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Abstract: The introduction of branes immersed in the space-times of higher dimensions revealed itself
to be a useful instrument for the study of high-dimensional models in quantum field theory. Moreover,
low-dimensional quantum field theories represent an especially interesting class of models in physics
due to their unique properties and renormalizability when interactions are treated perturbatively. The
advantages of both approaches can be combined in a model for a low-dimensional brane immersed in
the usual tetradimensional Minkowski space-time, the properties of which are relatively well known.
This approach can be used for the study of systems like graphene and carbon nanotubes. In the
present work, we present an effective model for nanotubes based on the Lagrangian obtained from
a tight-binding model for graphene. The induced current, appearing azimuthally in the presence
of a magnetic flux through the tube section (Aharonov–Bohm effect), will be derived. A reduced
Lagragian for photons confined on the tube surface, obtained from the literature, is included in the
last part of the work to threat perturbative corrections to the induced current.

Keywords: Aharonov–Bohm effect; graphene; carbon nanotubes

1. Introduction

Relativistic quantum field theory provides a powerful tool for the description of low-
energy excitations in condensed-matter physics [1,2], with some of the examples being
the field theoretic description of low-energy electron states in polymers [3–5]. In the case
of graphene, a planar two-dimensional layer of sp2-hybridized carbon, the respective
low-energy quantum field theory Lagrangian can be obtained from a nonrelativistic tight-
binding model for electrons on a hexagonal “honeycomb” lattice [6–8]. This results in an
effective Dirac equation for massless fermions in 2 + 1 Minkowski space-time [9].

The model obtained by “rolling up” the graphene sheet around a given axis enables
the description of a closely related class of materials—the carbon nanotubes. For nanotubes
of sufficiently large diameters, the energy structure may be obtained by simply imposing
periodic conditions on the graphene wavefunctions along the circumference direction [10].
As a result of various possibilities of rolling up the graphene sheet, the band structure for
a given nanotube may or may not conserve the zero-gap conductive properties of planar
graphene [11]. The presence of an external magnetic field parallel to the tube axis may
result in the appearance of induced electrical currents through the walls of nanotubes.
Since the interaction with the electrons from the nanotube are mediated directly by the
classical vector potential, the problem may be reduced to the analysis of the Aharonov–
Bohm effect [12]. Phase transitions in hexagonal, graphene-like lattice sheets and nanotubes
under the influence of external conditions were discussed in reference [13]. Graphene,
under the influence of the Aharonov–Bohm flux and a constant magnetic field, was studied
in reference [14]. Besides the magnetic flux through the nanotubes, other parameters
expected to considerably affect the behaviour of induced currents are temperature and
chemical potential. The effective potential derived from the generating functional for a
nanotube can account for all three aforementioned effects and provides a simple path for
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calculating the generated current in this system. In this sense, a thorough derivation of the
induced current based on, finite-temperature quantum field theory formalism, is proposed
in this work.

Experimental measurements of the electrical resistivity in nanotubes immersed in
external magnetic fields show that the measured quantity approximately oscillates periodi-
cally with the intensity of the magnetic flux [15,16]. Temperature increase was revealed to
lower the intensity of the oscillations, without considerably affecting the periods. The oscil-
lating behavior of the resistivity was accompanied, in some cases, by minor oscillations,
which could not be proved to be mere detector noise [15]. It was supposed by the authors
that the minor oscillations are due to the mechanical stretching of the nanotubes that favor
some given winding numbers for closed electron trajectories encircling the tube. It is
believed that the presence of those oscillations may also be triggered by other physical
effects, the contributions of which should be some orders of magnitude lower than the
gross resistivity. This is exactly what happens in quantum field theories when accounting
for interactions perturbatively. Following this reasoning, the perturbative treatment of in-
teractions between fermions and generated photons, both confined to the nanotubes, were
included in the calculation of the induced current to account for possible minor oscillations.
The reduction of the photons Lagrangian in 3 + 1 Minkowski space-time to a Lagrangian in
2 + 1 dimensions can be realized following the proposal of Gusynin et al. [17].

2. Effective Low-Energy Model

2.1. The Tight-Binding Model for Graphene and the Transition to Quantum Field Theory

Graphene’s hexagonal lattice can be described in terms of two triangular sublattices,
say A and B. Each hexagonal unit cell contains two atoms, one from each sublattice [9].
Let a = 1.42 Å be the C-C bond length in graphene, then the vectors connecting nearest
neighboring atoms from the same (~a1 and~a2) and different sublattices (~δ1, ~δ2 and ~δ3) can be
represented as follows (see Figure 1):

~a1 =
(√

3a
2 , 3a

2

)
, ~a2 =

(√
3a
2 ,− 3a

2

)
, ~δ1 =

(
0, a
)

, ~δ2 =
(√

3a
2 ,− a

2

)
, ~δ3 =

(
−

√
3a
2 ,− a

2

)
. (1)

Starting from any given atom in the lattice, any other atom of the same sublattice can
be achieved by a translation of the kind~nA,B = n1~a1 + n2~a2, with n1, n2 ∈ Z. In the chosen
representation, the reciprocal vectors, defined by the relation~ai ·~bj = 2πδij, are given as
follows (see Figure 1):

~b1 = 2π√
3a

(
1, 1√

3

)
, ~b2 = 2π√

3a

(
1,− 1√

3

)
. (2)

Figure 1. Left: Graphene’s hexagonal lattice with labeled sublattices A and B and its main vectors.
Right: Graphene’s reciprocal lattice. The reference system of coordinates in the momentum space
is represented by the blue arrows in the center of the green hexagon. The Brillouin zone (BZ) is
represented by the green hexagon, in the vertices of which the points (9) are located. The expanded
Brillouin zone is shown as an orange rhombus containing the points ~K5 = ~K and ~K′

6 ∼ ~K′.
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Since, for each carbon atom in graphene, three of the four valence electrons form
σ-bonds with neighboring atoms through sp2-hybridized orbitals, the remaining electrons
from 2pz orbitals are the only ones contributing to the formation of delocalized π-bonds.
Therefore, in the simplest description of the tight-binding model for graphene, only the
latter electrons should be accounted for [9]:

Ĥ = −t ∑
~n,j,σ

[
â†
~n,σe−ie~δj ·~A b̂

~n+~δj ,σ
+ b̂†

~n+~δj ,σ
eie~δj ·~A â~n,σ

]
+

1
3 ∑
~n,j,σ

eA0

[
â†
~n,σ â~n,σ + b̂†

~n+~δj ,σ
b̂
~n+~δj ,σ

]
, (3)

where t is the hopping integral between nearest neighboring atoms (from different sub-
lattices), which was chosen as a constant due to the symmetry of the system. Here, â†

~n,σ
and â~n,σ are the creation and anihilation operators for electrons with spin σ in the site ~n
of the sublattice A, while b̂†

~n+~δj ,σ
and b̂

~n+~δj ,σ
are the creation and anihilation operators for

electrons with spin σ in the site~n +~δj of the sublattice B, respectively. The vector potential
~A was introduced in the Hamiltonian through Peierls substitution, assuming that ~A is a
slowly varying function of ~x. Here, and throughout this work, a natural system of units
is used (h̄ = c = kB = 1) and the charge of the electron is set as e = −|e| [18]. Expanding
the Peierls exponent as a Taylor series up to the term of first order in ~A, one obtains Ĥ as a
sum of the free Hamiltonian Ĥ0 and an interaction term ∑~n e~A ·~j, where

~j = it ∑
j,σ

~δj

(
â†
~n,σ b̂

~n+~δj ,σ
− b̂†

~n+~δj ,σ
â~n,σ

)
, (4)

Ĥ0 = −t ∑
~n,j,σ

[
â†
~n,σ b̂

~n+~δj ,σ
+ b̂†

~n+~δj ,σ
â~n,σ

]
. (5)

The above expressions expressions can be obtained in momentum space by using a Fourier
transform of the form

(
â~n,σ

b̂
~n+~δj ,σ

)
= ∑

~k ∈ BZ

ei~k·~n
(

â~k,σ

ei~k·~δj · b̂~k,σ

)
, (6)

where the sum runs over the points of the expanded Brillouin Zone, which is formed by
the vectors (2).

By making the transition to continuous momenta, the free Hamiltonian can be ex-
pressed by a formula similar to the one used in the second quantization formalism

Ĥ0 = S ∑
σ

∫

BZ
ψ̂†

σ(~k)Ĥ′
0ψ̂σ(~k)

d2k

(2π)2 , with Ĥ′
0(~k) =

(
0 φ(~k)

φ∗(~k) 0

)
and ψ̂σ(~k) =

(
âσ(~k)

b̂σ(~k)

)
, (7)

where φ(~k) = −t ∑j ei~k·~δj , and S = 3
√

3a2/2 is the area of a unit cell.
The diagonalization of Ĥ′

0 gives the energy eigenvalues for this system:

E± = ±t

√

1 + 4 cos
(√

3
2

ak1

)
cos

(
3
2

ak2

)
+ 4 cos2

(√
3

2
ak1

)
. (8)

Since graphene contains two atoms per unit cell, the dispersion relation gives two energy
bands, one for quasiparticles with positive energies and other for quasiparticles with
negative energies, as shown in Figure 2.
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Figure 2. Left: Energy distribution in graphene as a function of the reciprocal coordinates (in units of
1/a). Right: Behavior of the energy distribution close to the points (9). The energy is given in units
of t.

In the Brillouin Zone, there are six points for which φ(~k) goes to zero, so that the
energy gap between the valence and conduction bands vanishes:

~K1 = 2π
a

(
1

3
√

3
, 1

3

)
, ~K2 = 2π

a

(
− 1

3
√

3
, 1

3

)
, ~K3 = 2π

a

(
1

3
√

3
,− 1

3

)
,

~K4 = 2π
a

(
− 1

3
√

3
,− 1

3

)
, ~K5 = 2π

a

(
2

3
√

3
, 0
)

, ~K6 = 2π
a

(
− 2

3
√

3
, 0
)

.
(9)

These six points represent the vertices of a unit cell in the reciprocal space (Brillouin
Zone). In the vicinity of any of these points, the dispersion relation for the energy can be
approximately expressed as a linear function of |~p|:

E±(~Ki + ~p) ≈ ±3at

2
|~p| = ±vF|~p| |~p| ≪ |~Ki| , (10)

where ~Ki represents any of the points (9), |~p| is the norm of the momentum vector calculated
from this point and vF is the Fermi velocity.

As a consequence of the hexagonality of graphene’s reciprocal lattice, only two non-
nearest neighboring points from (9) are actually non-equivalent; for that reason, in what
follows, the analysis will be restricted to the points ~K = ~K5 = 2π

a

(
2

3
√

3
, 0
)

and ~K′ = ~K6 =

2π
a

(
− 2

3
√

3
, 0
)

, which are called Dirac points (DP). In the vicinity of points ~K and ~K′ the

function φ(~k) can be approximated by
{

φ(~K + ~p) ≈ +vF(p1 − ip2)

φ(~K′ + ~p) ≈ −vF(p1 + ip2)
,

as a consequence of which the free Hamiltonian can be written as follows:

Ĥ0 ≈ S ∑σ

∫
DP

{
ψ̂†

σ(~K + ~p)[vF(τ1 p1 + τ2 p2)]ψ̂σ(~K + ~p) +

ψ̂†
σ(~K

′ + ~p)[−vF(τ1 p1 − τ2 p2)]ψ̂σ(~K′ + ~p)
}

d2 p

(2π)2 .
(11)

The spinors ψ̂σ(~K+~p) and ψ̂σ(~K′+~p) can be combined into a single spinor of the form

Ψ̂σ(~p) =




âσ(~K + ~p)

b̂σ(~K + ~p)

b̂σ(~K′ + ~p)

âσ(~K′ + ~p)


 , (12)
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which allows one to write Ĥ0 as a Dirac’s Hamiltonian in the second quantization formalism
(with integration in the momentum space running over the points in the vicinity of ~K
and ~K′):

Ĥ0 ≈ S ∑
σ

∫

DP
Ψ̂†

σ(~p)Ĥ0(~p)Ψ̂σ(~p)
d2 p

(2π)2 , Ĥ0(~p) = vFγ0
(

γ1 p1 + γ2 p2

)
. (13)

Here, and throughout this work, the 4 × 4 Dirac matrices γµ (µ = 0, 3) are chosen in the
following block representation:

γ0 =

(
0 12
12 0

)
, γi =

(
0 −τi

τi 0

)
, γ5 =

(
12 0
0 −12

)
. (14)

A similar procedure can be used to convert the interaction terms from the tight-
binding model into their respective quantum field theory counterparts. From Equation (4),
and accounting for the slow variation of ~A, one obtains

∑
~n

~A ·~j ≈ tS ∑
j,σ

∫
ψ̂†

σ(~k)

[
lim
~k′→~k

~A · ∂

∂~k′

(
0 ei~k′ ·~δj

e−i~k′ ·~δj 0

)]
ψ̂σ(~k)

d2k

(2π)2 , (15)

which results in the following approximation:

∑
~n

~A ·~j ≈ −vFS ∑
σ

∫

DP
Ψ̂σ(~p)~A · ~γΨ̂σ(~p)

d2 p

(2π)2 , (16)

where Ψ̂σ = Ψ̂†
σγ0. The interaction with the electrostatic potential can be handled in an

analogous way.

∑
~n

eA0(N̂A + N̂B) ≈ S ∑
σ

∫

DP
Ψ̂σ(~p)eA0γ0Ψ̂σ(~p)

d2 p

(2π)2 . (17)

As a result, the final form of the quantum mechanical Hamiltonian and Lagrangian
operators are as follows:

Ĥ = −ivFγ0
(

γ1∂1 + γ2∂2 − ie~γ · ~A
)
+ eA0 , (18)

L = ∑
σ

Ψ†
σ(t,~x)

[
i∂0 − Ĥ(~x)

]
Ψσ(t,~x) = ∑

σ

Ψσ(x)
[
iγαD̃α

]
Ψσ(x) , (19)

where D̃α = (∂0 + ieA0, vF
~∂ − ievF

~A) and the index α runs from zero to two. Despite the
evident similarity between Dirac’s Lagrangian for free fermions in Minkowski space-time,
and the obtained Lagrangian for fermions in graphene, field functions Ψ(~x) and Ψ(~x)
above contain eight components each, if one accounts for the two spin degrees of freedom.

2.2. Nanotubes from Graphene

The structure of nanotubes, ignoring their tips, can be obtained by “rolling up”
graphene sheets around a given axis. Carbon nanotubes can be synthesized as either
single-walled or multiwalled concentric tubular structures, and their diameters vary ap-
proximately from 7 Å to 300 Å [19]. Since, for multiwalled nanotubes, the distance between
adjacent layers (∼3.4 Å) is considerably larger than the distance between nearest neigh-
boring atoms from the same layer (∼1.4 Å), the electronic properties of such materials are
mainly determined by the properties of single-walled nanotubes [10,20,21].
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The direction, along which the graphene sheet should be rolled to form a carbon
nanotube, is given by the chiral vector:

~L = l1~a1 + l2~a2 =

(√
3a

2
[l1 + l2],

3a

2
[l1 − l2]

)
, l1, l2 ∈ Z , (20)

which is chosen so that the carbon atom at ~L is superimposed on the atom lying at the
origin. The length of the chiral vector determines the circumference of the tube:

L =
√

3a
[
l2
1 + l2

2 − l1l2

]1/2
. (21)

The translation vector along the axis of the tube is given by

~T = m1~a1 + m2~a2 =

(√
3a

2
[m1 + m2],

3a

2
[m1 − m2]

)
, m1, m2 ∈ Z , (22)

and is determined by the relation ~T ·~L = 0, which leads to the following constraints on the
possible (integer) values of m1 and m2:

m1(2l1 − l2)− m2(l1 − 2l2) = 0 . (23)

Equation (23) admits solutions of the form dm1 = l1 − 2l2 and dm2 = 2l1 − l2, where d is
the greatest common divisor of l1 − 2l2 and 2l1 − l2. The length of ~T is given by a formula
analogous to the expression (21) for~L with li → mi.

The unit cell of a nanotube consists of a rectangular section of the graphene sheet
formed by the vectors~L and ~T:

SNT = |~T ×~L| = 3
√

3a2

2
|m2l1 − m1l2| . (24)

Therefore, the number of atoms per unit cell in a carbon nanotube is given by

NNT = 2
|~T ×~L|

S
= 2|m2l1 − m1l2| . (25)

For nanotubes of considerably large dimensions, the energy bands can be obtained by
simply imposing periodic boundary conditions on the wavefunctions along the circumfer-
ential direction: Ψ(~x +~L) = Ψ(~x) [10]. In the first quantization formalism, the solutions
of Equation (11), in real space, should obey the conditions ψ~K,σ(~x +~L) = ψ~K,σ(~x) and

ψ~K′ ,σ(~x +
~L) = ψ~K′ ,σ(~x), so that the respective translation operators, ei(~K+~p)·~L and ei(~K′+~p′)·~L,

give the conditions (~K + ~p) ·~L = 2πl for ψ~K,σ(~x) and (~K′ + ~p′) ·~L = 2πl′ for ψ~K′ ,σ(~x),

with l, l′ ∈ Z [21]. Since ~K ·~L = 2πi
3 [l1 + l2] =

2πiν
3 and ~K′ ·~L = − 2πi

3 [l1 + l2] = − 2πiν
3 ,

where ν may take the values −1, 0,+1 and is determined by the relation l1 + l2 = 3n + ν
involving integer numbers only, the allowed values for the momenta pL and p′L along the
circumference direction are given by the following:

pL =
2πl

L
− 2πν

3L
and p′L =

2πl′

L
+

2πν

3L
. (26)

Due to discretization of the momentum component along the direction of ~L, af-
ter rolling into a cylinder, the two-dimensional energy bands of graphene are reduced to a
set of one-dimensional bands, for which energy is a function of pT for each permitted value
of pL. The structure of the energy bands of a given carbon nanotube depends considerably
on whether the points ~K and ~K′ of the graphene reciprocal lattice are included in the set of
allowed momenta for the nanotube. This can be clearly seen if one analyzes the dispersion
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relation in the vicinity of the Fermi level, Equation (10), for which the discrete values of the
momenta along the circumference give a band gap of 4π|ν|vF

3L .
Translation parallel to the tube axis by a distance T gives the following relations for

plane waves with momenta ~K and ~K′:

ei~K·~Tψ~K,σ(~x) = eiKT Tψ~K,σ(~x) = e
2πiµ

3 ψ~K,σ(~x) ,

ei~K′ ·~Tψ~K′ ,σ(~x) = e−iK′
T Tψ~K′ ,σ(~x) = e−

2πiµ
3 ψ~K′ ,σ(~x) ,

(27)

so that the coordinates KT and K′
T of graphene’s reciprocal lattice are mapped onto

KNT = 2πµ/3T and K′
NT = −2πµ/3T, respectively, where µ ∈ {−1, 0,+1}.

For an arbitrary choice of the chiral vector ~L the nanotube can have either a chiral
or helical structure. Amongst the possible non-chiral configurations, two possibilities are
of special interest: zigzag, for which~L = m~a1,~L = m~a2 or~L = m(~a1 +~a2), and armchair,
for which~L = 2m~a1 + m~a2.

A nanotube with zigzag configuration will keep the conducting properties of flat
graphene if m is a multiple of 3 (and thus ν = 0), otherwise it will present a band gap.
The translation vector along the tube axis may assume three equivalent forms, correspond-
ing to the three aforementioned choices of~L, all of which have a module of |~T| = 3a and,
when multiplied by ~K′ or ~K, give µ = 0, resulting in KNT = K′

NT = 0.
Armchair nanotubes always present graphene-like conducting properties, since ν = 0

for any choice of m. The translation vector through the cylinder axis has the form ~T =~a2 and
the points ~K and ~K′ are mapped onto KNT = 2π/3

√
3a and K′

NT = −2π/3
√

3a, respectively.
The parameters characterizing zigzag and armchair configurations are summarized in
Table 1.

Table 1. Parameters characterizing zigzag and armchair nanotubes.

Type l1 l2 ν m1 m2 T µ KNT K′

NT

Zigzag m 0 0 1 2 3a 0 0 0
m 0 ±1 1 2 3a 0 0 0
m m 0 −1 1 3a 0 0 0
m m ±1 −1 1 3a 0 0 0
0 m 0 −2 −1 3a 0 0 0
0 m ±1 −2 −1 3a 0 0 0

Armchair 2m m 0 0 1
√

3a 1 2π
3
√

3a
− 2π

3
√

3a

When a magnetic flux is applied along the nanotube’s cross section, the momenta
calculated from the points ~K and ~K′ experience a shift of the form ~p → ~p − e~A, so that,
after translation by~L, the wavefunctions acquire an extra phase factor dependent on the
the magnetic flux [10,19] and pL → 2π

L (l − φ ± ν
3 ), where φ = Φ/Φ0 = e~A ·~L/2π (In fact,

Φ =
∮
~A · d~l over the contour L. However, in the limit of the slowly varying field ~A,

one can suppose that Φ ≈ ~A ·~L.) and the plus sign corresponds to ~K′, while the minus
corresponds to ~K.

2.3. Reduced Lagrangian for the Gauge Field

The action functional for massless fermions in a D-dimensional (D = d + 1)
Minkowski space-time in the presence of an external electromagnetic field is given in
quantum electrodynamics by the following expression [22]:

S =
∫ [

−1
4

F′
µνF′µν − 1

2ξ
(∂µ A′µ)2 + iΨγµD′

µΨ

]
dDX , (28)

F′
µν = ∂µ A′

ν − ∂ν A′
µ , D′

µ = ∂µ + ieAµ + ieA′
µ , (29)
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where Xµ = (x0, x1, . . . , xd), and Aµ and A′µ are, respectively, the external and the gener-
ated (by fermions) eletromagnetic fields in D-dimensional space-time (µ, ν = 0, d). In view
of the explicit representation of the Lorentz invariance of the action functional, the Lorentz
gauge was chosen with an arbitrary value of parameter ξ.

After extracting from the covariant derivative, the interaction of the fermions with the
generated gauge field and expressing this respective term through the current, ΨγµΨ = J′µ,
one obtains for the action

S =
∫ {1

2
A′µ

[
∂2gµν −

(
1 − 1

ξ

)
∂µ∂ν

]

︸ ︷︷ ︸
Ĝµν

A′ν − eJ′µ A′µ + iΨγµDµΨ

}
dDX . (30)

where Dµ = ∂µ + ieAµ. Using the method of stationary point, the configuration of the
field A′µ which minimizes the action is given by the solution of the differential equation
Ĝµν A′ν

ext = eJ′µ. The Green’s function for this equation in D-dimensional momentum space
has the well known form

Dνσ
0 (K) = − gνσ

K2 +
(1 − ξ)KνKσ

(K2)2 , (31)

In a reduced quatum field theory on a d′-brane, one can assume that the fermionic
current has the form [17]

{
J′µ(X) = 0 if µ = d′ + 1, d′ + 2, . . . , d

J′µ(X) = j′µ(x)δd−d′(x) if µ = 0, d′
, (32)

where x and x represent the vectors xα = (x0, x1, . . . , xd′) and xζ = (xd′+1, xd′+2, . . . , xd),
respectively. Furthermore, since fermions are located on the brane, the fermionic terms in
the Lagrangian related to the extra d − d′ degrees of freedom can be neglected.

By using the expressions (31) and (32) in the action functional and integrating over x
and y, one obtains

Seff =
∫ { ∫ [

− e2

2
j′α(x)D

αβ
0 (x − y; x − y = 0)j′β(y)

]
dd′+1y + iΨγαDαΨ

}
dd′+1x , (33)

where α, β = 0, d′ and the reduced Green’s function is given by the following:

D
αβ

0 (d→d′)(x − y) =
∫

e−ik(x−y)

(
− gαβ

k2 + k
2 +

(1 − ξ)kαkβ

(k2 + k
2
)2

)
dd′+1k dd−d′k

(2π)D
. (34)

The vector k is space-like in the Minkowski metric.
For the reduction from a (3 + 1)-dimensional sytem to a (3 + 1)-dimensional one,

integration over k = k3 gives the following:

D
αβ

0 (3→2)(x − y) = −i
∫

e−ik(x−y)

(
− gαβ

k2 +
(1 − ξ ′)kαkβ

(k2)2

)√
k2

2
d3k

(2π)3 , (35)

in which α, β = 0, 2 and the substition ξ → 2ξ ′ − 1 was done.
Equation (35) actually resembles the one given in (31): D

αβ
0 (k) = 2iD

αβ

0 (3→2)(k)/
√

k2,
if one ignores the difference in the dimensions of the arguments and tensor indices. Since
the propagator (35) corresponds to the inverse of the operator Ĝµν, expression (35) should
correspond to the inverse of the following operator:

2iĜαβ√
−∂2

= −2i
√
−∂2gαβ − 2i

(
1 − 1

ξ ′

)
∂α∂β√
−∂2

(36)
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and thus the (2 + 1)-dimensional reduced action has the following form (α, β = 0, 2) [17]:

Seff =
∫ [

− 1
2

F′
red αβ

1√
∂2

F
′αβ
red − 1

ξ ′
∂α A′α

red
1√
∂2

∂β A
′β
red − ej′α A′α

red + iΨγαDαΨ

]
d3x . (37)

3. Induced Current and Aharonov–Bohm Effect in Nanotubes

If one ignores the field A′α and considers the external electromagnetic field as
constant on the surface of graphene, the generating functional can be found without
resorting to perturbative methods [23]:

Z =
∫

exp
{ ∫ β

0

∫
Ψσ

[
− γ0

(
∂

∂τ
+ ieA0 − µ

)
+ ivF~γ ·

(
~∂ − ie~A

)]
Ψσ d2x dτ

}
i dΨ† dΨ , (38)

which, on the other hand, can be expressed as Z = exp[−NST βVeff], where ST is the
area of the two-dimensional space, N is the number of flavours, including both spin
degrees of freedom and the number of layers (for multiwalled nanotubes), and Veff is the
effective potential.

With the help of the Fourier series, the fermionic wavefunctions can be expanded as
(ωn = (2n + 1)πT)

Ψ(~x)σ =
√

1/ST ∑
~p

∑
n

exp(iωnτ + i~p ·~x)Ψn(~p) , (39)

Ψσ(~x) =
√

1/ST ∑
~p

∑
n

exp(−iωnτ − i~p ·~x)Ψn(~p) , (40)

so that one can easily compute the path integral for the generating functional

Z =
N

∏
σ=1

∏
n

∏
~p

{
β2
[
(Ωn + iµ)2 + v2

F
~P2
]}2

, (41)

where Ωn = ωn + eA0, ~P = ~p − e~A.
If the Zeeman effect is not accounted for, the effective potential takes the following

form for continuous momenta:

Veff = −2T ∑
n

∫
ln

{
β2

[(
2π

β

)2(
n +

1
2
+

β

2π
[eA0 + iµ]

)2
+ v2

F
~P2

]}
d2 p

(2π)2 . (42)

In the cylindrical coordinate system, in which the cylinder axis is parallel to the
considered graphene sheet and the magnetic field has the form ~H = H~ez, the configuration
of the vector potential may be chosen as a null radial component (Aρ = 0) and an azimuthal
component Aθ = Hρ/2. If one then assumes that both chemical and electric potentials
equal zero and apply periodic boundary conditions on the graphene wavefunction along
the direction perpendicular to the magnetic field (Ψ(x2 + 2πR) → Ψ(x2), p1 → pz, p2 →
pθ = 2πl/L), which is equivalent to rolling up the graphene sheet into a tube, considering
ν = 0, the result reads as follows:

Veff =
−2T

L ∑
n

∑
l

∫
ln
{

β2
[(

2π

β

)2(
n +

1
2

)2

+ v2
F p2

1 +

(
2πvF

L

)2

(l − φ)2
]}

dp1

2π
, (43)

where φ = LeAθ/2π = LeHR/4π (R = L/2π is the cylinder radius). At zero temperature
(β → ∞), the effective potential (43) can be written as

Veff,0 = lim
T→0

−2
LvF

∞

∑
l=−∞

∫ 2π

0

∫ ∞

0
ln
{[

p2 +

(
2πvF

L

)2

(l − φ)2
]

T−2
}

p dp dθ

(2π)2 , (44)
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with p2 = p2
0 + v2

F p2
1 and θ = arctan(vF p1/p0).

Using the formula

ln
A

B
= −

∫ ∞

0

e−sA − e−sB

s
ds , (45)

it is possible to obtain, after integration over p2,

Veff,0 =
1

2πLvF

∞

∑
l=−∞

∫ ∞

0
exp

[
− s

(
2πvF

L

)2

(l − φ)2
]

ds

s2 + . . . . (46)

The three dots in Equation (46) account for infinite terms, which do not bring any meaning-
ful contribution to the effective potential. Formula (47) enables us to write the potential
(46) in a more convenient form for further calculations [24]:

∞

∑
l=−∞

exp
[
− s

(
2πl

B
+ C

)2]
=

B

2
√

πs

[
1 + 2

∞

∑
l=1

exp
(−B2l2

4s

)
cos(BCl)

]
. (47)

Consequently,

Veff,0 =
1

4π3/2v2
F

∫ ∞

0

[
1 + 2

∞

∑
l=1

exp
(−L2l2

4v2
Fs

)
cos(2πlφ)

]
ds

s5/2 + . . . . (48)

The part of the integrand in expression (48) containing the summation operator is the
only one to contribute to the induced current. Ignoring the remaining terms, and upon
integrating over s, the potential reads

Veff,0 =
2vF

πL3

∞

∑
l=1

1
l3 cos(2πlφ) + . . . . (49)

Finally, one can achieve a simple expression for the induced current. The latter can be ob-
tained through differentiation of the effective potential relative to the azimuthal component
of the vector potential

ej0 =
∂Veff,0

∂Aθ
=

Le

2π

∂Veff,0

∂φ
= −2evF

πL2

∞

∑
l=1

1
l2 sin(2πlφ) , (50)

and it has the same direction as the only non-zero component of the vector potential, Aθ .
The infinite sum in expression (50) has a well-defined value

j0 =
ivF

πL2

[
Li2(e2iπφ)− Li2(e−2iπφ)

]
. (51)

Figure 3 shows the dependence of the induced current j0 on the magnetic flux φ for a
nanotube with L = 100 Å. Differently from what can be expected in the classical case, the
adiabatic increase of the magnetic field intensity results in an oscillatory behaviour for the
current, so that, for each interval φ ∈ [m, m + 1) with m ∈ Z, it changes its sign at the point
φ = m + 1/2.
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Figure 3. Left: Induced current j0 as a function of φ for L = 100 Å. Right: Temperature effects on
induced current j − j0 as a function of φ for L = 100 Å. The abscissa is given in units of GeV2.

The effects arising solely from finite temperature (holding µ = 0) can be accounted
for in a similar way. Equation (43) can be simplified using formulas (45) and (47) and
integrating over p1

Veff =
1

4π3/2v2
F

∫ ∞

0
[1 + 2

∞

∑
l=1

exp(
−L2l2

4v2
Fs

) cos(2πlφ)][1 + 2
∞

∑
n=1

exp(
−β2n2

4s
) cos(nπ)]

ds

s5/2 . (52)

The corresponding induced current can be obtained from expression (52) after integration
over s and differentiation with respect to Aθ

ej =
∂Veff
∂Aθ

= −2evF

πL2

∞

∑
l=1

1
l2 sin(2πlφ)− 4LevF

π

∞

∑
l=1

∞

∑
n=1

(−1)nl

(L2l2 + β2v2
Fn2)3/2

sin(2πlφ) . (53)

The resulting currents with µ = 0 are shown in Figure 3, where both summations
were performed up to the 999th term. Computational calculations have shown that the
result of such a double sum converges considerably rapidly for the chosen value of the
circumference, L = 100 Å, so that there was no visible difference in the results obtained
having 600 or more as the upper summation limit. In terms of absolute values, the total
induced current decreases with increasing temperature, so that a complete damping of the
induced current would be theoretically expected at infinite temperature (it should be noted
that nanotubes start to burn around 700◦C [25]) (see Figure 4).

Figure 4. Total induced current for µ = 0. Left: total induced current for the temperature interval
from 0 K to 400 K. For temperatures from 0 K to 100 K the difference is almost not seen in the plot.
Right: Total induced current for the temperature interval from 0 K to 1200 K. Current given in units
of GeV2.

If one accounts for the non-zero chemical potential (µ 6= 0), the approach preesnted
above does not allow for the removal of all divergences related to terms containing µ.
For this purpose, one can start from Equation (43) and take into account the chemical po-
tential
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Veff =
−2T

L

∞

∑
n=−∞

∞

∑
l=−∞

∫ ∞

−∞
ln
{

β2
[(

2π

β

)2(
n +

1
2
+

iβµ

2π

)2

+ v2
F p2

1 +

(
2πvF

L

)2

(l − φ)2
]}

dp1

2π
. (54)

The summation over the index n in ωn = (2n + 1)πT can be substituted by integration
over ω in the space of complex numbers, with the integrand modulated by the function
(i/2) tan(βω/2), for which the poles are localized at the points ω = ωn. In view of the
localization of the modulating function poles along the axis of real ω, the contour of
integration can be taken so as to enclose the poles along the real axis counter-clockwise:

Veff =
−T

πL

∞

∑
l=−∞

∫ ∞

−∞

∫
[

v2
F p2

1+
(

2πvF
L

)2
(l−φ)2

]

T2

∮ 1

θ2 + (ω + iµ)2
i tan( βω

2 )

2
dω

2πT
dθ2 dp1 . (55)

However, the integrand in expression (55) still contains two poles in the imaginary axis:
i(θ − µ) and −i(θ + µ). Consequently, the contour of integration can be deformed, in order
to close the contour under the axis of real values ℜ(ω), with a clockwise-oriented semi-
circle in the infinity of the half-plane ℑ(ω) < 0, while the contour above the abscissa axis
ℜ(ω) is closed by a clockwise-oriented semi-circle in the infinity of the half-plane ℑ(ω) > 0.
The theorem of residues gives

Veff =
−1
L

∞

∑
l=−∞

∫ ∞

−∞

∫
√

v2
F p2

1+
(

2πvF
L

)2
(l−φ)2

T

{
tanh

[
β

2
(θ − µ)

]
+ tanh

[
β

2
(θ + µ)

]}
dθ

dp1

2π
. (56)

By integrating expression (56) over θ and discarding the infinite terms, one obtains

Veff =
−2
βL

∞

∑
l=−∞

∫ ∞

−∞

{
β

√

v2
F p2

1 +

(
2πvF

L

)2

(l − φ)2+

ln

{
1 + exp

[
− β

(√

v2
F p2

1 +

(
2πvF

L

)2
(l − φ)2 − µ

)]}
+ (57)

ln

{
1 + exp

[
− β

(√

v2
F p2

1 +

(
2πvF

L

)2
(l − φ)2 + µ

)]}}
dp1

2π
.

In the limit of zero temperature expression, (57) gives the known Equation (44) with
the help of Formula (58)

∫
ln[β2(p2

0 + E2)]
dp0

2π
= E + . . . , (58)

in which E represents the integrant from expression (57) after aplying the limit β → ∞. The
differentiation of Equation (57) with respect to the field Aθ gives the induced current for
non-zero T and µ

j − j0 = −
∞

∑
l=−∞

∫ ∞

−∞





1

1 + exp

[
β

(√
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2 − µ

)] +

1

1 + exp

[
β

(√
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2 + µ

)]





(
2πvF

L

)2
(l − φ)

√
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2

dp1

2π2 . (59)
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The accounting of the Zeeman effect is carried out by adding to the chemical potential
a term of the form −gsµBH/2 = −4π2gsµBφ/L2e and substituting the coefficient 2 before
the integral for a summation over s (2 → ∑

+1/2
s=−1/2) in Equation (57)

Veff =
−1
βL

+1/2

∑
s=−1/2

∞

∑
l=−∞

∫ ∞

−∞

{
β

√

v2
F p2

1 +

(
2πvF

L

)2

(l − φ)2+

ln

{
1 + exp

[
− β

(√

v2
F p2

1 +

(
2πvF

L

)2
(l − φ)2 − µs

)]}
+ (60)

ln

{
1 + exp

[
− β

(√

v2
F p2

1 +

(
2πvF

L

)2
(l − φ)2 + µs

)]}}
dp1

2π
,

where µs = µ − 4π2gsµBφ/L2e. The part of the current that depends on µ, T and on the
Zeeman effect has the form (e → √

α)

j − j0 = −
∞

∑
l=−∞

∫ ∞

−∞





(
2πvF

L

)2
(l − φ)

[
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2

]−1/2
− 2π2gµB√

αL2

1 + exp

[
β

(√
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2 − µ + 2π2gµBφ√

αL2

)] +

(
2πvF

L

)2
(l − φ)

[
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2

]−1/2
+ 2π2gµB√

αL2

1 + exp

[
β

(√
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2 − µ − 2π2gµBφ√

αL2

)]+

(
2πvF

L

)2
(l − φ)

[
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2

]−1/2
− 2π2gµB√

αL2

1 + exp

[
β

(√
v2

F p2
1 +

(
2πvF

L

)2
(l − φ)2 + µ + 2π2gµBφ√

αL2

)]





dp1

4π2 . (61)

Experimental measurements of the electrical resistivity in multiwalled nanotubes, in
the presence of an axial magnetic flux through the tube section (Aharonov–Bohm effect),
show that the increase in the intensity of the magnetic flux causes oscillations in the
measured quantity, which reaches its maximum at φ = 0 and then varies periodically with
maxima at points Φ = mΦ0/2 (m ∈ Z) and valleys therebetween [15,16]. The increase
in temperature provokes a damping of the oscillations, reducing the maximal resistivity
but keeping the period unchanged. Furthermore, the electrical resistivity was found to be
practically independent of the nanotubes’ length, while the current in general flows through
the outermost walls of multiwalled nanotubes, pointing to a small current conductivity
between the concentric layers and to the equality between the mean current-carrying
radius (effective radius) and the radius of the outermost tube [15,25]. Those results are
qualitatively in agreement with the results obtained in the present work, according to
which the induced current should oscillate with zeros at points φ = Φ/Φ0 = m/2 and
maxima (in absulute value) at φ ≈ m ± 0, 2, with amplitude dampings being expected for
higher temperatures.

The physical explanation for the obtained results is possible with the help of the
Aharonov–Bohm effect and Hall effect theories. The process is similar to what happens
with a metallic ring, through which a magnetic flux flows confined to an axial solenoid.
During the adiabatic process of turning on the magnetic flux, the surging electric field
transfers angular momentum to the electrons. Consequently, the eigenstates of the ring
evolve under the influence of the electric field, changing their energy. The electrons in the
former ground state of the system remain in this same state due to the adiabaticity of the
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process, even though this state may not be the ground state for the system in the presence of
an electric field. During this process, it is possible that states with varying energies achieve
a common energy value and become degenerate. However, the appearance of degeneracies
does not allow electronic transitions between these momentarily degenerate states, since
the states correspond to different canonical angular momenta and the electronic transition
would go against the law of conservation of angular momentum [26].

As a result of the adiabatic process of turning on the magnetic flux in nanotubes,
the new ground state can be a state, for which the current is non-zero. The further adiabatic
increase of the magnetic flux up to φ = 1/2 can gradually lead to a state similar to the
former ground state for φ = 0, but for which the valence and conduction bands are
interchanged. This enables one to explain the inversion of the current for 1/2 < φ < 1,
where the evolution of states would take place in the opposite direction to that which is
seen for 0 < φ < 1/2. This behavior should repeat itself periodically with the increase in φ
due to the Aharonov–Bohm effect.

4. Summary and Conclusions

The induced current derived from an effective potential approach in the formalism of
finite-temperature quantum field theory revealed itself to have quite a peculiar oscillatory
behavior in the presence of the Aharonov–Bohm effect. The amplitude of these oscillations
is damped by temperature, while the period remains unchanged. Perturbative corrections,
accounting for the limited degrees of freedom of photons, can be made in a similar way to
the already known Feynman rules for finite-temperature quantum electrodynamics and
give minor current oscillations with reduced period and amplitude.
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