory. However, a recent discussion has shown that, interestingly enough, these
states do not provide coherence of all essential physical quantities [4, 46]. Even though
we know that the linearized structure (3.96) does not appear in the full nonabelian model,
(3.99) may give a hint on the nature of relevant representations of the operator algebra which
replaces the integrals of motion after quantization. We will return to this pointin section 5.3.
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4 Supergravity

In this chapter, we show how the results obtained so far may be extended to locally
supersymmetric theories [105]. The simplest of these models descends from dimensional
reduction of N =1 supergravity in four dimensions and leads toMna- 2 superextension of
the bosonic model described in section 2.1 (see e.g. [99]).

Here, we analyze maximally extenddd= 16 supergravity in two dimensions. This is
the theory obtained by Kaluza-Klein type dimensional reduction ffdm1 supergravity in
eleven dimensions [21] vi&/ = 8 supergravity in four dimensions [22] and via the= 16
theory in three dimensions [92]. A detailed description of the dimensional reduction to two
dimensions has been given in [62, 98, 103].

After introducing the model, we extend the canonical framework of section 2.3 to the
fermionic sector. We give the expressions for the generators of local supersymmetries in
all fermionic orders and work out the fuN = 16 superconformal constraint algebra which
extends the conformal algebra (2.62) of the bosonic sector. Finally, we construct nonlocal
charges associated to the linear system. Generalizing (3.26), they are shown to be invariant
under local supersymmetry and hence under the full constraint superalgebra. The Poisson
algebra of charges turns out to coincide with the structures that already appeared in the
bosonic sector.

4.1 Themode: N =16 supergravity in two dimensions

In this section, we describe the superextension of the bosonic model that we have treated in
the previous chapters and set up the canonical framework.

Let us state the field content @f=2, N =16 supergravity. The matter sector consists of
128 bosons and 128 fermions which transform in inequivalent (left and right handed) spinor
representations O (16). The bosonic fields form the coset sp&&gH = Eg(15)/SO(16),
i.e. they are encoded in a matrixe Eg with SO(16) gauge freedom (2.38). We denote
the generators of the Lie algebegaby X'/ = —X7T with I,.J = 1,...,16 andY* with
A=1,...,128, corresponding to the decomposit@#8 — 120 ¢ 128 of ¢; into the adjoint
and the fundamental spinor representatioS ©f16). The defining relations of are

|:XIJ XKL] — 5JKXIL - 6IKXJL +5ILXJK - 5JLXIK (41)
(X7 v = Tl vP, (YA YP] =i X
where thel'’/, denote theSO(16)-I-matrices
Ll aThp = 0k + Tl - 4.2)
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4 SUPERGRAVITY

In the adjoint representation ef these generators are normalized such that
tr (XXM =-12061,,  tr (Y'YP) =606"".

The full coset structure of the bosonic sector has been described in section 2.2. According to
(2.39) the bosonic curredt™'9,V is decomposed into

V7oV =30,/ X" + piY?, (4.3)

exhibiting theSO(16) gauge fieIdeﬂ and theP;j‘ transforming in the left handed spinor
representation ofO(16). The fermionic matter part is given by 128 physical fermions
which accordingly transform in the right handed spinor representatictOgi6); they are
denoted byy; with A = 1,...,128.

In addition, we have the graviting/ and the “dilatino”y»} which descend from th&d
gravitino and form the superpartners of the zweib€irand the dilatorp, respectively (cf.
(2.5),(2.6)). Before we state the Lagrangian, we introduce our spinor conventions in two
dimensions.

Spinor conventions We introducey-matrices in two-dimensions which satisfy the algebra
(in flat indicesa, 3)
YaV8 = Nap + €as?’ 5 VYo = €ap?’ (4.4)

with ¢g; = —€®* = 1. An explicit realization is given by

Yo = ((1) _Oi> , M= <_Oi ?) , V= ((1) é) : (4.5)

We make use of the Majorana representation where the charge conjugation n@&trixs
such that a Majorana spinor obeying= ¢’ C has two real components. We will use the
decomposition into Majorana-Weyl spinors

= (1) =

and treat the one component spin@rs as real anticommuting variables at the classical
level. Let us also give some useful rules for the transcription between two component and
one component notation:

Px = 20(ix- —voxs) Y x = =20y x- +Yoxy)
VY+eXx = 29ix+ v-x =20 x-
The fully covariant derivatives on the spinor fields are given by
D" = 9" + twuape™ VT + QL7 (4.7)
DuXA - auXA + iwuaﬁGQﬂrYgXA + %Q;ILJFZJBXB )

where the spin connectian,, is a function of the two-dimensional metric and its super-
partners [106].
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4.1 The modelN =16 supergravity in two dimensions

L agrangian and equations of motion

The Lagrangian off =2, N =16 supergravity is most conveniently obtained by dimensional
reduction ofd =3, N =16 supergravity [92] as described in [98].

L = —1pEC >R<>+2pE e Py D)) 1pE Y DA + LpE@ prapd

— pEOX Ayl (P — ipECx AT P (4.8)

up to higher order fermionic terms. The first two terms of (4.8) describe two-dimensional
gravity and theN = 16 Rarita-Schwinger extension. The next two terms give the matter
couplings of the 128 fermionic and 128 bosonic fields, respectively; the last terms are of
Noether type to ensure supersymmetry of the action.

In addition, there arise several quartic fermionic terms which we omit here. Although
in principle they may be determined from the higher-dimensional theory, this computation
becomes rather lengthy due to additional fermionic contributions which arise from the elim-
ination of the Kaluza-Klein vector field§. Nonetheless, in (4.24) below we give the exact
expressions for the generators of the local supersymmetries, which are sufficient to recon-
struct all higher order terms systematically as well as to prove exact supersymmetry of the
conserved charges.

The action (4.8) is manifestly invariant under general coordinate transformation in two
dimensions, as well as under th®(16) transformations

0,QY = Diw" = 00" +Qf W — Q)W (4.9)
S = TP
(S w[ _ IJ,¢J
" =
5, XA _ IFIJ wIJXB

with the SO(16)-parametew’” (z) = —w’!(z).
In the following we employ the superconformal gauge

el =0nexpo, U =iy, (4.10)

which naturally extends (2.8). In this gauge, the two-dimensional spin-connection from (4.7)
reads (up to bilinear fermionic terms)

Wiap = Feaplio ,

such that in terms of the the one-component spinors introduced above, the covariant deriva-
tive

(ai + iwiaﬂfaﬁ) Vg = (ai + %aia) Ve = 04 (¢¢ eXP(%U)) J

may be absorbed by rescaling the fermions with the conformal factor. Like in the bosonic
case, the conformal factor then almost completely disappears from the Lagrangian except for
its explicit appearance in the two-dimensional curvature term coupled to the dilaton

0ynlike in (2.16), here, the Kaluza-Klein field strengths do not vanish but are expressed through bilinear
fermionic terms. Their elimination from the Lagrangian then gives rise to additional quartic fermionic terms.
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4 SUPERGRAVITY

We next list the equations of motion in the superconformal gauge. The bosonic equations
(2.48), (2.49) are extended to

Dy (pP?)+ D _(pP) = 2 ;D (pig x}) — 27 1Dy (ph _x2) (4.11)
+ 20pL i PPy 4y — 2ipL i Py !

DI T PPNANE 5T P pByANE

0.0.5 = 0,00 = PP =i (\AD oyl + XD x) |

modulo quartic spinor terms. The fermionic equations of motion read

Di(pixd) = Fhpryl 17 . P, (4.12)
Dipy = —3x4ll P

D:I:(pdé¥) = 07

modulo cubic spinor terms.

Like in the bosonic case, there are further equations that descend from the Lagrangian
(4.8) before (super)conformal gauge is adopted. They are to be regarded as constraints aris-
ing with the unimodular components of tBé metric and the traceless modes of the grav-
itino, respectively, as Lagrangian multipliers. The resulting expressions are

Ty = —pPlPL+20.p0s6 £ 2ipPLT" s05 X5 + 2ipx{Dix? (4.13)
+ 2L Dy (py 1) £ 2ipthy 4 Da (V1) ~ 0,
SL = —2Di(pph,) +2p0s0 by, £2px AT P F 20000 =~ 0, (4.14)

generating conformal and superconformal transformations. Modulo higher order fermionic
terms the superconformal transformations of the fields are given by

VLY = g2l yir, V4, buxt = FelTT . Pf,
orp = 2ipelihy, orthyy = p~lorpel (4.15)
dro = Fie i, 04 = F(Diel +0s0€l)

with the parametet’. obeying
=0 (4.16)

again modulo cubic spinor terms. These are the supersymmetry transformations which leave
the Lagrangian (4.8) invariant and are moreover compatible with the superconformal gauge
choice (4.10). As an algebra, these transformations close infg anl6 superconformal
algebra which additionally contains the conformal and the Ista(16) transformations.

It is distinguished from the standard superconformal algebras by the fact that it is a soft
algebra, i.e. it appears with field dependent structure “constants”. This will be discussed in
more detail in the next section.
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4.1 The modelN =16 supergravity in two dimensions

Canonical Poisson brackets

The Poisson brackets of the bosonic sector of the model are obtained in the same way as
(2.50) and (2.57) above. With canonical momenta
= 98 A dS
0(0Q1”) 0(0P')
the relations (2.54) and (2.55) receive additional fermionic contributions and in components
take the following form

P = —% (DA + LT PPY — A0l A YA 410 b AV (4.47)
and
o = D' 4 TP Y (4.18)
—2ip (@/JE%JL - w[fwil) — 1 (Xﬁxf + Xiixj;é’) ~ 0.
The first relation gives rise to the bosonic Poisson brackets for the physical fields, the sec-

ond one defines the set of weakly vanishing first-class constraints generatifgthe)
transformations. In analogy to (2.57) we obtain the Poisson brackets

[PA() V() = —%V(:v)YA Sa—). (4.19)

1
{Pi(x), Q] (v)} = 5 PP s(z—y) ,
{PA@), PPy} = +— TILQU 6(a—y) + = (i + i) 548 5 ()
8p 4 \p(z)  py)
* 16, IR AREA (Xﬁxf + xi‘xf’) §(z—y)
i

- 2—prﬁdg (Yhapy . —plap) ) d(z—y)
i
4p

1

“57 Ils®r d(z—y) ,

1 1
{Pi(),P{(y)} = iz D1p 0P d(x—y) — 87 Dp®ry 6(z—y)

+ T (00, 0 ) 6()

+ 16, Tl (e +xAx2) 0(e-y)

4 Q—IP% (Wivs, — ¢l ) d(z—y)
LU + 9l v] ) de—y)

(Piw) sot)} = o (A il (s —0f ) d—n),  @20)

(Pl 0s0t)} = o (B0l (. = vf i) ata—y)
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4 SUPERGRAVITY

The fermionic sector as usual requires a Dirac procedure since the fermionic canonical
momenta appear proportional to the fermions themselves. The final brackets are found to be

{d@ o do} = 4%5‘436(:3—?;), (4.21)
{vi(@),vi.(y)} = i4—ip 5T 5(x—y) .

Due to the explicit appearance of the dilaton field in the r.h.s. of (4.21), this fermionic Dirac
procedure also gives rise to the following non-vanishing mixed brackets

{000($),Xi(y)} = ;pX:i:(S(I_y)a (4.22)

{600 %i( )} = _;iné(x_y)a

while the form of i, in (4.17) gives rise to

{Pr)dm) = F5Thwdedn),
{PMz) h(y)} = %Fﬁgxﬁé(x—y)-

Since most of these brackets look rather unwieldy, it may be worthwhile to look for
simpler canonical variables. E.g. the modified momenta

B = p Pt — 2iph X AT 4 2ip s X AT (4.23)

commute with all the fermions and with.c. Moreover, we notice that the rescaled fermions
1 .
py andpzy commute withd,o as well.

4.2 Constraint superalgebra

In this section, we establish the constraint superalgebra generated by the superconformal
transformations (4.15). As discussed above, this is the part of the original symmetry algebra
of (4.8) which is compatible with the truncation to superconformal gauge (4.10). These
transformations close into av = 16 superconformal algebra which in addition contains the
conformal transformations generated by (4.13) andsthé€16) gauge transformations (4.9).
Closure of the supersymmetry algebra is known from general reasoning [106, 92].

To avoid overlap with the general discussion of the constraint algebra in the bosonic case,
we simply state the full expressions for the supersymmetry generators

SL = £Di(pvs.) — pOro . T PXiFI (PL £ 0Lpl (4.24)
Fippl xaI"xe — 1 pyy T (XiXi Xixi)
: I ,J.;J : I J . J : I J J
+ 2ipYi iy, £ 21P¢¢¢2 :I:,(v/JZ:F + QIP@/}Q ;wﬂ/&i - 21P@/}2q:¢2 idh; )
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4.2 Constraint superalgebra

including all cubic fermionic terms. These terms have been reconstructed from the require-
ment of closure of their algebra

{SL(x), 5L} = 0" (iTex 7 204 SE — AXIT SOk ) S(2—y)  (4.25)
F <¢i5i + @biSi) d(z—y)

+ I (PR 4 TiE KT o(a—y)

{SL(), 87 ()} = 0" (vf S5 + yf 5K 6(z—y) (4.26)

+ (48 + 0.8 dw—y)

+ IINE T DR @5 S(z—y)
This again is an exact result, i.e. valid in all fermionic orders. The constraint superalgebra
consistently closes in terms of the Virasoro constrdlhts and theSO(16) constraintsb!”.
We emphasize, that the closure of this algebra uniquely fixes all the cubic fermionic terms in
(4.24).

The supersymmetry generators (4.24) are the crucial operators here, since they span the

full constraint algebra. Thus, complete knowledge of these generators is sufficient to prove
gauge invariance of the nonlocal conserved charges in the next section. Moreover, with

(4.24) at hand we are in position to compute e.g. the quartic spinorial contributidns to
straight-forwardly. By means of the super-Jacobi identities

{85, 81} 9} = {SL{S%, o}} +{SL.{SL.¢}},

we can further directly obtain the conformal transformations generated by.thén all
fermionic orders.

With this in mind, we restrict to giving the rest of the superconformal algebra only up to
higher order fermionic terms again:

{Thes(2) Tus(y)t = F(Tea(r) +Tes(y)) 0'(z—y), (4.27)

{Tes(2), Tex(y)} = iFQ‘%PfPquU 6(z—y),

{Tee(2),Si(y)} = F35i(y)d'(w—y) + DSLd(z—y)
FATAET LA PN ba ),

= TN PIXER T 3 (a—y)

(687 () — 077 ST (z)) o(z—y) ,
= 0,
{q)lj(x),q)KL y } _ <5JK¢1L _ §IKGIL | SILGTE _ 5JL(I)IK> S(z—y) .

The gauge transformations (4.15) and (4.9) are generated by

5ig0:2i/dxeli(x){5i(x), e}, and 4,¢= /dm 1w (@) {@"(2), ¢} ,
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4 SUPERGRAVITY

respectively. Conformal coordinate transformations with parangéter £*(x*) are gen-
erated as in the bosonic model (2.60). One can verify that &airgenerates translations
along thez* coordinates modulo a loc#lO(16) transformation with field dependent pa-
rameterQ!”’.

Remark 4.1 For computation of the canonical Poisson brackets it is necessary to rewrite
T.. entirely expressed in terms of canonical variables. I.e. the time derivatives of the
fermionsin (4.13) must be expressed by their spatial derivatives, making use of the fermionic
equations of motion (4.12)

Di(p2xi) = +Di(p2xi) + p25, T (P2,
Dipl = £Dywl - bdr! pA
Di(pys,) = £Di(ppi,),

where the |.h.s. exhibits conformal covariance whereas the r.h.s consists of canonical vari-
ables. The “canonical” form (in contrast to the covariant form (4.13)) of the energy-momen-
tum constraint is then given by

Ty = —pPlPL+20.pds0 F 0,0.p £ 2ipP{'T’ s05 X~ (4.28)

+ 2ipx i Dixd + 2001 D1 (pty 1) + 2iphy . Di(Yh)
again up to quartic fermionic terms.

The constraint superalgebra (4.25), (4.26), (4.27) is a superconformal extension of the
Virasoro algebra (2.62) wittv = 16 supercharges. In contrast to the superconformal alge-
bras which have been studied in string theory and conformal field theory, it exhibits some
rather unusual features. Thus, its existence does not contradict the well-known absence of
superconformal algebras wifk > 4 [108].

First of all, this model does not allow the complete splitting into chiral hahtesand
S_ do not commute in (4.26). Another important property of (4.25) and (4.26) is, that they
obviously do not close into a linear algebra in the usual sense. Rather, on the r.h.s the
constraintsST appear with coefficients that explicitly involve the fermionic fieldsandq..

This is an example of the “soft” gauge algebras arising in (super)gravity [106, 115].

In addition, no internal chiral currents appear here. A linear superconformal algebra
with N supercharges requires an internal boseftig N current. This is immediately seen
from the super-Jacobi identities involvidg’, {S7, S¥}}. Vanishing of thed’ contribu-
tions necessitates the additional current. In (4.25) in contrast, these terms originate from
the additional contributions due to the field dependent structure constants on the r.h.s.. The
SO(16)-current®!” which is part of the gauge algebra in this model is obviously not chi-
ral. Its fermionic part splits into contributions with conformal weights=1 andh™ =1,
respectively. Nonetheless, according to (4.27) the total conformal weigHt' a§ zero. An
underlying reason for this compensation is the fact, that in our model in contrast to the su-
perconformal string theories not only the fermionic but also the bosonic fields £@x6)
charge.

We close this section by stating the super extension of the gauge fixing (2.20) of the
constraint superalgebra

pr=at, p=x1m,  gh=0, (4.29)
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which may accordingly be referred to as the super-Weyl gauge. Indeed this completely fixes
the conformal and superconformal gauge freedom.

4.3 Nonlocal chargesand their Poisson algebra

In this section we show that supersymmetric nonlocal conserved charges may be constructed
in the same way as for the bosonic case studied in the previous chapters. The starting point
is the extension of the linear system (3.1) given in [98, 103]. With the full generators of
N =16 supersymmetry (4.24) at hand we show that this linear system does not receive any
guartic fermionic corrections but already generates the equations of motion into all orders.
The charges extracted from the transition matrices are invariant under the full gauge algebra
(4.27). Finally, we find that the Poisson algebra of charges coincides with the one obtained
in the bosonic sector (3.60), (3.61), (3.62).

Linear system

The supergravity equations of motion can be obtained as the compatibility condition of the
following extension [98, 103] of the linear system (3.1) foranvalued matrixy:

V(1) 0:V(y) = Li(y) = LQY ()X + PA(y)Y*, (4.30)
with the connection

~ 21y . 32i72
17 _ AT i J IJ A_B v I 7
Y(y) = + (1£)? <8¢2i”¢i + FABX:tXﬂ:) - m Yoasy
1Fy L4, 4i7(1FY)
Iy 5 (1£9)?

PE(y) st
and the variable spectral parametdrom (3.3).

We emphasize that despite the occurrence of higher order fermionic terms in the equa-
tions of motion, the connection of the linear system (4.30) is only quadratic in the fermions.
All the higher order fermionic terms are generated from it. In super-Weyl gauge (4.29) this
has explicitly been shown in [98], the general proof follows from the result (4.31) below.

Nonlocal conserved charges

Here, we extend the result (3.26) of the bosonic case to the model with local supersymmetry.
The modified transition matricds(z, y, w) defined in (3.19) commute with th® = 16
supersymmetry generators under the same conditions that were already analyzed for (3.26)
and (3.20).

The behavior of the transition matrices (3.17) under supersymmetry transformations is
the following [105]

(v st} = DD Um0 XTSI UG @3
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4 SUPERGRAVITY

O(z, z, :
* H Xi Fﬁ;grgj (I)JKU($,Z;W)YAU(Z,y; w)
Te W U,y w)Y46(2—y) = VAU (2, y;w)d(2— 1))
4y
F s W (U ) X8z y) = XU (e ) ()

with 6(z, z, y) from (3.33) above. This result is again valid in all orders of fermigns, ie.

includes all the cubic fermionic terms from (4.24). For the modified transition matrices
immediately implies:

- ) . ~
{Owyw). i)} ~ (78T, YY) O ye)i—n)  432)

— 2L BT U,y w) VYAV §(2—y)

4 (VXUV_l) ﬁ(m, y;w)o(z—x)

(1 £7)2
4y
(1 £7)2

The r.h.s. vanishes if either the physical fields vanish, or the variable spectral parameter
does while the fields remain regular (cf. (3.22), (3.23)). In complete analogy to the integrals
of motion obtained in the bosonic sector we may hence build conserved charges from the
transition matrices with fermionic contributions here.

A similar transformation behavior has been observed in the supersymmetric extension
of the nonlineaw-model [20, 23, 111, 36]. There, the bosonic nonlocal charges are invari-
ant under global supersymmetry. In our model, invariance under the local supersymmetry
is an indispensable condition for meaningful observables, since supersymmetry appears as
constraint.

In particular, (4.31) implies, that the connection of the linear system (4.30) does not
receive any quartic corrections but captures the equations of motion in all fermionic orders:
So far, this had only been shown for they)? terms [98], i.e. in the super-Weyl gauge (4.29)
where these are the only quartic terms arising. Since by supersymmetry transformations
(4.15) any solution can be fixed to obey the super-Weyl gauge, the invariance of the linear
system under supersymmetry shows that indeed no quartic corrections arise in the general
case.

The rest of this section is spent for a sketch of the proof of (4.31). The general formula
(3.29) yields

¥ vy Uz, y;w) WXV 6(2—y)

U2, z,v) {U(z,y,v),SL(")} Uly, 2\ v) = (4.33)

/1/ dzU(Z, z,v) {L1(2,7(z,v)), SL(Z) } U(z, 2\ v) .

It is straightforward although lengthy to evaluate (4.33) using the form of the supersymmetry
generator (4.24) and the fundamental Poisson brackets (4.19)—(4.22). Up to the higher order
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4.3 Nonlocal charges and their Poisson algebra

terms in the fermions, this result has already been given in [101]. Thus it remains to check
the cubic fermionic terms.

Throughout this calculation, there appear four different sources yielding cubic fermionic
terms. First they descend from the brackets involving cubic terms in the supersymmetry
generatorsst, second from bilinear fermionic terms in the Poisson brackets (4.19) between
Py and P.. Third, they arise from the Poisson brackets involvihgr in S1 and at last,
cubic terms enter when partial integration of théerms in (4.33) leads to the appearance of
the connectiorl; again.

To give an idea of the calculation we show the cancellation of the cubic terms propor-
tional to v, £ 105 4 x4 IN (4.33). According to (4.21) and (4.22) we have

{Lin .} = —ﬁ PEXT 6(2=2)
4i
- p(liv)z(l—VQ) Caabas¥ 23e—=2),

such that the cubic termy, ixixi from (4.24) gives the contribution

—8iy? IMTN Ay A
p(1i7)2(1_’)/2) FABFABwZ:I:wQ:i:X Y ) (434)
to the r.h.s of (4.33). Next, there comes a contribution from the bracket betfear’., ()
and thepy. P, part of the supersymmetry constraint (4.24), which is due to the quadratic
fermionic terms in (4.19) and reads

{Li(y), ipsixsT ™ xe} —

—872
{Ll(r)/) :‘:QpXAFI PA} - p(l:‘:’Y)?(l—’}/Q) F%gFgszi%iXAYA ' (435)

Making use of (4.2) the two terms (4.34) and (4.35) sum up to
8iv?
(1£7)*(1—>?)

Several further relevant terms arise from the Poisson brackets involving/the), o
term in (4.24). Namely{L,(v), 0yc} gives rise to several bilinear fermionic terms due to
the brackets (4.20), (4.22) and eventually also due to

AA %i% iXAYA . (436)

(4(2), 010()} = —% 5(e—2)

Altogether they sum up to

16i7*(1 F 47 +7°) |,
1£9)4(1-72)

Finally, the integrand of (4.33) has terms proportional &z —z’) due to

{L1(’Y) ,2p010 dé:i:} - ¢2i¢2 iXAYA . (4.37)

1
{Ll() +2px AT P;}} ili—z I oAy 9,6(z—2)
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and

{Li(t), F200005. ) =+ Yo X R 0.6(2—2") .

(1i )?

Upon partial integration in (4.33) and using (4.30) they give rise to

1Fy = i 8iv*(1F7)
KLy T e [XKE vA] — Lo Pl PNy gl Ay

Ta1xy) FE=E
and
27 54 K A yvKI 81V (1FY) Anrren Ay A
P Y& X — = Laplp Yo
:F(lj:"}/) ( )wQ:I: |: ) ] — (1j:"}/)5 w2i¢2iX
The sum of these two terms yields (again involving sdivaatrix algebra (4.2))
—24i7*(157) '
Ao Daavssunax V. (4.38)

Adding the different terms (4.36), (4.37) and (4.38) finally leads to

8iy” 16iv* (1 F 4y +9%)  24i°(1Fy)
(T£7)2(1—~2) (I£7)H(1-~?) (1£7)5

We see, how the terms of the type.. 1, 1 x+ from all the different sources eventually cancel.

In a similar way all cubic fermionic terms in (4.33) can be shown to drop out. There remain
only those contributions which transform “homogenously” under the transition matrix, i.e.
which appear in the first line of the r.h.s. in (4.31).

(4.39)

Poisson algebra of charges

Eventually, we compute the Poisson algebra of the conserved charges that we have obtained
above. As it turns out, it is completely sufficient to compute the Poisson brackets of the con-
nection of the linear system (4.30). Namely, the result below coincides with (3.31) obtained
above in the bosonic sector (i.e. setting all fermions to zero, whereby (4.30) reduces to the
linear system (3.1).

A lengthy calculation gives the following Poisson brackets for the components of the
linear system

IJKL

{aron.aren) = et

p(y1—2)(1— 7172) <Q\MN(%)_@MN(%)> O(z—y),

AIT DA _ 75 (1=97) IJ DB r—
{QF00 Pl = — e s TR PP 01) 8 )
172 IJ DB .
T o) =) A8 () 8z =9)
DA 5B (1=99)7 17
{Pl (71)7P1 (72)} = 2P(1—’Y%)(71—72)(1—7172) 1—‘AB 1 (’Yl) 5(1‘—y)
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(1=)7i IJ ALJ
- IypQi7 (12) o(z—y
2D~ () 429 02 27Y)
2618 1+~2 1++2
_ . 2 (%( %) 2l %)) 5 (—1)
(1-77)(1=72) \  p(z) p(y)
29172 IJ
- L @y d(z—y)
PL—)(1—3) 7
with v, =y(z, v), 72 =7(y, w) , and the structure constants””*”, ., of so(16). Translating
this back into tensor notation (2.56) we arrive at

1 2 _ 27172 1 2 ] o
T A e et (LW ACALS AC] PR

_ 273(1 - 77) SN P
p(L=73)(m = 72) (1 = m72) {QE h (%)_ o =)
_ 277 (1 - 73) SN P
p(L =) (m = 72)(1 = m72) {QB ’Ll (72)_ o =)
2 N1+ | 0+ o,
i (e ) e,

and find them to be identical with the Poisson brackets (3.31) obtained above. Thus, we have
shown, that the integrable structure of the bosonic sector of this model completely extends
to its maximal supersymmetric version. The resulting algebra of observables will be (3.60),
(3.61) and (3.62) wittEg valued matriceé/, (w) and M (w), respectively.

In particular, the analysis of the symmetry structure from section 3.4 remains valid. With
the generators (3.71) of the affine symmetry at hand, it is straightforward to compute their
action on the fermionic fields, given by the Lie-Poisson action of the affine algghlrat us
however mention an open problem about the supersymmetric version of these symmetries,
that is their transitivity. Whereas in the bosonic sector under certain assumptions on the
phase space we have directly seen that (3.71) generates the full phase space, it is a priori not
clear to which extent this statement holds in the supersymmetric case. This question is es-
sentially related to the completeness of the set of conserved charges, that has been answered
affirmatively only in the bosonic sector so far. Maybe, the full answer to this question has to
be postponed until a complete quantum model is at hand (see the discussion in [105]).
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5 Quantization

So far, we have achieved a complete reformulation of the classical model (2.45) in terms
of the transition matrices as new fundamental variables providing a complete set of integrals
of motion. This formulation reveals integrability and the classical symmetries in a beautiful
way. The goal in this chapter is to find the quantum algebra underlying the classical structure
(3.56)—(3.62). We restrict to the model with algebrasi(N). The particular casg=sl(2)
related to the two Killing vector field reduction of Einstein gravity described in section 2.1
is analyzed in further detail.

5.1 Quantum algebra

In this section, we present the algebra which upon quantization replaces the Poisson algebra
(3.60), (3.61) and (3.62). An essential additional ingredient is the requirement that the gener-
ators of the quantum algebra must be compatible with some quantum version of the relation
(3.57).

Let us recall the classical algebra of integrals of motion (3.60), (3.6%) fos((N). The
maximal compact subalgebragis h = so(N) and the involutiorr is given byr (&) = —¢7.
Itis Qqn) = Iy — 1 with the N? x N? permutation operatdi y:

(HN)ab,Cd — 5ad6bc )
Accordingly we define its twisted analoglig, by
(qu—v)ab,cd = (—H:I]\;l + %I)ab,cd = _6ac(5bd + %(Wbécd )

The notatiorﬂ%1 here denotes transposition in one of the two spaces in whichves.
The Poisson algebra (3.60), (3.61) then takes the form:

{io) ) = | dw dw)] 5
o) Gw) - Pdwde-dode . 62

The U, (w) are related by complex conjugation (3.56) and further restricted by the group
property:

det Uy (w) =1, (5.3)
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5.1 Quantum algebra

and the relation (3.57):
Mem(w) = Uy (w)UZ (w) = U= (w)Uy (w) = Mey(w) . (5.4)

Understanding the matrix entries of the(w) as classical phase space functions, quan-
tization amounts to replacing (5.1), (5.2) by corresponding commutator relations/ef an
graded algebra, such that these relations are compatible with certain quantum analogues of
(5.3) and (5.4). This problem admits the following essentially unique solution}77]:

The quantization of the Poisson algebra (5.1)—(5.4) is given by-thigebra generated
by the matrix entries aV x N matricesl. (w) subject to the exchange relations

R(v—w) U (o) Us (w) = U () Ui (o) R(v—) (55)
R(v—w—ih) U_ (v) U (w) = Uy (w) U_(v)R™ (v—w+2ih) x(v—w), (5.6)

—ih—v N2)ih—v
F( ]\?ﬁi >F<( +N)1h )
(v) = . (57)
< ) ( (NH.)ih— v)
Nih Nlh
with the usual’-function satisfying (1) =1, I'(x+1) =zI(x).
The condition of unit determinant (5.3) is replaced by the quantum determinant
1 = qdetUg(w ) (5.8)

= sgn(o) — (N-1)in) U@ (w— (N=2)in) ... U™ (w)

ceGN

R(v) =wvl —ihlly , R"(v) = vl —iklly , x(v

and the quantum form of (5.4) is given by

Mew(w) = U (w)U () = (Uy(w)UZ (w))" = Mgy (w), (5.9)

where ‘I here simply refers to the transposition of the classiéalx N matrices. The
x-operation is defined by

U (w) =U_(w), (5.10)
and builds a conjugate-linear anti-multiplicative automorphism of the algebra (5.5)—(5.9).

There are several things to note about the algebra (5.5)—(5.10) before we come to the
proof.

e The algebra (5.5)—(5.9) is isomorphic under rescaling with positive real numbers.
Namely, this is absorbed by a rescaling of the spectral parametdegative or com-
plex rescaling would violate the assumed holomorphy behavior of/tfie) at least
in the classical limit? We will in the following seth=1.

For simplicity we use the same notation for the classical and the quantum operators.

2Upon quantization, the holomorphy behavior of the classical funcliaris) translates into analyticity of
the action of the corresponding operators in dependence of the paramdtais analyticity however depends
on the topology of the concrete representation space, which has not been fixed so far.
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QUANTIZATION

Depending on the sign df, there is hence @,-freedom in constructing (5.5)—(5.9).
This corresponds to the symmetry <> —) of the classical Poisson algebra (5.1)-
(5.4), which is obviously broken after quantization. This freedom might be fixed from
the later requirement of the existence of unitary representations.

e The algebra (5.5), (5.6) is no Hopf algebra. This follows already from the absence of
a trivial representation of (5.5), (5.6). Even stronger, due to the singularity structure of
(5.6) this algebra admits no finite-dimensional representations.

e The essential new ingredient of (5.5), (5.6) is the appearance of thertvnsthe
mixed relations which has already appeared in the classical Poisson algebra. It is
basically this peculiarity which requires a new representation theory to be developed.
(Unfortunately, the notion of “twist” has been introduced for several different concepts
for quantum groups in general and even for the Yangians in particular.)

e The definition of the quantum determinant (5.8) is known from ¢l{é&/) Yangian
[56, 80, 97]. It encodes the generators of the center of the algebras (5.5). Here, we
must in addition ensure thatletU,. (w) also lies in the center of the full algebra (5.5),
(5.6). It is this requirement which uniquely fixes the fac{¢r —w) in (5.6).

e A central extension of the type appearing in the mixed exchange relations (5.6) (i.e. the
shift of the argument in the quantuRYmatrix) has been introduced for quantum affine
algebras in [110] and explicitly for the Yangian double in [65, 54]. Here, its value is
uniquely fixed from the requirement of compatibility with (5.9). From the abstract
point of view, the central extension takes the critical value at which the antisymmetric
part of M generates a two-sided ideal (cf. (5.16) below), i.e. any representation of the
algebra (5.5), (5.6) factorizes over this ideal. A common shift of both arguments in
the R-matrices of (5.6) may be absorbed by redefinitiortofw) and (5.9), (5.10),
introducing a relative shift in the latter.

The normal (untwisted) Yangian double has a critical value of the central extension at
which it possesses an infinite dimensional center [110]. As we shall discuss in the next
chapter, forNV =2 the algebra (5.5)—(5.8) is in fact isomorphic to the normal centrally
extended Yangian double at this critical level.

e Recalling remark 3.5, Drinfeld’s Yangian and its double are obtained from (5.5) by
expandingl, (w) andU_ (w) aroundw = co andw = 0, respectively. This however
does not match their holomorphy behavior in our model. Formally treating the algebra
(5.5) only in terms of the generating functiofs(w) [40], we may however adopt
most of the results concerning the Yangian to this case.

In fact, for N =2, the algebra underlying (5.5) in our case is a degeneratjgsi(2))

of the scaling limit of the elliptic affine algebrd, ,(s[(2)) [44, 66]. Again, what

is eventually needed is a modification of this algebra in accordance with the twist of
(5.6).

e The symmetry property (5.9) together with definition (5.10) guarantees that the object
Mew(w) = U (w)UT (w) is symmetric and invariant under themap. To be precise,

61



5.1 Quantum algebra

as anN x N matrix it is symmetric, i.e.
M (w) = Mgy (w) ,
and the matrix entries are invariant under theperation
M (w) = (Mg ()™, for weR.
In a unitary representation these matrix entries will thus form self-adjoint operators.

Thus, Mgu(w) is the natural quantum object that according to (3.59) underlies the
original classical field on the symmetry axis. It satisfies closed exchange relations

1

R(v—w) Mem(v) B (w—v+(1+2)i) Mam(w) (5.11)

= ,/\2/[BM(w)RT (v—w+(14+%)i) Mem(v)R(w—v)

which are obtained from (5.5), (5.6) and may be viewed as the quantization of (3.62).

The rest of this section is devoted to the proof of consistency of (5.5)—(5.10).

Associativity Denote byY, the algebra generated by the the matrix entrieddfw),
respectively, with exchange relations (5.5). These are two copies of the well-known Yangian
algebra [27] which provides the unique quantization of the Poisson algebra given by (5.1).
Compatibility with associativity is equivalent to the Yang-Baxter equation

Ri2(u—v)Riz(u—w)Roz(v—w) = Rog(v—w)Ryz(u—w)Ria(u—v) , (5.12)

for the quantumi-matricesk;;, where the indices, j denote the two spaces in whic?);
acts nontrivially.

Associativity of the full algebra (5.5), (5.6) is ensured by a modified (twisted) Yang-
Baxter equation fo?":

R, (u—v)R]3(u—w)Roz(v—w) = Rog(v—w)R]3(u—w)Ry(u—0) . (5.13)

Validity of the classical version of this equation (i.e. modulo term&?is a consequence
of the fact, that is an algebra automorphism @f For the quantunk-matricesk andR” in
(5.7), the twisted Yang-Baxter equation (5.13) follows from

R (v+2i) = —R"(-v), (5.14)

and (5.12) by applying transposition and a shift of the argument in the first space.
Thus, whereas the exchange relations¥orare uniquely given by (5.5) [27], for the
mixed exchange relations (5.6) we may take the general ansatz

2 2 1

R(v—w + ¢;i) Ull (v) Uy (w) =Up (w) U (v)R"(v—w + ¢9i) x(v—w) . (5.15)
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5 QUANTIZATION

Central extension The resulting algebra must respect the symmetry (5.9)6¢fv). More
precisely we demand the following: Denote the set of antisymmetric matrix entrietQf
byZ c U(Y, @Y ). Then we require thaf spans a two-sided ideal in the sense that

V.eY.)I=T(Y,®Y.). (5.16)

This relation ensures that the antisymmetry\dgy, may be consistently imposed without in-
ducing any further relations, i.e. any representatioljofactorizes ovef. Equation (5.16)
is not influenced by the choice gfbut uniquely determines the values of the parameters
in (5.15) to be

— _ 2
Cl——]_, CQ—N.

This may be verified straight-forwardly e.g. by evaluating (5.15) and (5.9) in matrix compo-
nents. At these values of thethe exchange relations betwe€nand Mgy take the closed
form

1 2 2 1
X(w—v)R(v—w) Uy (v) Mem (w) = Mem (w)R™ (v—w+(1+2)i) U, (v), (5.17)
1 2 2 1
R(v—w—1i) U= (v) Mem (w) = Mew(w)R™(v—w+2i) U (v) x(v—w) ,
and indeed imply (5.16). These relations provide a quantization of (3.70) and shall play an
important role for the quantum symmetries.

Quantum determinants The factory(v) in (5.6) is finally fixed from the requirement that

the quantum determinants from (5.8) commute with everything such that the relations (5.8)
are consistent with the algebra multiplication. It is known [56, 80] thatjtkel. span the
center ofY,. respectively, thug(v) must ensure that they also commute with

[qdetUy (v),Y+] = 0. (5.18)

Commutativity ofqdetU,. with Y. essentially follows from the relation [97]

qdetl (w) Ay = Ay U (w) Us (w—i) . .. U (w—(N—1)i)

= U (w—(N=1)i)... U (w—i) T (w) A |

where Ay denotes the antisymmetrizer in thé auxiliary spaces. Upon successive use of
the exchange relations (5.5) this leads to

AxRor .- Row A Us (v) qdetUs (w) Ay
= qdetUg(w)Ay Uo'i (v)ANRo: ... RonAn
with
Ror = Ror,(v—w+ (k—1)i) .
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5.1 Quantum algebra

With the additional relation

| [Jv—w+ (k-1)i) Ay, (5.19)

k=1

ANROI e RONAN - ANRON .. -ROI -

it follows immediately, thatjdetUy commutes with all matrix entries @f.. The factor on
the r.h.s in (5.19) is most conveniently obtained from evaluating both sides on the particular
VeCt0r61®€1®62®. .Qen .

In a similar way, the mixed relations (5.6) eventually yield

0
ANR61 Ce R;)NAN U_ (U) qdetU+(w)AN
0
= qdetU, (w)AyU_(v)AxRy, ... RynAn
with
Ry, = Ro(v—w+ (k—2)i), Ry, = Ry (v—w+ (k+%—1)i) x(v—w+(k—1)i) .
From (5.19) we now obtain
v—w—2i 1
AnEpy - RoyAy = ——— [Jv—w+ (k—2)i) Ay,
k=1
as well as (cf. (5.14))

w—v—Ni

ANR], ... Rl vAN =
NSton ON<EN w—v—(N-1

i E(v—w+ (k—1)i)x(v—w+(k—1)i) Ay .

Combining these equations shows that (5.18) implies the functional equation
N

H x(v+ki) =

k=1

v—i
_ 2
v+ (N+1)i’ (5.20)

for x(v). Existence and unigueness of the solution of this equation follows from the expan-
sion in the limitv — —ico (corresponding t@& — 0 with the condition thativ < 0), where
the first coefficient is normalized according to

xw) ~1-1(1+2)+0(%), for v — —ioco,

v

in order to obtain the correct classical limit (5.2) from (5.6). The funcgagven in (5.7)
indeed is the unique solution of (5.20) with this normalization.
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5 QUANTIZATION

The x-structure It remains to check that theoperation defined by (5.10) is a conjugate-
linear anti-multiplicative automorphism of the structure (5.5)—(5.9). Compatibility of (5.5)
and (5.6) with (5.10) obviously follows fronk(z) = —R(—u), R"(a) = —R"™(—u),

x(u) = x(u) and the fact thak and R™ are symmetric under permutation of the two spaces.
Invariance of the restriction of unit quantum determinant (5.8) undet-thap follows from

qdet(TU:(w))* = > sgn(o)U7 "N (@) ... 02" (@+(N-1)i)

= qdet(U¢ (w+(N-1)i)),

where for the second identity we have employed one of the many properties of the quan-
tum determinant [97]. Finally, compatibility of the symmetry relation (5.9) withsthraap
follows directly from invariance of this relation under

(U (w)U" (w))" = (U (w)UT (w))" = Uy (w)U"(w) forweR.
This finishes the proof of consistency of (5.5)—(5.10).

52 g=sl(2)

To further illustrate the formulas of the preceding section, we will now discuss the particular
caseg = sl(2). This is the model which we have described in detail in section 2.1 in the
context of the two Killing vector field reduction of purkl Einstein gravity. It deserves
interest as a midi-superspace model for quantum gravity; the corresponding quantum model
has been introduced in [76].

There are several reasons, why the cdse?2 is somewhat distinguished and simpler to
treat compared to highey. E.g. the involutionr is an inner automorphism ef(2).1* Re-
markably, this leads to an algebra isomorphism between our twisted and the normal Yangian
double, however this is ne-algebra isomorphism.

The exchange relations (5.5), (5.6) f§r=2 read

Ro—w) U (v) Us () = U (w) Us (0) R(o—w) (5.21)
Rv—w—1)U_(v) U (w) = U (w)U_(v)R"(v—w +1i) x(v—w), (5.22)

with R andR™ from (5.7), where the permutation operalband its twisted analogué™ are
explicitly given by

o O O
o = O
o O =

n=r7-1" =

oo o
R
oo~ o
—_ o oo
—_

o

o — oo

Moreover, the functiory may be evaluated from (5.7) and shrinks down to
v(v—2i)

RN

13In contrast, forV > 2 the involutionr (&) = —¢7 is the outer automorphism ef(NV') which corresponds
to reflection of the Dynkin diagram.
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52 g=sl(2)

The quantum determinant is given by

qdetUs (w) = UM w—i)UP(w) — U (w—1)UE" (w) (5.23)
Uz (w)UE* (w—i) — U (w)Up*(w—i) = 1,

and the matrix product
Meu(w) = Uy (w)U! (w) = Mgy (w) (5.24)

is symmetric under transposition and satisfies (5.11).
As mentioned above, far = s[(2) the involutionr is an inner automorphism generated
by conjugation with

(0 1
09 — 1 0 .
This allows to “retwist” the mixed relations (5.22) by the following transformation:

U, (w) = Uy (w)oy , U_(w) = U_(w) . (5.25)

These retwisted generators satisfy the exchange relations of the normal Yangian double:

R(v—w) U (0) Us () = Us () U (0) R(v—0) (5.26)
Rv—w—1)U_(v) Uy (w) = Ui (w)U-(v)R(v—w +1) x(v—w), (5.27)

at the critical levek = —2. At this level the center of the Yangian double becomes infinite-
dimensional and is generated by the trace of the quantum current [110]

L(w) = [Up (w)U~" (w)] . (5.28)
Evaluating this in terms of our matrixtgy (w) from (5.24) yields
tr L(w) = Mgy (w) — My (w) . (5.29)

Recall that the central extension of our structure was precisely determined by the requirement
(5.16). ForN =2 the subspacg is one-dimensional. An explicit calculation shows that be-
yond (5.16)Z even lies in the center of the algebra (5.21)—(5.22). Here we see the complete
agreement with the normal Yangian double at critical level. We have thus equivalence of the
twisted structure (5.21)—(5.22) with the untwisted (5.26)—(5.27), however supplied with the
somewhat peculiat-structure:

U (w)" = U= () 0 .

For higherN this equivalence does not hold. Neither is there an algebra isomorphism be-
tween (5.5), (5.6) and the normal Yangian double, nor does a center emerge at our critical
level, rather criticality is expressed by (5.16).
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5 QUANTIZATION

Remark 5.1 For explicit calculations it is sometimes useful to express the exchange re-
lations (5.21), (5.22) in matrix componerits®(w). The mixed relations (5.22) e.g. may
equivalently be written as

(1— (U_iZw)Q) U () U (w) = (1— ! )Ujd(w)Uf”(v) (5.30)

v—w

i
+

ad cb bd 1rem am
(U () U (0) + 8 U () U™ (0) )
i2
(v—w)?
Interpreting the matrix entries of tiHé. as creation and annihilation operators, respectively,
the r.h.s. of (5.30) can be viewed as sort of normal ordering [76].

+

6”d<Ufm(w)U_"’m(v) . U;m(w)U_am(v)) .

5.3 Representationsand symmetries

In this section, we touch the question of representations of the algebra (5.21)—(5.24) that has
been obtained fog =sl(2). First, we note, that (5.21), (5.22) admit no evaluation represen-
tations of the type the normal Yangian (5.5) does [81, 19]. Repld@ifg) by R-matrices
involving an additional (quantum) space, does not give a representation of (5.21), (5.22),
since by no combination at and R™ for UL, (5.22) can be traced back to the twisted Yang-
Baxter equation (5.13). We have already mentioned above the absence of finite-dimensional
representations of (5.5), (5.6).

Recall the abelian sector of the theory. In terms of the operatofsom (3.92), there is
a canonical Fock space representation (3.99). Classically, the embedding of these variables
into the full nonabelian model is obtained via exponentiation

Ul (w) = exp / dk Ay (k)e*v (5.31)
0

Having quantized the abelian model, we may translate (5.31) back as an operator in (3.99)
and for illustration study its action on the vaculi. Wheread/'!(w) leaves the vacuum
invariant,U}!'' (w) creates a coherent state corresponding to the classical field which on the
axisx = 0 is peaked as a-function aroundt = —w. One may speculate, that similar
representations are relevant for the algebra (5.21), (5.22).

A general class of representations is obtained from the following constructionl” Let
be a finite-dimensional representation of the Yangian algébmaf (5.21) (generated by the
U_(w)). A representation of the full algebra (5.21)—(5.24) is then given by the space

UY )V / um)(zv @ (qdetU, (w)—id)V & (qdetU,(w)—id)v) . (5.32)

where we start from the regular representatiod/¢¥’, ) and subsequently divide out the
relations (5.23) and (5.24). The action Xdf on (5.32) is obtained from the exchange re-
lations (5.22) (i.e. explicitly from (5.30)) and the defining action freimon V. The fact
that/ (Y, ) ZV andUd(Y,) (qdetUy(w)—id) V are representations &f is merely a conse-
guence of (5.18) and (5.16), i.e. valid for any For the trivial representatiov = C, the
representation (5.32) has the form of a direct generalization of (3.99).

To proceed with this class of representations, there are essentially three points to clarify:
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5.3 Representations and symmetries

e What are the finite-dimensional representation¥ ¢t
e Is the representation (5.32) irreducible or does it contain irreducible parts?
e Is the representation (5.32) unitary with respect tottstructure given in (5.10)?

At least the first point can be answered completely, the finite-dimensional representations
of the Yangian are classified by highest weights. Even more explicit results are known for
the special casg = sl(2) [19]. All finite-dimensional irreducible representation are gen-
erated by evaluation representations. The latter are obtained from evaluating the quantum
R-matrix from (5.7) on the tensor product of a (classical) two-dimensional vector space and
an irreducible representation @i(2) [81]. To be precise, these representations are labeled
by an insertion point and the dimension+1 of the representation af(2); the action of
U (w) on a basisy, ..., v, is given by

w—z—12r—k)vp (r—k+1)vey >

U = Sz

where we have set ; = v,,; = 0. The factorf(w—z; r) is chosen such that it ensures the
relation (5.23); it may be expressed in termdefunctions. We denote this representation

by Vi), The action ofY" on the tensor produdt,” ® V,*) is given by the Hopf algebra
structure of the Yangian [27]:

U(w) (v @v) = U™ (w)v, @ U™ (w)y,, for v, @ v € VIV ® Vy(s> (5.34)

Remark 5.2 The general formulas (5.17) evaluated /o2 yield

1

2 1
Uy (7)?%1) Mew (w) US! (v$%i) (5.35)
2
= R '(o—w— i) Mew ()R (v—w-+3i) x(v—w+4i)
iH 2 iHT
( ’ “—w—%i) Men (1) ( v—w+%i>

It can be checked that this “adjoint” representationY@fon the three symmetric matrix
entries of Mgy (wy) coincides with the evaluation representatiQﬁ) from (5.33).

The representation theory of the Yangigiisly) is essentially contained in the follow-
ing result [19]. Each finite-dimensional irreducible representation is isomorphic to a tensor
product of evaluation representations. A finite tensor product

N
Q) virm) (5.36)
m=1

is reducible iff there aren, n with 1 < m,n < N andj with 0 < j < min (r,,,r,) such that
+i(zp — 2n) = %(rm—i-rn) —Jj+1. (5.37)
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5 QUANTIZATION

The representations (5.32) are thus labeled by the tensor products (5.36). Restrictions
on V(™) may arise from the requirement of “holomorphy” of the action of théw). As
discussed above the actioni6f") should depend analytically anfor we H_, i.e.Sw <0.

We can further evaluate the structure of (5.32). Its simplest elements apafitfforare
given by the “single excitations”

U (wo) v, ,  With v, € VIV ®V rm) (5.38)

Obviously, they again form a representatioryof namerVw0 ® VIV, The precise embed-
ding follows from

U2 () Mew (o) VY = (U ()™ M (o) (U= (1)) ) U2 (1) V)
2 (U () v @) (U w) V)

(5.34)

2 vt w) (V2 @ vM) |
where Mgy (w,) VY) encodes a basis of linear combinations of (5.38).

According to the criterion (5.37), we see, that the vectors (5.38) for gemgfizrm an
irreducible representation af again. In particular, this implies that via the relation (5.23)
it is possible to obtain back all vectors frovit™) by further action oft” on (5.38). Thus,
there is only a discrete set of vectors among (5.38) — withelated to one of the,, from
(5.36) by (5.37) — that give rise to potential proper subrepresentations. It remains to study
these vectors separately.

Having analyzed all vectors (5.38), one has almost the full information about irreducibil-
ity of the representation (5.32). This is due to the fact that “higher excitations”

Uit (wy,) ... U8 (wo) vy,
are formal elements of the_ representation

VP®.. V@ eVmM . (5.39)
According to (5.37), irreducibility of (5.39) is equivalent to the irreducibility of the pairwise
tensor products contained in (5.39) which reduces the analysis to (5.38).

In this way, the question of irreducibility of (5.32) can be answered. This may result
in further relations to be divided out from (5.32) and/or lead to further restrictions on the
basis representatidri¥) from (5.36). The last question concerning unitarity constitutes a
more serious problem. At present, it is not clear if under certain assumptions, (5.36) can
be equipped with a scalar product such that it is compatible with (5.10) and (5.32) does not
contain states of negative norm. Having outlined the general programme of studying the
class of representations (5.32), we defer the full analysis to later investigations.

We close this section with a remark on the symmetry that may replace the Geroch group
(3.71) upon quantization. Itis known [11, 84] that Lie-Poisson symmetries of the type (3.69)
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are realized as adjoint representations of the corresponding quantum algebra. In our case this
is precisely provided by the relations (5.35). Evaluating the r.h.s. leads to

1 9 1

Us (v—3iF 31) Mem (w) UL (v—5iF 5i) (5.40)
= /\2/1 (w) (14 i — i
N BM v—w—1 v—w-+i

5 (1 St (0 o (o) (L)

v—w—1 v—w-+i

This explicitly shows that after projecting the first space ongpwvalued functionA (v) the
l.h.s. becomes

1 1 L 1:_1- 2 171 1:—1:-
tr (A(v)[Ui(v—§13F§1),MBM (w)] UL (v—§1$§1)> ,

with classical limit (3.69). The r.h.s. correspondingly reduces to (3.70) with the singularity
atv=w “quantum split” into

! %1( L, > (5.41)

v—w 2\v—w+i1 v—w-—1

where the shifts in the denominators are of ortdeil his may give an indication of how to
deform the integration pathin (3.71) after quantization.

The picture obviously is far from being completed, however throughout this section we
have obtained several hints which features we suspect to eventually face. Let us emphasize
the repeated occurence of the discrete shifts inuttgane — (5.23), (5.35), and (5.41). In
the gravitational context, where according to (3.59) the spectral parameter plane acquires
some space-time meaning, this may give rise to speculating about a natural arising of dis-
crete nonlocal structures [76]. Another allusion in this direction comes from (3.48) which
suggests to represent the conformal faetat spacelike infinity by supplying (5.21)—(5.24)
with a derivative operata®/ow. Its exponentiaéxp o (related to the deficit angle and the
matter Hamiltonian ir3d cylindrically symmetric gravity) then translates into a discrete step
operator.
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6 Isomonodromic Structuresin Dimensionally Reduced
Gravity

This chapter is somewhat decoupled from the rest of the thesis. Here, we present the
so-called isomonodromic approach to the model of dimensionally reduced gravity (2.45),
which has been initiated in [70, 71] and elaborated in [72, 74, 104]. One of the motivations
of this programme was the seeming dead end of the canonical formalism with the nonul-
tralocal Poisson brackets (2.57). With the results presented in the last chapters we have
however carried out the canonical approach to a much further stage which also appears to
naturally capture the classical symmetries of the model and thus to build a reliable basis for
guantization.

Still, the isomonodromic approach bears several interesting features. First, in relation
with the “two-time” Poisson structure to be introduced it is manifestly two-dimensional co-
variant. It allows application not only to Kaluza-Klein reduction of spatial dimensions but
also to those involving the timelike dimension (including e.g. stationary axisymmetric solu-
tions). Further highlights are the decoupling of the chiral halves in the deformation equations
(i.e. commutativity of the two Hamiltonian flows), the quantum group structure of the algebra
of observables and the link to (a modified version of) the Knizhnik-Zamolodchikov equations
from conformal field theory, which arise in the role of the Wheeler-DeWitt equations here.

6.1 Hamiltonian description of isomonodromic defor mations

In this section, we describe a multi-time Hamiltonian formulation of isomonodromic defor-
mations of meromorphic connections on the Riemann sphere due to [58]. Quantization of
this system naturally leads to the Knizhnik-Zamolodchikov system [68].

We consider the space of holomorphic Lie-algebra valued one-forms on the punctured
Riemann sphere, that are meromorphic with simple poles on the whole sphere. These forms
may be viewed as connections on a trivial bundle. Introducing local coordinates on the
sphere by marking a point, an elementi(~)d-~ of this space is uniquely determined by its
polesy; and the corresponding residuéstaking values iry:

N

A(y) = i (6.1)
; T
Holomorphic behavior at infinity is ensured by
Q=) A;=0. (6.2)
j
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6.1 Hamiltonian description of isomonodromic deformations

There is a natural Poisson structure on the space of holomorphic connections on the punc-
tured complex plane, that may be formulated in the equivalent expressions:

{ANAPY = o0y AY (6.3)
o WAty = - A (6.4
& {}4(7),?1(#)} = [T(W—M)aA(V)JHi(M) : (6.5)

with the structure constan{g'Z, of the algebray and a classicat-matrix 7(y) = v 1Q,,
where(), = t*®t, denotes the Casimir elementgf

The condition (6.2) that restricts the connection to live on the sphere, transforms as a
first-class constraint under this brackgf*, Q%1 = f4B, Q°.

Holomor phic bracket from gauge fixed Chern-Simons theory

The holomorphic bracket (6.3) is induced by holomorphic gauge fixing of the fundamental
Atiyah-Bott symplectic structure. The first-class constraint (6.2) ensuting to live on
the sphere, arises naturally as surviving flatness condition, generating the constant gauge
transformations. Let us shortly describe this relation.

The space of smooth connections on a Riemann surface is endowed with the natural
symplectic form [5]

W= tr/éA A OA |
that gives the Poisson bracket

{Aé‘(v) ,Ag(ﬂ)} = 6760 (y—p) (6.6)

where the connectioA is splitinto A, dy + A5d?y and thej-function is understood as a real
two-dimensionab-function: 6 (z + i) = 6(2)d(y).

The condition of flatness i8" = dA + A A A = 0 and builds an algebra of first-class
constraints

{FA(), FP ()} = 145 FO ()6 (v—p) .
generating the gauge transformations
A gAgt +dgg . (6.7)

These brackets and constraints arise naturally from the Chern-Simons action. They may
be extended to punctured Riemann surfaces if the singularities of the connection restrict to
first order poles, leading t®@-function-like singularities of the curvature.[118, 34]

In order to extend these structures to holomorphic connections, first the phase space has
to be enlarged in a natural way from real connections in terms of which Chern-Simons theory
is usually formulated, to one-forms that take values in the complexified Lie algebra, as the
split halfsA,dy and A5d~y described above already do. Then, also the gauge freedom (6.7) is

72



6 |ISOMONODROMIC STRUCTURES

enlarged to the corresponding complex gauge group. We fix this gauge freedom by choosing
the gauged; =0 that makes flatness turn into holomorphy.
The bracket between constraints and gauge-fixing condition is of the form:

{FA(7), AZ(n)} = —6"P056®) (y—p) + 147 AT (7) 6P (v—p) (6.8)
—645056P (y—p) .

This matrix can be inverted using > = —27i6 (). With the standard Dirac procedure
[26] one further obtains the holomorphic bracket (6.4) for the remaining variables)
[43].

Note that because of the appearance of the deriva{ive (6.8), the holomorphic part
of the constraintg™ () survives as a first-class constraint. Since holomorphic functions on
the sphere are constants, this becomes

[Pt = [ o4t =3 at=q* (6.9)
j
and generates the remaining gauge transformations (6.7) with constant

Hamiltonian for mulation of isomonodromic defor mation

We now describe isomonodromic deformation on the sphere in terms of the holomorphic
Poisson structure. Consider the system of linear differential equations:

U (y) =AY (7). (6.10)

For definiteness we choose some matrix representatigronfa vector spack, such that
U(v) accordingly takes values in the exponentiated representation of the associated Lie-
groupG.
As A(v) has simple poles, the functiain(+) lives on a covering of the punctured sphere.
Let ¥ be normalized tol (o) = I, thereby marking one of the points on this covering.
In the neighborhood of the points, the functionV is given by:

T(y) = GW()(y =) "C (6.11)

with ¥;(v) = I + O(y — ~;) being holomorphic and invertible. The relation to the residues
of the connection (6.1) is given by; = G, T;G; .

The local behavior (6.11) also yields explicit expressions for the monodromies around
the singularities:

U(y) = U(y)M;, for encirclingy;, with M; = C; ' exp(27iT;) C; .

Note that the normalizatio® (oco) = I couples the freedom of r.h.s. multiplication in the
linear system (6.10) to the left action of constant gauge transformations (6%.) omder
(6.7) thus¥ transforms a¥ — gUg~! implying M; — gM;g~".

The aim of isomonodromic deformation [59] is the investigation of a family of linear
systems (6.10) parameterized by the choice of singular pginteat have the same mon-
odromies. In other words, one studies the change of the connectiod daith respect to a
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6.1 Hamiltonian description of isomonodromic deformations

change in the parameters of the Riemann surface that is required to keep the monodromy data
constant. Treating!() andW¥(~) as functions ofy and~,, these isomonodromy conditions
impose a formal condition of;-independence of the monodromy d@&iandC;.

This requires that the functiay¥ ¥ () has a simple pole in; : 14

— A,
Y=
Compatibility of these equations with the system (6.10) yields the classical Schlesinger
equations [112]:
[Ai, Aj]

A A;
DA =1 forj#i, aiAi:—ZLiiﬂl. (6.13)

0¥ (y) = T(y) - (6.12)

A multi-time Hamiltonian description of this dependence has been given in [58] with the
Hamiltonians

H, = Z tr(didy) (6.14)
J#
generating the commuting-flows (6.13) in the holomorphic Poisson-bracket (6.3), i.e.

The Poisson structure is interpreted as a multi-time structure in the sense that (6.3) is defined
for the residues!;({v;}) at coincidingy; and translated to different by means of (6.15).

Quantization and Knizhnik-Zamolodchikov system

As was noticed by Reshetikhin [109], quantization of this system leads to the Knizhnik-
Zamolodchikov equations, that are known as differential equations for correlation functions
in conformal field theory [68].

Quantization is performed straightforwardly by replacing the Poisson structure (6.3) by
commutators. Shifting the,-dependence (6.13) of the operatdrsinto the states on which
these operators act corresponds to a transition from the Heisenberg picture to treér&ehr”
picture in ordinary quantum mechanics. In the $clmger representation the quantum states
|w) then are sections of a holomorphit") = &, V; vector bundle over

= CV \ {diagonal hyperplanés
The~;-independent operator-valued coordinatesip@re realized as
Al =iil®.. 06 ®..01 (6.16)

wheret:' acts in the representatidn . In this Schodinger picture the quantum states
then obey the following multi-timefi-dynamics

d;|w) = H;|w) lhz (6.17)
J#Z

1¥The derivatived; here and in the following denotég d;, the derivative with respect to the position of the
singularity-y;.
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6 |ISOMONODROMIC STRUCTURES

Here, Q;; = tr(t{' ® t;4) denotes the Casimir elemefy of the algebrag, acting onV;
andV;. The system (6.17) defines horizontal sections on the bundle of quantum states and
coincides with the famous Knizhnik-Zamolodchikov system [68].

Remark 6.1 System (6.17) may be equivalently rewritten in the Heisenberg picture intro-
ducing the multi-time evolution operatdty ({v;}) (as the general solution of (6.17)) by

O,Uy =HUy, Uv({vi=0})=1id. (6.18)

Then in terms of the variableSy A/ U," the quantum equations of motion give rise to
higher-dimensional Schlesinger equations with the matrix entfelseing operators ifv'.
These equations turn out to be a very special case of the geiéaly x dim V(M)-
dimensional classical Schlesinger system.

6.2 1somonodromic sector in dimensionally reduced gravity

In this section, we introduce new fundamental variables for the system of dimensionally
reduced gravity studied in the previous chapters. In terms of the connection of the linear
system (3.1), the equations of motion bear some resemblance with the deformation equations
obtained in (6.13). This suggests to adopt the holomorphic Poisson structure (6.4) which
leads to a two-time Hamiltonian formulation of dimensionally reduced gravity.

Starting from the linear system (3.1) we consider the object

U(z,t,y) = V(z,t) T(ﬁ’l(x,t,7)> : (6.19)
It satisfies the linear system
2 1
-1 _ -1 _ ~1
0L YU = = VPV T OL MM, (6.20)

with the matrix M from (2.42). These linear differential equations have been the basis for
the isomonodromic ansatz.

The main objects we are going to consider as fundamental variables in the sequel are
certain components of the followinggvalued one-form

A=duu! (6.21)
In particular, we are interested in the components
A=Ady+Aydat + A_de™ = Apdw + Ayda® + A_da™ (6.22)

where (v, z*) and (w, z*), respectively, are considered to be independent variables. The
main object in the sequel will be the particular componéntor which we use the shortened
notationA = A,.

Moreover, we will restrict our study to that sector of the theory, whéns a single-
valued meromorphic function of, i.e. that alsaA is single-valued and meromorphicin
A solution W of (6.20) with this property is calledomonodromigas its monodromies in the
~v-plane then have no-dependence due to (6.21). In fact, this sector of the theory already
covers the most interesting physical solutions.
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6.2 Isomonodromic sector in dimensionally reduced gravity

Further on, we immediately get the following relations:

OLMM ™" = F2p '9:p A(z*,7) : (6.23)

7=F1
as a corollary of (6.20) and (3.2). Moreover, the linear system (6.20) and definition (6.22)

imply:
~ A(F1 2A(F1) —~(1 A
== —a’yA 5 Ai = 2pilaip (q: ) , Ai = pflaip (q: ) r}/( q:r)/) (7) ]

Ay
ow 1ty 1+~

For asymptotically flat solutions of (2.22) the linear system (6.20) admits the normalization
U(y=00) =1, (6.24)
which implies regularity ofd at infinity:

Ay = lim vA(y) =0 (6.25)
Y—00
The definition ofA as pure gauge (6.21) implies integrability conditions on its compo-
nents, which in particular give rise to the following closed systenm#for):

0.A = [AL, A]+0,A, . (6.26)

The main advantage of this system in comparison with the original equations of motion
in terms of M (2.22) is, that the dependence on the coordinates now completely de-
coupled. Once the system (6.26) is solved, it is easy to check that the equations (6.23) are
compatible and the field/ restored by means of them satisfies (2.22). This decoupling
of z+ andz~ allows to treat (6.26) in the framework of a manifestly covariant two-time
Hamiltonian formalism, where the field() is considered as the new basic object.

For this purpose we equip(y) with the (equak®) Poisson structure from (6.5):

Qg 1 2
oyl A +Aw) |- (6.27)

{am.am} = |
The relations

{A(), p0cptr A (F1)} = 2[As(v), AW)] , (6.28)
compared with the equations of motion (6.26) give rise to defining the Hamiltonians
He=1p '0iptrA®(F1), with {H,,H_}=0. (6.29)

We call thex*-dynamics that is generated By, theimplicit time dependence of the fields.
The remainings*-dynamics is referred to axplicittime dependence.

In general, the variabled(vy) themselves are explicitly time-dependent according to
(6.26) and (6.28). The motivation for introducing (6.29) originates from [70], where it has
been shown, that in essential sectors of the theory (simple pole singularities in the connection
A), it is possible to identify a complete set of explicitly time-independent variables. Let us
briefly recall this.
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First order poles In this simplest case considered in [70, 71] we assumeAliat has
only simple poles, i.e.

Ay) = Z A7) (6.30)

S T

where according to (6.20) afl; satisfy (3.2), i.ery; = y(2*,w;), w; € C. Then the
equations of motion (6.26) yield

[Ay, A;
0uA; = p oy 1_7’; 1J—7 Zaﬂkak i (6.31)
k#j i)

with the,, dependence from (6.13). The Poisson brackets (6.27) reduces to
{AZA,A;.B} = 0; [ AJC ; (6.32)

i.e. in this case, the residuely together with the set of (hidden constant) positions of the
singularities{w; } give the full set of explicitly time-independent variables.

Comparing the equations of motion in this sector (6.31) with the isomonodromic de-
formation equations (6.13) suggests to understandthéependence of the residues as an
isomonodromic dependence generated by the two Hamiltonians (6.29).

Remark 6.2 Introduction of the Poisson structure (6.27) has been motivated from the math-
ematical point of view by the similarity of the equations of motion (6.31) with the isomon-
odromic formalism described in the previous section. However, a priori this structure is
not canonically derived from the original Lagrangian (2.45). Dimensionally reduced gravity
allows an alternative Chern-Simons Lagrangian formulation [72], such that (6.27) may be
obtained from (6.6) by holomorphic gauge fixing. An honest comparison to the canonical
Poisson structure (2.50), (2.57) of (2.45) should be worked out on the space of observables,
where due to spacetime-diffeomorphism invariance at least no principal difference between
one- and two-time structures appears.

Due to thep, p dependence, the singularitigshave become field dependent and thus ex-
hibit explicit time-dependence in the sense of (6.29). In order to gain a complete Hamiltonian
description, we additionally introduce the following Poisson brackets

{pi, —ﬁia} =0ip, (6.33)

wherep™ refer to the decomposition efinto left- and right-movers (2.17y. The dynamics
in z* directions then is completely given by the Hamiltonian constraints

Ty

Ci = —0i0+p "0uptrd®(F1) = === =~ 0. (6.34)
Oxp
l.e. for any functionaF' we have
dF
el U (6.35)

5Despite their index the fields™ are obviously scalars under conformal transformations.
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6.2 Isomonodromic sector in dimensionally reduced gravity

Remark 6.3 The Hamiltonian constraints (6.34) are obviously related to the conformal con-
straints (2.58), as also the Poisson structure (6.33) is certainly inspired by (2.50). The fact,
that both, (6.34) and (2.58) differ by a factor®fp from their “canonical ancestors” is re-

lated to the nature of the two-time Poisson structure, e.g. required by conformal covariance.
The precise embedding of the two-time structure into the canonical formalism is still some-
what unclear. As remarked above, an honest comparison had to be performed on the space
of observables.

Remark 6.4 The above reduction (6.31) of the original equations of motion shows a re-
markable general feature: the number of dimensions has been effectively reduced from two
to one. Recall that the initial values of the physical fields are usually given on a spacelike
hypersurface, whereas their evolution in the time direction is described by the equations of
motion. Here, on the contrary we have evolution equations for the time direction as well
as for the space direction and the two flows commute. The knowledge of the initial values
of A(v) at one space-time point is sufficient to reconstruct the whole solution by means of
(6.26).

This may be understood as follows: the spatial dimension which previously provided
the initial data has been traded for an additional dimension parametrized by the spectral
parameter. In fact, given the spectral parameter curténi at fixedy=-+1 on a spacelike
hypersurface (which according to (6.23) are nothing but the original currents) allows us
to evolve it in time by means of the equations of motion and intoytiterection via the
compatibility equations (6.26). Vice versa, givefry) at fixed space-time point but for ajl
one can deduce its space evolution from the compatibility equations.

The isomonodromic ansatz (6.30) is finally employed to parametrize the behavior of the
spectral parameter current in theplane by a discrete (even finite) set of variables, such
that the original field theory reduces to aiV-particle” problem (localized in the spectral
parameter plane). In this way we have arrived at an effectively one-dimensional description
of the 2d theory without giving up the nontriviality of the solutions.

Higher order poles The isomonodromic framework allows natural generalization to that
sector of the theory, wheré(~) is assumed to be a meromorphic functionypfvhich we
shall present here. A further extension of this framework to the full phase space of arbitrary
connectionsd, that is strongly inspired from the treatment of the simple pole case, has been
sketched in [104].

Assume thatd(y) has higher order poles in theplane:

N 75
A;? (z7F)

A=) > - (6.36)
i—1 k1 (v —v5)F
The Poisson structure (6.27) in terms4if has the form:
A Bl O (AMTENC fork +1—1 <y
{(Ai) - (4) } - { 0 fork+1—1>r (6.37)

building a set of mutually commuting truncated half affine algebras.
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However, it turns out that for; > 1 the variablesi® for k=1,...r;—1 have non-trivial
Poisson brackets witfi.o, and, therefore, are not explicitly time-independent. The problem
of identification of explicitly time-independent variables can be solved in the following way.
Consider

vy
Ap(v) = =—A("),
(1) = 5,40
which as a function ofv is meromorphic on the twofold covering of theplane. Parametrize
the local expansion of,, around one of its singularitieg as:

i 0
A1) =) o wyE T O —w)’) - for g~y (6.38)

= (w—wy)t

Then we find that the coe1‘ficien1;$§.“’)'~c of the local expansion ofi,, have no explicit
time dependence, i.e.

0o A = LA .} (6.39)
They satisfy the same Poisson structure ash¢6.37):
(w)k+l=1\C
(w)k\ A (wiB| _ (SiijBC (AJ ) fork+1—-1< T
{(Al )7 (A7) } { 0 fork+1—1>r; (6.40)

Thus, also in this case one there is a complete set of canonical explicitly time-independent
variables.

The coset structure

To this point the isomonodromic ansatz has ignored the coset structure of the original model.
The solutionM of (2.22) which is obtained from the new basic objd¢ty) via (6.23) will in
general not satisfy the original symmetry (2.43) which characterized the coset model. Thus,
the new description still carries too many degrees of freedom. Here, we show how to cure
this.

As functions of the original fields, the new variablé&y) have been defined only up to
the freedom (3.4) in the original linear system so far. The entire structure described above re-
mains invariant under this freedom. As it turns out [71], the restriction of this multiplicative
freedom which is consistent with the isomonodromic truncation of this chapter is the condi-
tion (3.16) used in the approach of Belinskii and Zakharov. In terms of the isomonodromic
objects, this condition reads

qf(y)r<\1r1(§)) = M, (6.41)
VQA(W)—FMT(A(%)) MU= 0. (6.42)

The second equation is obtained from derivation of the first. In particular, this last equation
yields

V6'A(y=%1)V € ¢. (6.43)
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Recalling thav, MM~ = 2V P, V~! we see that this condition is indeed suffient to guar-
antee that the matrix/ obtained by integration satisfies the symmetry (2.43). The condition
(6.42) takes a simpler form in terms of the variablgs) = VA(y)V~!, where it reads

Ay + 7(2(5)) — 0. (6.44)

Unfortunately the Poisson structure (6.27) is not automatically compatible with the con-
dition (6.42). We may however treat the whole system as a constrained system, where (6.42)
then builds a set of second-class constraints. Applying the canonical Dirac procedure [26]
finally yields the following modified bracket on the phase space [74]

{2(7),11(#)} = %[ﬁgﬂ,ﬁ(vHﬁ(u) (6.45)
Ll 7 % poo
+§[Qg,mf4(7)—m14(ﬂ)

This structure indeed is compatible with (6.42). There remains the following set of first-class
constraints (contained in (6.44)at> o)

Ay +7(Ay) = lim (72(7)—1—77’(2(7))) ~ 0, (6.46)

which via (6.45) generate tii&-gauge transformations (2.65). This is the proper substitution
of (6.25) after implementing the coset structure.

Thus, we have reduced the degrees of freedom so as to match the situation of the coset
model.

6.3 Poisson algebra of observables

In the model as presented so far, observables can be defined in the sense of Dirac as objects
that have vanishing Poisson bracket with all the constraints including the Hamiltonian con-
straints (6.34), which even play the most important role here. In two-time formalism this
condition shows the observables to have no total dependence dihis is a general feature
of a covariant theory, where time dynamics is nothing but unfolding of a gauge transforma-
tion, and observables are the gauge invariant objects.

Regarding the connectiofi(y) as fundamental variables of the theory, the natural objects
to build observables from are the monodromies of the linear system (6.21). They are given
as

U (y) — U(y)M, for v running along the closed path (6.47)

Due to their definition these objects have no tataldependence; in the isomonodromic
sector which we treat here, thedependence is also absent.

For the simple pole sector let us denotedy= M/,, the monodromies corresponding to
the closed pathg which respectively encircle the singularitigsand touch in one common
basepoint. The remaining constraint of the theory which should have vanishing Poisson
bracket with the observables is the generator of the constant gauge transformations (6.25),
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under which the monodromies transform by a common constant conjugation. Thus the set
of Wilson loops

{tI‘H Mik
k

builds the set of observables for this sector of the theory.

The Dirac brackets (6.45) define a Poisson structure on the monodromy mattices
Rather then directly computing this bracket, we alternatively first obtain the Poisson structure
on the monodromy matrices which is implied by (6.27). The Dirac bracket on the space of
observables can then be deduced by simple symmetry arguments.

k, (i, ... ,ik)} (6.48)

Let A(y) be a connection on the punctured plang{vi,...,v~}, equipped with the
Poisson structure:

1 2 Qg 1 2
{Am. A} = [ =2, Am+aw)] . (6.49)
Let further¥ be defined as solution of the linear system
Oy ¥(v) = A()¥(7), (6.50)
normalized at a fixed basepoisy
U(sg) =1, (6.51)
and denote by/y, ..., My the monodromy matrices df corresponding to a set of paths

with endpointsy, which encircley,, . . ., vy, respectively. Ensure holomorphybfat oo by
the first-class constraint

Ay = lim vA(y) =0. (6.52)
y—00

Then, in the limits, — oo, the Poisson structure of the monodromy matrices is given by:

1

1 2 2 1 2
1 2 1 2 2 1 1 2 1 2
{ M, M5 b = i (M Qg M+ Mj Qg My — Qg MiM; — MiM; Q) (6.54)
for i<y,

where the paths defining the monodromy matri¢gsare ordered with increasing with
respect to the distinguished pgthy — oo].
Here, we collect several comments on this result, whereas for the proof we refer to [74].

Remark 6.5 The first-class constraint (6.52) generates constant gauge transformations of
the connectiond in the Poisson structure (6.49). In terms of the monodromy matrices,
holomorphy of¥ atoo is reflected by

Mo=][M=1, (6.55)

which in turn is a first-class constraint and generates the action of constant gauge transfor-
mations on the monodromy matrices in the structure (6.53) and (6.54). The ordering of this
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product is fixed to coincide with the ordering that defines (6.54). In accordance with (6.48),
the structure (6.53), (6.54) implies

{M@quMJ:ﬂ. (6.56)
k

Remark 6.6 The evident asymmetry of (6.54) with respect to the interchangeantl; is
due to the fact, that the monodromy matrices are defined by the homotopy class of the path,
which connects the encircling path with the basepoint in the punctured plane. This gives rise
to a cyclic ordering of the monodromies.

The distinguished patfs, — oo] breaks and thereby fixes this ordering. It is remnant
of the so-called eyelash that enters the definition of the analogous Poisson structure in the
combinatorial approach [43, 2], being attached to every vertex and representing some free-
dom in this definition. However, the choice of another gagh- oc] simply corresponds to
a global conjugation by some product of monodromy matrices: a shift of this eyelash by
steps corresponds to the transformation

My — (My ... M) " My(M, ... M;) .

Therefore the restricted Poisson structure on gauge invariant objects is independent of this
path.

Remark 6.7 A seeming obstacle of the structure (6.53), (6.54) is the violation of Jacobi
identities. Actually, this results from heavily exploiting the constraint (6.52) in the calcu-
lation of the Poisson brackets. As therefore these brackets are valid only on the first-class
constraint surface (6.55), Jacobi identities can not be expected to hold in general.

However, the same reasoning shows, that the structure (6.53), (6.54) restricts to a Poisson
structure fulfilling Jacobi identities on the space of gauge invariant objects. On this space,
the structure reduces to the original Goldman bracket [48] and coincides with the restrictions
of previously found and studied structures on the monodromy matrices [43]:

1 2 2 1 1 2 1 2 1 2
“@Mﬁ::%mm+mnM—nmm—mmm (6.57)
1 2 1 2 2 1 1 2 1 2
{ Mz 5 Mj } = Mz T+Mj + Mj 7"+Mi - T+MZ’M]' - MZM] Ty
for i < 7,
wherer, andr_=—IIr_II are arbitrary solutions of the classical Yang-Baxter equation
(112, 723] + [r12,713] 4 [r13, 23] = 0. (6.58)

and the symmetric part of, is required to bér(,. With r, = irQ, (6.57) reduces to
(6.53), (6.54) such that our structure is in some sense the skeleton, which may be dressed with
additional freedom that vanishes on gauge invariant objects. On the space of monodromy
matrices themselves, introductioniematrices may be considered as some regularization to
restore associativity, whereas the fact thaitself does not satisfy the classical Yang-Baxter
equation is equivalent to (6.53), (6.54) not obeying Jacobi identities.
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Remark 6.8 For eventually treating the coset model, the following additional structure is
important. There is an involutiofi on the set of observables, defined by the cyclic shift
M; — M;.,, whereN = 2n is the total number of monodromies. This involution is an
automorphism of the Poisson structure on the algebra of observables:

{7(X1), 7(X2)} =7 ({ X4, Xa}) (6.59)

for X1, X, being traces of arbitrary products of monodromy matrices. This is a corollary
of Remark 6.6, as it follows from the invariance of the Poisson structure on gauge invari-
ant objects with respect to a shift of the eyelash that defines the ordering of monodromy
matrices. Like every involution; defines a grading of the algebra into its eigenspaces of
eigenvaluet1. In particular, the even part forms a closed subalgebra.

The final goal of this section is the computation of the Dirac bracket on the space of
monodromy matrices. Let us first state the implications of the coset structure on this space.
In the sector of simple poles, (6.41) implies that the singularities appear in pairs with

1
V= ) (6.60)

Vi+n

(where N = 2n is the number of singularities), while the corresponding monodromies are
related by

My = (M) . (6.61)

To apply the result (6.53), (6.54) the corresponding paths must be chosen pairwise symmetric
undery— % This uniquely relates the ordering of the monodromy matrices in (6.54) to the
ordering defined by (6.60).

The Dirac bracket now follows from simple symmetry arguments avoiding the direct
computation for objects that are invariant un@@ewalued gauge transformations (i.e. traces
of arbitrary products of\/;). The involutionr> introduced by (3.8) acts oi/; according to
(6.41) as follows:

T°(Mj) = 7(Mj1n) - (6.62)
Therefore, the set of alk-invariant functionals ofi/; may be represented as
Ms® Mas (6.63)

with eigenvaluest1 underr>°, respectively. Since is an automorphism of the structure
(6.53), (6.54), the definition af* in (6.62) implies (taking into account Remark 6.8)

{Ms, Ms} C Ms, {Ms, Mas} C Mas, {Mps, Mas} C Ms. (6.64)

The constraints (6.61) are equivalent to vanishing/g; therefore the part ofx-invariant
variables surviving after the Dirac procedure is contained4n The former Poisson bracket
(6.53), (6.54) onV/s coincides with the Dirac bracket.
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6.4 Quantization

6.4 Quantization

In this section we describe different quatization procedures for the isomonodromic sector
of the model with simple poles. For simplicity and illustration we first recall the canonical
guantization of the Poisson brackets (6.32), where the coset structure (6.42) is ignored for a
while [71]. Like the quantization of (6.13) this yields a link to the Knizhnik-Zamoldchikov
system. We continue with identifying the quantum analogues of the monodromy matrices
in this representation and work out their algebraic structure. This may be compared with a
direct quantization of the monodromy algebra (6.53), (6.54) or (6.57), respectively. Finally,
we give the necessary modifications to properly include the coset structure of the model
(6.42).

Quantum connection

We briefly describe the quantization of the model in the isomonodromic sector with only
simple poles [71]. Straightforward quantization of the linear Poisson brackets (6.32) leads
to the following commutation relations:

(A7, Ag] = ihd; A, , [p*,0:0] = —ih. (6.65)
Accordingly we represent the" by multiplication operators, and further define
AJA = 1hi&34 , 00 = 1haai , (6.66)

wheret;-1 acts on a representatidn of the algebrgg. Thus, the quantum statgp™) in a
sector with given singularities depends on the figitlend lives in the tensor-product

VN =1 @ eV (6.67)

of NV representation spaces.
The whole “dynamics” of the theory is how encoded in the constraints (6.34), which
accordingly play the role of the Wheeler-DeWitt equations here:

Cath) =0, (6.68)

and can be written out in explicit form using (6.34), (6.29), (6.66):

8 . -1 +
5= VP = 2ifp Z i i% iz ) (6.69)

where(2;; is defined as in (6.17).
The other constraint that restricts the physical states arrives from (6.25); in the quantized
sector it is reflected by:

(Zt;‘) b(pF) = 0. (6.70)

The general solution of the system (6.69) is not known. However, these equations turn
out to be intimately related to the Knizhnik-Zamolodchikov system (6.17). Namefy, jf
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is aV™-valued function ofy;, ... , vy, Which solves (6.17) and the constraint (6.70), and
if further the~; depend onc* according to (3.3), then

Y= ﬁ (%) e Prnz » (6.71)

solves the constraint equations (6.69) [71]. The Casimir opefatodefined above is as-
sumed to act diagonal on the states gos((2) for example, this is simpl§2;; = 3s;(s;—2),
classifying the representation.

Quantum monodromy matrices

Having quantized the connectiof(+) as described in the previous section, it is a priori not
clear how to identify quantum operators corresponding to the classical monodromy matri-
ces in this picture. As they are classically highly nonlinear functions oftherbitrarily
complicated normal-ordering ambiguities may arise in the quantum case.

We choose a simple convention, replacing the classical linear system

Oy ¥(v) = A()¥(7), (6.72)

by formally the same one, where all the arising matrix entries are operators now, i.e. (6.72)
is an operator oir; ® V(™) wherel}, denotes the (classical) vector space, already necessary
for the definition of (6.10), (6.20) and the (quantum) gart) has been defined in(6.67).

We have thereby fixed the operator ordering on the right hand side in what seems to be
a rather natural way. In the same way, we define the quantum monodromy matrices to be
given by

U(y) — ¥(y)M;, for~encirclingy; , (6.73)

where the (quantumy-function is normalized as
U(y) = ([ + O(%)) ry Ao aroundy ~ oc . (6.74)

Remark 6.9 The normalization condition (6.74) generalizes the one we chose in the classi-
cal case (6.51) where the basepaintvas sent to infinity. This generalization is necessary,
because the constraint (6.52) is not fulfilled as an operator identity in the quantum case,
which means, that the quantwinfunction as an operator is definitely singularat oo

with the behavior (6.74). Only its action on physical states, which are by definition annihi-
lated by the constraint (6.25) may be put equal to the identity fepo.

We are interested in the algebraic structure of the quantum monodromy maifjces
defined by (6.73). This follows from the observation [109] that the quantum linear system
(6.72) is related to the Knizhik-Zamolodchikov systems witland N+1 insertions, respec-
tively, by

\D(’Ya’yla"'arYN) - (([® U]:fl(rYla'"77N)>UN+1(75715'-'57N) ) (675)
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with the evolution operatorsy from (6.18). Having Remark 6.1 in mind, the quantum linear
system may thus be understood as a mixture of the Schlesinger (6.13) and the Knizhnik-
Zamolodchikov (6.17) system, where the former corresponds to the classical vectovspace
with associated insertiopand the latter corresponds to the quantum space (6.67).

In particular, (6.75) shows that the monodromies of (6.73) may be identified among the
monodromies of the Knizhnik-Zamolodchikov system with+ 1 insertions. It has been
shown by Drinfeld, that these monodromies in turn are related to the braid group representa-
tions induced by certain quasi-bialgebras [30, 29].

Putting all these things together [74] we obtain the following algebraic structure

1 2 2 1

R_M;R_'M; = M;R;M;R;", (6.76)
1 2 2 1

R M;R;'"M; = M;R.MR ',  fori<yj,

with the R-matricesRR.. given by

1

R =uR,'u', R, =TRI, (6.77)

where Ry, is the universalR-matrix of the so-called Drinfeld-Jimbo quantum enveloping
algebra associated with[27, 57] andu is some automorphism dry ® V(M. The classical
limit of these R-matrices may be computed and yields

R. =1®I £ (ih)(irQy) + O+(R?) . (6.78)

Thus, we have obtained the quantum algebra of the quantum monodromy matrices by
identifying the corresponding operators inside the picture of the quantized holomorphic con-
nection A(y). The classical limit of this algebra coincides with the classical algebra of
monodromy matrices (6.53), (6.54). This shows the “commutativity” of the (classical and
guantum) links between the connection and the monodromies with the corresponding quan-
tization procedures. Let us sketch this in the following diagram:

Atiyah-Bott symplectic structure
{A3 (1), AB()} ~ 64803 (y—p)
holomorphic gauge

» v

Regularized algebra Holomorphic connection Classical algebra
of monodromies {AA, ABY = 5, fAB, AC of monodromies

12 1 2
guantization {MiﬂMj} :iﬂ'(MngMj + )

1 2 1 2
{Mi,M]'} = (Mﬂ“.t,.Mj + )

[A2 AB] = ihé;; fAE, AS

i 940

quantization and guantization of the

quasi-associative - guantum monodromies nonassociative algebra

generalization via KZ-system

Y

‘< Quantum algebra of monodromies
1 2 2 1
Ry M;Ry'M; = M;R, M;R;"
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The dotted lines in this diagram depict the link to the usual way, quantum monodromies
have been treated. As was sketched in Remark 6.7., their classical algebra can be derived
from the original symplectic structure of the connection up to certain degrees of gauge free-
dom: for later restriction on gauge invariant objects, this algebra may be described with an
arbitrary classicat-matrix. A direct quantization of this structure is provided by a structure
of the form (6.76), where the quantuRismatrices live in the classical spaces only and admit
the classical expansidi. = I + ifir. + O.(h?) [1, 2].

In contrast to this quantum algebra which underlies (6.57)RHmeatrices in (6.76) — due
to the automorphism — also act nontrivially on the quantum representation space. Their
classical matrix entries may be considered as operator-valued, meaning, that the quantum
algebra can be understood alternatively as nonassociative or as “soft”. This is in some sense
the quantum reason for the fact, that the classical algebra (6.53), (6.54) fails to satisfy Jacobi
identities. However, note that (6.76) only describesRhmatrix in any fixed representation
of the monodromies; for a description of the abstract algebra, compare the quasi-associative
generalization in [2].

Quantum coset mode

We have seen that the proper Poisson structure to be quantized for the coset model is (6.45).
This goes along the same line as the quantization of (6.27) described above.

Having solved the constraints (6.42), the number of degrees of freedom is effectively
reduced. The simple poles appear in pairs related by (6.60). Half of the residues of (6.30) is
represented according to (6.65), while the other half is obtained via

A = (A1) - (6.79)

The constraint equations (6.68) (the Wheeler-DeWitt equations here) take the form

i £) _ i (1 + v7k) Qi B (v + ) Q7 +
a= V) = Bl {%:(livj)(livk) §<livj><livk>}w(p ) (680

with Q7 from (3.47). Additionally, the physical states have to be annihilated by the first-class
constraint (6.46):

(Z t + ZT(t;‘)> v(pT) = 0. (6.81)

Modifying (6.71) we can establish a link between solutions of the quantum constraint
equations (6.80), (6.81) (i.e. physical states) and solutions of what we will refer to as the
Coset-Knizhnik-Zamolodchikov (CKZ) system [74]:

OPcxr . L+ /v Vi +1/7;
— ik S+ S B gr b (6.82)
0 {; V=% z,; Yi—1 [ T

The precise relation to (6.80) is the following:

87



6.5 Isomonodromic deformations and KZB equations on the torus

If poxz is @ solution of (6.82) obeying the constraint (6.81), and thelepend orp®
according to (3.3), then

n

a,y ihs2;;
Y= H (’Vj_lﬁ) Pekz s (6.83)
=1 !

solves the constraint (Wheeler-DeWitt) equations (6.80).

The procedure of identifying observables may be outlined just as in the case of the prin-
cipal model. Again the monodromies of the quantum linear system are the natural candidates
for building observables and contain a complete set for the simple pole sector. The actual
observables are generated from combinations of matrix entries of these monodromies that
commute with the constraint (6.81). From general reasoning according to the classical pro-
cedure, relevant objects turn out to be the combinatiorgs-gfvariant objects, that are also
invariant under the involution>.

6.5 Isomonodromic deformationsand KZB equations on thetorus

This section is based on [73]. We leave the concrete model of dimensionally reduced gravity
and like in section 6.1 study abstract isomonodromic deformations. The scheme presented
above allows natural extension to Riemann surfaces of genus one. Instead of the Knizhnik-
Zamolodchikov system (6.17) on the sphere, in this case we obtain the link to the Knizhnik-
Zamolodchikov-Bernard (KZB) system that has appeared in the study of the corresponding
higher genus conformal field theories [8, 9]. The conceptual novelty of twisted functions,
that is introduced in WZW conformal field theories on the torus in order to get a proper
description of the action of inserted affine zero modes in the correlation functions, enters the
game in a very natural way here.

In the context of dimensionally reduced gravity these structures may prove to be impor-
tant in an isomonodromic approach to two-dimensional world-sheets with nontrivial topol-
ogy. This extension would be indispensable for a “stringy” interpretation of the model.

Holomor phic gauge fixing

We start again from a smoothvalued one-formA on the torus. To simplify notation and

without loss of generality we restrict to the cage- s[(2, C). In the explicit formulae we

will use standard Chevalley generatetst®. Denote the periods of the torus byandr.
Holomorphic gauge!y = 0 can not be achieved in general. However, taking into account

our remarks from the previous section, the essential fact is,[41] that a dense subspace of

smooth (0,1)-forms can be gauged into constants of the form

o3, AeC. (6.84)
-

The holomorphic gauge condition would require an additional gauge transformation of
the kindg = exp(27iAT=1os). This is obviously multi-valued on the torus, having a multi-
plicative twist: g — exp(27iAo3)g for v encircling the fundament&l, 7)-cycle. The result
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of a gauge transformation of this kind is a twist in the remaining holomorphic (1,0)-form
A(7):

Ay +1) =A(y)  Aly+7) =" A(y) . (6.85)
In components this reads:
Ay+7) =A%)  AF(y+7) =A%)

Even though in principle gauge transformations must be defined globally single-valued
in order to conserve physics, in this case the proceeding is justified by the fact, that the non-
gauge-trivial part ofA; survives as an arising twist of the holomorphic connectlonThis
is how the holomorphic gauge causes the appearance of twisted quantities in a rather natural
way.

Some meromor phic functions on thetorus

Before we start to investigate isomonodromic quantization on the torus, let us collect some
simple facts about twisted meromorphic functions on the torus. A basic ingredient to describe
functions of this kind, is Jacobi’s theta-function:

() =D i

nez

which is holomorphic, twisted ag{y+1) = 0(y), 0(y+7) = e "7+29)4(~) and has simple
zeros fory € 3(7+1) + Z + 7.
Standard combinations are the functions [42]

V(=4 +1)
o =3 +1)

which have simple poles with normalized residueyia- 0 and additive and multiplicative
twist, respectively:

O\ — v — %(T + 1))9’(%(7 +1))
O(y+3(T+1)0AN—2(r+1))

p(y) = +ir, andoy(y) =

N1 1o 1=

p(y+1)=p(y) —2mi,  ox(y+T)=eox(y).

Moreover, they satisfy

p(=7) = —p(7) , ox(7) = —o_A (=), (6.86)

and the identity

ooz —y) = onx =) (p(r =) = p(y =) oAy = D)or(r =) . (6.87)

These relations can be proved checking residues and twist properties. All the following
calculations rely on the fact, that meromorphic functions on the torus with simple poles are
uniquely determined by their residues if they are multiplicatively twisted, whereas functions
with additive or vanishing twist are determined only up to constants. In generic situation
there are no holomorphic twisted functions on the torus.
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| somonodromic defor mations

Equipped with these tools we can now start to describe the twisted meromorphic connection
A(7). Because of its twist properties (6.83)(v) is of the form:

Af(y) = ZAfUﬂA(v—%), A’(y) = ZA?p(v—%)—B?’- (6.88)

Define again? by the linear system
U (y) = A(7)¥(7) - (6.89)

The function¥ will get monodromies\/; and M ;) from the right hand side, if encircles
7; or the(0, 1) cycle of the torus. Ify runs along th€0, 7) cycle, ¥ will exhibit an additional
left monodromy due to the twist (6.85) df.

T(y) > 2T (y) Mo, - (6.90)

Under isomonodromic deformation we will understand the invariance of the right hand side
monodromy data under the change of the parameters of the punctured torus, which are the
singular pointsy; and the period. The connection data in this case are the residijethe
additive constanB? and the twist\.

Let us first investigate their;-dependence. In addition to the residueHd ¥ ! we
have to determine its twist arourfd, 7) from isomonodromy conditions. Equation (6.90)
yields:

(a»w*) () + 2miA ados (ai\w—l) (7) + 27119\

This determines the form of thg-dependence o¥ to be:

+
(:007) (1) = —Afoun(y—), (6.91)
3
(32-‘1"1”1) (7) = —Alp(y =)+ B},
and further on yields the;-dependence of the twist parameker
RN = A} (6.92)

We can now proceed as on the sphere in section 6.1. Compatibility of the equations
(6.89) and (6.91) implies the following Schlesinger equations on the torus:

0iAY = —AFATon(yj—) + A7 Afoan(yj—v) , for j#i, (6.93)
042 = Y AFATon(v—7) = Y AT AT oo (v—)
j#i J#i

AT = F2A7 Alouon(vj—mi) F2ATA  p(v;—v) £2BJA;, for j#i,
OAF = £2) AFAp(yi—v) F2D_ APAFoi0n(3i—;)
j#i J7i

F2B3AF + 2B AF

1
0,B° = 3 Z (A;Ajawm(%—%’) - AZFA;a/\O'Z/\(ij_%)) ;

J#L
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and a curvature condition on the constaBts

The equations (6.92), (6.93) and (6.94) build a system of differential equations that is
automatically compatibel, just as the Schlesinger equations (6.13) on the sphere are. This
may be directly checked by a rather lengthy but straightforward calculation, making repeated
use of (6.86) and (6.87). Compatibility is valid on the constraint surface

» Ai=o0, (6.95)
J

that was already implied by consistency of the twist propertie§of with the ansatz (6.88).
This constraint here appears in a weaker form than on the sphere (6.2). This corresponds to
the fact that the gauge freedom (6.7) has been fixed more rigorously on the torus in order to
diagonalize the twist around tii@, 7)-cycle. Here, the remaining constraint (6.95) generates
those gauge transformations which are compatible with (6.84)

As on the sphere, itis possible to formulate the dependence (6.93) as a multi-time Hamil-
tonian structure. The Hamiltonians read

H = ) (QA?A?P(% — %) + AT A oo (i — ) + Ay Af oan(vi — %‘))
i
—2B°A} + 2B} " A7, (6.96)

J

and generate the-flows (6.93) in the Poisson structure

(AN APY = 055 A7, (A B} = 1. (6.97)

2

This structure arises from holomorphic gauge-fixing of the original bracket (6.6) in the same
way, as does the bracket (6.3) on the sphere. In particular, remembering the origin of
(6.84), the second equation may be viewed as a reminiscent of (6.6) for the constant modes
of A, andA5.

In analogy with (6.5) this Poisson structure admits a generatizedtrix formulation

{am. 4w} = [ro-mw a0+ aw] —ort-w) (3 4) . ©989)

with the twistedr-matrix
r(7) = 3p(N(E @ %) + oo (7) (1T @ 17) + o_an(7) (1~ @ F) . (6.99)

In some sense this restricts to a classicahatrix formulation on the constraint surface
(6.95). Validity of the Jacobi identities is expressed by a twisted version of the classical
Yang-Baxter equation.

The Hamiltonians (6.96) show the role of the constadstas parameters of gauge trans-
formations generated by the first-class constraint (6.95). This suggests to simply skip these
terms from the Hamiltonians, as is in fact done in the sequel, leading to the KZB equations.
As a consequence, these truncated Hamiltonians only commute up to (6.95), meaning that
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the generated; dynamics of the connection data produces isomonodromic deformation only
up to certain shifts in the gauge orbit.

Finally we study isomonodromic deformation with respect to a change in the peobd
the torus. This can be done in complete analogy with the just treated case. From (6.90) the
twist of 9, ¥ ¥~ around(0, 7) turns out to be

(37\11\11_1> (y) s e2miAados (87\II\II_I> (v) — ™A 293 4 () + 2710, A3 |

which leads to the following-dependence of the functiok:
. 1) 1 +
2ri(0,007) (7) = ¢—ZA.aAam(v—m, (6.100)
3
27Ti(3r‘1"1”1) (v) = —ZA3( p(v = 75) —p(v—vj))+33,

and determines the-dependence of the twist parameter

0\ = —5=B>. (6.101)

27

Compatibility of (6.89) and (6.100) now yields additional Schlesinger-type equations:
. 1 7 1 B
omid,Ad = —= ZA.*A. ro-an (=) = 5 > A7 A 0voon(vi—5) » (6.102)
j
2mio A = * Z AiA?’( 7i)* = o(vi— %))

e A

+ ZA?’A Orosor(vi—,) £ 2B2AE

J

. 1 _ _
271'167_33 = —g Z <A:FA] 85\0'_2)\(’)/1'—’}@') — Az A;“@Z\UQ,\(%—’Y]')) )

together with a curvature condition fgk-9, B2 — 0, B}. Again, compatibility of the whole
system of differential equations may be shown by a straightforward calculation.

With the Poisson structure already given in (6.97) this flow is generated by the Hamilto-
nian
: 1 _ _
27T1 HT = Z Z (A:FA] 8)\0,%(%- — ’}/]) — Az A;ra)\ag)\(% — ’}/])) (6103)
z‘#j
+ - ZA3A3< — ) = p(vi — vj)) + B*B? +2B§ZA§? ,
j

where again we will skigs? under the above remarks.
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Quantization and Knizhnik-Zamolodchikov-Bernard system

The canonical quantization of the described Hamiltonian structure now directly leads to the
KZB-system, as we shall finally show. Quantization is again performed straightforwardly
with (6.97) being replaced by

[A} AP ] = ihéy; f47 AY [\, B?] = lin. (6.104)
In the;-independent Scbdinger representation of the operators they can be realized as

Al =iil®..®t'®...0I, B =-likg,, (6.105)

)

acting on quantum statess) that are\-dependent sections ofid™) = &, V; bundle over
X, = {fundamental domain af} ® CV \ {diagonal hyperplanés

The quantization of (6.93) and (6.102) in the Smhinger picture provides this bundle
with the horizontal connection:

Oilw) = Hilw) = LIty |w) +ih > 0L (1i—7;,7,\) [w) , (6.106)
J#1
2mi0, [w) = 2miH, |w) = 1iho}|w) +ih Y O (vi—v;, 7 A) [w) |
i,

with

(7, A) = 5o (& @) + oan (1)t @ 17) + on(V) (7 @ 1),
OL (1,7 A) = 1o ()t @t;) = 100 ())(t; ®t))
+3(PP() — () B @1,

acting non-trivially onV; andV.

This is the KZB connection, found in [8] as system of differential equations for charac-
ter-valued correlation functions. The form (6.106) coincides exactly with the form presented
in [42] for s[(2,C). In particular, the term that includes the derivative with respect to the
twist parameten is the explicit analogue of the action of affine zero modes on correlation
functions in WZW models. We stress again that in contrast to the system (6.17) on the sphere
these Hamiltonians only commute up to the constraint (6.95) which implies the fact that the
KZB-connection is flat only as a connection on the subbundle of states annihiIaEgﬂ?y
see [42].

Let us close with the remark that this result suggests similar links between the quantiza-
tion procedure of isomonodromic deformations on higher genus Riemann surfaces and the
corresponding higher KZB equations [9]. See [55, 83, 117] for further work.
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7 Conclusionsand Outlook

Let us briefly summarize the main results obtained in this thesis.

We have set up the canonical formalism for a general class of two-dimensional coset
spaces-models coupled to dilaton-gravity, that arise from dimensional reduction of
various gravity and supergravity theories. The canonical Poisson structure (2.57) and
the gauge algebra of constraints (2.62)—(2.63) have served as the starting point for the
entire treatment.

A complete set of nonlocal integrals of motion has been identified classically among
the transition matrices of the associated linear system. They have been shown to be
invariant under the full gauge algebra of constraints (3.26). Moreover, in a rather
direct and unusual way they encode physical information (3.59), which in spite of
their spatially nonlocal origin (3.17) allows localization in the two-dimensional world-
sheet.

The classical Poisson algebra of these nonlocal charges is well-defined and in contrast
to the related structures in the flat-spacmodels does not exhibit any ambiguities, in
spite of similar non-ultralocal terms in the fundamental Poisson brackets (2.57). The
coordinate dependence of the spectral parameter (3.3) plays an essential role for this
regularity. The resulting algebra (3.60), (3.61) is related to the (semiclassical) Yangian
double [27, 28].

Since the nonlocal charges parametrize the phase space (at least in the sector which
admits the particular gauge fixing (3.36)), the adjoint action of the algebra of charges
on itself describes a transitive symmetry. The well-known action of the Geroch group

is recovered as the associated Lie-Poisson action. This provides a canonical realization
of the Geroch group, which is an indispensable tool for later quantization.

We have shown that the entire structure allows generalization to the maximally super-
symmetric extension of the model. Thé=16 superconformal constraint algebra has
been worked out, and has been used to prove that the nonlocal charges — obtained in
analogy to the bosonic case — are indeed supersymmetric. As a byproduct, this result
has confirmed that the supersymmetric extension of the bosonic linear system (4.30)
given in [98, 103] does not receive any quartic fermionic contributions but already cap-
tures the full supersymmetric theory. The Poisson algebra of charges has been shown
to coincide with the one of the bosonic sector.
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7 CONCLUSIONS ANDOUTLOOK

e Quantization of the classical structures has been achieved for the cosetGp&tes
SL(N,R)/SO(N), resulting in a modified (twisted) version of the Yangian double
with a particular value of the central extension (5.5), (5.6). The pivotal classical object
— the monodromy matriMgy — has been recovered within the quantum algebra as a
classical matrix with self-adjoint operator entries (5.9).

e The further program of classifying representations of the quantum algebra has been
outlined for the simplest cas&L(2,R). Already on this level, one may recognize
several features (in particular, the repeated occurrences of discrete nonlocal struc-
tures), which e.g. distinguish the model from the quantization of its linear (abelian)
subsector. The latter has been under active investigation from the point of view of
midi-superspace models of quantum gravity [79, 3].

e Within the isomonodromic approach initiated in [70, 71], we have analyzed the al-
gebraic structure of observables on the classical and the quantum level. For quan-
tization we have exploited the inherent link to a modified version of the Knizhnik-
Zamolodchikov equations (6.82) making the underlying coset structure manifest. In
the general framework of isomonodromic deformations, we have established a similar
link to the Knizhnik-Zamolodchikov-Bernard equations on the torus. So far, we have
not been able to embed these structures into the canonical framework.

There are many things which remain to be elaborated. An immediate aim is the study
of the representation theory of the algebra (5.5)—(5.9) according to the program outlined
in section 5.3. Certainly, the hope is that the requirement of unitarity with respect to the
x-structure (5.10) will strongly restrict the choice of representations.

Within the appropriate representations, the next goal would be the construction of some
analogue of coherent states. They should exhibit minimal quantum fluctuations around given
classical solutions. The discussion of the symmetry structure in sections 3.4 and 5.3 suggests
that the quantum counterpart of the Geroch group (5.40) will play a key role in generating
these states, giving rise to a Hopf algebra generalization of the coherent states’ concept.
Obviously, the usual (linear) framework of coherent states is too narrow to cope with the
guantization of Lie-Poisson symmetries. With coherent states at hand, one would finally be
in position to study in detail how quantization affects the known classical solutions of gravity
(at least under the above mentioned reservations).

For the maximally supersymmetric model described in Chapter 4 with the underlying
coset spac& /H = Fg15)/SO(16), it remains to extend the quantization to higher-dimen-
sional and, in particular, the exceptional Lie algebras. The quantization given in section
5.1 has been strongly supported by many well-known properties of the Yangian algebras
associated witty L( N, R). Unfortunately, less is known about the related structuregfor
see however [18] for the construction of the associdtadatrix.

An interesting and somewhat complementary approach to the quantum model would in-
volve the construction of the nonlocal charges in a quantum model based on the original
physical currents (2.39), (2.57), rather then quantizing (3.60), (3.61) directly. In the sense of
[85, 10], one would have to establish the nonlocal charges and their algebra after quantiza-
tion and not before. Physical states would have to be identified in an “unphysical” Hilbert
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space as the kernel of the constraint algebra (2.62) and (4.27), respectively, while the quan-
tum nonlocal conserved charges serve as a spectrum-generating algebra relating these states.
So far, we have, in contrast, adopted a rather pragmatic point of view, by directly searching
for the possible quantum algebras that may underlie the classical integrable structure, tacitly
assuming that integrability survives quantization. This means e.g. that we have neglected
any effects of potential anomalies that may obstruct integrability and the nonlocal symme-
tries in the quantum theory. It is at this stage, that the maximally supersymmetric extension
described in Chapter 4 may play its full role (since on the level of conserved charges studied
here, we have — somewhat surprisingly — not encountered any essential differences between
the resulting structures in the supersymmetric model compared with the purely bosonic sec-
tor).

In view of potential higher-dimensional interpretations of these models [102], it would
further be necessary to generalize the entire framework to arbitrary Riemann sutfaces
playing the role of the two-dimensional world-sheet. So far, it is even unclear how to ex-
tend the setting to the (seemingly modest) modification of periodic boundary conditions. As
we have discussed in section 3.2, in this class of models, periodicity of the physical fields
does not imply periodicity of the connection of the linear system (3.1). The construction of
conserved charges thus has to be modified in some rather nontrivial fashion. Since (3.59)
has shown a link between the world-sheet and the spectral-parameter plane, one would ex-
pect the structures (3.60), (3.61) and (3.62) to be eventually replaced by a Poisson algebra,
which should accordingly be compatible with some periodicity of the nonlocal charges in
the spectral parameter plane.

Another highly interesting generalization would include the extension of the framework
to those models which arise from a dimensional reduction that includes a timelike Killing
vector field, i.e. which are formulated on a two-dimensional world-sheeith Euclidean
signature. At present, it seems rather subtle to rigorously establish a canonical framework
in the sector of stationary solutions where the canonical time-dependence has been dropped
by hand. On the other hand, it is certainly this sector which contains the most interesting
physical solutions, in particular, the black holes.
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