
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012012

IOP Publishing
doi:10.1088/1742-6596/2438/1/012012

1

Blaze: A High performance Big Data Computing
System for High Energy Physics

Libin Xia1,2, Wei Sun1, Xiaoyu Liu1,2, Gongxing Sun1, Xiaowei
Jiang1,2

1 Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, China
2 University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

E-mail: xialibin@ihep.ac.cn

Abstract. High energy physics (HEP) is moving towards extremely high statistical
experiments and super-large-scale simulation of theory. In order to handle the challenge of
rapid growth of data volumes, distributed computing and storage frameworks in Big Data area
like Hadoop and Spark make computations easy to scale out. While the programming model
based on in-memory RDD assumes that workload performs only local computation and rare
message exchange, it’s inefficient at some HEP use cases, because several scientific computations,
such as partial wave analysis (PWA) and lattice quantum chromodynamics (LQCD), are based
on numerical linear algebra and iterative algorithms that rely on message passing between
tasks. In this paper, we present a computing system (Blaze) that modifies Spark to support
OpenMPI, and performs as a unified system that integrates MPI in DAG and provides task
scheduling policy. The results indicate that the insufficient expressiveness in Spark model are
supplemented by inter-task message passing. Additionally, Blaze also empowers MPI with the
ability of data-locality computing and provides a solution of fault tolerance.

1. Introduction
Large-scale parallel computing and big data analysis contribute to an in-depth understanding of
physics by increasing the amount of data and the accuracy of computational precision. Nearly
all of the calculations in particle physics are either computing-intensive or data-intensive or
both. For example, Partial Wave Analysis (PWA) requires parametric fitting in extremely high-
dimensional space on statistics[1], and lattice QCD calculation is focusing on solving large-scale
sparse linear equations. Both of them use numerical linear algebra and iterative algorithms
to solve the physical questions, and scatter/reduce operations or communications are also
needed. So large-scale parallel computing technology based on Message Passing Interface(MPI)
is adopted to improve the performance.

In order to deal with the increase in data volume and improve the computing speed, the
design goals of the next-generation high energy physics computing systems should consider the
massive data processing while satisfying increasingly diverse and complex use cases such as
traditional scientific computing and machine learning. Accordingly, in this paper, we propose
a new computing model derived from Spark to deal with high-performance big data computing
problems in high energy physics, and design an in-memory computing system called Blaze
based on Spark and OpenMPI. With the help of communications among tasks and efficient

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012012

IOP Publishing
doi:10.1088/1742-6596/2438/1/012012

2

memory access operations, our computing system provides a powerful combination of flexibility,
performance, and ease of use for physicists to develop big data computing applications.

2. Related Research
The traditional high energy physics data analysis always uses multiple CPU threads and GPU
cards to parallelize the application. In the case of computation-intensive applications, experts
use MPI to improve performance on a larger scale. For example, USQCD software suite
provides QMT (QCD Multi-Threading) and QMP (QCD Message Passing) modules based on
OpenMP/MPI to perform high performance for Lattice QCD calculations[2], they also develop
a library called QUDA to support GPU[3].

Beyond high-performance computing community, technologies in Big Data era are booming.
With the development and evolution over the past 10 years, Apache Spark has become the
de-facto standard framework for large-scale distributed data processing. One of the key
contributions of Spark is the introduction of Resilient Distributed Datasets (RDDs), DataSets,
and DataFrames that stored in memory for building a MapReduce-like programming model.
Internal datasets represented by RDDs can be cached in memory for reuse, and the tasks within
a job are distributed through a Directed Acyclic Graph (DAG) composed of their dependencies
to improve the performance of iterative and interactive applications. Spark also provides many
general-purpose data processing libraries based on this model, such as Spark SQL and MLlib.
Therefore, it is convenient for users to easily implement complex data processing jobs. In the field
of high energy physics, scientists also tried to introduce Spark into experimental data processing,
including the data analysis program of Fermilab’s neutrino oscillation experiment (NuMI Off-
axis νe Appearance, NOvA)[4] and CMS dark matter experiment data analysis program[5].
However, the program performance lags behind that of MPI implementation. CERN also tries
to construct a set of new ROOT data parallel processing tools by integrating Spark and ROOT,
which supports interactive or semi-interactive data analysis[6].

3. Design and Implementation
3.1. Programming Model and System Architecture
The challenges in high energy physics computing technology mainly consists in the convenience of
parallel programming and the efficiency of the program execution. The above two requirements
are fully considered in Blaze’ s design. As shown in Figure 1, the parallelization of high-energy
physics programs can be easily implemented on multiple separated partitions of the dataset,
and large applications can be cut into small stages by defining operators to execute on the
dataset. Then, according to the dependencies of dataset partitions and stages, an application is
packaged and formed as a DAG. Finally, the DAG will be placed into and run on the computing
resources. To meet the requirements of computation performance, high-performance computing
technologies has been adopted by Blaze, including hardware and software resources such as
Infiniband, MPI and so on.

Full design of the system is shown in Figure 2. The computing engine based on Spark
integrates OpenMPI to better fit high energy physics computing. Meanwhile, the engine is also
responsible for the generation of the execution diagram for computing tasks and fine-grained
task allocation. The overall resource scheduling is controlled by YARN, while persisted data
are stored in HDFS. The datasets between different stages are uniformly cached in memory
managed by BlazeMM, which aims to avoid overheads such as data replications and conversions
in the dataflow. Therefore, HEP applications can be efficiently built and run on the system.

3.2. Task Communications in Blaze
As a dataflow system, Apache Spark implements a data-parallel interface where tasks can be
distributed to different partitions within a dataset. Each task is a function that executes on

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012012

IOP Publishing
doi:10.1088/1742-6596/2438/1/012012

3

Stage 1

Stage 2 Stage 3

RDD

partition

task

DAG

mpi task

Figure 1. Blaze DAG execution model

Compute
Layer

Storage System

Compute Engine

Network

Applications

Blaze

HDFS Lustre EOS

InfiniBandTCP

Shared MemoryBlazeMM Alluxio

Yarn Mesos K8s

LQCD AcceleratorPWA

Memory Management

Spark

Resource Manager

OpenMPISpark

Figure 2. Blaze System Architecture

an independent data partition, so such MapReduce-like programming model is limited by the
lack of inter-task communication. In Blaze, the low expressiveness of the traditional computing
model in Spark is supplemented by message passing between tasks, which also establishes a
bridge between high performance computing and big data area. Therefore, the message passing
mechanism becomes a first-class component like the MapReduce model in Spark.

In practice, inter-task message passing is implemented through OpenMPI, which plays the
role of task communication in user jobs. Blaze is responsible for the life cycle of the job, including
the launching and scheduling of tasks to ensure that the application runs in a unified cluster, and
the tasks invocation have the best data locality. After submission to the cluster, each job will
create a BlazeContext instance which represents the connection to Spark and MPI. Scheduling
decisions and other relevant information required by MPI, such as namespace and ranks, are
created by the DAGScheduler and TaskScheduler in the Driver, which are then used to notify
Executors to start tasks via the MPI library. The above processes implemented in Blaze are
illustrated in Figure 3.

3.3. In-memory data management
As mentioned in Section 3.1, efficient data management is another challenge for computing
system design. Caching internal data of computing lineage in memory and building a distributed
data store as Spark are the key concepts of BlazeMM.

Spark stores datasets by splitting them into RDD partitions (blocks), which managed by
Spark’s BlockManager component. As Spark is running on Java Virtual Machine (JVM), this
leads significant memory overheads for caching data. Although off-heap memory management
has been introduced by Tungsten[7], which can help to reduce garbage collection overhead and
serialization/deserialization cost. However, it mainly devotes to known object schema (eg. Spark
SQLs), and cannot be used for sharing arbitrary data with MPI processes.

To meet the needs of supporting HEP native code and reducing performance loss between
libraries or programming languages, we re-implement a distributed memory management module
that inspired by Apache Arrow. The local object store is maintained through shared memory,
so data can be shared between JVM process and MPI processes with zero-copy, reducing data
format conversion and serialization/deserialization overhead. At present, we use RDD to record
the ObjectID returned by the object store, which points to the actual data partition. The full
implementation of Spark BlockManager replacement and more language-independent datasets
implementation are still in progress. For example, the MPI operators executed in MPIStage will
produce MpiRDD for further computations, which enhances MPI with data-locality computation
and provides fault tolerant support.

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012012

IOP Publishing
doi:10.1088/1742-6596/2438/1/012012

4

Node 2 Worker

Client

BlazeContext

Schedulers

Driver

Node N

Worker

Worker

Master

Node 1

TaskSetManager

Executor

Executor

Executor
(MPI)

Executor
(Spark)

Executor
(MPI)

Submit Launch Tasks RPC Msg

Figure 3. Schedule Flow of Blaze Figure 4. Data flow execution diagram of LQCD

3.4. HEP use cases
As a general computing system, a variety of applications can be built on the platform by following
the rules of the programming model defined above. In this section, we choose the case of LQCD
to illustrate the workflow in Blaze. LQCD calculations can be divided into three steps including
generating configurations via Hybrid Monte Carlo algorithm, computing quark propagators and
contracting propagators into correlation functions, and extracting physics. With the help of
task communicating support, we can directly run the LQCD code written with MPI library.
Therefore, the calculations will be converted to operations on data flow with multiple stages by
DAG scheduler as shown in Figure 4, and the division granularity of the stages can continue
to be reduced as needed. The result data is persisted in HDFS and the intermediate data
between stages is temporarily stored or cached in distributed memory with key-value pairs
RDDs. Due to the advantages of HPC and big data, the pre-processing stage like filtering with
quark mass can be done by Spark operators, while computing intensive calculations such as
propagators computation and contraction are implemented with MPI and processed in data-
locality computation manner.

4. Tests and Results
In order to test the new programming model and the performance of the distributed in-memory
computing system, we choose Conjugate Gradient (CG) algorithm as the test case in this paper,
because iterative algorithms such as PWA are widely used in HEP computing. Meanwhile, CG
is a method for solving linear equations that has been widely used in LQCD calculations.

Table 1. Test Environment
Environment Master Node Worker Node

CPU Intel Xeon CPU E5-2630L v2, 2.40 GHz, 6 cores, 12 threads
Memory 62GB
Storage 2*2TB SAS HDD
Network Gigabit Ethernet

OS CentOS Linux release 7.9.2009
MPI OpenMPI 5.0.0a1

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012012

IOP Publishing
doi:10.1088/1742-6596/2438/1/012012

5

The test environment is based on a cluster with one BlazeMaster node and 8 Worker nodes
(Table 1), and the test case is solving a linear equation like Ax=b with CG method, where
A and b are stored as distributed matrices of RDDs. The implementation based on our
programming model completes the parameter update in each iteration through MPI_Allgather
or MPI_Allreduce, and makes all the calculation processes complete in a single Stage.
Additionally, tasks running in Blaze obey the rule of data-locality. As a comparison, this paper
also implements SparkCG which does not have task communication capabilities. The idea is
to cache the distributed matrix A that needs to be reused in the iteration, and the parameters
updated in each iteration are sent to Workers through broadcast to complete distributed matrix-
vector multiplication and vector inner product operations in each task. The tests shows that we
got at least 70% performance improvement compared with the traditional Spark programming
model.

Table 2. Performance Comparison
Matrix dimensions Spark CG Blaze CG

10000 176s 12s
20000 251s 40s
30000 375s 92s
40000 560s 157s
50000 710s 220s

5. Conclusions
Many advanced ideas and projects from the Internet industry can be applied to HEP computing
to make the data processing more powerful. The data-driven programming model inspired
by Spark will make the work of physicists more intuitive and easier, but lacks flexibility
and performance. In this paper, we enhance the RDD-based programming model with
message passing and implement a prototype computing system with the capabilities of task
communication and zero-copy memory access. Therefore, almost all applications in HEP can
be represented by a high-performance dataflow model and perform data-locality computations
with fault tolerance on Blaze.

6. Acknowledgments
This work was supported by the National Natural Science Foundation of China (NSFC) under
Contracts No. 11775249, No. 12275295.

References
[1] Zhanchen W, Qiulan H, Gongxing S and Xiaoyu L 2020 J. Phys.: Conf. Ser. 1525 012043
[2] Edwards R G and Joó B 2004 arXiv: High Energy Physics - Lattice
[3] Clark M, Babich R, Barros K, Brower R and Rebbi C 2010 Computer Physics Communications 181 1517–1528
[4] Sehrish S, Kowalkowski J and Paterno M 2016 2016 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW) (IEEE) pp 1653–1659
[5] Gutsche O, Cremonesi M, Elmer P, Jayatilaka B, Kowalkowski J, Pivarski J, Sehrish S, Surez C M,

Svyatkovskiy A and Tran N 2017 arXiv: Distributed, Parallel, and Cluster Computing
[6] Avati V, Blaszkiewicz M, Bocchi E, Canali L, Castro D, Cervantes J, Grzanka L, Guiraud E, Kaspar J,

Kothuri P, Lamanna M, Malawski M, Mnich A, Moscicki J, Murali S, Piparo D and Tejedor E 2018 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion) pp
5–6

[7] Project Tungsten URL https://issues.apache.org/jira/browse/SPARK-7075

