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Abstract

Dimensional reduction of various gravity and supergravity models leads to effec-
tively two-dimensional field theories described by gravity coupled nonlinearG�H coset
space�-models. This Thesis is devoted to an analysis of these models within the
canonical framework, exploiting the close relations to well-known integrable field the-
ories. A complete set of conserved nonlocal charges is derived from the transition
and monodromy matrices of the associated linear system. Their Poisson algebra is a
modified (twisted) version of the semi-classical Yangian double. The classical infinite-
dimensional symmetry group (the Geroch group) is generated by the Lie-Poisson action
of these charges. The structures completely extend to models with local supersymmetry,
taking into account all additional fermionic degrees of freedom. Canonical quantization
of the algebra of charges leads to a twisted Yangian double with fixed central extension
at a critical level. The last chapter collects some results within the so-called isomon-
odromic approach to these models.

Zusammenfassung

Dimensionale Reduktion einer großen Klasse von Modellen h¨oher-dimensionaler
Gravitation und Supergravitation f¨uhrt auf effektiv zwei-dimensionale Feldtheorien, ge-
nauer, auf gravitationsgekoppelte nichtlineare�-Modelle auf Quotientenr¨aumenG�H.
Die vorliegende Arbeit ist einer Untersuchung dieser Modelle gewidmet. Dies ge-
schieht im kanonischen Zugang, indem die engen Verbindungen zu bekannten integra-
blen Feldtheorien ausgenutzt werden. Ein vollst¨andiger Satz erhaltener, nicht-lokaler
Ladungen läßt sich aus den Monodromien des zugeh¨origen linearen Systems ablei-
ten. Die Poisson-Algebra dieser Ladungen ist eine modifizierte (getwistete) Version des
semi-klassischen Yangian-Doppels. Die unendlich-dimensionale klassische Symmetrie-
Gruppe dieser Modelle (die Geroch Gruppe) wird durch die Lie-Poisson Wirkung der
Ladungen erzeugt. S¨amtliche Strukturen erweitern sich auf lokal supersymmetrische
Modelle unter Ber¨ucksichtigung aller zus¨atzlichen fermionischen Freiheitsgrade. Die
kanonische Quantisierung der Algebra nichtlokaler Ladungen f¨uhrt auf ein getwistetes
Yangian-Doppel mit zentraler Erweiterung. Das letzte Kapitel enth¨alt eine Zusammen-
stellung von Resultaten im sogenannten isomonodromen Zugang zu diesen Modellen.

iv



CONTENTS

Contents

1 Introduction 1

2 Models of Dimensionally Reduced Gravity 5
2.1 The two Killing vector field reduction of Einstein gravity. . . . . . . . . . 5
2.2 Two-dimensional coset space�-models coupled to gravity and a dilaton . . 12
2.3 Canonical formalism .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Integrability 19
3.1 The linear system and the monodromy matrix . . . . . .. . . . . . . . . . 19
3.2 Transition matrices and their Poisson algebra . . . . . .. . . . . . . . . . 22
3.3 Nonlocal charges and their Poisson algebra. . . . . . . . . . . . . . . . . 29
3.4 Symmetries: The Geroch group revisited . .. . . . . . . . . . . . . . . . . 36
3.5 The Abelian sector . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Supergravity 46
4.1 The model:N��� supergravity in two dimensions . . .. . . . . . . . . . 46
4.2 Constraint superalgebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Nonlocal charges and their Poisson algebra. . . . . . . . . . . . . . . . . 54

5 Quantization 59
5.1 Quantum algebra . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 g � sl��� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Representations and symmetries . .. . . . . . . . . . . . . . . . . . . . . 67

6 Isomonodromic Structures in Dimensionally Reduced Gravity 71
6.1 Hamiltonian description of isomonodromic deformations. . . . . . . . . . 71
6.2 Isomonodromic sector in dimensionally reduced gravity .. . . . . . . . . . 75
6.3 Poisson algebra of observables . . .. . . . . . . . . . . . . . . . . . . . . 80
6.4 Quantization . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 Isomonodromic deformations and KZB equations on the torus . . . . . . . 88

7 Conclusions and Outlook 94

References 97

v





1 Introduction

The so-called hidden symmetries, appearing in the dimensional reduction of gravity and
supergravity theories, have played an important role in the study of these theories over the last
thirty years. Based on earlier work [32, 93] it was Geroch who first realized the emergence of
an infinite-dimensional symmetry algebra in the two Killing vector field reduction of general
relativity [47]. Later on, this symmetry structure was found to be generic for a broad class
of models of dimensionally reduced gravity and supergravity theories [60, 62].

Upon reduction to two dimensions these models take the form ofG�H coset space�-
models coupled to�d gravity and a dilaton. Various coset spaces descend from different
models (see e.g. [67, 90, 62, 98, 14, 88, 45]), culminating in theE������SO���� which origi-
nates from dimensional reduction of maximally extended supergravity in eleven dimensions.
The infinite-dimensional symmetry algebra of these models has been identified with the loop
algebra which is associated with the Lie algebrag of G; the existence of a central extension
of this algebra has been noted in [61].

The interest in studying this class of two-dimensional models is (at least) a threefold.
First, these models enlarge the list of integrable models, exhibiting a new underlying al-
gebraic structure ((3.60), (3.61) below) which already deserves interest for itself: On the
classical side we face a surprising regularization mechanism of the Poisson algebra of non-
local charges – caused by the space-time coordinate dependence of the spectral parameter
(3.3), which is one of the distinguished properties of the model. On the quantum side, the
main interest is in the resulting algebra (5.5)–(5.9) below, which is a modification of the
well-known Yangian double [28]. The twist by which it differs from the normal Yangian
double essentially requires a new representation theory to be developed.

From the physical point of view, many of these models have received interest in the con-
text of so-called midi-superspace models whose quantization serves as an interesting testing
ground for many issues of quantum gravity. Despite the fact that dimensional reduction
represents an essential truncation of the phase space, the models under consideration are suf-
ficiently complicated to justify the hope that their exact quantization may provide insights
into characteristic features of a still outstanding theory of quantum gravity. In particular,
and in contrast to previously exactly quantized mini-superspace models, they exhibit an in-
finite number of degrees of freedom, which is broadly accepted to be a sine qua non for
any significant model of quantum gravity. Their quantization may thus lead to progress in
understanding the nature of quantum geometry and quantum black holes, reliability of semi-
classical methods, etc. . This belief is e.g. supported by the observation that already rather
simple and exactly soluble two-dimensional models of dilaton-coupled gravity capture and
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allow to further analyze several features that are expected to characterize quantum black hole
solutions of the full four-dimensional theory (gravitational collapse, Hawking radiation, in-
formation loss, etc., see [116] and references therein).

Finally, from a higher-dimensional perspective these models and techniques find appli-
cation in the study of gravitational string backgrounds and their symmetries, or describe the
behavior of extended objects after dimensional reduction. It is further tempting to speculate
about some higher-dimensional interpretation, where in a stringy setting the physical states
of the theory, quantized on the two-dimensional world-sheet, are reinterpreted as the one-
particle excitations of a higher-dimensional theory (see [102] for more speculation in this
direction).

The interest in the symmetries of dimensionally reduced gravity originally arose in the
context of the so-called solution-generating techniques [32, 78, 47, 67, 51]. Over the years,
the point of view has changed. Rather than in producing new solutions to Einstein’s field
equations, nowadays, one is mainly interested in understanding the symmetry structures
themselves. In particular, the analysis of the classical phase space with its full symmetry
structure exhibited, is a necessary prerequisite for quantization. More precisely, a symmetry
group which acts transitively on the phase space while preserving the symplectic structure
may be identified with the classical phase space itself. The irreducible representations of this
group then carry the information about the underlying quantum system.

The understanding of the structure of dimensionally reduced gravity was significantly
improved by the revelation of the linear system [89, 7] which underlies the equations of mo-
tion. This established a first link to the integrable structures found in many two-dimensional
models. It opened the possibility to subsequently make use of the methods and techniques
which were developed in the theory of integrable systems (see [39] and references therein).
In fact, the dimensionally reduced gravitational field equations (the Ernst equation [35] and
its generalization to higher-dimensional Lie algebras) strongly resemble the equations of
motion of the nonlinear�-model [86, 121]; the main difference – apart from the coset struc-
ture – comes from the explicit appearance of the additional dilaton field in the gravitational
equations. This field arises as a generic feature of Kaluza-Klein type dimensional reduction,
measuring the size of the compactified (internal) manifolds. Throughout the following, it
turns out to play a pivotal role.

For the nonlinear�-models, it was soon realized that the arising (hidden) symmetries
were not symplectic and generated by nonlocal charges which obeyed a new type of charge
addition rules [86, 25], thus making manifest the nontrivial Hopf algebra structures of the
underlying symmetry algebras. Since then, infinite-dimensional quantum groups have ap-
peared to play a major role in lower-dimensional physics, providing a powerful description
of the quantum symmetries of many integrable models and field theories. The classical
symmetry generated by the nonlocal charges gains a natural description in the framework
of Lie-Poisson actions [113, 6]. In particular, this offers new perspectives in quantization
[11, 84] where the classical action turns into the adjoint representations of the underlying
Hopf algebras.

Since it will become important in the following, let us mention a prominent example of
the infinite-dimensional quantum groups, namely the Yangian algebraY �g� associated with
a simple finite-dimensional Lie algebrag. Having turned up already in the early days of the
quantum inverse scattering method [114, 37], this algebra was rigorously defined within the
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1 INTRODUCTION

framework of Hopf algebras by Drinfeld [27], and later on appeared to underlie many two-
dimensional field theories (see [10, 12] and references therein). The Yangian algebraY �g�
may be considered as a deformation of the positive half of a loop algebra with nontrivial Hopf
algebra structure. A deformation of the full loop algebra emerges from the Yangian double
construction [28] which has been introduced in quantum field theory in [82, 11]. Like the
loop algebra, this structure admits a central extension [110].

It is the purpose of this thesis to carry out the canonical framework for the described class
of models of dimensionally reduced gravity by making use of the powerful tools that are pro-
vided by integrability and the emergence of quantum groups. The existence of a (modified)
Yangian symmetry in the classical theory eventually allows the complete quantization. The
results are essentially based on [72]–[77] and [104, 105].

The plan of the thesis is the following. In Chapter 2 we introduce the general class of two-
dimensional coset space�-models that shall play the main role in the text. The canonical
formalism is set up, including the fundamental Poisson brackets and the gauge algebra of
constraints. For illustration, we begin with a detailed discussion of the simplest model of the
series – the two Killing vector field reduction of general relativity – and show how in this
case the infinite-dimensional symmetry algebra arises.

Chapter 3 is devoted to the analysis of the classical integrability of the model. Starting
from the linear system, we identify integrals of motion encoded in the associated transition
and monodromy matrices. They are shown to be gauge invariant. We discuss, for which
sectors of the theory this set of nonlocal charges is complete. This is essentially related
to certain assumptions on the global behavior of the dilaton field. In the relevant sector
(corresponding to a cylindrically symmetric setting) the nonlocal charges turn out to carry
the values of the original physical fields on the symmetry axis. The Poisson algebra of
these charges is computed. Again, the dilaton field plays a key role in that it causes the
vanishing of certain ambiguities that are known to arise in the related structures in flat space
�-models. The resulting Poisson algebra is closely related to the Yangian double from which
it differs by a twist which is remnant of the underlying coset structure. We end up with
a reformulation of the classical model in terms of a complete set of nonlocal conserved
charges. This formulation reveals integrability and the classical symmetry structure in a
natural way. The Geroch group is recovered as the adjoint Lie-Poisson action associated
with these nonlocal charges.

Chapter 4 contains the generalization of the structure to the maximally supersymmetric
extension of the model, which gives rise toN��� supergravity coupled to anE������SO����
coset space�-model. Nonlocal charges may be defined in analogy to the bosonic case. Re-
markably, they turn out to be supersymmetric, i.e. invariant under the full gauge superalge-
bra, and satisfy the same Poisson algebra as their purely bosonic counterparts. The essential
calculations are performed in all fermionic orders, i.e. including all cubic fermionic terms
that have been neglected so far.

In Chapter 5 we address the quantization of the model in terms of the nonlocal charges,
i.e. search for the quantum algebra which reproduces the Poisson algebra in a classical limit
while preserving certain extra properties (again related to the coset structure). We identify
this algebra for the coset spacesG�H�SL�N��SO�N�. The central result is given by the
algebraic structure (5.5)–(5.9) below. In contrast to the well-known centrally extended Yan-
gian double, the quantumR-matrices appear with a relative “twist” in the exchange relations
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which connect the two Yangian halves. A central extension of the algebra is required, whose
value is uniquely fixed.

Finally, Chapter 6 contains several results obtained within the so-called isomonodromic
framework, initiated in [71]. This approach has mainly been motivated by the apparent simi-
larity of the equations of motion in certain sectors of the models under consideration with the
deformation equations of monodromy preserving deformations [58]. Despite the rich mathe-
matical structure which culminates in a link to the Knizhnik-Zamolodchikov equations from
conformal field theory [68] (again slightly modified due to the underlying coset structure),
we have so far not been able to embed this approach into the canonical framework which has
been elaborated in the rest of the thesis.

In Chapter 7 we briefly summarize the solved and some remaining problems.
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2 Models of Dimensionally Reduced Gravity

In this chapter, we introduce the class of models that we are going to study in the sequel.
Originating from Kaluza-Klein type dimensional reduction of gravity and supergravity theo-
ries, they are casted into the form of two-dimensionalG�H coset space�-models coupled to
dilaton gravity. We discuss in detail the simplest example of this series, the two Killing vec-
tor field reduction of four-dimensional Einstein gravity, which is embedded into the general
scheme with the particular coset spaceG�H� SL���R��SO���. For this model, we give
an elementary construction of the infinite dimensional symmetry algebracsl� due to Geroch
[47]. In the next chapter, we will recover this symmetry within the general setting. Finally,
we establish the general canonical formalism, including the Poisson brackets of the physical
fields and the conformal gauge algebra.

2.1 The two Killing vector field reduction of Einstein gravity

The existence of two commuting Killing vector fields in four-dimensional general relativity
gives rise to an essential simplification of the field equations and to a remaining model with
a remarkably rich symmetry structure. In the following, we will describe this reduction and
the arising of the symmetries.

Denote the four-dimensional metric byGMN and consider the decomposition into the
vierbeinE A

M

GMN � E A
M E B

N �AB � (2.1)

with the Minkowski metric�AB � diag������������. Vacuum general relativity in four
dimensions is described by the Lagrangian

L
���
EH � ��

�
E���R��� � (2.2)

whereR��� andE��� denote the curvature scalar ofGMN and the determinant of the vierbein
E A
M , respectively. The action is manifestly invariant under diffeomorphisms generated by

vector fields�:

��E
A

M � �N �NE
A

M � E A
N �M�

N � (2.3)

and Lorentz transformations generated by� � SO��� ��:

��E
A

M � E B
M � A

B � (2.4)
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2.1 The two Killing vector field reduction of Einstein gravity

Assume now the existence of two commuting Killing vector fields. For definiteness we
take them to be spacelike, one of them with closed orbits. This characterizes spacetimes with
cylindrical symmetry. It is convenient to adopt a coordinate system such that the Killing vec-
tor fields are given along coordinates�

��
and �

�z
, respectively. In this system, the coefficients

of the metric depend only on the two remaining coordinatesx and t. Further fixing the
freedom of Lorentz transformations, the vierbein is casted into the block triangular form:

E A
M �

�
e �
� Bm

� e
a

m

	 e a
m

�
� (2.5)

Greek indices�� 	 represent the coordinatesx and t whereas small Roman indicesa�m
denote the coordinates
 andz associated to the Killing vector fields. We further parametrize
the constituente a

m of (2.5) by its determinant� � det e a
m and anSL���R� matrixV:

e a
m � �

�

�V � (2.6)

Inserting (2.5) into the original Lagrangian (2.2) leads after some calculation (see e.g. [13])
and up to surface terms to the following effectively two-dimensional Lagrangian

L��� � ��
�
�E���R��� � �

�
�E���h�� tr

�
��MM����MM��

�
(2.7)

� �
�
�E���h��h��MmnF

m
��F

n
�� �

�
�
E���h����������� �

with

h�� � e �
� e �

� ���

Mmn � �VVT �mn � � e a
m e b

n �ab �

Fm
�� � ��B

m
� � ��B

m
� �

The curvature scalarR��� here corresponds to the two-dimensional metrich�� ; E��� accord-
ingly denotes the determinant of the zweibeine �

� .
From a lower dimensional point of view, the Lagrangian (2.7) describes two-dimensional

gravity h�� coupled to scalar and vector matter fields which descend from the remaining
components of the original higher-dimensional metric (2.5). The so-called Kaluza-Klein
vector fieldsBm

� enter the Lagrangian only via their field strengthsFm
�� ; they will prove to

be auxiliary in the reduced theory. The matrixM combines the scalar fields which in two
dimensions appear similar to the nonlinear�-model coupled to gravity. They will play the
main role in the sequel. The presence of the dilaton field� in (2.7) is a typical feature of
Kaluza-Klein type dimensional reduction. In general context, this dilaton field measures the
size of the compactified dimensions of the higher-dimensional space-time (cf. (2.5), (2.6)).

At least locally, the zweibeine �
� may further be brought into diagonal form (conformal

gauge) exploiting the freedom of the diffeomorphisms and Lorentz transformations inx�:

e �
� � � �

� exp � � h�� � ��� exp �� � (2.8)

In the following, we neglect possible global obstructions. We introduce light-cone coordi-
natesx� � x��x� and similarly defineV � � V �� V � andV� � �

�
�V�� V�� for any vector

V � and covectorV�, respectively. The two-dimensional metrich�� then has components

h�� � ��
�
exp �� � (2.9)
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2 DIMENSIONALLY REDUCED GRAVITY

In this model, it is not possible to gauge away the conformal factor� since the Lagrangian
(2.7) is not Weyl invariant, i.e. it is not invariant under local rescaling of the two-dimensional
metrich��. The�-model part of (2.7) is conformally coupled, but neither the coupling of the
Kaluza-Klein vector fields nor the two-dimensional dilaton-gravity part is Weyl invariant.
The reason for the latter is the multiplicative appearance of the dilaton field�, this is in
contrast to usual�d gravity.

Inherited symmetries of the lower-dimensional theory

Some of the gauge symmetries (2.3), (2.4) of the original theory are still compatible with the
truncation (2.5), (2.8).

� Conformal transformations���x�� leave the form (2.8) invariant. According to (2.3)
the fields transform as

���V � ����V � (2.10)

���� � ����� �

���� � ����� � �
�
���

� �

� The special diffeomorphisms�m�x�� act as gauge transformations on the Kaluza-Klein
vector fieldsBm

� :

��B
m
� � ���

m � (2.11)

� The linear diffeomorphisms�n � g n
m xm act as constant linear transformations onV:

�gV � gV � with g � �g n
m � � SL���R� � (2.12)

Upon toroidal compactification, i.e. with periodic boundary conditions on the direc-
tionsxm only a discrete subgroupSL���Z� appears as gauge symmetry of the original
theory. In any case however, (2.12) remains a symmetry of the lower-dimensional
theory.

� The Lorentz transformations� b
a � h b

a �x�� act onV according to

�hV � Vh�x�� � with h�x�� � �h b
a ��x�� � SO��� � (2.13)

In abstract language, the physical degrees of freedom inV�x� parametrize the coset space
G�H � SL���R��SO���. TheH gauge transformations are given by (2.13); the groupG

acts linearly by (2.12). One may choose a fixed system of representatives of the coset space,
e.g. the triangular matricesV.1 The action (2.12) then provides a nonlinear realization of
SL���R�:

�gV � gV � Vhg�x
�� � (2.14)

1For general Lie groups one may correspondingly fix the orthogonal part of the Iwasawa decomposition of
the matrixV [52].
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2.1 The two Killing vector field reduction of Einstein gravity

where a compensatingSO��� rotationhg is required to restore triangularity ofV. This sym-
metry of the dimensionally reduced theory has been made explicit by Matzner and Misner
[93]. Note that the matrixM � VVT is invariant under (2.13) and transforms linearly under
(2.12).

Equations of motion

In conformal gauge (2.8) and after rescaling� �� �� �
�
ln � the Lagrangian (2.7) becomes

(up to boundary terms again)

L��� � ���� �
�� � �

�
�
�
tr
�
��MM����MM��

�
� e��	MmnF

m
��F

n��
�
� (2.15)

where the indices	� � are raised and lowered with the Minkowskian metric��� now. The
explicit appearance of the conformal factor� shows, that (2.7) is not Weyl invariant. The
equations of motion for the fields involved are the following:

� The Kaluza-Klein vector fieldsBm
� satisfy:

��
�
e��	�MmnF

n
��

�
� 	 �

In two dimensions this yields

e��	�MmnF
n
�� � const �

In the following we restrict to that sector of the theory where the constant is zero.
This is e.g. a necessary condition for asymptotically Minkowskian spacetimes.2 The
Kaluza-Klein vector fields then are (locally) pure gauge (2.11). They may carry phys-
ical degrees of freedom related to nontrivial topology of the two-dimensional surface
parametrized by thex�. Neglecting these modes, in the following we restrict to the
case

Bm
� � 	 � (2.16)

The metric (2.1) then acquires block diagonal form, which is equivalent to hypersur-
face orthogonality of the Killing vectorfields: the surfaces orthogonal to both Killing
vector fields are integrable.

� The dilaton field� obeys a free field equation:

�� � 	 � (2.17)

Its general solution is given by��x� � ���x�� � ���x�� � and allows to introduce a
dual field
�


��x� � ���x��� ���x�� � (2.18)

2In addition, there are good arguments to believe that the rich symmetry structure of the model will not be
compatible with nonvanishing cosmological constants of this type [100].
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2 DIMENSIONALLY REDUCED GRAVITY

defined up to a constant. Under finite conformal gauge transformations (2.10), the field
� transforms as

� �� ���f��x��� � ���f��x��� � (2.19)

with arbitrary functionsf� andf�. Assuming certain monotony behavior of�� and
��, one may fix this residual gauge freedom by identifying the dilaton field with one
of the two-dimensional world-sheet coordinates

�� � x� � �� � �x� � (2.20)

The upper sign corresponds to a timelike dilaton field which appears e.g. in the context
of the cosmological Gowdy models [49]. The lower sign refers to a spacelike dilaton
field which has commonly been used in the description of gravitational waves with
cylindrical symmetry [69, 79, 3]. With radial coordinate� � r, the four-dimensional
line element the takes the familiar form

ds� � e�	�r
t��dt� � dr��� rMmn�r� t�dx
mdxn � (2.21)

The distinguished coordinates (2.20) are often referred to as the Weyl canonical coor-
dinates.

� The matter fields collected in the matrixM � VVT fulfill

��
�
���MM��

�
� ��

�
���MM��

�
� 	 � (2.22)

This is the so-called Ernst equation [35]. Except for the dilaton field� it agrees with
the equations of motion of the nonlinear�-model.

� The conformal factor� satisfies two first order equations:

��� ���� � �
�
� tr

�
��MM����MM��

�
� (2.23)

with �� � � � �
�
ln��������. According to (2.10),�� transforms as a scalar under con-

formal transformations, making the conformal covariance of (2.23) manifest. Com-
patibility of these equations is ensured by (2.22). They determine the conformal factor
up to a constant, since they are of first degree. Rather than equations of motion of the
usual type, these equations form a set of (first-class) constraints. They are not derived
from (2.15) but descend from variation of the two unimodular degrees of freedom of
the �d metrich�� , that appear as Lagrangian multipliers in (2.7). The second order
equation of motion for the conformal factor results from variation of the Lagrangian
(2.15) w.r.t.�:

������ � ����� � ��
�
tr
�
��MM����MM��

�
(2.24)

The consistency of this equation with the first order equations (2.23) can be checked
using (2.17), (2.22) and (2.40).
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2.1 The two Killing vector field reduction of Einstein gravity

The dual picture and the Geroch group

In addition to the gauge symmetries collected above, the two-dimensional model possesses a
rich symmetry structure leading to complete integrability. This underlying structure becomes
already manifest in a duality symmetry of the equations of motion, which we will describe
in this subsection. In particular, this implies the existence of a dual of the (gauge) symmetry
(2.12). Together with (2.12), it generates an infinite-dimensional symmetry group – the
Geroch group.

In the next chapter, we will give a closed realization of this infinite-dimensional symme-
try group and its action via the linear system and the associated transition matrices. Never-
theless, here we show how to generate the infinite-dimensional symmetry in an elementary
way by successively commuting the two dual symmetry groups. Apart from giving a his-
torical flavor, a construction of this type may turn out to be useful on the way to implement
further symmetries in absence of a complete picture.3

The duality symmetry of this model appears as follows [13]. Parametrize the matrixV as

V �

�
� B
	 �

��
�
�
���

�
� 	

	 ��
�
��

�
�

�
� (2.25)

where the gauge freedom (2.13) has been fixed to achieve triangularity. The equations of
motion (2.22) then yield

��
�
�������B

�
� ��

�
�������B

�
� 	 �

which gives rise to defining a dual potentialBD by

��BD � ��
������B � (2.26)

With the further definition [78]

VD �

�
� BD
	 �

��
�

�
� 	

	 ��
�
�

�
� (2.27)

it follows, that the matrixVD satisfies the same equations of motion (2.22) withMD�VDV
T
D .

This duality has two interesting consequences. First, note the different asymptotic be-
havior ofV andVD at � � �. E.g. in Weyl coordinates (2.21),
d-Minkowski space is
described by���, B�	. Thus, at radial infinity��� the matricesV andVD behave as

V �

�
��

�

�

	

	

�
�

�

�
� VD �

�
�

	

	

�

�
� (2.28)

for asymptotically Minkowskian spacetimes. In a similar way,V andVD differ on the sym-
metry axis�� 	. We can hence describe the same physical situation by equivalent models
with different asymptotics.

3Since the Geroch group appears to be already transitive in the sector which we have described so far, addi-
tional symmetries can only enter when one restores more physical degrees of freedom. A promising candidate
are e.g. the topological degrees of freedom of the Kaluza-Klein vector fieldsBm

� and of the two-dimensional
metrich�� , relaxing (2.16) and (2.8), respectively. Their relevance in the further reduction to one dimension
has already been suggested in [100, 96].

10



2 DIMENSIONALLY REDUCED GRAVITY

Second and more important, sinceVD obeys the same equations of motion (2.22), there
is a dual symmetry to (2.14), which we denote bySL���R�D . Via (2.26) the action of
SL���R�D on the original fieldsV can be constructed and turns out to be rather nontrivial.
This symmetry has originally been discovered by Ehlers [32] in the three-dimensional re-
duction of
d-Einstein gravity. The most interesting property of the two symmetry groups
SL���R� andSL���R�D is that they do not commute but span an infinite-dimensional sym-
metry group – the so-called Geroch group [47]. On the algebra level,sl��� andsl���D span
the affine algebracsl�.

Let us make this more explicit. Denote the generators ofsl��� by h, e, f . According to
(2.14) they act onV by left multiplication with the matrices

h �

�
�

	

	

��

�
� e �

�
	

	

�

	

�
� f �

�
	

�

	

	

�
� (2.29)

and a compensatingso���-rotation induced byf . We now turn to the action ofsl���D with
generatorshD, eD, fD. Similarly to (2.14) they act onVD as:

�hDVD � hVD �

�
�

�

� BD�
� �

�

	 ��� �

�

�
� �eDVD � eVD �

�
	 ��

�

�

	 	

�
� (2.30)

�fDVD � fVD � VD

�
	

�

��

	

�
�

�
�BD�

�

� �
�

�

	 BD�
� �

�

�
�

Via (2.26), (2.27), this gives the action onV:

�hDV �

�
��

�

���
�

� ���
�

��
�

�B
	 ��

�

��
�

�

�
� ��hV � �eDV � 	 � (2.31)

�fDV �

�
�
�

�BD�
� �

� ��
�

��
�

�
D
	 ���

�

�BD�
�

�

�
�

with 
D defined by

��
D � �
�
�������� �����B��B

�
� (2.32)

Compatibility of these equations is again ensured by (2.22).
The algebraic structure of the symmetries becomes more transparent in their action on

the currentsJ� � V����V . These are left invariant bysl��� and transform only underfD
according to

�fDJ� � �

�
�������B ����

	 ��������B

�
� �

�
V��eV � J��J

T
�

	
� ����V

��
eV � (2.33)

This immediately gives rise to the next commutators (note that�f annihilatesJ� but notV):

��f � �fD �J� � �
�
�V��hV � J��J

T
�

	
� ����V

��
hV � (2.34)

��f � ��f � �fD ��J� � ��
�
V��fV � J��J

T
�

	
� 
���V

��
fV �

11



2.2 Two-dimensional coset space�-models coupled to gravity and a dilaton

Upon further commuting, these transformations generate the affine algebracsl�. As a vector
space this algebra is given bysl� 	 C�z� z��� 
 kC , whereC�z� z��� denotes the set of
Laurent polynomials in a formal variablez. The algebraic structure is:

�h	zm� e	zn� � �e	zm�n � �h	zm� f	zn� � ��f	zm�n � (2.35)

�e	zm� f	zn� � h	zm�n � k�m�n
� �

The elementk lies in the center ofcsl� and is referred to as the central extension. The subal-
gebrassl��� andsl���D are embedded intocsl� as follows:

h � h	z� � e � e	z� � f � f	z� � (2.36)

hD � 
�h�	z� � k � eD � 
�e�	z�� � fD � 
�f�	z �

where
 is the algebra-involution�h ���h� e ���f� f ���e�. These two subalgebras corre-
spond to the two nodes of the associated Dynkin diagram [64]. Together they obviously span
the full algebra (2.35). The transformations from (2.33), (2.34) correspond to the elements
sl���	z.

We close this section with a few remarks on properties of the Geroch group, which have
already shown up here.

Remark 2.1 The action ofsl���D onV in (2.31) involves two dual potentialsBD (2.26) and

D (2.32) whose existence follows from the Ernst equation (2.22). By further commuting
the transformations fromsl��� andsl���D an infinite hierarchy of such dual potentials arises.
They have been observed already in the early history of the Geroch group [47, 67]. On the
level of associated charges, the construction of this hierarchy corresponds to the well-known
procedure [15] of successively generating nonlocal charges in two-dimensional integrable
models.

Remark 2.2 Equations (2.31) illustrate another property of the Geroch group. It is only the
half sl�	C�z� of the affine algebra (2.35) which acts nontrivially on the physical fields. The
other halfsl�	C�z��� describes the freedom of shifting the dual potentials (c.f. the action of
eD in (2.30)). Accordingly, the central extensionk in (2.35) leavesV invariant. However, it
has been observed by Julia [61] that this central extension acts nontrivially on the conformal
factor� which is determined byV only up to a constant (2.23).

Remark 2.3 To honestly prove the existence of the affine symmetry (2.35) at this stage, one
would have to check the corresponding Serre relations between multi-commutators of the
generators (2.36) [100] as well as the absence of further relations between them. We refrain
here from doing so since later on we will present a closed approach which makes the affine
symmetry explicit.

2.2 Two-dimensional coset space �-models coupled to gravity and a
dilaton

Dimensionally reduced pure Einstein gravity described in the previous section already cap-
tures all the features of the class of models we are going to study. It is the simplest example

12



2 DIMENSIONALLY REDUCED GRAVITY

of theG�H coset space�-models that arise from dimensional reduction of various gravity
and supergravity models. More general,d-dimensional Einstein gravity with�d��� com-
muting Killing vector fields [90] gives rise to aSL�d���R��SO�d��� coset space�-model.
Other examples with higher-dimensional coset spacesG�H come from Einstein-Maxwell
systems [67] and Einstein-Maxwell-dilaton-axion systems [45]. The largest exceptional –
and maybe most fundamental – coset spaceE������SO���� arises from dimensional reduc-
tion of maximally extendedN � � supergravity in 4 dimensions [60, 62, 98]. For general
reasons, related to boundedness of the energy, it is always the maximal compact subgroupH

of G that is divided out in the coset.
Let � be a two-dimensional Lorentzian world-sheet, parametrized by coordinatesx�.

LetG be a semisimple Lie group andg the corresponding Lie algebra with basisftAg. The
Cartan-Killing form in the fundamental representation is given bytr�tAtB� and used to raise
and lower algebra indices. Denote byH the maximal compact subgroup ofG, characterized
as the fixgroup of an involution
 [52]. Lifting 
 to the algebra gives rise to the decomposition

g � h
k with 
��� �



� for � � h

�� for � � k
� (2.37)

which is orthogonal with respect to the Cartan-Killing form. For instance, for the coset space
G�H � SL�N�R��SO�N�, the involution
 is defined by
�X�� �XT ��� for X � G and

������T for � � g, respectively.

The physical fields of the model are mappingsV�x�� from � into the coset spaceG�H,
i.e. they areG-valued and exhibit the gauge freedom of rightH-multiplication (cf. (2.13))

V �� VH � (2.38)

The currentsV����V allow decomposition according to (2.37):

J� � JA� tA � V
����V � Q� � P� � with Q� � h � P� � k � (2.39)

These currents are subject to the compatibility relations

��Q� � ��Q� � �Q�� Q� � � �P�� P�� � 	 � (2.40)

D�P� �D�P� � 	 �

with the (H-)covariant derivativeD�P� � ��P���Q�� P��. Under the gauge transformations
(2.38) they transform as

Q� �� H��Q�H �H����H � P� �� H��P�H � (2.41)

with H�H�x�� � H. The matrix

M � V 
�V��� � (2.42)

is the analogue of the matrix containing the higher dimensional metric coefficients in (2.21).
It is symmetric under

M � 
�M��� � (2.43)

13



2.3 Canonical formalism

and its current is related to the coset currents from (2.39) by

��MM�� � �VP�V
�� � �D�VV

�� � (2.44)

It is the separate task of each dimensional reduction to two dimensions to eventually
cast the resulting model into the form of the corresponding coset space�-model. In the last
section this has been shown in detail for pure Einstein gravity with two commuting Killing
vector fields. See [67, 90, 62, 98, 14, 45] for more complicated examples.

The final form of the two-dimensional Lagrangians and the corresponding equations of
motion are a straight-forward generalization of (2.15)–(2.24) inserting the matrixM � G

from (2.42). The coset-structure becomes more transparent if we rewrite the currents in
terms of the coset currents from (2.39):��MM�� � �VP�V

�� � �D�VV
��. Summarizing,

we obtain the Lagrangian

L��� � ���� �
�� � �

�
� tr �P�P

�� � (2.45)

and the equations of motion for

the dilaton field:

�� � 	 � (2.46)

the conformal factor:

������� � ������ �
�
�
����� � �

�
� tr �P�P�� � (2.47)

������ � ��
�
tr �P�P�� � (2.48)

and the scalars building the coset space:

D���P
�� � D���P�� �D���P�� � 	 � (2.49)

The discussion accompanying these equations in (2.17)–(2.24) can be adopted for the general
case here.

Remark 2.4 The Lagrangian (2.45) and the equations of motion for the currentsP� resem-
ble the principal chiral field model (PCM) [86, 38] with the compact groupG of the PCM
replaced by the noncompact coset manifoldG�H and arising of the additional dilaton field
�. It is mainly the appearance of� that accounts for the new features of these models in com-
parison with the flat space models. Equations (2.47) further show that� may not be chosen
constant without trivializing the matter part of the solution [99]. Since the Cartan-Killing
form tr�tAtB� is positive definite on the cosetk, ����	 would requireP��	. It is also seen
from (2.10) that any solution with���� 	 has some degenerate orbit under the conformal
gauge transformations. There is hence no smooth limit in which the dilaton-coupled model
would approach the PCM.

2.3 Canonical formalism

Poisson structure

In this paragraph, we derive the canonical Poisson structure from the Lagrangian (2.45). For
simplicity, we denote the spatial coordinatex� by x only and the timelike coordinatex� by t.

14



2 DIMENSIONALLY REDUCED GRAVITY

Moreover, we drop the argumentt in most of the following equations, keeping in mind, that
the Poisson brackets are defined at equal times.

For the conformal factor� and the dilaton field� we directly obtain:

f��x�� ����y�g � f��x�� ����y�g � ���x�y� � (2.50)

i.e. the conjugate momenta to� and� coincide with��� and���, respectively. These rela-
tions are equivalent to

f����x�� ����y�g � ��
�
���x�y� � f����x�� ����y�g � 	 �

In terms of the fields� and
� from (2.18) the brackets (2.50) become

f��x�� ����y�g � f
��x�� ����y�g � ���x�y� � (2.51)

There are also different ways to choose the canonical coordinates among the matrix en-
tries ofM . One may e.g. parametrize the matrixM by coordinates like in (2.42) which take
into account the group properties and the additional symmetry (2.43) to then extract canon-
ical brackets from (2.45). For higher dimensional groupsG however, such a set of explicit
coordinates is hard to find and certainly not very practicable. The algebra valued currents
��MM�� offer a suitable parametrization but hide the symmetry property (2.43).

It is thus most convenient to consider the currents (2.39) of the matricesV as basic vari-
ables. Definition (2.42) then ensures (2.43). Moreover, the choice ofV as fundamental
objects is indispensable for coupling fermions to the model (cf. Chapter 4). The prize for
introducing the additionalH-gauge freedom (2.38) inV is the appearance of the associated
constraints (2.55) below.

In a standard way [39], we obtain the canonical Poisson structure with coordinatesJ�.
Introduce the corresponding momenta

� � �Q��P �
�S

�J�
�

�S

����JA� �
tA � (2.52)

with �
JA� �x�� �B�y�

�
� �AB ��x� y� � (2.53)

at equal times. The time derivative ofJ� is expressed in terms ofQ� andP� via the relations
(2.40):

���Q� � P�� � ��J� � ��J� � �J�� J�� � r�J� �

The operatorr� is linear and antisymmetric with respect to the scalar product
�
tr
R
dx
�
. The

relevant part of the action (2.45) thus reads

�
�

Z
dx � tr �P�P� � � �

�

Z
dx � tr

�
P�r

��
� ���J��

�
� ��

�

Z
dx tr

�
���J��r

��
� �� P��

�
�

leading to

� P� � �r�� � ���� � �J�� �� �
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2.3 Canonical formalism

Splitting this expression according to (2.37) implies

� P� � ����P � �Q�� �P �� �P�� �Q� � (2.54)

	 � ����Q � �Q�� �Q�� �P�� �P � �

The second equation defines a set of weakly vanishing constraints

� � �At
A � ���Q � �Q�� �Q� � �P�� �P � � 	 � (2.55)

related to the gauge transformations (2.41).
Many calculations in the following are more conveniently performed in the index-free

tensor notation. Denote for some matrixAab:

�

A � A	 I and
�

A � I 	 A �

In components this takes the form�A	 I�ab
cd � Aab�cd and�I 	A�ab
cd � Acd�ab . Define
accordingly the following matrix notation of Poisson brackets [39]:

n �

A �
�

B
oab
cd

�
�
Aab� Bcd

�
� (2.56)

for matricesAab, Bcd. Let�g� tA	 tA be the Casimir element ofg, which due to orthogo-
nality of the decomposition (2.37) allows the splitting�g � �h��k. The canonical brackets
(2.53) in this notation become

n �

Q� �x� �
�
�Q �y�

o
� �h ��x� y� �

n �

P � �x� �
�
�P �y�

o
� �k ��x� y� �

Equation (2.54) now yields the Poisson brackets for the physical fields:n
��x�

�

P � �x� �
�

V �y�
o

� �
�

V �x� �k ��x� y� � (2.57)n
��x�

�

P � �x� �
�

Q� �y�
o

�
h
�k �

�

P � �x�
i
��x� y� �n

��x�
�

P � �x� �
�

P � �y�
o

�
h
�k �

�

Q� �x�
i
��x� y� � �k �x��x� y� �n

��x�
�

P � �x� �
�

P � �y�
o

�
h
�k �

�

��x�
i
��x� y� � 	 �

Remark 2.5 An important feature to note about these Poisson brackets is the appearance of
a non-ultralocal term in the third equation. In the known flat space integrable models, the
presence of such a term is a good indicator for some breakdown of the conventional tech-
niques at later stage (see e.g. [24] for exploring the fatal consequences of the non-ultralocal
term in the PCM). However, in our model this term shows a surprisingly good behavior and
in fact supports the entire further treatment.
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2 DIMENSIONALLY REDUCED GRAVITY

Constraint algebra

We have already discussed that equations (2.23) do not descend from variation of the La-
grangian (2.45) but rather as constraints from its ancestor (2.7), i.e. before imposing con-
formal gauge (2.8). This structure is the same in the general class of coset space� models
introduced above.

Diffeomorphism invariance of (2.7) allows to bring the�dmetrich�� to conformal gauge
(2.8). This gauge freedom is reflected in (2.7) by the fact that the componentsT�� of the
�d energy-momentum tensor arise as constraints with the unimodular parameters ofh��
as Lagrange multipliers. In the language of canonical�d gravity, these are the light-cone
combinations of the Hamiltonian constraint (cf. (2.61) below) and the (one-dimensional)-
diffeomorphism constraint; the associated Lagrange multipliers are the lapse and shift func-
tion of the two-dimensional (unimodular) metric [104]. In conformal gauge, these constraints
read

T�� � �������� � � tr �P�P�� � 	 � (2.58)

After fixing the conformal gauge (2.8), the full model is thus given by the Lagrangian (2.45)
and the conformal constraintsT��. As first-class constraints theT�� generate the confor-
mal transformations (2.10) of (2.45). With the canonical Poisson brackets (2.50), (2.57) we
obtain:

fT���x��V�y�g � D�V ��x�y� � VP� ��x�y� � (2.59)

fT���x�� P��y�g � �P��y� �
��x�y� �D�P� ��x�y� �

fT���x�� P��y�g � D�P� ��x�y� �

fT���x�� ��y�g � ��� ��x�y� �

fT���x�� ���y�g � ���� ��x�y� �

where for the calculation of these equations one has to make use of the relations (2.40) as
well as of the equations of motion (2.49). Thus, the transformations

���� �

Z
dx ���x� fT���x� � � g � �h�� ���

� �� ��D�� � (2.60)

reproduce (2.10) up to gauge transformations (2.41). The parametersh�� denote the confor-
mal dimensions of the field�. This formula illustrates the interplay between the canonical
and the covariant framework. Canonically, the gauge parameter�� is defined as a function
of and integrated over the spatial dimensionx. Upon using the equations of motion for� and
restoring the time dependence of�� according to�����	, the r.h.s. of (2.60) takes a con-
formally covariant form. In particular, constant time translations are generated by integrating
the Hamiltonian density

H � T�� � T�� � (2.61)

over spatialx.
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2.3 Canonical formalism

The conformal constraintsT�� build two commuting copies of the classical Virasoro-
Witt algebra

fT���x�� T���y�g � �
�
T���x� � T���y�

�
���x�y� (2.62)

fT���x�� T���y�g � 	 �

In the course of applying the canonical formalism to (2.45), we have further encoun-
tered another set of constraints (2.55), having its origin in theH-gauge freedom (2.38). The
Poisson algebra structure of the generators�A is inherited from the algebrah:

f�A�x���B�y�g � f C
AB �C�x� ��x�y� � (2.63)

In index-free notation (2.56) this readsn �

��x� �
�

��y�
o

�
h
�h �

�

��x�
i
��x�y� � (2.64)

Under� the fields transform in an infinitesimal version of (2.38), (2.41):Z
dx
n
tr �h�x���x�� � Q�

o
� ��h� �Q�� h� � (2.65)Z

dx
n
tr �h�x���x�� � P�

o
� �P�� h� �

The conformal constraintsT�� are invariant under�:

fT���x����y�g � 	 � (2.66)

In Dirac terminology [26] this means that all the constraints of the model are of the first
class, thus compatible and responsible for gauge transformations. The full gauge algebra of
constraints is given by (2.62), (2.63) and (2.66).

Remark 2.6 The action (2.65) of the constraints� does not describe the full gauge freedom
observed in (2.38). According to the canonical formalism,h is just a function of the spatial
coordinatex and thus carries only half of the gauge degrees of freedom of (2.38). Actually,
the other half has been absorbed by the fact, that the fieldQ� from (2.39) has not shown up
within the canonical framework. Hence, it appears decoupled from the rest of the theory and
may be consistently put to zero.

Let us finally recall the possibility to fix the gauge algebra (2.62). As discussed in (2.20),
the conformal transformations may be used to map the system (at least locally) to Weyl
canonical coordinates, i.e. to identify the dilaton field� and its dual
� with the coordinates
of the two-dimensional world-sheet. This is the precise analogue of adopting light-cone
gauge in string theory [50]. Reference [3] gives an exhaustive discussion of this gauge
fixing in the canonical treatment of models with cylindrical symmetry (2.21), handling all
the physical boundary conditions with great care. In the following we will mainly – i.e.
whenever necessary – stick to this particular choice of Weyl coordinates. Nonetheless, we
will argue that the essential arising structures are to some extent generic.
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3 Integrability

In this chapter, we exploit the integrability of the model (in technical terms: the existence
of a linear system) to construct nonlocal integrals of motion from the associated transition
matrices. We prove the stronger fact, that these conserved charges are invariant under the
full gauge algebra (2.62), (2.63). In contrast to the nonlinear�-model which allows a similar
construction, there arise no ambiguities in the Poisson algebra of nonlocal charges here.
Rather, as a central result we obtain the algebra (3.60), (3.61) which is closely related to
the Yangian algebra known from various two-dimensional field theories [37, 10, 12]. This
is analyzed in detail for the two particular choices of Weyl coordinates (2.20). The infinite
dimensional symmetry group associated to these charges is revealed and their action on the
physical fields is given. The Geroch algebra is recovered as the Lie-Poisson action of the
algebra ofg-valued functions on the complex plane. With some regularity assumptions on the
fields the symmetry group acts transitively. Finally, we illustrate the results for the Abelian
sector of the theory where due to linearization of the field equations the structures simplify
essentially.

3.1 The linear system and the monodromy matrix

The model (2.45) is integrable in the sense that it possesses a linear system [7, 89]. I.e. the
equations of motion (2.49) appear as integrability conditions of the following family of linear
systems of differential equations, labeled by the spectral parameter�:

��bV�x� t� �� � bV�x� t� ��L��x� t� �� � (3.1)

with bV�x� t� �� � G � L��x� t� �� � Q� �
�� �

�� �
P� � g �

In addition, the spectral parameter� has to satisfy the differential equations

������ �
�� �

�� �
������ � (3.2)

which due to (2.46) are compatible and have the general solution

��x� t� w� �
�

�

�
w � 
��

p
�w � 
��� � ��

�
� (3.3)

with a constant of integrationw. This constant may be understood as the underlying constant
spectral parameter of (3.1); in contrast we will refer to� as the variable spectral parameter.
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3.1 The linear system and the monodromy matrix

Remark 3.1 The original currents contained inL� (3.1) determinebV only up to left multi-
plication with a matrix depending on the constant spectral parameterw:

bV�x� t� �� �� S�w�bV�x� t� �� � with S�w� � G � (3.4)

Later on we will encounter different possibilities how to eliminate this freedom.

Remark 3.2 The nonlinear�-model admits a similar linear system with constant spectral
parameter� [107, 121]. The coordinate dependence of� in (3.1) turns out to be essential for
the entire following treatment, here. Its origin lies in the explicit appearance of the dilaton
field � in (2.49).

The spectral parameters

Here, we collect some useful formulas illustrating the interplay between the variable and the
constant spectral parameters� andw.

The parameter� lives on the Riemann surface defined by
p
�w�
�����w�
����, which

is a twofold covering of the complexw-plane withx�-dependent branch-cut. Transition
between the two sheets is performed by to� �� �

�
. The branch-cut connects the points

w��
� � � on the realw-axis, which correspond to��w��
���� � ��. The realw with
jw� 
�j � j�j are mapped onto the unit circlej�j � �. Realw with jw� 
�j � j�j are mapped
onto the real�-axis. The image of the axis��w���
� is the imaginary axis in the�-plane.

Dividing thew-plane into two regionsH� and the�-plane into four regionsD�� 
D�

according to Fig. 1,D� and 
D� lie overH�, respectively.

�� �

�D�

D�

D�

���� �

�-planew-plane �D�

H�

H�

���� �

Figure 1: The spectral parameter planes

Remark 3.3 It is important that for fixedw ��R and continously varying� and
�, the parame-
ter� does not cross the boundaries which separate these regions. The limits of its trajectories
are given by

����	� �



	
�

� ������ �



i

�i
� ��
����� �



	
�

� (3.5)

where the two values correspond to the two sheets of�.
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3 INTEGRABILITY

Another useful formula is the inverse expressionw��� � �
�
� ��� �

�
� � 
� � which e.g.

implies

����w� � �
��

���� ���
� (3.6)

Two spectral parameters��x� t� v� and��x� t� w� at coinciding coordinatesx� t are related
by:

v � w �
�

�

���v����w�� ���v���w����

��v���w�
� (3.7)

Monodromy matrix

The involution
 which according to (2.37) defines the symmetric spaceG�H can be ex-
tended to an involution
� which acts onG-valued functions of the spectral parameter� by
combining the action onG with a transition between the two sheets of� [61]:


�
�bV���� � 


�bV� �
�
�
�
� (3.8)

This generalized involution leaves the connectionL���� of the linear system (3.1) invariant.
Thus, it motivates the following definition [13]:

M��� � bV��� 
��bV������ � bV��� 
�bV��� �
�
�
�
� (3.9)

The matrixM is called the monodromy matrix associated withbV���. Due to the invariance
of L���� under
�, the linear system (3.1) implies

��M � 	 
 M �M�w� � (3.10)

thusM depends on the constant spectral parameterw only. Its independence of the co-
ordinates in particular implies, that the monodromy matrix does not feel thex�-dependent
branch-cut of Figure 1.

According to Remark 3.1, the monodromyM is defined only up to the conjugation

M�w� �� S�w�M�w� 

�
S���w�

�
�

with someS�w� �G. A preferred choice of eliminating this freedom has been introduced
by Breitenlohner and Maison [13] by demanding holomorphy ofbV��� inside a domain in
the �-plane containing the unit discD�� D�. 4 This uniquely fixesbV up to a constant
matrix. Whenever necessary, we will denote the corresponding solution of (3.1) bybVBM.
The absence of singularities in the disc in particular allows to recover the original fieldV via

V�x� � bVBM�x� ��j�	� � (3.11)

The corresponding monodromy matrix

MBM�w���� � bVBM��� 

�
�bV��BM���

�
� bVBM��� 


�bV��BM�
�
�
�
�

(3.12)

4Roughly speaking, the invariancew��� � w����� allows to reflect all singularities at the unit circle by
multiplying bV with a suitableS�w�.
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3.2 Transition matrices and their Poisson algebra

is non-singular as a function of� in an annular region containing the unit circlej�j � �.
The matrixbVBM��� may then be recovered fromMBM by solving (3.12) as a (generalized)
Riemann-Hilbert factorization problem on this annulus. Thus,MBM contains the complete
information aboutbV. Since it obeys

MBM�w� � 
�
�
M��

BM�w�
�
� 


�
M��

BM�w�
�
� (3.13)

it can be represented as

MBM�w� � SBM�w� 

�
S��BM�w�

�
� (3.14)

This implies thatbVBM factorizes intobVBM���w�� � SBM�w�bVBZ���w�� � (3.15)

with a matrixbVBZ���w��which also solves the linear system (3.1). Its associated monodromy
(3.9) vanishes, i.e.

bVBZ��� � 
�
�bVBZ���

�
� (3.16)

This solution of (3.1) has been used in the approach of Belinskii and Zakharov [7]. It is
defined up to left multiplication withH-valued matricesS�w� (for which 
�S��S).

3.2 Transition matrices and their Poisson algebra

The monodromy matrixMBM, introduced in the previous paragraph, apparently is a good
candidate for generating nontrivial integrals of motion. At least in principle, it carries the
entire information about the original fieldsV. However, so far its usage as a canonical object
suffers from the fact that its definition is a rather implicit one, involving the holomorphy ofbVBM in the unit�-disc. A priori, it is not clear how to explicitly construct this object from
given fieldsV, thus we miss the information about the symplectic structure of the encoded
integrals of motion. However, in the next section we will be able to identifyMBM in the
canonical framework (cf. (3.40), (3.49), below). In this section, we introduce the transition
matrices of (3.1) as canonical objects. We extract the encoded integrals of motion and derive
their Poisson algebra.

The transition matrices associated to the linear system (3.1) are defined by

U�x� y� t� w� � bV���x� t� ��x� t� w�� bV�y� t� ��y� t� w�� (3.17)

� P exp

Z y

x

dz L��z� t� ��z� t� w�� �

which are unique functionals of the connectionL� � �
�
�L��L�� � The integrand in (3.17)

lives on the twofold covering of the complexw-plane with a branch cut which according to
Figure 1 varies on the realw-axis whilez runs fromx to y. Having in mind Remark 3.3, the
transition matrixU�x� y� t� w� is well defined forw ��R. It also lives on the twofold covering
of thew-plane and likeL� it is invariant under the generalized involution
� introduced
in (3.8). In other words,U�x� y� t� w� is completely determined by its values on one of the
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3 INTEGRABILITY

sheets; its values on the other sheet are given by
�U�x� y� t� w��. Until explicitly stated, we
shall in the following always consider the sheet with��D��D� inside the unit disc.

The values ofU�x� y� t� w� on the realw-axis can be obtained from evaluating the limit

lim

��

U�x� y� t� w�i�� with � � R�� � (3.18)

which may however give two different results for� and�.

Integrals of motion

Inspecting the time dependence of the transition matrices we can conclude how to extract
integrals of motion. Namely, the modified transition matriceseU�x� y� t� w� � V�x�U�x� y� t� w�V���y� � (3.19)

satisfy

�t eU�x� y� t� w� � �eL��x� t� ��x� t� w�� eU � eU eL��y� t� ��y� t� w�� � (3.20)

with

eL� � VL�V
�� � ��VV

�� �
���

����
VP�V

�� �
��

����
VP�V

�� �

There are now several possibilities to construct integrals of motion:

� Assuming periodic boundary conditions forP� andP� on an interval�–L
�
� L
�
�, (3.20)

shows that the eigenvalues ofeU�–L
�
� L
�
� t� w� are time-independent if also� and 
� are

periodic functions inx. Charges of this type have been studied in [91]. In general
however, assuming periodic boundary conditions on the physical fieldsP�� P� and�
does not guarantee periodicity of the dual field
� defined by (2.18). The variable
spectral parameter� then is not periodic inx, and it remains an open problem how to
extract proper integrals of motion fromeU . This is an essential difference to the normal
integrable systems with constant spectral parameter.

� The transition matrixeU�x�� y�� t� w� itself becomes an integral of motion if

L��x�� t� ��x�� t� w�� � L��y�� t� ��y�� t� w�� � 	 � (3.21)

According to the form ofL� this happens in two cases:

– P��x�� � P��x�� � 	 and ��x�� �� �� � (3.22)

– ��x�� � 	 and jP��x��j �� � jP��x��j �� � (3.23)

and accordingly fory�. The first case (3.22) e.g. occurs for asymptotically vanishing
currents withjx�j ��. This may describe asymptotically Minkowskian spacetimes
(cf. (2.28)).

The second case (3.23) is even more interesting since it makes use of the field depen-
dence of the variable spectral parameter. According to (3.5) the crucial limits at which
� tends to zero are�� 	 and 
�� ��. The interpolating transition matrices thus
provide integrals of motion.
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3.2 Transition matrices and their Poisson algebra

� If there is at least one pointx� in spacetime, where according to (3.22) or (3.23)
L��x�� t� ��x�� t� w�� vanishes, the transition matrix

bVx��x� t� ��x� t� w�� � V�x�� t�U�x�� x� t� w� (3.24)

forms a solution of the linear system (3.1). We can then further extract its monodromy
matrix (3.9) as a canonical object, which itself is an integral of motion.

What is still missing of course is the degree of nontriviality of all these integrals of
motion. Assume e.g. that we had identified a solutionbVBZ in (3.24) then according to (3.16)
its monodromy matrix would carry no information at all. The content of the integrals of
motion will thus have to be checked separately whenever in the following we will construct
integrals of motion according to the procedure described above.

Conformal invariance

So far we have just shown, that certain transition matrices constructed from (3.19) are inte-
grals of motion, i.e. conserved in time. Constant time translation is generated by the integral
over the Hamiltonian density (2.61) (in the language of canonical gravity: by the Hamilto-
nian constraint integrated with a constant lapse function). In fact, meaningful observables
in the sense of Dirac should satisfy much more, namely be invariant under the full gauge
algebra (2.62), (2.63). In this paragraph we show that this is indeed the case for the integrals
of motion obtained above.

First, we check the transformation behavior of the modified transition matriceseU under
theH-gauge transformations (2.65). It isn

��z� � eU�x� y� w�o � 	 � (3.25)

i.e. the modified transition matrices areH-singlets for arbitrary endpointsx andy. This
mainly distinguishes them from the normal transition matrices (3.17), which transform by
conjugation. The transformation behavior under the conformal constraintsT�� may be ob-
tained from the general formula (3.29) below and yieldsn

T���z� � eU�x�� y�� w�o � �eL��x��eU�x�� y�� w� ��z�x�� (3.26)

� eU�x�� y�� w�eL��y�� ��z�y�� �
with

eL� � VL�V
�� � ��VV

�� � �
��

���
VP�V

�� �

This is the direct generalization of (3.20). The r.h.s. of (3.26) vanishes under the very same
conditions onx�, y� that were discussed for (3.20). I.e. all the integrals of motion obtained
in the previous section are indeed invariant under arbitrary conformal transformations, gen-
erated bt theT��.
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3 INTEGRABILITY

Let us finally compute the Poisson bracket between the integrals of motion and the con-
formal factor�. An arbitrary transition matrix (3.19) satisfiesneU�x� y� v� � ����z�o � �eU�x� z� v� �veL��x� ��v�� eU�z� y� v� � (3.27)

which in turn follows from (2.50), (3.29) and the fact that�vL� � �
�L�. By integration we
obtainneU�x�� y�� v� � ���y�����x���o � ��v eU�x�� y�� v� � (3.28)

using that the connectioneL� vanishes at the critical pointsx�, y�. Thus we see, how the
conformal factor� at the spatial boundaries provides a derivation operator of the integrals of
motion.

Poisson algebra of transition matrices

This paragraph is devoted to the (rather technical) calculation of the Poisson brackets be-
tween two transition matrices with pairwise distinct endpoints. A similar calculation has
been done for the PCM [24]. The results however differ in two essential points. First, the
underlying coset structure here implies the appearance of a twist in the resulting Poisson
algebra (3.46), (3.47). Second, the calculation for the PCM is obstructed by certain ambi-
guities which arise due to the non-ultralocal contributions of the original Poisson brackets
(2.57). They prevent a well-defined answer for the Poisson brackets between transition ma-
trices with coinciding endpoints. In particular this spoils the Poisson algebra of transition
matrices relating the spatial boundaries. In our model on the other hand, the coordinate de-
pendence of the spectral parameter – caused by the coupling of the dilaton field� in (2.49) –
yields an intrinsic regularization of these ambiguities at the spatial boundaries [77] provided
that we assume the proper asymptotic behavior of the fields� and
� . We shall describe this
in detail.

Let U�x� y� v� andU�x�� y�� w� be the transition matrices with spectral parametersv and
w, respectively, and pairwise distinct endpointsx� y andx�� y�.5 The definition (3.17) implies
the relations [39]

fU�x� y� v� � X g �

Z y

x

dz U�x� z� v� fL��z� ��� � X gU�z� y� v� � (3.29)

for an arbitrary functionX.andn �

U �x� y� v� �
�

U �x�� y�� w�
o

�

Z y

x

dz

Z y�

x�
dz�

� �

U �x� z� v�
�

U �x�� z�� w�
�
� (3.30)n �

L� �z� ��� �
�

L� �z
�� ���

o � �

U �z� y� v�
�

U �z�� y�� w�
�
�

with �����z� v�, �����z�� w� �

5For clarity, we drop the coinciding argumentt throughout this calculation. Nonetheless, so far all the
arising objects are time-dependent.
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3.2 Transition matrices and their Poisson algebra

Due to the coset structure of the model, it is a priori not obvious, that the Poisson algebra
of the connectionL� of the linear system (3.1) is of a closed form. However, this turns out
to be true on the constraint surface (2.55):


�

L� �z� ��� �
�

L� �z
�� ���



� (3.31)

�
�����

����������������

�
�h �

�

L� �����
�

L� ����

�
��z�z��

�
��������

�
��

�����������������������

�
�k �

�

L� ����

�
��z�z��

�
��������

�
��

�����������������������

�
�k �

�

L� ����

�
��z�z��

�
��k

�����������
�
��

�
������

�
��

��z�
�
������

�
��

��z��

�
�z��z�z

�� �

Inserting this into (3.30) and using (3.7) and definition (3.17) leads to

�

U �x� y� v� �
�

U �x�� y�� w�



� (3.32)

�

Z y

x

dz

Z y�

x�
dz�

�

v � w
��z � z�� ��z � �z�� �h

�

Z y

x

dz

Z y�

x�
dz�

��������
�
��

�����������������������
��z � z�� �z�k

�

Z y

x

dz

Z y�

x�
dz�

��������
�
��

�����������������������
��z � z�� �z��k

�

Z y

x

dz

Z y�

x�
dz�

� �����z�������
�
�� � ����z��������

�
���

�����������
�
��

�k �z��z � z�� �

with

�h �
�

U �x� z� v�
�

U �x�� z�� w� �h

�

U �z� y� v�
�

U �z�� y�� w� �

�k �
�

U �x� z� v�
�

U �x�� z�� w� �k

�

U �z� y� v�
�

U �z�� y�� w� �

Partial integration of the first three terms reduces the expression to boundary terms. There
arise additional terms from derivatives of the spectral parameter (cf. (3.2)). E.g. the second
term in (3.32) gives a contribution of

�
�����

�
� ��������

� � ��������
��

�����������
�
���������

����������
������

�
������

�
���

�
� �
����������������� � ������������������

�
���

����������������������������
�
��

������ �
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3 INTEGRABILITY

the third term yields the same with opposite sign and�� and�� interchanged. This combines
into a term proportional to������ which is precisely cancelled by the contribution from the
last term in (3.32) (note the different arguments of the dilaton�). Altogether, there remain
the following boundary terms


�

U �x� y� v� �
�

U �x�� y�� w�



� (3.33)

�

v � w
�



��x� x�� y�

� �

U �x� x�� v� �h

�

U �x�� y� v�
�

U �x�� y�� w�
�

� ��x�� x� y��
� �

U �x�� x� w� �h

�

U �x� y� v�
�

U �x� y�� w�
�

� ��x� y�� y�
� �

U �x� y�� v�
�

U �x�� y�� w� �h

�

U �y�� y� v�
�

���x�� y� y��
� �

U �x� y� v�
�

U �x�� y� w� �h

�

U �y� y�� w�
� 


�
��x� x�� y�

v � w

� �

U �x� x�� v� �k

�

U �x�� y� v�
�

U �x�� y�� w�
� ��x�� v�������x�� w��

��x�� w�������x�� v��

�
��x�� x� y��

v � w

� �

U �x�� x� w� �k

�

U �x� y� v�
�

U �x� y�� w�
� ��x� w�������x� v��

��x� v�������x� w��

�
��x� y�� y�

v � w

� �

U �x� y�� v�
�

U �x�� y�� w� �k

�

U �y�� y� v�
� ��y�� v�������y�� w��

��y�� w�������y�� v��

�
��x�� y� y��

v � w

� �

U �x� y� v�
�

U �x�� y� w� �k

�

U �y� y�� w�
� ��y� w�������y� v��

��y� v�������y� w��
�

where we have made use of the abbreviation:

��x� y� z� �



� for x � y � z
	 else �x �� y �� z�

�

We are mainly interested in the modified transition matrices from (3.19). Their Poisson
brackets acquire additional contributions from


�

U �x� y� v� �
�

V �x��



�

� ��x� x�� y� ��x�� v�

��x����� ���x�� v��

�

U �x� x�� v�
�

V �x�� �k

�

U �x�� y� v� �

�

V �x� �
�

U �x�� y�� w�



� �

� ��x�� x� y�� ��x� w�

��x���� ���x� w��

�

U �x�� x� w�
�

V �x� �k

�

U �x� y�� w� �

etc.
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3.2 Transition matrices and their Poisson algebra

The final result then is

�

V�� �x�
�

V�� �x��

�
�eU �x� y� v� �

�eU �x�� y�� w�

�
�

V �y�
�

V �y�� (3.34)

�
�

v � w
�



��x� x�� y�

� �

U �x� x�� v� �h

�

U �x�� y� v�
�

U �x�� y�� w�
�

� ��x�� x� y��
� �

U �x�� x� w� �h

�

U �x� y� v�
�

U �x� y�� w�
�

� ��x� y�� y�
� �

U �x� y�� v�
�

U �x�� y�� w� �h

�

U �y�� y� v�
�

���x�� y� y��
� �

U �x� y� v�
�

U �x�� y� w� �h

�

U �y� y�� w�
� 


�
��x� x�� y�

v � w
f�x�� w� v�

� �

U �x� x�� v� �k

�

U �x�� y� v�
�

U �x�� y�� w�
�

�
��x�� x� y��

v � w
f�x� v� w�

� �

U �x�� x� w� �k

�

U �x� y� v�
�

U �x� y�� w�
�

�
��x� y�� y�

v � w
f�y�� w� v�

� �

U �x� y�� v�
�

U �x�� y�� w� �k

�

U �y�� y� v�
�

�
��x�� y� y��

v � w
f�y� v� w�

� �

U �x� y� v�
�

U �x�� y� w� �k

�

U �y� y�� w�
�
�

with � from above and

f�x� v� w� �
�����x� w���x� v�����x� w�

�����x� w�
�

This result superficially resembles the corresponding bracket arising in the PCM [24].
In fact, neglecting the coset structure (i.e. formally putting�h��k��g) and dropping the
coordinate dependence of the spectral parameters�, equation (3.34) explicitly reduces to the
brackets appearing in the PCM.

At first sight, we thus face the same fatal problem: With distinct endpointsx� x�� y� y� the
algebra (3.34) is uniquely and well defined, satisfying in particular antisymmetry and Jacobi
identities. The limit to coinciding endpoints on the other hand is obviously ambiguous. E.g.
it is easy to check that

lim
x�x�

x�x�

�
�eU �x� y� v� �

�eU �x�� y�� w�

�
�� lim

x�x�

x�x�

�
�eU �x� y� v� �

�eU �x�� y�� w�

�
�

since

f�x� v� w� �� f�x� w� v� � (3.35)

In the PCM this ambiguity survives in the limitx� x� � ��� y� y� �� with no possibility
to cure this in accordance with antisymmetry and validity of the Jacobi identities [86, 24].
The corresponding transition matrices relating the spatial boundaries however are the main
objects of interest, since they encode the integrals of motion. Several procedures have been
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3 INTEGRABILITY

suggested to nevertheless make sense out of the classical Poisson algebra of the PCM [38,
31, 87].

In our model on the other hand, the coordinate dependence of the spectral parameter�
changes the situation drastically. Namely, since the functionf�x� v� w� inherits this depen-
dence, the ambiguity (3.35) may “fade out” in a certain limit. This happens if at the end-
pointsx� x� andy� y� the variable spectral parameter� becomes independent of the constant
one, such that (3.35) becomes an equality. These possible fixpoints of the spectral parameter
are	,� and�i (cf. (3.5), (3.6)). In this case equation (3.34) shrinks to an algebra related to
Drinfeld’s Yangian [28]. We shall demonstrate this for the two choices of Weyl coordinates
(2.20) in the next section.

3.3 Nonlocal charges and their Poisson algebra

In this section, we analyze the integrals of motion obtained above for the two particular cases
of Weyl coordinates (2.20) assuming the vector field��� to be globally space- and timelike,
respectively. Evaluating the general result (3.34), we obtain the relevant Poisson algebra of
nonlocal charges. The same fundamental structures arise from somewhat different sides.

Nonlocal charges for a spacelike (radial) dilaton

For this paragraph, let us assume that the vector field��� is globally spacelike. We can then
identify � with a radial coordinatex� r � �	���. This is a common coordinate system for
the description of cylindrically symmetric gravitational waves [69, 79, 3]; the symmetry axis
is given byx�	. For pure Einstein gravity, we have already introduced these coordinates in
(2.21). The dual field
� is identified with the time:

� � x � �	��� � 
� � t � (3.36)

Let the physical currentsP�, P� fall off sufficiently fast at spatial infinityx�� with
V � I and behave regularly on the axisx� 	. According to (2.28), in four dimensions we
can demand this for the currents which are either related to the original matrixV from (2.25)
or to the matrixVD carrying some of the the dual potentials. A physically interesting class of
gravitational waves is e.g. described by restricting to regularVD on the symmetry axis [17].

In the sense of (3.22), (3.23) there are thus two interesting points :x�� satisfying (3.22)
andx� 	 with (3.23). According to (3.24) they give rise to the following two solutions of
the linear system:bV��x� ��x� w�� � V�	�U�	� x� w� � bVBM�x� ��x� w�� � (3.37)bV��x� ��x� w�� � V���U��� x� w� �

The second equality in (3.37) follows from the behavior of the moving branch cut (cf. Fig-
ure 1) inbV����. The matrixbV� is the (unique) solution of (3.1) which as a function of� is
holomorphic in the unit discD��D� and thus coincides withbVBM from (3.12). The solutionbV���� on the other hand is the unique one which is holomorphic in the lower half plane
D�� 
D� or the upper half planeD�� 
D�, respectively, depending on the sign of�w. In par-
ticular, bV����w�� as a function ofw is discontinuous along the realw-axis since forx��
the branch cut blows up and cuts thew plane into two halves (cf. (3.18)).

29



3.3 Nonlocal charges and their Poisson algebra

From (3.37) we extract the integrals of motion

U��w� � bV�bV��� � eU�	��� w� � for w � H� � i.e. for �w��	 � (3.38)

where the index� refers to the discontinuity ofbV� along the realw-line. TheU��w� are
(G-valued) holomorphic functions inH� andH�, respectively, and related by

U��w� � U�� �w� � (3.39)

According to (3.24), further integrals of motion descend from the monodromy matrices
(3.9) of bV� and bV�. They may however be expressed in terms of the matricesU��w�: For
realw it is

MBM�w� � M��w�
�����
� lim


��

�bV��x� ��w�i��� 

�bV���

�
x� ����w�i��

�� �
Fig.�
� lim


��

�bV��x� ��w�i��� 

�bV��� �x� ��w�i���

��
������
� lim


��

�
U��w� bV��x� ��w�i��� 


�bV��x� ��w�i���U��w�
��� �

������
� U��w� 


�
U��
� �w�

�
(3.40)

Throughout this calculation it is important thatx � jw� tj. This ensures that the limits
x�� and��	 interchange as well as��w�i�� � ����w�i��.

Vice versa, (3.40) can be understood as the essentially unique (Riemann-Hilbert) factor-
ization ofMBM into a product of matrices holomorphic in the upper and the lower half of the
complexw-plane, respectively. The symmetry (3.13) ofMBM further implies the relation

U��w� 

�
U��
� �w�

�
� U��w� 


�
U��
� �w�

�
� (3.41)

Together with (3.39) this ensures reality of all matrix entries ofMBM on the realw-axis:

MBM�w� �MBM� �w� � (3.42)

The monodromyM� associated tobV� follows from (3.38) and (3.40):

M��w� � U��
� �w�U��w� for w � H� � (3.43)

Summarizing, we find that all the the integrals of motion identified according to the
discussion in the previous section can be entirely expressed in terms of theU��w�. So far,
we have however not answered the question of their physical content. For this purpose, we
bring them into a more illustrative form. Starting from definitions (3.17), (3.38)

U��w� � V�x�	� t� P exp

Z �

�

dx

�
Q� �

� � ��

�� ��
P� �

��

�� ��
P�

�
�

the t-independence may be exploited to calculate this expression for realw at the specific
valuet � �w (assuming regularity of the currents):

U��w� � V�x�	� t��w� P exp

Z �

�

dx
�
Q��x��w�� iP��x��w�

�
� (3.44)
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3 INTEGRABILITY

The�-sign on the r.h.s. of (3.44) reflects the different limitslim
��� ��w�i��. On the real
w-axisU��w� thus naturally factorizes into the product of a real and a compact part. The
monodromy matrixMBM captures the real part of (3.44):

MBM�w� � V�x�	� t��w� 

�
V���x�	� t��w�

�
(3.45)

������
� M�x�	� t��w� � for w � R �

whereasM��w� carries the compact part of (3.44).
Equation (3.45) provides a physical interpretation for the new integrals of motion. They

comprise the values of the original fieldM on the symmetry axisx � 	. Having been
defined as spatially nonlocal charges for fixedt, they gain a definite localization in the two-
dimensional spacetime at fixedx.6

Moreover, this shows that they contain the entire information about the solution. Together
with the fact thatP��x � 	� � 	, which follows from the equations of motion (2.49), the
values on the symmetry axisx�	 allow to recover the fieldV everywhere. In some sense the
initial values on a spacelike surface have been transformed into initial values along a timelike
surface. Thus, theU��w� build a complete set of constants of motion for this classical sector
of solutions regular on the symmetry axis.

It remains to compute the Poisson algebra of the integrals of motionU��w�. According to
their definition (3.38) we evaluate the general result (3.34) in the limitx� x��	, y� y���.
The first four terms become�

�h

v � w
�

�

U �v�
�

U �w�

�
�

for arbitrary indices� at theU ’s.
The next two terms show the ambiguous behavior at coinciding endpoints. Depending

onx � x� or x � x� they give the coefficient

f�x� v� w� or f�x�� w� v� �

respectively, leaving to different results for different ways of taking the limitx�� x. Here,
the difference with the PCM becomes manifest: Since the spectral parameters depend on the
spatial coordinates, in the limitx� x� � 	 bothf�x� v� w� andf�x�� w� v� tend to� (cf. (3.5)).
The sum

lim
x�x�

�
��x�� x� y�f�x� v� w� � ��x� x�� y�f�x�� w� v�

�
thus is independent of how this limit is taken, keeping e.g.x � x� or x � x� or alsox � x�

with ��x� x� y�� �
�
.

In a similar way, the ambiguity from the last two terms vanishes. In the limity� y���,
the combinationsf�y� v� w� andf�y�� w� v� approach the same value. This common value is

6A similar relation holds for the monodromy matrix arising from timelike dimensional reduction (i.e. with
a Euclidean two-dimensional world-sheet�) in the regular regions of the spacetime [13]. In that setting,
singularities of the nonlocal charges in the spectral parameter plane are directly translated into singularities of
the original fields in space-time.

31



3.3 Nonlocal charges and their Poisson algebra

however sensitive to the choice of indices� at theU ’s, i.e. to the relative sign between the
imaginary parts ofv andw. If ��v� and��w� lie in the same of the two regionsD� andD�,
the functionf�y� v� w� tends to�, whereas it tends to�� otherwise (cf. (3.5)).

Thus, we arrive at the following Poisson algebra:

�

U� �v� �
�

U� �w�



�

�
�g

v � w
�

�

U� �v�
�

U� �w�

�
� (3.46)


�

U� �v� �
�

U� �w�



�

�g

v � w

�

U� �v�
�

U� �w� �
�

U� �v�
�

U� �w�
��

g

v � w
� (3.47)

with ��
g � �h � �k obtained from�g by applying the involution
 in one of the two spaces

�g � tA 	 tA � ��
g � 
�tA�	 tA � tA 	 
�tA� �

Equations (3.46) build two semi-classical copies of the Yangian algebra that is well
known from other�d field theories [10, 11, 12]. By semi-classical we mean as usual that
the Poisson brackets (3.46) coincide with the commutator of the�-graded Yangian algebra
in first order�. The mixed relations (3.47) appear “twisted” by the involution
 with respect
to those coming from the normal Yangian double.

Note that whereas (3.46) remains regular at coinciding arguments, (3.47) obviously be-
comes singular atv�w. However, sinceU� andU� are defined in different domains, this sin-
gularity appears only in the limit on the real line and thus with a well-definedi�-prescription.
In other words, the Poisson algebra (3.46), (3.47) is compatible with the holomorphy prop-
erties ofU��w�. For consistency, it may further be checked that the algebra (3.46), (3.47) is
indeed compatible with the the restrictionU��w��G and with the symmetry (3.41).

Remark 3.4 Let us recall the Poisson bracket (3.28) between the conformal factor� and the
integrals of motionU��w� obtained above:

fU��w�� ��x���g � ��wU��w� � (3.48)

where we have assumed that the value of the conformal factor on the symmetry axis is fixed
by the boundary conditions [3]. In the context of cylindrically symmetric�d gravity cou-
pled to scalar fields, the conformal factorexp � at radial infinity has a well defined physical
meaning. It contains the deficit angle describing the nontriviality of the asymptotically flat
�d metric and provides a measure of the total energy of the system. The simple form of its
Poisson bracket with the new variables may have further consequences upon quantization
[76].

Finally, we can also compute the symplectic structure on the Breitenlohner-Maison mon-
odromy matrixMBM, since we have identified this object within the canonical framework. It
follows from (3.46), (3.47) and (3.40) that its matrix entries form the closed Poisson algebra:


�

MBM �v� �
�

MBM �w�



� (3.49)

�g

v � w

�

MBM �v�
�

MBM �w��
�

MBM �v�
�

MBM �w�
�g

v � w

�
�

MBM �v�
��

g

v � w

�

MBM �w��
�

MBM �w�
��

g

v � w

�

MBM �v� �

The singularity atv�w is understood in the principal value sense.
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Nonlocal charges for a timelike dilaton field

Here, we deal with the case of a globally timelike vector field���, which allows to identify
� with the timet. Accordingly,
� now describes the spatial coordinatex. The distinguished
locationx�	 which has played the role of the symmetry axisr�	 in the previous paragraph
becomes now the origint� 	. With periodic spatial topology, this is the setting of the so-
called cosmological Gowdy-models [49].7 We will, however, just treat the asymptotic case
x � ������. The fundamental structures of the preceding section (the spacelike dilaton)
reappear in this context from a somewhat different side. So, for this paragraph we fix

� � t � 
� � x � ������ � (3.50)

According to (3.24) the transition matrices again provide solutions of the linear system:bV���x� ��w�� � V����U���� x� w� � (3.51)bV��x� ��w�� � V���U��� x� w� �

This time, the branch cut of Fig. 1 involved in the definition of the solutions (3.51) moves
along the realw-axis without changing its length. Both these solutions turn out to be holo-
morphic inside of the unit discD��D� in the�-plane, thus in fact it isbVBM � bV�� � bV� �

In particular, the objects

U�w� � bV���x� ��w��bV��� �x� ��w�� � I (3.52)

superficially analogous to (3.38) are trivial here.
However, again we have identifiedbVBM among the canonical objects. Its monodromy

matrixMBM�w� for realw is given by

MBM�w� � lim

��

�bVBM�x� ��w�i��� 

�bV��BM�x� ��w�i���

��
� (3.53)

for jw � xj � t. Unlike (3.40) there is no way to express this matrix directly in terms of
certain transition matrices. This is due to the fact that the limits�� 	 andx�� do not
interchange in (3.53).

The matrixMBM�w� can be given more explicitly. SinceM�w� is independent ofx and
t, we may evaluate it atx��w and in the limitt� 	. This yields:

MBM�w� � lim
t��

x��w

�
P exp

Z x

��

dz L��z� �� P exp �

Z x

��

dz 

�
L��z� ��

��
� V�x��w� t�	� 


�
V���x��w� t�	�

�
� M�x��w� t�	� � (3.54)

Thus,MBM�w� again coincides with the values of the physical fieldM at��	.

7See [53, 94] for a recent treatment of the Gowdy model in Ashtekar variables. The two Killing vector
field reductions of pure Einstein gravity in terms of Ashtekar variables and the metric variables used here are
equivalent [95, 120]. The explicit formulas of [120] allow to translate the results from one setting into the other.
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3.3 Nonlocal charges and their Poisson algebra

After some calculation, the general result (3.34) further yields the Poisson algebra of the
MBM here which turns out to coincide with (3.49):


�

MBM �v� �
�

MBM �w�



� (3.55)

�g

v � w

�

MBM �v�
�

MBM �w��
�

MBM �v�
�

MBM �w�
�g

v � w

�
�

MBM �v�
��

g

v � w

�

MBM �w��
�

MBM �w�
��

g

v � w

�

MBM �v� �

This is by no means a consequence of (3.49), since the matricesMBM in both contexts
descend from rather different definitions.

Via the Riemann-Hilbert decomposition ofMBM, discussed in (3.40), one can implicitly
obtain the matricesU�. They will satisfy the Poisson-structure (3.46), (3.47). Thus, together
with (3.54) the final situation appears rather similar to the previous paragraph.

However, this result must be taken with some caution. Obviously, (3.54) looses its mean-
ing if M�x� t� diverges ast�	. Starting from arbitrary initial data at finitet, this divergence
on the other hand is generic. What is actually described with (3.54) and (3.55) is the sec-
tor of the phase space whereM�x� t� behaves regularly att � 	. Note, that the canonical
formulation obviously fails to cope with describing this truncated phase space: Att�	 the
framework breaks down with the vanishing Lagrangian (2.45), whereas at finitet the con-
dition of regularity att�	 poses highly nontrivial implicit relations between the canonical
coordinates and the momenta. Thus, the results of this paragraph should only be understood
as an indication for some fundamental meaning of the Poisson algebra (3.49), (3.55) beyond
the particular choice of Weyl coordinates (3.36).

Finally, let us mention another rather intriguing point of view for the coincidence of
(3.49) and (3.55). Recall the setting of the spacelike dilaton (3.36) addressed above. In addi-
tion to the canonical (equal-time) symplectic structure, we could have derived an alternative
Poisson structure with respect to the radiusx.8 The calculations of this paragraph show that
these two Poisson structures of one model coincide for the values of the original fields on
the symmetry axisx�	, i.e. for a complete set of observables. In this sense, these symplec-
tic structures are essentially equivalent. It is tempting to speculate about further exploiting
the fundamental structure (3.49) even in the case of a timelike dimensional reduction, i.e.
the reduction to stationary axisymmetric spacetimes, where the canonical time is no longer
present.

Summary

We have shown that the model (2.45) in Weyl coordinates (2.20) is completely described by
a set of integrals of motionU��w� defined asG-valued functions which are holomorphic in
the upper and the lower half of the complex plane, respectively. They are related by

U��w� � U�� �w� � (3.56)

8In a covariant theory this is a quite natural idea which has been discussed in particular to describe static
settings [16]. For the Schwarzschild black hole e.g. one might doubt the distinct role of time in the canonical
formalism sincex andt change their character being space- and timelike, respectively, inside the horizon.
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3 INTEGRABILITY

and subject to the condition

U��w� 

�
U��
� �w�

�
� U��w� 


�
U��
� �w�

�
� (3.57)

The physical quantities are encoded in their matrix product

MBM�w� � U��w�

�
U��
� �w�

�
� (3.58)

which according to (3.45) coincides with the original fieldM�x� t� on the axis��	:

MBM�w� �M���x� t��	 � 
��x� t���w� � (3.59)

In particular, (3.56) and (3.57) imply thatMBM�w� is a symmetric matrix with real matrix
entries on the realw axis.

This structure has been revealed explicitly for the two definite choices of Weyl coordi-
nates (3.36) and (3.50), i.e. having fixed the gauge freedom of conformal transformations.
Since, according to (3.26), theU��w� are invariant under conformal transformations, this
structure extends also beyond these special choices. Its interplay with global properties of
an arbitrary dilaton field� remains to be studied.

The Poisson algebra of theU��w� is given by

�

U� �v� �
�

U� �w�



�

�
�g

v � w
�

�

U� �v�
�

U� �w�

�
� (3.60)


�

U� �v� �
�

U� �w�



�

�g

v � w

�

U� �v�
�

U� �w� �
�

U� �v�
�

U� �w�
��

g

v � w
� (3.61)

It gives rise to a closed Poisson algebra of the matrix entries ofMBM:

�

MBM �v� �
�

MBM �w�



� (3.62)

�g

v � w

�

MBM �v�
�

MBM �w��
�

MBM �v�
�

MBM �w�
�g

v � w

�
�

MBM �v�
��

g

v � w

�

MBM �w��
�

MBM �w�
��

g

v � w

�

MBM �v� �

Remark 3.5 Upon formal expansion aroundw ��, the Poisson algebra (3.60) coincides
with the semi-classical Yangian structure which was introduced by Drinfeld [27] in the
framework of Hopf algebras. To describe the Yangian double [28, 82, 11] it is usually con-
venient to take two copies of (3.60) with formal expansions aroundw � 	 andw � �,
respectively. In (3.60), (3.61) in contrast, theU��w� do not arise as formal power series but
as definite functions allowing holomorphic expansion in the upper and the lower half of the
complex plane, respectively. The formal expansions aroundw�	 andw�� hence are no
appropriate parametrization.

35



3.4 Symmetries: The Geroch group revisited

3.4 Symmetries: The Geroch group revisited

With the integrals of motionU��w� identified in the previous section, one can study the
symmetries which they generate via their adjoint action in the canonical Poisson structure.
As it turns out [75, 77], this yields a canonical realization of the Geroch group [47] with the
underlying Yangian algebra (3.60), (3.61). The transformations which close into an affine
algebra (the loop algebra�g, cf. (2.35)) do not preserve the symplectic structure. This is a
particular example of the Lie-Poisson action of dressing groups generated by the transition
matrices of integrable models [113, 6, 84]. For the integrable models studied so far within
the framework of the quantum inverse scattering method, the integrals of motion are encoded
in the eigenvalues of the transition matrices. Here, in contrast, the transition matricesU��w�
themselves are conserved charges.

The Geroch group and the linear system

In this paragraph, we sketch how the action of the Geroch group may be encoded in an action
on the linear system (3.1). Since our main goal is the canonical realization of the Geroch
group in the next paragraph, we keep the discussion rather brief, referring to [61, 13, 99] for
details.

We have seen the one to one correspondence between solutionsV of the original equa-
tions of motion (2.49) and the associated solutionsbVBM of the linear system (3.1). The latter
allow the factorization (3.15)bVBM��� � SBM�w�bVBZ��� � (3.63)

into a matrixSBM�w� living in the w-plane and a matrixbVBZ��� living in the �-plane and
invariant under the involution
� from (3.8). Conversely, this equation shows how to obtainbVBM��� fromMBM: DecomposeMBM according to (3.14) and determine the uniquebVBZ���
invariant under
�, such that the product (3.63) as a function of� is holomorphic inside
the unit disc. Thus, one obtainsbVBM���, which in particular is sufficient to reproduce the
original fieldsV according to (3.11).

This procedure describes the finite transformations of the Geroch group, which generate
an arbitrary solutionbVBM from the vacuum solutionbV�

BM � I. They are parametrized by
G-valued matricesS�w�. The group structure is simply given by matrix multiplication:
On a given solutionbVBM, S�w� acts by left multiplication which in turn induces a right
multiplication to restore the holomorphy inside the unit�-disc. The monodromy matrix
MBM transforms as

MBM�w� �� S�w�MBM�w� 

�
S���w�

�
� (3.64)

On the algebra level, this action takes the following form: Parametrizing the algebra
action by ag-valued meromorphic function��w� we define

��bVBM��� � ��w�bVBM��� � bVBM�������� � (3.65)

where����� is the unique function invariant under
� which restores the holomorphy of
��bVBM��� inside the unit disc. The infinitesimal version of (3.64) accordingly reads

��MBM�w� � ��w�MBM�w��MBM�w� 
���w�� � (3.66)
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We have now associated a finite transformation of the Geroch group to each element of
the phase space, by which it is generated from the vacuum solution. According to (3.63) the
Geroch group is generated by meromorphic functionsS�w� mapping the complexw-plane
into the groupG. Denote this group byG�. The phase space may be understood as an
infinite-dimensional coset space

G
��H� � (3.67)

whereH� refers to the subgroup ofG-valued functions on the�-plane invariant under
�.9

This subgroup describes the freedom of right multiplication ofbV��� which leaves the asso-
ciated monodromy matrix (3.9) invariant.

The particular elementsbVBM may be viewed as a certain representative system of this
coset space (3.67). TheirH� gauge freedom is fixed (3.63) by demanding holomorphy in-
side of the unit disc in the�-plane. This is a generalization of the triangular gauge discussed
for the finite-dimensional coset spaceG�H in (2.25). The action of the Geroch group as
described above is the action of the coset space (3.67) on itself. In analogy to (2.14) the
linearized action onG� becomes highly nonlinear on the fixed representation systembVBM

of the coset space. On the algebra level, the action of the symmetry (3.65) is parametrized
by��g�, while���h� is required to restore the generalized triangular gauge.

Let us finally recover the structure of the Geroch group that we have encountered earlier
in the model of pure Einstein gravity. There, the Geroch group has been described as the
affine algebrabg (2.35) with the action of the generators given in (2.14) and (2.33), (2.34). The
algebrag� of meromorphicg-valued functions is formally related tobg by Laurent expansion
around a given pointw�.

With w��� the (truncated) Laurent expansion

��w� � �� � w�� � w��� � � � � � (3.68)

yields one half of the affine algebra. Since these��w� introduce a singularity at��	 they
require a compensating transformation�� according to (3.65) which acts nontrivially on
the physical fields eventually obtained from (3.11). The expansion (3.68) leads to explicit
recurrence relations for this action [99]. A closer check of (3.65) shows that indeed the
parameter�� describes the action (2.14) of the zero modesg	z�, whereas�� corresponds to
the action (2.33), (2.34) of the elementsg	z in bg. Thus, (3.65) generalizes the action (2.14)
of the zero modes of (2.35) to that half of the affine algebra which acts nontrivially on the
physical fields (cf. Remark 2.2). The other half of the affine algebra may be associated with
the Taylor expansion of��w� aroundw��� [61, 13, 99].

The canonical realization of the Geroch group

Here, we present the relation of the Geroch group described in the previous paragraph with
the integrals of motionU��w� that we have obtained in section 3.3. It turns out that this
provides a natural realization of the Geroch group via the canonical Poisson structure. For
definiteness, we assume the Weyl gauge (3.36) whenever necessary, such that, in particular,

9To properly defineH� as a subgroup ofG� one should regard (3.67) for fixed values ofx andt, with �
andw related by (3.3). See [13, 63] for the mathematical details.
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3.4 Symmetries: The Geroch group revisited

the solutionbVBM of the linear system is given by (3.37). As has been discussed above, the
entire symmetry structure also survives relaxing of this gauge choice.

Recall that theU��w� live in a matrix representation ofG, in particular each matrix entry
thus represents an element ofC�G�. Define in this representation the matrix valued operator

G��w� � adU��w�U
��
� �w� � (3.69)

where “ad” denotes the adjoint action via the canonical Poisson structure. To be precise, the
action ofG��w� on any phase space functionf is defined as

Gab
� �w� f �

�
Uam
� �w�� f

� �
U��
�

�mb
�w� �

in matrix indicesa� b. Since theU��w� are integrals of motion, this action is a symmetry
of the equations of motion of the theory. It is illustrative to calculate the transformation
behavior of the monodromy matrixMBM according to (3.58) and (3.60), (3.61):

�

G��v�
�

MBM �w� �
�g

v�w

�

MBM �w��
�

MBM �w�
��

g

v�w
� (3.70)

This motivates the definition of the following symmetry operator

G��� � tr

�Z
��

dv

��i
��v�G��v� �

Z
��

dv

��i
��v�G��v�

�
� (3.71)

for any algebra-valued function��w� � g, regular along the realw-axis and vanishing as
w��, where the path� � �� � �� is chosen to encircle the realw-axis, such that�� � H�

and��w� is holomorphic inside the enclosed area. Then, we obtain from (3.70)

G���MBM�w� � ��w�MBM�w��MBM�w� 
���w�� � (3.72)

which coincides with (3.66). This already reproduces the infinitesimal action of the Geroch
group in the canonical framework. Moreover, (3.72) shows that the symmetry group (3.71)
acts transitively among solutions which behave analytically on the symmetry axis� � 	
(cf. (3.59)).

Let us check, if we can also recover the action (3.65) on the solutionbVBM of the linear
system. Evaluating the key formula (3.34) according to the definitions (3.71) and (3.37)
leads to:

G��� bVBM�x� t� ��w�� � ��w�bVBM�x� t� ��w��� bVBM�x� t� ��w�����x� t� ��w�� �

where

���x� t� ��w�� �

Z
�

dv

��i�v�w�

hbV��BM � bVBM

i
h

(3.73)

�
�����w�

��w�

Z
�

dv

��i�v�w�

��v�

�����v�

hbV��BM � bVBM

i
k
�

with the algebra projections���h , ���k corresponding to the decomposition (2.37). The matrix
��w� depends on the constant spectral parameterw; in contrast,���x� t� ��w�� depends on
the variable spectral parameter� and obviously satisfies

���x� t� ��w�� � 
�����x� t� ��w��� � 

�
���x� t� �

���w��
�
�
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3 INTEGRABILITY

Thus, we find agreement with (3.65) and have in particular obtained a closed expression for
the compensatingh�–rotation�����. Indeed, it follows from the form of�� (3.73), that the
right multiplication ofbVBM with�� removes all singularities caused by the left multiplication
with ��w� from the unit disc (note that the path� surrounds the unit disc in the�-plane).

With the symmetry operator (3.71) at hand, we can directly calculate the infinitesimal
action of the Geroch group on all the original fields of the model. According to the general
formula (3.29) it follows that:

G���V�x� �

Z
�

dv

��i

�
��

���� ���
V�x�

hbV��BM�
bVBM

i
k

�
(3.74)

� �

Z
����

d�

��i �

�
V�x�

hbV��BM�
bVBM

i
k

�
�

The currentsP�� �
�
�P� � P�� transform as:

G���P��x� �

Z
�

dv

��i

�
��

���� ���

hbV��BM�
bVBM

i
h
� P��x�

�
(3.75)

�

Z
�

dv

��i


�����

����� ������ ���

hbV��BM�
bVBM

i
k
�

Equivalent forms of these infinitesimal symmetry transformations of the Geroch group have
been stated in [51, 119, 99].

The symmetry action on the conformal factor� is given by

G��� � �

Z
�

dv

�i�
tr
�
��v bVBM

bV��BM

�
� (3.76)

in accordance with the formula derived in [99]. Formula (3.76) is easily obtained from (3.27).
The algebraic structure of the symmetry operators (3.71) is most conveniently obtained

from (3.72), which immediately gives rise toh
G����� G����

i
� G

h
�������

i
� (3.77)

Like in the previous paragraph the symmetry algebra is parametrized by meromorphicg-
valued functions. Half of the affine algebra (2.35) may again be recovered by formal Laurent
expansion aroundw��.

Recovering the affine algebra

Definition (3.69) together with (3.60) yieldsh �

G� �v� �
�

G� �w�
i
�

�

v � w

h
�g �

�

G� �v��
�

G� �w�
i
� (3.78)

The commutator on the r.h.s. encodes the half of an affine algebra in its Taylor expansion
aroundv��, w�� [39]:

G��w� � I �
�

w
G�� �

�

w�
G�� � � � � �
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3.4 Symmetries: The Geroch group revisited

which corresponds to the expansion (3.68) in the sense that:

G��nw
n� � �

�
�Gn��Gn�� �

This relation follows from evaluating (3.71). There is a slight subtlety here, since strictly
speaking the functions��w� � �nw

n do not belong to the class of functions for which we
have defined (3.71). As the integrand is singular at infinity, definition (3.71) depends on the
precise choice of the contour in this region, which has not been specified above. Expansion
of (3.74) aroundw�� yields the action of these components on the physical fields. With
the asymptotic behavior

��w� �
�

�w
��

�

�w�
�
� � � � � (3.79)

it is possible to expandbVBM according to

bVBM�x� t� �� � V
�
I �

�

w
V� �

�

w�
V� � � � �

�
� (3.80)

with

V� �

Z x

�

dy ��y�V�y�P��y�V
���y� �

Then, (3.74) yields the following action (up to gauge transformations (2.38)):

G���w� V � ��V � (3.81)

G���w
�� V �

�
�� �VV�V

��
	
V �

G���w
�� P� � �

�
�V����V � P�

	
� ���

�
V���x���V�x�

	
k
�

This coincides with the structure found in (2.31), (2.33) and (2.34) forg�sl���. In particular,
it may easily be checked, that in this case the matrixVV�V

�� indeed covers the first dual
potentials (2.26) and (2.32).

The associated affine charges may be obtained from a formal expansion of the linear
system (3.1) in the following way: Interpreting (3.1) as a formal power series inw��, the
particular transition matrixbVBM�x� t� ��w�� from (3.37) admits an expansion according to
(3.80). Performing the limitx�� in each of the coefficients separately leads to a series

U�w� � I �
�

w
U� �

�

w�
U� � � � � � with Un � lim

x��
Vn � (3.82)

The first two charges obtained this way are

U� �

Z �

�

dx ��x�V�x�P��x�V
���x� � (3.83)

U� � �
�
U�
� � �

�

Z �

�

dx

Z �

x

dy ��x���y�
h
V�x�P��x�V

���x� � V�y�P��y�V
���y�

i
� �

�

Z �

�

dx ���x�V�x�P��x�V
���x� �

Z �

�

dx ��x�
��x�V�x�P��x�V
���x� �

It may be checked, that they generate the action (3.81). However, it is important to
notice that in general there is no relation between the formal power seriesU�w� defined
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3 INTEGRABILITY

in (3.82) and the integrals of motionU��w� from (3.38). This is due to the fact, that the
limits w�� andx�� do not interchange (manifest in the breakdown of the expansion
(3.79) atw � �t�x). In particular, all theUn are real, whereas theU��w� are complex
with (3.56). Nevertheless, the formal seriesU�w� generates the same action as the operators
(3.71) defined via theU��w�.

Remark 3.6 The closed expressions (3.74), (3.75) of the symmetry action on the physical

fields contain the pivotal term
hbV��BM�

bVBM

i
which is hardly computable explicitly. The affine

expansion (3.68) of the symmetry group has the seeming advantage, that it allows for explicit
expressions of the associated charges (3.83) and the action of the symmetry (3.81). However,
to obtain infinitesimal transformations which are integrated to physically meaningful solu-
tions, the entire formal power series in (3.68) has to be summed up, i.e. the same amount of
work is required. The closed form of (3.71) captures the structure of the full symmetry group.
In particular, it provides precise control over the deviation of this action from a symplectic
one (cf. (3.90) below) which later on becomes essential for the purpose of quantization.

Remark 3.7 We have given the canonical realization of the symmetry algebra (3.65). Ac-
cording to the discussion above this may formally be embedded into that half of the affine
algebrabg (2.35) which acts nontrivially on the physical fields. There is no canonical real-
ization of the other half and the central extensionk for the following reason: According to
Remark 2.2, the other half of the Geroch group leaves the physical fieldsV invariant and acts
by shifting the dual potentials encoded in a solutionbV of the linear system (3.1). However,
to set up the canonical framework we had to identify the particular solutionbVBM as a unique
functional of the physical fieldsV, which e.g. enabled us to obtain the symplectic structure
(3.62). There is hence no canonical object which would transform nontrivially while the
canonical fields are left invariant.

In other words, to incorporate the other half of the affine algebra and the central extension
of (2.35), the phase space would have to be enlarged by additional gauge degrees of freedom
(corresponding toh� in (3.67)). So far, it is not clear how to achieve this canonically, say,
on the Lagrangian level. See [63, 102] for further discussion.

Lie-Poisson actions

Definition (3.71) implies that the action of the Geroch group is not symplectic. Rather,
this type of operator generates a Lie-Poisson action, i.e. an action which does not preserve
the Poisson structure on the phase space but on the direct product of the phase space with
the symmetry group. In this paragraph, we briefly recall the mathematical concept of Lie-
Poisson actions and show how the canonical realization of the Geroch group matches this
framework. For the details and proofs we refer to [6, 84].

The action of a Lie groupG on a symplectic manifoldM is a map

G�M �M � g �m �� gm � (3.84)

It naturally induces a mapC�M��C�M� by f �� f �g � f �g �m� � f�gm� � The action
(3.84) is called symplectic, if for fixedg�G it is a Poisson map, i.e. it is compatible with the
symplectic structure onM :

ff� � g� f� � gg � ff�� f�g � g �

41



3.4 Symmetries: The Geroch group revisited

for any two functionsf�� f� � C�M�. The infinitesimal version of this condition reads

fXf�� f�g� ff�� Xf�g � Xff�� f�g � (3.85)

whereX is the vector field related to the action ofg�G and may be understood as an element
of the associated Lie algebrag. Every infinitesimal action of this kind is locally generated
by a charge

Xf� � fQ� f�g � (3.86)

and vice versa every action generated as (3.86) is obviously symplectic (due to the Jacobi-
identities). An example of a symplectic action in our model is e.g. given by the action of the
zero modes of the affine algebra (2.14), which is generated by the chargesU� from (3.83).

For the subsequent generalization it is convenient to also state the dual version of (3.85).
The actionf ��Xf induces the dual map

� � C�M�� C�M�	 g�� f �� �f � C�M�	 g�� �f�X�g� � Xf �

in terms of which a symplectic action (3.85) satisfies:

f�f� � f�g� ff�� �f�g � �ff�
f�g � (3.87)

Let the groupG now be a Lie-Poisson group, i.e. equipped with a symplectic structure

C�G�� C�G�� C�G� � (3.88)

such that the group multiplication is a Poisson map. The Poisson structure naturally induces
a Lie-algebra structure ong� (loosely speaking obtained from the differential of (3.88)). The
spaceG�M then is a symplectic space with the product symplectic structure:

ff�� f�gG�M�g�m� � ff���� m�� f���� m�gG�g� � ff��g� ��� f��g� ��gM�m� � (3.89)

To evaluate the r.h.s. the functionsfi are understood as functions onG with parameterm
and as functions onM with parameterg, respectively. The action of a Lie-Poisson group on
a symplectic manifoldM is called a Lie-Poisson action, if (3.84) is a Poisson map, where
G � M is equipped with (3.89). Compared with (3.87), the infinitesimal form of a Lie-
Poisson action gets an additional contribution:

f�f� � f�g� ff�� �f�g � �ff�
f�g � ��f�� �f�� � (3.90)

The commutator on the r.h.s. refers to the Lie-bracket induced ong�. This explicitly shows
that a nonabelian Lie-Poisson action is not symplectic.

In our model the action of the generatorsG��w� is precisely of the form (3.90). Evalu-
ating definition (3.69) yields

fG��w�f�� f�g� ff�� G��w�f�g � G��w� ff�� f�g � �G��w�f� � G��w�f�� �

where the commutator is understood for the matrix-valued action ofG��w�. This coincides
with (3.90). In fact every Lie-Poisson action is at least locally generated by an operator of
the form (3.69) [6, 84]; this is the nonabelian generalization of (3.86).

42



3 INTEGRABILITY

In particular, dressing transformations in normal integrable systems are generated by an
operator (3.69) whereU�w� denotes the transition matrix of the Lax connection, the eigen-
values of which give charges in involution. In our model in contrast the matricesU��w�
are integrals of motion themselves and parametrize the entire phase space. Rather than con-
structing the Lie-Poisson action (3.71) we could alternatively consider the pure symplectic
action of the matrix entries of theU��w� via Poisson brackets. However, though this action
is certainly symplectic, it allows neither explicit exponentiation nor a closed form of the
commutator algebra, in contrast to (3.72) and (3.77).

3.5 The Abelian sector

The results of this chapter simplify significantly if the groupG is Abelian. In this case, all
equations linearize and allow an explicit solution. Thus, truncating the model to its Abelian
subsector may serve as a simple illustration or may be viewed as a testing ground for issues
like implementing further symmetries or approaching the quantization of the model.

Here, we illustrate this forG�U���. In the context of four-dimensional Einstein gravity
(2.21) this corresponds to a diagonal matrixMab, i.e. cylindrical gravitational waves re-
stricted to collinear polarization. These solutions have already been discovered by Einstein
and Rosen [33]. Quantization of this sector has been studied as a midi-superspace model of
quantum gravity [79, 3, 4]. With Euclidean signature of the two-dimensional world-sheet,
this truncation is the one from stationary to static solutions of Einstein’s equations.

Like in (2.21) we choose Weyl coordinates (3.36), identifying the dilaton� with the
radiusx. ParametrizeM by

M �

�
e�

	

	

e��

�
�

The Ernst equation (2.22) in this case reduces to the cylindrical wave equation

���t �� x���x�� ��x� � 	 � (3.91)

with general solution

��x� t� �

Z �

�

dk
�
A��k�J��kx�e

ikt�A��k�J��kx�e
�ikt
�
� (3.92)

whereJ� denote Bessel functions of the first kind. Another representation of the general
solution of (3.91) is given by

��x� t� �

I
�

dv

��i
m�v� ����v��v� � �

I
�

dv

��i
�vm�v� ln���v�� � (3.93)

with the spectral parameter� from (3.3) and a path� encircling the moving branch cut in the
w-plane (cf. Figure 1). This representation even allows for an explicit solution of the linear
system (3.1):

�����w�� �

I
�

dv

��i

m�v�

��v����w�
�v��v� � (3.94)
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where�� is one diagonal component ofln bV .
The general solution of (3.91) is thus parametrized by a real functionm�w� or by the

complex functions

A��k� � A��k� with k � 	 �

Let us illustrate their relation. On the axisx�	 it is

��x�	� t� �

Z �

�

dk A��k�e
ikt �

Z �

�

dk A��k�e
�ikt � m�w��t� �

This is nothing but the decomposition of a function on the real line into the sum of two
functions holomorphic in the upper and the lower half of the complex plane, respectively.
Comparing this decomposition to the nonabelian case (3.40), (3.45) we see the embedding
of the abelian case according to

MBM�w� � exp

�
m�w�

	

	

�m�w�

�
� (3.95)

U��w� � exp

�R�
�
dk A��k�e

�ikt

	

	

�
R�
�
dk A��k�e�ikt

�
�

Thus it follows immediately, thatm�w� or equivalently theA��k� form a complete set of
integrals of motion. Let us verify the symplectic structure in these variables. In terms of the
original fields� the Poisson structure (2.57) reduces to

f��x� � �t��y�g �
�

x
��x�y� �

With (3.92) this translates into

fA��k�� � A��k��g � �i ��k��k�� � fA��k�� � A��k��g � 	 � (3.96)

For the Fourier transforms appearing in (3.95) this implies
Z �

�

dk�A��k��e
�ik�v �

Z �

�

dk�A��k��e
�ik�w



�

�

v � w
�

and

fm�v� � m�w�g �
�

v � w
� (3.97)

Upon exponentiation, this leads to the abelian version of (3.60), (3.61) and (3.62).
Moreover the action of the Geroch group takes a simple form in this abelian case. Ac-

cording to (3.90), in the abelian case we expect a symplectic action which is generated by

G��� �

I
�

dv

��i
��v�adm�v� �

with some function��v�. In the representation (3.93) this is easily seen to give rise to

G��� � �

I
�

dw

��i
��w� ����w��w� � (3.98)
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This coincides with the abelian version of (3.74).
Quantization of the abelian sector is straightforward [3]. The Poisson algebra (3.96)

gives rise to a representation in terms of creation and annihilation operators

A�j	i � 	 with A� � Ay
� � (3.99)

Coherent quantum states may be constructed basically in the same way as in flat space quan-
tum field theory. However, a recent discussion has shown that, interestingly enough, these
states do not provide coherence of all essential physical quantities [4, 46]. Even though
we know that the linearized structure (3.96) does not appear in the full nonabelian model,
(3.99) may give a hint on the nature of relevant representations of the operator algebra which
replaces the integrals of motion after quantization. We will return to this point in section 5.3.
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4 Supergravity

In this chapter, we show how the results obtained so far may be extended to locally
supersymmetric theories [105]. The simplest of these models descends from dimensional
reduction ofN �� supergravity in four dimensions and leads to anN �� superextension of
the bosonic model described in section 2.1 (see e.g. [99]).

Here, we analyze maximally extendedN � �� supergravity in two dimensions. This is
the theory obtained by Kaluza-Klein type dimensional reduction fromN�� supergravity in
eleven dimensions [21] viaN �� supergravity in four dimensions [22] and via theN ���
theory in three dimensions [92]. A detailed description of the dimensional reduction to two
dimensions has been given in [62, 98, 103].

After introducing the model, we extend the canonical framework of section 2.3 to the
fermionic sector. We give the expressions for the generators of local supersymmetries in
all fermionic orders and work out the fullN ��� superconformal constraint algebra which
extends the conformal algebra (2.62) of the bosonic sector. Finally, we construct nonlocal
charges associated to the linear system. Generalizing (3.26), they are shown to be invariant
under local supersymmetry and hence under the full constraint superalgebra. The Poisson
algebra of charges turns out to coincide with the structures that already appeared in the
bosonic sector.

4.1 The model: N��� supergravity in two dimensions

In this section, we describe the superextension of the bosonic model that we have treated in
the previous chapters and set up the canonical framework.

Let us state the field content ofd��� N ��� supergravity. The matter sector consists of
128 bosons and 128 fermions which transform in inequivalent (left and right handed) spinor
representations ofSO����. The bosonic fields form the coset spaceG�H � E������SO����,
i.e. they are encoded in a matrixV � E� with SO���� gauge freedom (2.38). We denote
the generators of the Lie algebrae� by XIJ � �XJI with I� J � �� � � � � �� andY A with
A � �� � � � � ���, corresponding to the decomposition�������
��� of e� into the adjoint
and the fundamental spinor representation ofSO����. The defining relations ofe� are�

XIJ � XKL
	

� �JKXIL � �IKXJL � �ILXJK � �JLXIK � (4.1)�
XIJ � Y A

	
� ��

�
�IJAB Y

B �
�
Y A� Y B

	
� �

�
�IJABX

IJ �

where the�IJAB denote theSO����-�-matrices

�I
A 
A

�J
AB � �IJAB � �IJAB � (4.2)
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In the adjoint representation ofe� these generators are normalized such that

tr
�
XIJXKL

�
� ���	 �IJKL � tr

�
Y AY B

�
� �	 �AB �

The full coset structure of the bosonic sector has been described in section 2.2. According to
(2.39) the bosonic currentV����V is decomposed into

V����V � �
�
QIJ
� XIJ � PA

� Y
A � (4.3)

exhibiting theSO���� gauge fieldQIJ
� and thePA

� transforming in the left handed spinor
representation ofSO����. The fermionic matter part is given by 128 physical fermions
which accordingly transform in the right handed spinor representation ofSO����; they are
denoted by� 
A

� with �A � �� � � � � ���.
In addition, we have the gravitino�I

� and the “dilatino”�I
� which descend from the�d

gravitino and form the superpartners of the zweibeine�� and the dilaton�, respectively (cf.
(2.5),(2.6)). Before we state the Lagrangian, we introduce our spinor conventions in two
dimensions.

Spinor conventions We introduce�-matrices in two-dimensions which satisfy the algebra
(in flat indices�, �)

���� � ��� � ����
� � ���� � ����

� (4.4)

with ��� � ���� � �. An explicit realization is given by

�� �

�
	

i

�i

	

�
� �� �

�
�i

	

	

i

�
� �� �

�
	

�

�

	

�
� (4.5)

We make use of the Majorana representation where the charge conjugation matrix isC � ��,
such that a Majorana spinor obeying� � �TC has two real components. We will use the
decomposition into Majorana-Weyl spinors

�
�
��� ���� �

�
��
���

�
� (4.6)

and treat the one component spinors�� as real anticommuting variables at the classical
level. Let us also give some useful rules for the transcription between two component and
one component notation:

�� � �i����� � ����� ���� � ��i����� � �����

���� � ����� ���� � �����

The fully covariant derivatives on the spinor fields are given by

D��
I � ���

I � �
�
�����

�����I �QIJ
� �J � (4.7)

D��

A � ���


A � �
�
�����

�����

A � �

�
QIJ
� �IJ
A 
B

�

B �

where the spin connection���� is a function of the two-dimensional metric and its super-
partners [106].
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Lagrangian and equations of motion

The Lagrangian ofd��� N��� supergravity is most conveniently obtained by dimensional
reduction ofd��� N��� supergravity [92] as described in [98].

L � ��
�
�E���R��� � ��E�������

I

�D��
I
� � i�E����


A��D��

A � �

�
�E���P �APA

�

� �E����

A�����I

��
I

A 
A
PA
� � i�E����


A�����I
��

I

A 
A
PA
� � (4.8)

up to higher order fermionic terms. The first two terms of (4.8) describe two-dimensional
gravity and theN � �� Rarita-Schwinger extension. The next two terms give the matter
couplings of the 128 fermionic and 128 bosonic fields, respectively; the last terms are of
Noether type to ensure supersymmetry of the action.

In addition, there arise several quartic fermionic terms which we omit here. Although
in principle they may be determined from the higher-dimensional theory, this computation
becomes rather lengthy due to additional fermionic contributions which arise from the elim-
ination of the Kaluza-Klein vector fields.10 Nonetheless, in (4.24) below we give the exact
expressions for the generators of the local supersymmetries, which are sufficient to recon-
struct all higher order terms systematically as well as to prove exact supersymmetry of the
conserved charges.

The action (4.8) is manifestly invariant under general coordinate transformation in two
dimensions, as well as under theSO���� transformations

�� Q
IJ
� � D��

IJ � ���
IJ �QIK

� �KJ �QJK
� �KI � (4.9)

�� P
A
� � �

�
�IJAB�

IJPB
� �

�� �
I � �IJ�J �

�� �

A � �

�
�IJ
A 
B

�IJ�

B �

with theSO����-parameter�IJ�x� � ��JI�x�.
In the following we employ the superconformal gauge

e �
� � ��� exp � � �I

� � i���
I � (4.10)

which naturally extends (2.8). In this gauge, the two-dimensional spin-connection from (4.7)
reads (up to bilinear fermionic terms)

���� � ������� �

such that in terms of the the one-component spinors introduced above, the covariant deriva-
tive �

�� �
�
�
�����

��
�
�� �

�
�� � �

�
���

�
�� � ��

�
�� exp�

�
�
��
�
�

may be absorbed by rescaling the fermions with the conformal factor. Like in the bosonic
case, the conformal factor then almost completely disappears from the Lagrangian except for
its explicit appearance in the two-dimensional curvature term coupled to the dilaton�.

10Unlike in (2.16), here, the Kaluza-Klein field strengths do not vanish but are expressed through bilinear
fermionic terms. Their elimination from the Lagrangian then gives rise to additional quartic fermionic terms.
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We next list the equations of motion in the superconformal gauge. The bosonic equations
(2.48), (2.49) are extended to
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modulo quartic spinor terms. The fermionic equations of motion read
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modulo cubic spinor terms.
Like in the bosonic case, there are further equations that descend from the Lagrangian

(4.8) before (super)conformal gauge is adopted. They are to be regarded as constraints aris-
ing with the unimodular components of the�d metric and the traceless modes of the grav-
itino, respectively, as Lagrangian multipliers. The resulting expressions are
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generating conformal and superconformal transformations. Modulo higher order fermionic
terms the superconformal transformations of the fields are given by
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(4.15)

with the parameter�I� obeying

D��
I
� � 	 (4.16)

again modulo cubic spinor terms. These are the supersymmetry transformations which leave
the Lagrangian (4.8) invariant and are moreover compatible with the superconformal gauge
choice (4.10). As an algebra, these transformations close into anN � �� superconformal
algebra which additionally contains the conformal and the localSO���� transformations.
It is distinguished from the standard superconformal algebras by the fact that it is a soft
algebra, i.e. it appears with field dependent structure “constants”. This will be discussed in
more detail in the next section.
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4.1 The model:N��� supergravity in two dimensions

Canonical Poisson brackets

The Poisson brackets of the bosonic sector of the model are obtained in the same way as
(2.50) and (2.57) above. With canonical momenta

�IJ �
�S

����QIJ
� �

� �A �
�S

����PA
� �

�

the relations (2.54) and (2.55) receive additional fermionic contributions and in components
take the following form
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and
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The first relation gives rise to the bosonic Poisson brackets for the physical fields, the sec-
ond one defines the set of weakly vanishing first-class constraints generating theSO����
transformations. In analogy to (2.57) we obtain the Poisson brackets�
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4 SUPERGRAVITY

The fermionic sector as usual requires a Dirac procedure since the fermionic canonical
momenta appear proportional to the fermions themselves. The final brackets are found to ben

�
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Due to the explicit appearance of the dilaton field in the r.h.s. of (4.21), this fermionic Dirac
procedure also gives rise to the following non-vanishing mixed bracketsn
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while the form ofP� in (4.17) gives rise ton
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Since most of these brackets look rather unwieldy, it may be worthwhile to look for
simpler canonical variables. E.g. the modified momenta
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commute with all the fermions and with���. Moreover, we notice that the rescaled fermions
�� and�

�

�� commute with��� as well.

4.2 Constraint superalgebra

In this section, we establish the constraint superalgebra generated by the superconformal
transformations (4.15). As discussed above, this is the part of the original symmetry algebra
of (4.8) which is compatible with the truncation to superconformal gauge (4.10). These
transformations close into anN��� superconformal algebra which in addition contains the
conformal transformations generated by (4.13) and theSO���� gauge transformations (4.9).
Closure of the supersymmetry algebra is known from general reasoning [106, 92].

To avoid overlap with the general discussion of the constraint algebra in the bosonic case,
we simply state the full expressions for the supersymmetry generators
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4.2 Constraint superalgebra

including all cubic fermionic terms. These terms have been reconstructed from the require-
ment of closure of their algebra�
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This again is an exact result, i.e. valid in all fermionic orders. The constraint superalgebra
consistently closes in terms of the Virasoro constraintsT�� and theSO���� constraints�IJ .
We emphasize, that the closure of this algebra uniquely fixes all the cubic fermionic terms in
(4.24).

The supersymmetry generators (4.24) are the crucial operators here, since they span the
full constraint algebra. Thus, complete knowledge of these generators is sufficient to prove
gauge invariance of the nonlocal conserved charges in the next section. Moreover, with
(4.24) at hand we are in position to compute e.g. the quartic spinorial contributions toT��
straight-forwardly. By means of the super-Jacobi identities

ffSI
�� S

J
�g� �g � fSI

�� fS
J
�� �gg� fS

J
�� fS

I
�� �gg �

we can further directly obtain the conformal transformations generated by theT�� in all
fermionic orders.

With this in mind, we restrict to giving the rest of the superconformal algebra only up to
higher order fermionic terms again:
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The gauge transformations (4.15) and (4.9) are generated by
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4 SUPERGRAVITY

respectively. Conformal coordinate transformations with parameter�� � ���x�� are gen-
erated as in the bosonic model (2.60). One can verify that againT�� generates translations
along thex� coordinates modulo a localSO���� transformation with field dependent pa-
rameterQIJ

� .

Remark 4.1 For computation of the canonical Poisson brackets it is necessary to rewrite
T�� entirely expressed in terms of canonical variables. I.e. the time derivatives of the
fermions in (4.13) must be expressed by their spatial derivatives, making use of the fermionic
equations of motion (4.12)
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where the l.h.s. exhibits conformal covariance whereas the r.h.s consists of canonical vari-
ables. The “canonical” form (in contrast to the covariant form (4.13)) of the energy-momen-
tum constraint is then given by
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again up to quartic fermionic terms.

The constraint superalgebra (4.25), (4.26), (4.27) is a superconformal extension of the
Virasoro algebra (2.62) withN � �� supercharges. In contrast to the superconformal alge-
bras which have been studied in string theory and conformal field theory, it exhibits some
rather unusual features. Thus, its existence does not contradict the well-known absence of
superconformal algebras withN�
 [108].

First of all, this model does not allow the complete splitting into chiral halves:S� and
S� do not commute in (4.26). Another important property of (4.25) and (4.26) is, that they
obviously do not close into a linear algebra in the usual sense. Rather, on the r.h.s the
constraintsSI

� appear with coefficients that explicitly involve the fermionic fields�I and�I
� .

This is an example of the “soft” gauge algebras arising in (super)gravity [106, 115].
In addition, no internal chiral currents appear here. A linear superconformal algebra

with N supercharges requires an internal bosonicSO�N current. This is immediately seen
from the super-Jacobi identities involvingfSI� fSJ � SKgg. Vanishing of the�� contribu-
tions necessitates the additional current. In (4.25) in contrast, these terms originate from
the additional contributions due to the field dependent structure constants on the r.h.s.. The
SO����-current�IJ which is part of the gauge algebra in this model is obviously not chi-
ral. Its fermionic part splits into contributions with conformal weightsh� � � andh� � �,
respectively. Nonetheless, according to (4.27) the total conformal weight of�IJ is zero. An
underlying reason for this compensation is the fact, that in our model in contrast to the su-
perconformal string theories not only the fermionic but also the bosonic fields carrySO����
charge.

We close this section by stating the super extension of the gauge fixing (2.20) of the
constraint superalgebra

�� � x� � �� � �x� � �I
� � 	 � (4.29)
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which may accordingly be referred to as the super-Weyl gauge. Indeed this completely fixes
the conformal and superconformal gauge freedom.

4.3 Nonlocal charges and their Poisson algebra

In this section we show that supersymmetric nonlocal conserved charges may be constructed
in the same way as for the bosonic case studied in the previous chapters. The starting point
is the extension of the linear system (3.1) given in [98, 103]. With the full generators of
N ��� supersymmetry (4.24) at hand we show that this linear system does not receive any
quartic fermionic corrections but already generates the equations of motion into all orders.
The charges extracted from the transition matrices are invariant under the full gauge algebra
(4.27). Finally, we find that the Poisson algebra of charges coincides with the one obtained
in the bosonic sector (3.60), (3.61), (3.62).

Linear system

The supergravity equations of motion can be obtained as the compatibility condition of the
following extension [98, 103] of the linear system (3.1) for anE�-valued matrixbV:
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and the variable spectral parameter� from (3.3).
We emphasize that despite the occurrence of higher order fermionic terms in the equa-

tions of motion, the connection of the linear system (4.30) is only quadratic in the fermions.
All the higher order fermionic terms are generated from it. In super-Weyl gauge (4.29) this
has explicitly been shown in [98], the general proof follows from the result (4.31) below.

Nonlocal conserved charges

Here, we extend the result (3.26) of the bosonic case to the model with local supersymmetry.
The modified transition matriceseU�x� y� w� defined in (3.19) commute with theN � ��
supersymmetry generators under the same conditions that were already analyzed for (3.26)
and (3.20).

The behavior of the transition matrices (3.17) under supersymmetry transformations is
the following [105]n

U�x� y�w�� SI
��z�

o
�


� ��x� z� y�

���� ���
U�x� z�w�XIJSJ

��z�U�z� y�w� (4.31)
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with ��x� z� y� from (3.33) above. This result is again valid in all orders of fermions, i.e.
includes all the cubic fermionic terms from (4.24). For the modified transition matriceseU it
immediately implies:neU�x� y�w�� SI
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The r.h.s. vanishes if either the physical fields vanish, or the variable spectral parameter�
does while the fields remain regular (cf. (3.22), (3.23)). In complete analogy to the integrals
of motion obtained in the bosonic sector we may hence build conserved charges from the
transition matrices with fermionic contributions here.

A similar transformation behavior has been observed in the supersymmetric extension
of the nonlinear�-model [20, 23, 111, 36]. There, the bosonic nonlocal charges are invari-
ant under global supersymmetry. In our model, invariance under the local supersymmetry
is an indispensable condition for meaningful observables, since supersymmetry appears as
constraint.

In particular, (4.31) implies, that the connection of the linear system (4.30) does not
receive any quartic corrections but captures the equations of motion in all fermionic orders:
So far, this had only been shown for the������ terms [98], i.e. in the super-Weyl gauge (4.29)
where these are the only quartic terms arising. Since by supersymmetry transformations
(4.15) any solution can be fixed to obey the super-Weyl gauge, the invariance of the linear
system under supersymmetry shows that indeed no quartic corrections arise in the general
case.

The rest of this section is spent for a sketch of the proof of (4.31). The general formula
(3.29) yields

U�z�� x� v�
�
U�x� y� v� � SI

��z
��
�
U�y� z�� v� � (4.33)Z y

x

dz U�z�� z� v�
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L��z� ��z� v�� � S

I
��z
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�
U�z� z�� v� �

It is straightforward although lengthy to evaluate (4.33) using the form of the supersymmetry
generator (4.24) and the fundamental Poisson brackets (4.19)–(4.22). Up to the higher order
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terms in the fermions, this result has already been given in [101]. Thus it remains to check
the cubic fermionic terms.

Throughout this calculation, there appear four different sources yielding cubic fermionic
terms. First they descend from the brackets involving cubic terms in the supersymmetry
generatorsSI

�, second from bilinear fermionic terms in the Poisson brackets (4.19) between
P� andP�. Third, they arise from the Poisson brackets involving��� in SI

� and at last,
cubic terms enter when partial integration of the�� terms in (4.33) leads to the appearance of
the connectionL� again.

To give an idea of the calculation we show the cancellation of the cubic terms propor-
tional to�������� in (4.33). According to (4.21) and (4.22) we haven
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to the r.h.s of (4.33). Next, there comes a contribution from the bracket betweenP� in L����
and the���P� part of the supersymmetry constraint (4.24), which is due to the quadratic
fermionic terms in (4.19) and readsn
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Making use of (4.2) the two terms (4.34) and (4.35) sum up to
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Several further relevant terms arise from the Poisson brackets involving the�������
term in (4.24). Namely,fL����� ���g gives rise to several bilinear fermionic terms due to
the brackets (4.20), (4.22) and eventually also due to
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Altogether they sum up to
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I
��

�
�

��i����� 
� � ���

�����������
�N
A 
A
�I
���

N
���


AY A � (4.37)

Finally, the integrand of (4.33) has terms proportional to�z��z�z
�� due ton

L��t� �����

A
��

I

A 
A
PA
�

o
� �

���

���
�I
A 
A
�


A
�Y

A �z��z�z
�� �
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and �
L��t� �������

I
��

�
� �


�

������
�K
��X

KI �z��z�z
�� �

Upon partial integration in (4.33) and using (4.30) they give rise to

�
���

������
bQKL
� ����I

A 
A
�


A
�

�
XKL� Y A

	
�

�i�������

������
�I
B 
A

�MN
AB �M

���
N
���


AY A �

and

�
��

������
bPA
� ����

K
��

�
Y A� XKI

	
�

�i�������

������
�MI
AB�

N

B 
A
�M
���

N
���


AY A �

The sum of these two terms yields (again involving some�-matrix algebra (4.2))

��
i�������

������
�N
A 
A
�I
���

N
���


AY A � (4.38)

Adding the different terms (4.36), (4.37) and (4.38) finally leads to

�i��

������������
�

��i����� 
� � ���

������������
�

�
i�������

������
� 	 � (4.39)

We see, how the terms of the type�������� from all the different sources eventually cancel.
In a similar way all cubic fermionic terms in (4.33) can be shown to drop out. There remain
only those contributions which transform “homogenously” under the transition matrix, i.e.
which appear in the first line of the r.h.s. in (4.31).

Poisson algebra of charges

Eventually, we compute the Poisson algebra of the conserved charges that we have obtained
above. As it turns out, it is completely sufficient to compute the Poisson brackets of the con-
nection of the linear system (4.30). Namely, the result below coincides with (3.31) obtained
above in the bosonic sector (i.e. setting all fermions to zero, whereby (4.30) reduces to the
linear system (3.1).

A lengthy calculation gives the following Poisson brackets for the components of the
linear systemn bQIJ

� ����� bQKL
� ����

o
�

����� f
IJ
KL

MN

����������������

� bQMN ����� bQMN����
�
��x�y� �

n bQIJ
� ����� bPA

� ����
o

� �
�������

�
��

�����������������������
�IJAB bPB

� ���� ��x�y�

�
����

����������������
�IJAB bPB���� ��x�y� �

n bPA
� ����� bPB

� ����
o

�
��������

�
�

������������������������
�IJAB bQIJ

� ���� ��x�y�
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�
��������

�
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�IJAB �IJ ��x�y�

with �����x� v�, �����y� w� � and the structure constantsfIJ
KL
MN of so����. Translating

this back into tensor notation (2.56) we arrive at

�
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�
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and find them to be identical with the Poisson brackets (3.31) obtained above. Thus, we have
shown, that the integrable structure of the bosonic sector of this model completely extends
to its maximal supersymmetric version. The resulting algebra of observables will be (3.60),
(3.61) and (3.62) withE� valued matricesU��w� andM�w�, respectively.

In particular, the analysis of the symmetry structure from section 3.4 remains valid. With
the generators (3.71) of the affine symmetry at hand, it is straightforward to compute their
action on the fermionic fields, given by the Lie-Poisson action of the affine algebrae�. Let us
however mention an open problem about the supersymmetric version of these symmetries,
that is their transitivity. Whereas in the bosonic sector under certain assumptions on the
phase space we have directly seen that (3.71) generates the full phase space, it is a priori not
clear to which extent this statement holds in the supersymmetric case. This question is es-
sentially related to the completeness of the set of conserved charges, that has been answered
affirmatively only in the bosonic sector so far. Maybe, the full answer to this question has to
be postponed until a complete quantum model is at hand (see the discussion in [105]).
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5 Quantization

So far, we have achieved a complete reformulation of the classical model (2.45) in terms
of the transition matrices as new fundamental variables providing a complete set of integrals
of motion. This formulation reveals integrability and the classical symmetries in a beautiful
way. The goal in this chapter is to find the quantum algebra underlying the classical structure
(3.56)–(3.62). We restrict to the model with algebrag�sl�N�. The particular caseg�sl���
related to the two Killing vector field reduction of Einstein gravity described in section 2.1
is analyzed in further detail.

5.1 Quantum algebra

In this section, we present the algebra which upon quantization replaces the Poisson algebra
(3.60), (3.61) and (3.62). An essential additional ingredient is the requirement that the gener-
ators of the quantum algebra must be compatible with some quantum version of the relation
(3.57).

Let us recall the classical algebra of integrals of motion (3.60), (3.61) forg � sl�N�. The
maximal compact subalgebra ofg ish � so�N� and the involution
 is given by
��� � ��T .
It is �sl�N� � �N�

�
N
I with theN��N� permutation operator�N :

��N �
ab
cd � �ad�bc �

Accordingly we define its twisted analogue��
N by

���
N �

ab
cd �
�
��T�

N � �
N
I
�ab
cd

� ��ac�bd � �
N
�ab�cd �

The notation�T�
N here denotes transposition in one of the two spaces in which�N lives.

The Poisson algebra (3.60), (3.61) then takes the form:

�

U� �v� �
�

U� �w�



�

�
�N

v � w
�

�

U� �v�
�

U� �w�

�
� (5.1)


�

U� �v� �
�

U� �w�



�

�N

v � w

�

U� �v�
�

U� �w��
�

U� �v�
�

U� �w�
��
N

v � w
� (5.2)

TheU��w� are related by complex conjugation (3.56) and further restricted by the group
property:

detU��w� � � � (5.3)
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5.1 Quantum algebra

and the relation (3.57):

MBM�w� � U��w�U
T
� �w� � U��w�U

T
� �w� �MT

BM�w� � (5.4)

Understanding the matrix entries of theU��w� as classical phase space functions, quan-
tization amounts to replacing (5.1), (5.2) by corresponding commutator relations of an�-
graded algebra, such that these relations are compatible with certain quantum analogues of
(5.3) and (5.4). This problem admits the following essentially unique solution [77]:11

The quantization of the Poisson algebra (5.1)–(5.4) is given by the�-algebra generated
by the matrix entries ofN �N matricesU��w� subject to the exchange relations

R�v�w�
�

U� �v�
�

U� �w� �
�

U� �w�
�

U� �v�R�v�w� � (5.5)

R�v�w�i��
�

U� �v�
�

U� �w� �
�

U� �w�
�

U� �v�R
�
�
v�w� �

N
i�
�
��v�w� � (5.6)

with

R�v� � vI � i��N � R� �v� � vI � i���
N � ��v� �

�
�
�i��v
N i�

�
�
�
�N���i��v

N i�

�
�
�
�v
N i�

�
�
�

�N���i��v
N i�

� � (5.7)

with the usual�-function satisfying������, ��x����x��x�.
The condition of unit determinant (5.3) is replaced by the quantum determinant

� � qdetU��w� (5.8)

�
X
	�SN

sgn���U
�	���
� �w��N���i��U

�	���
� �w��N���i�� � � � U

N	�N�
� �w�

and the quantum form of (5.4) is given by

MBM�w� � U��w�U
T
� �w� �

�
U��w�U

T
� �w�

�T
� MT

BM�w� � (5.9)

where “T ” here simply refers to the transposition of the classicalN � N matrices. The
�-operation is defined by

U��w�
� � U�� �w� � (5.10)

and builds a conjugate-linear anti-multiplicative automorphism of the algebra (5.5)–(5.9).

There are several things to note about the algebra (5.5)–(5.10) before we come to the
proof.

� The algebra (5.5)–(5.9) is isomorphic under rescaling of� with positive real numbers.
Namely, this is absorbed by a rescaling of the spectral parameterw. Negative or com-
plex rescaling would violate the assumed holomorphy behavior of theU��w� at least
in the classical limit.12 We will in the following set���.

11For simplicity we use the same notation for the classical and the quantum operators.
12Upon quantization, the holomorphy behavior of the classical functionsU��w� translates into analyticity of

the action of the corresponding operators in dependence of the parameterw. This analyticity however depends
on the topology of the concrete representation space, which has not been fixed so far.
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5 QUANTIZATION

Depending on the sign of�, there is hence aZ�-freedom in constructing (5.5)–(5.9).
This corresponds to the symmetry��� �� of the classical Poisson algebra (5.1)–
(5.4), which is obviously broken after quantization. This freedom might be fixed from
the later requirement of the existence of unitary representations.

� The algebra (5.5), (5.6) is no Hopf algebra. This follows already from the absence of
a trivial representation of (5.5), (5.6). Even stronger, due to the singularity structure of
(5.6) this algebra admits no finite-dimensional representations.

� The essential new ingredient of (5.5), (5.6) is the appearance of the twist
 in the
mixed relations which has already appeared in the classical Poisson algebra. It is
basically this peculiarity which requires a new representation theory to be developed.
(Unfortunately, the notion of “twist” has been introduced for several different concepts
for quantum groups in general and even for the Yangians in particular.)

� The definition of the quantum determinant (5.8) is known from thesl�N� Yangian
[56, 80, 97]. It encodes the generators of the center of the algebras (5.5). Here, we
must in addition ensure thatqdetU��w� also lies in the center of the full algebra (5.5),
(5.6). It is this requirement which uniquely fixes the factor��v�w� in (5.6).

� A central extension of the type appearing in the mixed exchange relations (5.6) (i.e. the
shift of the argument in the quantumR-matrix) has been introduced for quantum affine
algebras in [110] and explicitly for the Yangian double in [65, 54]. Here, its value is
uniquely fixed from the requirement of compatibility with (5.9). From the abstract
point of view, the central extension takes the critical value at which the antisymmetric
part ofM generates a two-sided ideal (cf. (5.16) below), i.e. any representation of the
algebra (5.5), (5.6) factorizes over this ideal. A common shift of both arguments in
theR-matrices of (5.6) may be absorbed by redefinition ofU��w� and (5.9), (5.10),
introducing a relative shift in the latter.

The normal (untwisted) Yangian double has a critical value of the central extension at
which it possesses an infinite dimensional center [110]. As we shall discuss in the next
chapter, forN �� the algebra (5.5)–(5.8) is in fact isomorphic to the normal centrally
extended Yangian double at this critical level.

� Recalling remark 3.5, Drinfeld’s Yangian and its double are obtained from (5.5) by
expandingU��w� andU��w� aroundw �� andw � 	, respectively. This however
does not match their holomorphy behavior in our model. Formally treating the algebra
(5.5) only in terms of the generating functionsU��w� [40], we may however adopt
most of the results concerning the Yangian to this case.

In fact, forN��, the algebra underlying (5.5) in our case is a degenerationA��sl����
of the scaling limit of the elliptic affine algebraAp
q�sl���� [44, 66]. Again, what
is eventually needed is a modification of this algebra in accordance with the twist of
(5.6).

� The symmetry property (5.9) together with definition (5.10) guarantees that the object
MBM�w� � U��w�U

T
� �w� is symmetric and invariant under the�-map. To be precise,
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5.1 Quantum algebra

as anN�N matrix it is symmetric, i.e.

Mab
BM�w� �Mba

BM�w� �

and the matrix entries are invariant under the�-operation

Mab
BM�w� �

�
Mab

BM�w�
��

� for w � R �

In a unitary representation these matrix entries will thus form self-adjoint operators.
Thus,MBM�w� is the natural quantum object that according to (3.59) underlies the
original classical field on the symmetry axis. It satisfies closed exchange relations

R�v�w�
�

MBM�v�R
�
�
w�v���� �

N
�i
� �

MBM�w� (5.11)

�
�

MBM�w�R
�
�
v�w���� �

N
�i
� �

MBM�v�R�w�v�
��v�w�

��w�v�
�

which are obtained from (5.5), (5.6) and may be viewed as the quantization of (3.62).

The rest of this section is devoted to the proof of consistency of (5.5)–(5.10).

Associativity Denote byY� the algebra generated by the the matrix entries ofU��w�,
respectively, with exchange relations (5.5). These are two copies of the well-known Yangian
algebra [27] which provides the unique quantization of the Poisson algebra given by (5.1).
Compatibility with associativity is equivalent to the Yang-Baxter equation

R���u�v�R���u�w�R���v�w� � R���v�w�R���u�w�R���u�v� � (5.12)

for the quantumR-matricesRij, where the indicesi� j denote the two spaces in whichRij

acts nontrivially.
Associativity of the full algebra (5.5), (5.6) is ensured by a modified (twisted) Yang-

Baxter equation forR� :

R�
���u�v�R

�
���u�w�R���v�w� � R���v�w�R

�
���u�w�R

�
���u�v� � (5.13)

Validity of the classical version of this equation (i.e. modulo terms in��) is a consequence
of the fact, that
 is an algebra automorphism ofg. For the quantumR-matricesR andR� in
(5.7), the twisted Yang-Baxter equation (5.13) follows from

R�
�
v� �

N
i
�
� �RT���v� � (5.14)

and (5.12) by applying transposition and a shift of the argument in the first space.
Thus, whereas the exchange relations forY� are uniquely given by (5.5) [27], for the

mixed exchange relations (5.6) we may take the general ansatz

R�v�w � c�i�
�

U� �v�
�

U� �w� �
�

U� �w�
�

U� �v�R
� �v�w � c�i���v�w� � (5.15)

62



5 QUANTIZATION

Central extension The resulting algebra must respect the symmetry (5.9) ofM�w�. More
precisely we demand the following: Denote the set of antisymmetric matrix entries ofMBM

by I � U�Y� 
 Y��. Then we require thatI spans a two-sided ideal in the sense that

�Y� 
 Y�� I � I �Y� 
 Y�� � (5.16)

This relation ensures that the antisymmetry ofMBM may be consistently imposed without in-
ducing any further relations, i.e. any representation ofY� factorizes overI. Equation (5.16)
is not influenced by the choice of� but uniquely determines the values of the parameterscj
in (5.15) to be

c� � �� � c� �
�
N
�

This may be verified straight-forwardly e.g. by evaluating (5.15) and (5.9) in matrix compo-
nents. At these values of thecj the exchange relations betweenU� andMBM take the closed
form

��w�v�R�v�w�
�

U� �v�
�

MBM �w� �
�

MBM �w�R�
�
v�w���� �

N
�i
� �

U� �v� � (5.17)

R�v�w�i�
�

U� �v�
�

MBM �w� �
�

MBM �w�R�
�
v�w� �

N
i
� �

U� �v���v�w� �

and indeed imply (5.16). These relations provide a quantization of (3.70) and shall play an
important role for the quantum symmetries.

Quantum determinants The factor��v� in (5.6) is finally fixed from the requirement that
the quantum determinants from (5.8) commute with everything such that the relations (5.8)
are consistent with the algebra multiplication. It is known [56, 80] that theqdetU� span the
center ofY� respectively, thus��v� must ensure that they also commute withY�

�qdetU��v� � Y�� � 	 � (5.18)

Commutativity ofqdetU� with Y� essentially follows from the relation [97]

qdetU��w�AN � AN

�

U� �w�
�

U� �w�i� � � �
N

U� �w��N���i�

�
N

U� �w��N���i� � � �
�

U� �w�i�
�

U� �w�AN �

whereAN denotes the antisymmetrizer in theN auxiliary spaces. Upon successive use of
the exchange relations (5.5) this leads to

ANR�� � � � R�NAN

�

U� �v� qdetU��w�AN

� qdetU��w�AN

�

U� �v�ANR�� � � � R�NAN �

with

R�k � R�k�v�w� �k���i� �
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5.1 Quantum algebra

With the additional relation

ANR�� � � � R�NAN � ANR�N � � � R�� �
v�w�i

v�w

NY
k	�

�v�w � �k���i�AN � (5.19)

it follows immediately, thatqdetU� commutes with all matrix entries ofU�. The factor on
the r.h.s in (5.19) is most conveniently obtained from evaluating both sides on the particular
vectore�	e�	e�	� � �	eN .

In a similar way, the mixed relations (5.6) eventually yield

ANR
�
�� � � � R

�
�NAN

�

U� �v� qdetU��w�AN

� qdetU��w�AN

�

U� �v�ANR
��
�� � � � R

��
�NAN �

with

R�
�k � R�k�v�w� �k���i� � R��

�k � R�
�k�v�w� �k� �

N
���i���v�w��k���i� �

From (5.19) we now obtain

ANR
�
�� � � � R

�
�NAN �

v�w��i

v�w�i

NY
k	�

�v�w � �k���i�AN �

as well as (cf. (5.14))

ANR
��
�� � � � R

��
�NAN �

w�v�N i

w�v��N���i

NY
k	�

�v�w � �k���i���v�w��k���i� AN �

Combining these equations shows that (5.18) implies the functional equation

NY
k	�

��v�ki� �
v�i

v��N���i
� (5.20)

for ��v�. Existence and uniqueness of the solution of this equation follows from the expan-
sion in the limitv��i� (corresponding to�� 	 with the condition that�v � 	), where
the first coefficient is normalized according to

��v� � �� i
v

�
� � �

N

�
�O

�
�
v�

�
� for v � �i� �

in order to obtain the correct classical limit (5.2) from (5.6). The function� given in (5.7)
indeed is the unique solution of (5.20) with this normalization.
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5 QUANTIZATION

The �-structure It remains to check that the�-operation defined by (5.10) is a conjugate-
linear anti-multiplicative automorphism of the structure (5.5)–(5.9). Compatibility of (5.5)
and (5.6) with (5.10) obviously follows fromR��u� � �R��u�, R� ��u� � �R� ��u�,
���u� � ��u� and the fact thatR andR� are symmetric under permutation of the two spaces.
Invariance of the restriction of unit quantum determinant (5.8) under the�-map follows from

qdet�U��w��
� �

X
	�SN

sgn���U
N	�N�
� � �w� � � � U

�	���
� � �w��N���i�

� qdet�U�� �w��N���i�� �

where for the second identity we have employed one of the many properties of the quan-
tum determinant [97]. Finally, compatibility of the symmetry relation (5.9) with the�-map
follows directly from invariance of this relation under�:�

U��w�U
T
� �w�

��
�
�
U��w�U

T
� �w�

�T
� U��w�U

T
� �w� for w � R �

This finishes the proof of consistency of (5.5)–(5.10).

5.2 g � sl���

To further illustrate the formulas of the preceding section, we will now discuss the particular
caseg � sl���. This is the model which we have described in detail in section 2.1 in the
context of the two Killing vector field reduction of pure
d Einstein gravity. It deserves
interest as a midi-superspace model for quantum gravity; the corresponding quantum model
has been introduced in [76].

There are several reasons, why the caseN �� is somewhat distinguished and simpler to
treat compared to higherN . E.g. the involution
 is an inner automorphism ofsl���.13 Re-
markably, this leads to an algebra isomorphism between our twisted and the normal Yangian
double, however this is no�-algebra isomorphism.

The exchange relations (5.5), (5.6) forN�� read

R�v�w�
�

U� �v�
�

U� �w� �
�

U� �w�
�

U� �v�R�v�w� � (5.21)

R�v�w � i�
�

U� �v�
�

U� �w� �
�

U� �w�
�

U� �v�R
� �v�w � i���v�w� � (5.22)

withR andR� from (5.7), where the permutation operator� and its twisted analogue�� are
explicitly given by

� �

�BB�
� 	 	 	
	 	 � 	
	 � 	 	
	 	 	 �

�CCA � �� � I � �T� �

�BB�
	 	 	 ��
	 � 	 	
	 	 � 	
�� 	 	 	

�CCA �

Moreover, the function� may be evaluated from (5.7) and shrinks down to

��v� �
v�v � �i�

�v � i��v � i�
�

13In contrast, forN �� the involution���� � ��T is the outer automorphism ofsl�N� which corresponds
to reflection of the Dynkin diagram.
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5.2 g � sl���

The quantum determinant is given by

qdetU��w� � U��
� �w�i�U��

� �w�� U��
� �w�i�U��

� �w� (5.23)

� U��
� �w�U��

� �w�i�� U��
� �w�U��

� �w�i� � � �

and the matrix product

MBM�w� � U��w�U
T
� �w� �MT

BM�w� � (5.24)

is symmetric under transposition and satisfies (5.11).
As mentioned above, forg � sl��� the involution
 is an inner automorphism generated

by conjugation with

�� �

�
	 �
�� 	

�
�

This allows to “retwist” the mixed relations (5.22) by the following transformation:

U��w� � U��w��� � U��w� � U��w� � (5.25)

These retwisted generators satisfy the exchange relations of the normal Yangian double:

R�v�w�
�

U� �v�
�

U� �w� �
�

U� �w�
�

U� �v�R�v�w� � (5.26)

R�v�w � i�
�

U� �v�
�

U� �w� �
�

U� �w�
�

U� �v�R�v�w � i� ��v�w� � (5.27)

at the critical levelk���. At this level the center of the Yangian double becomes infinite-
dimensional and is generated by the trace of the quantum current [110]

L�w� �
�
U��w�U

��
� �w�

	
� (5.28)

Evaluating this in terms of our matrixMBM�w� from (5.24) yields

trL�w� �M��
BM�w��M

��
BM�w� � (5.29)

Recall that the central extension of our structure was precisely determined by the requirement
(5.16). ForN�� the subspaceI is one-dimensional. An explicit calculation shows that be-
yond (5.16),I even lies in the center of the algebra (5.21)–(5.22). Here we see the complete
agreement with the normal Yangian double at critical level. We have thus equivalence of the
twisted structure (5.21)–(5.22) with the untwisted (5.26)–(5.27), however supplied with the
somewhat peculiar�-structure:

U��w�
� � �U�� �w� �� �

For higherN this equivalence does not hold. Neither is there an algebra isomorphism be-
tween (5.5), (5.6) and the normal Yangian double, nor does a center emerge at our critical
level, rather criticality is expressed by (5.16).
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5 QUANTIZATION

Remark 5.1 For explicit calculations it is sometimes useful to express the exchange re-
lations (5.21), (5.22) in matrix componentsUab

� �w�. The mixed relations (5.22) e.g. may
equivalently be written as�

��
i�

�v�w��

�
Uab
� �v�U cd

� �w� �

�
��

i

v�w

�
U cd
� �w�Uab

� �v� (5.30)

�
i

v�w

�
Uad
� �w�U cb

� �v� � �bd U cm
� �w�Uam

� �v�
�

�
i�

�v�w��
�bd
�
Uam
� �w�U cm

� �v�� U cm
� �w�Uam

� �v�
�
�

Interpreting the matrix entries of theU� as creation and annihilation operators, respectively,
the r.h.s. of (5.30) can be viewed as sort of normal ordering [76].

5.3 Representations and symmetries

In this section, we touch the question of representations of the algebra (5.21)–(5.24) that has
been obtained forg� sl���. First, we note, that (5.21), (5.22) admit no evaluation represen-
tations of the type the normal Yangian (5.5) does [81, 19]. ReplacingU��w� byR-matrices
involving an additional (quantum) space, does not give a representation of (5.21), (5.22),
since by no combination ofR andR� for U�, ������ can be traced back to the twisted Yang-
Baxter equation (5.13). We have already mentioned above the absence of finite-dimensional
representations of (5.5), (5.6).

Recall the abelian sector of the theory. In terms of the operatorsA� from (3.92), there is
a canonical Fock space representation (3.99). Classically, the embedding of these variables
into the full nonabelian model is obtained via exponentiation

U��
� �w� � exp

Z �

�

dk A��k�e
�ikw � (5.31)

Having quantized the abelian model, we may translate (5.31) back as an operator in (3.99)
and for illustration study its action on the vacuumj	i. WhereasU��

� �w� leaves the vacuum
invariant,U��

� �w� creates a coherent state corresponding to the classical field which on the
axis x � 	 is peaked as a�-function aroundt � �w. One may speculate, that similar
representations are relevant for the algebra (5.21), (5.22).

A general class of representations is obtained from the following construction. LetV
be a finite-dimensional representation of the Yangian algebraY� of (5.21) (generated by the
U��w�). A representation of the full algebra (5.21)–(5.24) is then given by the space

U�Y��V
�
U�Y��

�
I V 
 �qdetU��w��id�V 
 �qdetU��w��id�V

�
� (5.32)

where we start from the regular representation ofU�Y�� and subsequently divide out the
relations (5.23) and (5.24). The action ofY� on (5.32) is obtained from the exchange re-
lations (5.22) (i.e. explicitly from (5.30)) and the defining action fromY� on V . The fact
thatU�Y�� I V andU�Y�� �qdetU��w��id�V are representations ofY� is merely a conse-
quence of (5.18) and (5.16), i.e. valid for anyN . For the trivial representationV� � C , the
representation (5.32) has the form of a direct generalization of (3.99).

To proceed with this class of representations, there are essentially three points to clarify:
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5.3 Representations and symmetries

� What are the finite-dimensional representations ofY�?

� Is the representation (5.32) irreducible or does it contain irreducible parts?

� Is the representation (5.32) unitary with respect to the�-structure given in (5.10)?

At least the first point can be answered completely, the finite-dimensional representations
of the Yangian are classified by highest weights. Even more explicit results are known for
the special caseg � sl��� [19]. All finite-dimensional irreducible representation are gen-
erated by evaluation representations. The latter are obtained from evaluating the quantum
R-matrix from (5.7) on the tensor product of a (classical) two-dimensional vector space and
an irreducible representation ofsu��� [81]. To be precise, these representations are labeled
by an insertion pointz and the dimensionr�� of the representation ofsu���; the action of
U��w� on a basisv�� � � � � vr is given by

U��w� vk � f�w�z� r�

�
w�z� �

�
��r�k� vk

�k��� vk��

�r�k��� vk��
w�z� �

�
��r�k� vk

�
� (5.33)

where we have setv�� � vr�� � 	. The factorf�w�z� r� is chosen such that it ensures the
relation (5.23); it may be expressed in terms of�-functions. We denote this representation
by V �r�

z . The action ofY� on the tensor productV �r�
z 	 V

�s�
y is given by the Hopf algebra

structure of the Yangian [27]:

Uab
� �w� �vk 	 vl� � Uam

� �w�vk 	 Umb
� �w�vl � for vk 	 vl � V �r�

z 	 V �s�
y (5.34)

Remark 5.2 The general formulas (5.17) evaluated forN�� yield

�

U� �v�
�
�
i�

�

MBM �w�
�

U��
� �v� �

�
i� (5.35)

� R���v�w� �
�
i�

�

MBM �w�R�
�
v�w� �

�
i
�
��v�w� �

�
i�

�

�
I �

i�

v�w� �
�
i

�
�

MBM �w�

�
I �

i��

v�w� �
�
i

�
�

It can be checked that this “adjoint” representation ofY� on the three symmetric matrix
entries ofMBM�w�� coincides with the evaluation representationV

���
w� from (5.33).

The representation theory of the YangianY �sl�� is essentially contained in the follow-
ing result [19]. Each finite-dimensional irreducible representation is isomorphic to a tensor
product of evaluation representations. A finite tensor product

NO
m	�

V �rm�
zm

� (5.36)

is reducible iff there arem, n with � � m�n � N andj with 	�j� min �rm� rn� such that

�i�zm � zn� �
�
�
�rm�rn�� j � � � (5.37)
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5 QUANTIZATION

The representations (5.32) are thus labeled by the tensor products (5.36). Restrictions
on V �N� may arise from the requirement of “holomorphy” of the action of theU��w�. As
discussed above the action ofV �N� should depend analytically onw for w�H�, i.e.�w�	.

We can further evaluate the structure of (5.32). Its simplest elements apart fromV �N� are
given by the “single excitations”

Uab
� �w�� vk � with vk � V �N� �

NO
m	�

V �rm�
zm

� (5.38)

Obviously, they again form a representation ofY�, namelyV ���
w� 	V �N�. The precise embed-

ding follows from

Uab
� �w�MBM�w�� V

�N� �
�
U��w�

anMBM�w�� �U
��
� �w��nm

�
Umb
� �w�V �N�

������
�

�
U��w�

am V ���
w�

��
Umb
� �w�V �N�

�
������
� Uab

� �w�
�
V ���
w�
	 V �N�

�
�

whereMBM�w�� V
�N� encodes a basis of linear combinations of (5.38).

According to the criterion (5.37), we see, that the vectors (5.38) for genericw� form an
irreducible representation ofY� again. In particular, this implies that via the relation (5.23)
it is possible to obtain back all vectors fromV �N� by further action ofY� on (5.38). Thus,
there is only a discrete set of vectors among (5.38) – withw� related to one of thezm from
(5.36) by (5.37) – that give rise to potential proper subrepresentations. It remains to study
these vectors separately.

Having analyzed all vectors (5.38), one has almost the full information about irreducibil-
ity of the representation (5.32). This is due to the fact that “higher excitations”

Uanbn
� �wn� � � � U

a�b�
� �w�� vk �

are formal elements of theY� representation

V ���
wn
	 � � �	 V ���

w�
	 V �N� � (5.39)

According to (5.37), irreducibility of (5.39) is equivalent to the irreducibility of the pairwise
tensor products contained in (5.39) which reduces the analysis to (5.38).

In this way, the question of irreducibility of (5.32) can be answered. This may result
in further relations to be divided out from (5.32) and/or lead to further restrictions on the
basis representationV �N� from (5.36). The last question concerning unitarity constitutes a
more serious problem. At present, it is not clear if under certain assumptions, (5.36) can
be equipped with a scalar product such that it is compatible with (5.10) and (5.32) does not
contain states of negative norm. Having outlined the general programme of studying the
class of representations (5.32), we defer the full analysis to later investigations.

We close this section with a remark on the symmetry that may replace the Geroch group
(3.71) upon quantization. It is known [11, 84] that Lie-Poisson symmetries of the type (3.69)
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5.3 Representations and symmetries

are realized as adjoint representations of the corresponding quantum algebra. In our case this
is precisely provided by the relations (5.35). Evaluating the r.h.s. leads to

�

U� �v�
�
�
i� �

�
i�

�

MBM �w�
�

U��
� �v� �

�
i� �

�
i� (5.40)

�
�

MBM �w�

�
� �

i

v�w�i
�

i

v�w�i

�
�

�

�

�
�

�

MBM �w��
�

MBM �w���

��
i

v�w�i
�

i

v�w�i

�
�

This explicitly shows that after projecting the first space onto ag-valued function��v� the
l.h.s. becomes

�
tr

�
�

��v�
h �

U� �v�
�
�
i� �

�
i� �

�

MBM �w�
i �

U��
� �v� �

�
i� �

�
i�

�
�

with classical limit (3.69). The r.h.s. correspondingly reduces to (3.70) with the singularity
atv�w “quantum split” into

�

v�w
�

�

�

�
�

v�w�i
�

�

v�w�i

�
� (5.41)

where the shifts in the denominators are of order�. This may give an indication of how to
deform the integration path� in (3.71) after quantization.

The picture obviously is far from being completed, however throughout this section we
have obtained several hints which features we suspect to eventually face. Let us emphasize
the repeated occurence of the discrete shifts in thew-plane – (5.23), (5.35), and (5.41). In
the gravitational context, where according to (3.59) the spectral parameter plane acquires
some space-time meaning, this may give rise to speculating about a natural arising of dis-
crete nonlocal structures [76]. Another allusion in this direction comes from (3.48) which
suggests to represent the conformal factor� at spacelike infinity by supplying (5.21)–(5.24)
with a derivative operatori���w. Its exponentialexp � (related to the deficit angle and the
matter Hamiltonian in�d cylindrically symmetric gravity) then translates into a discrete step
operator.
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6 Isomonodromic Structures in Dimensionally Reduced
Gravity

This chapter is somewhat decoupled from the rest of the thesis. Here, we present the
so-called isomonodromic approach to the model of dimensionally reduced gravity (2.45),
which has been initiated in [70, 71] and elaborated in [72, 74, 104]. One of the motivations
of this programme was the seeming dead end of the canonical formalism with the nonul-
tralocal Poisson brackets (2.57). With the results presented in the last chapters we have
however carried out the canonical approach to a much further stage which also appears to
naturally capture the classical symmetries of the model and thus to build a reliable basis for
quantization.

Still, the isomonodromic approach bears several interesting features. First, in relation
with the “two-time” Poisson structure to be introduced it is manifestly two-dimensional co-
variant. It allows application not only to Kaluza-Klein reduction of spatial dimensions but
also to those involving the timelike dimension (including e.g. stationary axisymmetric solu-
tions). Further highlights are the decoupling of the chiral halves in the deformation equations
(i.e. commutativity of the two Hamiltonian flows), the quantum group structure of the algebra
of observables and the link to (a modified version of) the Knizhnik-Zamolodchikov equations
from conformal field theory, which arise in the role of the Wheeler-DeWitt equations here.

6.1 Hamiltonian description of isomonodromic deformations

In this section, we describe a multi-time Hamiltonian formulation of isomonodromic defor-
mations of meromorphic connections on the Riemann sphere due to [58]. Quantization of
this system naturally leads to the Knizhnik-Zamolodchikov system [68].

We consider the space of holomorphic Lie-algebra valued one-forms on the punctured
Riemann sphere, that are meromorphic with simple poles on the whole sphere. These forms
may be viewed as connections on a trivial bundle. Introducing local coordinates on the
sphere by marking a point�, an elementA���d� of this space is uniquely determined by its
poles�j and the corresponding residuesAj taking values ing:

A��� �
NX
j	�

Aj

� � �j
� (6.1)

Holomorphic behavior at infinity is ensured by

Q �
X
j

Aj � 	 � (6.2)
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6.1 Hamiltonian description of isomonodromic deformations

There is a natural Poisson structure on the space of holomorphic connections on the punc-
tured complex plane, that may be formulated in the equivalent expressions:

fAA
i � A

B
j g � �ijf

AB
C A

C
i � (6.3)

� fAA���� AB�	�g � �fABC
AC���� AC�	�

��	
� (6.4)

�
n �

A����
�

A�	�
o

�
h
r�� � 	� �

�

A����
�

A�	�
i
� (6.5)

with the structure constantsfABC of the algebrag and a classicalr-matrix r��� � ����g,
where�g � tA	tA denotes the Casimir element ofg.

The condition (6.2) that restricts the connection to live on the sphere, transforms as a
first-class constraint under this bracket:fQA� QBg � fABC Q

C .

Holomorphic bracket from gauge fixed Chern-Simons theory

The holomorphic bracket (6.3) is induced by holomorphic gauge fixing of the fundamental
Atiyah-Bott symplectic structure. The first-class constraint (6.2) ensuringA��� to live on
the sphere, arises naturally as surviving flatness condition, generating the constant gauge
transformations. Let us shortly describe this relation.

The space of smooth connections on a Riemann surface is endowed with the natural
symplectic form [5]

� � tr

Z
�A � �A �

that gives the Poisson bracketn
AA
� ��� � A

B
�� �	�

o
� �AB�������	� � (6.6)

where the connectionA is split intoA�d� �A��d�� and the�-function is understood as a real
two-dimensional�-function: �����x � iy� � ��x���y�.

The condition of flatness isF � dA � A � A � 	 and builds an algebra of first-class
constraints

fFA���� FB�	�g � fABC F
C����������	� �

generating the gauge transformations

A �� gAg�� � dgg�� � (6.7)

These brackets and constraints arise naturally from the Chern-Simons action. They may
be extended to punctured Riemann surfaces if the singularities of the connection restrict to
first order poles, leading to�-function-like singularities of the curvature.[118, 34]

In order to extend these structures to holomorphic connections, first the phase space has
to be enlarged in a natural way from real connections in terms of which Chern-Simons theory
is usually formulated, to one-forms that take values in the complexified Lie algebra, as the
split halfsA�d� andA��d�� described above already do. Then, also the gauge freedom (6.7) is
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6 ISOMONODROMIC STRUCTURES

enlarged to the corresponding complex gauge group. We fix this gauge freedom by choosing
the gaugeA���	 that makes flatness turn into holomorphy.

The bracket between constraints and gauge-fixing condition is of the form:

fFA���� AB
�� �	�g � ��AB����

������	� � fABC A
C
�� ��� �

������	� (6.8)

� ��AB����
������	� �

This matrix can be inverted using��� �
�
� ���i�������. With the standard Dirac procedure

[26] one further obtains the holomorphic bracket (6.4) for the remaining variablesA����
[43].

Note that because of the appearance of the derivative��� in (6.8), the holomorphic part
of the constraintsFA��� survives as a first-class constraint. Since holomorphic functions on
the sphere are constants, this becomesZ

FA���d�d�� �

Z
���A

A���d�d�� �
X
j

AA
j � QA � (6.9)

and generates the remaining gauge transformations (6.7) with constantg.

Hamiltonian formulation of isomonodromic deformation

We now describe isomonodromic deformation on the sphere in terms of the holomorphic
Poisson structure. Consider the system of linear differential equations:

������ � A������� � (6.10)

For definiteness we choose some matrix representation ofg on a vector spaceV�, such that
���� accordingly takes values in the exponentiated representation of the associated Lie-
groupG.

AsA��� has simple poles, the function���� lives on a covering of the punctured sphere.
Let � be normalized to���� � I, thereby marking one of the points� on this covering.
In the neighborhood of the points�i, the function� is given by:

���� � Gi�i����� � �i�
TiCi � (6.11)

with �i��� � I �O�� � �i� being holomorphic and invertible. The relation to the residues
of the connection (6.1) is given byAi � GiTiG

��
i .

The local behavior (6.11) also yields explicit expressions for the monodromies around
the singularities:

���� �� ����Mi � for � encircling�i � with Mi � C��
i exp���iTi�Ci �

Note that the normalization���� � I couples the freedom of r.h.s. multiplication in the
linear system (6.10) to the left action of constant gauge transformations (6.7) on�. Under
(6.7) thus� transforms as� �� g�g�� implyingMi �� gMig

��.
The aim of isomonodromic deformation [59] is the investigation of a family of linear

systems (6.10) parameterized by the choice of singular points�i, that have the same mon-
odromies. In other words, one studies the change of the connection dataAi with respect to a
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6.1 Hamiltonian description of isomonodromic deformations

change in the parameters of the Riemann surface that is required to keep the monodromy data
constant. TreatingA��� and���� as functions of� and�i, these isomonodromy conditions
impose a formal condition of�i-independence of the monodromy dataTi andCi.

This requires that the function�i������� has a simple pole in�i : 14

�i���� �
�Ai

� � �i
���� � (6.12)

Compatibility of these equations with the system (6.10) yields the classical Schlesinger
equations [112]:

�iAj �
�Ai� Aj�

�i � �j
� for j �� i � �iAi � �

X
j 		i

�Ai� Aj�

�i � �j
� (6.13)

A multi-time Hamiltonian description of this dependence has been given in [58] with the
Hamiltonians

Hi �
X
j 		i

tr�AiAj�

�i � �j
� (6.14)

generating the commuting�i-flows (6.13) in the holomorphic Poisson-bracket (6.3), i.e.

�iAj � fAj� Hig � fHi� Hjg � 	 � (6.15)

The Poisson structure is interpreted as a multi-time structure in the sense that (6.3) is defined
for the residuesAj�f�ig� at coinciding�i and translated to different�i by means of (6.15).

Quantization and Knizhnik-Zamolodchikov system

As was noticed by Reshetikhin [109], quantization of this system leads to the Knizhnik-
Zamolodchikov equations, that are known as differential equations for correlation functions
in conformal field theory [68].

Quantization is performed straightforwardly by replacing the Poisson structure (6.3) by
commutators. Shifting the�i-dependence (6.13) of the operatorsAA

i into the states on which
these operators act corresponds to a transition from the Heisenberg picture to the Schr¨odinger
picture in ordinary quantum mechanics. In the Schr¨odinger representation the quantum states
j�i then are sections of a holomorphicV �N� �

N
j Vj vector bundle over

X� � C
N n fdiagonal hyperplanesg �

The�i-independent operator-valued coordinates ofAi are realized as

AA
i � i� I 	 � � �	 tAi 	 � � �	 I (6.16)

wheretAi acts in the representationVi . In this Schrödinger picture the quantum statesj�i
then obey the following multi-time�i-dynamics

�ij�i � Hij�i � i�
X
j 		i

�ij

�i � �j
j�i (6.17)

14The derivative�i here and in the following denotes����i, the derivative with respect to the position of the
singularity�i.
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6 ISOMONODROMIC STRUCTURES

Here,�ij � tr�tAi 	 tj A� denotes the Casimir element�g of the algebrag, acting onVi
andVj. The system (6.17) defines horizontal sections on the bundle of quantum states and
coincides with the famous Knizhnik-Zamolodchikov system [68].

Remark 6.1 System (6.17) may be equivalently rewritten in the Heisenberg picture intro-
ducing the multi-time evolution operatorUN�f�ig� (as the general solution of (6.17)) by

�iUN � HiUN � UN�f�i � 	g� � id � (6.18)

Then in terms of the variablesUNA
A
i U

��
N the quantum equations of motion give rise to

higher-dimensional Schlesinger equations with the matrix entriesAa
i being operators inV .

These equations turn out to be a very special case of the general�dimV� � dimV �N��-
dimensional classical Schlesinger system.

6.2 Isomonodromic sector in dimensionally reduced gravity

In this section, we introduce new fundamental variables for the system of dimensionally
reduced gravity studied in the previous chapters. In terms of the connection of the linear
system (3.1), the equations of motion bear some resemblance with the deformation equations
obtained in (6.13). This suggests to adopt the holomorphic Poisson structure (6.4) which
leads to a two-time Hamiltonian formulation of dimensionally reduced gravity.

Starting from the linear system (3.1) we consider the object

��x� t� �� � V�x� t� 

�bV���x� t� ��� � (6.19)

It satisfies the linear system

����
�� �

�

���
VP�V

�� �
�

���
��MM�� � (6.20)

with the matrixM from (2.42). These linear differential equations have been the basis for
the isomonodromic ansatz.

The main objects we are going to consider as fundamental variables in the sequel are
certain components of the followingg-valued one-form

A � d���� (6.21)

In particular, we are interested in the components

A � A�d� � A�dx
� � A�dx

� � Awdw � 
A�dx
� � 
A�dx

� (6.22)

where��� x�� and �w� x��, respectively, are considered to be independent variables. The
main object in the sequel will be the particular componentA� for which we use the shortened
notationA � A� .

Moreover, we will restrict our study to that sector of the theory, whereA is a single-
valued meromorphic function of�, i.e. that alsoA is single-valued and meromorphic in�.
A solution� of (6.20) with this property is calledisomonodromic, as its monodromies in the
�-plane then have now-dependence due to (6.21). In fact, this sector of the theory already
covers the most interesting physical solutions.
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Further on, we immediately get the following relations:

��MM�� � ��������A�x
�� ��

���
�	��

� (6.23)

as a corollary of (6.20) and (3.2). Moreover, the linear system (6.20) and definition (6.22)
imply:

Aw �
��

�w
A � 
A� � �������

A����

���
� A� � ������

�A�����������A���

���
�

For asymptotically flat solutions of (2.22) the linear system (6.20) admits the normalization

������ � I� (6.24)

which implies regularity ofA at infinity:

A� � lim
���

�A��� � 	 (6.25)

The definition ofA as pure gauge (6.21) implies integrability conditions on its compo-
nents, which in particular give rise to the following closed system forA���:

��A � �A� � A � � ��A� � (6.26)

The main advantage of this system in comparison with the original equations of motion
in terms ofM (2.22) is, that the dependence on the coordinatesx� is now completely de-
coupled. Once the system (6.26) is solved, it is easy to check that the equations (6.23) are
compatible and the fieldM restored by means of them satisfies (2.22). This decoupling
of x� andx� allows to treat (6.26) in the framework of a manifestly covariant two-time
Hamiltonian formalism, where the fieldA��� is considered as the new basic object.

For this purpose we equipA��� with the (equal-x�) Poisson structure from (6.5):n �

A��� �
�

A�	�
o

�
h �g

��	
�

�

A����
�

A�	�
i
� (6.27)

The relations�
A��� � ������ trA

�����
�

� � �A���� � A���� � (6.28)

compared with the equations of motion (6.26) give rise to defining the Hamiltonians

H� �
�
�
������ trA

����� � with fH��H�g � 	 � (6.29)

We call thex�-dynamics that is generated byH� the implicit time dependence of the fields.
The remainingx�-dynamics is referred to asexplicit time dependence.

In general, the variablesA��� themselves are explicitly time-dependent according to
(6.26) and (6.28). The motivation for introducing (6.29) originates from [70], where it has
been shown, that in essential sectors of the theory (simple pole singularities in the connection
A), it is possible to identify a complete set of explicitly time-independent variables. Let us
briefly recall this.
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First order poles In this simplest case considered in [70, 71] we assume thatA��� has
only simple poles, i.e.

A��� �
NX
j	�

Aj�x
��

� � �j
� (6.30)

where according to (6.20) all�j satisfy (3.2), i.e.�j � ��x�� wj�, wj � C . Then the
equations of motion (6.26) yield

��Aj � ������
X
k 		j

�Ak� Aj�

��� �k���� �j�
�

NX
k	�

���k �kAj � (6.31)

with the�k dependence from (6.13). The Poisson brackets (6.27) reduces to

fAA
i � A

B
j g � �ijf

AB
C A

C
j � (6.32)

i.e. in this case, the residuesAj together with the set of (hidden constant) positions of the
singularitiesfwjg give the full set of explicitly time-independent variables.

Comparing the equations of motion in this sector (6.31) with the isomonodromic de-
formation equations (6.13) suggests to understand thex� dependence of the residues as an
isomonodromic dependence generated by the two Hamiltonians (6.29).

Remark 6.2 Introduction of the Poisson structure (6.27) has been motivated from the math-
ematical point of view by the similarity of the equations of motion (6.31) with the isomon-
odromic formalism described in the previous section. However, a priori this structure is
not canonically derived from the original Lagrangian (2.45). Dimensionally reduced gravity
allows an alternative Chern-Simons Lagrangian formulation [72], such that (6.27) may be
obtained from (6.6) by holomorphic gauge fixing. An honest comparison to the canonical
Poisson structure (2.50), (2.57) of (2.45) should be worked out on the space of observables,
where due to spacetime-diffeomorphism invariance at least no principal difference between
one- and two-time structures appears.

Due to the�� 
� dependence, the singularities�i have become field dependent and thus ex-
hibit explicit time-dependence in the sense of (6.29). In order to gain a complete Hamiltonian
description, we additionally introduce the following Poisson bracketsn

�������
o
� ��� � (6.33)

where�� refer to the decomposition of� into left- and right-movers (2.17).15 The dynamics
in x� directions then is completely given by the Hamiltonian constraintsC�

C� � ���� � ������ trA
����� �

T��
���

� 	 � (6.34)

I.e. for any functionalF we have

dF

dx�
� fF� C�g � (6.35)

15Despite their index the fields�� are obviously scalars under conformal transformations.
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6.2 Isomonodromic sector in dimensionally reduced gravity

Remark 6.3 The Hamiltonian constraints (6.34) are obviously related to the conformal con-
straints (2.58), as also the Poisson structure (6.33) is certainly inspired by (2.50). The fact,
that both, (6.34) and (2.58) differ by a factor of��� from their “canonical ancestors” is re-
lated to the nature of the two-time Poisson structure, e.g. required by conformal covariance.
The precise embedding of the two-time structure into the canonical formalism is still some-
what unclear. As remarked above, an honest comparison had to be performed on the space
of observables.

Remark 6.4 The above reduction (6.31) of the original equations of motion shows a re-
markable general feature: the number of dimensions has been effectively reduced from two
to one. Recall that the initial values of the physical fields are usually given on a spacelike
hypersurface, whereas their evolution in the time direction is described by the equations of
motion. Here, on the contrary we have evolution equations for the time direction as well
as for the space direction and the two flows commute. The knowledge of the initial values
of A��� at one space-time point is sufficient to reconstruct the whole solution by means of
(6.26).

This may be understood as follows: the spatial dimension which previously provided
the initial data has been traded for an additional dimension parametrized by the spectral
parameter. In fact, given the spectral parameter currentA��� at fixed���� on a spacelike
hypersurface (which according to (6.23) are nothing but the original currents) allows us
to evolve it in time by means of the equations of motion and into the�-direction via the
compatibility equations (6.26). Vice versa, givenA��� at fixed space-time point but for all�
one can deduce its space evolution from the compatibility equations.

The isomonodromic ansatz (6.30) is finally employed to parametrize the behavior of the
spectral parameter current in the�-plane by a discrete (even finite) set of variables, such
that the original field theory reduces to an “N -particle” problem (localized in the spectral
parameter plane). In this way we have arrived at an effectively one-dimensional description
of the�d theory without giving up the nontriviality of the solutions.

Higher order poles The isomonodromic framework allows natural generalization to that
sector of the theory, whereA��� is assumed to be a meromorphic function of�, which we
shall present here. A further extension of this framework to the full phase space of arbitrary
connectionsA, that is strongly inspired from the treatment of the simple pole case, has been
sketched in [104].

Assume thatA��� has higher order poles in the�-plane:

A��� �
NX
j	�

rjX
k	�

Ak
j �x

��

�� � �j�k
� (6.36)

The Poisson structure (6.27) in terms ofAk
j has the form:n

�Ak
i �

A� �Al
j�
B
o

�



�ijf

AB
C �Ak�l��

j �C for k � l � � � rj
	 for k � l � � � rj

� (6.37)

building a set of mutually commuting truncated half affine algebras.
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However, it turns out that forrj � � the variablesAk
j for k��� � � � rj�� have non-trivial

Poisson brackets with���, and, therefore, are not explicitly time-independent. The problem
of identification of explicitly time-independent variables can be solved in the following way.
Consider

Aw��� �
��

�w
A��� �

which as a function ofw is meromorphic on the twofold covering of thew-plane. Parametrize
the local expansion ofAw around one of its singularities�j as:

Aw��� �

rjX
k	�

A
�w�k
j

�w � wj�k
�O��w � wj�

�� for � � �j � (6.38)

Then we find that the coefficientsA�w�k
j of the local expansion ofAw have no explicit

time dependence, i.e.

��A
�w�k
j �

n
A

�w�k
j �H�

o
� (6.39)

They satisfy the same Poisson structure as theAk
j (6.37):n

�A
�w�k
i �A � �A

�w�l
j �B

o
�



�ijf

AB
C �A

�w�k�l��
j �C for k � l � � � rj

	 for k � l � � � rj
� (6.40)

Thus, also in this case one there is a complete set of canonical explicitly time-independent
variables.

The coset structure

To this point the isomonodromic ansatz has ignored the coset structure of the original model.
The solutionM of (2.22) which is obtained from the new basic objectA��� via (6.23) will in
general not satisfy the original symmetry (2.43) which characterized the coset model. Thus,
the new description still carries too many degrees of freedom. Here, we show how to cure
this.

As functions of the original fields, the new variablesA��� have been defined only up to
the freedom (3.4) in the original linear system so far. The entire structure described above re-
mains invariant under this freedom. As it turns out [71], the restriction of this multiplicative
freedom which is consistent with the isomonodromic truncation of this chapter is the condi-
tion (3.16) used in the approach of Belinskii and Zakharov. In terms of the isomonodromic
objects, this condition reads

���� 

�
���� �

�
�
�

� M � (6.41)

��A��� �M 

�
A� �

�
�
�
M�� � 	 � (6.42)

The second equation is obtained from derivation of the first. In particular, this last equation
yields

V��A������V � k � (6.43)
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6.3 Poisson algebra of observables

Recalling that��MM�� � �VP�V
�� we see that this condition is indeed suffient to guar-

antee that the matrixM obtained by integration satisfies the symmetry (2.43). The condition
(6.42) takes a simpler form in terms of the variablesbA��� � VA���V��� where it reads

�� bA��� � 

� bA� �

�
�
�

� 	 � (6.44)

Unfortunately the Poisson structure (6.27) is not automatically compatible with the con-
dition (6.42). We may however treat the whole system as a constrained system, where (6.42)
then builds a set of second-class constraints. Applying the canonical Dirac procedure [26]
finally yields the following modified bracket on the phase space [74]n �bA��� �

�bA�	�
o

�
�

�

h �g

��	
�

�bA����
�bA�	�

i
(6.45)

�
�

�

h
��

g �
�

���	

�bA��� �
	

���	

�bA�	�
i

This structure indeed is compatible with (6.42). There remains the following set of first-class
constraints (contained in (6.44) at���)

bA� � 
� bA�� � lim
���

�
� bA��� � � 
� bA����� � 	 � (6.46)

which via (6.45) generate theH-gauge transformations (2.65). This is the proper substitution
of (6.25) after implementing the coset structure.

Thus, we have reduced the degrees of freedom so as to match the situation of the coset
model.

6.3 Poisson algebra of observables

In the model as presented so far, observables can be defined in the sense of Dirac as objects
that have vanishing Poisson bracket with all the constraints including the Hamiltonian con-
straints (6.34), which even play the most important role here. In two-time formalism this
condition shows the observables to have no total dependence onx�. This is a general feature
of a covariant theory, where time dynamics is nothing but unfolding of a gauge transforma-
tion, and observables are the gauge invariant objects.

Regarding the connectionA��� as fundamental variables of the theory, the natural objects
to build observables from are the monodromies of the linear system (6.21). They are given
as

���� �� ����M� for � running along the closed path� � (6.47)

Due to their definition these objects have no totalx�-dependence; in the isomonodromic
sector which we treat here, thew-dependence is also absent.

For the simple pole sector let us denote byMi �M�i the monodromies corresponding to
the closed paths�i which respectively encircle the singularities�i and touch in one common
basepoint. The remaining constraint of the theory which should have vanishing Poisson
bracket with the observables is the generator of the constant gauge transformations (6.25),
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6 ISOMONODROMIC STRUCTURES

under which the monodromies transform by a common constant conjugation. Thus the set
of Wilson loopsn

tr
Y
k

Mik

��� k� �i�� � � � � ik�o (6.48)

builds the set of observables for this sector of the theory.
The Dirac brackets (6.45) define a Poisson structure on the monodromy matricesMj.

Rather then directly computing this bracket, we alternatively first obtain the Poisson structure
on the monodromy matrices which is implied by (6.27). The Dirac bracket on the space of
observables can then be deduced by simple symmetry arguments.

Let A��� be a connection on the punctured plane��f��� � � � � �Ng, equipped with the
Poisson structure:n �

A��� �
�

A�	�
o

�
h �g

��	
�

�

A����
�

A�	�
i
� (6.49)

Let further� be defined as solution of the linear system

������ � A������� � (6.50)

normalized at a fixed basepoints�

��s�� � I � (6.51)

and denote byM�� � � � �MN the monodromy matrices of� corresponding to a set of paths
with endpoints�, which encircle��� � � � � �N , respectively. Ensure holomorphy of� at� by
the first-class constraint

A� � lim
���

�A��� � 	 � (6.52)

Then, in the limits���, the Poisson structure of the monodromy matrices is given by:n �

Mi �
�

Mi

o
� i�

� �

Mi �g

�

Mi �
�

Mi �g

�

Mi

�
� (6.53)n �

Mi �
�

Mj

o
� i�

� �

Mi �g

�

Mj �
�

Mj �g

�

Mi ��g

�

Mi

�

Mj �
�

Mi

�

Mj �g

�
(6.54)

for i � j �

where the paths defining the monodromy matricesMi are ordered with increasingi with
respect to the distinguished path�s����.

Here, we collect several comments on this result, whereas for the proof we refer to [74].

Remark 6.5 The first-class constraint (6.52) generates constant gauge transformations of
the connectionA in the Poisson structure (6.49). In terms of the monodromy matrices,
holomorphy of� at� is reflected by

M� �
Y

Mi � I � (6.55)

which in turn is a first-class constraint and generates the action of constant gauge transfor-
mations on the monodromy matrices in the structure (6.53) and (6.54). The ordering of this
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6.3 Poisson algebra of observables

product is fixed to coincide with the ordering that defines (6.54). In accordance with (6.48),
the structure (6.53), (6.54) impliesn

M� � tr
Y
k

Mik

o
� 	 � (6.56)

Remark 6.6 The evident asymmetry of (6.54) with respect to the interchange ofi andj is
due to the fact, that the monodromy matrices are defined by the homotopy class of the path,
which connects the encircling path with the basepoint in the punctured plane. This gives rise
to a cyclic ordering of the monodromies.

The distinguished path�s� ��� breaks and thereby fixes this ordering. It is remnant
of the so-called eyelash that enters the definition of the analogous Poisson structure in the
combinatorial approach [43, 2], being attached to every vertex and representing some free-
dom in this definition. However, the choice of another path�s���� simply corresponds to
a global conjugation by some product of monodromy matrices: a shift of this eyelash byj
steps corresponds to the transformation

Mk � �M� � � �Mj�
��Mk�M� � � �Mj� �

Therefore the restricted Poisson structure on gauge invariant objects is independent of this
path.

Remark 6.7 A seeming obstacle of the structure (6.53), (6.54) is the violation of Jacobi
identities. Actually, this results from heavily exploiting the constraint (6.52) in the calcu-
lation of the Poisson brackets. As therefore these brackets are valid only on the first-class
constraint surface (6.55), Jacobi identities can not be expected to hold in general.

However, the same reasoning shows, that the structure (6.53), (6.54) restricts to a Poisson
structure fulfilling Jacobi identities on the space of gauge invariant objects. On this space,
the structure reduces to the original Goldman bracket [48] and coincides with the restrictions
of previously found and studied structures on the monodromy matrices [43]:n �

Mi �
�

Mi

o
�

�

Mi r�
�

Mi �
�

Mi r�
�

Mi � r�
�

Mi

�

Mi �
�

Mi

�

Mi r� (6.57)n �

Mi �
�

Mj

o
�

�

Mi r�
�

Mj �
�

Mj r�
�

Mi � r�
�

Mi

�

Mj �
�

Mi

�

Mj r�

for i � j �

wherer� andr����r�� are arbitrary solutions of the classical Yang-Baxter equation

�r��� r��� � �r��� r��� � �r��� r��� � 	� (6.58)

and the symmetric part ofr� is required to bei��g. With r� � i��g, (6.57) reduces to
(6.53), (6.54) such that our structure is in some sense the skeleton, which may be dressed with
additional freedom that vanishes on gauge invariant objects. On the space of monodromy
matrices themselves, introduction ofr-matrices may be considered as some regularization to
restore associativity, whereas the fact that�g itself does not satisfy the classical Yang-Baxter
equation is equivalent to (6.53), (6.54) not obeying Jacobi identities.
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Remark 6.8 For eventually treating the coset model, the following additional structure is
important. There is an involution

 on the set of observables, defined by the cyclic shift
Mi �� Mi�n, whereN � �n is the total number of monodromies. This involution is an
automorphism of the Poisson structure on the algebra of observables:

f

 �X��� 

�X��g � 

 �fX�� X�g� � (6.59)

for X�� X� being traces of arbitrary products of monodromy matrices. This is a corollary
of Remark 6.6, as it follows from the invariance of the Poisson structure on gauge invari-
ant objects with respect to a shift of the eyelash that defines the ordering of monodromy
matrices. Like every involution,

 defines a grading of the algebra into its eigenspaces of
eigenvalue��. In particular, the even part forms a closed subalgebra.

The final goal of this section is the computation of the Dirac bracket on the space of
monodromy matrices. Let us first state the implications of the coset structure on this space.
In the sector of simple poles, (6.41) implies that the singularities appear in pairs with

�j �
�

�j�n
� (6.60)

(whereN � �n is the number of singularities), while the corresponding monodromies are
related by

Mj�n � 
�Mj� � (6.61)

To apply the result (6.53), (6.54) the corresponding paths must be chosen pairwise symmetric
under� �� �

�
. This uniquely relates the ordering of the monodromy matrices in (6.54) to the

ordering defined by (6.60).
The Dirac bracket now follows from simple symmetry arguments avoiding the direct

computation for objects that are invariant underG-valued gauge transformations (i.e. traces
of arbitrary products ofMj). The involution
� introduced by (3.8) acts onMj according to
(6.41) as follows:


��Mj� � 
�Mj�n� � (6.62)

Therefore, the set of allG-invariant functionals ofMj may be represented as

MS
MAS � (6.63)

with eigenvalues�� under
�, respectively. Since
 is an automorphism of the structure
(6.53), (6.54), the definition of
� in (6.62) implies (taking into account Remark 6.8)

fMS�MSg � MS � fMS�MASg � MAS � fMAS�MASg � MS � (6.64)

The constraints (6.61) are equivalent to vanishing ofMAS; therefore the part ofG-invariant
variables surviving after the Dirac procedure is contained inMS. The former Poisson bracket
(6.53), (6.54) onMS coincides with the Dirac bracket.
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6.4 Quantization

6.4 Quantization

In this section we describe different quatization procedures for the isomonodromic sector
of the model with simple poles. For simplicity and illustration we first recall the canonical
quantization of the Poisson brackets (6.32), where the coset structure (6.42) is ignored for a
while [71]. Like the quantization of (6.13) this yields a link to the Knizhnik-Zamoldchikov
system. We continue with identifying the quantum analogues of the monodromy matrices
in this representation and work out their algebraic structure. This may be compared with a
direct quantization of the monodromy algebra (6.53), (6.54) or (6.57), respectively. Finally,
we give the necessary modifications to properly include the coset structure of the model
(6.42).

Quantum connection

We briefly describe the quantization of the model in the isomonodromic sector with only
simple poles [71]. Straightforward quantization of the linear Poisson brackets (6.32) leads
to the following commutation relations:�

Aa
i � A

b
j

	
� i��ijf

abcAj � ���� ���� � �i� � (6.65)

Accordingly we represent the�� by multiplication operators, and further define

AA
j � i�tAj � ��� � i�

�

���
� (6.66)

wheretAj acts on a representationVj of the algebrag. Thus, the quantum state����� in a
sector with given singularities depends on the fields�� and lives in the tensor-product

V �N� � V� 	 � � �	 VN � (6.67)

of N representation spaces.
The whole “dynamics” of the theory is now encoded in the constraints (6.34), which

accordingly play the role of the Wheeler-DeWitt equations here:

C�� � 	 � (6.68)

and can be written out in explicit form using (6.34), (6.29), (6.66):

�

���
����� � �i� ���

X
k 		j

�jk

����j�����k�
����� � (6.69)

where�jk is defined as in (6.17).
The other constraint that restricts the physical states arrives from (6.25); in the quantized

sector it is reflected by:�X
j

tAj

�
����� � 	 � (6.70)

The general solution of the system (6.69) is not known. However, these equations turn
out to be intimately related to the Knizhnik-Zamolodchikov system (6.17). Namely, if�KnZ
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is aV �N�-valued function of��� � � � � �N , which solves (6.17) and the constraint (6.70), and
if further the�j depend onx� according to (3.3), then

� �
NY
j	�

� ��j
�wj

� �

�
i��jj

�KnZ � (6.71)

solves the constraint equations (6.69) [71]. The Casimir operator�jj defined above is as-
sumed to act diagonal on the states, forg=sl��� for example, this is simply�jj �

�
�
sj�sj���,

classifying the representation.

Quantum monodromy matrices

Having quantized the connectionA��� as described in the previous section, it is a priori not
clear how to identify quantum operators corresponding to the classical monodromy matri-
ces in this picture. As they are classically highly nonlinear functions of theAj, arbitrarily
complicated normal-ordering ambiguities may arise in the quantum case.

We choose a simple convention, replacing the classical linear system

������ � A������� � (6.72)

by formally the same one, where all the arising matrix entries are operators now, i.e. (6.72)
is an operator onV�	 V �N� whereV� denotes the (classical) vector space, already necessary
for the definition of (6.10), (6.20) and the (quantum) partV �N� has been defined in(6.67).

We have thereby fixed the operator ordering on the right hand side in what seems to be
a rather natural way. In the same way, we define the quantum monodromy matrices to be
given by

���� �� ����Mj � for � encircling�j � (6.73)

where the (quantum)�-function is normalized as

���� �
�
I �O� �

�
�
�
��A� around� � � � (6.74)

Remark 6.9 The normalization condition (6.74) generalizes the one we chose in the classi-
cal case (6.51) where the basepoints� was sent to infinity. This generalization is necessary,
because the constraint (6.52) is not fulfilled as an operator identity in the quantum case,
which means, that the quantum�-function as an operator is definitely singular at� ��
with the behavior (6.74). Only its action on physical states, which are by definition annihi-
lated by the constraint (6.25) may be put equal to the identity for���.

We are interested in the algebraic structure of the quantum monodromy matricesMj

defined by (6.73). This follows from the observation [109] that the quantum linear system
(6.72) is related to the Knizhik-Zamolodchikov systems withN andN�� insertions, respec-
tively, by

���� ��� � � � � �N� �
�
�I 	 U��

N ���� � � � � �N�
�
UN����� ��� � � � � �N� � (6.75)
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with the evolution operatorsUN from (6.18). Having Remark 6.1 in mind, the quantum linear
system may thus be understood as a mixture of the Schlesinger (6.13) and the Knizhnik-
Zamolodchikov (6.17) system, where the former corresponds to the classical vector spaceV�
with associated insertion� and the latter corresponds to the quantum space (6.67).

In particular, (6.75) shows that the monodromies of (6.73) may be identified among the
monodromies of the Knizhnik-Zamolodchikov system withN �� insertions. It has been
shown by Drinfeld, that these monodromies in turn are related to the braid group representa-
tions induced by certain quasi-bialgebras [30, 29].

Putting all these things together [74] we obtain the following algebraic structure

R�

�

MiR
��
�

�

Mi �
�

MiR�

�

MiR
��
� � (6.76)

R�

�

MiR
��
�

�

Mj �
�

MjR�

�

MiR
��
� � for i � j�

with theR-matricesR� given by

R� �
�
u R��

U

�

u��� R� � �R��
� � � (6.77)

whereRU is the universalR-matrix of the so-called Drinfeld-Jimbo quantum enveloping
algebra associated withg [27, 57] andu is some automorphism onV� 	 V �N�. The classical
limit of theseR-matrices may be computed and yields

R� � I	I � �i���i��g� � O���
�� � (6.78)

Thus, we have obtained the quantum algebra of the quantum monodromy matrices by
identifying the corresponding operators inside the picture of the quantized holomorphic con-
nectionA���. The classical limit of this algebra coincides with the classical algebra of
monodromy matrices (6.53), (6.54). This shows the “commutativity” of the (classical and
quantum) links between the connection and the monodromies with the corresponding quan-
tization procedures. Let us sketch this in the following diagram:

Holomorphic connection
fAAi � A

B
j g � �ijf

AB
C A

C
i

�
quantization

�AAi � A
B
j � � i��ijf

AB
C A

C
i

�

quantum monodromies
via KZ-system

Quantum algebra of monodromies
R�

�
MiR

��
�

�
Mj �

�
MjR�

�

M iR
��
�

� Classical algebra
of monodromies� �

Mi�
�
Mj

�
� i	

� �
Mi�g

�
Mj � 
 
 


�

�
�
�

�
�
�
�
��

quantization of the
nonassociative algebra

�

Atiyah-Bott symplectic structure
fAA� ���� A

B
�� ���g � �AB���������

holomorphic gauge

Regularized algebra
of monodromies� �

Mi�
�
Mj

�
�

� �
Mi r�

�
Mj � 
 
 


�

�

R

quantization and
quasi-associative

generalization

86



6 ISOMONODROMIC STRUCTURES

The dotted lines in this diagram depict the link to the usual way, quantum monodromies
have been treated. As was sketched in Remark 6.7., their classical algebra can be derived
from the original symplectic structure of the connection up to certain degrees of gauge free-
dom: for later restriction on gauge invariant objects, this algebra may be described with an
arbitrary classicalr-matrix. A direct quantization of this structure is provided by a structure
of the form (6.76), where the quantumR-matrices live in the classical spaces only and admit
the classical expansionR� � I � i�r� �O���

�� [1, 2].
In contrast to this quantum algebra which underlies (6.57), theR-matrices in (6.76) – due

to the automorphismu – also act nontrivially on the quantum representation space. Their
classical matrix entries may be considered as operator-valued, meaning, that the quantum
algebra can be understood alternatively as nonassociative or as “soft”. This is in some sense
the quantum reason for the fact, that the classical algebra (6.53), (6.54) fails to satisfy Jacobi
identities. However, note that (6.76) only describes theR-matrix in any fixed representation
of the monodromies; for a description of the abstract algebra, compare the quasi-associative
generalization in [2].

Quantum coset model

We have seen that the proper Poisson structure to be quantized for the coset model is (6.45).
This goes along the same line as the quantization of (6.27) described above.

Having solved the constraints (6.42), the number of degrees of freedom is effectively
reduced. The simple poles appear in pairs related by (6.60). Half of the residues of (6.30) is
represented according to (6.65), while the other half is obtained via

bAj � 

� bAj�n

�
� (6.79)

The constraint equations (6.68) (the Wheeler-DeWitt equations here) take the form

�

���
����� � �i����

�X
j
k

�� � �j�k� �jk

����j�����k�
�
X
j
k

��j � �k� �
�
jk

����j�����k�

�
����� � (6.80)

with�� from (3.47). Additionally, the physical states have to be annihilated by the first-class
constraint (6.46):�X

j

tAj �
X
j



�
tAj
��

����� � 	 � (6.81)

Modifying (6.71) we can establish a link between solutions of the quantum constraint
equations (6.80), (6.81) (i.e. physical states) and solutions of what we will refer to as the
Coset-Knizhnik-Zamolodchikov (CKZ) system [74]:

��CKZ

��j
� i�

�X
k 		j

� � �k��j
�j��k

�jk �
X
k

�k � ���j
�j�k��

��
jk

�
�CKZ � (6.82)

The precise relation to (6.80) is the following:
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6.5 Isomonodromic deformations and KZB equations on the torus

If �CKZ is a solution of (6.82) obeying the constraint (6.81), and the�j depend on��

according to (3.3), then

� �
nY

j	�

�
���j

��j
�wj

�i��jj

�CKZ � (6.83)

solves the constraint (Wheeler-DeWitt) equations (6.80).
The procedure of identifying observables may be outlined just as in the case of the prin-

cipal model. Again the monodromies of the quantum linear system are the natural candidates
for building observables and contain a complete set for the simple pole sector. The actual
observables are generated from combinations of matrix entries of these monodromies that
commute with the constraint (6.81). From general reasoning according to the classical pro-
cedure, relevant objects turn out to be the combinations ofG-invariant objects, that are also
invariant under the involution
�.

6.5 Isomonodromic deformations and KZB equations on the torus

This section is based on [73]. We leave the concrete model of dimensionally reduced gravity
and like in section 6.1 study abstract isomonodromic deformations. The scheme presented
above allows natural extension to Riemann surfaces of genus one. Instead of the Knizhnik-
Zamolodchikov system (6.17) on the sphere, in this case we obtain the link to the Knizhnik-
Zamolodchikov-Bernard (KZB) system that has appeared in the study of the corresponding
higher genus conformal field theories [8, 9]. The conceptual novelty of twisted functions,
that is introduced in WZW conformal field theories on the torus in order to get a proper
description of the action of inserted affine zero modes in the correlation functions, enters the
game in a very natural way here.

In the context of dimensionally reduced gravity these structures may prove to be impor-
tant in an isomonodromic approach to two-dimensional world-sheets with nontrivial topol-
ogy. This extension would be indispensable for a “stringy” interpretation of the model.

Holomorphic gauge fixing

We start again from a smoothg-valued one-formA on the torus. To simplify notation and
without loss of generality we restrict to the caseg � sl��� C �. In the explicit formulae we
will use standard Chevalley generatorst�� t�. Denote the periods of the torus by� and
 .

Holomorphic gaugeA�� � 	 can not be achieved in general. However, taking into account
our remarks from the previous section, the essential fact is,[41] that a dense subspace of
smooth (0,1)-forms can be gauged into constants of the form

A�� �
��i�


 � �

�� � � � C � (6.84)

The holomorphic gauge condition would require an additional gauge transformation of
the kindg � exp���i�����

����
���. This is obviously multi-valued on the torus, having a multi-

plicative twist:g �� exp���i����g for � encircling the fundamental�	� 
�-cycle. The result
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6 ISOMONODROMIC STRUCTURES

of a gauge transformation of this kind is a twist in the remaining holomorphic (1,0)-form
A���:

A�� � �� � A��� A�� � 
� � e��i�ad	�A��� � (6.85)

In components this reads:

A��� � 
� � A���� A��� � 
� � e���i�A���� �

Even though in principle gauge transformations must be defined globally single-valued
in order to conserve physics, in this case the proceeding is justified by the fact, that the non-
gauge-trivial part ofA�� survives as an arising twist of the holomorphic connectionA. This
is how the holomorphic gauge causes the appearance of twisted quantities in a rather natural
way.

Some meromorphic functions on the torus

Before we start to investigate isomonodromic quantization on the torus, let us collect some
simple facts about twisted meromorphic functions on the torus. A basic ingredient to describe
functions of this kind, is Jacobi’s theta-function:

���� �
X
n�Z

e��i�
�

�
n���n�� �

which is holomorphic, twisted as:������ � ����� ����
� � e�i����������� and has simple
zeros for� � �

�
�
��� � Z� 
Z.

Standard combinations are the functions [42]

���� �
���� � �

�
�
 � ���

��� � �
�
�
 � ���

� i� � and ����� �
���� � � �

�
�
 � �������

�
�
 � ���

��� � �
�
�
 � ������� �

�
�
 � ���

�

which have simple poles with normalized residue in� � 	 and additive and multiplicative
twist, respectively:

��� � 
� � ����� ��i � ���� � 
� � e��i������ �

Moreover, they satisfy

����� � ����� � ����� � �������� � (6.86)

and the identity

�����x� y� � ���x� y�
�
��� � x�� ��� � y�

�
� ����� � x����� � y� � (6.87)

These relations can be proved checking residues and twist properties. All the following
calculations rely on the fact, that meromorphic functions on the torus with simple poles are
uniquely determined by their residues if they are multiplicatively twisted, whereas functions
with additive or vanishing twist are determined only up to constants. In generic situation
there are no holomorphic twisted functions on the torus.
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6.5 Isomonodromic deformations and KZB equations on the torus

Isomonodromic deformations

Equipped with these tools we can now start to describe the twisted meromorphic connection
A���. Because of its twist properties (6.85),A��� is of the form:

A���� �
X
i

A�
i ��������i� � A���� �

X
i

A�
i �����i��B� � (6.88)

Define again� by the linear system

����� � A������� � (6.89)

The function� will get monodromiesMi andM��
�� from the right hand side, if� encircles
�i or the�	� �� cycle of the torus. If� runs along the�	� 
� cycle,� will exhibit an additional
left monodromy due to the twist (6.85) ofA:

���� �� e��i�	�����M��
�� � (6.90)

Under isomonodromic deformation we will understand the invariance of the right hand side
monodromy data under the change of the parameters of the punctured torus, which are the
singular points�i and the period
 . The connection data in this case are the residuesAi, the
additive constantB� and the twist�.

Let us first investigate their�i-dependence. In addition to the residues of�i��
�� we

have to determine its twist around�	� 
� from isomonodromy conditions. Equation (6.90)
yields:�

�i��
��
�
��� �� e��i� ad	�

�
�i��

��
�
��� � ��i�i���

This determines the form of the�i-dependence of� to be:�
�i��

��
��

��� � �A�
i ������ � �i� � (6.91)�

�i��
��
��
��� � �A�

i ��� � �i� �B�
i �

and further on yields the�i-dependence of the twist parameter�:

�i� � A�
i � (6.92)

We can now proceed as on the sphere in section 6.1. Compatibility of the equations
(6.89) and (6.91) implies the following Schlesinger equations on the torus:

�iA
�
j � �A�

i A
�
j �����j��i� � A�

i A
�
j ������j��i� � for j �� i � (6.93)

�iA
�
i �

X
j 		i

A�
i A

�
j �����j��i��

X
j 		i

A�
i A

�
j ������j��i� �

�iA
�
j � ��A�

i A
�
j������j��i�� �A�

iA
�
j ���j��i�� �B�

iA
�
j � for j �� i �

�iA
�
i � ��

X
j 		i

A�
i A

�
j���i��j�� �

X
j 		i

A�
iA

�
j ������i��j�

� �B�A�
i � �B�

iA
�
i �

�iB
� �

�

�

X
j 		i

�
A�
i A

�
j �������i��j�� A�

i A
�
j �������j��i�

�
�
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and a curvature condition on the constantsBi

�iB
�
j � �jB

�
i �

�
�
A�
i A

�
j �������i��j��

�
�
A�
i A

�
j �������j��i� � (6.94)

The equations (6.92), (6.93) and (6.94) build a system of differential equations that is
automatically compatibel, just as the Schlesinger equations (6.13) on the sphere are. This
may be directly checked by a rather lengthy but straightforward calculation, making repeated
use of (6.86) and (6.87). Compatibility is valid on the constraint surfaceX

j

A�
j � 	 � (6.95)

that was already implied by consistency of the twist properties ofA���with the ansatz (6.88).
This constraint here appears in a weaker form than on the sphere (6.2). This corresponds to
the fact that the gauge freedom (6.7) has been fixed more rigorously on the torus in order to
diagonalize the twist around the�	� 
�-cycle. Here, the remaining constraint (6.95) generates
those gauge transformations which are compatible with (6.84)

As on the sphere, it is possible to formulate the dependence (6.93) as a multi-time Hamil-
tonian structure. The Hamiltonians read

Hi �
X
j 		i

�
�A�

iA
�
j���i � �j� � A�

i A
�
j ������i � �j� � A�

i A
�
j �����i � �j�

�
� �B�A�

i � �B�
i

X
j

A�
j � (6.96)

and generate the�i-flows (6.93) in the Poisson structure

fAA
i � A

B
j g � �ijf

AB
C A

C
i � f��B�g � �

�
� (6.97)

This structure arises from holomorphic gauge-fixing of the original bracket (6.6) in the same
way, as does the bracket (6.3) on the sphere. In particular, remembering the origin of�
(6.84), the second equation may be viewed as a reminiscent of (6.6) for the constant modes
of A� andA��.

In analogy with (6.5) this Poisson structure admits a generalizedr-matrix formulationn �

A��� �
�

A�	�
o

�
h
r�� � 	� �

�

A����
�

A �	�
i
� ��r�� � w�

�X
j

A�
j

�
� (6.98)

with the twistedr-matrix

r��� � �
�
�����t� 	 t�� � �������t

� 	 t�� � ��������t
� 	 t�� � (6.99)

In some sense this restricts to a classicalr-matrix formulation on the constraint surface
(6.95). Validity of the Jacobi identities is expressed by a twisted version of the classical
Yang-Baxter equation.

The Hamiltonians (6.96) show the role of the constantsBi as parameters of gauge trans-
formations generated by the first-class constraint (6.95). This suggests to simply skip these
terms from the Hamiltonians, as is in fact done in the sequel, leading to the KZB equations.
As a consequence, these truncated Hamiltonians only commute up to (6.95), meaning that
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6.5 Isomonodromic deformations and KZB equations on the torus

the generated�i dynamics of the connection data produces isomonodromic deformation only
up to certain shifts in the gauge orbit.

Finally we study isomonodromic deformation with respect to a change in the period
 of
the torus. This can be done in complete analogy with the just treated case. From (6.90) the
twist of ������ around�	� 
� turns out to be�

����
��
�
��� �� e��i� ad	�

�
����

��
�
���� e��i� ad	�A��� � ��i����� �

which leads to the following
 -dependence of the function�:

��i
�
����

��
��

��� � �
�

�

X
j

A�
j �������� � �j� � (6.100)

��i
�
����

��
��
��� �

�

�

X
j

A�
j

�
��� � �j�

� � ��� � �j�
�
� B�

� �

and determines the
 -dependence of the twist parameter

��� � � �
��i
B� � (6.101)

Compatibility of (6.89) and (6.100) now yields additional Schlesinger-type equations:

��i��A
�
i � �

�

�

X
j

A�
i A

�
j ��������i��j��

�

�

X
j

A�
i A

�
j �������i��j� � (6.102)

��i��A
�
i � �

X
j

A�
i A

�
j

�
���i��j�

� � ���i��j�
�

�
X
j

A�
iA

�
j ��������i��j�� �B�

�A
�
i �

��i��B
� � �

�

�

X
i
j

�
A�
i A

�
j �

�
�������i��j�� A�

i A
�
j �

�
������i��j�

�
�

together with a curvature condition for�
��i
�iB

�
� � ��B

�
i . Again, compatibility of the whole

system of differential equations may be shown by a straightforward calculation.

With the Poisson structure already given in (6.97) this flow is generated by the Hamilto-
nian

��iH� �
�




X
i		j

�
A�
i A

�
j ��������i � �j�� A�

i A
�
j �������i � �j�

�
(6.103)

�
�

�

X
i
j

A�
iA

�
j

�
���i � �j�

� � ���i � �j�
�
�B�B� � �B�

�

X
j

A�
j �

where again we will skipB�
� under the above remarks.
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Quantization and Knizhnik-Zamolodchikov-Bernard system

The canonical quantization of the described Hamiltonian structure now directly leads to the
KZB-system, as we shall finally show. Quantization is again performed straightforwardly
with (6.97) being replaced by�

AA
i � A

B
j

	
� i��ijf

AB
C A

C
i �

�
��B�

	
� �

�
i� � (6.104)

In the�i-independent Schr¨odinger representation of the operators they can be realized as

AA
i � i� I 	 � � �	 tAi 	 � � �	 I � B� � ��

�
i��� � (6.105)

acting on quantum statesj�i that are�-dependent sections of aV �N� �
N

j Vj bundle over
X� � ffundamental domain of
g 	 C

N n fdiagonal hyperplanesg.
The quantization of (6.93) and (6.102) in the Schr¨odinger picture provides this bundle

with the horizontal connection:

�ij�i � Hi j�i � �
�
i�t�i�� j�i� i�

X
j 		i

��
ij��i��j� 
� �� j�i � (6.106)

��i�� j�i � ��iH� j�i � �
�
i���� j�i� i�

X
i
j

��
ij��i��j� 
� �� j�i �

with

��
ij��� 
� �� � �

�
�����t�i 	 t�j� � ��������t

�
i 	 t�j � � �������t

�
i 	 t�j � �

��
ij��� 
� �� � �

�
����������t

�
i 	 t�j ��

�
�
���������t

�
i 	 t�j �

� �
�

�
������ ����

�
�t�i 	 t�j� �

acting non-trivially onVi andVj.
This is the KZB connection, found in [8] as system of differential equations for charac-

ter-valued correlation functions. The form (6.106) coincides exactly with the form presented
in [42] for sl��� C �. In particular, the term that includes the derivative with respect to the
twist parameter� is the explicit analogue of the action of affine zero modes on correlation
functions in WZW models. We stress again that in contrast to the system (6.17) on the sphere
these Hamiltonians only commute up to the constraint (6.95) which implies the fact that the
KZB-connection is flat only as a connection on the subbundle of states annihilated by

P
j t

�
j ,

see [42].
Let us close with the remark that this result suggests similar links between the quantiza-

tion procedure of isomonodromic deformations on higher genus Riemann surfaces and the
corresponding higher KZB equations [9]. See [55, 83, 117] for further work.
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7 Conclusions and Outlook

Let us briefly summarize the main results obtained in this thesis.

� We have set up the canonical formalism for a general class of two-dimensional coset
space�-models coupled to dilaton-gravity, that arise from dimensional reduction of
various gravity and supergravity theories. The canonical Poisson structure (2.57) and
the gauge algebra of constraints (2.62)–(2.63) have served as the starting point for the
entire treatment.

� A complete set of nonlocal integrals of motion has been identified classically among
the transition matrices of the associated linear system. They have been shown to be
invariant under the full gauge algebra of constraints (3.26). Moreover, in a rather
direct and unusual way they encode physical information (3.59), which in spite of
their spatially nonlocal origin (3.17) allows localization in the two-dimensional world-
sheet.

� The classical Poisson algebra of these nonlocal charges is well-defined and in contrast
to the related structures in the flat-space�-models does not exhibit any ambiguities, in
spite of similar non-ultralocal terms in the fundamental Poisson brackets (2.57). The
coordinate dependence of the spectral parameter (3.3) plays an essential role for this
regularity. The resulting algebra (3.60), (3.61) is related to the (semiclassical) Yangian
double [27, 28].

� Since the nonlocal charges parametrize the phase space (at least in the sector which
admits the particular gauge fixing (3.36)), the adjoint action of the algebra of charges
on itself describes a transitive symmetry. The well-known action of the Geroch group
is recovered as the associated Lie-Poisson action. This provides a canonical realization
of the Geroch group, which is an indispensable tool for later quantization.

� We have shown that the entire structure allows generalization to the maximally super-
symmetric extension of the model. TheN��� superconformal constraint algebra has
been worked out, and has been used to prove that the nonlocal charges – obtained in
analogy to the bosonic case – are indeed supersymmetric. As a byproduct, this result
has confirmed that the supersymmetric extension of the bosonic linear system (4.30)
given in [98, 103] does not receive any quartic fermionic contributions but already cap-
tures the full supersymmetric theory. The Poisson algebra of charges has been shown
to coincide with the one of the bosonic sector.
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� Quantization of the classical structures has been achieved for the coset spacesG�H�
SL�N�R��SO�N�, resulting in a modified (twisted) version of the Yangian double
with a particular value of the central extension (5.5), (5.6). The pivotal classical object
– the monodromy matrixMBM – has been recovered within the quantum algebra as a
classical matrix with self-adjoint operator entries (5.9).

� The further program of classifying representations of the quantum algebra has been
outlined for the simplest caseSL���R�. Already on this level, one may recognize
several features (in particular, the repeated occurrences of discrete nonlocal struc-
tures), which e.g. distinguish the model from the quantization of its linear (abelian)
subsector. The latter has been under active investigation from the point of view of
midi-superspace models of quantum gravity [79, 3].

� Within the isomonodromic approach initiated in [70, 71], we have analyzed the al-
gebraic structure of observables on the classical and the quantum level. For quan-
tization we have exploited the inherent link to a modified version of the Knizhnik-
Zamolodchikov equations (6.82) making the underlying coset structure manifest. In
the general framework of isomonodromic deformations, we have established a similar
link to the Knizhnik-Zamolodchikov-Bernard equations on the torus. So far, we have
not been able to embed these structures into the canonical framework.

There are many things which remain to be elaborated. An immediate aim is the study
of the representation theory of the algebra (5.5)–(5.9) according to the program outlined
in section 5.3. Certainly, the hope is that the requirement of unitarity with respect to the
�-structure (5.10) will strongly restrict the choice of representations.

Within the appropriate representations, the next goal would be the construction of some
analogue of coherent states. They should exhibit minimal quantum fluctuations around given
classical solutions. The discussion of the symmetry structure in sections 3.4 and 5.3 suggests
that the quantum counterpart of the Geroch group (5.40) will play a key role in generating
these states, giving rise to a Hopf algebra generalization of the coherent states’ concept.
Obviously, the usual (linear) framework of coherent states is too narrow to cope with the
quantization of Lie-Poisson symmetries. With coherent states at hand, one would finally be
in position to study in detail how quantization affects the known classical solutions of gravity
(at least under the above mentioned reservations).

For the maximally supersymmetric model described in Chapter 4 with the underlying
coset spaceG�H � E������SO����, it remains to extend the quantization to higher-dimen-
sional and, in particular, the exceptional Lie algebras. The quantization given in section
5.1 has been strongly supported by many well-known properties of the Yangian algebras
associated withSL�N�R�. Unfortunately, less is known about the related structures forE�;
see however [18] for the construction of the associatedR-matrix.

An interesting and somewhat complementary approach to the quantum model would in-
volve the construction of the nonlocal charges in a quantum model based on the original
physical currents (2.39), (2.57), rather then quantizing (3.60), (3.61) directly. In the sense of
[85, 10], one would have to establish the nonlocal charges and their algebra after quantiza-
tion and not before. Physical states would have to be identified in an “unphysical” Hilbert
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space as the kernel of the constraint algebra (2.62) and (4.27), respectively, while the quan-
tum nonlocal conserved charges serve as a spectrum-generating algebra relating these states.
So far, we have, in contrast, adopted a rather pragmatic point of view, by directly searching
for the possible quantum algebras that may underlie the classical integrable structure, tacitly
assuming that integrability survives quantization. This means e.g. that we have neglected
any effects of potential anomalies that may obstruct integrability and the nonlocal symme-
tries in the quantum theory. It is at this stage, that the maximally supersymmetric extension
described in Chapter 4 may play its full role (since on the level of conserved charges studied
here, we have – somewhat surprisingly – not encountered any essential differences between
the resulting structures in the supersymmetric model compared with the purely bosonic sec-
tor).

In view of potential higher-dimensional interpretations of these models [102], it would
further be necessary to generalize the entire framework to arbitrary Riemann surfaces�
playing the role of the two-dimensional world-sheet. So far, it is even unclear how to ex-
tend the setting to the (seemingly modest) modification of periodic boundary conditions. As
we have discussed in section 3.2, in this class of models, periodicity of the physical fields
does not imply periodicity of the connection of the linear system (3.1). The construction of
conserved charges thus has to be modified in some rather nontrivial fashion. Since (3.59)
has shown a link between the world-sheet and the spectral-parameter plane, one would ex-
pect the structures (3.60), (3.61) and (3.62) to be eventually replaced by a Poisson algebra,
which should accordingly be compatible with some periodicity of the nonlocal charges in
the spectral parameter plane.

Another highly interesting generalization would include the extension of the framework
to those models which arise from a dimensional reduction that includes a timelike Killing
vector field, i.e. which are formulated on a two-dimensional world-sheet� with Euclidean
signature. At present, it seems rather subtle to rigorously establish a canonical framework
in the sector of stationary solutions where the canonical time-dependence has been dropped
by hand. On the other hand, it is certainly this sector which contains the most interesting
physical solutions, in particular, the black holes.
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space time, Proceedings NATO ASI, Cargèse 1996, Plenum Press, New York (1997)

[105] Nicolai, H., and Samtleben, H.: Integrability and canonical structure ofd � �, N � ��
supergravity. Preprint AEI-061, Potsdam, hep-th/9804152 (1998), to appear inNucl. Phys.B

[106] Nieuwenhuizen, P. V.: Supergravity.Phys. Rept.68, 189–398 (1981)

[107] Pohlmeyer, K.: Integrable Hamiltonian systems and interactions through quadratic constraints.
Commun. Math. Phys.46, 207–221 (1976)

[108] Ramond, P., and Schwarz, J. H.: Classification of dual model gauge algebras.Phys. Lett.64B,
75–77 (1976)

[109] Reshetikhin, N.: The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy
problem.Lett. Math. Phys.26, 167–177 (1992)

[110] Reshetikhin, N., and Semenov-Tian-Shansky, M.: Central extensions of quantum current
groups.Lett. Math. Phys.19, 133–142 (1990)

[111] Saltini, L. E., and Zadra, A.: Algebra of nonlocal charges in supersymmetric nonlinear sigma
models.Int. J. Mod. Phys.A12, 419–436 (1997)
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