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Abstract

The Large Hadron Collider produces particle collisions at the highest energies ever
observed in a scientific experiment. This apparatus is built to test the predictions
of the Standard Model of Particle Physics, including the existence and properties of
the Higgs boson. As a proton-proton collider, quarks and gluons are produced in
abundance, which quickly fragment and hadronize into collimated showers of energy
called jets. These jets are detected and measured in the ATLAS detector, which is
built around the point of the proton-proton collisions to observe the products of these
interactions.

Three major original research efforts are presented using data from proton-proton
collisions observed in ATLAS. The first analyzes events with jets and photons to
search for a beyond-the-Standard-Model decay of the Higgs boson. The second uti-
lizes novel techniques in weak supervision to perform a generic data-driven resonance
search in events with two jets. The third formalizes the calibration of the jet energies
observed in the ATLAS detector, and further proposes a new method to improve this
calibration with machine learning.

The work presented here addresses some of the key questions in particle physics
today. By searching for new physics, it is possible to shed light on the nature of
the Higgs boson and the possibility of physics beyond the Standard Model. These
searches focus on processes involving multiple jets in the final state, which motivates
innovations in the reconstruction of jet energies. In addition to setting new bounds
on theoretically interesting models, the innovations in object reconstruction and anal-
ysis techniques developed in this work can be applied in other ATLAS efforts using
currently available data or data gathered in the future.
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Chapter 1

Introduction

Over the past century, a remarkable picture has emerged about the nature of the uni-
verse - that fundamentally, everything we observe around us, and every way in which
those things interact, is governed by elementary particles, which are themselves lo-
cal perturbations in quantum fields. The theory that describes these particles and
their interactions, called the Standard Model, makes many predictions which have
been confirmed to be accurate by extremely precise measurements. One prominent
example of one of these predictions is the existence of the Higgs boson [21–24], the
discovery of which [25, 26] earned a Nobel Prize in Physics [27]. However, there are
still big unanswered questions about certain phenomena we observe around us, in-
cluding the nature of Dark Matter [28–30], the hierarchy problem [31–33], the strong
CP problem [34, 35], and other problems with the Standard Model. The success of
the Standard Model in describing most of the phenomena we observe, and in predict-
ing the outcomes of experiments, lends confidence to the idea that these unexplained
phenomena may be explained by particles and fields. Some proposed new theories
include Supersymmetry [36–43], axion models [35,44–48], and other more exotic the-
ories [49–54], including exotic decays of the Higgs boson [55].

The Standard Model and these new theories are tested using the ATLAS ex-
periment [56] to detect the results of proton-proton collisions in the Large Hadron
Collider [57–60], or LHC, located at CERN near Geneva, Switzerland. The Stan-
dard Model describes the interactions of protons and their constituent quarks and

1
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gluons via Quantum Chromodynamics, or QCD [61–64]. The products of these in-
teractions very often involve the phenomenon of jets [64–67] as collimated showers
of particles originating from produced quarks and gluons. As ubiquitous objects in
a proton-proton collider like the LHC, jets are essential for testing Standard Model
predictions [68,69], including properties of the Higgs boson [70], and for searching for
evidence of new physics [69,71–73].

Jets are complex objects and there are many different aspects of their recon-
struction. The jet showers are often groomed to account for the effects of other
radiative particles in the event and multiple simultaneous or out-of-time collisions
(pile-up) [74–79]. The kinematic observables associated to jets need to be calibrated
to account for the detector response, the effect of pile-up, the provenance of the jet,
and differences between simulation and data [80–85]. The identity of the originating
particle can also be determined using a variety of algorithms based on the properties
of the shower in the detector [69, 78,86–95].

This Thesis presents original research in efforts to search for new physics be-
yond the Standard Model using jets observed in the ATLAS detector, including work
on improving the reconstruction of jets intended to improve the sensitivity of these
searches. The work presented here addresses some of the key questions in particle
physics today. By searching for new physics, it is possible to shed light on the nature
of the Higgs boson and the possibility of physics beyond the Standard Model. These
searches target processes involving multiple jets in the final state, which motivates
innovations in the reconstruction of jets. This Thesis focuses particularly on the re-
construction of jet energies, which is essential for reconstructing the final states used
in these searches and in many other searches in ATLAS. In addition to setting new
bounds on well-motivated theoretical models, the innovations in object reconstruc-
tion and analysis techniques developed in this Thesis can be applied in other ATLAS
efforts using currently available data or data gathered in the future.

Chapter 2 gives an overview of the Standard Model and goes into detail about
some relevant aspects. Chapter 3 is devoted to the understanding of what exactly are
jets and how they are used. In Chapter 4, the LHC is described, and in Chapter 5,
the ATLAS experiment is detailed.
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The remaining chapters cover original work by the author using data gathered
with the ATLAS experiment.

Two chapters are devoted to independent searches for new physics using jets in
ATLAS. Chapter 6 covers a search for a beyond-the-Standard-Model decay of a Higgs
boson. In Chapter 7, a generic data-driven resonance search using machine learning
is described.

Two following chapters discuss work to improve the reconstruction of the energy of
jets from the measurements in the ATLAS calorimeter and tracking systems. Chap-
ter 8 describes efforts to formalize the process of calibration of jets observed in the
ATLAS detector, and Chapter 9 discusses a new method to further improve this
calibration with machine learning.

Finally, Chapter 10 recounts the described efforts, puts them into context, and
discusses future developments.

A few Appendices add to the body of work presented in this Thesis, mostly to
supplement the Chapters in the main body of the text.

1.1 Units

Natural units are used, with c = h̄ = 1. The unit of energy to be used most often is
the GeV, which is also the unit of mass and of momentum in natural units.

The metric signature is (+,−,−,−), which is the convention commonly used in
particle physics.

1.2 Coordinates

As described in Chapter 5, ATLAS uses a right-handed coordinate system with its
origin at the nominal interaction point (IP) in the center of the detector and the
z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC
ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the
transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2). The rapidity is defined
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for an object with observed energy E and momentum p as y = 1
2

ln E+pZ
E−pZ

; in the limit
that the object’s mass m goes to zero, the rapidity and pseudorapidity are equal.
Angular distance is measured in units of ∆R ≡

√
(∆η)2 + (∆φ)2.

The four-momentum of a particle with energy E and vectorial momentum ~p is
pµ = (E,~p), with m =

√
p2 =

√
E2 − |~p|2 the mass of the particle. The four-

momentum is entirely determined by (m,pT, η, φ), where pT =
√
p2x + p

2
y is the

transverse momentum:

E =

√
m2 + p2T cosh2 η (1.1)

px = pT cosφ (1.2)

py = pT sinφ (1.3)

pz = pT sinhη (1.4)

Sometimes the transverse energy ET =
√
m2 + p2T will be specified instead of pT.



Chapter 2

The Standard Model of Particle

Physics

2.1 Introduction

The Standard Model of Particle Physics, or SM, is the overarching theory that de-
scribes physics at the most fundamental level. In the SM, particles are localizations
of quantum fields, and these particle-fields account for both matter and all known
forces or interactions other than gravity. The SM is a remarkably well-measured and
well-tested theory. Figure 2.1 shows the cross sections of a variety of physics processes
measured with the ATLAS detector (Chapter 5) and their theoretical predictions us-
ing the SM. Every single measurement, spanning many orders of magnitude, agrees
with the theoretical prediction within the uncertainties.

The SM describes three fundamental forces, each with a corresponding gauge
symmetry group. The electromagnetic and weak forces are combined into a single
electroweak interaction under SU(2)×U(1) (Section 2.2). The SU(2) symmetry is
spontaneously broken by the Higgs boson, giving rise to massive bosons and to the
mass of quarks. The strong force is described by quantum chromodynamics, with
symmetry group SU(3) (Section 2.3). The strong force is unique in that, due to the
strengthening of the coupling constant at low energy scales, quarks confine into multi-
quark hadrons like protons and neutrons. However, the strong force gets weaker at
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higher energy scales, a phenomenon called asymptotic freedom. The SM is summarized
in Section 2.4. Despite the successes of the SM, there are still unexplained phenomena
like dark matter and other curious features (which, if left unexplained, are at least
unsatisfying) like the quark mass hierarchy (Section 2.5). There are many theories
beyond the SM, or BSM, which attempt to answer these questions, many of which
predict new particles that may be produced at the LHC (Chapter 4). The two searches
presented in this Thesis (Chapter 6 and Chapter 7) are both looking for evidence of
any BSM particles. The analysis in Chapter 6 is searching for BSM decays of the
Higgs boson, while the analysis in Chapter 7 is searching for generic new massive
particles decaying hadronically.

This Chapter serves as a brief overview of the SM on a technical level; there are
a variety of textbooks and other sources which provide much more detailed and com-
plete information. Some textbooks in particular are [97–100], which are the textbooks
the Author used to learn about quantum field theory and the SM as a student. In
addition to serving as the primary sources for most of this Chapter, these textbooks
were the catalysts which (in part) spurred the interest in Particle Physics ultimately
resulting in the work presented in this Thesis.

2.2 Electroweak Sector

The Standard Model is described by Yang-Mills or non-Abelian gauge theories [101,
102], with interactions mediated by vector bosons between fermionic matter particles
with spin 1

2
. The electromagnetic and weak forces are unified using the Glashow-

Weinberg-Salam model [103–106] for electroweak unification, with gauge symmetry
SU(2)×U(1). The gauge bosons corresponding to these symmetries are Wa

µ , with a
running over the 3 generators of SU(2), and Bµ, respectively. The U(1) symmetry
does not correspond to the familiar electromagnetic charge, but rather corresponds
to a hypercharge Y; we will see that the photon corresponds to a linear combination
of Bµ and one of theWa

µ . There is in addition a complex doublet H with hypercharge
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1
2
called the Higgs multiplet [21–24,27]1. Altogether, the kinetic term for these fields

is

Lkin = −
1

4
(Wa

µν)
2 −

1

4
B2µν

+ (DµH)
†(DµH) +m

2H†H− λ(H†H)2, (2.1)

DµH = ∂µH− igWa
µτ

aH−
1

2
ig ′BµH, (2.2)

where Bµν = ∂µBν−∂νBµ is the field strength; Wa
µν = ∂µW

a
ν −∂νW

a
µ +gf

abcWb
µW

c
ν is

the field strength of theW, and fabc = εabc 6= 0 the totally anti-symmetric tensor are
the structure constants of SU(2); m and λ are free parameters of the theory; Dµ is the
covariant derivative, with corresponding couplings g, g ′ which are free parameters of
the theory; τa = 1

2
σa are the canonically normalized generators of SU(2), with σa the

Pauli matrices; and the factor of 1
2
in front of BµH is due to the hypercharge 1

2
of the

H.
The gauge bosons are all massless, and in fact terms corresponding to the mass

of these fields (e.g., BµBµ) would violate gauge invariance. These bosons (or rather,
linear combinations of them) gain mass by the SU(2) symmetry being spontaneously
broken by the Higgs. The Higgs potential term, V(H) = m2|H|2 − λ|H|4, has a
minimum away from H = 0, inducing a vacuum expectation value (VEV). Without
loss of generality we let the VEV be real, v = m√

λ
, and in the lower component, so

that expanding about the minimum we have

H = exp

(
2i
πaτa

v

)
 0

v√
2
+ h√

2


 , (2.3)

where we have introduced a new scalar field h which corresponds to motion about
the minimum at v; and the πa are the explicit SU(2) gauges.

We choose πa = 0 to simplify the calculations. Then expanding the covariant
1Before data-taking at the LHC, the Higgs field was only theoretical. In 2012 the existence of

this particle was confirmed [25,26].
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derivative terms, we get:

|DµH|
2 = g2

v2

8

[
(W1

µ)
2 + (W2

µ)
2 +

(
g ′

g
Bµ −W

3
µ

)2]

+ terms involving h (2.4)

The terms not involving h correspond to mass terms for the gauge bosons, while
the terms that do involve h correspond to interactions between h and the gauge
bosons and itself.

We identify a massless and a massive boson with

Zµ = cos θwW
3
µ − sin θwBµ, (2.5)

Aµ = sin θwW
3
µ + cos θwBµ, (2.6)

with tan θw = g ′

g
; θw is called the Weinberg angle. Aµ corresponds to the familiar

photon, with mass 0, and Zµ is the Z boson, which has mass mZ = 1
2 cos θw

gv.
The coupling to A and therefore the normal electromagnetic charge of the gauge

bosons is determined by g[Aµ,Wa
µτ

a] = g sin θwW
3Wa[τ3, τa], with the electromag-

netic coupling strength

e = g sin θw = g ′ cos θw (2.7)

Clearly, with a = 3, the charge is 0 - the Z boson is neutral. W1 and W2 do not have
definite charges, so we define instead τ± = 1√

2

(
τ1 ± iτ2

)
, so that [τ3, τ±] = ±τ±, and

the (linear combination of the) W bosons coupling to τ± have charge ±, which turn
out to be W± = 1√

2

(
W1 ∓ iW2

)
. In addition to W± having electric charge ±, their

mass is mW = gv
2
. In particular, one immediate prediction is that mW < mZ.

The Higgs boson itself is a scalar, and uncharged under either hypercharge or
SU(2). However, it does interact via 3- and 4-point interactions with the W± and Z
bosons; the search in Chapter 6 targets Higgs bosons produced via this interaction in
the vector-boson-fusion mode. There are also 3- and 4-point self-interactions of the
Higgs. The mass of the Higgs is mH =

√
2m, which again is a free parameter of the
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theory.
The four original free parametersm,λ, g, g ′ are therefore related to experimentally

observable quantities [107]: αe = e2

4π
≈ 1

137
is the fine structure constant; mZ ≈

91.2 GeV; mW ≈ 80.4 GeV; and mN ≈ 125 GeV. In particular, sin2 θw ≈ 0.22 and
v ≈ 246 GeV.

2.2.1 Fermions

The coupling of the weak interaction to fermions is chiral, meaning the interactions
are different between left- and right-hand components of the fermion fields. In fact,
the weak interaction couples only to left-handed fermions, and the SU(2) symmetry
is often written as SU(2)L because of this. There are 3 generations each of the leptons
and the quarks, whose left-handed components are doublets under SU(2):

Li =


νeL
eL


 ,


νµL
µL


 ,


ντL
τL


 (2.8)

Qi =


uL
dL


 ,


cL
sL


 ,


tL
bL


 , (2.9)

where i goes over the 3 generations; and their corresponding right-handed compo-
nents, which are singlets:

eiR = eR, µR, τR (2.10)

νiR = νeR, νµR, ντR (2.11)

uiR = uR, cR, tR (2.12)

diR = dR, sR, bR (2.13)

The fields are appropriately named to correspond to the familiar leptons and
quarks - the electron e, the muon µ, and the tau particle τ; the neutrinos; the up
type quarks up, charm, and top; and the down type quarks down, strange, and
bottom. It should be noted that the right-handed neutrinos, which are not charged
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Table 2.1: Charges of Standard Model fields under U(1) hypercharge, SU(2), and
SU(3). - means the field does not transform under the symmetry group, i.e. a singlet.
2,3 mean the field transforms in the fundamental representation of the group, i.e. a
doublet for SU(2) and a triplet for SU(3), respectively.

Field L =

(
νL

eL

)
eR νR Q =

(
uL

dL

)
uR dR H

SU(3) - - - 3 3 3 -
SU(2) 2 - - 2 - - 2

U(1) − 1
2

−1 0 1
6

2
3

− 1
3

1
2

under U(1) and are singlets under SU(2), do not interact via the electroweak force;
they are also color neutral (Section 2.3), so they are called sterile neutrinos.

Furthermore, the quark fields listed above are in the interaction eigenstate basis,
which is different from the mass eigenstate basis, as will be described below.

The charges of these fields under hypercharge and SU(2) are given in Table 2.1
(as well as the charge under SU(3) (Section 2.3).

The interaction terms between the fermions and the gauge bosons are:

Lint = iL̄i (��∂ − ig��W
aτa − ig ′YL��B)Li

+ iQ̄i (��∂ − ig��W
aτa − ig ′YQ��B)Qi

+ iēiR (��∂ − ig ′Ye��B) e
i
R

+ iν̄iR (��∂ − ig ′Yν��B)ν
i
R

+ iūiR (��∂ − ig ′Yu��B)u
i
R

+ id̄iR (��∂ − ig ′Yd��B)d
i
R, (2.14)

where, e.g., ��A = γµAµ, with γµ the Dirac γ matrices; Y are the hypercharges cor-
responding to the given set of fields (Table 2.1); and there are implicit projection
operators PL = 1

2
(1− γ5), PR = 1

2
(1+ γ5).

The familiar elementary charge corresponds to the coefficient of coupling of the
fields with Aµ. Expanding out in terms of W and B, we have (for the electron and
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neutrino fields, and the same, mutatis mutandis, for the up and down quark fields):

Lint = ē
i
L

(
−
1

2
g��W

3 + g ′YL��B

)
eiL

+ ν̄iL

(
1

2
g��W

3 + g ′YL��B

)
νiL

+ g ′Yeē
i
R��Be

i
R + g

′Yνν̄
i
R��Bν

i
R

+ off-diagonal terms (2.15)

The off-diagonal terms contain terms like, e.g., ēiLg(��W
1−��iW2)νL = ēiLg�

��W+νL. These
are the flavor-changing charged current interactions with the W boson - e.g., e to νe
or c to s.

Changing basis to the A and Z bosons, we then have:

Lint = e

((
−
1

2
+ YL

)
ēiL��Ae

i
L +

(
1

2
+ YL

)
ν̄iL��Aν

i
L + Yeē

i
R��Ae

i
R + Yνν̄

i
R��Aν

i
R

)

+ Z terms (2.16)

Just to be clear, e = g sin θw is a constant. Reading off Table 2.1, we therefore
have that the electromagnetic charges of the left- and right-handed charged leptons e
are −1 and that the electromagnetic charges of the left- and right-handed neutrinos
ν are 0. Examining the same terms involving the left- and right-handed u and d
fields yields electromagnetic charges of + 2

3
for the up-type quarks u and − 1

3
for the

down-type quarks d.
As with the gauge bosons, mass terms like ēLeR break the gauge invariance, and

mass terms arise due to couplings with the Higgs boson. These terms are called
Yukawa couplings, e.g. for the electron

Lmass = −yeL̄HeR + h.c. (2.17)

will generate a mass term −me(ēLeR + ēReL) with me =
ye√
2
v after the symmetry is

spontaneously broken and the Higgs boson gets a VEV. These terms only give mass
to the charged leptons and the down-type quarks. For the up quarks, we use a slightly
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different term for gauge invariance:

Lmass = −YdijQ̄
iHdjR − iY

u
ijQ̄

iσ2H
∗ujR + h.c. (2.18)

where i, j run over the quark generations, and Yd and Yu are general mixing matrices
between the generations. After symmetry breaking we then have

Lmass = −
v√
2

(
Ydijd̄

i
Ld

j
R + Y

u
ijū

i
Lu

j
R

)
+ h.c. (2.19)

We diagonalize Yd and Yu separately,

Yd = UdMdK
†
d (2.20)

Yu = UuMuK
†
u (2.21)

withU and K unitary matrices andM diagonal matrices with real positive eigenvalues.
With the transformations uL → UuuL, dL → UddL, uR → KuuR, dR → KddR the U
and K terms disappear, and we have

Lmass = −md
j d̄

j
Ld

j
R −−mu

j ū
j
Lu

j
R + h.c. (2.22)

where md
j and mu

j are the quark masses - the diagonal elements of v√
s
Md and v√

s
Mu,

respectively.
In diagonalizing, the U matrices come up only in the interactions with W±, via

terms like

W+
µ ū

i
Lγ

µ
(
U†uUd

)ij
djL +W

−
µ d̄

i
Lγ

µ
(
U†dUu

)ij
ujL (2.23)

So mixing occurs between the quark generations via interactions with theW± bosons
subject to the matrix V =

(
U†uUd

)
, known as the Cabibbo-Kobayashi-Maskawa, or

CKM matrix. There are 3 free angles corresponding to mixing in i, j space, and 1
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Table 2.2: Lepton and quark masses [107].

Quark d s b u c t

Mass [MeV] 4.7 96 4.18× 103 2.2 1.28× 103 173.1× 103
Lepton e µ τ νe νe ντ

Mass [MeV] 0.511 105.7 1777 < O(10−6) < O(10−6) < O(10−6)

free complex phase corresponding to CP violation:

V =




1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23



×




cos θ13 0 sin θ13e
iδ

0 1 0

− sin θ13e
iδ 0 cos θ13



×




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1




(2.24)

The empirical values are [107] θ12 = 13.04 ± 0.05◦, θ13 = 0.201 ± 0.011◦, θ23 =

2.38± 0.06◦, and δ = 68.8± 4.6◦. In particular, the CKM matrix is mostly diagonal,
since all the θ angles are small; the largest is θ12 (mixing between the first and second
generation).

The leptons also have Yukawa couplings, generating their masses. However, the
neutrinos are massless2, allowing a simultaneous diagonalization of Yν and Ye. This
implies any mixing between the lepton generations is not allowed, and lepton number
for each lepton generation is conserved under the weak interaction.

As mentioned above, while Yukawa interactions explain how lepton and quark
masses are possible, the actual values are free parameters of the theory. The experi-
mental values are summarized in Table 2.2. Both the quark masses and the charged
lepton masses span many orders of magnitude, raising a potential hierarchy problem
(more on this in Section 2.5).

2Actually, neutrinos are known to have very small but positive masses. More on this in Section 2.5.
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2.3 Quantum Chromodynamics

The strong force is described by a symmetry group under SU(3). The 3 dimensions
are referred to as color charges (red, green, and blue when names are required3),
and so the strong force is referred to as Quantum Chromodynamics, or QCD [61–64].
The gauge boson associated with the theory is the gluon, and of the fermionic fields
only the quarks are charged under this interaction. The quarks (here denoted by
ψf, labeled by the quark flavor f) transform under the fundamental representation of
SU(3), meaning each of the 6 flavors are length 3 column vectors, or triplets. The
gluons Gaµ transform in the adjoint representation as 3 × 3 matrices, with 8 color-
anticolor states (the octet) corresponding to the 8 Gell-Mann matrices.

The Lagrangian of QCD is:

LQCD = iψ̄f��Dµψf −
1

4
(Gaµν)

2 (2.25)

where ��D = γµDµ; Dµ = ∂µ−igsG
a
µT

a is the covariant derivative; Ta = λa

2
are the gen-

erators of SU(3) (λa are the Gell-Mann matrices); Gaµν = ∂µGaν−∂νGaµ+gsfabcGbµGcν,
with fabc the structure constants of SU(3), which are totally anti-symmetric.

We see immediately that the set of fundamental interactions are: 2 quarks + 1

gluon, either with a color exchange or no color exchange; 3 gluons; and 4 gluons.
In contrast to the electroweak theory (Section 2.2), there is no Higgs boson to

break the symmetry, and so in some sense the model is much simpler. However, phe-
nomenologically and empirically QCD is much more complicated, due to the manner
in which the coupling gs runs as a function of energy scale.

In every theory scattering cross sections and other observables can be calculated
perturbatively in the interaction constant. Formally some of these terms, which
correspond to loops in Feynman diagrams, are infinite; in order to account for these
infinities calculations can instead be carried out by comparing calculations between
two finite scales, so that the infinities cancel, a technique called renormalization. One

3Totally unrelated to colors in the visual spectrum that we are used to. However, the analogy
does work a little, as a state with all three color charges is has 0 net color charge, i.e. “white” or
colorless.
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consequence of renormalization (which is necessary to make finite predictions) is that
the effective strength of the coupling g in the theory changes, or runs depending on
the scale being probed. This running of the coupling is encoded in the beta function:

∂

∂ lnµ
g = µ

∂

∂µ
g = β(g), (2.26)

where µ is the energy scale being probed.
In QCD4 β(g) = − g3

(4π)2
β0, with β0 = (11

3
nc−

2
3
nf); nc = 3 is the number of colors,

and nf = 6 is the number of flavors, so β0 = 7 > 0. This implies that in QCD the
coupling strength gets weaker at higher energies, and stronger at lower energies, a
phenomenon known as asymptotic freedom5 [66, 109, 110]. Said another way, at low
energy scales gs grows so large that perturbative calculations are impossible and the
theory breaks down; at high energy scales gs is small and perturbative calculations
can be performed. The running of the coupling (expressed in terms of αs = g2s

4π
) can

be seen in Figure 2.2. It can be seen that the coupling gets too strong and the theory
becomes non-perturbative around O(GeV).

Because of the increasing strength of the strong force at low energies, quarks and
gluons are confined [112] into color-neutral composite particles, or hadrons. In order
to pull apart two quarks that compose a hadron, the larger the distance between
them the greater the strength of the interaction, and it becomes energy favorable to
pull quark-antiquark pairs out of the vacuum to create new hadrons, a process called
hadronization.

A lone quark or gluon produced in a hard-scatter process will first fragment,
radiating gluons which in turn convert into quark-antiquark pairs, etc., and then
hadronize once low enough energy scales are reached. This collimated hadronic shower
leads to jets [64–67] observed in the detector (Chapter 3).

Hadrons composed of 2 quarks are called mesons, and those composed of 3 quarks
4Like everything else, β is calculated perturbatively in g. Given here is the one-loop contribution.
5The couplings for U(1) and SU(2) also run. The U(1) coupling has a negative β function, so it

gets stronger at higher energy scales, but remains perturbative even at the Planck scale, where it
is expected that a higher-energy theory will become relevant. The SU(2) coupling has a positive β
function, so it gets stronger at lower energy scales (larger distances), but since the W/Z bosons are
massive the weak force is short-range and these energy scales are not relevant for the theory [108].
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(a)

Figure 2.2: Strong coupling αs as a function of energy scale Q, theoretical predictions
and experimental measurements. Figure sourced from [111].

are called baryons ; hadrons with four or more constituent quarks (tetraquarks, pen-
taquarks) have been observed [113, 114] but are very rare. The familiar protons are
baryons composed of two up quarks and one down quark.

When protons collide in the LHC (Chapter 4), the energy scales are high enough
such that the individual constituent quarks and gluons do interact rather than the
entire hadron [115]. The QCD factorization theorem allows the cross section calcula-
tion to be factorized between the hard-scatter and perturbative 2 → N process and
the non-perturbative hadronic structure. However, even with this simplification, the
interaction between the constituent partons has to be averaged over the distribution
of momenta each could be carrying, at the energy scale of the interaction. This infor-
mation is contained in the parton distribution function [116, 117], or PDF, fq(x, µ2),
which is the probability distribution function for a parton q to be carrying momen-
tum fraction x at energy scale µ. The hard-scatter interactions can either occur via
the valence partons, which are the constituent up and down quarks, or via sea par-
tons, which are virtual quarks of any flavor or gluons in the interior of the proton. A
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calculation of the PDFs at two energy scales can be seen in Figure 2.3. At high x,
the valence quarks dominate, but at lower x the sea partons, especially the gluons,
become more prominent.

(a)

Figure 2.3: Proton PDFs at (left) µ2 = 10 GeV2 and (right) µ2 = 104 GeV2 calculated
with NNPDF3.1 at next-to-next-to leading order (NNLO). Figure sourced from [118].

2.4 Summary

A summary of the SM can be seen in Figure 2.4, before and after spontaneous sym-
metry breaking of SU(2).

Among the spin 1
2
fermions, there are 3 generations each of quarks and leptons,

split into up-type and down-type. The 6 quarks are the (up-type) up, charm, top, and
(down-type) down, strange, bottom; the 6 leptons are the (charged) electron, muon,
and tau, and their respective neutral neutrino partners. There are also 4 vector gauge
bosons - the photon, with mediates the electromagnetic force; the W±/Z bosons,
which mediate the weak interaction; and the gluon, which mediates the strong force.
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(a)

(b) (c)

Figure 2.4: Summary of SM. (a) Fields before and after electroweak symmetry break-
ing. (b) After electroweak symmetry breaking - particle content. (b) After electroweak
symmetry breaking - interactions. Figures sourced from [119].
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Finally there is the Higgs boson, which spontaneously breaks the SU(2) electroweak
symmetry and acquires a vacuum expectation value, which has spin 0.

The up-type quarks each have electric charge + 2
3
; the down-type quarks each have

charge − 1
3
; the charged leptons each have charge −1; enabling interactions with the

photon; the neutrinos each have charge 0 and do not interact via the electromagnetic
force. Each of these fermions can interact with the W and Z bosons; the quarks can
have flavor-changing interactions according to the CKM matrix; the leptons do not
mix generations via the weak force. Only the quarks are colored and interact with
the gluon via the strong force.

The phenomenology of the strong force implies color confinement, which leads
to hadrons like the proton and neutron, which are the constituents of the nuclei of
atoms, and the rest of the particle zoo like pions, kaons, etc.

The Higgs boson gives mass via Yukawa couplings to the charged leptons and the
quarks. It also gives mass to the W± and Z bosons. The W± bosons are charged
under electromagnetism and therefore interact with the photon. Finally, each of the
gauge bosons other than the photon has self-interactions6.

2.5 Beyond the Standard Model

Despite the successes of the SM, there are still underexplained or unexplained natural
phenomena. “Underexplained” phenomena refer to features within the SM that are
either aesthetically displeasing (also called “unnatural”), or where there is a discrep-
ancy between the SM prediction and the observed value. “Unexplained” phenomena
refer to observations of effects that have no corresponding elements in the SM outlined
above.

As the SM attempts to describe physics on the most fundamental level, any un-
satisfying or missing pieces indicate that the theory is not complete, implying there
must exist a theory of new physics, or beyond the SM (BSM ).

Some of these problems with the SM are outlined below, in (subjective) order of
increasing weakness of the SM. There are many BSM models [49–54], and some of

6At tree level. E.g., the photon does have self-interactions involving fermion loops.
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these models account for some of the problems with the SM listed below. Some of
the more popular models are included with the problem they account for.

As mentioned in Section 2.3, below a certain energy scale QCD becomes non-
perturbative, and the theory therefore becomes intractable analytically. One alter-
native formulation is lattice QCD [120], which analyzes QCD on a lattice in space-
time. This formulation has had success, for example accurately predicting the hadron
masses from first principles [121]. However, numerical lattice QCD calculations us-
ing Monte Carlo methods can be extremely computationally intensive, and often the
only available descriptions rely on phenomenological models, e.g. to describe the
hadron PDFs. While not necessarily a failure of the theory itself, there may exist a
different formulation of the SM which would be able to calculate quantities and make
predictions about hadrons analytically from a fundamental level.

As mentioned in Section 2.1, the SM makes predictions that can be calculated very
precisely, and these predictions have been remarkably well-tested. There are only a
couple of precision measurements that are in tension with the SM predictions, of the
tens or hundreds of precision SM tests. The muon anomalous magnetic moment [122],
or muon g − 2, has been calculated [123] up to 10th order, including weak and
hadronic effects in addition to the primary quantum electromagnetic effects, yielding
a precision of 10 decimal places. This quantity has also been measured [124] to an
uncertainty of 0.54 parts per million. There is a tension of almost 3σ (with σ equal
to the experimental uncertainty7) between the experimental and theoretical values,
which may be an indication of new physics or may be a statistical fluctuation. A new
experiment [125] at Fermilab will reduce the experimental uncertainty by a factor of
around 4, which can elucidate whether this is a real tension or not.

There is also evidence from LHCb [126] of tension with the SM in B-hadron
decays [127], at the level of 3 − 4σ. This also remains to be seen whether it is a
true tension indicative of new physics or a statistical fluctuation (or unaccounted-for
experimental bias).

As mentioned in Section 2.2, the quark and charged lepton masses are allowed
7The theoretical uncertainty is much smaller than the experimental uncertainty, and so the

uncertainty on the difference is dominated by the experimental measurement.
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in the SM via Yukawa couplings with the Higgs boson. However, there is a large
hierarchy, meaning many orders of magnitude difference in free parameters of the
model. This is especially apparent for the quarks, where the top quark mass and the
up quark mass differ by a factor of 105. This indicates that there may be some theory
at higher energies that explains this observed difference [128].

The hierarchy problem gets drastically worse when considering the neutrino masses.
As discussed in Section 2.2, in the vanilla SM neutrinos are massless, and cosmological
constraints [129] place limits on the sum of the neutrino masses at < 1 eV. However,
observations of neutrinos oscillating between flavors [130] indicate that neutrinos must
have finite masses, which is consistent with cosmological models [131]. The neutrino
oscillation observations measure only differences between neutrino masses of differ-
ent generations, with measurements of [107, 132, 133] ∆m2

12 = 7.5 × 10−5 eV2 and
∆m2

23 = 2.5 × 10−3 eV2, where the subscripts label the neutrinos in the mass basis
(which is different from the interaction basis, similar to quarks). These are only mass
differences, but the implication is that there must necessarily exist some neutrino
with mass > 0.05 eV.

The neutrino masses can be generated via Yukawa couplings in the same manner
as the charged leptons and the quarks, which is called Dirac masses. However, there
is an even larger hierarchy between the neutrinos and the lepton masses (a factor
of 109 between the tau and the tau neutrino), indicating these masses may come
from a different mechanism [134]. For example, the neutrinoless double beta decay
process (two neutrons decaying to two protons with no associated missing energy
corresponding to neutrinos), which has not yet been observed and would violate the
SM [135], would imply that neutrinos are their own anti-particles, allowing aMajorana
mass term in the electroweak Lagrangian.

All particles have quantum corrections to their mass due to loop terms involving
other particles. While the quantum corrections to the fermions and gauge bosons are
constrained by symmetry in the SM, the Higgs mass specifically is sensitive to physics
at higher energy scales [31–33]. We know there must exist some new physics at the
Planck scale (mP ∼ 1019 GeV), incorporating Quantum Gravity (see below), so there
is an enormous hierarchy between that scale and the Higgs mass, mH ∼ 102 GeV, of
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a factor of 1017.
It is therefore proposed that there could exist new physics around the TeV scale to

protect and constrain the Higgs mass. A very popular theory is called Supersymmetry,
or SUSY [36–43, 136–140]. In SUSY every particle has a supersymmetric partner,
swapping fermions and bosons. The lightest of these supersymmetric particles would
be on the TeV scale.

Another possibility is the existence of extra dimensions [141–148]. As of course
we only observe the four dimensions of spacetime, any extra dimension would have
to be rolled up or compactified into a small length. 5D particles viewed in 4D would
be observed as towers of particles with equally spaced masses, some of which could
be at the TeV scale.

Another problem with the SM comes in the form of the observed matter-antimatter
asymmetry in the universe [149]. In the SM matter and antimatter are treated sym-
metrically, although differences between matter and antimatter can come in the form
of CP violation [150], which is only present in the weak interaction. Up to the size
of this violation, matter and antimatter particles should have been created in equal
quantities in the Big Bang and the early universe. It’s clear that our universe is
almost entirely made up of matter rather than antimatter. However, the size of the
CP violation in the weak interaction is not enough to explain this difference.

Puzzlingly, the QCD Lagrangian (Section 2.3) actually does allow for a CP-
violating term [34] of the form

LCP-violating = θ
1

32π2
GaµνεµνρσG

ρσa (2.27)

where εµνρσ is the four-dimensional totally antisymmetric tensor. However, measure-
ments of the electric dipole moment of the neutron [151] set limits of at least θ < 10−9.
In general in the SM if terms are allowed then they do exist, so the question, called
the strong CP problem, is why this term is so small or 0.

A proposed solution is the presence of light pseudoscalar particles called axions [35,
44–48]. These particles would drive the θ parameter to 0, explaining the lack of strong
CP violation.
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A significant phenomenon underexplained by the SM is the existence of dark
matter [28–30]. It has been known for a long time [152] that the amount of visible
matter in galaxy clusters is not enough to keep the galaxies from escaping the cluster’s
pull. However, the idea of missing matter in galaxies was not generally accepted until
observations of galaxy rotation curves [153–155] indicated the existence of additional
matter other than what could be seen, i.e. dark matter. Since then, observations using
weak lensing [156] and galaxy cluster merging [157] have confirmed the existence of
dark matter. Cosmological models indicate [158] that dark matter comprises about
85% of all matter, the rest being the particles included in the SM.

There are of course electromagnetically neutral8 stable particles in the SM - neu-
trinos. However, neutrinos are found to be too light to explain the abundance of
observed dark matter [159]9. Instead, the predominant theory is that of cold dark
matter, composed of weakly-interacting massive particles, or WIMPS - massive par-
ticles that are electrically neutral but interact via the weak force. Either axions [160]
or SUSY particles [161] could serve as WIMP candidates, which would solve two
problems at once for either theory to be correct.

The biggest missing piece of the SM is gravity. There is of course the enormously
successful theory of general relativity, and there is a desire to come up with a theory of
quantum gravity [162–164] - to explain gravity as a quantum field theory in the same
way that the other interactions are. Such a theory would involve a spin-2 graviton
as the force-carrying gauge boson [165]. Gravity at low energies is much weaker than
the other three forces, and so its effects on the quantum level are mostly negligible.
However, at around the Planck scale, mP ∼ 1019 GeV, it is expected that quantum
gravitational effects will become important. String theory [166], often incorporating
supersymmetry [36, 167] attempts to devise a theory of quantum gravity, but it has
struggled to make unique testable predictions.

Several of the models mentioned above predict the existence of particles outside
8The particles are dark, i.e. they do not produce light. This means they do not interact with

photons, so they are electrically neutral.
9Which is why dark matter can be considered to be underexplained rather than unexplained -

there is a dark matter candidate in the SM, it just doesn’t adequately explain the observed phenom-
ena.
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the SM which could be directly produced at the LHC. Supersymmetry in particular
was expected to be found easily at the LHC [168], as it was probing energy scales that
had never been accessed before. However, after data-taking at center-of-mass energies
of 7/8 and then 13 TeV in Runs 1 and 2 (Section 4.4), no evidence for supersymmetry,
or for that matter any BSM particles, has been found [169]. This has led to the use of
LHC data to search for even more exotic particles, in hopes of serendipitously finding
evidence for BSM physics, and has also motivated the need for generic searches which
would be sensitive to a wide class of new particles, any of which could be e.g. dark
matter candidates.

The search presented in Chapter 6 is a search for exotic decays of the Higgs boson.
There is a broad class of models in which there exists a new scalar or pseudoscalar a
which the Higgs boson can decay into, H→ aa. These models can be motivated [55]
by explaining the matter-antimatter asymmetry problem, or included in supersym-
metric or axion models.

The search presented in Chapter 7 is a generic search for a particle with mass
O(TeV) (which must be BSM) decaying to two other particles with mass O(100 GeV)

which decay hadronically into jets (which could be BSM or the SM W, Z, or Higgs
bosons, or the top quark), A→ BC→ JJ. Furthermore, the techniques presented in
that search can be extended to search for generic massive particles decaying to BSM
or SM particles. These new techniques enable the best possible uses of LHC data to
constrain or discover BSM physics.



Chapter 3

Jets

3.1 Introduction

At a hadron collider like the LHC, quarks and gluons are produced copiously. These
quarks and gluons are not observed directly - because of color confinement, these
partons fragment and hadronize almost immediately, leading to a collimated spray
of hadronic particles which are ultimately observed in the detector. Other massive
particles, like W/Z bosons, the Higgs boson, top quarks, and τ leptons, are also
produced and play vital roles in searches and measurements at the LHC. The hadronic
decays of these massive particles are the primary way or one extremely important way
of identifying their production in an event. Jets [64,69,86,170] are algorithmic objects
intended to group together the hadronic decay products of these partons or massive
particles and derive the four-momentum of the originating particle.

There are a variety of jet algorithms; the most common contemporary one at the
LHC is the anti-kt algorithm [171], with distance parameter R=0.4 (small-R jets) or
R=1.0 (large-R jets). These algorithms group together constituent four-vector objects
called seeds. Small-R jets are intended to approximate light particles, in particular
quarks and gluons, though in ATLAS τ leptons, photons, and electrons are in addition
reconstructed as small-R jets in the detector; large-R jets are intended to approximate
boosted massive objects decaying hadronically. Both small- and large-R jets have a
variety of grooming techniques applied to clean up the substructure in order to remove

26
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the effects of the underlying event and of multiple in and out of time simultaneous
collisions (pile-up). There is also often a tagging step where the substructure of the
jet is used to identify the provenance of the jet.

As almost all particles produced at the LHC are reconstructed as jets, other
than muons and neutrinos, jets play an essential role in almost every search and
measurement in ATLAS. This Thesis in particular discusses two searches (Chapter 6
and Chapter 7) that use jets extensively, and further delves deeply into methods for
improving the calibration of the energy of jets (Chapter 8 and Chapter 9).

This Chapter is organized as follows. Section 3.2 discusses the definition of jets
used in ATLAS. Section 3.3 goes over how these jets are groomed, and Section 3.4
discusses how jets are tagged. Finally, Section 3.5 summarizes the Chapter and puts
it into context of the rest of the Thesis.

3.2 Jet Definition

Jet algorithms are functions for mapping a set of seeds observed in a detector to group-
ings of those seeds, called jets. For example, Figure 3.1 shows two events recorded in
the ATLAS detector - one with two hard jets (dijet) and one with multiple (multijet).

(a) (b)

Figure 3.1: Two events recorded by the ATLAS detector in data-taking at
√
s = 7

TeV pp collisions. (a) A dijet event. (b) A multijet event. Figures sourced from
[172].

In ATLAS seeds are defined either as topologically connected, noise-suppressed
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cell-clusters in the electromagnetic and hadronic calorimeters [173], which may them-
selves be calibrated or uncalibrated; as particle flow objects [174] which combine
information from the calorimeter and tracker; or as the tracks themselves without
using the calorimeter. From the point of view of the jet algorithm these distinctions
are irrelevant, as the seeds are abstracted into individual points with some transverse
momentum (pT) and some position (η,φ) in the detector1. Figure 3.2a shows an
event display with the seeds in the (η,φ) plane.

Jets have a long history in high energy physics and various definition with different
properties have been used [170]. The Snowmass Accords [175] laid out a series of
properties jet definitions should have in order to be both useful experimentally and
also tractable theoretically and computationally. In particular, jets should be IRC
safe, which is a portmanteau of IR and collinear safety. IR safety requires that soft
(i.e., infrared) emissions should not affect the set of jets the algorithm produces, as
soft emissions can grow without bound in theoretical computations. Collinear safety
requires that if a single seed splits into multiple collinear seeds sharing the original
seed’s momentum, this should also not affect the output of the algorithm; again,
hard partons can undergo many collinear splittings, which can lead to divergences in
perturbative QCD calculations. In practice detectors tend to be both IR and collinear
safe, as noise-suppression removes soft emissions and the finite size of calorimeter
cells and tracking pixels sum up nearly collinear particles; but it is still desired for
the algorithm itself to obey these properties for theoretical calculations.

The most common contemporary jet algorithms are called sequential recombina-
tion algorithms, though there is a long history of other types of algorithms which
will not covered here [170]. In these algorithms, every seed is first denoted to be a
proto-jet, and a distance parameter dij is defined between every pair of proto-jets i
and j. The algorithm then proceeds as follows:

1. Calculate the distance dij between every pair of existing proto-jets.

2. Find the minimum dij over all pairs of proto-jets i, j, dmin.
1Seeds may also be given a small mass, e.g. the pion mass, for the purposes of four-momentum

summation.
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3. If dmin is less than some threshold, then combine proto-jets i and j into a single
proto-jet and go back to step 1.

4. Else, terminate and let all existing proto-jets be the output jets of the algorithm.

The kt jet algorithms use the distance metric

dij = min
(
p2pTi, p

2p
Tj

) ∆R2ij
R2
, ∆R2ij = (yi − yj)

2 + (φi − φj)
2 (3.1)

diB = p2pTi (3.2)

with p and R free parameters of the algorithm2. diB is called the beam distance, and
if dmin is a diB the proto-jet is removed from the event and added to the list of final
jets; there is no minimum threshold but rather the algorithm continues until there
are no more proto-jets in the event.

The algorithm with p = 1 is called the kt algorithm [176], with p = 0 is
called the Cambridge-Aachen algorithm [177], and with p = −1 is called the anti-
ktalgorithm [171]. The anti-kt algorithm is the standard jet algorithm used in ATLAS
and CMS. First, it is manifestly IRC safe - low pT seeds get added to high pT proto-
jets if ∆R < R without affecting the proto-jet itself in the limit pT → 0, and collinear
splittings are combined together since ∆R→ 0. Second, the algorithm tends to make
circular jets with radius R for isolated clusters, and if there are two clusters within
R < ∆R < 2R then the highest pT cluster is circular while the second cluster is a
crescent. The results of an anti-kt jet algorithm can be seen in Figure 3.2b.

If there are N seeds in the event, then the kt algorithms require calculating the
pair-wise distance dij among all proto-jets, which takes O(N2) time; and then re-
peating that process until all jets have been found, which in general is O(N). Thus
the whole algorithm naively takes O(N3) time, which is prohibitive for events in

2Here the rapidity y is used instead of the pseudorapidity η. y is a kinematic quantity: y =
1
2
ln E+pz

E−pz
; while η is a geometric quantity: η = − ln tan θ/2. For massless particles y = η, and the

distinction is meaningless; however, proto-jets may and in general do have non-zero mass. Differences
in rapidity are invariant under longitudinal boosts, while differences in pseudorapidity are invariant
only for massless particles.
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(a) (b)

Figure 3.2: A simulation of a dijet event. (a) The seeds in the (η,φ) plane. (b)
The results of the anti-kt jet algorithm with distance parameter R = 1.0 (jets with
pT < 20 GeV removed). Figures sourced from [178].

which N can be in the hundreds. However, faster algorithms using nearest neigh-
bor algorithms [179] have reduced this computation time to O(N logN), a significant
improvement. In practice this algorithm is executed with the FastJet package [180].

As mentioned above, the most common distance parameters used are R = 0.4

(small-R jets) and R=1.0 (large-R jets). The distance parameters correspond exactly
to the size of the circular cone formed by the jet, and are intended to target the
decays of particles with typical sizes on the order of the respective R.

The decay products of light quarks and gluons have a spread due to the hadronic
fragmentation. The calculation of the size of this spread is in general very complicated,
but jets with R = 0.4 are used to capture the decay products of these partons. Gluons
are slightly wider than quarks due to the difference in their color charge, and for
R = 0.4 roughly 89% of the originating particle pT for gluons and 95% for quarks
ends up within the catchment area of the jet [170].

Photons and electrons shower primarily in the electromagnetic calorimeter, but
as the seeds are formed from clusters in the electromagnetic and hadronic calorime-
ters, and the typical size of photon and electron decays is ∼ 0.2 [181], these are also
reconstructed as small-R jets. However jets originating from photons and electrons
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can be identified with high discrimination power based on the three-dimensional en-
ergy shower shape [181] (Section 5.5.3), and typically jets that overlap with these
are identified and removed from consideration of the hadronic activity in the event
(“overlap-removed”). In addition, jets originating from bottom quarks take advantage
of the relatively long lifetime of hadrons containing bottom quarks and the resulting
presence of tracks with large impact parameters and/or a secondary vertex [182–184]
(Section 5.5.4.3).

For massive particles, the opening angle of the decay products is generically
roughly ∆R ∼ 2m

pT
[185]. With pT & 2m, the opening angle is therefore ∆R . 1.0, and

the particle can be reconstructed as a single large-R jet. When the decay products
of a massive particle can be reconstructed as a single jet, it is called boosted, while
for lower pT it is called resolved. τ leptons decay hadronically roughly 65% of the
time [107], although due to their light mass they are reconstructed as small-R jets.
Again, there are dedicated tagging algorithms with high discrimination power that
can identify hadronically-decaying τ leptons [186] (Section 5.5.4.4). Large-R jets are
used for particles on the electroweak scale, like W/Z bosons, top quarks, and even
boosted Higgs bosons, for pT & 200 GeV, which are typical scales for these particles at
the LHC. The opening angle ∆R for the decay products of W bosons and top quarks
can be seen for example in Figure 3.3. These large-R jets have substructure that can
be used to tag the provenance of the jet; these techniques are discussed further in
Section 3.4.

3.3 Grooming

A typical pp collision at the LHC produces many radiative particles other than the
hard-scatter interaction just from the interactions of all the constituent quarks and
internal gluons in the protons; this is referred to as underlying event. In addition
there are secondary hard-scatter interactions, or multiple parton interactions. Fur-
thermore, as will be mentioned in Section 4.3, the collisions occur in whole bunches
of 1011 protons, so that there are multiple simultaneous interactions in a single bunch
crossing; this is referred to as in-time pile-up. There is also out-of-time pile-up, which
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(a) (b)

Figure 3.3: Simulated distributions of ∆R between decay products of massive particles
as a function of the particle pT. (a) For hadronically decaying W → qq̄. (b) For
hadronically decaying t→Wb. Figures sourced from [75].

are energy deposits from previous and future bunch crosses which are integrated into
the signal shape when reconstructing a seed. Taken together these effects form a
layer of soft particles spread diffusely over the entire event, which can end up in the
catchment area of jets and add noise to the jet measurements.

Because of this, there is a desire to groom jets by removing whatever seeds ended
up in their catchment areas and originate from underlying event or pile-up.

Small-R jets are not typically groomed directly, but rather the first step of the
calibration process is a jet-wide pile-up subtraction formed by estimating the pile-up
density in the event ρ and area of the jet A. However, there are a series of exciting new
techniques proposed which do groom small-R jets on the constituent level. The Author
has contributed towards implementing some of these techniques [187] by estimating
the catchment areas of seeds using Voronoi areas and subtracting pile-up from the
seeds directly; these subtracted seeds can further be removed as a grooming procedure.

Large-R jets have a much larger catchment area and are therefore more susceptible
to underlying event and pile-up. Though the soft radiation from underlying event and
pile-up does not affect the overall energy that much, especially for jets with high pT,
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the jet mass can be significantly adversely affected by soft wide-angle radiation. Since
large-R jets are typically used to identify massively decaying particles, it is therefore
important to remove this source of noise.

There have been a variety of grooming techniques proposed for large-R jets [75].
For example, one proposed alternative method to form large-R jets is to first find
small-R jets, correct for pile-up and calibrate those jets, and then recluster them into
large-R jets by using the small-R jets as seeds [76].

The standard contemporary grooming technique in ATLAS is jet trimming [77].
In trimming, the constituents of a jet are reclustered using a different jet algorithm
with smaller distance parameter in order to find distinct subjets. These subjets are
then removed (‘trimmed’) if their pT fraction of the whole jet is less than some fsub;
then the only remaining subjets are hard clusters of energy, removing a significant
amount of underlying event and pile-up. In ATLAS the reclustering uses the kt
algorithm with R parameter 0.2, and fsub = 0.05; the effect of this trimming can be
seen in Figure 3.4. The choice of trimming and these parameters were optimized at
the beginning of Run 2 for boosted W tagging [78], though there is still an active
effort to understand the best way to groom large-R jets [79].

3.4 Tagging

After grooming, the substructure of jets can be used to tag the provenance of the jet.
The term “substructure” here is taken to mean functions of the distribution of the
seeds associated to a jet in (η,φ, pT) space. For many of the following taggers the
tracks resulting from charged particles that lie within the catchment area of the jet are
used to wholly or partially supplant the seeds themselves as tracks are significantly
more robust to pile-up than the calorimeter seeds.

Jet substructure has a long history in high energy physics [69, 86]; its use can be
traced back to LEP [188–191], Tevatron [192,193], and HERA [194–196].

Jet substructure for small-R jets focuses on distinguishing quark-initiated from
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(a) (b)

Figure 3.4: A simulation of a dijet event, showing the effect of trimming. (a) The
reclustered large-R jets, showing the subjets (this event uses R = 0.3 instead of the
current standard R = 0.2). (b) After trimming with fsub = 0.05. Figures sourced
from [178].

gluon-initiated jets at ATLAS [87–90] and CMS [197–200]. The discrimination typ-
ically focuses on the fact that gluon-initiated jets are slightly wider than quark-
initiated jets. Jet substructure has also been used to discriminate between small-R
jets that arise from a single particle and those that arise stochastically from multiple
pile-up interactions [91].

For large-R jets a variety of techniques are employed to tag those jets originating
fromW/Z bosons [78,92,94], top quarks [93,94] and boosted Higgs [95] decaying to two
bottom quarks. The fully hadronic decays that these taggers target are W/Z→ qq̄,
t → Wb → qq̄b, and H → bb̄, respectively (there are also decays involving leptons
or photons which as mentioned have their own dedicated taggers). Of course, in
addition to the substructure itself the decays involving b quarks can use the dedicated
b-tagging algorithms mentioned above to further discriminate. The intention of these
taggers is primarily to discriminate these jets from those originating from quark and
gluons; though as mentioned above small-R jets are sufficient to capture these particle
showers, expanding the R parameter in the jet algorithm still finds these, albeit with
a small hard core. The most obvious substructure variable is the mass of the jet
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itself [201]; but in addition, each of the above taggers rely on the fact that the decays
of these objects will have multiple hard cores. While all of these taggers now make use
of a complicated combination of multiple substructure variables, a prominent one is
n-subjettiness [202], which gives a sense of how compatible a given jet is with having
n hard subjets.

3.5 Conclusion

Jets are ubiquitous at a hadronic collider like the LHC. As generic groupings of
detector seeds, almost every Standard Model particle other than muons and neutrinos
are reconstructed as jets. The precise definition of the jet algorithm is a choice,
governed by the physics requirements and implications of that choice. Both small-R
and large-R jets are groomed to remove soft additions due to underlying event or
pile-up. Finally, a suite of taggers has been developed to tag jets originating from
each individual particle.

Jets are interesting theoretical, algorithmic, and physical objects in and of them-
selves. In this Thesis in particular, Chapter 6 and Chapter 7 discuss two searches that
use jets extensively, and Chapter 8 and Chapter 9 further delve deeply into methods
for improving the calibration of the energy of jets. In light of this material, the use
of jets can be considered a central theme of this Thesis.



Chapter 4

The Large Hadron Collider

4.1 Introduction

The Large Hadron Collider [57–60], or LHC, is a high energy particle accelerator
and collider located at CERN near Geneva, Switzerland. The LHC is the largest
machine ever built, with a circumference of 27 km, running 100 m underground and
straddling the border between Switzerland and France. The purpose of the LHC is
to produce the highest energy particle collisions ever, with a design center-of-mass
energy of

√
s = 14 TeV1. A view of the LHC superimposed on an aerial view of

Geneva and the surrounding areas can be seen in Figure 4.1, including the four main
LHC experiments: ATLAS [56], CMS [203], LHCb [126], and ALICE [204]. It was
built at a cost of about 4.5 billion USD over the course of almost 20 years [57], in
addition making it one of the most expensive scientific experiments ever built.

The main LHC experiments are built around particle interaction points and are
themselves extremely impressive scientific apparatuses. This Thesis uses data gath-
ered at the ATLAS experiment (Chapter 5), which is the largest particle detector
ever built by volume, with a diameter of 25 m and a length of 44 m [206]. The

1The center-of-mass energy of two colliding beams is
√
s, where s is the Mandelstam variable

s = (p1 + p2)
2, and p1 and p2 are the four-momenta of the two beams. In the case that the beams

collide head-on, with E1 = E2 ≡ E� m1 = m2,
√
s = 2

√
E1E2 = 2E (which is the case in the LHC).

I.e., the protons in each beam have energy 7 TeV, and they collide basically head-on, so
√
s = 14

TeV.

36
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(a)

Figure 4.1: An image of the LHC (yellow circle) superimposed on an aerial view of
Geneva and the surrounding areas. The white dashed lined indicates the French/Swiss
border. The two main CERN sites at Meyrin and Prévessin, and the four main LHC
experiments (ATLAS, CMS, LHCb, and ALICE) are indicated. Geneva is at the
tip of Lac Léman, and Mont Blanc can be seen in the background. Figure sourced
from [205].
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“rival” experiment to ATLAS is CMS, which is slightly smaller than ATLAS but is
the heaviest particle detector ever, at 14000 tons [207]. The LHC also represents a
remarkable international scientific collaboration, with over 10000 scientists from at
least 40 countries [57] working on one of the experiments or on LHC operations.

This Chapter goes over the design of the LHC (Section 4.2), the conditions of
particle collisions (Section 4.3), and finally the data taking history and future plans
for the LHC (Section 4.4).

4.2 Design

The LHC is the final stage of the CERN accelerator complex, which accelerates pro-
tons from rest to TeV-scale energies through a series of accelerators, with a final speed
of > 99.99999% of the speed of light. The entire CERN accelerator complex can be
seen in Figure 4.2.

(a)

Figure 4.2: The CERN accelerator complex. Figure sourced from [208].

Protons start as ordinary ionized hydrogen, which are accelerated [57] in the Linear
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Accelerator 2 (Linac 2) to an energy of 50 MeV. They are then passed through the
Proton Synchrotron Booster (PS Booster) and the Proton Synchrotron (PS) to final
energies of 1.4 GeV and 25 GeV, respectively. The final intermediate stage before
the LHC is the Super Proton Synchrotron (SPS), which accelerates the protons an
injection energy of 450 GeV. The LHC itself then accelerates the protons to an energy
of up to 7 TeV, though operating histories have been less than this - 3.5 TeV in 2010,
4 TeV in 2011-2012, and 6.5 TeV in 2015-2018 data taking (Section 4.4).

The LHC is also used to accelerate and collide lead ions, which reach energies of
up to 2.56 TeV.

The particles are accelerated using radiofrequency cavities [209,210] which in the
LHC operate at 400 MHz - every tenth wave is filled with a bunch of about 1011

protons, for a bunch rate of 40 MHz, and 2808 bunches circulating the LHC per
proton beam. There are two beams circulating in opposite directions in adjacent
beam pipes, which come together at a few collision points around the ring, with a
bunch crossing every 25 ns; the detectors are built around these collision points.

Accelerating charged particles radiate [211], so that the accelerators have to con-
stantly input energy in order to maintain constant beam energy. However, the radi-
ation from charged particles moving in circular motion, called synchrotron radiation,
goes as E2

m4
, so this radiation is strongly suppressed for protons relative to electrons

and positrons at the same energy. As a historical note, the LHC reuses the tun-
nel built for the Large Electron-Positron Collider [212–214], or LEP, which collided
electrons and protons at a maximum center-of-mass energy of 209 GeV. However,
when increasing the energy of the beams for the LHC, it was decided to switch to
proton-proton collisions which suppresses the synchrotron radiation.

The particles are kept along a circular trajectory with a perpendicular magnetic
field produced by dipole magnets2. The radius of curvature R, magnetic field B, and

2There are also quadrupole, sextupole, etc. magnets to provide second-order effects like stabi-
lization and beam focusing.
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momentum p3 are related [210] via

BR =
p

|q|
, (4.1)

where q is the charge (for protons, q = +1 elementary charges). As the protons are
accelerated around the ring the magnetic field increases proportionally in order to
keep the radius fixed. A given magnet can only support a magnetic field range of
O(100), which is why the energy increases by a factor of 20− 25 in each stage of the
accelerator complex before moving to the next stage with a larger R.

In the final stage, in the LHC, 1232 dipole magnets provide a magnetic field
of up to 8.3 T (there are almost 10000 total magnets, including those with higher
orders) [57]. The magnets are made of superconducting NbTi cables cooled down to
1.9 K with superfluid helium.

The LHC consumes about 750 GWh per year [215], most of which is for the
cryogenics system, and CERN in general consumes about 1300 GWh per year; in
comparison, the entire Geneva canton consumes about 3000 GWh per year4.

The LHC is split into eight octants, each of which supports its own cryostat. As
can be seen in Figure 4.3, each octant has some special feature, like the two injection
sites, beam dump, beam cleaning, and of course the four collision points. ATLAS, in
the center of Octant 1, has the distinction of being located at “Point 1”, which is also
near where (on surface level) the main CERN Meyrin campus is, and the easiest to
access from downtown Geneva; CMS on the other hand is at “Point 5”, at the CERN
Prévessin campus in the middle of the French countryside.

4.3 Luminosity and Pile-up

The rate of collisions is called the luminosity L [100] (or instantaneous luminosity),
and has units of inverse area per unit time. The expected number of events N per

3Note that, as the particles are highly relativistic, p = γmv. Also, since mp ≈
1 GeV� O(TeV) = beam energy, p ≈ E.

4CERN is actually connected to the French electrical grid, not the Swiss [216].
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(a)

Figure 4.3: Schematic of the LHC showing the two circulating beams, the four main
experiments, and the eight octants with some of their special features. Figure sourced
from [60].
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unit time of a particular process with cross-section σ is

dN

dt
= Lσ. (4.2)

In particle physics a commonly used unit of area is the barn, which is equal to 10−24

cm2 [217]. The LHC has a peak luminosity of about 1034 cm−2s−1 = 10 nb−1s−1 [60]5.
As a point of comparison, the total proton-proton cross section at 13 TeV is about
108 nb, as can be seen in Figure 4.4. While at the LHC the total proton-proton cross
section is measured (e.g. in ATLAS, broken down into total elastic cross section [218]
and total inelastic cross section [219]), one primary physics goal of the LHC is to
provide inelastic scattering of the proton constituents (partons) at the electroweak
scale (O(100) GeV), e.g. in particular the production of a Higgs boson. The cross
section for these “interesting” processes are at least a factor of 10−5 less than the
total cross section, and many (like production of the Higgs boson) are much rarer;
therefore in order to produce enough events to claim discovery of a new particle with
statistical significance, increasing luminosity is critical.

The luminosity at the LHC is given by the formula

L =
N2nfγ

4πε∗β∗
F, (4.3)

where N is the number of particles per bunch, n the number of bunches per beam,
f the revolution frequency, γ the relativistic factor, ε∗ the normalized emittance, β∗

the beta function at the collision point, and F a geometric factor based on the angle
of the beam crossing.

The emittance ε [221, 222] is a quantity that measures the area or spread in
phase space (position-momentum space x − p) taken up by the beam - the locus
of points in phase space usually forms an ellipse, and the emittance is the area of
this ellipse6. An example locus of points in phase space can be seen in Figure 4.5.

5Just to be clear, 1 nb−1 = 10+9 b−1, etc.
6More precisely, the set of points in the beam can be considered to be drawn from a two-

dimensional Gaussian distribution in phase space, for which the contours of constant probability
density are ellipses. The area is appropriately defined according to some integral over this probabil-
ity density.
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Figure 4.4: Cross sections for pp interactions as a function of
√
s center-of-mass

energy. Figure sourced from [220].
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According to Liouville’s theorem [223,224], the emittance is an invariant for a beam at
constant energy being acted on by external magnetic fields (disregarding synchrotron
radiation). As the beams are accelerated to increase the energy and longitudinal
momentum, the emittance shrinks as 1

p
, a phenomenon known as adiabatic damping.

The normalized emittance ε∗ = p
m
ε takes into this into account and is an invariant

for the beam the whole time it is being accelerated.

(a)

Figure 4.5: Example locus of points in a beam in phase space, showing the distribu-
tions in x and px. The red ellipse corresponds to a contour of constant probability
density, and the area of the ellipse is (up to a constant factor) the emittance ε. Given
ε, the spread in x is given by β, and the spread in px is given by γ. Figure sourced
from [225].

Though the (normalized) emittance is an invariant, there is still flexibility to
control the shape of the beam locus in phase space. The parameter that controls the
spread along the position axis is called β and the spread along the momentum axis
γ7. This is illustrated in Figure 4.5. In order to maximize the luminosity, β is desired
to be as small as possible in order to reduce the size of the beam in the transverse

7These, along with a cross-term parameter α, are called the Twiss parameters in Hamiltonian
mechanics. Not to be confused with the relativistic β = v (with c=1) and γ = 1√

1−β2
- there are

unfortunately too few Greek letters for all the uses physics has for them.
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plane8, at the expense of increasing the spread in momentum space. The minimum
β reached at the interaction point is called β∗.

As mentioned above, the rate of proton-proton interactions is roughly Lσpp ≈
109 s−1, and the rate of bunch crossings, or events9, is 40MHz (= 25 ns between bunch
crossings). This means that there is more than one proton-proton interaction per
bunch crossing, a phenomenon known as pile-up. The average number of interactions
per bunch crossing µ is a direct measurement of the luminosity and amount of pile-up.
Also as mentioned above, almost all proton-proton interactions are “uninteresting”,
so that even with µ > 1 most events need to be thrown away due to disk writing
and space requirements; in ATLAS there is a trigger (Section 5.4) that decides in
real-time whether or not to store an event based on whether at least one of the
interactions was “interesting”. In addition, even if an event is triggered, it is almost
certain that there is at most one “interesting” interaction in the event; however, the
remaining interactions cover the detector with a mostly uniform soft layer of particles,
introducing a major source of noise in the energy measurements of physics objects in
the detector. In particular, jets (Chapter 3) can include energy deposits from pile-up
interactions, requiring this contribution to be subtracted and calibrated, which is the
focus of Chapters 8 and 9.

In ATLAS, the luminosity is measured and monitored [226] using detectors down-
stream from the interaction point, almost along the beam line, and using the well-
measured total differential inelastic proton-proton cross section.

The luminosity gives the rate of proton-proton collisions per unit time. The
integrated luminosity

∫
Ldt is the integral of the luminosity over the data-taking

run, and has units of inverse area. The total number of events produced over a data-
taking run for a process with cross section σ is N = σ

∫
Ldt, and so the integrated

luminosity is a key quantity for understanding the statistical power of a dataset.
8There is an emittance corresponding to each of the longitudinal direction and the two transverse

directions. For the colliding beams the relevant quantity is the size in the transverse directions - the
two transverse directions are treated symmetrically, assumed to have an equal ε∗ and β∗.

9Since the bunch crossing occurs in a short span of time (much less than the time between bunch
crossings), the products of all interactions in a single bunch crossing are recorded in the detector at
once and so the bunch crossing is the natural discretization unit.



CHAPTER 4. THE LARGE HADRON COLLIDER 46

4.4 Data Taking History and Future

The LHC turned on for the first time on 10 September 2008 [227], though due to “the
incident” on 19 September 2008 [228], it did not turn back on again until 20 November
2009, and did not start recording collisions at its target (less than design) center-of-
mass energy of 7 TeV until 30 March 2010. In 2010 and 2011 the LHC ran successfully
at
√
s = 7 TeV and in 2012 this was bumped up to

√
s = 8 TeV. The data-taking run

consisting of 2010-2012 is called Run 1, and was particularly important as ATLAS
and CMS jointly announced the discovery of the Higgs boson [25, 26] based on this
dataset. Figure 4.6 shows the luminosity, µ distributions, and integrated luminosity
over time in Run 110. The luminosity was gradually ramped up over the course of
the Run to a maximum of almost 8 × 1033 cm−2s−1. This was achieved in part by
increasing µ from 5 − 15 in 2010 and 2011 to 10 − 30 in 2012. The total integrated
luminosity delivered was 48.1 pb−1 in 2010 and 5.46 fb−1 in 2011 at

√
s = 7 TeV and

22.8 fb−1 in 2012 at
√
s = 8 TeV [229].

After Run 1 the LHC was shut down for Long Shutdown 1 until resuming collisions
at
√
s = 13 TeV in June 2015. The center-of-mass energy remained at 13 TeV for

data-taking in 2015, 2016, 2017, and 2018, a period known as Run 2. The searches
in this Thesis use data taken during Run 2 - the search in Chapter 6 uses data
from 2015-2016, while the search in Chapter 7 uses the entire Run 2 dataset 2015-
2018. Figure 4.7 shows the luminosity, µ distributions, and integrated luminosity over
time in Run 211. The luminosity was gradually ramped up over time and reached a
maximum of 21×1033 cm−2s−1 in 2018. The µ distribution was higher than in Run 1,
broadly ranging from 10− 60 with a mode at around 〈µ〉 ≈ 30. The total integrated
luminosity delivered was 4.2 fb−1 in 2015, 38.5 fb−1 in 2016, 50.2 fb−1 in 2017, and
63.3 fb−1 in 2018, for a total of 156 fb−1 [230].

At time of writing, the LHC is currently in Long Shutdown 2, which is projected
to last until 2021. Data taking in Run 3 will last from 2021 to 2024 [231] at the design

10What is being shown is the ATLAS recorded luminosity, which is slightly less than the LHC
delivered luminosity.

11Again, what is being shown is the ATLAS recorded luminosity, which is slightly less than the
LHC delivered luminosity.
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√
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Figure sourced from [229].
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Figure 4.7: (a,b,c,d) Luminosity vs time in 2015, 2016, 2017, 2018, respectively. (b)
µ distributions in Run 2. (c) Integrated luminosity vs time in Runs 1 and 2. Figure
sourced from [230].
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center-of-mass energy of 14 TeV and a peak luminosity of 2.0 × 1034 cm−2s−1 [232],
with 〈µ〉 ≈ 55, similar to data-taking in 2018. Run 3 is targeted to provide about
100 fb−1 per year, and a total of 300− 400 fb−1 total [233].

The LHC will then be shut down again for Long Shutdown 3 until 2027. From 2027
to 2030 the LHC will be running in Run 4, then shutting down for Long Shutdown 4
until Run 5 from 2032 to 2034 [231]. Runs 4 and 5 are also known as high-luminosity
LHC or HL-LHC [234], as the luminosity will be significantly increased. The target
peak luminosity is 5.0 × 1034 cm−2s−1 [232], achieved mostly by decreasing β∗ by a
factor of almost 2, and increasing the number of protons per bunch also by a factor
of almost 2 relative to Run 2. The pile-up in HL-LHC will be at 〈µ〉 between 150 and
200, presenting a significant challenge to suppress this amount of noise, especially
in low energy jets. Due to this increased luminosity, HL-LHC is expected to deliver
almost 3000 fb−1 over the course of the two Runs.



Chapter 5

The ATLAS Detector

5.1 Introduction

The ATLAS detector [56] is a general-purpose particle physics detector with nearly
4π coverage in solid angle around the collision point.1 The physics results that AT-
LAS produces are enabled not only by the hardware that measures the properties of
outgoing particles, but also by software which simulates, stores, and processes this
enormous amount of data.

The detector itself is designed to have many concentric layers serving different
purposes, in particular to detect and identify all kinds of particles that may be en-
countered from the collisions at the LHC (Section 5.2).

The physics phenomena that occur in the pp collisions provided by the LHC and
their subsequent interactions with the ATLAS detector are simulated using a variety
of generators and a detailed detector simulation (Section 5.3).

Because of the extremely high rate of events and large amount of data read out
per event, there is a trigger system which lowers the rate that is written to disk
(Section 5.4).

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point
(IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the
IP to the center of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are
used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is
defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
∆R ≡

√
(∆η)2 + (∆φ)2.

50
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Finally, the readouts of all the various detector subsystems are combined to con-
struct objects intended to match individual Standard Model particles (Section 5.5).
Tracks and calorimeter clusters are combined to form detector-level photons, elec-
trons, taus, jets (Chapter 3), and muons. All of these objects are taken together to
calculate the missing energy in the event which could be due to neutrinos or beyond-
the-Standard-Model physics.

5.2 Hardware

As mentioned above, the ATLAS detector (A Toroidal LHC ApparatuS) is a general
purpose particle physics detector built around the nominal interaction point for pp
collisions provided by the LHC2. It is an enormous instrument, roughly cylindrical
with a diameter of about 25 m and a length of about 44 m. A cutout of the ATLAS
detector with some parts labeled can be seen in Figure 5.1.

ATLAS consists of an inner tracking detector surrounded by a superconducting
solenoid providing a 2 T axial magnetic field (Section 5.2.1), a system of calorimeters
(Section 5.2.2), and a muon spectrometer incorporating three large superconducting
toroid magnets (Section 5.2.3). The various layers target different kinds of particles
based on their interactions with matter, as can be seen in Figure 5.2.

This schematic only shows the ideal or targeted case; in practice the object iden-
tification is a non-trivial problem (Section 5.5). Charged particles leave tracks in the
tracker, which is surrounded by a solenoid magnet to bend their tracks and measure
charge and momentum. Photons and electrons are stopped and their energies mea-
sured in the electromagnetic calorimeter, while hadrons interact to a lesser extent
and are ultimately stopped and measured in the hadronic calorimeter. Muons pass
through the entire calorimeter system and are measured in the muon system, which is
surrounded by superconducting toroids. Finally, neutrinos interact only very weakly
with matter and pass right through the detector; these can only be reconstructed as

2This Section is sourced mainly from the description of ATLAS in [56]; however, the Author is
also grateful for the additional explanations that can be found in previous SLAC ATLAS students’
PHD theses, in particular [235] and [236]. The later Sections of this Chapter also benefit from these
sources.
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(a)

Figure 5.1: A cutout view of the ATLAS detector with major subsystems labeled.
People included for scale. Figure sourced from [56].

(a)

Figure 5.2: A schematic of various particles passing through the ATLAS detector.
Figure sourced from [237].
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missing energy and momentum in the event.

5.2.1 Tracker

The tracker, or inner detector (as it is the closest part of ATLAS to the beam-
line), consists of 3 layers with different technologies: the silicon pixel detectors, the
semiconductor strip tracker (SCT), and the transition radiation tracker (TRT). The
entire tracking system is immersed in a 2 T magnetic field provided by a surrounding
solenoid. These components, when taken together, provide charged-particle tracking
in the range |η| < 2.5. A cutout view of the tracking system can be seen in Figure 5.3.

(a)

Figure 5.3: A cutout view of the tracking system showing the various layers. Figure
sourced from [238].

The pixel detectors are the innermost part of the ATLAS detector to the beamline.
The original design included 3 layers, although a 4th layer, the insertable B-layer
(IBL), was installed between Run 1 and Run 2 in 2014. The pixel detectors are
composed of silicon and operate as ionizing radiation detectors. As charged particles
pass through the material, electrons are knocked loose and these are measured in
each individual pixel, without substantially affecting the momentum of the charged
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particle. The pixel system has very good spatial resolution, with each pixel having a
size of 50×400 µm2 in the outer 3 layers and 50×250 µm2 in the IBL. There is both
a cylindrical set of pixel detectors in the barrel and an endcap set on the ends. The
precision of the pixels is 10 × 115 µm2 in R − φ × z in the barrel and also 10 × 115
µm2 in R − φ × R in the endcaps. There are roughly 80.4 million independent pixel
channels.

The next outermost layer is the SCT, which operates under very similar principles
to the pixel detectors. However, instead of small pixels, long and thin strips are used,
which provide spatial information in only one direction. Because of this, each of the
4 layers of the SCT are actually composed of 2 layered and slightly offset strips at
an angle of 40 mrad to each other, in order to get a (rough) measurement in the
second direction as well. In the barrel region these strips are parallel to the beam
direction; in the endcaps they are radial. The strips have a precision of 17× 580 µm
in R−φ× z in the barrel and also 17× 580 µm in R−φ× R in the endcaps. There
are approximately 6.3 million readout channels in the SCT.

The final layer consists of the TRT, which is composed of 4 mm (in diameter)
drift tubes. These drift tubes are not made out of silicon, but rather are filled with
gas which, as charged particles pass through, gets ionized; this signal is amplified
by a large voltage difference (1530 V) between the center and exterior of the tube.
The tubes do not provide any z resolution, but only information in R − φ with an
precision of 130 µm, both in the barrel and endcap regions. However, this is mitigated
somewhat by every particle passing through about 30 tubes before exiting the tracker.
There are approximately 351000 readout channels in the TRT.

The entire tracking system is surrounded by a superconducting solenoid which
generates an axial field of 2 T. As charged particles pass through this magnetic field,
their total momentum is not changed as magnetic fields do no work, but the direction
of the momentum curves in the φ direction with the radius of curvature determined
by the charge-to-(transverse) momentum ratio.

The individual hits in the various layers are combined together in software to
identify paths of charged particles through the tracker and magnetic field, measuring
both the charge and momentum of the charged particle (Section 5.5.1).
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5.2.2 Calorimeters

The ATLAS calorimeter system is designed to stop and measure the energy of all
charged and neutral particles that exit the tracker other than muons and neutrinos.
These calorimeters cover the region |η| < 4.9, in comparison to the tracker which
only covers |η| < 2.5. The calorimeter system consists of two main subsystems: the
inner electromagnetic calorimeter, which is intended to interact electromagnetically
and measure particles like photons and electrons, and the outer hadronic calorimeter,
which is intended to interact both electromagnetically and via nuclear interactions in
order to measure hadronic particles. A cutout view of the calorimeter system can be
seen in Figure 5.4.

(a)

Figure 5.4: A cutout view of the calorimeter system showing the various subsystems.
Figure sourced from [56].

Both subsystems are sampling calorimeters which operate under the principle of
alternating passive and active layers. The passive layers are made of some dense ma-
terial (lead, steel, copper, or tungsten) that have high probability of interacting with
the energetic particles passing through them, causing a cascade of lower energy radi-
ation that is easier to measure (sample) in the active materials. The active materials
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use ionization or scintillation to measure the energies of the particles passing through
them. In ioniziation, the material is ionized by electrons being knocked free; the free
electrons are then drifted to the side of the cell and measured. In scintillation, excited
molecules emit photon radiation which can then be read out by photomultiplier tubes.
All systems are non-compensating, meaning they do not account for energy loss in the
passive layers; this is one cause for the need to calibrate the energy of physics objects
formed in the calorimeter, in particular jets (Section 5.5.4.1). However, the innermost
layer of electromagnetic calorimeter is a presampler which does compensate for the
energy loss in the tracker.

High energy charged electrons and positrons interacting with nuclei in the mate-
rials are dominated by bremsstrahlung, which is photon radiation due to deceleration
in the material [239]. High energy photons, in turn, primarily convert to electron-
positron pairs in the field of nuclei, which further lose energy to bremsstrahlung;
this back-and-forth is referred to as an electromagnetic shower. Below a certain en-
ergy (depending on the material, but usually some MeV), other processes take over.
Muons can be considered to be heavy electrons; however, because of their higher mass,
bremmstrahlung does not dominate until the muon energy is above ∼ 1000 GeV [240];
thus muons tend to pass through the entire calorimeter without losing much energy
and are reconstructed using hits in the muon spectrometer (combined with tracks
from the ID - Section 5.2.3).

The loss of energy in an electromagnetic shower at high energies can be charac-
terized as

dE

dx
= −

E

X0
, (5.1)

where X0 is called the radiation length, and is characteristic of the interacting material.
The solution to 5.1 implies an exponential loss of energy as a function of distance in
the material, meaning the shower length is logarithmic in initial energy and also that
a fixed size detector can cover many orders of magnitude of energy.

For nuclear interactions the underlying processes are more complicated, but the
hadronic interaction length λ gives a similar length scale for hadrons passing through a
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material and forming hadronic showers [240] of pions, photons, and positrons/electrons.
For dense materials λ > X0 by a factor of 5-10 [239], implying that hadronic show-
ers are much longer and occur later than electromagnetic showers; this is why the
hadronic calorimeter is outside the electromagnetic calorimeter.

The electromagnetic calorimeter is broken down into the barrel, which covers
|η| < 1.475, and two end-caps which cover 1.375 < |η| < 3.2. Each of these have
three layers in addition to the innermost presampler layer. Both of these use lead as
the passive material and liquid argon (LAr) as the active material, which measures
the energy of particles via ionization. The total thickness of the electromagnetic
calorimeter is > 22X0 in the barrel and > 24X0 in the endcaps. The size of the
calorimeter cells vary with η and depth, but the smallest cells, which occur in the
second layer, are 0.025× 0.025 in ∆η× ∆φ.

The liquid argon cells take a long time to collect the ionization energy, on the order
of 450 ns [241], which is significantly longer than the time between bunch crossings
(25 ns). Luckily, the ionization pulse shape can be fit in order to determine the bunch
crossing the energy deposit corresponds to. However, there is some uncertainty on
this assignment, leading to energy deposits from neighboring bunch crossings adding
a source of noise to the set of energy deposits corresponding to a single event; this
noise is called out-of-time pile-up, to contrast it with the other interactions in the
same bunch crossing (Section 4.3), which is called in-time pile-up3.

The hadronic calorimeter consists of the barrel, which covers |η| < 1.7, two
end-caps which cover 1.5 < |η| < 3.2, and two forward calorimeters which cover
3.1 < |η| < 4.9. These three components consist of 3, 4, and 3 independent layers
respectively. The barrel uses steel as the passive material and scintillating tiles as the
active material; however, the end-caps and forward calorimeters use ionizing LAr as
the active material, with copper (in the end-caps and the first layer of the forward
calorimeter) and tungsten (in the second and third layers of the forward calorimeter)
as the passive materials. The total thickness of the hadronic calorimeter is & 10λ
over the entire detector. The smallest calorimeter cells in the barrel and end-caps are
0.1× 0.1 in ∆η×∆φ. In the forward calorimeters, η increases rapidly with θ, so the

3When not clear, pile-up refers to the contribution from both of these sources.
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sizes are simply measured on an absolute scale, with the smallest cells 3.0× 2.6 cm2

in ∆x×∆y. In contrast to the electromagnetic calorimeter, the readout time for the
tile cells is quite fast, and there is basically no contribution of out-of-time pile-up in
the hadronic calorimeter [242].

5.2.3 Muon System

The outermost radial component of the detector is the muon system, or muon spec-
trometer (MS). In principle due to the interactions with the calorimeters the only
particles that can make it out so far are muons; the MS provides measurements of
muon tracks out to |η| < 2.7, with an additional triggering system that goes out to
|η| < 2.4. However, very energetic hadrons can “punch through” to the MS; the energy
of jets therefore not measured in the calorimeter can be corrected (Section 5.5.4.1).
A cutout view of the MS can be seen in Figure 5.5.

(a)

Figure 5.5: A cutout view of the muon system showing the various subsystems. Figure
sourced from [56].
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The MS is surrounded by a toroid magnet system which bends muons in the ±z/η
direction in the barrel. In the barrel, there are eight toroids arranged symmetrically
about the beam axis; there are in addition two end-cap toroids.

The main component of the MS are the monitored drift tubes (MDT), which
operate similarly to the TRTs in Section 5.2.1. These cover the region |η| < 2.7,
with three layers out to |η| < 2.0 and two beyond that. As drift tubes, they provide
a resolution of 35 µm in the z direction and no measurement in the φ direction;
this choice of orientation is intended to measure the trajectory of the muons in the
magnetic field and therefore their momentum. In addition, the drift time in the MDTs
is large (approximately 700 ns) relative to the frequency of bunch crossings (25 ns),
so that other systems must be used to trigger (Section 5.4) on muons.

Cathode-strip chambers (CSC) provide tracking measurements in the end-cap
region 2.0 < |η| < 2.7 with alternating layers of perpendicular strips. The CSCs are
multi-wire proportional chambers which drift electrons from the inside to the outside
of the chamber. Because of the perpendicular strips, the CSCs provide measurements
in both directions, with a resolution of 40 µm × 5 mm in R× φ.

The muon triggering system is provided by the resistive plate chambers (RPC) in
the barrel region |η| < 1.05, and by thin-gap chambers (TGC) in the end-cap region
1.05 < |η| < 2.4. The RPCs are parallel plate capacitors filled with gas which are
segmented in order to provide measurements in both directions, 10×10 mm2 in z×φ.
The drift time in the parallel plates is significantly less than in the MDTs, allowing
for use in triggering. The TGCs are multi-wire proportional chambers similar to the
CSCs, and provide resolution of about 5× 5 mm2 in R× φ.

5.3 Simulation

Every analysis in ATLAS relies on simulated events in some way. Both of the anal-
yses presented in this Thesis (Chapter 6 and Chapter 7) are searches for new BSM
physics; since BSM particles have never been observed, simulations are required to
understand the sensitivity of the analysis to these new signals. Many analyses in AT-
LAS use simulations to model their background - both of these searches avoid this by
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estimating the background in a data-driven way, but still require simulations of the
background in order to set up and validate the analysis chain. Furthermore, a major
step of object calibrations is understanding the effect of the detector in simulated
events, which is the subject of Chapters 8 and 9. These are just some of the ways
that simulations are used in ATLAS.

Simulations of physics events are factorized, often using different software pro-
grams entirely for matrix element calculations and parton showering, fragmentation
and hadronization, and detector simulation [243]. Fundamentally each step of this
process is random due to quantum effects, so events are simulated via Monte Carlo,
or MC, methods to fully populate the relevant probability distributions. Since even
the most common “interesting” physics processes have cross sections on the order of
10−5 of the total pp cross section, and many other important processes are much rarer
still, events are typically simulated not inclusively but rather by first specifying the
underlying hard-scatter (i.e., the tree-level pp interaction) process and proceeding
from there.

The matrix element calculations cover the initial 2 → N interactions of the con-
stituent quarks in the colliding protons at the very high energies of the beams. The
parton showering further simulates the produced partons as they radiate down to the
hadronization scale around O(GeV). Because the energies in these steps are above
the hadronization scale, they can be calculated perturbatively at fixed order in αs,
and the generators are specified as to what order they go to (leading order “LO”,
next-to-leading order “NLO”, etc.). The three most common generators in use are
Pythia [244, 245], Sherpa [246], and Herwig [247, 248]. These generators can use
Powheg-Box [249, 250] to interface between the matrix element and parton show-
ering. Often a single generator will be used primarily for the simulated events in an
analysis, and one or multiple other generators will be used to estimate the uncertain-
ties related to the theoretical calculations.

The fragmentation and hadronization covers the conversion of partons to hadrons.
This process is not described well by any fundamental theory, and so the generators
use phenomenological models that are tuned to empirical data (e.g., [251]); similarly,
generators are specified by this hadronization tune. The underlying event that comes
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from the soft interactions of the proton constituents is also simulated at this stage,
with the parton distribution functions again coming from phenomenological mod-
els [252]. These are also typically covered by the above-mentioned generators. The
decays of heavy flavor hadrons (those containing bottom and charm quarks) are also
simulated at this stage using dedicated programs like EvtGen [253].

The other simultaneous pp collisions in the event (pile-up) are also simulated [254],
but there are proposals to overlay minimum bias (i.e., minimal triggering require-
ments) data events on top of the simulated ones, according to the expected number
of interactions in the event4.

The above-mentioned steps constitute what is known as the “truth” event. The
observables related to the particles at this stage (in particular, the four-momentum)
are not accessible in real life, because they have to be observed in the detector (Sec-
tion 5.2). The simulated events are passed through a full simulation of the ATLAS
detector modeled in Geant [255]. This simulates both the particle interactions with
the material and the resulting digitization of the signals. This is considered to be
the “reconstructed” event, which is in the exact same format that real data would be
observed. The reconstructed event is passed through various post-processing stages
(Section 5.5), the overall goal of which is to attempt to construct the “truth” event
that would have given rise to the “reconstructed” (nonsimulated) event as well as
possible.

The majority of ATLAS computing resources are dedicated to running simulations.
Figure 5.6 shows the fraction of disk space and CPU time projected to be needed in
2028 for the various ATLAS computing activities. For the disk space, about 75%
of the roughly 1500 petabytes needed by ATLAS by 2028 [256] will be dedicated to
simulations (“MC” in the Figure). Similarly, for the CPU time, about 75% of the
roughly 20 MHS065 needed by ATLAS by 2028 [256] will be dedicated to simulations
(“MC” and “EvGen” in the Figure).

4In fact, this is what is done for heavy-ion collisions in ATLAS.
5A HS06 is a CPU benchmark tailored for high energy physics typical use cases [257]. Typical

high-performance CPUs are equivalent to 500-1000 HS06. A MHS06 is a mega-HS06, or 1 million
HS06.
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Figure 5.6: Projected computing resources needed by ATLAS in 2028. (a) Disk space.
(b) CPU resources.Figures sourced from [256].

5.4 Trigger

The trigger system lies somewhere between the hardware and software systems6. Be-
cause of the enormous rate of collisions provided by the LHC (40MHz), it is infeasible
to store every event. Every event takes up O(MB) [261] on disk, so storing every event
would be equivalent to O(100 TB) per second rate of writing, or about 106 PB for
a full year’s worth of data-taking7. Moreover, as discussed in Section 4.3 it is not
desirable to store every event, because the vast majority of events are “uninteresting”
and one of the main physics goals of the LHC and ATLAS is to observe or discover
extremely rare processes.

Because of the reasons outlined above, ATLAS institutes a trigger system [258]
to decide whether or not to store each event, based on whether the reconstructed
objects and topology in the event are indicative of some particular physics process.
The reconstruction algorithms in use in ATLAS are distinguished by whether they
are online, meaning they are in use in the trigger and are subject to the relevant time
and space constraints, or if they are offline, meaning they are used on events passing

6This Section is sourced mainly from [258], with additional more recent information from [259]
and [260] (which is not yet public at the time of writing).

7As a piece of trivia, this amount of data is called a zettabyte, or ZB [217].
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the trigger and can be optimized for performance using the full detector information
and much looser time constraints8.

The trigger consists of two major subsystems. First, the hardware-based Level 1
trigger, or L1, reduces the rate of events from 40 MHz to about 100 kHz based on
fast but approximate algorithms. Then, the software-based high-level trigger, or HLT,
uses offline-like algorithms (Section 5.5) to further reduce the rate to about 1 kHz.
The rates of each of these two trigger levels, along with some of the main individual
triggers, can be seen in Figure 5.7.
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Figure 5.7: Trigger rates for (a) L1 and (b) HLT or a typical run in September
2018. The overall rate (black dashed lines) is broken down into some main individual
triggers. Figures sourced from [262].

The trigger broadly works by identifying detector objects that are likely to corre-
spond to individual particles and thus indicate a hard-scatter pp interaction. The rate
of the trigger is controlled by specifying some energy threshold the detector object
has to meet in order to be passed to the next trigger in the case of L1 or written to
disk in the case of HLT. The collection of trigger object definitions and corresponding
energy thresholds is called the trigger menu, and is set every year of data taking (with
some minor changes between periods in the same year) [263–266] according to the
instantaneous luminosity and pile-up conditions and physics objectives.

Trigger considerations are vital for any analysis, because if the physics being tar-
geted by an analysis does not pass any trigger then the data are simply not stored

8Subject to the CPU resources available to the offline analyzer.
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and the analysis cannot be done. For example, the low-mass extension of the search
in Chapter 6 discussed in Appendix B spends considerable effort on finding a suitable
trigger for the new signature in that search; luckily, there is an existing trigger (in-
tended for other uses) which does have efficiency on those new signals. However, there
are a few different kinds of triggers on the trigger menu which can enable analyses in
light of the trigger limitations other than the primary triggers, which store the entire
event every time the trigger is fired. Triggers can be prescaled, meaning there is some
probability < 1 that the trigger fires, which allows for lower energy thresholds - these
can be used for background or efficiency studies or simply for monitoring the beam,
detector, or trigger systems. Also, there are situations where the energy threshold
is lowered but only small fraction of the total information in the event is stored -
these can be used for detector calibration or to directly conduct trigger-level analyses
(e.g. [267]) to be sensitive to kinematic regions that would otherwise be inaccessible
with the primary triggers.

There are also special runs with entirely different trigger menus than the regular
physics menu. For example, a minimum-bias trigger is run as the only item on
the trigger menu for a short period of time (i.e., trigger on every event with some
minimum quality controls with some high prescale). These minimum-bias events
are used, among other things, for measuring online trigger efficiencies offline and for
overlaying pile-up events on top of simulations (Section 5.3).

5.4.1 Level 1 Trigger

The L1 trigger has two major subsystems, one based on observations in the calorimeter
(L1Calo) and one based on observations in the muon system (L1Muon). There is also
a topological trigger (L1Topo) which combines information from the two subsystems
to make trigger decisions on a whole-event basis. In particular, there is not enough
time at L1 to reconstruct tracks from hits in the tracker.

L1Calo sets up 0.1× 0.1 in ∆η× ∆φ trigger towers in the calorimeter and forms
regions of interest, or RoIs, to identify physics objects. The electron/photon and
tau triggers use 2 × 2 groupings of trigger towers in the EM calorimeter that are



CHAPTER 5. THE ATLAS DETECTOR 65

local maxima in energy, with additional isolation requirements in the surrounding
towers and in the hadronic calorimeter. The isolation requirements are intended to
distinguish between isolated photons and collimated π0 → γγ decays. The jet triggers
use 4× 4 and 8× 8 groupings of trigger towers in the EM and hadronic calorimeters
with the central 2×2 grouping a local maximum in energy. A schematic of the L1Calo
trigger towers and RoIs can be seen in Figure 5.8.
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Figure 5.8: Schematic view of the trigger towers used as input to the L1Calo trigger
algorithms. Figure sourced from [258].

The L1Muon system uses the information from the RPCs and TGCs (Section 5.2.3)
to identify muon candidates in time to pass on to the HLT.

There is finally an L1Topo system which combines information from L1Calo and
L1Muon to evaluate event-wide information, in particular the missing transverse en-
ergy or Emiss

T , which corresponds to imbalances of momentum in the transverse plane
(Section 5.5.6).
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5.4.2 High Level Trigger

As mentioned above, the HLT uses offline-like reconstruction algorithms to target
a wide range of more specific physics goals than the L1. In particular, tracking
information from hits in the tracker, finer-granularity information in the calorimeter,
and more precise measurements in the MS allow more precise reconstruction than is
available at L1.

The tracking algorithms first run a fast tracking algorithm with rough pattern
recognition9 within RoIs identified at L1. These fast tracks are then used as seeds for
an offline-like (Section 5.5.1) track reconstruction algorithm.

Calorimeter reconstruction algorithms are used to identify electrons, photons,
taus, and jet candidates and finally Emiss

T global reconstruction. The first step is
to construct clusters of energy in the calorimeter based on RoI seeds from L1, for
which there are two different algorithms.

The electron and photon reconstruction algorithms use a sliding-window approach
by finding a window of size 0.075 × 0.175 in ∆η × ∆φ that is a local maximum of
energy in projective towers. The shower shape is then found by determining layer-
by-layer in the calorimeter the center of energy of the cells behind the sliding window
and summing up a fixed size window around that. This shower shape is then used to
positively identify electrons and photons, e.g. using the ratio of energy deposited in
the hadronic calorimeter to the electromagnetic calorimeter.

The tau, jet, and Emiss
T reconstruction algorithms use a global topo-clustering

algorithm [173] very similar to the offline reconstruction algorithm (Section 5.5.2),
which are built up iteratively from high-energy cell seeds. Jets are then reconstructed
using the anti-kt algorithm with R = 0.4 or R = 1.0 (Section 3.2) using these clus-
ters as seeds. The jets are calibrated in a similar manner to the offline procedure
(Section 5.5.4.1). Small-R jets are calibrated in particular incorporating a pile-up
subtraction step, an overall MC-based pT correction (the exploration of which is the
subject of Chapter 8), and the global sequential calibration (GSC) (the improvement

9Not to be confused with the similarly-named but ultimately shuttered Fast TracKer [268], or
FTK, which was a project to implement tracking directly into the hardware in order to speed up
performance.
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of which is the subject of Chapter 9). Large-R jets in 2017 and 2018 are trimmed and
have a mass cut, but do not use any other jet substructure techniques (Section 3.4)
for identifying boosted massive objects.

Tau identification uses similar principles to the offline selection (Section 5.5.3),
looking for small-R jets with narrow calorimeter energy deposits and low numbers of
associated tracks.

Jets originating from b-quarks can also be tagged (Section 5.5.4.3), by identifying
secondary vertices off the beamline that are characteristic of such jets. In order
to judge if a secondary vertex is significantly far enough from the beamline, it is
essential to have a precise measurement of the beamspot, which is the 3-dimensional
ellipsoidal region in which pp collisions can occur10 [269]. The Author has contributed
to a project intended to more precisely measure the online beamspot using Bayesian
inference [270], which could improve the b-tagging at HLT.

As jets with no such tagging are the most generic detector objects formed in
ATLAS, the rate of jet production is very high - e.g., the cross section of producing
a jet with ET > 100 GeV is at least a factor of 10 higher than any other “interesting”
electroweak process (see Figure 4.4). Therefore, the energy thresholds for jets in the
trigger are the highest of any other object, and analyses using only jet triggers are
therefore limited to very high energies. For example, the search in Chapter 7 uses
a single jet trigger, corresponding to offline pT > 500 GeV; this limits the minimum
dijet invariant mass mJJ > 1.1 TeV just to meet the trigger requirements. Because of
these high requirements, there have been concerted efforts for trigger-level analyses
using lower pT jets [267].

There are a variety of different trigger algorithms for Emiss
T , but the most basic

algorithm sums up the vectorial ~pT of all cells in the calorimeter to find any imbalance.
Other algorithms build on this by adding pile-up corrections or jet-based or topo-
cluster-based associations.

The muon reconstruction algorithm first runs a fast algorithm which then seeds
RoIs to be used in a precision step similar to the offline algorithm (Section 5.5.5). The

10With roughly a multivariate Gaussian probability distribution.
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fast algorithm matches the RoIs identified at L1Muon to data from the MDT cham-
bers (Section 5.2.3) to form tracks in the MS. These tracks are then back-extrapolated
back to the interaction point and combined with tracks in the inner detector. The
precision step basically repeats this process with a refined track-finding and pT mea-
surement, with an additional step of extrapolating tracks from the inner detector to
hits in the MS in case the back-extrapolation fails. Dimuon triggers (with dimuon
mass requirements) are also used for tagging resonant hadrons, e.g. J/ψ→ µµ.

Finally, there are dedicated triggers with low rates for exotic signatures, e.g. long-
lived particles [271].

5.5 Object Reconstruction

Events passing the triggers (Section 5.4) are written to disk and the detector ob-
servables are reconstructed with algorithms into objects intended to correspond to
particular physics particles. Tracks derived from hits in the inner detector (Sec-
tion 5.5.1) and topological clusters of cells in the calorimeter (Section 5.5.2) are used
to build up objects corresponding to photons and electrons (Section 5.5.3) and jets
(Section 5.5.4). Muons are also reconstructed using information from the MS (Sec-
tion 5.5.5). Finally, these objects are combined together to estimate the missing
transverse energy (Section 5.5.6).

5.5.1 Tracks

Tracks, corresponding to the paths of charged particles in the inner detector, are
reconstructed from hits in the various layers of the tracker [238, 272]. An example
event display showing hits in the inner detector and the tracks formed from those hits
can be seen in Figure 5.9.

Hits in the pixel (including the IBL) and SCT layers are clustered in order to
account for a single particle passing through multiple adjacent pixels or multiple
particles passing through the same or adjacent pixels; these clusters are then ab-
stracted as three-dimensional space-points. Track seeds are then formed from sets of
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(a)

Figure 5.9: Event display showing hits in the inner detector and the tracks formed
from those hits. Figure source [273].

three space-points. A combinatorial Kalman filter [274] is then used to incorporate
additional space-points from other layers of the pixel and SCT detectors which are
compatible with the particle trajectory into a track candidate. An ambiguity solver is
then used to identify clusters with track candidates, using a neural network to iden-
tify and predict merged clusters resulting from multiple tracks [275]. The clusters
are identified with the track candidates in order of quality of the track, considering
criteria like the number of holes (missing clusters) across the layers and χ2 of the
track fit. Track candidates are also rejected if they do not meet basic requirements
like pT > 400 MeV (in which case the particle’s trajectory would curve so much in
the magnetic field it would never leave the inner detector)11. Finally, a track fit is
performed using all available information (in particular including information from
the TRTs) to determine the track parameters. The radius of curvature of the track,
when combined with the known magnetic field, gives the charge to momentum ra-
tio q/p (Equation 4.1), and the direction of curvature gives the sign of the charge.
The other relevant track parameters are the direction in η,φ after exiting the tracker
(after which the expected trajectory of the charged particle is straight), transverse

11With the B ≈ 2T magnetic field, the radius of curvature has to be R & 0.5m in order to escape
the ID at a distance of ∼ 1m from the beamline. Therefore the momentum has to be pT & 300 MeV
(Equation 4.1), with q = ±1.
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impact parameter off the beamline d0 (i.e., the closest approach of the track trajec-
tory to the beamline), and longitudinal displacement along the beamline z0 (at the
point of closest approach). The tracking reconstruction is particularly difficult within
the dense environments of jets, where there can be large numbers of tracks in a small
region.

The resolution of track q/p, d0, and z0 as a function of pT can be seen in Fig-
ure 5.10. The momentum resolution is quite good, around 1% ⊕ 0.05% ∗ pT/GeV -

(a)

(b) (c)

Figure 5.10: Track resolution of (a) q/p, (b) d0, and (c) z0 as a function of pT

in cosmic-ray data. The measurements are compared among tracks measured with
silicon-only components, full inner detector, and full inner detector in simulation.
Figures sourced from [276].
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the momentum resolution gets worse at high momentum as the track has less curva-
ture in the magnetic field. The d0 resolution is important for constructing decays off
the beamline, which is essential for b-tagging (Section 5.5.4.3). The z0 resolution is
important for constructing primary vertices which correspond to interactions along
the beamline (Section 5.5.1.1).

5.5.1.1 Primary Vertices

Primary vertices [277–279] are collections of tracks emanating from a single point
indicating a pp interaction at that point. The average number of interactions per
bunch crossing µ is > 1, which is directly related to the instantaneous luminosity;
µ > 1 is the cause of pile-up interactions in the event other than the hard-scatter
interaction or (roughly) the one that caused the event to pass the trigger. In the ideal
case the expected number of reconstructed primary vertices would scale linearly with
µ; however, the dominant cause of nonlinearity is vertex merging due to the high
density of interactions in the luminous region. There can also be vertex splitting,
vertex fakes, and inefficiencies in vertex reconstruction.

The vertex reconstruction algorithm proceeds iteratively - after choosing a vertex
seed, the algorithm alternates between finding tracks compatible with coming that
vertex (subject to their z0 and d0 resolutions) and re-fitting the vertex position with
the associated tracks until some stopping condition is met (vertices must have at least
2 associated tracks). The found vertex and its associated tracks are then removed
from consideration and the process is repeated until all tracks are associated to a
vertex or no more vertices can be found. The output of this algorithm is a set of
vertex positions and the covariance matrix of their resolutions.

The efficiency of vertex reconstruction as a function of number of associated tracks
can be seen in Figure 5.11a. The vertex reconstruction efficiency is basically 1 when
the vertex has 5 or more associated tracks. Figure 5.11b shows the z resolution of the
primary vertices. The z resolution is important for distinguishing between different
interactions along the beamline.

The primary vertex with the highest
∑
p2T over the associated tracks is designated
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(a) (b)

Figure 5.11: (a) Efficiency of vertex reconstruction as a function of number of associ-
ated tracks. Also, resolution of vertices in (b) x, (c) y, and (d) z. Measured in low-µ
(µ ∼ 0.01) data and in MC. Figures sourced from [278].

as the hard-scatter vertex (and the associated tracks are considered to be the hard-
scatter tracks), as it corresponds to the hardest interaction in the event and therefore
the most likely to be “interesting”. The remaining vertices and their associated tracks
are labeled pile-up. For most reconstruction algorithms considered below, if they use
tracks, only the hard-scatter tracks are considered. However, the pile-up tracks are
used for the removal of calorimeter jets originating from pile-up interactions (Sec-
tion 5.5.4.2), as the calorimeter by itself does not have nearly good enough angular
information to distinguish between energy clusters due to hard-scatter and pile-up
interactions. Also, tracks with large impact parameters, but within some small dis-
tance of the hard-scatter primary vertex, are used to reconstruct secondary vertices
for b-tagging (Section 5.5.4.3).
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5.5.2 Clusters

Energy deposits in calorimeter cells are combined together using a topological cluster-
ing algorithm [173], which are then used as seeds in jet-finding. The expected amount
of noise in a given cell σnoise,cell is estimated in order to define an energy significance
ζcell = Ecell/σnoise,cell. The noise in a given cell is due both to electronic noise and to
soft energy deposits from the pile-up interactions in the event; thus, the cell noise is
estimated as a function of the position in the detector (layer of the calorimeter and
η) and the amount of pile-up µ. This estimate can be seen in Figure 5.12.

(a)

Figure 5.12: Expected total noise per cell (in simulation) as a function of position in
the detector (layer and η) at µ = 80, corresponding to conditions similar to those in
2018 data-taking. Figure sourced from [280].

The algorithm for topological clustering proceeds as follows. First, seeds are
formed as cells with energy deposits ζcell > 4. The cluster then grows from the seed
to all neighboring cells (either adjacent if in the same layer or close in η,φ if in
different layers) with energy deposits ζcell > 2; this growth continues iteratively until
there are no more cells passing the threshold to spread to. Finally, the cluster spread
to all immediately neighboring cells with ζcell > 0

12. Clusters can then be split if there
are local maxima of energy within the cluster. The result of the clustering algorithm

12Note that the significance can be < 0 due to pulse-shape calibrations in the cell.
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is a set of 3-dimensional irregularly-shaped but topologically-connected clusters. The
progression of this algorithm can be seen in Figure 5.13.

Each cluster is assigned an (η,φ) position based on the barycenter of the con-
stituent cells, and a total energy E. Clusters are assumed to be massless when forming
their four-momentum.

The electromagnetic showers (due to electrons and photons) have a different re-
sponse in the calorimeter than hadronic showers due to the different kinds of in-
teractions with the detector at play. Because of this, there is a desire to calibrate
individual clusters to a consistent scale. This calibration does not have to be applied
- in the case that it is not applied, the clusters and the jets formed from them are
considered to be at the EM scale. For example, the small-R jets used in the search
presented in Chapter 6 use jets at the EM scale. However, large-R jets usually do use
calibrated clusters, as they often take advantage of substructure information in their
constituent clusters, which benefits from the clusters being at a consistent energy
scale. The large-R jets used in the search presented in Chapter 7 use jets formed from
these calibrated clusters.

The calibration is a local cluster weighting, or LCW. First, the entire cluster is
classified according to the likelihood it comes from an electromagnetic or hadronic
shower based on its position in the detector and various cluster moments. Then, each
cell in the cluster is corrected as a weighted average between a hadronic correction and
an electromagnetic correction according to this likelihood. The hadronic corrections
are derived from simulations of single-particle charged pions interacting with the
detector, and the electromagnetic corrections are derived from simulations of single-
particle neutral pions (→ γγ). The per-cell hadronic correction consists of three
components: a correction for the difference between hadronic and electromagnetic
sources; a correction for out-of-cluster cells; and a correction accounting for dead
material in front of the calorimeters. The per-cell electromagnetic correction consists
of the second two components in the hadronic correction (out-of-cluster and dead
material effects). The entire cluster four-momentum is then recalculated using the
weighted cells. This calibration process is outlined in Figure 5.14.
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(a) (b)

(c)

Figure 5.13: Progression of the topological cell clustering algorithm in a single layer
of the calorimeter. (a) Cell seeds passing ζcell > 4. (b) Growth of clusters to cells
passing ζcell > 2. (c) Final clusters including cells with ζcell > 0 and cluster splitting.
Figures sourced from [173].
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(a)

Figure 5.14: Steps in LCW cluster calibration scheme. After the topo-clustering for-
mation and splitting, clusters are classified based on the likelihood of coming from
a hadronic or electromagnetic shower. This likelihood is used as the weighting be-
tween a hadronic and electromagnetic correction. The correction includes a correction
for differences between hadronic and electromagnetic showers (for which the electro-
magnetic correction is 1), out-of-cluster effects, and dead material. Figure sourced
from [173].

5.5.3 Photons and Electrons

The reconstruction of photons and of electrons [181] are quite similar to each other.
This is due to the fact that, as mentioned in Section 5.2.2, electrons and positrons
radiate bremsstrahlung photons when interacting with the detector, and photons
in turn often convert into electron/positron pairs - so the electromagnetic showers
produced by electrons and photons in the calorimeter are very similar. A schematic
of an electron passing through the detector can be seen in Figure 5.15, showing in
addition a radiated bremmstrahlung photon13.

Electrons and photons are distinguished mostly by tracking information - electrons
have a matched track emanating from the primary vertex, while photons either have
no associated tracks (if unconverted) or a set of paired tracks emanating from a
secondary conversion vertex (if converted).

The reconstruction begins with topoclusters (Section 5.5.2), with a preselection
that > 50% of the topocluster energy is in the electromagnetic calorimeter. Tracks

13Without the dashed line, this is also just a generic path of a charged particle through the
detector.
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(a)

Figure 5.15: Schematic of the path of an electron through the ATLAS detector. The
red solid line can be reconstructed as a track in the inner detector, and the red dashed
line shows the path of a radiated bremsstrahlung photon due to material interactions
in the inner detector. Figure sourced from [281].

are then extrapolated from the tracker into the calorimeter and matched to topoclus-
ters in η,φ. As mentioned above, matched tracks are then determined to come from
the primary vertex or combined with other nearby tracks to find secondary vertices
indicating a converted photon. The topoclusters are then used as seeds to expand
into superclusters intended to capture the full electromagnetic shower. Topoclusters
with ET > 1 GeV and a matched track, or topoclusters with ET > 1.5 GeV and no re-
quirement on matched tracks are used as superclusters seeds. In order of seed ET, the
seeds are expanded to all neighboring topoclusters within ∆η×∆φ = 0.075× 0.125.
If there is a matched primary vertex track to the seed then any other neighboring
clusters matched to the same track are also added; and if there is a matched conver-
sion vertex to the seed then any other neighboring clusters with tracks matching the
conversion vertex are added. Finally, tracks are refit to the superclusters, and they
are labeled unambiguous electrons if there is a matched primary vertex track, unam-
biguous photons if there are no matched tracks or a set of matched tracks forming a
conversion vertex, or ambiguous if both are true.

A variety of features related to the shower shape are used for electron and photon
identification and discrimination from hadronic showers. For example, the fraction of
energy of the supercluster in the electromagnetic calorimeter is used as a discrimina-
tory variable; the distribution of this feature and discrimination power in electrons
and in pile-up clusters (mostly hadronic) can be seen in Figure 5.16. These features
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(a) (b)

Figure 5.16: Fraction of supercluster energy in electromagnetic calorimeter, compared
between true electrons and pile-up, in simulation. (a) Distribution; (b) Efficiency of
cut. Figure sourced from [181].

(formed separately for electrons and photons) are combined together into a mul-
tivariate likelihood in bins of ET and η to be used in the final identification. More
information about the electron identification can be found in [281]. The shower shape
variables are particularly useful for distinguishing between prompt photons and neu-
tral pions decaying to collimated γγ. Both photons and electrons have working points
at Loose, Medium, or Tight, which can be chosen at the analysis level based on the
signal efficiency - background rejection trade-off.

In addition, a set of isolation variables are defined based on calorimeter and track-
ing activity outside the supercluster but inside a cone of ∆R = 0.2. The isolation is
intended to discriminate between prompt electrons and electrons from heavy flavor
decays or light hadrons misidentified as electrons, and further between prompt pho-
tons and neutral pions decaying to collimated γγ. Isolation working points are defined
at Loose, Tight, and CaloOnly which uses only calorimeter information.

The efficiency of the identification and isolation working points are evaluated in
data using high-fidelity Z→ ee and J/ψ→ ee events for electrons [282] and Z→ eeγ

and Z → µµγ events for photons [283, 284]. The differences between the simulation
and data are corrected, and the uncertainties on these corrections are applied as
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systematic uncertainties on simulated events.
The energy of electrons and photons are calibrated [285, 286] to account for en-

ergy lost in the material upstream of the calorimeter, for energy deposited in the cells
neighbouring the cluster, and for energy lost beyond the electromagnetic calorimeter.
The corrections are first derived in simulation using a boosted decision tree (BDT)
incorporating multiple shower shape variables in bins of η and Et. The photon and
energy calibrations do not use numerical inversion (Chapter 8), meaning the calibra-
tions can be biased by the prior used to calibrate. However, as the energy resolution
is small (O(5%) for electrons and photons with 5 < Et < 10 GeV, and better for
higher energies), this effect is not as important as it would be for jets, which have
much worse resolutions (Section 5.5.4.1).

The calibrated energies are evaluated in data using the above-mentioned high-
fidelity samples. A data-simulation, or in situ, correction is applied based on any
observed differences. The uncertainties on these corrections are applied as systematic
uncertainties on simulated events.

5.5.4 Jets

There are a variety of jet collections in use in ATLAS. The most common are those
formed using topoclusters (Section 5.5.2) as seeds, with R = 0.4 (small-R jets) using
topoclusters at the EM scale and R = 1.0 (large-R jets) using topoclusters at the
LCW scale. Large-R jets are typically trimmed as described in Section 3.3.

Jets can also be formed using particle flow objects [174] which combine infor-
mation from the calorimeter and tracker; Track-CaloClusters [287] which similarly
combine information from the calorimeter and tracker; or reclustering from smaller-
radius jets [76]. Topoclusters themselves can also be corrected other than the LCW
calibration - the Author has contributed to a project [187] with the idea of subtracting
pile-up from topoclusters before running the jet algorithm.

However, even if the seeds are in principle themselves corrected or calibrated,
there is still a need to calibrate the jets formed from those seeds to further account
for pile-up, out-of-cone, and nonlinearity effects.
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5.5.4.1 Jet Calibration

The jet energy and momentum calibration procedure [80–82] is achieved through a
series of steps.

The steps for the calibration of small-R jets are shown in Figure 5.17. Following

(a)

Figure 5.17: Steps in the small-R jet calibration. Figure sourced from [80].

jet reconstruction from the calorimeter cell-clusters, there is a minor correction to
the jet direction to point to the hard-scatter primary vertex rather than the nominal
detector center. The impact of pile-up is corrected for using a jet area-based [83,
84] approach followed by a residual correction sensitive to both in-time and out-of-
time pile-up [85]. Following the pile-up correction, an absolute pT scale correction is
derived in simulation, which also corrects the jet direction. There is then a sequence
of corrections, called the global sequential calibration or GSC, to further correct the
residual dependence of the jet pT on various jet quantities using information from the
tracker, calorimeter, and MS. The final step of the jet calibration procedure applied
only to data is an in-situ correction that accounts for the residual differences between
data and simulation.

The steps for the calibration of large-R jets are shown in Figure 5.18. After jet
reconstruction with LCW topoclusters and grooming with trimming, the jet energy,
mass, and η are corrected using an absolute MC-based correction. There is finally an
in-situ correction applied only to data to correct for differences in the energy scale
between data and simulation.

Each of the above steps, other than the pile-up correction for small-R jets, operate
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(a)

Figure 5.18: Steps in the large-R jet calibration. Figure sourced from [82].

under the principle of numerical inversion (Chapter 8) in order to be independent of
the underlying prior distribution of the reference energy or momentum.

In the simulation-based corrections, the reference object is “truth” jets formed from
detector-stable simulated particles (cτ > 10 mm) other than muons and neutrinos,
absent the detector simulation (Section 5.3). Reconstructed jets are geometrically
matched to truth jets with ∆R =

√
∆η2 + ∆φ2. Truth jets are matched to truth

partons using ghost association [84]; the type of the highest energy parton matched
to a truth jet is used as the label.

In the in situ corrections, the goal is to correct any differences in the energy scale
between data and simulation. The relative pT response of the jet to the reference
object is compared between data and simulation and this relative ratio is corrected
for. For lower pT jets, the in situ corrections use Z → ee/µµ or γ as the reference
object. For higher pT jets, systems of multiple lower pT small-R jets are used as the
reference objects.

The first step of the small-R jet correction is simply a geometric correction to
account for the fact that η is measured as an angle from the center of the detector,
but jet angle should instead be measured from the interaction point or the hard-scatter
primary vertex.

The pile-up correction for small-R jets [83] first estimates the average extra pT
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density due to pile-up in the event ρ, and the catchment area of the jet A; then ρA is
subtracted from the jet pT as the expectation of pile-up contribution in the jet. The
areas of jets [84] are estimated using ghost association. The whole event is blanketed
uniformly in η,φ with zero-momentum ghosts, and the jet finding process is repeated.
The set of output jets is not affected by the presence of ghosts, since the algorithm is
IRC safe (Section 3.2), but the set of ghosts associated with each jet gives a definition
of the jet area. ρ is calculated by rerunning the jet finding using the kt algorithm
with R = 0.4 (most of which will be due to pile-up interactions), calculating the jet
momentum density pT/A, and taking the median over all jets. The distribution of
ρ at different values of the number of primary vertices (NPV), an estimate of the
pile-up contribution in the event, can be seen in Figure 5.19. It can be seen that the
peak of the ρ distribution increases roughly linearly with NPV.

The Author has been involved in a project [187] to subtract pile-up from topoclus-
ters in the first place rather than from the entire jet. In this project, ρ is calculated
in the same way, but the area of each topocluster is estimated using a Voronoi tessel-
lation [288–290] of the calorimeter in η,φ with the topoclusters as seeds.

After the ρA correction, there is still some residual dependence on NPV and µ,
particularly at high η. The dependence of the jet pT on these two parameters is
estimated with a linear fit and subtracted; the effect of this correction can be seen in
Figure 5.19.

Following the pile-up correction, a correction is derived in simulation for the ratio
between the overall reconstructed jet energy and the truth jet energy. In bins of η, the
mode of the Ereco/Etrue distribution (the energy response) in each Etrue bin is found by
fitting a Gaussian to the central peak of the distribution and taking the mean of the
fitted Gaussian. As mentioned above, this process proceeds via numerical inversion
(Chapter 8), by inverting this response function and applying it to the reconstructed
energies. The dependence of the energy response on Etrue and η can be seen in
Figure 5.20.

Following the absolute scale correction, the global sequential calibration (GSC)
implements a sequence of residual corrections on various features are applied to correct
the jet pT. The sequence of corrections corrects the dependence of pT on each feature
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(a)

(b) (c)

Figure 5.19: (a) Distribution of pile-up density ρ for different values of NPV at fixed
µ. (b) Effect of residual correction for NPV. (c) Effect of residual correction for µ.
Figures sourced from [80].
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sequentially; since the dependence of the pT response changes with pT, these steps
also proceed via numerical inversion. The features include those sensitive to the
provenance of the jet (quark- or gluon-initiated) like the number of tracks in the jet
and the width of tracks in the jet (the average pT-weighted distance of tracks from
the jet axis); removing this dependence makes the response more similar for quark
and gluon jets and reduces the uncertainty due to jet fragmentation modeling for a
given jet type. There are also two features to account for dead material between the
electromagnetic and hadronic calorimeters (based on the fraction of jet energy in the
final layer of the electromagnetic calorimeter and in the first layer of the hadronic
calorimeters), and finally there is a feature to account for hadronic showers that punch
through to the MS. The dependence of the pT on some of the features that go into
the GSC can be seen in Figure 5.20.

Chapter 9 proposes a new method of accounting for the dependence of the jet pT

on each of these auxiliary variables by deriving the correction simultaneously rather
than sequentially. The new method is enabled by the use of neural networks to
estimate the response dependence in the high-dimensional space formed by all the
features, but retains the key properties of numerical inversion.

The above corrections are applied to all jets, both in simulation and data. There
is a final step which compares the ratio of the jet response to a reference object in
simulation and in data, and if there is a difference then the jets in data are corrected;
this is called the in situ correction. As mentioned above, the reference objects include
well-reconstructed Z → ee/µ/mu, γ, or multijet systems, taking advantage of con-
servation of momentum in the event. The correction using Z as the reference object
cover the low pT range 20 < pT < 500 GeV; the correction using γ as the reference
object cover the medium pT range 36 < pT < 950 GeV; and the multijet balance is
used to extend the calibration up to 2 TeV. There is also an in situ η-intercalibration
comparing jets at high η to more central jets. This correction also proceeds via nu-
merical inversion. There can be uncertainties in the value of this correction due to
mismodeling of physics effects; uncertainties in the kinematics of the reference object;
and uncertainties in the pT balance due to the event topology. These uncertainties
are propagated at systematic uncertainties on the jet energy correction. The total
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(a)

(b) (c)

Figure 5.20: Small-R jet calibration. (a) Energy response in bins of Etrue and η for
the absolute energy scale correction. (b) Dependence of pT on track width for the
GSC. (c) Dependence of pT on number of tracks in jet for the GSC. Figures sourced
from [80].



CHAPTER 5. THE ATLAS DETECTOR 86

systematic uncertainty on the jet energy is around 1%, rising up to around 5% for
low-pT jets [291].

The calibration of large-R jets [82] does not include a pile-up subtraction step, as
large-R jets are trimmed (Section 3.3) and are intended for high pT massive objects
for which pile-up has a small effect on the jet pT. The energy correction for large-R
jets in bins of η is derived in simulation similarly to that for small-R jets, again using
numerical inversion. After the energy correction the large-R jet mass is also calibrated
in bins of E and η, again using numerical inversion to prevent being biased by the
distribution of the truth mass. The energy and mass response before calibration can
be seen in Figure 5.21.

(a) (b)

Figure 5.21: Large-R jet calibration. (a) Energy response in bins of Etrue and η for
the absolute energy scale correction. (b) Mass response in bins of ptrue

T and η for jets
with truth mass around mW ≈ 80 GeV. Figures sourced from [82].

The Author has been involved in a project [292] intended to calibrate the jet
energy and mass simultaneously rather than the sequential process outlined above.
This project uses the simultaneous techniques enabled by neural networks introduced
in Chapter 9.

There are two independent definitions of the jet mass [201]. The first is directly
from summing together the four momenta of the constituent topoclusters (which are
themselves assumed to be massless) and is called mcalo, or calorimeter mass. The
second, called the track mass or mtrack, is measured from tracks ghost-associated to
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the jet. This measurement can provide a better measurement than the calorimeter
mass due to the improved angular resolution of tracks compared to topoclusters;
however, the tracks only comprise the charged particle component of the hadronic
shower, so the overall scale of the mass will be off, even as the angular distribution is
relatively accurate. To account for the absence of neutral particles in the track mass
which are measured in the calorimeter, the track mass is scaled up by the ratio of the
calorimeter and track pT, forming the track-assisted mass [293] or mTA = mtrack pcalo

T
pcalo
T

.
Each of these two mass definitions are calibrated separately. The combined mass or
mcomb is defined as a weighted sum between mtrack and mTA based on the (inverse)
resolution of the truth jet mass under each definition. Since the sum of the weights
is 1, mcomb is itself calibrated.

As with small-R jets, an in situ correction is applied to the large-R jet pT in
data, using as reference objects well-reconstructed Z → ee/µ/mu, γ, or multijet
systems. The correction using Z as the reference object cover the low pT range
200 < pT < 500 GeV; the correction using γ as the reference object cover the medium
pT range 500 < pT < 1000 GeV; and the multijet balance is used to extend the
calibration up to 2.5 TeV. There is also an in situ η-intercalibration comparing jets
at high η to more central jets. The in situ correction or large-R jets also proceeds via
numerical inversion. The total systematic uncertainty on the jet energy rises from
around 2% at low pT to around 6% for high-pT jets.

An in situ correction for the jet mass is also derived, though this correction cannot
take advantage of pT balance with a reference object. Two methods are employed to
derive this correction. The first method compares the ratio of mcalo to mtrack in data
and simulation and provides a correction based on any differences, and uncertainties
on this correction are applied as systematic uncertainties. The second method is
called forward folding [294]. Both data and simulation are subjected to an event
selection targeting tt̄ events with high fidelity. This event selection takes advantage
of events where one of the top quarks decays semileptonically (t → Wb → lνb) to
unambiguously identify the top quark and the other decays hadronically (t→Wb→
qqb), using the hadronic decay to calibrate the jet mass. In these events a correction
to the mean and resolution of the mass response is derived by matching the entire
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distribution seen in simulation to that seen in data (for the given choice of mass
definition); this correction is taken as the in situ correction and uncertainties related
to the measurement are taken as systematic uncertainties. A jet-topology dependence
and uncertainty can also be derived from forward folding by requiring the tagged b-jet
(Section 5.5.4.3) to be inside (for top jets) or outside (forW jets) the large-R jet. The
jet mass response uncertainty depends on the jet pT, but is generally less than 5%.

The tagging of jets based on their substructure is covered in Section 3.4. Briefly,
small-R jets can be tagged as originating from quarks or gluons based on the number
and distribution of tracks within the jet (gluons produce more particles and their
showers are wider than those for quarks). Large-R jets can be tagged as fully hadronic
decays originating from W/Z bosons (with two hard subprongs), from top quarks
(with a W and a b-tagged subjet (Section 5.5.4.3)), or from Higgs bosons (with two
b-tagged subjets). There are also decays involving leptons that can be used to tag
large-R jets, e.g. Z→ ee/µµ.

The following three Sections cover jet tagging not based strictly on the pT and
angular distribution of the tracks, topoclusters, and subjets within the jet: pile-up jet
tagging (Section 5.5.4.2), b-tagging (Section 5.5.4.3), and τ-tagging (Section 5.5.4.4).

5.5.4.2 Pile-up Jet Tagging

While the pile-up contribution within small-R jets is subtracted out in the calibration
process, there can be jets with low transverse momentum that originate entirely from
pile-up. These jets can either be stochastic, meaning local fluctuations in the soft
particle noise level from the sum of the other interactions in the event, or they can
result from hard partons that originate from a single interaction other than the hard-
scatter vertex (which presumably produced even harder objects to fire the trigger and
have the highest

∑
p2T.).

The dependence of the number of jets in the event on the average number of
interactions per bunch crossing µ is shown in Figure 5.22. It can be seen that there
is a linear component of the dependence on pile-up, corresponding to hard partons
from a single interaction, and a superlinear component, corresponding to stochastic
fluctuations.
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Figure 5.22: Dependence of number of jets (pT > 20 GeV) per event on the average
number of interactions per bunch crossing. In blue, all jets. In red, after applying
a selection of JVT> 0.59. Events from 2017 data-taking with a dimuon trigger and
81 < Mµµ < 101 GeV, corresponding to an event topology of Z+jets. Figure sourced
from [295].
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It is desirable to remove these pile-up jets from the event, since they are unrelated
to the hard-scatter topology and would otherwise be a major source of noise in event
selections. Jets are identified as pile-up jets [85, 296] (rather than hard-scatter jets)
based on tracks ghost-associated with the jet and identified as originating from the
hard-scatter vertex or a pile-up vertex.

The jet-vertex-fraction, or JVF, is defined as the fraction of the scalar sum of
associated track pT coming from the hard-scatter primary vertex. While hard-scatter
jets tend to have higher values of JVF than pile-up jets, the efficiency of a fixed cut
on JVF degrades as the number of primary vertices increases. A corrected JVF, or
corrJVF, variable is defined to account for this effect which compares the scalar sum
of the associated track pT coming from the hard-scatter primary vertex to the average
(as opposed to total in the case of JVF) scalar sum of track pT coming from pile-up
vertices. Because of this correction, the efficiency of a fixed cut on corrJVF does not
degrade with the number of primary vertices.

An additional variable, RpT, is defined as the ratio of the scalar sum of associated
track pT coming from the hard-scatter primary vertex to the total pT of the jet
measured in the calorimeter, including the calibration with the pile-up subtraction
step. This variable accounts for false positives with corrJVF in the case that a
stray soft track from the hard-scatter vertex happens to land in a pile-up jet with
no associated tracks. Hard-scatter jets tend to have a broad distribution in RpT
depending on the charged fraction of the shower, while pile-up jets have a sharp
distribution near 0. As RpT is defined in terms of only the hard-scatter vertex, it is
to first order independent of the number of primary vertices.

A final variable, jet-vertex-tagger or JVT, is defined as a combination of these two
variables. The two-dimensional likelihood distribution in hard-scatter jets and pile-
up jets is formed using simulated dijet events. JVT is defined as the likelihood ratio
between these two samples, estimated using a k-nearest neighbor algorithm [297] in
(corrJVF, RpT) space with a Euclidean metric and k = 100.

The curve for the rate of pile-up jets vs the efficiency on hard-scatter jets passing
a selection on JVF, corrJVF, RpT, and JVT is shown in Figure 5.23. It can be seen
that JVT performs the best over all algorithms, and in particular that while JVT
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and corrJVF perform similarly at high efficiency, JVT removes some false positives
at lower efficiency due to the incorporation of RpT.
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Figure 5.23: Fake rate (average number of pile-up jets per event) vs efficiency on hard-
scatter jets as the selection on JVF, corrJVF, RpT, and JVT is varied, in simulation.
Figure sourced from [296].

A typical selection for jets in use in an analysis is JVT > 0.59, which has about
a 90% efficiency on hard-scatter jets and a 0.02 pile-up jet rate. This selection is
applied only to jets with pT < 60 GeV, as the prior distribution of pile-up jets falls
off rapidly with pT and so a pile-up jet suppression is unnecessary (and would remove
some high pT hard-scatter jets). Pile-up jet suppression is not applied to large-R jets,
as they are only calibrated down to 200 GeV and the rate of pile-up jets at that scale
is negligible.

JVT of course relies on tracks and track-to-vertex association for pile-up identi-
fication, and so can only be applied to jets with |η| < 2.4 (central jets), the angular
extent of the tracker (Section 5.2.1). For jets outside this range, or forward jets, a
different pile-up tagger can be used [91]. The rate of forward pile-up jets is less than
that for central pile-up jets, as can be seen in Figure 5.24. However, it is important
to remove these forward pile-up jets for analyses that expect forward jets as part of
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their signal selection - for example, the search presented in Chapter 6 targets Higgs
bosons produced in the vector-boson-fusion mode, which tends to produce forward
quark-initiated jets.

In contrast to central jets, forward pile-up jets are more likely to come from hard
partons from a single pile-up interaction (QCD pile-up jets) than from stochastic
fluctuations from multiple interactions (stochastic pile-up jets), as can be seen in
Figure 5.24.
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Figure 5.24: (a) Average number of events with at least one forward jet (pT > 20

GeV) as a function of the average number of interactions per bunch crossing µ. (b)
QCD pile-up jet fraction as a function of pT for central and forward jets. Figures
sourced from [91].

Stochastic pile-up jets are identified using the spatial width γ and temporal width
of calorimeter towers in the catchment area of the jet, as hard-scatter jets tend to
have a well-defined small core and stochastic pile-up jets tend to be diffuse.

QCD pile-up jets are identified taking advantage of the fact that the total mo-
mentum from each pile-up interaction must be conserved in the event. Therefore,
events with forward QCD pile-up jets tend to have pile-up vertices with some missing
vectorial transverse momentum in their associated tracks and jets, which matches



CHAPTER 5. THE ATLAS DETECTOR 93

the vectorial transverse momentum present in the forward jet. Forward QCD pile-up
jets can be identified taking advantage of this event topology; this algorithm is called
forward JVT or fJVT.

The taggers based on γ and fJVT are combined together in a forward pile-up jet
tagger called fJVTγ, and the final tagger uses both fJVTγ and timing information to
suppress forward stochastic and QCD pile-up jets. The performance of these taggers
can be seen in Figure 5.25.
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Figure 5.25: Efficiency on pile-up jets vs efficiency on hard-scatter jets for taggers
based on γ+timing information, fJVT, and fJVTγ+timing information. (a) Jets with
20 < pT < 30 GeV; (b) jets with 30 < pT < 50 GeV. Figures sourced from [91].

The efficiencies of both JVT and the forward pile-up tagger are measured in data
using Z → µµ+jets events and corrected for any data-simulation differences; the
uncertainties on these corrections are applied as systematic uncertainties.

5.5.4.3 b-tagging

Jets originating from b-quarks (b-jets) can be identified taking advantage of the
lifetime of B-hadrons, which is long enough for the decay to be measurably distant
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from the primary vertex but short enough that the decay occurs in the inner de-
tector (O(mm))14. While the main background is jets originating from light quarks
(light-flavor jets), jets originating from c-quarks (c-jets) also present a confounding
background source, as hadrons containing c-quarks also tend to have a relatively long
lifetime.

There are a variety of b-tagging algorithms [182–184], which combine low-level
features related to the B-hadron decay into high-level multivariate taggers. The
low level features fall into a few different categories: using the impact parameter
of tracks matched to the jet directly (IP2D or IP3D) [298]; constructing secondary
vertices using matched tracks (SV1 ) [299]; or fitting the entire B-hadron decay (Jet-
Fitter) [300]. These features are combined into two high-level multivariate tagging
algorithms: MV2, which is trained using a boosted decision tree in TMVA [297], and
DL1, which is trained using a deep feed-forward neural network in Keras [301]. The
distributions of the scores from these high-level taggers can be seen in Figure 5.26.
The background rejection rate, for light-flavor jets or for c-jets, as a function of the
b-jet efficiency, for each of the above low-level and high-level taggers, can also be
seen in Figure 5.26. DL1 does slightly better than MV2, with a rejection rate of
light-flavor jets of about 10 at 70% efficiency on b-jets.

Typically analyses will use working points at the 60%, 70%, 77%, or 85% efficiency
levels, depending on the needs of the analysis.

The efficiency of the b-taggers is measured in data in high-fidelity tt̄ events, where
both of the top quarks decays leptonically t→Wb→ lνb. Any differences between
data and simulation are corrected, and any uncertainties in this correction are applied
as systematic uncertainties on the taggers.

5.5.4.4 Taus

Tau leptons decay hadronically about 65% of the time [107], in which case they are
reconstructed as small-R jets (tau-jets)15. Of the hadronic decays, over 90% involve

14b-jets contain electrons or muons (+neutrinos) about 10% of the time each [107]; in those cases
the leptons are used to identify the b-jet. This Section focuses on fully hadronic decays.

15Taus decay to electrons or muons (+neutrinos) about 17% of the time each [107]. Those cases are
almost indistinguishable from prompt production of the (lighter) leptons, as the only other produced
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Figure 5.26: Distribution of scores from high-level b-taggers for light-flavor jets, c-
jets, and b-jets: (a) MV2; (b) DL1. Background rejection rate of various b-taggers
vs efficiency on b-jets: (c) light-flavor jets; (d) c-jets. Figures sourced from [184].
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exactly 1 or 3 charged pions, up to two neutral pions, and a neutrino.
Tau-jets are identified [186, 302–304] given the number of tracks (1 or 3), taking

advantage of the narrow shower shape relative to quark- and gluon-initiated jets.
These low-level features are combined with a boosted decision tree into a final high-
level tau-tagger. Electrons (Section 5.5.3) can pass the tau-jet identification with a
single associated track; candidate tau-jets are removed if there is a nearby (∆R < 0.4)
electron. Figure 5.27 shows the distribution of the high-level tagger for 1- and 3-prong
jets initiated by quarks and gluons and for those initiated by taus. Also shown is the
background rejection rate as a function of the tau-jet efficiency; for a tau-jet efficiency
around 80%, the background rejection is around 30.

The energy of tau-jets is further calibrated to the truth visible energy (i.e. not
including the neutrinos), in a manner similar to that for generic jets (Section 5.5.4.1).

The efficiency of the tau tagger and the energy calibration are measured in data
with high-fidelity Z→ ττ events, where one of the taus decays to a muon to identify
the event and the other decays hadronically. Any differences between data and sim-
ulation are corrected, and uncertainties on the correction are applied as systematic
uncertainties.

5.5.5 Muons

Muons are reconstructed [305,306] as charged particle tracks in the muon system. As
almost all particles other than muons and neutrinos decay or shower in the calorime-
ter, muon identification has a very low background and events with muons in them
can be used to identify specific physics topologies with high fidelity. Figure 5.28 shows
an event display of an event likely corresponding to a Higgs boson (produced in the
vector-boson-fusion mode) decaying to two muons.

Muons are reconstructed from hits in the inner detector just like any other charged
particle. They are also reconstructed from hits in the various subsystems in the MS,
using a Hough transform [309] to search for hits aligned along curved trajectories.
Track segments are formed in each layer of the MS and combined to form track

particles are neutrinos. This Section focuses on fully hadronic decays.
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(a) (b)

(c)

Figure 5.27: Distribution of scores from high-level tau-tagger for quark- and gluon-
initiated jets (background) and for tau-jets (signal): (a) 1-prong jets; (b) 3-prong jets.
(c) Background rejection rate vs efficiency on tau-jets. Some common working points
are also included (not exactly on the lines due to implementing variable cuts intended
to reduce the dependency of the efficiency on pT). Figures sourced from [303].
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(a)

Figure 5.28: Event display showing candidate Higgs boson produced in the vector-
boson-fusion mode decaying to two muons. Figure sourced from [307], related to [308].

candidates, fitting the segments and tracks with a χ2 fit to the hits. Tracks in the MS
and in the inner detector are combined and fit again to form full muon candidates.
Most muon candidates are formed outside-in (back-extrapolating MS tracks to inner
detector tracks), but an inside-out method (extrapolating inner detector tracks to
MS tracks) is used as a complementary approach. In regions that the MS covers but
the inner detector does not (2.5 < |η| < 2.7), muon candidates can be formed from
information only in the MS.

Fake muons can come from a variety of sources: from charged hadrons, primarily
pions and kaons, decaying to muons, which produces a kink in the track in the inner
detector; from charged hadrons punching through to the MS, which lose significant
energy in the calorimeter relative to the track momentum; and from cosmic muons,
which do not originate from the primary vertex. Each of these sources of background
can be distinguished from prompt muons by testing the quality of the track in the
inner detector and its compatibility with the track in the MS, especially the charge
to momentum ratio. A few different working points are defined by selecting on these
features - the Medium working point, which is the default for analyses, has about a
95% efficiency on prompt muons with 4 < pT < 100 GeV and < 0.5% efficiency on
charged pions decaying mid-flight to muons.

Muons can also be required to be isolated using similar variables as for photons and



CHAPTER 5. THE ATLAS DETECTOR 99

electrons (Section 5.5.3), depending on the signal topology targeted in an analysis.
The efficiency on muons for the identification and isolation is measured in simu-

lation and in data in high-fidelity Z→ µµ events, where one muon and the invariant
mass Mµµ are used to tag the event, and the efficiency on the other muon is tested.
Differences in the efficiency between simulation and data are corrected, and uncer-
tainties in this correction are applied as systematic uncertainties.

As muons are reconstructed as tracks in the MS, the charge-to-momentum ratio is
measured very precisely. The muon momentum is also compared between simulation
and high-fidelity Z → µµ events in data. The differences between simulation and
data in the momentum measurement are applied as corrections in the simulations
and the uncertainties on this correction are applied as systematic uncertainties.

5.5.6 Missing Energy

Because of momentum conservation, the vectorial transverse momentum of all objects
in the event should sum to 016. Any missing transverse momentum in the event, or
Emiss

T , could be due to invisible particles like neutrinos or new particles beyond the
standard model.
Emiss

T is calculated [310–312] as the (opposite of the) vectorial sum of the transverse
momentum from all other objects in the event - muons (Section 5.5.5), electrons
and photons (Section 5.5.3), hadronically decaying tau jets (Section 5.5.4.4), and all
other jets (Section 5.5.4) form the hard term, and all energy deposits in the event not
matched to jets (Section 5.5.2) form the soft term.

For the hard term, objects are removed if they overlap with some better-measured
object in order to avoid double counting; e.g., jets are removed if they overlap with
a photon (which are reconstructed as jets), and only small-R jets are used in the jet
term (as large-R jets are also reconstructed as small-R jets). Pile-up suppression in
the central and forward region 5.5.4.2 has a major effect on the resolution of Emiss

T , as
pile-up jets are unrelated to the hard-scatter event and only add an additional source
of noise due to mismeasurements of their energies or incomplete event reconstruction

16This statement is not necessarily true for the longitudinal momentum, as the colliding protons
could have a momentum imbalance with each other.
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(even though in principle pile-up interactions should be pT balanced themselves). The
jet term can use either calorimeter topoclusters as defined in Section 5.5.2 or particle
flow objects [174], which have been shown to improve the Emiss

T resolution.
The soft term is the hardest term to measure, as it accounts for energy deposits not

reconstructed in other detector objects, which benefit from calibrations and pile-up
suppression. Because of this, the standard definition of the soft term is the track-
based soft term (though different definitions have been used in the past [310, 313]),
which only uses all tracks with pT > 400 MeV associated to the hard scatter primary
vertex and not associated to any other object in the event, via ∆R matching or ghost
association for jets. The gain in performance from excluding pile-up activity when
using only tracks to measure the soft term makes up for the loss in performance due
to not including neutral soft activity.

Despite this definition of the soft term, the Emiss
T resolution gets worse as the

number of primary vertices (NPV) increases. Two working points are defined - a
Loose working point using all jets with pT > 20 GeV, requiring central jets to pass
JVT, and a Tight working point which in addition removes all forward jets with
20 < pT < 30 GeV. There is in addition a middle working point that applies fJVT
to forward jets. The resolution of Emiss

T in Z → µµ events (which in the dominant
Drell-Yan production mode has no true missing energy) as a function of NPV can be
seen in Figure 5.29. The resolution clearly gets worse with increasing pile-up, but the
dependence gets less as the tightness of the forward pile-up cut gets tighter.

As all the underlying objects that go into Emiss
T are themselves calibrated and have

associated systematic uncertainties, the Emiss
T itself is in principle calibrated (given

the same definition in simulation and data), and the underlying object systematic
uncertainties as propagated up as uncertainties on Emiss

T . In addition, the Emiss
T distri-

bution is compared between simulation and data in Z→ ee/µµ events, which can be
identified with high fidelity, and any differences that exist are applied as systematic
uncertainties.

There have been a variety of alternate definitions proposed for calculating Emiss
T .

One proposed method is to incorporate the pT resolution of the individual objects
to get an Emiss

T significance [314]. An exciting alternative is to use a convolutional
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Figure 5.29: The dependence of the Emiss
T resolution on the number of primary vertices

(NPV). The red circles correspond to the Loose working point; green boxes correspond
to the Tight working point; and blue triangles correspond to the middle working point
of Loose+fJVT. Figure sourced from [312].

neural network [315–317] to predict Emiss
T , treating the entire event as an image in

(η,φ) [318].



Chapter 6

A Search for a

Beyond-the-Standard-Model Higgs

Decay

This Chapter presents a search for exotic decays of the Higgs boson to a pair of new
(pseudo)scalar particles, H → aa, with a mass in the range 20–60 GeV, and where
one of the a bosons decays into a pair of photons and the other to a pair of gluons.
The results of this search are published in [319]. The search is performed in event
samples enhanced in vector-boson fusion Higgs boson production by requiring two jets
with large invariant mass in addition to the Higgs boson candidate decay products.
The analysis is based on the full dataset of pp collisions at

√
s = 13 TeV recorded

in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider,
corresponding to an integrated luminosity of 36.7 fb−1. The data are in agreement
with the Standard Model predictions and an upper limit at the 95% confidence level
is placed on the production cross section times the branching ratio for the decay
H→ aa→ γγgg. This limit ranges from 3.1 pb to 9.0 pb depending on the mass of
the a boson.

102
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6.1 Introduction

The search for the Standard Model (SM) Higgs boson [21–24] has been one of the
main goals of the LHC physics program. A new particle with mass of 125 GeV, and
with properties compatible with those expected for the SM Higgs boson, has been
discovered by the ATLAS [25] and CMS [26] collaborations. Since its discovery, a
comprehensive program of measurements of the properties of this particle has been
underway. These measurements could uncover deviations from expected SM branch-
ing ratios or allow for the possibility of decays into new particles.

Existing measurements constrain the branching ratio for such decays (Bexotic) to
less than 34% at 95% confidence level [320]. Exotic decays are predicted by many
theories of physics beyond the SM [55], including those with an extended Higgs sec-
tor such as the Next-to-Minimal Supersymmetric Standard Model [136–140], several
models of dark matter [321–325], models with a first order electroweak phase tran-
sition [326, 327], and theories with neutral naturalness [328–330]. These theories are
motivated by some of the most outstanding unanswered questions in physics, such as
the gauge hierarchy problem [33], the nature of dark matter [28], and the strong CP
problem [35].

One of the simplest possibilities is that the Higgs boson decays to a pair of new
scalars or pseudoscalars, a, which in turn decay to a pair of SM particles. Several
searches have been performed for H→ aa in various final states [331–333].

The work presented here explores in particular the search for H→ aa, where the
final state contains two photons (γ) and two gluons (g) (H → aa → γγgg). This
decay mode becomes relevant in models where the a→ fermion decays are suppressed
and the a decays only to photons and gluons1 [55,334]. The ATLAS Run 1 search for
H→ aa→ 4γ [335] sets a limit σ×B(H→ aa→ 4γ) < 10−3σSM for 10 GeV < ma <

62 GeV. Before this work, there was no direct limit set on B(H → aa → γγgg);
however, in combination with Bexotic < 34%, the H → 2a → 4γ result sets indirect

1This search is also sensitive to signal models of the type H → aa ′ (a 6= a ′), where a decays
primarily to γγ, a ′ decays primarily to gg, and ma ≈ ma ′ . For these models the H → aa → 4γ
search is not sensitive and there are no limits other than on the generic Bexotic rate, but these models
are not as well-motivated.
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limits on B(H → aa → γγgg) to less than ∼ 4% (Appendix A.1). Assuming a
SM-like ratio of photon and gluon couplings, the H → 4γ decay occurs very rarely
relative to the H → γγgg decay (a typical value of the relative ratio of branching
ratios is 3.8×10−3 [334]) 2, making the H→ γγgg an excellent unexplored final state
for probing these fermion-suppressed models. The branching ratio for a → γγ can
be enhanced in some scenarios; the two searches are therefore complementary, where
the H→ γγgg final state is more sensitive to SM-like photon couplings with the new
physics sector, while the H→ 4γ final state is more sensitive to the enhanced photon
scenarios.

The most common Higgs production modes at the LHC are through gluon fusion
(ggF), vector boson fusion (VBF), or associated production with an additional vector
boson (VH) [336]. The cross sections for each of these Higgs production modes is in
a ratio of roughly 100:10:1 [337]; targeting any individual production mode requires
a trade-off between higher production cross section and increased handles on distin-
guishing signal from background. Ref. [334] shows that the search for H→ γγgg in
the VH mode, where the additional vector boson decays leptonically, would require
approximately 300 fb−1 of LHC data in order to be sensitive to branching ratios less
than 4%. While the gluon fusion production has a larger cross section, it is over-
whelmed by background. We have found (Figure 6.1a) that the search in the VBF
production mode can achieve sensitivity competitive with or better than the above
two production modes in the range 20 to 300 fb−1 of LHC integrated luminosity data,
and in particular with the approximately 150 fb−1 of data at the end of LHC Run
2 [231].

In the VBF production mode, two extra quarks are produced along with the Higgs
in the hard scatter interaction. The gluons from the Higgs decay and the quarks from
the VBF production are reconstructed as jets (j) in the ATLAS detector; therefore,
this search is focused on the H → 2γ2j final state with two additional jets from
the VBF production. Figure 6.1b shows a tree-level Feynman diagram of the VBF
production and γγgg decay of the Higgs boson, including the aa intermediate state.

2The H→ 4g final state is the most common, but is unfortunately swamped by background.
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Figure 6.1: (a) Projected branching ratio for H→ γγgg in order to make a discovery
of new physics at a significance level of 5σ, as a function of integrated luminosity,
when searching in the gluon fusion (GGH), vector boson fusion (VBF), and associated
production (VH) production modes. The projection for GGH and VBF assumes a 20%
systematic uncertainty due to jet reconstruction effects, while the projection for VH
uses the estimation from [334], assuming the significance is statistics-dominated. With
less than ∼ 20fb−1, the gluon fusion mode is most sensitive, but with more statistics
this production mode quickly becomes dominated by systematic uncertainties and is
unable to provide better limits. Up to ∼ 300fb−1, the VBF mode is most sensitive;
in Run 2 the LHC has gathered 140fb−1. With more than ∼ 300fb−1, the VH mode
likely provides the best sensitivity. (b) Tree-level diagram of production and decay
of Higgs boson being searched for in this analysis.

6.2 Data and simulation

The search presented in this chapter is based on the 36.7 fb−1 dataset of proton–
proton collisions recorded by the ATLAS experiment at the LHC at

√
s = 13 TeV

during 2015 and 2016. As discussed in Chapter 5, the ATLAS detector [56] comprises
an inner detector in a 2 T axial magnetic field, for tracking charged particles and a
precise localisation of the interaction vertex, a finely segmented calorimeter, a muon
spectrometer and a two-level trigger [258] that accepts about 1 kHz rate for data
storage.

Monte Carlo (MC) event generators were used to simulate the H→ aa→ γγgg
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signal (Section 5.3). Signal samples for the ggF and VBF processes were gener-
ated at next-to-leading order using Powheg-Box [249, 250, 338] interfaced with
Pythia [245] for parton showering and hadronization using the AZNLO set of tuned
parameters set [339] and the CT10 parton distribution function (PDF) set [252]. Sam-
ples were generated in the ma range3 20 GeV < ma < 60 GeV, assuming the a boson
to be a (pseudo)scalar. All MC event samples were processed through a detailed sim-
ulation [340] of the ATLAS detector based on geant4 [255], and contributions from
additional pp interactions (pile-up), simulated using Pythia and the MSTW2008LO
PDF set [341], were overlaid onto the hard-scatter events.

6.3 Event Selection

6.3.1 Trigger

Events are selected by requiring at least one of two diphoton triggers. One trigger
path requires the presence in the electromagnetic (EM) calorimeter of two clusters
of energy deposits with transverse energy above 35 GeV and 25 GeV for the leading
(highest transverse energy) and sub-leading (second-highest transverse energy) clus-
ters, respectively. In the high-level trigger the shape of the energy deposit in both
clusters is required to be loosely consistent with that expected from an EM shower ini-
tiated by a photon. The other trigger path requires the presence of two clusters with
transverse energy above 22 GeV. In order to suppress the additional rate due to the
lower transverse energy threshold, the shape requirements for the energy deposits are
more stringent. Using the ATLAS trigger nomenclature, these two trigger paths are
called HLT_g35_loose_g25_loose and HLT_2g22_tight, respectively. Both of these
high-level trigger are seeded by the Level 1 trigger L1_2EM15VH, which requires two
Level 1 objects consistent with the EM shower initiated by a photon with transverse
energy greater than 15 GeV. In 2015 and 2016 data these triggers were unprescaled.
The efficiency of each of the triggers on signal events with ma = 30 GeV is shown in

3The diphoton triggers considered for this search do not have acceptance for the lower mass range
(ma < 20 GeV), where the two photons are collimated.
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Table 6.1: Efficiency of triggers on a signal sample withma = 30 GeV. The efficiencies
are shown for the signal MC separated by production in the VBF and GGF modes,
and for the combined production modes.

Efficiency
VBF ggF Combined

HLT_g35_loose_g25_loose 0.158 0.161 0.160
HLT_2g22_tight 0.166 0.208 0.200
OR of triggers 0.201 0.242 0.234

Table 6.1. The efficiency of requiring at least one of the two triggers for other masses
ofma can be seen in Figure 6.9. The trigger efficiency notably goes down forma < 20

GeV; this limits the sensitivity of this search. The cause of this trigger inefficiency is
discussed in Appendix B.1.

6.3.2 Photons

The photon candidates are reconstructed from the clusters of energy deposits in the
EM calorimeter within the range |η| < 2.37. The energies of the clusters are cali-
brated to account for energy losses upstream of the calorimeter and for energy leak-
age outside the cluster, as well as other effects due to the detector geometry and
response. The calibration is refined by applying η-dependent correction factors of
approximately ±1%, derived from Z → ee events [286]. As in the trigger selection,
photon candidates are required to satisfy a set of identification criteria based on the
shape of the EM cluster [283]. Two working points are defined: a Loose working
point, used for the preselection and the data-driven background estimation, and a
Tight working point, with requirements that further reduce the misidentification of
neutral hadrons decaying to two photons. In order to reject the hadronic jet back-
ground, photon candidates are required to be isolated from any other activity in the
calorimeter. The calorimeter isolation is defined as the sum of the transverse energy
in the calorimeter within a cone of ∆R =

√
(∆η)2 + (∆φ)2 = 0.4 centered around the

photon candidate, The transverse energy of the photon candidate is subtracted from
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the calorimeter isolation. Contributions to the calorimeter isolation from the under-
lying event and pile-up are subtracted using the method proposed in [83]. Candidates
with a calorimeter isolation larger than 2.2% of the photon’s transverse energy are
rejected.

Events are required to have at least two photon candidates. The transverse energy
requirements depend on the trigger path through which the event was recorded. For
events passing the trigger with higher transverse energy thresholds (HLT_g35_loose_g25_loose),
the leading photon is required to have ET > 40 GeV, and the sub-leading photon is
required to have ET > 30 GeV. For events passing the trigger with lower thresholds
(HLT_2g22_tight), both the leading and sub-leading photons are required to have
ET > 27 GeV. For events passing both triggers, the latter selection is applied.

The efficiency of requiring at least two photon candidates in the signal can be seen
in Figure 6.9. This photon selection efficiency notably goes down for ma < 20 GeV

(beyond the inefficiency from the diphoton trigger); this further limits the sensitivity
of this search. The cause of this inefficiency is discussed in Appendix B.1, but is
mostly due to the calorimeter isolation on photons discussed above.

The invariant mass of the two leading photon candidates is denoted by mγγ. The
mγγ resolution is excellent, with >∼ 97% of signal events satisfying |mγγ−ma| < 2.5

GeV, regardless of the value of ma; this can be seen in Figure 6.2.

6.3.3 Jets

Jets are reconstructed from topological clusters [173] using the anti-kt algorithm [171]
implemented in the FastJet package [180] with a radius parameter of R = 0.4. Jets are
calibrated using an energy- and η-dependent calibration scheme, and are required to
have a transverse momentum (pT) greater than 20 GeV and |η| < 2.5 or pT > 30 GeV

and |η| < 4.4. The jets with |η| < 2.5 are referred to as central jets and those with
2.5 < |η| < 4.4 are referred to as forward jets. In this analysis both central and
forward jets are used, however the requirements on these two categories of jets differ
due to the treatment of pile-up jets in the central and forward region of the detector.
Central jets with pT < 60 GeV and |η|<2.4 are required to satisfy the Default Jet
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Figure 6.2: Distribution of mγγ. The quantities are plotted separately for signal
MC produced in the VBF and GGF modes. (a) The distribution for some of the
signal samples used in this analysis (each signal normalized to a branching ratio
BR(H→ aa→ γγjj) = 0.03). (b) Zoomed in distribution, for a signal with ma = 30
GeV.

Vertex Tagger selection [85]. Forward jets with pT < 50 GeV are required to pass the
Tight forward JVT cut [91]. Jets must have an angular separation of ∆R > 0.4 from
any Loose photon candidate in the event.

In the VBF production mode, the Higgs boson is produced in association with
two additional light-quark jets with a large opening angle and a large invariant mass.
Selected events are therefore required to have at least four jets.

6.3.4 Preselection

The preselection detailed in Sections 6.3.1, 6.3.2, and 6.3.3 is summarized in Table 6.2.
After the preselection, the expected dominant contribution to the background

consists of events with two real radiated photons and additional radiated jets (pho-
tons + jets), as well as events with multiple jets with one or two of those falsely
passing the photon identification requirements (fake photon + jets). Ultimately the
background estimation is entirely data-driven, but the remaining selections are in-
tended to enhance the signal presence while reducing the presence of this background
component.
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Table 6.2: Event preselection.

Selection

L1 trigger L1_2EM15VH

Primary HLT trigger HLT_g35_loose_g25_loose HLT_2g22_tight

Photon Selection
≥ 2 photons with ET > 30 GeV ≥ 2 photons with ET > 27 GeV

≥ 1 photon with ET > 40 GeV

Jet Selection ≥ 4 jets, central or forward

6.3.5 VBF Selection

The two additional light-quark jets that are produced in association with the Higgs
boson in the VBF production mode tend to have a large opening angle and therefore
a large combined invariant mass. The pair of jets with the highest invariant mass
(mVBF

jj , or VBF mjj) are referred to as VBF jets. The two remaining highest-pT jets
are referred to as signal jets, with invariant mass mjj. The jet assignment is designed
to choose the correct VBF and signal jets for VBF signal events. The truth parton
label (the truth ID of the highest pT parton in the jet) is used to study the accuracy
of this jet assignment in MC.

As seen in Figure 6.3, after the 4 jet preselection requirement, about 70% of VBF
signal events contain at least 2 gluon jets; also, about 70% of VBF signal events
contain at least 2 quark jets. This limits the possible accuracy of the jet assignment.

The best possible jet assignment would choose the two gluon jets with mass closest
to ma as the signal jets and two quark jets as the VBF jets, if such an assignment is
possible. Figure 6.4 shows the results of this assignment (which can only be done at
truth level) for a VBF signal sample with ma = 30 GeV.

In the mjj distribution there is a peak about ma with width about 0.4ma = 12

GeV. Only about 35% of the events have two gluons with an invariant mass within
this peak; this indicates that most of the time the two true signal gluons are either
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Figure 6.3: Jet multiplicity of (a) gluon and (b) quark jets in a VBF signal sample
with ma = 30 GeV.

not reconstructed or below the jet pT cut. This 12 GeV width also informs the choice
of a 0.4ma cut on |mjj −mγγ| in the ABCD regions definition (6.3.6).

Figure 6.5 shows the results of the jet assignment used in this analysis for a VBF
signal sample with ma = 30 GeV. About 20% of the events choose two gluons with
an invariant mass within 12 GeV of ma as the signal jets. About 55% of the events
choose two quarks correctly as the VBF jets.

Figure 6.6 examines the distribution of VBF mjj with the jet assignment used in
this analysis in a VBF signal sample withma = 30 GeV using truth information. The
distributions are compared among all events, events where both VBF jets are truth
identified as quarks, and events where at least one VBF jet is not truth identified as
a quark. It can be seen that the VBF mjj distribution is shifted upwards relative to
the case where the truth quarks are not correctly selected, but the case where the
truth quarks are always correctly selected is shifted to even higher values.

Figure 6.5 also shows the results of the jet assignment used in this analysis for a
gluon fusion signal sample with ma = 30 GeV and for a photons + jets background
MC sample. In the gluon fusion signal sample, about 20% of the events choose two
gluons with an invariant mass within 12 GeV of ma as the signal jets. In these events
the jets labeled the “VBF jets” in fact come from pile-up, underlying event, or initial
or final state radiation.
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Figure 6.4: (a) Truth parton label of jets chosen as signal jets in a VBF signal sample
with ma = 30 GeV; the jet assignment is to choose the two truth gluons with mass
closest to ma as the signal jets and the two highest pT truth quark jets as the VBF
jets, if such an assignment is possible (i.e., this assignment can only be done at truth
level). (b) The distribution of mjj for the signal jets.

The VBF Higgs boson signal is further enhanced, relative to the dominant γγ+multi-
jet background, by requiring mVBF

jj to be greater than 500 GeV and the pT of the
leading VBF jet to be greater than 60 GeV. The discrimination power of these ob-
servables can be seen in the difference in shape between the VBF signal and the data,
shown in Figure 6.7.

This selection is summarized in Table 6.3.

Table 6.3: VBF Selection.

Selection

VBF Mjj >500 GeV

VBF Leading Jet pT >60 GeV
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Figure 6.5: Truth parton label of jets chosen as (a) signal jets and (b) VBF jets in a
VBF signal sample with ma = 30 GeV; (c) signal jets and (d) VBF jets in a gluon
fusion signal sample with ma = 30 GeV; and (e) signal jets and (f) VBF jets in a
photons + jets background sample.
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Figure 6.6: Comparison of distribution of VBF mjj with the jet assignment used in
this analysis in a VBF signal sample with ma = 30 GeV. The comparison is between
the distribution for all events; the distribution for events where both jets identified
as VBF jets are truth labeled as quark jets; and the distribution for events where at
least one jet identified as as a VBF jet is not truth labeled as a quark jet.

6.3.6 Combined Signal Selection

As mentioned in 6.3.5, the two remaining highest-pT jets after the VBF jet assignment
are referred to as signal jets, with invariant massmjj. The distribution ofmjj is shown
in Figure 6.8; the resolution is quite broad, approximately 30% of the central value.
The tail of the mjj distribution comes from misidentifying the signal jets. In signal
events it is expected that mjj ∼ mγγ ∼ ma up to misidentifications of the signal jets
and resolution of the signal objects. Because of this, the difference |mjj − mγγ| is
expected to be smaller for signal events than for the background; the distribution of
this quantity is also shown in Figure 6.8. This quantity is therefore used to define a
signal-enhanced region for the data-driven background estimation (Section 6.4).

The two photon candidates and the two signal jets form the Higgs boson candidate
with invariant mass mγγjj. The requirement |mγγjj − mH| ≤ 25 GeV, with mH ∼

125 GeV the standard model Higgs mass [107], is imposed in order to select events
consistent with a Higgs boson decay and is designated the signal region. The region
|mγγjj −mH| > 25 GeV is designated the validation region and is used to validate
the background estimation detailed in Section 6.4. Figure 6.8 shows that most of the
selected signal events lie within the signal region, especially after the requirement of
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Figure 6.7: Distributions of kinematic observables before the requirements on mVBF
jj ,

leading VBF jet pT, mγγjj and |mjj−mγγ| for: (a)mVBF
jj ; and (b) leading VBF jet pT.

The quantities are shown separately for simulated signal events (with ma = 30 GeV)
produced in the VBF mode and compared with those produced in the ggF mode and
the observed data.

|mjj −mγγ| used to define the signal-enhanced region, while the data have a broad
distribution extending to higher values.

The distributions ofmjj, |mjj−mγγ|, and |mγγjj for other values ofma are included
in Appendix A.2 - the conclusions for these other values of ma are largely the same.

The definitions of the signal and validation regions are listed in Table 6.4.

Table 6.4: Signal and validation region definitions.

Region Cuts

Signal |mjjγγ −mH| ≤ 25 GeV
Validation |mjjγγ −mH| > 25 GeV

In order to take advantage of the very good mγγ resolution to suppress the back-
ground with mγγ far from the range of interest, five overlapping mγγ regimes are
defined as summarised in Table 6.5. The size of the mγγ window in each regime is 15
GeV, in order to fully cover two signal samples separated by 10 GeV in ma. Slightly
different window sizes are used for the lowest and highest mγγ regimes. Since the
efficiency of the trigger and preselections is very low on signal with ma < 20 GeV
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(as can be seen in Figure 6.9), the lowest mγγ regime starts at 17.5 GeV. Since the
maximum possible value of ma is mH

2
≈ 62.5 GeV, the highest mγγ regime is limited

to 65 GeV. For each mγγ regime, the set of ma values for which this requirement
causes no significant signal acceptance loss is also indicated.

The efficiency of the various analysis cuts in the signal can be seen in Figure 6.9.
The mass points with ma ≤ 10 GeV have little acceptance from the trigger selection.
The ma = 20 GeV mass point has almost an order of magnitude less overall efficiency
than the other samples with greater values of ma. The mass points with the highest
efficiencies are the ma = 30 GeV and ma = 40 GeV samples, with the ma = 50 GeV
and ma = 60 GeV samples having slightly worse efficiencies.
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Figure 6.8: Distributions of kinematic observables before the requirements on mVBF
jj ,

leading VBF jet pT, mγγjj and |mjj −mγγ| for: (a) mjj; (b) |mjj −mγγ|; (c) mγγjj;
and (d) mγγjj (with the additional requirement |mjj −mγγ| < 12 GeV that defines
the signal-enriched region). The quantities are shown separately for simulated signal
events (with ma = 30 GeV) produced in the VBF mode and compared with those
produced in the ggF mode and the observed data.
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Figure 6.9: Efficiency of analysis cuts up to and including indicated cut on signal MC,
for different mass points. The cut definitions are: Trig. - HLT trigger selection (Ta-
ble 6.2); Photon - Photon preselection (Table 6.2); Jet - Jet preselection (Table 6.2);
mγγ - The highest efficiency mγγ analysis regime cuts (Table 6.5); VBF - VBF cuts
(Table 6.3); Signal - Signal region cuts (Table 6.4); D - D region cuts (as defined in
6.4). The signal is separated by production modes into (a) VBF and (b) ggF.
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6.4 Background estimation

The γγ+multi-jet background consists of multi-jet events with two reconstructed
photon candidates, originating from isolated EM radiation or from jets. A data-driven
estimation based on two-dimensional sidebands is used to predict the background
yields. The method consists of using two uncorrelated observables to define four
regions labelled A, B, C and D.

The first axis of the A/B/C/D plane separates events in regions C and D with
both photons passing the Tight requirement from events in regions A and B with at
most one photon passing the Tight requirement and at least one passing the Loose but
not the Tight requirement. These regions are referred to respectively as Tight–Tight
(C and D) and Tight–Loose (A and B).

The second axis separates events in regions B and D, satisfying |mjj−mγγ| < xR,
from events in regions A and C, satisfying |mjj−mγγ| > xR. The value xR depends on
themγγ regime R to account for size of the resolution at higher mass (Appendix A.2).
As mentioned in Section 6.3.6, the difference |mjj − mγγ| tends to be smaller in
the signal than in the background. The signal events that lie outside of the range
|mjj−mγγ| < xR are due to poor mjj resolution or to incorrect assignment of the jets
corresponding to the gluons originating from the a boson decay. Specific xR values
are given in Table 6.5. In each mγγ regime, the boundary for |mjj−mγγ| is 0.4 times
the central mγγ value. An exception is made for the lowest mγγ regime, where xR is
larger in order to increase the signal efficiency.

The definitions of the A/B/C/D regions are shown in Table 6.6.
The distribution of events across |mjj−mγγ| (i.e., the second axis of the A/B/C/D

method), separated into Tight–Tight and Tight–Loose events (i.e., the first axis of
the A/B/C/D method) can be seen in Figure 6.10, for both the validation and signal
regions. It can be seen that in the validation region, where the data statistics are
higher and there is little signal contamination, the two variables corresponding to the
two axes are uncorrelated, prompting the background estimation strategy outlined
below (Equation 6.1). It can also be seen that the highest contribution of signal in
the signal region occurs in region D.
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Table 6.5: Definition of each mγγ regime, the range of ma values considered in the
scope of this search with no significant signal loss acceptance due to the mγγ require-
ment, and the corresponding boundary xR for |mjj −mγγ|.

mγγ regime Definition Range of ma values xR [GeV]

1 17.5 GeV < mγγ < 27.5 GeV 20 GeV ≤ ma ≤ 25 GeV 12
2 22.5 GeV < mγγ < 37.5 GeV 25 GeV ≤ ma ≤ 35 GeV 12
3 32.5 GeV < mγγ < 47.5 GeV 35 GeV ≤ ma ≤ 45 GeV 16
4 42.5 GeV < mγγ < 57.5 GeV 45 GeV ≤ ma ≤ 55 GeV 20
5 52.5 GeV < mγγ < 65.0 GeV 55 GeV ≤ ma ≤ 60 GeV 24

Table 6.6: The A/B/C/D regions. A different xR boundary is chosen for each analysis
regime, as detailed in Table 6.5.

Photon requirements
TightLoose TightTight

|m
jj
−
m
γ
γ
|

>
x

R A C

≤
x

R B D

The efficiency in each of the A/B/C/D regions for the gluon fusion and VBF
Higgs production modes in the signal region can be seen in Table 6.7. It can be seen
that in region D, ∼ 60% of the signal events are produced in the VBF mode and
the remaining ∼ 40% in the ggF mode - the ggF events are produced about 10× as
often as VBF events [337], and the VBF efficiency is about 20× higher than the ggF
efficiency. The efficiency of the event selection for the pp→ H→ aa→ γγgg signal
combining the two production modes in each of the A/B/C/D regions is shown in
Table 6.8, assuming the SM cross-section and kinematics for the different production
modes as described in [337].

Assuming the two observables used to define the A/B/C/D regions are indepen-
dent in the background distribution, the number of background events in the signal
region D (Nbkg

D ) is related to the number of background events in the control regions
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Table 6.7: Efficiency of analysis cuts for a sample of signal masses ma in each of the
ABCD regions. The analysis regime used is the one most efficient at that signal mass.
The uncertainties account for the total effect of the systematic sources of uncertainty.
(a) Simulated signal events produced in the gluon fusion mode. (b) Simulated signal
events produced in the vector boson fusion mode.

(a)

ma [GeV] A (×10−5) B (×10−5) C (×10−5) D (×10−5)
20 0.25+0.17−0.12 0.26+0.20−0.11 2.4± 0.4 2.4± 0.8
30 0.86± 0.24 1.39± 0.31 4.4+0.8−1.1 8.5± 2.0
40 0.67± 0.25 1.4± 0.5 3.8+0.9−1.3 10.3± 2.3
50 0.28± 0.14 1.6± 0.4 2.4± 0.6 9.0± 2.2
60 0.16+0.19−0.11 1.8± 0.4 1.8± 0.5 8.4± 2.2

(b)

ma [GeV] A (×10−5) B (×10−5) C (×10−5) D (×10−5)
20 4.1± 1.6 14± 5 27± 13 60± 17
30 6.9± 2.1 31± 9 55± 18 260+60−80

40 8.6± 3.4 30± 9 68+14−19 250± 60
50 10.1± 2.8 44± 14 42+18−10 230+60−70

60 9± 4 34± 11 50± 16 230± 60
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Figure 6.10: Distribution of data and signal MC with ma = 30 GeV, normalized to a
branching ratio BR(H → aa → γγjj) = 0.03, in each region of the ABCD method,
using analysis regime 2. (a) The validation region. (b) The signal region.

A, B and C, denoted by Nbkg
A , Nbkg

B and Nbkg
C , respectively, by the formula

Nbkg
D =

Nbkg
B Nbkg

C

Nbkg
A

. (6.1)

In the following, the difference between the prediction Nbkg
D and the actual back-

ground yield in region D is referred to as non-closure. The non-closure results from
residual correlations between the two observables used to define the A/B/C/D regions,
and the uncertainty accounting for this effect is referred to as closure uncertainty. In
order to quantify the non-closure, the data-driven estimation as described above is
performed in the validation region. For each mγγ regime, the closure uncertainty is
defined to be the central value of the non-closure if it is found to be significant (> 1σ)
in comparison with its statistical uncertainty; otherwise, the statistical uncertainty
of its estimate is used. The events in region D of the signal region were blinded while
the analysis selections were being optimized, and only unblinded after the entire anal-
ysis strategy was frozen. Figures 6.11 and 6.12 show the distribution of the data in
each of the mγγ analyses regimes, in the validation and signal regions, respectively,
with an expected signal that has high efficiency in that analysis regime. The ob-
served events in the signal D region are blinded to draw attention to the closure in
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Table 6.8: Efficiency of event selection on the pp → H → aa → γγgg signal,
assuming the SM Higgs boson production cross-section and kinematics, in each of
the A/B/C/D regions, for different ma mass hypotheses. For each ma value, all
mγγ regimes in which there is no significant signal acceptance loss due to the mγγ

requirement are shown.

ma [GeV] mγγ regime Efficiency (×10−5)
A B C D

20 1 0.50+0.16−0.14 1.2±0.4 3.9±1.1 6.2±1.8
25 1 0.67+0.27−0.33 2.6+0.5−0.6 5.8±1.4 15±4
25 2 0.67+0.27−0.33 2.6+0.5−0.6 5.8±1.4 15±4
30 2 1.22±0.34 3.3±0.9 7.6+1.4−1.6 25+5−6

35 2 1.8±1.1 2.7±1.2 9.3±2.6 27±6
35 3 0.53+1.20−0.24 4.1±1.2 6.1+1.2−1.6 31±7
40 3 1.2±0.4 3.3±1.0 7.9+1.7−2.4 26±6
45 3 2.5±1.0 4.1±1.3 7.7+1.7−2.0 19±5
45 4 2.2±0.9 4.4±1.4 5.9+1.5−2.2 22±5
50 4 0.93±0.30 4.4±1.2 5.0+1.3−1.0 24±5
55 4 0.37±0.11 3.3±0.9 5.4+1.3−1.4 21±5
55 5 0.23±0.16 3.6±1.0 3.4±0.8 24±6
60 5 0.77+0.32−0.30 3.9±1.0 4.9±1.4 23±6

the validation region and the difference between the predicted contribution from the
background closure and the signal contribution. The unblinded results can be found
in Section 6.6.

In the validation region closure can be observed, to within the statistical uncer-
tainties.
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Figure 6.11: Number of events in data and signal MC in each region of the ABCD
method, in the validation region. The analysis regimes are (a-e) 1-5. The data
prediction assumes closure (6.1) in the background in the absence of signal. The
signal is normalized to a branching ratio BR(H → aa → γγjj) = 0.03. The errors
shown are statistical.
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Figure 6.12: Number of events in data and signal MC in each region of the ABCD
method, in the signal region. The analysis regimes are (a-e) 1-5. The data predic-
tion assumes closure (6.1) in the background in the absence of signal. The signal is
normalized to a branching ratio BR(H→ aa→ γγjj) = 0.03. The errors shown are
statistical. The observed events in the signal D region are blinded to draw attention
to the closure in the validation region and the difference between the expected and
the signal contribution.
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6.5 Statistical Analysis

The statistical analysis is performed using an ABCD likelihood method which takes
into account the likelihood of the data in each of the ABCD regions. This method
is useful for dealing with situations in which the contamination of the signal in the
control regions is non-trivial or the number of events in one of the control regions is
small.

The likelihood function is defined as a product of Poisson likelihood functions over
each of the ABCD regions:

L(µS, µ, τB, τC|NA, NB, NC, ND) =
(µS + µ)

NDe−(µS+µ)

ND!

× (bµS + τBµ)
NBe−(bµS+τBµ)

NB!

× (cµS + τCµ)
NCe−(cµS+τCµ)

NC!

× (aµS + τBτCµ)
NAe−(aµS+τBτCµ)

NA!
(6.2)

The parameters are defined as follows. µS and µ are the expected number of signal
and background events, respectively, in the D region. τB and τC are the expected
contamination of the background in the B and C regions respectively, so that the
expected number of background events are τBµ and τCµ, respectively. Closure in
the signal region is assumed, so that the expected number of background events
in region A is τBτCµ (i.e., the assumption of closure allows the background to be
parameterized in terms of only 3 variables across the A/B/C/D regions). a,b, and c
are the expected (from Monte Carlo) contamination of the signal in the A, B, and C
regions respectively, so that the expected number of signal events are aµS, bµS, and
cµS, respectively (Table 6.8). Finally, NA, NB, NC, and ND are the number of data
observed in each of the A, B, C, and D regions, respectively.

The statistical uncertainty on the closure in the validation region is assessed as a
systematic uncertainty on the background prediction in the signal region. In case the
non-closure is larger than a 1-σ statistical fluctuation, the size of the non-closure is



CHAPTER 6. A BSM HIGGS DECAY 127

applied as a systematic on the background prediction.4 This information is summa-
rized in Table 6.9. The closure uncertainty, is included in the likelihood function by
applying a Gaussian prior to the expected number of background events in region A.
Note that this uncertainty is statistical in nature.

Table 6.9: Closure in each mγγ analysis regime.

Regime Closure Background uncertainty syst.

1 1.11±0.50 0.50
2 1.17±0.32 0.32
3 0.93±0.20 0.20
4 1.26±0.21 0.26
5 1.28±0.20 0.28

The low number of observed events is the dominant source of uncertainty for
this search. The second largest uncertainty is due to the closure uncertainty, also
statistical in nature.

Other sources of systematic uncertainty only affect the overall signal normalisa-
tion and the amount of signal contamination in control regions A, B and C. Dominant
sources of experimental systematic uncertainty arise from the calibration and reso-
lution of the energy of the jets [80, 342]. Uncertainties associated with the photon
energy calibration and resolution [286], as well as the photon identification and iso-
lation efficiencies [283], are found to be negligible. Uncertainties associated with the
estimation of the integrated luminosity and the simulation of pile-up interactions
(Lumi and Pile-up) are found to be negligible. The systematic uncertainty associ-
ated with the modelling of the kinematics in signal events (Modelling) is evaluated
by varying the choice of scales used in the generator program and assuming the SM
Higgs boson production [343]. It is found to be similar in size to the experimental
systematic uncertainty. The effect of these uncertainties on the best fit signal strength
are included in Table 6.11.

4Note that the distribution of the non-closures in the validation region are consistent with that
expected due to Poisson fluctuations; this larger uncertainty is applied conservatively.
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Nuisance parameters corresponding to each source of uncertainty are included in
the profile likelihood as Gaussian constraints.

The likelihood is maximized over all possible values of µS, µ, τB, and τC using the
MINUIT migrad algorithm [344], marginalizing over the nuisance parameters. Then
the maximum likelihood (MLE) value of µ̂ = BR(H → aa → ggγγ) is obtained by
appropriately normalizing the signal Monte Carlo efficiency to the expected number
of Higgs events in the data sample based on the total integrated luminosity.

The 95% confidence limit on µ̂ is obtained using the asymptotic limit of the CLs
method [345,346].

6.6 Results

The observed number of events in each of the A/B/C/D regions for each mγγ regime
is shown in Table 6.10 along with the predicted background in the signal region D,
taking into account the closure uncertainty. This information is also presented in
Figure 6.13.

Due to the low event counts in each of the A/B/C/D regions, the median ex-
pected background yield in region D estimated from pseudo-data experiments involv-
ing asymmetric Poisson uncertainties in the different regions slightly differs from the
direct estimation from Equation (6.1). The prior distribution of the number of events
observed in the signal D region is shown in Figure 6.14.

No large excess is observed in region D when comparing the data yield to the
background predicted from the A/B/C regions assuming that the signal is absent in
these regions.

In order to set limits, the likelihood function (Equation 6.2) is used to fit to all
four A/B/C/D regions simultaneously.

The parameter µS can be expressed as the product of the total integrated lumi-
nosity, the signal cross-section σH × B(H → aa → γγgg), and the signal selection
efficiency estimated in MC simulation and quoted in Table 6.8.

The effects of the uncertainties (Section 6.5) on the estimated number of signal
events µS are studied using Asimov [346] pseudo-datasets generated for an expected
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Figure 6.13: The observed number of events in each of the signal ABCD regions, as
well as the predicted number of events in the D region under the background-only
hypothesis. The error bars shown are purely statistical uncertainties (including the
closure uncertainty). (a) Analysis regime 1. (b) Analysis regime 2. (c) Analysis
regime 3. (d) Analysis regime 4. (e) Analysis regime 5.
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Figure 6.14: The blinded prior distribution of possible number of events in the signal
D region, taking into account the Poisson uncertainty on the control regions A, B,
and C. The distribution was generated with toys. In green, the percentiles in the
distribution corresponding to the [-2,-1,0,+1,+2]σ points of a Normal distribution. In
red, the predicted (dashed) and observed after unblinding (solid) number of events.
(a) Analysis regime 1. (b) Analysis regime 2. (c) Analysis regime 3. (d) Analysis
regime 4. (e) Analysis regime 5.
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Table 6.10: Number of events observed in each of the A/B/C/D regions, the relative
size of the closure uncertainty considered for each mγγ regime, and the prediction
for the number of background events in region D based on the control region yields.
The median predicted background yield and its ±1σ uncertainty in region D is also
shown. The uncertainties in the prediction account for both the Poisson fluctuations
of the number of events in the control regions and the closure uncertainty.

mγγ regime A B C D Relative closure uncert. Predicted background yield

1 15 4 28 4 0.50 6+7−4

2 22 6 34 15 0.32 8+7−4

3 12 16 29 26 0.20 37+23−14

4 8 12 19 38 0.21 27+22−12

5 6 20 20 36 0.20 66+56−28

signal corresponding to the 95% CL upper limit obtained in this search (Table 6.13)
and using the values of the background parameters maximising the likelihood in a fit
to data which assumes no signal. Table 6.11 summarises the impact of each source
of uncertainty varied by ±1σ on the maximum-likelihood estimate for µS in each of
the mγγ regimes for an illustrative ma hypothesis. The statistical uncertainty is the
largest one for all regimes.

The best-fit values of the parameters of the likelihood function are given in Ta-
ble 6.12. The probability that the data are compatible with the background-only
hypothesis is computed for each mγγ regime and no significant excess is observed.
The smallest local p-value, obtained for the mγγ regime 2 (ma ≈ 30 GeV), is approx-
imately 4%. Since no significant excess is observed, an upper limit is derived at 95%
CL. The expected and observed exclusion limits on µS are given in Table 6.13. This
is related to the limit on the pp → H → aa → γγgg cross-section by appropriately
normalising to the measured total integrated luminosity and selection efficiencies rel-
ative to the inclusive signal production obtained from the ggF and VBF MC samples
(Table 6.8). The limit is also expressed relative to the SM cross-section for the Higgs
boson, shown in Figure 6.15. Within a mγγ analysis regime, limits are interpolated
linearly in between simulatedma values. Finally, for each mass point, themγγ regime
that yields the best expected limit is used to provide the observed exclusion limit.
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Table 6.11: Maximum fractional impact on the fitted µS from sources of systematic
uncertainty estimated using Asimov datasets. The signal injected in the Asimov
datasets corresponds to the observed upper limit quoted in Table 6.13.

mγγ regime (ma)
Source of Uncert. 1 (20 GeV) 2 (30 GeV) 3 (40 GeV) 4 (50 GeV) 5 (60 GeV)

Statistical 0.73 0.51 0.89 1.13 0.92
Closure 0.44 0.27 0.39 0.64 0.89

Modelling 0.35 0.34 0.46 0.42 0.65
Jet 0.58 0.38 0.25 0.90 0.71

Photon 0.06 0.05 0.10 0.12 0.13
Lumi and Pile-up 0.06 0.04 0.27 0.14 0.32

Table 6.12: Maximum-likelihood fit values for each of the free parameters of the
likelihood function in each mγγ regime for a relevant signal ma hypothesis. The
estimated uncertainties in the fit parameters assume that the likelihood function is
parabolic around the minimum of the fit.

mγγ regime ma [GeV] µS µbkg τB τC

1 20 -7±18 11±17 0.5±0.4 2.9±3.1
2 30 8±8 7±6 0.68±0.32 4.3±3.1
3 40 -30±80 60±70 0.35±0.19 0.67±0.33
4 50 22±28 16±23 0.5±0.4 0.9±1.0
5 60 -290±260 340±340 0.21±0.05 0.24±0.05

The limit is calculated using a frequentist CLs calculation [345].
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Table 6.13: Observed (expected) upper limits at the 95% CL, for each of the ma

values considered in the search. In each case, the mγγ regime used to calculate the
limits is also indicated. The uncertainties include both the statistical and systematic
sources of uncertainty in the fit. B = B(H→ aa→ γγgg) is defined as the branching
ratio to the signal being targeted in this search.

mγγ regime ma [GeV] µS σH × B [pb] σH

σSM
× B

1 20 10.8
(
10.4+4.6−3.1

)
4.8
(
4.6+2.1−1.4

)
0.086

(
0.082+0.037−0.025

)

1 25 10.4
(
10.9+3.8−2.5

)
1.9
(
2.0+0.7−0.5

)
0.034

(
0.036+0.013−0.008

)

2 25 28
(
25+8−6

)
5.1
(
4.7+1.4−1.1

)
0.092

(
0.084+0.026−0.019

)

2 30 29
(
24+11−6

)
3.1
(
2.6+1.1−0.7

)
0.056

(
0.046+0.021−0.012

)

2 35 27
(
22+9−6

)
2.7
(
2.2+0.9−0.6

)
0.049

(
0.040+0.016−0.011

)

3 35 30
(
36+18−9

)
2.7
(
3.2+1.6−0.8

)
0.048

(
0.057+0.028−0.014

)

3 40 31
(
39+19−12

)
3.2
(
4.0+2.0−1.2

)
0.058

(
0.073+0.035−0.022

)

3 45 45
(
53+15−20

)
6.3
(
7.5+2.1−2.8

)
0.113

(
0.134+0.038−0.050

)

4 45 74
(
68+16−15

)
9.2
(
8.4+2.0−1.9

)
0.166

(
0.152+0.036−0.034

)

4 50 79
(
77+17−16

)
9.0
(
8.8+2.0−1.8

)
0.162

(
0.159+0.036−0.032

)

4 55 73
(
69+11−10

)
9.7
(
9.1+1.5−1.2

)
0.173

(
0.163+0.026−0.022

)

5 55 48
(
59+41−19

)
5.5
(
6.8+4.7−2.1

)
0.10

(
0.12+0.08−0.04

)

5 60 67
(
81+24−31

)
8.0
(
9.5+2.8−3.6

)
0.14

(
0.17+0.05−0.07

)
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Figure 6.15: The observed (solid line) and expected (dashed line) 95% CL exclusion
upper limit on the pp→ H→ aa→ γγgg cross-section times branching ratio as a
function of ma, normalised to the SM inclusive pp → H cross-section [337]. The
vertical lines indicate the boundaries between the different mγγ analysis regimes. At
the boundaries, the mγγ regime that yields the best expected limit is used to provide
the observed exclusion limit (filled circles); the observed limit provided by the regime
that yields the worse limit is also indicated (empty circles).
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6.7 Discussion

This analysis can be combined with the Run 1 search for H→ 2a→ 4γ [335] to place
a limit on the overall BR(H→ aa). Figure 6.16 shows a quantitative comparison of
the two analyses.

The two analyses have different sensitivities in different parts of the phase space,
parameterized by ρ = BR(a → γγ)/BR(a → jj). The analysis presented in this
Chapter is more sensitive for lower values of ρ, closer to SM-like couplings with
photons and gluons; a typical value of ρ in a 2HDM model as discussed in [55] is
shown for reference. The H → 2a → 4γ search is more sensitive if there is a large
BR to photons.

Both of these analyses are limited by statistics, therefore these bounds will improve
with more data.

This search is notably limited to ma ≥ 20 GeV; the ATLAS Run 1 search for
H → aa → 4γ [335] similarly sets limits only for ma ≥ 10 GeV. As mentioned in
Section 6.3.1 and Section 6.3.2, these lower bounds are due to the limitations set by
using the diphoton trigger and the diphoton selection. For low ma, the a particle
is boosted and the decay products are collimated - this ruins the efficiency of the
diphoton selection, both because of the way photon objects are constructed in the
calorimeter at trigger level and because isolation is imposed on the photons in the
offline object reconstruction. This inefficiency is discussed in detail in Appendix B.
Thus, new techniques will be required to set limits on lower masses.

Reference [347] demonstrates a search for X → aa → 4γ with X a high-mass
scalar particle with mass between 200 and 2000 GeV (notably missing the Higgs
mass mH ∼ 125 GeV) and a with mass between 100 MeV and up to between 2 and
10 GeV, depending on the X mass. There is a similar search [348] from Run 1 that
sets limits for X with a mass between 110 and 150 GeV and ma between 100 and
400 MeV. These searches are accomplished by taking advantage of the fact that in
these regimes, the a is highly boosted, so that the photon decay products end up
collimated in a single photon-like energy cluster and the trigger identities these as a
single isolated photon. Substructure of this photon-like energy cluster is used offline
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Figure 6.16: The exclusion limit placed on BR(H → aa) as a function of BR(a →
γγ)/BR(a→ jj), and comparing the ATLAS 4γ analysis to this analysis. Also shown
is a typical value for BR(a→ γγ)/BR(a→ jj) in the NMSSM. (a) ma =20 GeV. (b)
ma =30 GeV. (c) ma =40 GeV. (d) ma =50 GeV. (e) ma =60 GeV.
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to enhance the signal presence.
Appendix B proposes an already existing trigger and offline selection strategy

that can be sensitive to H → aa → ggγγ with ma < 20 GeV, and could enable a
search for these low masses. Though not necessary to enable this search, the weak
supervision analysis techniques used in Chapter 7 could be used to search for these
signals while retaining limited dependence on the background simulation.

This search also presents many interesting areas of research in order to improve
the sensitivity of the analysis for the resolved mass range ma ≥ 20 GeV. The event
selection (Section 6.3.3) requires four jets, and this analysis is enabled by the use
of these jets, in keeping with the overall theme of this Thesis. The main challenges
present in the analysis include the correct identification of the VBF and signal jets;
the VBF selection including the VBF mjj selection and the leading VBF jet pT; the
resolution of the signal jet mjj, which directly affects the resolution of |mjj −mγγ|;
and the final resolution of the signal mjjγγ.

The identification of the VBF and signal jets could be aided by using techniques
intended to discriminate between jets initiated by quarks and those initiated by glu-
ons [87–90].

Each of the remaining challenges would be better tackled by improving the energy
and pT resolution of the jets involved, since the invariant mass is a simple function
of the individual jet energies and the angle between them5. When reconstructing the
true energy of a jet, both the effects of the energy response of the calorimeter and
the effect of other proton-proton interactions in the event (pile-up) must be taken
into account. Chapter 8 presents work on studying in a rigorous framework the
mathematical process of reversing the effects of the calorimeter response in order to
access the originating parton energy [349]; and Chapter 9 presents work on using
machine learning to further improve this process [350]. The Author has also worked
on novel jet reconstruction algorithms which aim to reduce the effect of pile-up on
the jet reconstructed energy [187]. By better reconstructing the energies of the jets
that appear in the final state of this analysis, these efforts can improve the ultimate

5Actually, this would help with all the challenges mentioned, since the VBF selection also relies
on the resolution of the VBF mjj.
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sensitivity of this search, in addition to being broadly applicable to other analyses
than the one being studied here.

6.8 Conclusion

In summary, a search for exotic decays of the Higgs boson into a pair of new (pseudo)scalar
particles, H → aa, in final states with two photons and two jets is conducted us-
ing 36.7 fb−1 of pp collisions at

√
s = 13 TeV recorded with the ATLAS detec-

tor at the LHC. The search for H → aa → γγgg is performed in the mass range
20 < ma < 60 GeV and with additional jet requirements to enhance VBF-produced
signal while suppressing the γγ+jets background. No significant excess of data is
observed relative to the SM predictions. An upper limit is set for the product of
the production cross-section for pp → H and the branching ratio for the decay
H → aa → γγgg. The upper limit ranges from 3.1 pb to 9.0 pb depending on
ma, and is mostly driven by the statistical uncertainties. These results complement
the previous upper limit on H → aa → γγγγ and further constrains the BSM pa-
rameter space for exotic decays of the Higgs boson.

This search can be extended to the low-mass regime using novel techniques (Ap-
pendix B). In particular, the weak supervision analysis techniques used in Chapter 7
could be used to target this low-mass regime. The sensitivity of the search presented
here, and the extension to the low-mass regime, can be improved utilizing the novel
technique for jet calibrations proposed in Chapter 9, which builds upon the deep
understanding of calibrations provided in Chapter 8.



Chapter 7

A Generic Data-Driven Resonance

Search with Weak Supervision

This Chapter presents a search for dijet resonances enabled by new techniques with
weak supervision. The results of this search are published in [351]. The search does
not rely on a specific signal model hypothesis and is sensitive to generic final states
of the form A→ BC, where all of A,B,C are massive and may be beyond the Stan-
dard Model, with mA ∼ O(TeV) and mB,mC ∼ O(100 GeV). The B and C particles
are each reconstructed as single large-R jets and the A particle is reconstructed as a
resonance in the dijet invariant mass spectrum. The search uses a novel technique
in weak supervision called classification without labels (CWoLa) to tag events with
jets corresponding to possible signals with a neural network trained entirely in data.
As the first demonstration of this technique, the neural network uses a reduced set
of features of just the masses of the two jets to tag potential signals. As the neu-
ral network learns what to tag directly from data, this technique allows for avoiding
the large trials factor associated with searching in the 3-dimensional feature space of
{mA,mB,mC}. The search uses the full Run 2

√
s = 13 TeV pp collisions dataset

of 139fb−1 gathered by the ATLAS detector at the LHC. Background-only p-values
for the dijet invariant mass between 1.8 and 8.2 TeV are reported on and no signif-
icant evidence for a localized excess is found. In addition, new limits are set on the
cross section of a variety of specific signal models with narrow-width B,C decaying

139
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hadronically, with the limits ranging from 1-10 fb. These new limits correspond to
improvements of up to 10 times existing limits from the inclusive dijet search at high
mB,mC where the inclusive dijet search is less sensitive due to that search’s use of
small radius jets; limits at lower values of mB,mC where the inclusive dijet search is
fully sensitive are improved by factors of up to 4.

7.1 Introduction

One of the simplest searches that can be done at any particle collider is to look
for events in which two distinct objects are formed in the detector and search for
excesses in the invariant mass spectrum formed by combining these two objects. In
ATLAS the generic object formed in the detector is a jet (Chapter 3); almost all light
standard model (SM) particles other than muons and neutrinos are reconstructed as
jets in ATLAS, and more massive particles like the top quark, the vector bosons,
and the Higgs boson have dominant or significant hadronic decays which are in turn
reconstructed as jets, especially when boosted as is expected when decaying from a
more massive resonant particle. ATLAS has an extensive history of searches for for
these inclusive dijet resonances, including searches at

√
s = 7 [352–354],

√
s = 8 [355],

and
√
s = 13 TeV [19, 267, 356, 357]. These searches are generically sensitive to

beyond the SM (BSM) resonant decays to hadronic, electromagnetic, or electroweak
objects reconstructed as jets in the detector, and therefore are one of the first searches
performed when a collider reaches a new center-of-mass energy.

Dedicated searches for specific final states will always be more sensitive than
the generic inclusive search, and ATLAS has an extensive program searching for
di-τ [358, 359], di-b quark resonances [360, 361], di-top quark resonances [362], bt
resonances [363], di-W/Z boson resonances [20, 364–367], VH resonances [368–370],
di-Higgs resonances [371], and many more. These dedicated searches tag events based
on the structure of the underlying jets in order to enhance the presence of the specific
signal being searched for relative to the overwhelming background from events cor-
responding to SM QCD interactions. There are also complementary searches for the
direct production of BSM particles decaying into SM particles and reconstructed as
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a single large-R jet [267, 372, 373] using initial state radiation to boost the potential
new particles. Searches for any combination of SM particles can be well-motivated by
one or more standard (BSM) theory frameworks [374, 375], but not all combinations
are currently covered by dedicated searches.

In addition, nearly all dijet resonance searches focus on decays to SM particles.
Notable exceptions include the XH search [368,376], where the X is a Z-prime orH-like
particle with unknown mass and the displaced jet search [377]. Of particular relevance
to this Thesis is the photon-jet search [347] (X → aa, a → photons), with the a
particles boosted and reconstructed as single small-R jets; this search is sensitive to
exactly the same class of models being targeted by the search presented in Chapter 6,
and though that search does not exactly fall under the realm of dijet searches (since
the decays of the a particles in that search are resolved into two separate small-R jets,
and the X is constrained to be the Higgs boson), future iterations of that analysis
will have exactly the dijet resonance topology (Appendix B.1). There is currently no
search for A→ BC, where all of A,B,C can be BSM particles with possibly different
masses.

This motivates the pursuit of a search which can be generically sensitive to these
dijet topologies by tagging on the structure of the underlying jets which is complemen-
tary to these targeted efforts. A meta-search consisting of an ensemble of dedicated
searches for each possible signal model would suffer from a very large trials factor due
to the large space of possibilities. The trials factor accounts for the effect that since
the probability of observing a large deviation from the background-only hypothesis
increases with the number of orthogonal searches, a proportionally larger deviation is
required from any one search in order to claim a new discovery - accounting for this
effect (which is necessary) therefore makes the sensitivity of any one included search
worse.

A novel analysis technique is proposed in [17, 18] based on weak supervision ap-
proaches called classification without labels (CWoLa) first introduced in [1] that can
be sensitive to many particular topologies all at once without paying a large trials
factor. The new technique trains a classifier directly on data, using features of the
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jets within events, to distinguish between events at different values of the dijet in-
variant mass mJJ which should be indistinguishable, if not for the presence of a signal
resonant at one particular value of mJJ. Since the classifier is trained directly on
data, no specific signal model hypothesis is required, and the analysis is sensitive to
a wide variety of new signal models. In addition, since the classifier is trained and
tested on statistically independent datasets, there is no trials factor associated with
scanning the feature space of the jets. This intuition is explored in detail and verified
in Appendix C.1. The details of this technique and the application to this specific
search are presented in later Sections.

This Chapter presents a search for a generic A→ BC resonance where the B and
C particles are each reconstructed as single massive large-R jets, and the A particle
is reconstructed as a resonance in the dijet invariant mass spectrum, but other than
that the properties of A,B,C are not specified, and in particular may or may not
be BSM. Events collected by the ATLAS detector using the full Run 2

√
s = 13

TeV pp collision dataset are used for the search, corresponding to 139fb−1 of data.
The CWoLa technique is used by training a neural network to act as the classifier
of potential signal. Though the original proposal for this kind of analysis [18] uses
a broad class of features related to the substructure of the jet, this analysis uses a
reduced feature space of just the masses {m1,m2} of the two jets. As this is the first
search of its kind, this reduction is intended to simplify the analysis and understand
fully all the various effects. This simplification also allows for the setting of limits on
specific signal models, since any limit setting requires the use of simulations of signal
models, and the large-R jet mass is well-constrained and the uncertainties are well-
understood [82] (a similar statement cannot be made about the general substructure
of large-R jets). This search is therefore essentially a search in the 3-dimensional
space of {mA,mB,mC}, without paying the large trials factor associated with the scan
in {mB,mC}.

The results of this search are compared to the results from the ATLAS inclusive
dijet search [19], which as mentioned above is also generically sensitive to decays of
the form A → jets, but is not specifically sensitive to massive decay products of the
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A 1. Also relevant are the results from the ATLAS all-hadronic diboson resonance
search [20], which targets signal models of the form A → WW/WZ/ZZ and is thus
sensitive to signals withmB ∼ mC ∼ mW/Z

2 , but has no sensitivity outside that range.
There are also searches for direct production of B,C [267, 372, 373] when these are
produced in association with photons or jets and their decay products are therefore
collimated into a single large-R jet as in this analysis. However, those limits are orders
of magnitude weaker than the ones studied here. This analysis does not present the
limits on an exhaustive set of signal models, but rather shows the limits on a few
specific models in order to demonstrate the sensitivity of the method. For some of
these signal models the limits are improved by considerable factors, up to 10 times
the existing limits at high mB,mC; for other signals, especially at low mB,mC, the
technique sets about the same, worse, or no limits at all.

This Chapter is organized as follows. First, Section 7.2 introduces the data and
simulated event samples. Section 7.3 gives a broad overview of the analysis, including
the validation and blinding approach, and Section 7.4 goes over the steps of the
analysis in detail. Section 7.5 demonstrates the full analysis pipeline using dijet
Monte Carlo events to simulate the expected data. Section 7.6 demonstrates the full
analysis pipeline using validation data with an inverted delta rapidity cut as a proxy
for the expected data in the non-inverted signal region. The results of the unblinded
analysis are presented in Section 7.7. Finally, some aspects of the analysis, including
the future outlook, are discussed in Section 7.8 and the conclusions are provided in
Section 7.9.

1In fact, the incusive dijet search uses small-R jets, so that the decay products of the B and C
are not necessarily entirely contained within the jet. Because of this, as mB and mC get larger for
fixed mA, the limits from the incusive dijet search get worse.

2In fact this analysis is expected to be considerably more sensitive to these signals, since the
substructure of the jets is used in addition to the masses in order to tag the W and Z particles.
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7.2 Event Samples

7.2.1 Data

This analysis is performed using data from pp collisions provided from the Large
Hadron Collider with

√
s = 13 TeV between 2015-2018, and collected with the ATLAS

detector. The total integrated luminosity of this dataset is 139 fb−1.
Data are collected using the lowest available unprescaled single large-radius jet

trigger, which varies depending on the period during Run 2. In all years, the Level
1 trigger require a Level 1 jet with pT > 100 GeV (L1_J100). In 2015 and 2016 the
triggers in the high-level trigger fire on the untrimmed jet pT; in 2015 the requirement
was 360 GeV (HLT_j360_a10_lcw_sub_L1J100), and in 2016 this requirement was
raised to 420 GeV (HLT_j420_a10_lcw_L1J100). From 2017 onward, the triggers in
the high-level trigger use the trimmed jet pT and apply a jet energy scale calibration,
and the requirement on this pT was 460 GeV (HLT_j460_a10t_lcw_jes_L1J100).

7.2.2 Simulation

As will be described in Section 7.3, this analysis is completely data-driven, both for
training and testing. However, simulations of the expected background are used to
validate the procedure and simulations of signals are used for setting model-dependent
limits. Samples of Monte Carlo (MC) simulated dijet and multijet events are used to
emulate the SM (Section 5.3). As the jet cross-section is orders of magnitude larger
than electroweak processes, the consideration of these samples is sufficient to describe
the data and all other processes are ignored.

Pythia v8.2 [244, 378] is used as the nominal MC generator for this analysis.
Samples of 2 → 2 dijet events are simulated using the A14 tune [251] and NNPDF
2.3 [379] parton distribution function (PDF) set. The after-burner generator Evt-
Gen [253] is used to model decays of heavy flavor hadrons. In order to fully populate
a wide range of jet pT, these samples are generated in slices of the particle-level
R = 0.6 jet pT.

Signal samples are generated using Pythia v8.2 and the process W ′ → WZ,
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where the W and Z masses are altered, and their widths are set to 0.1 GeV. These
altered bosons are required to decay hadronically, except that top quark decays are
switched off. As the parameter space of this simplified model is three-dimensional,
we consider only a subset of all possibilities in order to demonstrate the method on
some example signal models. The samples shown for the rest of this Chapter use
mZ ′ ∈ {3, 5} TeV and {mW,mZ} ∈ {80, 200, 400} GeV.

All simulation is reconstructed using a full detector simulation and superimpose
simulated minimum-bias interactions to represent multiple pp interactions during the
same or nearby bunch crossings (pile-up). The distribution of the average number of
pile-up interactions in simulation is re-weighted during data analysis to match that
observed in the Run 2 data.

7.3 Analysis Overview

7.3.1 Background: CWoLa and CWoLa Hunting

In a typical search for BSM at the LHC, some particular signal model is designated
and an event selection is optimized to target this signal relative to the expected back-
ground using signal simulation and some proxy for the background (either simulation-
or data-based). This is for example the strategy pursued in the search presented in
Chapter 6, in which the event selection was chosen roughly manually to optimize the
signal to background discrimination power. This strategy is also employed for exam-
ple by the all-hadronic diboson resonance search [20], where dedicatedW/Z hadronic
jet taggers are trained as somewhat of a black box on simulation; the tagger is then
calibrated in data, using a high-fidelity sample ofW/Z jets (e.g. from tt̄ events where
one of the daughter W particles decays leptonically) to compare and correct the dif-
ference in estimated efficiency on W/Z jets in simulation and in data. This method
of tagging signal can be broadly classified as “supervised learning”, since the tagger
is told what is signal and what is background at time of training.

There are two major drawbacks related to training a classifier in simulation and
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using it in data. First, the simulation of the signal may not itself be entirely ac-
curate, leading to a suboptimal selection even on the specific signal model in data.
Data/simulation calibrations can remove bias in the tagger, in the sense that the
efficiency on signal events estimated in simulation can be corrected to the efficiency
estimated in data, but they do not in general remove this suboptimality3. Second,
the trained tagger will only be sensitive to the specific signal model used for training,
limiting sensitivity to other similar signals but with different values of the features
used in training. There is therefore a motivation to train a classifier directly on data
to tag whatever signals that may be found there.

There is of course the obvious issue that in data there are no labels on individual
events telling the tagger whether the event comes from a signal or background process.
However, a series of techniques using “weakly supervised learning” have been devel-
oped for high energy physics, which allow for learning even when these per-instance
labels are not present [1, 380–382]. The basic idea for this method is shown in Fig-
ure 7.1. The setup of CWoLa is that there are two samples, each of which has a mixed
composition of signal and background events. Crucially, the fraction of signal and
background events between the two samples must be different; and while of course the
signal and background events must differ from each other in the distributions of some
features, the signal events and background events cannot differ among themselves
between the two samples 4. The insight of the CWoLa method is that a classifier
can be trained to distinguish between the two mixed samples using any supervised
learning technique. The resulting classifier learns to distinguish between the signal
and background events. The main result of [1] is that it can be proved that this

3E.g., consider a case where a W jet tagger is being trained in simulation using the jet mass
as a feature. Suppose further that the W jet mass is centered at 80 GeV in simulation but at 70
GeV in data (of course the jet mass is itself calibrated between data and simulation so this would
not be the case, but the dedicated W/Z taggers do use certain features which are not themselves
calibrated, and the jet mass is used as a simple tangible example feature to demonstrate the point).
Then the tagger trained in simulation might derive an optimal selection centered around 80 GeV.
When calibrating, the efficiency measured in simulation would be corrected to the actual efficiency
in data on W jets with that selection, but the simulation-trained tagger would never find the true
optimal selection, which would be centered around 70 GeV.

4 Or rather, if there are differences between background events in Mixed Sample 1 and background
events in Mixed Sample 2, those differences must be smaller than the difference in signal fraction
between the two samples times the difference between signal and background.
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Figure 7.1: Schematic of basic idea behind classification without labels (CWoLa).
There are two samples, each of which has a mixed but different composition of signal
and background events. A supervised classifier is trained to distinguish between the
two mixed samples. This same classifier is then used to distinguish between signal
and background events. Figure sourced from [1].

procedure produces an optimal classifier for distinguishing signal from background in
the asymptotic limit (enough data, flexible enough training model, etc.). The proof
is straightforward and is provided in Appendix C.2.

It is worth noting the properties and limitations of this method. First, the features
used to distinguish between signal and background events cannot or can only be
very bad at distinguishing between background events in Mixed Sample 1 and Mixed
Sample 2 (and similarly for signal events, though typically the signal presence is
very small in one sample and basically zero in the other, so this is not as much of
a concern). Second, the key insight is that it is okay if there is some signal in both
mixed samples; however, learning is easiest when the fraction of signal between the
two mixed samples differs the most.

Because the classifier is trained directly on data, it avoids the first major drawback
of supervised learning mentioned above, since there is no possible simulation-data
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difference, either in the signal events or in the background events.
As mentioned above, the second major limitation of supervised learning is that

the trained classifier is only sensitive to one particular signal model, preventing the
application to a generic search like the one being discussed here. The idea of “CWoLa
hunting” [17, 18] is to use the CWoLa method to search for BSM physics without a
particular signal model in mind, enabling a generic search for new physics. In fact,
the method learns to tag whatever signal is present in the data, allowing the search
to be generically sensitive to new signals that have different distributions of whatever
features are used than the background.

The setup CWoLa hunting is shown schematically in Figure 7.2. There is some
feature mres for which the background has a smoothly falling spectrum, while the
signal is narrowly peaked (resonant) in that feature. Two mixed samples are formed:
one with values ofmres centered near the potential new resonance and one using events
in neighboring regions of mres. A neural network is trained to distinguish between
these two mixed samples based on some other features, resulting in an overall score
y. The first mixed sample clearly has a higher signal fraction than the second; and
because the two mixed samples come from nearby regions of mres, the difference in
distributions of features in the background between the two mixed samples can be
smaller than the fraction of signal times the difference in distributions between the
signal and background. Therefore, because of the principles of CWoLa, the scores
from the resulting network y can distinguish between signal and background events.
In the case that in fact there was no signal in the first mixed sample, the tagger will
either learn to tag randomly or learn to tag based on the minute differences in the
background between the samples. In either case, after tagging based on the output y,
the combined spectrum ofmres can be fit with a smooth function - if indeed there was
a signal, there will be a bump in the mres spectrum; while if there was no signal, the
background should remain smooth, even if the network learned to tag some differences
in the background5. This process is then repeated for different regions ofmres in order
to be sensitive to a broad spectrum of BSM masses. One of the key aspects of this

5This is why it is key to use neighboring regions on both sides. The prevention of background
sculpting is a major consideration in this analysis, as discussed in more detail in Section 7.3.2.
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Figure 7.2: A schematic for the setup of CWoLa hunting. The background has a
smoothly falling spectrum in some feature mres, while the signal is narrowly peaked
(resonant) in that feature. A network is trained to distinguish between a narrow
region of mres in which the signal lies from its neighboring regions. Because of the
principles of CWoLa, the scores from the resulting network y can distinguish between
signal and background events. Figure adapted from [2].

technique is a nested cross-validation procedure, which prevents overtraining in the
case of no signal presence.

This and other key aspects are discussed in the following Section (7.3.2), which
lays out the assumptions and specifics of this analysis based on the above ideas with
mres = mJJ.

It should be noted that CWoLa hunting is not the only possible way of doing
a model-independent bump hunt. A broad classification of existing and proposed
searches based on their signal and background model independence is shown in Fig-
ure 7.3. As mentioned above, many analyses train a tagger to distinguish between
signal and background simulations, and these analyses are therefore dependent on
both signal and background modeling. There are a few analyses which train a tagger
to distinguish between signal simulations and unlabeled data and are therefore back-
ground model independent, e.g. in the γγ channel of the observation of tt̄H [383],
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using a validation region with low signal efficiency as the background sample for
training. There are also some searches which directly test the compatibility of the
observed data with the background-only hypothesis in a portmanteau test by com-
paring the observed data directly to the simulation of the background in ATLAS [5–7]
and in CMS [3,4]; these searches are therefore signal model independent but heavily
dependent on background modeling. Recently, there have been proposals to enhance
these searches with deep learning [384,385].

CWoLa hunting falls into a final category which is both signal and background
modeling independent. There are a few direct competitors to CWoLa hunting which
also have these model independent properties. Many of these searches are based
on autoencoders [8–13], but there are other unsupervised techniques based on near-
est neighbor classification [386–388], probabilistic modeling [14], reweighted simula-
tion [16], density estimation [15], and others [389]. These techniques must also be
combined with a background estimation strategy, either in the form of a bump hunt,
or using simulation, similarly to CWoLa hunting. The main difference between these
techniques and CWoLa hunting is that they are unsupervised, while CWoLa hunting
is weakly supervised. I.e., the unsupervised methods simply find natural groupings or
patterns in the data, and it may be the case that a new signal does not fit into those
groupings or follow those patterns so that the unsupervised network can tag these
as anomalies (however such an outcome is not guaranteed). The weakly supervised
method, on the other hand, does see the signal during its training, if it exists, and so
therefore can be biased towards better tagging the signal. Because of this difference,
when signal rates are large enough such that the weakly supervised network can learn
some information to tag the signal itself, the weak supervision method is superior.
On the other hand, the unsupervised approaches can do better when there is very
little signal.

It is important to point out that, while CWoLa hunting can be sensitive to a
broad set of signal models, there are some assumptions made about the signal so
that the method is not totally generic. First, there is an assumption that the signal is
resonant inmres, preventing sensitivity to wide or non-resonant signals. Second, there
is a requirement that there are features of the signal events that can distinguish them
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Figure 7.3: Classification of existing and proposed searches based on their signal
and background model independence. The MUSiC (Model Unspecific Search for new
physiCs) [3, 4] and General Search [5–7] are used in CMS and ATLAS, respectively.
Methods based on autoencoders [8–13], LDA (Latent Dirichlet Allocation) [14], AN-
ODE (ANOmaly detection with Density Estimation) [15], and SALAD (Simulation
Assisted Likelihood-free Anomaly Detection) [16] can be considered to be direct com-
petitors to CWoLa [1, 17,18]. Figure sourced from [15].
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from the background other thanmres (although if this were not the case the best search
that could be done would be the inclusive fit inmres, as there is no signal/background
discrimination power). Third, as will be mentioned in Section 7.3.3, for the specific
search using CWoLa hunting discussed here (with mres = mJJ), a non-trivial selection
is placed on the rapidity difference between the two jets. This selection basically
amounts to an assumption that the A → BC process being targeted by this search
occurs via an s-channel process, and removes a large amount of the background due
to t-channel QCD processes. It should be noted that this selection is also applied in
the inclusive dijet search [19] and in the all-hadronic diboson resonance search [20],
which are sensitive to similar signals and also aim to be inclusive in their sensitivity.

The search presented here, using CWoLa hunting with mres = mJJ, is the first
application of these model-independent generic searches with LHC data.

7.3.2 Analysis Strategy

This analysis utilizes the concept of Classification Without Labels (CWoLa) described
in Section 7.3.1 in order to be sensitive to a broad class of non-SM models of the form
A → BC, with A massive and on-shell, and the decay products of B and C recon-
structed as large-R jets in the ATLAS calorimeter. In these models, the reconstructed
dijet mass mJJ will show a peak near the mass of the A, with width determined by
the dijet mass resolution. There are two key assumptions that enable this analysis to
be sensitive to these models.

1. (Assumption 1) One or both of the jets reconstructed from the B and C decays
have features, e.g. in their substructure, which differ from the background
composition (i.e., non-resonant dijet events from QCD and other SM processes),
so that these jets can be tagged in order to increase the signal to background
ratio of the signal mJJ peak over the background shape.

2. (Assumption 2) After tagging on these features, the background mJJ remains
smooth, so that a fit to the background mJJ spectrum does not indicate a po-
tential discovery via a bump in the mJJ spectrum.
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In particular, clearly one of the features that differs between the signal and the back-
ground composition is mJJ itself; if mJJ is used as a feature, or if jet features that
allow reconstruction of mJJ are used, then Assumption 2 is violated, because after
tagging on this feature the mJJ spectrum in the background will no longer be smooth.
Therefore some effort must be put into choosing features that will not violate As-
sumption 2, and into validating that the assumption is not violated once the features
are chosen.

Under these assumptions, the outline of the analysis is as follows.

1. Select events in which at least two large-R jets are reconstructed, and in these
events form the dijet invariant mass, mJJ, and record some relevant jet features
X.

2. Partition the mJJ spectrum into discrete, monotonically increasing bins.

3. Label one of these bins the signal region, and the bins on either side in mJJ

space the sideband regions.

4. Train a neural network (NN) to distinguish between the signal region and the
sideband regions based on the chosen features X. There are three possibilities
of what the network learns, based on where the true signal lies relative to the
signal region.

(a) If the signal mass peak happens to lie in the signal region, then the signal
fraction in the signal region will be higher than in the sideband regions,
and the network will learn that it can identify some events in the signal
region by tagging the true signal; i.e., the network will learn how to tag
signal events. This process is what is referred to as CWoLa.

(b) If the signal mass peak happens to lie in one of the sideband regions, then
the signal fraction in the signal region will be lower than in the sideband
regions, and the network will learn to identify some events in the sideband
region by tagging the true signal; i.e., the network will learn how to anti-tag
signal events.
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(c) If the signal mass peak does not lie in the signal region or sideband regions,
or if there is no signal at all, then the network will learn to distinguish
between the background events in the signal and sideband regions based
on the features X, as far as such correlations exist.

Note that, in Cases 4a and 4b, the network is sensitive to both the difference in
the distribution of the features X between the signal and the background, and to
the differences between the background in the signal region and the background
in the sideband regions. In order to allow the network to focus on tagging the
signal versus the background, the sideband regions are chosen to be adjacent to
the signal region in kinematic space so that the difference in the features in the
background between the signal and sideband regions is minimized.

5. Tag events by choosing events with high neural network output. In Case 4a, the
neural network is a signal tagger, so the signal-to-background ratio increases, in
particular increasing the significance of the signal peak over the backgroundmJJ

shape. In Case 4b, the network anti-tags signal, and in Case 4c, the network
tags only differences in the background between signal and sideband regions; in
either case, the signal-to-background ratio after tagging is small or zero.

6. Fit to the mJJ shape after tagging. Because of Assumption 2, the background
spectrum is smooth after tagging. In Case 4a, there will be a bump in the
mJJ spectrum in the signal region due to the presence of signal, allowing the
potential of a discovery of this signal. In Cases 4b and 4c, there will be little to
no signal, so there will be no bump in the mJJ spectrum, and the spectrum fit
will not indicate the discovery of a signal.

7. Repeat Steps 3-6 with each possible signal region bin. If there is any true signal,
then the signal will lie in one of the signal region bins, and Case 4a will be true
in that bin, allowing discovery of this signal. If there is no true signal, then in
each signal region bin Case 4c will be true, thus indicating no discovery over
the whole mJJ range.
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Since there is a difference in the observed outcomes between the case where there is
presence of signal and when there is no signal, limits can be set on specific signal
models based on what would have been observed if those signals were present.

Since the network learns what features distinguish the signal from the background
automatically, this analysis is sensitive to a wide range of possible signal distributions
of these features, and thus the analysis can be sensitive to a wide range of signal
models without paying the price of a trials factor that a dedicated search for each
one of these signal models would entail (Appendix C.1).

Furthermore, since the network learns the features that distinguish the signal from
the background directly from data, the tagger does not suffer from suboptimality due
to differences between simulation and background, as could be the case with a tagger
trained to distinguish between signal and background in simulation.

7.3.3 Blinding and Validation Procedure

Validating the analysis in a blinded region of the data is a challenge for this analysis.
In a typical analysis, after running the analysis entirely in simulation, some validation
region is defined with orthogonal cuts with low signal efficiency in order to validate
the analysis. This validation region is used to either do data/MC comparisons to
verify that the simulation is describing the background adequately or to perform in
situ checks of the assumptions of the analysis. For example, in the search described
in Chapter 6, the background is estimated in a data-driven way with an A/B/C/D
matrix of regions; the highest signal efficiency is expected in region D. The assumption
of the A/B/C/D method (that the ratio of events in B/A is the same as in D/C in the
background) is verified both in simulations of the background and in a data validation
region, inverting the mggγγ cut.

In this analysis, the original event selection (Analysis Step 1) is inclusive and
minimal, in order to be sensitive to a broad class of models. The event selection
learned by the NN depends on the data, so there is no way to construct an orthogonal
signal-deficient region ahead of time. In Analysis Step 5, only events with some
high NN score are chosen, so one idea is to use the events with lower NN scores for
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validation. However, this does not clearly work - if selecting only events that the NN
assigned low scores, then in Case 4b, where the network has anti-tagged the signal,
this selection would actually have a high signal efficiency, defeating the purpose of
the validation region. Another option is to select only events with average scores, i.e.
close to the median NN output. However these events are exactly those for which
the NN has decided it cannot distinguish between the signal and sideband regions,
so that even if Assumption 2 were being violated in general by the NN selection, for
these events the Assumption would not be violated, again defeating the purpose of
a validation region. These ideas and others for constructing a validation sample are
explored in Appendix C.3.

In light of these considerations, the event selection is given one additional non-
trivial selection, a maximum rapidity difference between the two jets in the event; and
the validation region is defined to be the inverse of this. This rapidity selection is also
present in the inclusive dijet search [19] and in the all-hadronic diboson resonance
search [20], two analyses which are sensitive to similar signals and also aim to be in-
clusive in their searches. This selection both suppresses contributions from t-channel
QCD dijet production, while remaining efficient on A→ BC signals produced in the
s-channel. The distribution of the rapidity difference in the background simulation
can be seen in Figure 7.46, and the distributions in a representative signal model can
be seen in Figure 7.5.

The validation and unblinding procedure is then as follows:

1. Run the full method in simulation. These results are presented in Section 7.5.
Two challenges with this validation are (i) we have less simulation than data
and (ii) the simulated events are weighted. The latter can be challenging for our
training procedure and is not an issue for the real data version of the analysis.
This step is referred to as the “simulation” or “MC” analysis.

2. Proceed to run the full method on data where the rapidity gap cut is inverted.
Any s-channel model will have a reduced cross-section while the background

6Note that there is a selection of |η| < 2 for large-R jets, so the maximum rapidity difference is
|y1 − y2| < 4 (since |y| ≤ |η|).
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Figure 7.4: Distribution of |y1 − y2| in the background simulation, broken down by
the mJJ region, as described in Section 7.4.2. (a) mJJ regions 0-4; (b) mJJ regions 5-9.
The green line indicates the cut at 1.2 (Section 7.4.1).
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Figure 7.5: Distribution of |y1 − y2| for a signal model with (a) (mA,mB,mC =
3000, 200, 200 GeV); (b) (mA,mB,mC = 5000, 200, 200 GeV). The green line indicates
the selection at 1.2 (Section 7.4.1).
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rate increases. This is discussed in Section 7.6 and allows us to run the full
procedure on data where we do not expect to see any s-channel signal. This
step is referred to as the “inverted rapidity cut”, “data validation”, or simply
“validation” analysis, as it serves as the main validation in data before the full
unblinded analysis.

3. Run the method on the full dataset (with the uninverted rapidity gap cut).
The results of this are reported in Section 7.7. This step is referred to as the
“uninverted”, “unblinded”, “signal selection”, or simply “full” analysis.

The development of this analysis occurred by progressing through each of these
steps in turn, and though overall most of the analysis remained the same between
each of the steps, naturally some details changed after learning things at various steps
of the validation. The details of the analysis outlined in Section 7.4 apply to each
of these steps, but are clear about where they are different. In particular, the fitting
process (Analysis Step 6) went through multiple iterations before settling on the final
procedure. In general, doing a parametric background fit on large datasets tends to
be a key challenge; this challenge was compounded due to the effective statistics of
the background in each of these steps, which is expanded on below.

The effective statistics of the inverted sample compared with the nominal sample
and the simulation are presented in Figure 7.67. The bins presented there are those
defined in Section 7.4.2, and given in Table 7.3. For the simulation, the effective
statistics is defined as the inverse of the sum of the squares of the normalized event
weights. For the central dataset, the MC statistics are relatively uniform in mJJ and
there are only more effective events past the third bin, with boundaries at 1.90 ≤
mJJ < 2.28 TeV. Even in the fourth bin (2.28 ≤ mJJ < 2.74 TeV), there are events
with a large weight, which makes the training and fitting unrealistic.

For the inverted dataset, the problem is much more severe because for a fixed
mJJ, lower pT jets can contribute compared to the central dataset. For the full Run
2 statistics, the MC has the same number of weighted events only by the eighth bin

7Also given for good measure are the statistics for 3.2fb−1, which corresponds to the 2015 LHC
dataset.
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(4.73 ≤ mJJ < 5.68 TeV).
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Figure 7.6: The effective statistics for the nominal rapidity difference (a) and the
inverted one (b) for MC and data and for different integrated luminosities.

The inverted dataset has about ten times more events than the nominal rapidity
difference dataset above about 3 TeV, which can be seen in Figure 7.7. In order for the
inverted dataset to have comparable statistics to the nominal dataset for testing our
methodology, random sampling without replacement is used to reduce the dataset.
The random sampling rate is determined from a fit to the ratio of efficiencies for the
two rapidity differences cuts (also shown in Figure 7.7) 8.

As will be mentioned in Section 7.4.6, each analysis imposes a cut of mJJ > 1.8

TeV for the fitting. For the simulation analysis, as mentioned above, the effective MC
statistics are only reliable above around that value. For the data analyses, this cut
results mainly from the finding that the fitting procedure simply is not sufficient to
describe the background shape for the high numbers of events seen below that cut9.
However, it is also the case that the inverted rapidity selection provides multiple copies
of independent datasets to test the analysis when the ratio of efficiencies is < 1

2
; in

8In principle, by looking at this distribution, we have unblinded the full dataset with no NN cut.
However, we have not examined this distribution in detail and have not performed any statistical
tests on the quality of the fit. It actually may be easier to do the bump hunt in this ratio, which is
relatively flat, but this is left for future studies.

9A more sophisticated (possibly non-parametric) fitting procedure may be able to extend the
search to lower values in the future.
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Figure 7.7: The ratio of efficiencies for the two rapidity differences cuts. A fit shown
with a dashed line is the sum of two power law functions. Note that these are data
plots and not simulation.

particular, the ratio of efficiencies is < 1
3
(so 3 statistically independent copies) for

mJJ >∼ 1.8 TeV, which was useful for testing the statistical properties of the fitting.
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7.4 Analysis Details

7.4.1 Event Selection

As mentioned in Section 7.2.1, data are collected using the lowest available un-
prescaled single-jet trigger.

This analysis uses anti-kt, R = 1.0 jets reconstructed from topoclusters with the
local cluster weighting scheme (LCW) [173]. The jets are trimmed [77] using using the
parameters fcut = 5% and Rsub = 0.2. A Monte Carlo-based particle-level calibration
is then applied to the jets used in this analysis [82]. It corrects on average the
reconstructed mass and pT of the jets to their particle-level values. The combined
mass measurement is used, which combines measurements from the tracking system
and the calorimeter; including this information has been shown to have better mass
resolution, especially at high jet pT [201].

The offline selection that is made on top of the selection from the derivation
is intended to be as fully inclusive as possible to prospective signal models, while
remaining on the plateau of the turn-on for the trigger.

Each event is required to have at least two large-R jets with calibrated pT > 200

GeV 10 and |η| < 2.0, and with at least one such jet with calibrated pT > 500 GeV.
This offline threshold has been shown to be fully efficient with respect to the trigger
selection [390]. There is no explicit lepton overlap removal or veto.

Only the two jets with highest pT in the event are used in this analysis, and the
remaining jets are ignored. For each jet j = 1, 2, the four-momentum pµj is recorded,
in particular the jet mass m2

j = (pµj )
2. As mentioned in Section 7.3.3, a selection is

placed on the rapidity difference, |y1 − y2| < 1.2.
The jets are ordered by their mass, so that m1 ≥ m2. In order to suppress back-

ground and therefore increase sensitivity to massive signal objects, a minimum cut
m1, m2 > 30 GeV is applied 11 . Also, in order to make the kinematic region in which
the learning is applied definite, a maximum selection m1, m2 < 500 GeV is applied.
The reasoning behind this selection is explained in more detail in Section 7.4.3.

10Jet calibrations for large-radius jets are only derived for pT > 200 GeV.
11In addition, jet calibrations for large-radius jets are only derived for m > 30 GeV.
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Typically the dijet invariant mass mJJ would be defined as in terms of the sum of
the four-momenta of the two jets, m2

JJ = (pµ1 + p
µ
2 )
2 = m2

1 +m
2
2 + 2 (E1E2 − ~p1 · ~p2),

with E2 = |~p|2 +m2 and |~p| = pT cosh(η). In this analysis the dijet invariant mass
is defined slightly differently: in order to reduce correlations between the features
used in the neural network (m1,m2) and the final mJJ value, the dijet invariant mass
is formed by setting all mi to zero: m2

JJ ≡ 2 (|~p1|| ~p2|− ~p1 · ~p2). This new definition
removes all correlations betweenmJJ andm1,m2 except for those arising from indirect
correlations between the jet m and the jet pT and η. In practice this is a very small
change, because the jets in this analysis typically have energies much larger than their
masses, and so the new definition gives almost the same value for the invariant mass12.
As will be discussed in Section 7.4.2, a selection is applied on the dijet invariant mass
of 1.1 ≤ mJJ < 8.17 TeV. As will be discussed in Section 7.4.6, effectively a selection
of 1.8 ≤ mJJ TeV is applied as the fitting range.

These selections are summarized in Table 7.1.

Table 7.1: Jet selection. ThemJJ selection is indicated for themJJ bins (Section 7.4.2)
and also for the fitting range (Section 7.4.6).

Observable Selection
pT > 500 GeV (≥ 1 jet), > 200 GeV (≥ 2 jets)
|η| < 2.0

|y1 − y2| < 1.2

m > 30 GeV, < 500 GeV
mJJ (bins) ≥ 1.1 TeV, < 8.17 TeV
mJJ (fitting) ≥ 1.8 TeV

The cutflow of these selections on the signal samples is given in Table 7.2.

12For example, an event with back-to-back jets andmJJ = 1.8 TeV under the new definition would
have |~p1| = |~p2| = 0.9 TeV. If each of these jets had a mass of 500 GeV, then the standardmJJ would
be ∼ 2.06 TeV, a ∼ 15% change. This is less than the dijet mass resolution of ∼ 20% (Figure 7.11).
In the background jets with that high mass are very rare (Figure 7.10), and with more typical values
of < 200 GeV the change in mJJ is < 2%.



CHAPTER 7. A GENERIC RESONANCE SEARCH 163

Table 7.2: Signal sample efficiency with selections up to and including given selec-
tion. All selections are given in Section 7.4.1. The jet selections are summarized in
Table 7.1. The mJJ selection is included for the binning selection of 1.1 ≤ mJJ < 8.17

TeV and for the additional selection from the fitting of 1.8 ≤ mJJ TeV.

(mA,mB,mC) [GeV] Trigger pT |η| |y1 − y2| m mJJ (bins) mJJ (fit)
(3000,80,80) 0.90 0.85 0.85 0.64 0.63 0.62 0.59
(3000,80,200) 0.91 0.85 0.85 0.63 0.62 0.61 0.58
(3000,80,400) 0.92 0.81 0.81 0.61 0.60 0.58 0.56
(3000,200,200) 0.93 0.87 0.87 0.64 0.63 0.63 0.59
(3000,200,400) 0.95 0.84 0.84 0.62 0.61 0.60 0.58
(3000,400,400) 0.95 0.82 0.82 0.62 0.60 0.59 0.57
(5000,80,80) 0.68 0.58 0.58 0.44 0.44 0.42 0.34
(5000,80,200) 0.70 0.59 0.59 0.45 0.44 0.42 0.34
(5000,80,400) 0.78 0.58 0.58 0.44 0.43 0.40 0.34
(5000,200,200) 0.75 0.63 0.63 0.48 0.47 0.45 0.37
(5000,200,400) 0.82 0.65 0.65 0.49 0.48 0.45 0.39
(5000,400,400) 0.88 0.68 0.68 0.50 0.48 0.47 0.43
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7.4.2 Binning

As mentioned in Analysis Step 2, the mJJ spectrum is binned in order to derive the
signal and sideband regions. The size of the binning is chosen to be 20%, guided
by the dijet mass resolution of the signal models. The minimum mJJ value is 1.1
TeV, due to the jet and trigger selection, and the maximum value is at 8.17 TeV
(the right edge of bin 10 with 20% bin size), above which few events are expected to
be observed. Since every event is required to lie in an mJJ bin, effectively an event
selection is therefore applied for 1.1 ≤ mJJ < 8.17 TeV. The bin definitions are given
in Table 7.3.

Table 7.3: mJJ bin definitions.

Bin Definition
0 1.10 ≤ mJJ < 1.32 TeV
1 1.32 ≤ mJJ < 1.58 TeV
2 1.58 ≤ mJJ < 1.90 TeV
3 1.90 ≤ mJJ < 2.28 TeV
4 2.28 ≤ mJJ < 2.74 TeV
5 2.74 ≤ mJJ < 3.28 TeV
6 3.28 ≤ mJJ < 3.94 TeV
7 3.94 ≤ mJJ < 4.73 TeV
8 4.73 ≤ mJJ < 5.68 TeV
9 5.68 ≤ mJJ < 6.81 TeV
10 6.81 ≤ mJJ < 8.17 TeV

The distribution of mJJ in the background with these bin definitions is shown in
Figure 7.8. It can be seen that the distribution of mJJ in the background before any
cuts is smooth, with no bumps indicating possible discoveries.

The distributions of mJJ in a variety of signal models are shown in Figure 7.9. It
can be seen that the mass of the signal object, mA, is well-reconstructed as mJJ, with
significant tails at lower mJJ values. The resolution of mA with mJJ is roughly 20%,
which guides the sizing of the binning, as mentioned above.
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Figure 7.8: Distribution of mJJ in the background MC. The green lines indicate the
bin edges of mJJ regions 0-10.

One thing to note about this analysis is that the binning is fixed. A possible issue
with this is that for a signal that is found close to the edge of a bin, the NN may not
learn to tag that signal because it has presence in both that bin and its sideband.
This effect is mitigated somewhat due to two factors: (1) Because the background
is steeply falling, there is only a small region of mA in which the signal fraction in
both a signal bin and its sideband are comparable; and (2) the NN is trained on both
sidebands simultaneously, so that the signal should still be tagged when distinguishing
between the signal region and the combined sidebands even if it lies on the edge. A
study of this effect is presented in Appendix C.6.
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Figure 7.9: Distribution of mJJ for a signal model with:
(a) (mA,mB,mC = 3000, 80, 80 GeV); (b) (mA,mB,mC = 3000, 200, 80 GeV);
(c) (mA,mB,mC = 3000, 400, 80 GeV); (d) (mA,mB,mC = 3000, 200, 200 GeV);
(e) (mA,mB,mC = 3000, 400, 20 GeV); (f) (mA,mB,mC = 3000, 400, 400 GeV);
(g) (mA,mB,mC = 5000, 80, 80 GeV); (h) (mA,mB,mC = 5000, 200, 80 GeV);
(i) (mA,mB,mC = 5000, 400, 80 GeV); (j) (mA,mB,mC = 5000, 200, 200 GeV);
(k) (mA,mB,mC = 5000, 400, 20 GeV); (l) (mA,mB,mC = 5000, 400, 400 GeV).
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7.4.3 Features

In Analysis Step 4, some features X are designated which, as per Assumption 1, can
be used to distinguish signals from the background. In this analysis, only the masses
of the two jets, X = {m1,m2}, are used as features.

The distributions of m1 and m2 in the background using the nominal simulation
are plotted in various mJJ regions in Figure 7.10. The distributions of m1 and m2 in
a variety of signal models are plotted in the mJJ region which is most efficient on that
signal in Figure 7.11. It can be seen that the masses of the signal objects, mB and
mC, are well-reconstructed as m1 and m2.

Since m1 and m2 peak around the values of mB and mC in the signal, while they
have smoothly falling spectra in the background, these features satisfy Assumption 1,
and therefore can be used for the training.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 7.10: Distribution of m1 and m2 in the background simulation in mJJ regions
(a) 0; (b) 1; (c) 2; (d) 3; (e) 4; (f) 5; (g) 6; (h) 7; (i) 8; (j) 9.
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Figure 7.11: Distribution of m1 and m2 for a signal model with:
(a) (mA,mB,mC = 3000, 80, 80 GeV); (b) (mA,mB,mC = 3000, 200, 80 GeV);
(c) (mA,mB,mC = 3000, 400, 80 GeV); (d) (mA,mB,mC = 3000, 200, 200 GeV);
(e) (mA,mB,mC = 3000, 400, 20 GeV); (f) (mA,mB,mC = 3000, 400, 400 GeV);
(g) (mA,mB,mC = 5000, 80, 80 GeV); (h) (mA,mB,mC = 5000, 200, 80 GeV);
(i) (mA,mB,mC = 5000, 400, 80 GeV); (j) (mA,mB,mC = 5000, 200, 200 GeV);
(k) (mA,mB,mC = 5000, 400, 200 GeV); (l) (mA,mB,mC = 5000, 400, 400 GeV).
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7.4.3.1 Mass Decorrelation

In Figure 7.10, it can be seen that there are true physical differences in the features
in the background between a given signal region and sideband regions (as chosen in
Analysis Step 3); in particular, the distribution gets more populated at higher m1,m2

as mJJ increases. This therefore requires some modification of these features in order
to satisfy Assumption 2.

The idea is to scale the 1-dimensional marginal distribution of the jet mass m
(combining both m1 and m2 across all events) in the sideband regions to the signal
region. This is accomplished by constructing the empirical cumulative distribution
function (ECDF) in each region s:

Φs(m) =
1

ns

ns∑
j=1

1(mj ≤ m) (7.1)

Where ns is the number of jets in mJJ region s, 1 is the indicator function, and j
goes over all jets (leading and subleading) in region s.13 Note that the distribution of
Φs(m) over all jets in mJJ region s is by definition uniform; and that the distribution
of Φ−1

s (x) is exactly the distribution ofm inmJJ region s, if x follows a uniform distri-
bution. The ECDF is a good approximation of the true CDF in regions where there
are a sufficient number of samples. This motivates the choice to place a maximum
cut on the jet mass at 500GeV, in order to restrict to the region in which the CDF
can be approximated well.

Then, for a given signal region s, the masses of all jets in the sideband regions
s− 1 and s+ 1 are rescaled to the signal region:m→ Φ−1

s (Φs−1 (m)) m ∈ region s− 1

m→ Φ−1
s (Φs+1 (m)) m ∈ region s+ 1

(7.2)

This ensures that the 1-dimensional distributions of m in the sideband regions are
exactly the same, by construction, as in the signal region. Note that, if there is a

13Actually, Φs(m) is evaluated at all values of m that exist in the mJJ region, and then is linearly
interpolated for intermediate values.
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Figure 7.12: The distributions of m in simulation, comparing between signal region
s = 5 and sideband regions s− 1 = 4 and s+ 1 = 6. (a) Before any scaling. (b) After
scaling via the empirical cumulative distribution function. (c) Including an injected
signal sample with mA,mB,mC = 3000, 200, 200 GeV, which lies mostly in signal
region 5, and with S√

B
∼ 2 in that region. (d) After scaling, with the presence of the

signal sample.

signal present in the signal region, that the scaling will be slightly biased by the
presence of this signal, depending on the signal fraction in that region. This scaling
is demonstrated for an example signal and sideband regions in Figure 7.12, including
an example with an injected signal.

After the 1-dimensional scaling the only differences that can exist are in the 2-
dimensional distribution m1 and m2, which can arise due to differences in the corre-
lation betweenm1 andm2 between the regions. It is expected that in the background
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these differences are small, and this is supported by examining the distributions of
m1 and m2 in simulation, as can be seen in Figure 7.13.

In order to additionally remove correlations between the features and mJJ, the
left and right sidebands are combined with equal total weight for the training (Sec-
tion 7.4.4). Then the distribution of the features in the combined sidebands is exactly
the average of the distribution in the left and right sidebands, removing first-order
dependencies of the features on mJJ.

The presence of a signal in one of the regions is exactly such a difference that can
exist in the correlations between m1 and m2. Therefore, even though the scaling can
be biased by the presence of a signal in the signal region, it is expected that there
will still exist differences in the 2-dimensional distribution between the signal and
sideband regions, as can be seen in Figure 7.13.
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Figure 7.13: The 2-dimensional likelihood ratio inm1 andm2 after scaling, comparing
between signal region s = 5 and (a) sideband region s − 1 = 4; (b) sideband region
s+ 1 = 6; and (c) combining sideband regions 4 and 6. (d,e,f) Including an injected
signal sample with mA,mB,mC = 3000, 200, 200 GeV, which lies mostly in signal
region 5, and with S√

B
∼ 2 in that region. N.B. This Figure may appear fuzzy if

viewing in macOS Preview; using a different PDF viewer, e.g. Google Chrome, seems
to fix the problem.

7.4.4 Neural Network Architecture

The neural network which determines the final score for each event, indicating more
or less signal-like, is derived in multiple stages. Neural networks have been shown
to have excellent performance on a wide variety of training tasks in high dimensions
with limited training data [391–396]. Since there are only two features being used in
this search, it may seem like overkill to use a NN, as opposed to simply examining
the likelihood ratio by using two-dimensional histograms, or using a boosted decision
tree [397–400].

The first response to this is that, while the NN is a monotonic function of the
likelihood ratio in the asymptotic limit, the NN also involves certain regularization
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constraints which allow the estimation of the likelihood ratio to be smooth. This
smooth estimation is actually crucial for allowing CWoLa hunting to be generically
sensitive without paying a large trials factor - this claim is explored in detail in Ap-
pendix C.1. The multiple stages in the derivation of the final NN score are intended to
maximize the sensitivity to new potential signals, while remaining robust to statistical
fluctuations and maintaining or enhancing this smooth behavior.

The second response is that the natural extension of this search is to involve a
large number of features of the jets (Section 7.8). In that case, a NN is the natural
choice to handle this high-dimensional classification problem. In order to set up this
search (the first of its kind) to be able to be extended as straightforwardly as possible,
a NN is used here in anticipation of the next iteration of this search.

In Analysis Step 3 (Section 7.3.2), some signal bin s is designated. The pro-
cess below can then be considered an enumeration of the steps in Analysis Step 4
(Section 7.3.2). See also Figure 7.14 for an overview.

1. Designate the sideband regions s + 1 (the “upper" sideband) and s − 1 (the
“lower" sideband).

2. All events in the entire dataset are separated randomly into 5 equally-sized
cross-validation sets i ∈ [0− 4].

3. Designate one of the cross-validation sets it as the test set.

4. Designate a different cross-validation set iv 6= it as the validation set. The
remaining 3 cross-validation sets are designated as the training set.

5. A neural network is trained using only the training set, with features X =

{m1,m2}, rescaled as described in Section 7.4.3.1. The events are labeled with
Y ∈ [0, 1], with 1 indicating an event in the signal region, and 0 indicating an
event in the sidebands. The events in each of the sideband regions are weighted
uniformly in the training so that the sum of weights in each of the sideband
regions is equal.
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The details of the NN are given below14. The network is a Sequential Neural Net-
work with 4 layers of size 64,32,8,1, and activation functions ReLu,ReLu,ReLu,sigmoid,
respectively, as implemented in Keras [301]. The loss used is the binary cross-
entropy, and the training loss is minimized using the Adam [401] optimizer. The
loss is evaluated on the validation set.

Total number of epochs is 1000, with an early stopping with patience of 100 on
the validation loss. The batch size is 1% of the total.

6. Repeat Step 5 with 3 different random initial configurations of the neural net-
work weights, and choose the network with the lowest validation loss. The other
2 networks are discarded.

Finally, this network is evaluated on the test set, and only the scores on the
test set are recorded.

Scaling

The score from the neural network output is scaled monotonically as a quantile
between 0 and 1 on the events in the signal region test set (note that the
scores for all events in the test set are recorded, not just those in the signal
region). That is to say, after the scaling, an event with a score of 0 ≤ ε ≤ 1
received a higher score from the neural network than exactly a fraction ε of the
events in the signal region test set. In particular, a high NN score corresponds
to a low ε. E.g., a selection choosing the 10% most signal-like events would
place a minimum on the NN score, which because of the monotonic rescaling
corresponds to a maximum on ε, with exactly the selection ε < 0.1. The scaling
is done in this way so that different networks can later be combined by averaging
their scores; since the network output score is standardized, this averaging is
meaningful.

7. Repeat Steps 4-6 by varying iv to each of the remaining cross-validation sets in
turn, keeping the test set it fixed. I.e., there are 4 different validation set choices
for the given test set, and these steps are repeated for each one, resulting in 4

14For an excellent introductory explanation of machine learning and neural networks, see [396].
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different networks. The scores from these 4 networks are then averaged, and
the average score is further rescaled as described in Step 6.

8. Repeat Steps 3-7 by varying the chosen test set it, for a total of 5 networks. The
total sample is then combined together; since the score from each network is
scaled to be an efficiency on its respective test set, and the test sets are equally
sized, the score for each event remains an efficiency over the entire dataset.

Ultimately, there are 3×4×5 = 60 neural networks trained for each signal region
s. A flowchart of the process described above is given in Figure 7.14, and the neural
network outputs are shown at each step in the process for a sample with injected
signal.

The events are separated into training, validation, and test sets as described above
in order to reduce the effect of statistical fluctuations in the training. Since the valida-
tion set is statistically independent from the training set, choosing the network with
the lowest validation loss, as described in Step 6, ensures that the network which
learns true correlations the best is chosen. Since the test set is statistically indepen-
dent from both the training and validation sets, the network cannot do artificially
better by being biased by statistical fluctuations in the training or validation set.
This is actually a crucially important point for removing the look-elsewhere effect in
this analysis. If the network were trained and tested on the same dataset, one would
expect a high rate of false positives in terms of being able to separate the signal re-
gion from the sidebands due to correlated (actually, the same) statistical fluctuations
between the train and test sets, which results directly in a bump in the mJJ spec-
trum. Because the train and validation sets are statistically independent from the
test set, the statistical fluctuations are uncorrelated, and in the case that there is no
true signal the rate of false positives is no more than that expected due to a random
classifier.

The choice to train 4 different networks with each non-test set chosen to be a
validation set in succession, as described in Step 7, is again intended to reduce the
sensitivity to statistical fluctuations in the training sets, since for each validation set
the training set is (somewhat, but not entirely) different. The averaging over the
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Figure 7.14: Flowchart of steps in derivation of final network scores, as described in
Section 7.4.4. The networks in the left-most column have already been chosen to have
the lowest validation loss, as described in Step 6. The networks are represented by a
2D plot showing the neural network output in the m1,m2 plane, as expressed as an
efficiency on events, as described in Step 6. In this particular example, a signal was
injected at mB = 200 GeV, mC = 200 GeV. All plots in this figure use simulation.
Note that the amount of effective data in the left parts of the plot is actually 1/5 of
the total.

validation sets can be seen when going from the first column of Figure 7.14 to the
second column.

Note that, because of the fact that the networks between different test sets never
interact, as described in Step 8, two events with exactly the same features could in
principle have different scores, if they happened to lie in different test sets. However,
because of the extensive measures taken to reduce the sensitivity to statistical fluc-
tuations in the training set, it is expected that the final 5 networks should mostly be
the same; this can be seen for example in the penultimate column of Figure 7.14.

Details about the software used to execute the analysis pipeline up to this point
(Sections 7.4.1, 7.4.2, 7.4.3, 7.4.4) can be found in Appendix C.4.
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7.4.5 Systematic Uncertainties

As will be described in Section 7.4.6, the background is estimated in a fully data-
driven manner, and the only uncertainties are associated with the background fit.
The uncertainties related to the signal simulation are only relevant for setting cross-
section limits (Section 7.4.7.2). For the signal, there are uncertainties on the jet mass
scale and resolution as well as on the modeling of jet fragmentation; there is also an
overall luminosity uncertainty.

The former set of uncertainties use the prescriptions of the Jet/MET group [402].
The luminosity uncertainty for the full Run 2 dataset is 1.7% [403]. It is derived

from the calibration of the luminosity scale using x-y beam-separation scans, following
a methodology similar to that detailed in Ref. [404], and using the LUCID-2 detector
for the baseline luminosity measurements [226]. The total integrated luminosity is
139 fb−1.

The NN is not retrained for every systematic variation. Instead, the NN trained
with the nominal signal and then applied to the events with the kinematic properties
of the jets varied according to the uncertainty. In principle this is a conservative
treatment of the uncertainties, since the NN learns what the actual signal looks like
and tags the kinematic space accordingly; training the network on the nominal signal
and then applying to the varied kinematic properties can therefore lead to artificially
low NN signal tagging efficiencies. In practice, though, the uncertainties are small
enough such that the total efficiency on the signal for some fixed NN selection is
about the same in the nominal and varied samples.

7.4.6 Fitting

After the application of the NN selection, a standard parametric background fit is
performed to estimate the background contribution in the signal region. As mentioned
in Section 7.3.3, the fitting procedure is relatively simple for the simulation analysis,
but more complex for the data validation and full unblinded analyses. There are
in addition some small differences in the fitting procedure between these latter two
analyses. Because of this, the fitting procedure for each of these analyses is broken
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out into separate subsections.
Details about the software used for the fitting are given in Appendix C.5.

7.4.6.1 Simulation Analysis

The parametric fit is performed using 100 GeV bins from 1.8 TeV to 8.2 TeV15. These
bins are finer than the bins used for learning as described in Section 7.4.2 16.

The selected fit function is the same as the one used by the all-hadronic diboson
resonance search [20]:

dn

dx
= p1(1− x)

p2−ξp3x−p3 , (7.3)

where x = mJJ/
√
s, p1 is a normalization parameter, p2 and p3 are dimensionless

shape parameters, and ξ = 4.2955 is a constant (this value chosen by the all-hadronic
resonance search to remove correlations between p2 and p3).

The parameter p2 is initialized to 10 and restricted to the range [−100, 100] and
the parameter p3 is initialized to −30 and restricted to the range [−100, 100] as
well. The signal region is not masked during this fit. After the fit, the prediction is
normalized to have the same integral as the data over the entire range. As there are
two free parameters, the fit produces a 2× 2 covariance matrix.

The background fit is decoupled from the signal strength scan; the signal strength
is used as a POI to set limits, as discussed in Section 7.4.7.2. A background prediction
is generated as a histogram from the central values of the background fit. There is
one nuisance parameter for the background fit systematic uncertainty. The “up” and
“down” variations are created by taking the sum in quadrature of the uncertainties
from the two parameters from the original background fit (p2 and p3). This nuisance
parameter can be profiled in the second fit used to fit the POI.

15The 8.2 TeV maximum bin edge contains the 8.17 TeV maximum mJJ from the event selection
(Section 7.4.1); this value is essentially arbitrary as there are expected to be < 1 events at that high
mJJ.

16In the corresponding Section ( 7.5), some example fits are shown using the mJJ bins themselves
for the parametric fit; these are not actually used for the final results.
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7.4.6.2 Validation Analysis

As in the fitting for the simulation analysis (Section 7.4.6.1), the parametric fit uses
bins of size 100 GeV, spanning 1.8 TeV to 8.2 TeV. Unlike in that fit, the signal

region is masked for this fit. In order to remove the dependence of a potential
signal, the masked region for each bin is enlarged to include half of both the left and
right neighboring bins. In particular, the bins used for training and the windows used
for masking in the fit are presented in Table 7.4.

Table 7.4: mJJ bin definitions and the mask regions for the background fit.

Bin Definition Mask
5 2.74 ≤ mJJ < 3.28 TeV 2.5 ≤ mJJ < 3.6 TeV
6 3.28 ≤ mJJ < 3.94 TeV 3.0 ≤ mJJ < 4.3 TeV
7 3.94 ≤ mJJ < 4.73 TeV 3.6 ≤ mJJ < 5.2 TeV
8 4.73 ≤ mJJ < 5.68 TeV 4.3 ≤ mJJ < 6.2 TeV
9 5.68 ≤ mJJ < 6.81 TeV 5.2 ≤ mJJ < 7.5 TeV

The fitting procedure then proceeds as follows:

1. Perform a fit using the sidebands using Equation 7.3. Compute the χ2 in the
sideband:

χ2 =

N∑
i=1

(Oi − Ei)
2

Ei
, (7.4)

where Oi is the number of events observed in data in bin i, Ei is the expected
number of events from the fit function in bin i, and the sum runs over all N
sideband bins. The parameter p1 is fixed by the normalization in the sidebands.
The sideband p-value is then computed using N − 3 degrees of freedom, since
there are 3 fit parameters. If this p-value is greater than 0.05, move on to step 5,
else:

2. Try an extended fit function:
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dn

dx
= p1(1− x)

p2−ξ1p3x−p3+(p4−ξ2p3−ξ3p2) log(x). (7.5)

As before, compute the sideband p-value (now with N− 4 degrees of freedom).
If this p-value is greater than 0.05, move on to step 5, else:

3. Try with the UA2 fit function [405]:

dn

dx
= p1x

p2−ξ1p3e−p3x+(p4−ξ2p3−ξ3p2)x
2

. (7.6)

As before, compute the sideband p-value with N− 4 degrees of freedom. If this
p-value is greater than 0.05, move on to step 5, else:

4. Reduce the sideband window size and repeat steps 1-3 until the sideband p-
value is above 0.05 or the range used to fit in the sideband is smaller than 800
GeV (in which case, the fit fails). The sideband is range is reduced as follows. If
the right sideband is bigger than the left one, the rightmost 400 GeV is removed
from the right sideband. If the left sideband is larger than the right one, the
leftmost 400 GeV is removed from the left sideband. If both sidebands are the
same size, then 200 GeV is removed from both.

5. After a fit is found with p-value greater than 0.05, the ξi parameters are opti-
mized to reduce correlations between parameters in order to improve the quality
of the uncertainties used for the statistical analysis (Section 7.4.7). For all of
the fits, the ξi are initialized to zero. Then, whatever fit setup was found in the
previous steps is repeated after iteratively adjusting the ξi as follows. For the
three parameter fits, we set

ξ = correlation(p2, p3)
σp2
σp3
. (7.7)
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This can be viewed as a Gram-Schmidt orthogonalization, treating the random
variables p2 and p3 as vectors in an inner product space with the inner product
between two vectors given by their covariance.

The ξ setting is iteratively repeated automatically until the residual correlation
is less than 0.25. In practice, we find that after one iteration, the correlation
converges to 10−5 or smaller. For the four-parameter fit, the pairwise correla-
tions are removed in a similar fashion:

ξ1 = correlation(p2, p3)
σp2
σp3

(7.8)

ξ2 = correlation(p3, p4)
σp3
σp4

(7.9)

ξ3 = correlation(p2, p4)
σp2
σp4
. (7.10)

This procedure converges slower than the three-parameter fit and sometimes
does stop at close to (but less than) 0.25 correlation between some pair of two
variables.

6. Finally, the local p-value in the masked region is quoted to give a sense of the
deviations from the background expectation in the signal region. The χ2 is
calculated including the signal uncertainties:

χ2 =

N∑
i=1

(Oi − Ei)
2

Ei + σ(E)2i
, (7.11)

where Oi is the number of events observed in data in bin i, Ei is the expected
number of events from the fit function in bin i, σ(E)i is the uncertainty on the
mean value of the fit function in bin i (as described in Section 7.4.7), and the
sum runs over all N bins in the masked region. Since the masked region is not
used to derive the fit, the number of degrees of freedom used to calculate the
p-value is equal to N.
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7.4.6.3 Unblinded Analysis

The fitting procedure is very similar to the procedure in the data validation analysis
(Section 7.4.6.2). In particular, bins of size 100 GeV are used for the fitting, spanning
1.8 TeV to 8.2 TeV. Like the all-hadronic diboson search, and unlike the fitting for the
validation analysis described in Section 7.4.6.2, the signal region is not masked

for this fit, and the likelihood of the fit function is minimized across the entire
range. However, in order to fit the background when there is the presence a potential
signal, there is still a masked region defined, and the fit quality is evaluated on

only the sidebands outside the masked region. This change was applied as
it was found that the fit function was sometimes performing poorly in the masked
regions17. The masked regions are the same as for the validation analysis as described
in Section 7.4.6.2 (Table 7.4); in particular, the masked region for each bin is enlarged
to include half of both the left and right neighboring bins.

The fitting procedure is exactly the same as described in Section 7.4.6.2, other
than that, in Fit Step 1, the fit includes the masked region. In particular, the fit is
still evaluated on the sidebands outside the masked region and continues through the
steps until the χ2 p-value in the sidebands is greater than 0.05. The local p-value in
the masked region is quoted to give a sense of the deviations from the background
expectation in the signal region. Since the signal region is used in the overall fit, the
χ2 is calculated using only the statistical uncertainties on the background expectation,
not including the uncertainties on the fit:

χ2 =

N∑
i=1

(Oi − Ei)
2

Ei
, (7.12)

where Oi is the number of events observed in data in bin i, Ei is the expected number
of events from the fit function in bin i, and the sum runs over all N bins in the masked
region. Since the masked region is used to derive the fit, the number of degrees of
freedom used to calculate the p-value is equal to N − 3 or N − 4, depending on the
ultimate fit function used.

17In the validation data fits.
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Since the fit includes the masked region as well as the sidebands, in the presence
of a signal the background expectation can be biased upwards, leading to a negative
bias on the fitted µ̂ when setting limits (Section 7.4.7.2). This effect is small, though,
when the signal presence is at or less than the limits that are actually set; the results
of a signal injection test can be found in Appendix C.8.

Detailed tests on the validation dataset indicated that the ε = 1.0 and ε = 0.25

background spectra were not adequately described by the fitting functions used. The
results of these fits can be found in Section 7.6. Therefore, the final analysis only
includes the results with ε = 0.1 and ε = 0.01.

For these values also it was found in the validation dataset that the fitting function
was inadequate to describe the background spectra - the fit function tends to under-
estimate the data at lowmJJ and overestimate at highmJJ, leading to a non-closure in
the significances (Equation 7.13) of the data with respect to the background (meaning
a mean significance of < 0). However, this effect is quite small, so it can be corrected.
This correction is described in detail in Appendix C.10. A linear correction in mJJ

is applied to the final fit values. This correction is derived in the data validation
dataset, and then validated by testing for closure in the sidebands of the unblinded
dataset. An uncertainty on this correction is derived in the validation dataset and
applied as an additional uncertainty on the background expectation.

7.4.7 Statistical Analysis

7.4.7.1 Background Compatibility

The background compatibility is presented in two ways, depending on the precision
of the result required.

For the simulation analysis and data validation analysis, the background compati-
bility is quantified as the (Data-Fit)/Uncertainty, i.e. the (signed) χ in the respective
χ2 calculation.

For the final fit results, a more precise p-value calculation is included. Where
indicated, the significance of the data with respect to the background fit is shown.
The significance S is calculated as the inverse Gaussian CDF of the p-value of the
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data under the background-only hypothesis:

S = Φ−1

(∑
k<Oi

P(Ei;k)

)
, (7.13)

where Oi is the observed count in bin i, Ei is the expected count in bin i (background
fit value), and Φ−1 is the inverse Gaussian CDF; the p-value is the argument of Φ−1.
When k = 0, the p-value is 0, so the significance is in principle −∞; in these bins the
significance is simply quoted as 0. As mentioned in Section 7.4.6.3, since each bin is
included in the fit in the full unblinded analysis, the uncertainties on the background
fit itself are not included when calculating the significance. However, the additional
uncertainty on the background fit due to the fit correction derived in the validation
selection (Appendix C.10) is included in the background-only significance calculation
by allowing Ei to vary within Gaussian constraints when calculating the p-value.
This significance is directly used as the test of the background-only hypothesis; a
significance > 5 would indicate a “discovery” of a new signal.

7.4.7.2 Setting Limits

The observed results are interpreted using a frequentist statistical analysis when set-
ting limits. The parameter of interest is the signal strength, µ, defined as a scale
factor on the total number of signal events expected relative to some benchmark, so
that µ = 0 corresponds to no signal, and µ = 1 corresponds to the benchmark. As
there is no specific signal model, the couplings and thus cross-sections are free param-
eters. Therefore, the benchmark is defined to be such that, in the benchmark model,
the total number of events expected to be produced is exactly 1: σ × B × L = 1,
with σ the signal cross section for A production, BR the signal branching ratio to
BC which then decay hadronically, and L the data luminosity. Then µ is exactly the
total number of signal events expected to be produced.

A likelihood function L(µ, θ) is defined, with θ = {θs, θb} going over the nuisance
parameters in the signal (θs) and background (θb). The likelihood function is defined
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as follows:

L(µ, θ) =
∏
i

Ppois(n
i
obs|µsi + bi)× G(θb)× G(θs), (7.14)

where niobs is the number of events observed in bin i, si is the fraction of signal
expected in bin i (including the event selection due to the NN selection), θs are
the nuisance parameters corresponding to the systematic uncertainties on the signal
shape18 (Section 7.4.5), bi is the total number of background expected in bin i, θb are
the nuisance parameters corresponding to the uncertainty on the background fit19,
as derived from the fitting and described in Section 7.4.6, Ppois(n|e) is a Poisson
likelihood of n events given e expected, and G is a Gaussian. Note that, since θs only
affect the shape of the signal, these uncertainties cannot be profiled.

The test statistic λ(µ) based on the profile likelihood ratio is defined using the
lowest order asymptotic approximation [346]. Exclusion limits at the 95% confidence
level, µ95 are also set following the CLs prescription [345].

In this analysis, the cuts are not set in advance, and are rather determined by the
number and nature of a potential signal. In order to remain agnostic to the number
and nature of a potential new signal, rather than optimizing the efficiency of the NN
cut for a particular signal model, a few different NN cut efficiencies ε are chosen in
order to scan the space of possible NN cuts. These chosen efficiency values are listed
in Table 7.520. Each choice of ε is treated as a separate statistical analysis; since the

Table 7.5: Chosen values of NN cuts with efficiency ε for analysis.

Values
ε [1.0,0.25,0.1,0.01]

choices of ε differ by factors of more than 2, the results with a given NN at different
values of ε should be mostly independent.

18I.e., si → si(1 + θsσsi) with the size of the variation σsi derived by varying the systematic
uncertainties in simulation.

19I.e., bi → bi(1 + θbσbi
) with the size of the variation σbi

the uncertainty on the background
fit in bin i.

20In the final unblinded analysis, only the values ε = 0.1 and ε = 0.01 are used.
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For deriving the 95% confidence exclusion limits µ95, it is necessary to inject signal
on top of the background expectation in order to evaluate the profile likelihood λ(µ).
The NN output depends on the presence of the signal, and in particular gets better at
tagging signal the more signal there is (Section 7.5.2). Therefore, the µ95 values are
evaluated by first injecting a certain amount of signal µ, running the NN training, and
then performing the statistical analysis, deriving a limit µ95(µ) which is a multiple
of the injected signal strength while keeping the NN fixed. In particular, the values
µ95(µ) are functions of the injected signal strength µ, derived from performing the
statistical analysis after such a signal is injected. Ideally, µ would be scanned until
µ95(µ) = µ ≡ µ̂95 - with this strength of signal present, that exact signal would be
excluded.

However, it is expensive to scan finely over the injected µ (because of the re-
quirement to retrain the NN at each value), so upper limits on µ̂95 are derived by
injecting a coarse grid of signal strengths µ; for each analysis (validation in simulation
(Section 7.5.4), validation in data (Section 7.6.4), and unblinded (Section 7.7.5)) this
grid is provided in the respective section. In order to simulate a true signal, for each
given injected signal strength µ, exactly µ events are chosen from the given signal
MC sample, with probability proportional to the MC weight. These events are then
injected into the data sample with weight 1 and included with all the rest of the data
when being passed through the steps of the analysis, in particular the event selection
(Analysis Step 2), the cross-validation splits (Section 7.4.4), and the mass decorrela-
tion and training (Analysis Step 4). However, for the tagging (Analysis Step 6), the
derived NN is applied to the entire signal sample with weights in order to get the full
signal mJJ histogram after tagging. The signal is injected in this way with weights 1
for the training in order to simulate as close as possible for the NN what a true signal
would look like. The tagging is done with the full sample with the MC weights in
order to derive limits as a multiple of the injected µ with the NN fixed, as described
above. For each of the 3× 4× 5 = 60 (Section 7.4.4) iterations of the signal training,
the chosen signal events injected for the NN training are held fixed.

However, for the final unblinded analysis (Section 7.7.5), this entire process is
repeated for 5 different random samplings of the signal MC as a smoothing procedure,
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and the expected limits that are used for the given µ value (median and bands) are
the limits derived from the sampling which gives the median median expected limit
over the 5 random samplings. The 5 random samplings indicate an uncertainty in
the output of the NN, based on the specific presence of the signal the NN is trained
on. This uncertainty is added to the bands of the expected limits: the (unbiased or
Bessel-corrected) variance of the median expected limits is added in quadrature to
the ±1, 2σ bands relative to the median. The observed limits that are used for the
given µ value are the limits derived from the samplings with gives the median (over
the 5 random samplings) observed limit.

Once a limit µ95(µ) is derived for each injected µ, the final limit overall is derived
as described below.

A crucial observation is that µ95(µ1) ≥ µ95(µ2) if µ1 < µ2; this is because, when
more signal is injected, the NN only gets better at discriminating that signal from the
background, and the exclusion limit therefore only gets better (recall that the total
efficiency in the signal region ε is fixed). We then derive the following results:

µ > µ̂→ µ95(µ) ≤ µ95(µ̂) = µ̂ < µ (7.15)

µ < µ̂→ µ95(µ) ≥ µ95(µ̂) = µ̂ > µ (7.16)

Therefore, if µ > µ95(µ), then µ is an appropriate upper limit on µ̂; and if µ < µ95(µ),
then µ95(µ) is an appropriate upper limit on µ̂. In summary, with a signal injection
of µ, the upper limit on µ̂ that is set is max (µ95, µ). Since it is desirable to derive
an exclusion limit as close as possible to µ̂, a few different values of µ are injected
(depending on the signal region), and the value of µ that leads to the lowest median
expected upper limit is used.

For some signals, at low µ values, the rule µ95(µ1) ≥ µ95(µ2) if µ1 < µ2 can
be violated; this is due to the NN learning to tag basically a random region of the
parameter space and just happening to tag the signal. For these signals, the limits at
those µ values are simply not used.
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7.5 Simulation Analysis

7.5.1 Event Selection

In this section, the analysis is validated on a MC sample with the same event selections
as used in the full unblinded data analysis, as detailed in section 7.4.1.

7.5.2 Neural Network Output

Some thorough studies are performed to test the sensitivity of the neural network to
various signals.

A study is performed by training the neural network with different injected signals
in different part of the mA,mB,mC kinematic space, for fixed µ.

For mA = 3000 GeV, this signal lies in signal region 5. In this region, there are
roughly 1.0 × 105 background events, and µ is set to 1500; after all event selections
( 45% efficiency), there are roughly 650 signal events in signal region 5, for a signal
fraction of ∼ 0.7% and an estimated significance S√

B
∼ 2. The results of this study can

be seen in Figure 7.15. The network successfully learns to tag the kinematic region
near the true signal as being signal-like.

A second study is performed with a fixed signal model (mJJ = 3000GeV;mB,mC =

200, 400 GeV), varying µ in order to test the sensitivity of the neural network to µ.
This signal lies in signal region 5; the results when training with signal region 5 as
the signal region can be seen in Figure 7.16. There are roughly 1.0× 105 background
events in this signal region; the signal fraction and estimated significance varies from
∼ 0.3%, ∼ 1 (at µ = 750), respectively, to 0.7%, ∼ 2 (at µ = 1500), respectively. For
low µ, the network is unable to detect the presence of the signal, and it learns to
tag the same kinematic regions as in the background-only case. As µ increases, the
network becomes more confident about tagging the kinematic region near the true
signal, while still tagging the kinematic regions that are present in the background-
only case.
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Figure 7.15: Neural network output for signal region 5 with µ = 1500 for a signal
with mA = 3000 GeV and (a) (mB,mC = 80, 80 GeV); (b) (mB,mC = 200, 80 GeV);
(c) (mB,mC = 400, 80 GeV); (d) (mB,mC = 200, 200 GeV); (e) (mB,mC = 400, 200

GeV); (f) (mB,mC = 400, 400 GeV).
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Figure 7.16: Neural network output for signal region 5 with a signal at (mA,mB,mC =
3000, 200, 400 GeV) with (a) µ = 0; (b) µ = 750; (c) µ = 1000; (d) µ = 1500.
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7.5.3 Fitting Results

Example fits in the coarse bins used for training are shown in Figure 7.17.
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Figure 7.17: Example fits to the mJJ spectrum using the functional form given in
Equation 7.3. There is an injected signal sample at mA,mB,mC = 3000, 200, 200

GeV, which lies mostly in signal region 5, and with S√
B
∼ 2 in that region. (a) With

no cut on the NN output; (b) Training a NN with signal region s = 5 (2.74−3.28 TeV),
and making a cut on the NN output at efficiency ε = 0.01. The red band indicates the
uncertainty on the fit, which is due to the covariance matrix from the fit parameters.
The green dashed lines indicate the signal region for training.

7.5.4 Limits

As described in Section 7.4.7.2, there is a coarse scan of injected µ values to train the
NN, following which, for each injected µ, limits are set following the CLs procedure
by scanning the overall signal strength as the POI while keeping the NN fixed. The
values of µ injected for this analysis are given in Table 7.6.

Table 7.6: Injected µ values.

Bin ma [GeV] Values
5 3000 [750,1000,1500,2000]

The 95% confidence exclusion limit µ95 on a variety of signal models is shown
in Figure 7.18, expressed as the limit on the cross section times branching ratio,
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σ95 × B = µ95
L , where L = 139 fb−1 is the total integrated luminosity. The result is

shown for a few different values of ε, where the NN is trained with signal region s = 5,
which is the signal region in which these signal models mostly lie. For comparison,
we also show limits for the ATLAS inclusive dijet search [19] and for the ATLAS
all-hadronic diboson resonance search [20] The inclusive dijet limits are calculated
using the W ′ signals from this analysis and the full analysis pipeline of that search;
in particular, small-radius jets were used, so that the limits from that search get worse
at higher mB,mC as the small-radius jets are not sufficient to contain all of the decay
products of the daughter resonances. The diboson search limits are computing using
the Heavy Vector Triplet [406] W ′ signal used in that search.

The ε = 1 regime of the search has no machine learning tagging and is therefore
similar to the inclusive dijet search. The limits from the ε = 1 search are about
the same as the inclusive dijet search for lower mB,mC; but they are much better at
higher mB,mC, because small-radius jets are often not sufficient to contain all of the
decay products of the daughter resonances. As expected, the targeted diboson search
is more sensitive than the relatively generic inclusive dijet search and the difference
in limits is about a factor of 10. Away from the SM dibosons, CWoLa hunting with
ε < 1 outperforms the other searches by as much as a factor of 5 for the heaviest
masses, and almost a factor of 2 for the lighter masses where the inclusive dijet search
is most sensitive.
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Figure 7.18: 95% confidence exclusion limits on the cross section of a variety of
signal models, labeled by (mA,mB,mC), in GeV. The limits are shown for NN cuts
at ε = [1.0, 0.25, 0.1]. Also shown are the limits from the ATLAS dijet search [19]
and the ATLAS all-hadronic diboson search [20].

7.6 Validation Analysis

In this section, the analysis is validated on a data sample with an inverted rapidity
cut, as detailed in section 7.6.1.

7.6.1 Event Selection

The event selection is similar to the standard selection from Section 7.4.1, only that
the rapidity cut is inverted: |y1 − y2| > 1.2. Note that the signal samples have the
usual non-inverted cut applied (|y1 − y2| ≤ 1.2).

The distributions of |y1 − y2| > 1.2, η1, and η2 after this selection are shown in
Figure 7.19. The jet mass distributions in a few representative signal regions are



CHAPTER 7. A GENERIC RESONANCE SEARCH 195

shown in Figure 7.20.
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Figure 7.19: The difference in rapidity for the two selected jets. The η distributions
of both jets are shown below. Note that these are data plots and not simulation,
using the inverted rapidity cut data selection.
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Figure 7.20: The mass distribution of the two selected jets in (a) signal region 4; (b)
signal region 5; (c) signal region 6. Note that these are data plots and not simulation,
using the inverted rapidity cut data selection.

7.6.2 Neural Network Output

The output of the neural network training with no injected signal is presented in
Figure 7.21. There are some features in this neural network output, corresponding to
likely statistical fluctuations, especially at high (m1,m2) where the data are poorly
populated by events.

The output of the neural network training with an injected signal is presented
in Figure 7.22. In all cases, the location of the injected signal aligns well with an
identified region in the neural network map. The (80, 80) GeV point is the hardest
to find as it would sit on top of the largest background from all of the benchmarks.
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Figure 7.21: The output of the neural network when there is no injected signal, in (a)
signal region 4; (b) signal region 5; (c) signal region 6; (d) signal region 7; (e) signal
region 8; (f) signal region 9. Note that these are data and not simulation, using the
inverted rapidity cut data selection.
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Figure 7.22: Neural network output for signal region 5 with µ = 1000 for a signal
with mA = 3000 GeV and (a) (mB,mC = 80, 80 GeV); (b) (mB,mC = 200, 80 GeV);
(c) (mB,mC = 400, 80 GeV); (d) (mB,mC = 200, 200 GeV); (e) (mB,mC = 400, 200

GeV); (f) (mB,mC = 400, 400 GeV). Note that these are data and not simulation,
using the inverted rapidity cut data selection.
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7.6.3 Fitting Results

The fit results for signal region 5, with no injected signal, are shown in Figure 7.23. In
this region, there is a slight excess in the masked region for the ε = 1.0 dataset, which
goes away for ε < 1. This indicates that the NN is not sculpting the background
distribution in favor of the signal region, in agreement with Assumption 2.

The fit results with no injected signal for the other signal regions are included in
Appendix C.7. These fit results with no injected signal indicate that the fit functions
are insufficient to describe the background shape at ε = 1 and ε = 0.25, motivating
the choice to limit the analysis to only ε = 0.1 and ε = 0.01 for the full unblinded
analysis. In all signal regions, at these lower values of ε, there is no evidence of
sculpting of the background, adding support to the claim that Assumption 2 is holding
true.

Even at these lower values of ε, there is still a slight bias in the fit results; this bias
is measured with these fits and applied as a correction, as a function of mJJ, on the fit
results in the full unblinded fit results. The correction is validated in the sidebands
of the fits in the full unblinded dataset, and the uncertainty on this correction is
added as an additional uncertainty on the fit; this correction is explained in detail in
Appendix C.10.

The fit results for signal region 5, with an injected signal at mA = 3000,mB =

200,mC = 200 GeV, for various efficiency points ε, are shown in Figure 7.24. The
injected signal is a ∼ 1.5σ excess in the ε = 1.0 case (note that there is a slight excess
in the data for ε = 1.0 already, so the observed p-value in the signal region there is
artificially low), and would not be excluded at the 95% confidence level. After cutting
on the output of the NN, the background is reduced while the signal remains, until
at ε = 0.01 the excess can be seen by eye and this level of signal would be clearly
excluded.

The fit results for signal region 5, with a variety of injected signals with mA =

3000 GeV, at either efficiency ε = 0.1 or ε = 0.01 depending on the signal, are
shown in Figure 7.25. The injected signal is a ∼ 1.7σ excess in the ε = 1.0 case,
and would not be excluded at the 95% confidence level. After cutting on the out-
put of the NN, the background is reduced while the signal remains. For the mass
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Figure 7.23: The background fit when there is no injected signal, in signal region 5,
for various efficiency points ε. Note that these are data and not simulation, using the
inverted rapidity cut data selection. The red dashed lines indicate the fit uncertainty.
The green dashed lines indicate the signal region for training.

points at mB,mC = (80, 80), (80, 200), (80, 400) GeV, the efficiency point ε = 0.1

is shown. At this cut level, for the higher mass points, there is a maximum ex-
cess of around 3σ relative to the background expectation. For the mass points at
mB,mC = (200, 200), (200, 400), (400, 400) GeV, the efficiency point ε = 0.01 is
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Figure 7.24: The fit with an injected signal at mA = 3000,mB = 200,mC = 200

GeV, in signal region 5, for various efficiency points ε. The strength of the signal is
µ = 750, corresponding to a ∼ 1.5σ excess in this bin. Note that the data points
include both the observed data and the injected signal. Note that other than
the injected signal, these are data and not simulation, using the inverted rapidity cut
data selection. The red dashed lines indicate the fit uncertainty. The green dashed
lines indicate the signal region for training.

shown. At this cut level, for these mass points, there is a maximum excess of ≥ 5σ
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relative to the background expectation.
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Figure 7.25: The fit with an injected signal atmA = 3000 GeVand (a)mB = 80,mC =
80; (b) mB = 80,mC = 200; (c) mB = 80,mC = 400; (d) mB = 200,mC = 200; (e)
mB = 200,mC = 400; and (f) mB = 400,mC = 400 GeV, in signal region 5, for
efficiency points ε = 0.1 (a,b,c) and ε = 0.01 (d,e,f). The strength of the signal is
µ = 1000, corresponding to a ∼ 1.7σ excess in this bin. Note that the data points
include both the observed data and the injected signal. Note that other than
the injected signal, these are data and not simulation, using the inverted rapidity cut
data selection. The red dashed lines indicate the fit uncertainty. The green dashed
lines indicate the signal region for training.

7.6.4 Limits

The values of µ injected for this analysis are given in Table 7.7.
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Table 7.7: Injected µ values.

Bin ma [GeV] Values
5 3000 [500,750,1000,1500]
8 5000 [50,75,100,150]

The 95% confidence exclusion limit µ95 on a variety of signal models is shown
in Figure 7.26, expressed as the limit on the cross section times branching ratio,
σ95×B = µ95

L , where L = 139 fb−1 is the total integrated luminosity. Note that these
are not real limits, as the validation data has an inverted rapidity cut applied while
the signal samples have the usual non-inverted cut. However, since the validation
data has been rescaled to match the expected statistics in the non-inverted region,
as explained in Section 7.3.3, these results can be considered as estimates for the
exclusion power of the method in the final non-inverted signal region. The result is
shown for a few different values of ε, where the NN is trained with signal region s = 5,
which is the signal region in which these signal models mostly lie. For comparison,
we also show limits for the ATLAS inclusive dijet search [19] and for the ATLAS
all-hadronic diboson resonance search [20] The inclusive dijet limits are calculated
using the W ′ signals from this analysis and the full analysis pipeline of that search;
in particular, small-radius jets were used, so that the limits from that search get worse
at higher mB,mC as the small-radius jets are not sufficient to contain all of the decay
products of the daughter resonances. The diboson search limits are computing using
the Heavy Vector Triplet [406] W ′ signal used in that search.

The ε = 1 regime of the search has no machine learning tagging and is therefore
similar to the inclusive dijet search. The limits from the ε = 1 search are about
the same as the inclusive dijet search for lower mB,mC; but they are much better at
higher mB,mC, because small-radius jets are often not sufficient to contain all of the
decay products of the daughter resonances. As expected, the targeted diboson search
is more sensitive and the difference in limits is about a factor of 10. Away from the
SM dibosons, CWoLa hunting with ε < 1 outperforms the other searches by as much
as a factor of 5 for the heaviest masses, and almost a factor of 2 for the lighter masses
where the inclusive dijet search is most sensitive.
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Figure 7.26: 95% confidence exclusion limits on the cross section of a variety of
signal models, labeled by (mA,mB,mC), in GeV. The limits are shown for NN cuts at
ε = [1.0, 0.25, 0.1]. Also shown are the limits from the ATLAS dijet search [19] and
the ATLAS all-hadronic diboson search [20]. Note that for the CWoLa limits these
are data and not simulation, using the inverted rapidity cut data selection.

7.7 Unblinded Analysis

In this section, the final analysis is performed on the unblinded dataset. The key
difference to the analysis in Section 7.6 is that the rapidity cut is not inverted, as
detailed in section 7.3.3.

7.7.1 Event Selection

The event selection is the same as the one outlined in Section 7.4.1, with the unin-
verted rapidity cut: |y1−y2| ≤ 1.2. The distributions of |y1−y2|, η1, and η2 after this
selection are shown in Figure 7.27. The jet mass distributions in a few representative
signal regions are shown in Figure 7.28.
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Figure 7.27: The difference in rapidity for the two selected jets. The binning is
described in Section 7.7.2. The η distributions of both jets are shown below.
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Figure 7.28: The mass distribution of the two selected jets in (a) signal region 4; (b)
signal region 5; (c) signal region 6. The binning is described in Section 7.7.2.
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As mentioned in Section 7.4.6, the efficiency values used in this analysis are re-
stricted to ε = {0.1, 0.01}. These values are listed in Table 7.8.

Table 7.8: Chosen values of NN cuts with efficiency ε for analysis.

Values
ε [0.1,0.01]

7.7.2 Binning

The binning for the learning is the same as in Section 7.4.2, with signal regions starting
from bin 4 and going up to bin 9, corresponding to the signal regions that fit into the
ultimate fit range (1.8 < mJJ < 8.2 TeV) with room for sidebands. The number of
events in each of the bins 3-10 (bins 3 and 10 are used as sidebands, though not as
signal regions) is shown in Figure 7.29.
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Figure 7.29: The number of events in each of the bins 3-10.

7.7.3 Neural Network Output

The output of the neural network training with no injected signal is presented in
Figure 7.30. There are some features in this neural network output, corresponding to
likely statistical fluctuations, especially at high (m1,m2) where the data are poorly
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populated by events. Note that by construction, the NN has to have a low efficiency
somewhere and due to their smoothness, it is likely that the regions of low efficiency
are also relatively localized.
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Figure 7.30: The output of the neural network when there is no injected signal, in
signal region (a) 4; (b) 5; (c) 6; (d) 7; (e) 8; and (f) 9.

The output of the neural network training is presented with an injected signal at
mA = 3000 GeV in Figure 7.31 and with an injected signal at mA = 5000 GeV in
Figure 7.32. In each case, the NN with the median efficiency on the signal from the 5
random samplings of the signal is shown. These plots show the areas of the (m1,m2)

plane that the network has identified as signal-like. In all cases, the location of the
injected signal aligns well with an identified region in the neural network map. The
(80, 80) GeV point is the hardest to find as it sits on top of the largest background
from all of the benchmarks. The NN output for all 5 random samplings as a function
of µ is given in Appendix C.9.
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Figure 7.31: Neural network output for signal region 5 with µ = 1000 for a signal
with mA = 3000 GeV and (a) (mB,mC = 80, 80 GeV); (b) (mB,mC = 200, 80 GeV);
(c) (mB,mC = 400, 80 GeV); (d) (mB,mC = 200, 200 GeV); (e) (mB,mC = 400, 200

GeV); (f) (mB,mC = 400, 400 GeV).
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Figure 7.32: Neural network output for signal region 8 with µ = 350 for a signal
with mA = 5000 GeV and (a) (mB,mC = 80, 80 GeV); (b) (mB,mC = 200, 80 GeV);
(c) (mB,mC = 400, 80 GeV); (d) (mB,mC = 200, 200 GeV); (e) (mB,mC = 400, 200

GeV); (f) (mB,mC = 400, 400 GeV).
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7.7.4 Fitting Results

The fit results for all the signal regions, with no injected signal, are shown in Fig-
ure 7.33 for ε = 0.1 and Figure 7.34 for ε = 0.01. The largest local excess in the
masked regions occurs in signal region 4 around 2500 GeV, with a maximum local sig-
nificance of 2.93 at ε = 0.1 and 1.85 at ε = 0.01. If this excess corresponds to a signal,
the NN output for this signal region indicates an excess aroundm1,m2 ∼ (> 450, 150)

GeV. The distribution of significances, in particular the rate of large excesses, is con-
sistent with the background-only expectation (Appendix C.11) at around the 1.3σ
level (i.e. the rate of large excesses is this large or larger ∼ 10% of the time).

Some fit results with an injected signal are shown in Figure 7.35. For signal
region 5 there is an injected signal at mA = 3000,mB = 200,mC = 200 GeV, with
µ = 500; the injected signal is a ∼ 1.0σ excess in the ε = 1.0 case, and would not be
excluded at the 95% confidence level. For signal region 8 there is an injected signal at
mA = 5000,mB = 200,mC = 200 GeV, with µ = 225; the injected signal is a ∼ 1.5σ

excess in the ε = 1.0 case, and would not be excluded at the 95% confidence level. In
both cases, after cutting on the output of the NN, the background is reduced while
the signal remains; the excess could possibly be seen by eye and this level of signal
would be clearly excluded.

The fit results for all the signals at the injected µ value that gives rise to the limits
given in Section 7.7.5 can be found in Appendix C.12.

These fits are summarized in Figure 7.36. For each signal region training, only
the region of the fit that corresponds to the signal region is shown, and these regions
are stitched together across the signal regions 4-9. Because the signal regions from
independent fits (with independently trained NNs, and therefore possibly entirely
different selections) are stitched together, it is possible for the background fit to be
discontinuous when crossing from one signal region to another, even if the background
fit is smooth within a single signal region. The figure also shows simultaneously a
signal injected at mA = 3000 GeV trained in signal region 5 and a signal injected at
mA = 5000 GeV trained in signal region 8. In each case, the signal strength is just
less than that already excluded by existing searches (Section 7.7.5). After tagging
with the NN, the signal at mA = 3000 GeV would be easily discovered, and the signal
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Figure 7.33: The background fit when there is no injected signal, for efficiency point
ε = 0.1, in signal region (a) 4; (b) 5; (c) 6; (d) 7; (e) 8; and (f) 9. The red dashed
lines indicate the fit uncertainty. The green dashed lines indicate the signal region
for training, and the green dotted lines indicate the masked region for evaluating the
fit quality.

at mA = 5000 GeV would form a noticeable excess. Note that in signal region 8, after
tagging the signal constitutes a noticeable fraction of the total number of events;
since the NN has a fixed efficiency in the signal region, the amount of background
goes down proportionally.
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Figure 7.34: The background fit when there is no injected signal, for efficiency point
ε = 0.01, in signal region (a) 4; (b) 5; (c) 6; (d) 7; (e) 8; and (f) 9. The red dashed
lines indicate the fit uncertainty. The green dashed lines indicate the signal region
for training, and the green dotted lines indicate the masked region for evaluating the
fit quality.
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Figure 7.35: (a,b) The fit with an injected signal at mA = 3000,mB = 200,mC = 200
GeV, in signal region 5, for the two efficiency points ε. The strength of the signal
is µ = 500, corresponding to a ∼ 1.0σ excess in this bin with no cuts. (c,d) The fit
with an injected signal at mA = 5000,mB = 200,mC = 200 GeV, in signal region 8,
for the two efficiency points ε. The strength of the signal is µ = 225, corresponding
to a ∼ 1.5σ excess in this bin with no cuts. The red dashed lines indicate the fit
uncertainty. The green dashed lines indicate the signal region for training, and the
green dotted lines indicate the masked region for evaluating the fit quality.
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Figure 7.36: (a,b) The fit in each of the signal regions with no injected signal, stitched
together across the signal region trainings, for ε = 0.1 and ε = 0.01, respectively.
(c,d) The fit in each of the signal regions stitched together across the signal region
trainings, with an injected signal at mA = 3000,mB = 200,mC = 200 GeV with
signal strength µ = 1000 in signal region 5, and with an injected signal at mA =
5000,mB = 200,mC = 200 GeV with signal strength µ = 280 in signal region 8,
for ε = 0.1 and ε = 0.01, respectively. In each case, the injected signal strength
corresponds to just less than a 2.0σ excess, and are at just less than the level already
excluded by existing searches. The green dashed lines indicate the boundaries of the
signal regions. The red dashed lines indicate the fit uncertainty.
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7.7.5 Limits

The values of µ injected for this analysis are given in Table 7.9.

Table 7.9: Injected µ values.

Bin ma [GeV] Values
5 3000 [150, 185, 225, 350, 500, 600, 750, 850, 1000, 1250, 1500]
8 5000 [50, 60, 75, 100, 150, 225, 280, 350, 500, 750, 1000]

The 95% confidence exclusion limits µ95 are derived as discussed in Section 7.4.7.2.
The dependence of the limits on µ for each of the 5 random samplings of the signal
is given in Appendix C.13. As discussed in Section 7.4.7.2, the limit that is used
for the given µ value is the limit derived from the sampling which gives the median
expected limit over the 5 random samplings. The derived limits for each of the 5
random samplings are given in Appendix C.13 - for most signals where non-trivial
limits are set, the additional variance from the random samplings is negligible relative
to the original bands. The final expected limits that are used are the limits derived
from the µ value that gives the minimum median expected limit, after setting every
limit to the max(µ, µ95(µ)). The 95% confidence exclusion limits µ95 on a variety
of signal models is shown in Figure 7.37, expressed as the limit on the cross section
times branching ratio, σ95 × B = µ95

L , where L = 139 fb−1 is the total integrated
luminosity. The result is shown for the two different values of ε = 0.1 and ε = 0.01,
and for two different signal models: a signal model with mA = 3000 GeV and NN
trained on signal region 5; and a signal model with mA = 5000 GeV and NN trained
on signal region 8.

For comparison, limits are also shown for the ATLAS inclusive dijet search [19] and
for the ATLAS all-hadronic diboson resonance search [20] The inclusive dijet limits
are calculated using the W ′ signals from this analysis and the full analysis pipeline
of that search; in particular, small-radius jets were used, so that the limits from that
search get worse at highermB,mC as the small-radius jets are not sufficient to contain
all of the decay products of the daughter resonances. The limits from the inclusive
dijet search are visually separated between signal models where 〈 2m

pT
〉 < 0.4 and the
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dijet search is expected to be fully sensitive, and signal models where 〈 2m
pT
〉 > 0.4 and

the dijet search loses sensitivity. The diboson search limits are computing using the
Heavy Vector Triplet [406] W ′ signal used in that search. The acceptance for the W ′

using the selection in this search, compared to the W ′ acceptance in [20], is 86% and
54% at mW ′ = 3 and 5 TeV, respectively. That search uses dedicated W jet taggers
that make use of more features than just the mass of the jet, and so is expected to
achieve sensitivity to those signals that would not be possible with the setup of this
search (but would be possible in a future iteration of this analysis - Section 7.8). As
expected, the targeted diboson search is more sensitive and the difference in limits is
about a factor of 10.

For the SM dibosons, CWoLa hunting has the worst performance, as the NN is
often unable to find the signal in the densest region of the background when the
signal injected is less than that already excluded by other searches. For all other
signals at mA = 3000 GeV, CWoLa hunting sets new limits, with particularly large
improvements of up to a factor of 10 when the masses of the daughter particles
mB,mC are large, and up to a factor of 4 when mB,mC are smaller and the inclusive
dijet search is more sensitive. For mA = 5000 GeV, CWoLa hunting suffers from low
statistics in the training, but is able to set new limits for large mB,mC, including
signals models for which the inclusive dijet search is fully sensitive.
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Figure 7.37: 95% confidence exclusion limits on the cross section of a variety of signal
models, labeled by (mA,mB,mC), in GeV. The limits are shown for signal models
with (a,b) mA = 3000 GeV and NN trained on signal region 5; and (c,d) mA = 5000
GeV and NN trained on signal region 8. The limits are broken down between the
analyses with (a,c) ε = 0.1 and (b,d) ε = 0.01. The limits from the ATLAS dijet
search [19] are shown with red triangles. For signal models where 〈 2m

pT
〉 < 0.4 and the

dijet search is expected to be fully sensitive, the markers are full and pointing up; for
signals where 〈 2m

pT
〉 > 0.4 and the dijet search loses sensitivity, the markers are hollow

and inverted. The limits from the ATLAS all-hadronic diboson search [20] are shown
as well (black cross). Missing markers are higher than the plotted range.

7.8 Discussion

The search presented in this Chapter demonstrates for the first time the use of a
generic signal and background model-independent method to search for unanticipated
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signals directly in data. As such, considerable effort was put into the neural network
training, especially the intricate cross-validation procedure (Section 7.4.4), which is
necessary for being able to tag true signals without a high rate of false signals (Ap-
pendix C.1). However, some of the most challenging aspects of this analysis were the
fitting procedure (Section 7.4.6) and the subsequent limit setting (Section 7.4.7.2).
While the task of fitting an mJJ spectrum with a parametric fit function over large
numbers of events is one aspect that this analysis shares with almost every other dijet
resonance search, the number of such fits required in this analysis is far greater than
any existing analysis. Most dijet searches only do a few fits ultimately, especially if
the background fit is decoupled from the POI scan (so that the POI scan fits have
only a couple free parameters and converge quickly) like in this analysis. However,
this analysis uniquely requires a huge number of background fits for the limit setting
- one for each signal hypothesis, for each injected signal strength µ, for each NN selec-
tion ε - amounting to hundreds of background fits. The limit setting procedure used
in this analysis is also novel, due to the unique situation where the event selection
depends on the presence of the signal and therefore the likelihood function L(µ, θ) is
extremely complicated. Therefore, the likelihood function can only be approximated
by examining it at a few discrete points µ, rather than having an analytic dependence
as is the usual case. Each of these challenges could be helped by simply increasing
the computing time spent on this analysis. That being said, the computing resources
used in this analysis are already considerable, taking days-weeks just to train all the
neural networks. More details about the computing resources used in this analysis
can be found in Appendix C.14.

In this iteration of the analysis, the features used were simply the masses of the two
jets {m1,m2}. It is anticipated that this kind of 3-dimensional search in {mA,mB,mC}

will turn into a standard result ATLAS publishes like the inclusive dijet search. For
this search, the only handles on tagging the signal are the masses of the jets, and in
particular rely heavily on an accurate calibration and good resolution of the large-R
jet mass. The dijet resolution is also important for narrowing the mJJ signal regions,
which depends on an accurate calibration and good resolution of the large-R jet energy.
The techniques presented in Chapter 8 and Chapter 9 focus mostly on calibrations
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of small-R jets, but these techniques are intended as general calibration techniques
which should apply readily to the calibration of large-R jets as well. In particular, the
Author has contributed to a project intended to better calibrate the mass and energy
of large-R jets [292] based directly on the novel technique presented in Chapter 9.

A natural extension of this analysis is to include more features of the two jets,
especially the jet substructure which is known to tag jets resulting from top quarks
and W/Z hadronic decays [94]. Indeed, the original proposal for this analysis [17]
uses jet substructure information like N-subjettiness [202] to tag the jets and be
much more sensitive to new signals that have non-trivial distributions in those fea-
tures. Other ideas for using additional information about the jets are to include
features which are typically used for heavy flavor tagging [182–184], di-b-tagging for
Higgs identification [95], photon and electron identification [181, 281], hadronic τ-
tagging [186, 302–304], or quark-gluon tagging [87]. Each of these sets of features
would allow this analysis to be more sensitive to resonant decays to the given stan-
dard model particles, but also other more exotic jets produced from BSM particles.
For example, using the entire jet image [90,407,408] to construct features with convo-
lutional neural networks [315–317] could enable the low-mass extension of the search
presented in Chapter 6, in which the a particles are each reconstructed as single
small-R jets with exotic substructures due to the boosted gg and γγ decays.

A word of caution should be raised here about these exciting possibilities, though.
The first thing to mention is that one advantage of using a reduced feature space
is that calibrations and systematic uncertainties are available on all the included
features (Section 7.4.5). This allows limits to be set on specific signal models while
including all the known uncertainties between the simulation and the data. The
use of any other jet substructure features may not come with these calibrations and
uncertainties, meaning that the limit projections may be biased or that additional
performance work will need to be done to enable the analysis21. Of course, one of

21Note that other more typical searches do use jet substructure features which are not themselves
calibrated. In those searches the signal selection is set in advance, often by training in simulation,
so that the overall classifier can be calibrated between data and simulation and the uncertainties
understood. Since in this search the selection is not set in advance, this kind of approach would not
work.
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the main advantages of CWoLa hunting in the first place is that it does not require
a specific signal model hypothesis and simply learns to tag whatever signal happens
to be in data, if such a signal exists; i.e., the network itself does not need to be
calibrated, and the only reason simulations are required are to understand what
would have happened if a given signal were present. The second consideration that
should go into adding additional features has to do with accounting for correlations
between the features and mJJ. This analysis spent considerable effort on imposing
a decorrelation between the features and mJJ (Section 7.4.3.1), and it is not clear
exactly how this could be extended to arbitrary numbers and types of features. That
being said, it is also true that of all the jet substructure features other than the jet
pT itself, the jet mass is probably the most correlated with the jet pT and therefore
with mJJ, so that some other set of jet substructure features may not need to be
decorrelated in this way.

There are even more speculative extensions using the principle of CWoLa beyond
the dijet search involving more complicated topologies or even whole event informa-
tion. The formulation of CWoLa and CWoLa hunting (Section 7.3.1) is quite general
and any set of features satisfying the underlying principles should lend itself to the
CWoLa hunting technique.

Finally, as discussed in Section 7.3.1, there are many competing alternative pro-
posals to CWoLa hunting which can also be broadly sensitive to new unanticipated
signal models in data.

7.9 Conclusion

This Chapter has presented a model agnostic search in the dijet final state using the
full LHC Run 2 dataset recorded by ATLAS. Weakly supervised neural networks are
trained entirely in data, without a specific signal model hypothesis, under the principle
of classification without labels (CWoLa) in order to identify potential signals. The
search is sensitive to generic final states of the form A→ BC, where all of A,B,C are
massive and may be BSM, with mA ∼ O(TeV) and mB,mC ∼ O(100 GeV). This is
the first search to that completely covers the space of {mA,mB,mC}, and in doing so
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avoids the large trials factor associated with searching in this 3-dimensional feature
space. No significant evidence for a localized excess is found in the dijet spectrum
between 1.8 and 8.2 TeV. The search significantly improves the limits for certain
specific signal models relative to the incusive dijet search, especially at high mB,mC.
As the first analysis to use this new technique, a reduced feature set is used to tag
the jets corresponding to the B and C particles, but there is great potential to extend
this analysis to include additional features and therefore be more sensitive to specific
final states. This analysis and these possible extensions enhance the coverage of
the ATLAS search program and provide an essential means for ensuring ATLAS is
sensitive to unanticipated scenarios.



Chapter 8

Numerical Inversion for Jet

Calibrations

Numerical inversion is a general method used for calibrating the properties of objects
observed in detectors and in particular is used for the calibration of the jets observed
in the ATLAS detector. The key property of numerical inversion as a calibration
method is that it is independent of the underlying spectrum. In this chapter this
method is put into a formal framework and its statistical properties are explored rig-
orously. The results in this chapter are published in [349]. There are a few key novel
results from this study. First, the method itself is established to be inherently biased,
and the size of this bias is estimated analytically for the first time. Second, common
approximations for the calibrated jet energy resolution are shown to be inaccurate,
and more accurate estimations are presented in their place. Finally, extensions and
corrections to numerical inversion are presented which can reduce the inherent bias.
These approximations and corrections are shown to be increasingly important to con-
sider as the LHC moves to higher instantaneous luminosities and pile-up conditions.

8.1 Introduction

Both of the main searches in this Thesis (Chapter 6 and Chapter 7) use jets extensively
in their final states, and in general the theme of this Thesis is the use of jets in

222
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ATLAS to search for new physics. As mentioned in their respective chapters, these
searches would both benefit from improved kinematic resolution of the jets involved
- in Chapter 6, the small-R jet energy resolution, and in Chapter 7, the large-R
jet energy and mass resolution. The detector is not perfect, and so the observed
quantities observed from the detector do not match exactly to the pre-detector, or
particle-level, quantities; this can be confirmed either by using simulations of particles
passing through the detector or by using calibration or test beam data where the pre-
detector quantities are well-known. Because of this, all of these jet observables are
calibrated from their detector-level quantities in order to both set the scale at the
same level as at particle-level and to reduce the spread of the difference between the
calibrated and the particle-level quantities [409] (Section 5.5.4.1). These calibration
procedures at ATLAS [80, 81] and also at CMS [410, 411] involve several steps to
correct for multiple nearly simultaneous pp collisions (pile-up), the non-linear detector
response, the η-dependence of the jet response, flavor-dependence of the jet response,
and residual data/simulation differences in the jet response. For all but the last step,
simulations are used to determine the particle-level quantity. The final step, which is
applied only to jets in data (in-situ correction), corrects for differences between the
detector-level quantities in data and simulation by comparing the relative response
to a well-measured reference object in the same event1. All of these calibrations,
including the in-situ correction, proceed via a process known as numerical inversion.

While numerical inversion is essential for the jet calibration at ATLAS and CMS,
the documentation is surprisingly sparse. The term was first introduced in a non-
public ATLAS document [412] which amusingly is accompanied by the note “I asked
that this note be refereed over 1 month ago and nobody has gotten back to me”,
dated August 2009. The motivation behind introducing this method is to ensure
that the calibration is independent of the underlying spectrum used to derive the
calibration. This is important at a general-purpose detector like ATLAS, because
the energy spectra corresponding to the searches for different particles can be wildly

1This step occurs after the jets in simulation have already been corrected to be on the same scale
as at particle-level. Since it is much more expensive to know particle-level quantities at data level
(with calibration or test beam data), this relative ratio method is used to correct detector-level jets
in data to the detector-level simulation jets, and therefore in turn to the particle-level.
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different; the calibration should perform well regardless of what are the needs at the
analysis level. This is further explained in Section 8.2.1.

The purpose of this chapter is to formally document numerical inversion and de-
scribe some of its properties. This chapter, and the paper in which these results are
published, are intended to shed light on the properties of numerical inversion. In
addition, the insight provided by these studies is used to propose corrections and ex-
tensions to numerical inversion. In particular, the deep understanding of the method
provided by this work led directly to the techniques described in Chapter 9, which in-
corporate machine learning via neural networks into the numerical inversion process,
and in doing so improve the jet energy calibration.

8.2 Calibrations

Numerical inversion is a method that can be used to calibrate any quantity that is
observed in the detector, e.g. the jet transverse momentum pT or the jet mass m.
We focus here on the case of calibrating the ET for sake of concreteness.

In what follows, X will be a random variable representing the particle-jet ET and
Y will be a random variable representing the reconstructed jet ET

2 3 . As mentioned
in Section 8.1, there is a spread in Y given X, and furthermore Y is not equal to X
even on average, due to various effects including the non-compensating and non-linear
response of the ATLAS calorimeter, pile-up effects, and out-of-cone effects.

2Capital letters represent random variables and lower case letters represent realizations of those
random variables, i.e. X = x means the random variable X takes on the (non-random) value x.
Functions that take random variables as arguments use square brackets [·] while functions that take
real variables as arguments use curved brackets (·).

3As mentioned in Section 8.1, X and Y can be known simultaneously in simulation or using
calibration or test beam data. For the in-situ correction, Xdata and XMC represent the pT of the
reference object in data and in simulation, while Ydata and YMC represent the pT of the reconstructed
jet, respectively. Then c(x) ≡ Rdata(x)/RMC(x) is defined and Ydata is corrected using c(x) as the
analogue of the response function R(x) in numerical inversion as described in Section 8.2.2. In order
to prevent confusion and remain concrete, the simpler case where Y is being corrected to X directly
is focused on.
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Define

fme(x) ≡ E[Y|X = x] (8.1)

Rme(x) ≡ E
[
Y

x

∣∣∣∣X = x

]
=
fme(x)

x
. (8.2)

Where E[·] is defined as taking the expected value (mean) of its argument, and
the subscript indicates that the mean is being used to define f and R. In practice,
sometimes the core of the distribution of Y|X = x is fit with a Gaussian and so the
effective measure of central tendency is the mode of the distribution. Therefore in
analogy to Equations 8.1 and 8.2, we define

fmo(x) ≡ mode[Y|X = x] (8.3)

Rmo(x) ≡ mode
[
Y

x

∣∣∣∣X = x

]
=
fmo(x)

x
. (8.4)

Similarly, mode[·] is defined as taking the mode of its argument, and the subscript
indicates the definition of f and R. We will often drop the subscript of f and R for
brevity in the text, when it is clear which definition we are referring to. If not specified,
f and R will refer to a definition using a generic definition of central tendency. For
all sensible notions of central tendency, we still have that R(x) = f(x)

x
. The function

R(x) is called the response function.
The resolution σ(x) measures the spread of Y given X and is defined to be

σ(x)2 ≡ σ[Y|X = x]2 = E[Y2|X = x] − E[Y|X = x]2 (8.5)

where σ[·] is defined as taking the standard deviation of its argument.
The resolution is sometimes broken up into terms based on the dependence on

x [342,413]4:

σ(x) ∼ N⊕ S ·
√
x⊕ C · x (8.6)

4Actually, this breakdown is usually applied to the resolution after calibration, but the intuition
is the same for the uncalibrated resolution.
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where N is the noise term, S is the stochastic term, and C is the constant term. The
noise term corresponds to sources of variance independent of the jet energy; for ex-
ample, pile-up is a source of noise independent of the true jet energy5. The stochastic
term corresponds to Poisson sources of noise; in particular, the number of particles
produced by a jet passing the noise thresholds is roughly Poisson distributed with
mean scaling with x. The constant term corresponds to sources of noise that are a
constant fraction of x, e.g. energy lost in passive material in the detector. As the
scalings suggest, the N term dominates for lower energy jets, the C term dominates
for higher energy jets, and the S term dominates in the intermediate regions; however,
in practice it is difficult to unequivocally disentangle their contributions. The results
presented in this Chapter are general and do not depend on this breakdown. How-
ever, the toy model used to present results (Appendix D.9) focuses on lower energy
jets and high pile-up conditions, as might be expected at the high-luminosity LHC
(Section 4.4), where the N term dominates, with σ ′(x) = 0.

It is often useful to think of Y|X = x ∼ N (f(x), σ(x)); however, the discussion in
this Chapter remains general unless stated otherwise. Just to be clear, in this case
we have that E[Y|X = x] = mode[Y|X = x] = f(x), and that σ[Y|X = x] = σ(x), so the
definitions are consistent.

The functions f and R should be thought of as parameterizing the average response
of the detector to jets with known energies X, and σ as parameterizing the spread of
the response. In particular, f, R, and σ are independent of the underlying spectrum
of X - if two samples are examined, one with more jets produced at a lower energy,
for example, the values of f, R, and σ derived from these two samples should be the
same (to within statistical fluctuations).

In the calibration we are given a list of ordered pairs (X, Y), from which we can
derive f and R, and we need to correct Y to be on the same scale as X when averaged
over the jets in the sample. The goal of the calibration therefore is to devise a
calibration function c : Y 7→ Z = c(Y) such that after the calibration, the scale of Z
is the same as the scale of X. There are two ways one might judge that.

5Since the detector response is non-linear, this is only true to first order.
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One way is to define the closure

Cme(x) ≡ E
[
Z

x

∣∣∣∣X = x

]
=

E [Z|X = x]

x
, (8.7)

and another way is to define the prior-dependent closure

Cpme(z) ≡ E
[
X

z

∣∣∣∣Z = z

]
=

E [X|Z = z]

z
, (8.8)

with Cmo and Cpmo(z) defined analogously. The symbols C and Cp will denote the
closure for a generic notion of central tendency.

As the name suggests, the prior-dependent closure depends on the prior distri-
bution of X in the sample. A sample with more jets produced at lower energies, for
example, will tend to be biased towards a lower prior-dependent closure than another
sample with more jets produced at higher energies. As mentioned in the motivation,
at ATLAS there are samples targeting different physics regimes with wildly different
prior distributions of true energies, so the prior-dependent closure cannot be relied
on to be useful in physics analysis.

On the other hand, the closure C is independent of the prior distribution of X,
given c. Therefore, this is the agreed-upon figure of merit for the calibration. We say
that the calibration has achieved closure or simply closes if, for all x,

C(x) = 1. (8.9)

8.2.1 Learning the Prior

One way to define c is to learn a functionM(Y) that predicts X given Y directly. I.e.,
define

Mme(y) ≡ E[X|Y = y] (8.10)

and then let c =M so that Z =M(Y).
This method is not the way calibrations are done in ATLAS, and the reasoning
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for this decision is given below.
It’s clear that this definition of calibration function depends on the prior distribu-

tion of X in the sample, and in particular the prior-dependent closure (Equation 8.8)
is achieved for the sample used to learn M.

That being said, c is just some function, even if its definition is prior-dependent.
One might think that one could define c on a representative sample, e.g. with a uni-
form prior, and then apply the calibration function across various samples, achieving
closure (Equation 8.7).

However, even if the underlying distribution of X is uniform across some range,
this method does not necessarily lead to closure. In particular, if f(x) is nonlinear or
if the resolution σ(x) is nonconstant, then even with a uniform prior distribution of X
there can be large non-closures. Since both of these effects are present in the ATLAS
jet calibration [81], it is expected that these nonclosures will be present if this method
were attempted in the ATLAS jet calibration. This effect can be seen in Fig. 8.1,
using a toy model that approximates the ATLAS nonlinear f(x) (Appendix D.9) with
a constant resolution and another toy model with a linear f but with a nonconstant
resolution σ(x) that approximates the resolution in ATLAS.
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Figure 8.1: The effects of learning a function M(Y) that predicts X directly given
Y, with a uniform underlying distribution of X (e). (a,b) A nonlinear f(x) intended
to model the ATLAS nonlinear response function, with a constant resolution. (c,d)
A nonconstant σ(x) intended to model the ATLAS nonconstant resolution, with a
linear f(x). In this figure only X and Y correspond to the truth and reconstructed
jet pT, respectively, rather than the ET, as will be the case for the remainder of this
chapter; however, the principle is exactly the same.
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8.2.2 Numerical Inversion

Instead, the ATLAS calibration uses numerical inversion. Formally, numerical inver-
sion is the following procedure:

1. Compute f(x), R(x).

2. Let R̃(y) = R(f−1(y)).

3. Apply a jet-by-jet correction: Y 7→ Y/R̃(Y).

The intuition for step 2 is that for a given value y drawn from the distribution
Y|X = x, f−1(y) is an estimate for x and then R(f−1(y)) is an estimate for the response
at the value of x that gives rise to Y. Let ρX(x) be the prior probability density
function of X = ET. Since f is defined conditioning on a given value of X, f is
by construction independent of ρX(x). Therefore, this calibration is independent of
ρX(x), since f and thus f−1 do not depend on ρX(x). This is what is meant when it is
said that numerical inversion is independent of the underlying spectrum.

The question of whether numerical inversion achieves closure will be discussed in
detail in the following sections; in particular, under certain conditions it is found that
numerical inversion does not achieve closure. This raises the question of whether
using f−1 instead of M is indeed a better method of calibration, under the criterion
of achieving closure in a prior-independent way. The first thing to note is that at
least the definition of the calibration function is independent of the prior distribution
of X, unlike the definition of M. Second, it will be found that the non-closures can
be approximated and understood in terms of properties of the distributions of Y|X,
whereas the non-closures present when usingM to calibrate would depend necessarily
on the prior distribution ρX(x) used to learn M. Third, this is the method used in
ATLAS and CMS for jet calibrations, and therefore the method deserves to be studied
and its shortcomings understood. Finally, later in this chapter (Section 8.4.4) a
calibration function will be proposed different from both f−1 and M which attempts
to achieve better closure than either in a prior-independent way.

We can see now the first result, which will be useful for the rest of this chapter:
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The correction derived from numerical inversion is Y 7→ Z = f−1(Y).
Proof.

R̃(Y) = R(f−1(Y))

=
f(f−1(Y))

f−1(Y)

=
Y

f−1(Y)

→ Z =
Y

R̃(Y)

= f−1(Y) � (8.11)

I.e., the calibration function is simply c = f−1.

8.2.3 Assumptions and Definitions

The general results presented in the following sections are based on three assumptions
listed below. These requirements should be satisfied by real detectors using calorime-
ters and trackers to reconstruct jets, given that the detector-level reconstruction is of
sufficiently high quality.

1. f−1(y) exists for all y in the support of Y, and f−1 is single-valued. These may
seem like obvious statements, but are not vacuous, even for a real detector. For
example, pile-up corrections can result in non-zero probability that Y < 0, so the
function f must be computed for all possible values of Y, even if the transverse
energy is negative. At the high-luminosity LHC (Section 4.4), the level of pile-
up will be so high that the jet energy resolution may be effectively infinite at
low transverse energies (no correlation between particle-level and detector-level
jet energy). In that case, f−1 may not be single valued and numerical inversion
cannot be strictly applied as described in Section 8.2.2.

2. f(x) is monotonically increasing: f ′(x) > 0 for all x. This condition should
trivially hold: detector-level jets resulting from particle-level jets with a higher
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ET should on average have a higher ET than those originating from a lower ET

particle-level jet6. We note also that Assumption 1 implies that f ′(x) ≥ 0 or
f ′(x) ≤ 0 for all x; so Assumption 2 is equivalent to the additional assumptions
that f ′(x) 6= 0 for any x, and that f ′(x) > 0 (as opposed to f ′(x) < 0).

3. f is twice-differentiable. The first derivative of f has already been assumed to
exist in Assumption 2, and the second derivative will also be required to exist
for some of the later results. In practice it is expected that f is differentiable
out to any desired order.

We note that as long as the above three assumptions hold, the theorems stated in
the remainder of this chapter are valid. In particular, this implies that x could be any
calibrated quantity that satisfies the above constraints. Assumption 1 is necessary
for numerical inversion to be performed, while Assumptions 2 and 3 are necessary for
deriving the analytical results given in this Chapter.

The results in this chapter have been divided into “Proofs” and “Derivations”.
The “Proofs” require only the three assumptions stated above, and in particular do
not assume anything about the shape of the underlying distributions, e.g. that the
distributions Y|X = x are Gaussian or approximately Gaussian. The “Derivations”
are useful approximations that apply in the toy model described in Appendix D.9;
we expect them to apply in a wide variety of cases relevant to LHC jet physics.
In particular, it is expected that these approximations hold in cases with properties
similar to the toy model presented here - e.g., good approximation of f by its truncated
Taylor series about each point and approximately Gaussian underlying distributions
of Y|X = x. 7 Some of the derivations are illustrative and are included in the main

6Note that this is only true for fixed η. Detector technologies can depend significantly on η
(Section 5.2) and the η-dependence of f (for a fixed x) can be non-monotonic. When calibrating η
itself, though, it should still be the case that as the truth-level η increases the detector-level η also
increases, satisfying this Assumption.

7Note that we do not require that Y|X = x is exactly Gaussian, only that it is approximately
Gaussian, which is true for a wide range of energies and jet reconstruction algorithms at ATLAS
and CMS. In particular, there are non-negligible (but still often small) asymmetries at low and high
ET at ATLAS and CMS [81,410,411]. In any case, even if Y|X = x is Gaussian, Z|X = x is in general
not Gaussian, for non-linear response functions (Appendix D.1).
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body of the text; however, some derivations are moved to the Appendix (D) in order
to make the text more readable and highlight the main results.

Finally, in the rest of this chapter, we write ρP(p) to represent the probability
distribution of a random variable P, so that ρY|X(y|x) represents the probability dis-
tribution of Y given X = x, and ρZ|X(z|x) is the probability distribution of Z given
X = x. A standard fact about the probability distribution from changing variables is
that

ρZ|X(z|x) = f
′(z)ρY|X(f(z)|x). (8.12)

To ease the notation, we will often use ρY(y) and ρZ(z) interchangeably with
ρY|X(y|x) and ρZ|X(z|x), respectively, when it is clear (as is usually the case) that we
are conditioning on some true value x.8

8.3 Results

In the subsequent sections, we will derive properties about the closure C for three dif-
ferent definitions of the central tendency: mean (Section 8.3.1), mode (Section 8.3.2),
and median (Section 8.3.3).

8.3.1 Mean

In the following section only, for brevity, we will let f be fme and C be Cme.

8.3.1.1 Closure

We can write the closure (Equation 8.7) as
8In practice with a real sample it is necessary to condition on a small range of X, e.g. X ∈

[x, (1+ε)x]. If ε is large then there can be complications from the changing of f(x) over the specified
range and from the shape of the prior distribution of X over the specified range. These challenges
can be solved by generating large enough simulation or real datasets. We therefore assume that
ε� 1 and consider complications from finite ε beyond the scope of this Thesis.
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C(x) = E
[
Z

x

∣∣∣∣X = x

]
=
1

x

∫
dyρY|X(y|x)f

−1(y). (8.13)

We find that for many functions f, numerical inversion does not close. This is
summarized in the following result:

Let the notion of central tendency be the mean. If f is linear, then numerical inversion
closes. If f is not linear, then numerical inversion does not necessarily close.

Proof. Let f be linear, f(x) = a(x+ b). Then9 f−1(y) = y
a
− b. We can see that we

necessarily have closure as Equation 8.13 can be written

C(x) =
1

x

∫
dyρY|X(y|x)

(y
a
− b
)

=
1

x

(
1

a
E [Y|X = x] − b

)

=
1

x

(
1

a
f(x) − b

)

= 1. (8.14)

Now let f be nonlinear, and so therefore f−1 is also nonlinear. We note that the
statement being proved is that f does not necessarily close in this case; not that f
necessarily does not close. Thus, it is sufficient to find a counterexample that does
not close in order to demonstrate this statement. Let f(x) =

(
x
c

) 1
3 with c 6= 0, so that

f−1(y) = cy3, which is a simple non-linear monotonic function. We will also need to
specify some higher moments of the distribution ρY|X. With the standard definitions
of the variance and skew, respectively:

σ(x)2 ≡ E
[
(Y − E [Y])2

∣∣∣X = x
]

(8.15)

σ(x)3γ1(x) ≡ E
[
(Y − E [Y])3

∣∣∣X = x
]
. (8.16)

9We have a > 0 from the assumption that f ′(x) > 0.
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We specify the weak conditions that σ(x) > 0 (which is always true as long as ρY|X is
not a delta function), and that γ1(x) = 0 (which is true if ρY|X is symmetric). Then,
the closure (Equation 8.13) can be written

C(x) =
1

x

∫
dyρY|X(y|x)

(
cy3
)

=
c

x

(
E
[
Y3
∣∣X = x

])
. (8.17)

With γ1(x) = 0, we have that

E
[
Y3
∣∣X = x

]
= 3σ(x)2E [Y|X = x] + E [Y|X = x]3

= 3σ(x)2f(x) + f(x)3

= 3σ(x)2
(x
c

) 1
3

+
x

c
. (8.18)

Then we see we do not have closure, as

C(x) =
c

x

(
E
[
Y3
∣∣X = x

])

=
c

x

(
3σ(x)2

(x
c

) 1
3

+
x

c

)

= 1+ 3σ(x)2
(x
c

)− 2
3

> 1. � (8.19)

Although the counterexample provided here only applies to a specific choice of f(x)
and ρY|X(y|x), we have reason to believe that closure is not achieved for non-linear f in
the vast majority of cases, as can be seen in more detail in Appendix D.2. In addition,
we can Taylor expand the closure C to derive an equation for the first non-closure
term:

C(x) ≈ 1− 1

2

f ′′(x)

f ′(x)3
σ(x)2

x
, (8.20)

the derivation of which can be found in Appendix D.2.
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Figure 8.2: The closure of numerical inversion when using the mean to calibrate, using
a toy model similar to conditions in ATLAS or CMS. In blue, the exact calculated
closure. In red, the estimate of the closure using the first term of the higher-order
correction given in Equation 8.20. For details of the model, see Appendix D.9.

Figure 8.2 shows the inherent non-closure in numerical inversion for a toy calcula-
tion using a response function R(x) that is typical for ATLAS or CMS, and the first
term of the higher-order correction (Equation 8.20).

8.3.1.2 Calibrated Resolution

We often care about how precise the reconstructed transverse energy of the jets is
relative to the detector-level quantity, which is quantified by examining the standard
deviation of the calibrated resolution Z.

The calibrated resolution of the reconstructed jets is defined to be the standard
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deviation of the Z distribution, with X = x, which is given by

σ̂(x)2 ≡ σ [Z|X = x]2 = E
[
Z2
∣∣X = x

]
− E [Z|X = x]2 , (8.21)

and the fractional resolution is just given by σ
[
Z
x
|X = x

]
. The fractional resolution,

to first order in the Taylor series, is given by

σ

[
Z

x
|X = x

]
=
1

x
σ̂(x) ≈ 1

x

σ(x)

f ′(x)
, (8.22)

the derivation of which can be found in Appendix D.3.
A standard diagnostic technique when a full calibration is not applied is to ex-

amine the quantity σ(x)
R(x)

. This diagnostic is also often used [174, 187, 413] when there
are some remaining non-closures after the calibration (which is expected, as shown
above) by examining σ̂(x)

C(X)
as a proxy for the case where there are no non-closures. In

fact technically there is no distinction between these two cases, as after the calibra-
tion one could imagine defining a new response Rnew(x) = C(x) and new resolution
σnew(x) = σ̂(x) and performing numerical inversion a second time in order to remove
the remaining non-closures (Section 8.4.3).

It should be noted that f ′(x) is not the response R(x) = f(x)
x
. In particular,

f ′(x) = R(x) +R ′(x)x, so f ′(x) 6= R(x) unless R ′(x) = 0, or equivalently f(x) = kx for
some constant k (which is not the case at ATLAS nor at CMS). Figure 8.3 verifies
Equation 8.22 and compares it to the method of dividing the width of the distribution
by R 10 .

10Taking σ(x)
R(x) to estimate the calibrated resolution, and taking σ̂(x)

C(x) to estimate the resolution
with no non-closures, are technically equivalent. C(x) is close to 1, while R(x) can be very different
from 1, so the difference between f ′(x) and R(x) is larger than the difference between (C(x)x) ′ and
C(x). Figure 8.3 emphasizes the difference between the two estimates in the former case.
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Figure 8.3: The resolution of the ET distribution following numerical inversion when
using the mean to calibrate, using a toy model similar to conditions in ATLAS or
CMS. In blue, the exact calculated resolution. In red, the estimate of the resolution
using the first term of the higher-order correction in Equation 8.22. In green, the
uncalibrated resolution. In orange, the resolution when dividing by the response
R(x). For details of the model, see Appendix D.9.
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8.3.2 Mode

In the following section only, for brevity, we will let f be fmo and C be Cmo. The
distribution ρY|X(y|x) is usually unimodal and Gaussian fits to the “core” of this distri-
bution are essentially picking out the mode of the distribution. Therefore, the results
of this section are a good approximation to what is often used in practice. We note
that in the case that the underlying distribution is multimodal, it is not clear how to
unambiguously define the mode of the distribution, and so the results of this section
cannot be applied naively.

8.3.2.1 Closure

Assuming that the probability distribution function of a random variable P is uni-
modal, the mode is the point at which the first derivative of the probability distribu-
tion function is 0:

mode[P] ≡ p∗ s.t. ρ ′P(p∗) = 0. (8.23)

Then we can write the closure condition (Equation 8.7) as

mode
[
Z

x

∣∣∣∣X = x

]
= 1

→ mode [Z|X = x] = x→ ρ ′Z(x) = 0. (8.24)

Using this definition, we can prove a result similar (but stronger) to the closure
condition for the mean in the previous section:

Let the notion of central tendency be the mode. Numerical inversion closes if and
only if f is linear.

Proof. We have from Equation 8.12 that

ρZ(z) = f
′(z)ρY(f(z)). (8.25)
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Therefore,

ρ ′Z(z) = f
′′(z)ρY(f(z)) + f

′(z)2ρ ′Y(f(z)), (8.26)

and

ρ ′Z(x) = f
′′(x)ρY(f(x)) + f

′(x)2ρ ′Y(f(x))

= f ′′(x)ρY(y
∗) + f ′(x)2ρ ′Y(y

∗)

= f ′′(x)ρY(y
∗), (8.27)

where ρY(y∗) > 0 since y∗ is the mode of the distribution ρY. Then we see that if
f ′′(x) = 0, then ρ ′Z(x) = 0 and closure is achieved. In contrast, if f ′′(x) 6= 0, then
ρ ′Z(x) 6= 0 and closure is not achieved. �

The closure when using the mode to calibrate, to first order in the Taylor series, is
given by

C(x) ≈ 1+ f ′′(x)

f ′(x)3
σ̃(x)2

x
, (8.28)

where σ̃(x) is the width of a Gaussian fitted to just the area near the peak of the func-
tion ρY|X(y|x) (defined precisely in the next section). The derivation of Equation 8.28
can be found in Appendix D.4.

Figure 8.4 shows the inherent non-closure in numerical inversion for a toy calcula-
tion using a response function R(x) that is typical for ATLAS or CMS, and the first
term of the higher-order correction given in Equation 8.20, when using the mode for
calibration. This non-closure agrees with ATLAS published results, e.g. [413] (Figure
5).
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Figure 8.4: The closure of numerical inversion when using the mode to calibrate, using
a toy model similar to conditions in ATLAS or CMS. In blue, the exact calculated
closure. In red, the estimate of the closure using the first term of the higher-order
correction given in Equation 8.28. For details of the model, see Appendix D.9.
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8.3.2.2 Resolution

Let z∗(x) be the mode of the distribution Z|X = x, which is not necessarily equal to
x given the above result. It is often the case at ATLAS and CMS that a Gaussian is
fit to the distributions ρY|X(y|x) and ρZ|X(z|x) only in the vicinity of the modes f(x)
and z∗(x), respectively, since it is assumed that the distributions have a Gaussian
core but non-Gaussian tails. The width of the Gaussian core found in this fit is then
used as a measure of the resolution of the distribution. We thus define a “trimmed
resolution” for a distribution P about its mode m, which is valid if P ∼ N (m, σ̃) for
p near m:

σ̃[P]2 ≡ −
ρP(m)

ρ ′′P (m)
. (8.29)

The definition in Equation 8.29 is chosen because it reduces to the usual variance for
a Gaussian distribution. For the distributions ρY|X(y|x) and ρZ|X(z|x), we thus have
the trimmed resolutions

σ̃(x)2 ≡ σ̃ [Y|X = x]2 = −
ρY(f(x))

ρ ′′Y (f(x))
(8.30)

^̃σ(x)2 ≡ σ̃ [Z|X = x]2 = −
ρZ(z

∗(x))

ρ ′′Z(z
∗(x))

. (8.31)

The calibrated fractional trimmed resolution σ̃
[
Z
x
|X = x

]
, to first order in the Taylor

series, is given by

σ̃

[
Z

x
|X = x

]
=
1

x
^̃σ(x) ≈ 1

x

σ̃(x)

f ′(x)
, (8.32)

the derivation of which can be found in Appendix D.5.

8.3.3 Median

In the previous sections we have examined using the mean or the mode to define f
and C, and found that both results do not lead to closure in general. We propose a
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new definition, using the median of the reconstructed jet ET distributions:

fmed(x) = median[Y|X = x] (8.33)

Rmed(x) = median
[
Y

x

∣∣∣∣X = x

]
=
fmed(x)

x
. (8.34)

And define Cmed analogously. In the following section only, for brevity, we will let f
be fmed and C be Cmed.

8.3.3.1 Closure

The median of the distribution of a random variable P is the point at which 50% of
the distribution is above and 50% is below:

median[P] ≡ p∗ s.t.
∫p∗
−∞ ρP(p)dp = 0.5. (8.35)

Then the closure condition (Equation 8.7) can be written

median
[
Z

x

∣∣∣∣X = x

]
= 1

→ median [Z|X = x] = x

→ ∫ x
−∞ ρZ(z)dz = 0.5. (8.36)

We can see then the following result under this definition of central tendency:

Let the notion of central tendency be the median. Then numerical inversion always
closes.

Proof. We have from Equation 8.12 that

ρZ(z) = f
′(z)ρY(f(z)). (8.37)
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So the closure condition in Equation 8.36 becomes

0.5 =

∫ x
−∞ ρZ(z)dz

=

∫ x
−∞ f

′(z)ρY(f(z))dz. (8.38)

Then with u = f(z), du = f ′(z)dz we have

0.5 =

∫ f(x)
−∞ ρY(u)du

=

∫y∗
−∞ ρY(u)du

= 0.5. � (8.39)

8.3.3.2 Resolution

A natural definition of resolution when using the median to calibrate jets is the 68%
interquantile range, defined as follows for a random variable P:
With I−P and I+P defined by

∫ I−P
−∞ ρP(p)dp ≡ Φ(−1), (8.40)∫ I+P
−∞ ρP(p)dp ≡ Φ(+1); (8.41)

the 68% interquantile range is defined as

σIQR[P] ≡
1

2
(I+P − I−P ) . (8.42)

Where Φ(x) = 1
2
erfc

(
−x√
2

)
is the cumulative distribution function of the normal dis-

tribution. The definition is designed so that if P ∼ N (µ, σ) then σIQR[P] = σ. The
quantity σIQR is called the “68% interquantile range” because Φ(+1)−Φ(−1) ≈ 0.68.
For the distributions Y|X = x and Z|X = x, define:
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σIQR(x) ≡ σIQR[Y|X = x] (8.43)

σ̂IQR(x) ≡ σIQR[Z|X = x]. (8.44)

Then we can see the following result for the calibrated resolution σIQR[
Z
x
|X = x]:

The 68% IQR of the calibrated response distribution is given by σIQR[
Z
x
|X = x] =

1
2x

(
f−1(I+Y ) − f

−1(I−Y )
)
.

Proof. We have ∫ I−Z
−∞ ρZ(z)dz = Φ(−1) (8.45)∫ I+Z
−∞ ρZ(z)dz = Φ(+1). (8.46)

From Equation 8.12,

ρZ(z) = f
′(z)ρY(f(z)), (8.47)

so that

Φ(−1) =

∫ I−Z
−∞ f

′(z)ρY(f(z))dz

=

∫ f(I−Z)
−∞ ρY(u)du

→ f(I−Z) = I
−
Y (8.48)

Φ(+1) =

∫ I+Z
−∞ f

′(z)ρY(f(z))dz

=

∫ f(I+Z)
−∞ ρY(u)du

→ f(I+Z) = I
+
Y . (8.49)
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Therefore,

σIQR[Z|X = x] =
1

2
(I+Z − I−Z)

=
1

2

(
f−1(I+Y ) − f

−1(I−Y )
)
, (8.50)

and

σIQR

[
Z

x
|X = x

]
=
1

2x

(
f−1(I+Y ) − f

−1(I−Y )
)
. � (8.51)

8.4 Discussion

After a quick summary in Section 8.4.1 of the results presented so far, Section 8.4.2
discusses the benefits and drawbacks of various methods of calibration, and Sec-
tions 8.4.3 and 8.4.4 describe extensions of numerical inversion that may help to
improve closure.

8.4.1 Summary of Results

In Section 8.2 the concept of closure was defined in the process of calibrating the ET

of jets. It was found in Sections 8.3.1.1 and 8.3.2.1 that when using the mean or
mode, respectively, of the distribution Y|X = x to calibrate, closure is not necessarily
achieved; with the response functions found at ATLAS or CMS, it is expected that
numerical inversion will not close. Estimates were also provided for the non-closure
for the mean (Equation 8.20) and for the mode (Equation 8.28). In those estimates
it is found that as the underlying resolution σ(x) or σ̃(x) of the uncalibrated jet
distribution Y|X = x increases, the non-closure gets worse. This indicates that the
non-closure issues raised in this chapter will become more important as the LHC
moves to conditions with higher pile-up in the future.

A new calibration scheme based on the median of Y|X = x is proposed in Sec-
tion 8.3.3.1. With this method of calibration, closure is always achieved.

Each section also explored various definitions of the resolution of the fractional
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calibrated jet distribution Z
x
|X = x, where the most natural definition depends on the

manner in which calibration has been performed (i.e., whether using the mean, mode,
or median to calibrate). Useful estimates were provided for the standard deviation
(Equation 8.22), the trimmed Gaussian width (Equation 8.32), and an exact formula
for the 68% IQR (Equation 8.51). These expressions can be used to quickly estimate
the final resolution of a jet algorithm without having to actually apply the calibration
jet-by-jet.

8.4.2 Recommendation for Method of Calibration

As mentioned in the summary above, we have that for a non-linear response function
closure is not necessarily achieved when using the mode or mean to calibrate, and
closure is necessarily achieved when using the median. While this indicates that the
median is a useful metric to use if closure is the main objective, we accept that there
might be reasons to use the mode instead (for example, if the tails of ρY|X(y|X = x)

are cut off, then the mode should stay constant while the median and mean will
change). Thus we leave it to the reader to decide which method of calibration is most
appropriate to use for their specific purposes. To that end, we also have discussion
below about methods to improve the closure when the mode is being used to calibrate.

8.4.3 Iterated Numerical Inversion

A natural question is whether it is useful for the purposes of achieving closure to
implement numerical inversion again on the calibrated jet collection, if closure has
not been achieved the first time. We define the iterated numerical inversion process
as follows:

With C(x) defined as in Equation 8.7, let

Rnew(x) ≡ C(x) (8.52)

fnew(x) ≡ C(x)x. (8.53)
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Then, apply numerical inversion on the calibrated distribution Z:

Z 7→ Znew = f−1new(Z). (8.54)

We then ask if the closure of this new distribution, Cnew(x) (defined analogously as
in Equation 8.7), is closer to 1 than C(x). In general, this is a difficult question to
answer, but we have derived analytic approximations when the mode is used to derive
the calibration (Appendix D.6). Iterating numerical inversion does not always help:

|Cnew(x) − 1|

|C(x) − 1|
≈ 12f

′′(x)2σ̃(x)2

f ′(x)4
. (8.55)

If the ratio in Equation 8.55 is greater than 1, then the closure gets worse after a
second iteration of numerical inversion. In particular, as σ̃(x) gets larger, the iterated
closure gets worse relative to the original closure. So we expect at higher levels of
pile-up that iterating numerical inversion will not be useful. In Figure 8.5 we can
see that iterating numerical inversion does make the closure worse than the original
closure, in a model simulating higher pile-up conditions. The next section provides
another scheme to correct for the residual non-closure that does not require iterating
the process of numerical inversion.

8.4.4 Corrected Numerical Inversion

As noted above, when using the mean or mode of the distribution Y|X = x to calibrate,
closure is not achieved in general. With the closed-form estimates of the non-closure
provided in the text, one might think to simply “subtract off” the non-closure. How-
ever the non-closure estimates provided are in terms of the truth ET value x. Since x
is not available in data, a sensible proxy is to use numerical inversion as an estimate
for x. This is actually equivalent to iterated numerical inversion, which as shown in
the previous section does not always help.

Another possibility is to use a different original response function to perform the
calibration. Suppose that instead of using f(x) = R(x)x, there was a new function
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g(x) 6= f(x) such that if the calibration is performed with this new function, Y 7→
Zcorr = g−1(Y), the new calibrated distribution Zcorr|X = x does achieve closure or
gets closer to achieving closure than when calibrating using f.

We define the corrected numerical inversion process as follows:

1. Calculate f(x) = fmo(x) = mode[Y|X = x].

2. Let g(x) = g(x; f(x)) be a calibration function depending on the fitted function
f(x).

3. Apply the calibration Y 7→ Zcorr = g
−1(Y) jet-by-jet.

We then can examine the closure

Ccorr(x) = mode
[
Zcorr

x

∣∣∣X = x

]
. (8.56)

And say we have achieved closure if

Ccorr(x) ≡ 1. (8.57)

We examine the case of using the mode to measure closure, again because in practice
that is what is often used when there are significant non-Gaussian tails.

One way to specify g is by explicitly requiring closure. In Appendix D.7 it is
shown that in the case that closure is achieved exactly, g necessarily satisfies the
differential equation11

0 = g ′′(x) − g ′(x)2
g(x) − f(x)

σ̃(x)2
. (8.58)

In principle Equation 8.58 can be solved numerically given numerical fitted values
f(x) and σ̃(x), though in practice such a method may prove intractable.

11As noted in the derivation, this equation also assumes the following: that the underlying distri-
bution Y|X = x is approximately Gaussian in the vicinity of its mode f(x); and that the correction
is small, with |g(x) − f(x)|� σ̃(x).
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Another way to specify g is to use external parameters

g(x) = g(x; f(x);a1, ..., an). (8.59)

Then the parameters a1, ..., an can be chosen such that the closure is as close to 1 as
possible. This is the method used to find the corrected calibration curve in Figure 8.5,
and explained in more detail in Appendix D.8. The absolute non-closure |C − 1| is
significantly smaller than the original non-closure, even in a model simulating very
high pile-up conditions.
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Figure 8.5: The top plot shows the closure of numerical inversion when using the
mode to calibrate, using a toy model similar to conditions in ATLAS or CMS but
increasing σ(x) by a factor of 1.4 in order to simulate higher pile-up conditions. In
blue, the original closure as defined in Equation 8.7. In green, the closure after
iterating numerical inversion once as in Section 8.4.3. In orange, the closure after
using the parameterized corrected numerical inversion technique as in Section 8.4.4.
For details of the model, see Appendix D.9. The bottom plot shows the absolute
non-closure |C−1|. In particular, at low ET, iterating numerical inversion does worse,
while corrected numerical inversion does better than the original calibration.
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8.5 Conclusion

Jets are ubiquitous at the LHC and are used extensively in the two main searches
presented in this Thesis (Chapter 6 and Chapter 7). The calibration of the energy
and mass of jets is necessary for their practical use in these analyses or any other,
and understanding and improving this calibration can improve the sensitivity to new
physics. The standard technique used for jet calibration at ATLAS and at CMS is
numerical inversion. This chapter serves to formally define numerical inversion and
derive many of its properties.

This study has resulted in a few novel discoveries and clarifications about this
standard technique.

It is firmly established that numerical inversion does achieve its key property,
which is that it is independent of the underlying distribution used to derive the
calibration.

However, numerical inversion is established to be inherently biased: when us-
ing the mean or mode of the reconstructed kinematic distributions to calibrate, the
calibrated response function does not close, if the uncalibrated response function is
nonlinear. The size of this nonclosure is approximated for the first time and is shown
to get worse as the resolution of jets gets worse, in particular as is expected as the
LHC moves to higher instantaneous luminosity and pile-up conditions in the future.
When using the median as the notion of central tendency, the method is guaranteed
to close. However, there are good reasons to use the mode instead of the median, and
one method is not recommended over the other because of these respective drawbacks.

An approximation for the calibrated jet resolution is provided which can be used
to estimate the resolution before actually doing the calibration. Previous approaches
to do this estimation were shown to be inaccurate; the approximation derived here
uses the derivative of the uncalibrated response, and is shown to be more accurate.

Given the inherent nonclosure present in numerical inversion, the question of
whether numerical inversion can be improved is answered in a couple different ways.
First, simply iterating numerical inversion is shown for the first time to not always
help. Second, an extension is proposed in which a modified calibration function can
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be constructed to achieve a better closure than the standard technique.
In addition to the corrections and extensions proposed, the deep understanding

generally of numerical inversion provided for the creation of the technique described in
Chapter 9. The realization that numerical inversion was defined by a single function
(Section 8.2.2), and that this function could be modified to achieve better closure, led
directly to the idea that this function could be approximated with a neural network,
which could simultaneously and automatically take into account multiple auxiliary
variables.

While this Thesis focuses on the use of jets at the LHC, numerical inversion is
in fact a generic detector calibration method that can be applied as long as there is
a reliable method for matching the value of an observable before and after passing
through the detector (either via simulation or high-fidelity calibration data). The
results presented here therefore can be applied to objects other than jets at the LHC,
or indeed even beyond the realm of high energy physics.



Chapter 9

Improving Jet Calibrations with

Machine Learning

Jets reconstructed in the ATLAS detector have their energies corrected in order to be
an unbiased estimate of the particle-level jet. This correction proceeds via multiple
steps, the most significant of which include an absolute MC-based jet energy scale
correction and following a correction based on auxiliary features of the jet observed
in the detector. These two steps both use numerical inversion (Chapter 8) in order to
remain independent of the underlying spectrum. The current method of accounting
for these features relies on a sequential application of numerical inversion to one
feature at a time. This Chapter introduces a new technique which can perform this
correction accounting for multiple feature simultaneously, accomplished through the
use of neural networks. The multivariate nature of the new technique allows to
account for correlations between the energy dependence on multiple features, which
is not accounted for in the current method. The new technique, called generalized
numerical inversion, generalizes numerical inversion by retaining the key property of
being independent of the underlying prior distribution, while accounting for multiple
features simultaneously. This new technique further improves the correction on a
variety of metrics relative to the sequential method. As a method for improving the
jet energy scale and resolution, the new technique is widely applicable to analyses in
ATLAS, and in particular to the two searches presented in this Thesis (Chapter 6

254
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and Chapter 7). The results presented in this Chapter are published in [350].

9.1 Introduction

The two searches presented in this Thesis (Chapter 6 and Chapter 7) use jets exten-
sively, and besides that nearly every analysis at the Large Hadron Collider (LHC)
uses jets in some capacity, both Standard Model (SM) measurements and searches
for physics beyond the SM. All of these analyses rely on an accurate and precise mea-
surement of the jet energy. As mentioned in Section 5.5.4.1, due to various distortions
arising from detector effects, the reconstructed jet energy deviates from the particle-
level jet energy in the absence of a detector. These distortions are corrected for using
a series of calibration steps [80,81,409]. All of these steps proceed ultimately via nu-
merical inversion, the properties of which are expounded upon in detail in Chapter 8.
This Chapter is concerned with improving one particular and important part of the
current calibration procedure, the Global Sequential Calibration (GSC). This step
incorporates auxiliary measurements about the jet, such as its reconstructed charged
particle multiplicity, to improve the overall quality of the energy reconstruction [414].

The correction based on auxiliary features intends to further improve the jet cali-
bration via a few metrics. First, using features correlated with the provenance of the
jet, the difference in energy scale between, e.g., quark and gluon jets can be reduced.
Second, by reducing the dependence of the scale on auxiliary features, the effects of
mismodeling in the underlying spectrum of these features can be mitigated. Third,
the correction can remove the additional component of the jet energy resolution rel-
ative to the particle-level quantity due to the spread of these underlying features.

The current method for the GSC treats the impact of each auxiliary feature se-
quentially and independently, which requires the set of features used in the correction
to be chosen in such a way to have independent effects on the jet energy. However,
there is additional information available which could improve the calibration and yet
is not used in the current GSC because of this requirement of independence. This
Chapter presents a new technique using neural networks to simultaneously take into
account multiple auxiliary variables in this correction which may or may not have
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correlated effects on the jet energy. The technique relies both on the general capacity
of neural networks to approximate well complicated functions in high dimensions [415]
and on recent advances in jet substructure [86] which indicate useful features for ap-
plying this correction. As mentioned in Chapter 8, it is important that the calibration
is independent of the underlying pT spectrum, and therefore that ultimately it relies
on numerical inversion. The new technique presented here, called generalized numer-
ical inversion, incorporates neural networks into the numerical inversion framework
in order to accomplish both goals of simultaneously taking into account the effect
of multiple auxiliary variables and of remaining independent of the underlying spec-
trum. Ultimately this technique is shown to improve the overall quality of the jet
calibration on the three metrics outlined above.

This Chapter is organized as follows. Section 9.2 discusses the simulated samples
used in this study, and Section 9.3 reviews the GSC and describes it in the notation
used in this Thesis. Generalized numerical inversion is described in Section 9.4 and
first results using this new method are presented in Section 9.5. There is a discussion
of the results in Section 9.6 and the Chapter concludes with Section 9.7.

9.2 Event Simulations

Studies documented within this chapter are performed using a variety of Monte Carlo
(MC) simulated samples (Section 5.3). Dijet events are generated at Leading Or-
der (LO) in Pythia8.1 [244] with the 2 → 2 matrix element convolved with the
NNPDF2.3LO Parton Distribution Function (PDF) set [379] and using the A14 set
of tuned parameters [251]. An additional sample is simulated using Herwig 7.0 [248]
using the NNPDF3.0 NLO PDF and the default set of tuned parameters for the un-
derlying event. Both Pythia and Herwig are interfaced with EvtGen for heavy
flavor decays [253,416].

All simulated events have been reconstructed using a full simulation of the ATLAS
detector [340] implemented in Geant4 [255], which describes the interactions of
particles with the detector and the subsequent digitization of analog signals. The
effects of multiple simultaneous pp collisions (pile-up) are simulated with minimum
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bias pp collisions using Pythia8.1 and overlaid on the nominal dijet interactions.

9.3 Global Sequential Calibration

As mentioned in Section 5.5.4.1, the ATLAS jet calibration proceeds via multiple
steps. The largest correction is the absolute MC-based correction which brings the
overall scale of the reconstructed jet E to the truth or particle-level E. The step
immediately proceeding is the GSC, which corrects the dependence of the jet pT on
various jet quantities derived from information in the tracker, calorimeter, and muon
system [80,342,413].

There may be a little confusion here in moving from the calibration of ET to pT.
The first thing to note is that this is just simply how the ATLAS calibration does it,
first an absolute correction to ET and then following a residual correction to pT. The
second thing to note is that ET and pT have a well-defined relation: ET =

√
p2T +m2,

where m is the mass of the jet. The GSC is only applied to small-R jets, intended to
apply to quark- and gluon-initiated jets in which the true mass is either 0 or much less
than the pT (the lowest pT in the calibration is 20 GeV, while the highest quark mass
reconstructed in a small-R jet is the bottom quark, with mass of ∼ 4 GeV). This is
related to the fact that the opening angle of a jet is generically roughly ∆R ∼ 2m

pT
[185];

for a small-R jet, with ∆R parameter of 0.4, m
pT
< 0.2. Because of the negligibility

of this term, for small-R jets it is the case that ET ∼ pT, and the term “jet energy”
correction is used somewhat loosely in this Chapter (and in the previous one) to refer
to the ATLAS jet ET and pT corrections in the calibration. Generally the distinction
is not important, but where it is the text is clear about what is being corrected.

For large-R jets, the ∆R parameter is 1.0, allowing for jets with larger ratios of
m
pT
. The GSC is not applied to these jets, but rather after the inclusive ET correction

an energy-dependent mass calibration is applied (Section 5.5.4.1). The Author has
contributed to work which directly uses the techniques developed in this Chapter to
employ neural networks to simultaneously calibrate the mass and energy of large-R
jets [292].

As mentioned in Chapter 8, after the inclusive correction it is approximately true
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that f(x) ≡ 〈preco
T |ptrue

T = x〉 = x1 (Equation 8.28), i.e. that the calibration closes
and that the average reconstructed or detector-level jet pT (preco

T ) is an unbiased
estimator2 of the truth or particle-level pT (ptrue

T ) 3. The reason to follow this with
the GSC is that even though the overall response closes, f(x) may have a residual
dependence on auxiliary information available from the detector.

The GSC uses 5 auxiliary features which can be grouped into 3 categories based
on the effect being corrected for. The first two features are the number of tracks in
the jet (associated via ghost association [84]) and the width of tracks in the jet (the
average pT-weighted distance of tracks from the jet axis). Since the calorimeter-cell
response is non-linear due to noise suppression, a jet with more particles (and therefore
softer on average for fixed total pT) will tend to have a lower measured energy than
a jet with a few hard particles. The number of tracks in the jet is a good but not
perfect measure of the number of particles, as tracks are insensitive to pile-up, but
only correspond only to charged particles. This effect is correlated to the provenance
of the jet, as gluon jets tend to have more particles and a wider radiation pattern
than quark jets [170]. The track width is used to further discriminate between gluon
and quark jets, and therefore gain more information about the number of particles
produced in the jet. The correction for the first two features has the benefit of making
the response more similar between quark- and gluon-initiated jets, which reduces the
sample dependence of the jet pT closure.

The second two features are the fraction of jet energy in the final layer of the
electromagnetic calorimeter and in the first layer of the hadronic calorimeters; these
features account for energy loss in the dead material between the electromagnetic and
hadronic calorimeters.

The final feature counts the number of muon segments behind the jet that register
hits; this feature accounts for energy not measured in the calorimeter due to showers

1In practice f(x) is measured using the mode of the distribution rather than the mean.
2An estimate θ̂ of a fixed but unknown parameter θ is an unbiased estimator if, for all values of

θ, E
[
θ̂|θ
]
= θ.

3Of course, this statement is subject to the stipulations mentioned in that Chapter, and in fact a
major result from that study was understanding exactly how and why the calibration does not close.
However, ultimately the understanding from that study was that the major non-closures would be
a bigger issue at higher pile-up conditions that will exist at the LHC in the future.
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that punch through to the MS.
Let θ represent the available auxiliary information about a jet4, e.g. the 5 features

used in the GSC. Then, the function f can be generalized as fθ(x) ≡ 〈preco
T |ptrue

T =

x, θ〉.
In general, if it is found that the jet energy fθ(x) depends on some auxiliary

variable θ, then it is desirable that the calibration removes this dependence, for a few
reasons. First, if the distribution of θ is sample-dependent, e.g. correlated with the jet
originating parton, then there could be closure in one sample but not another, which
could cause suboptimal selections in the final analysis cuts. Second, if θ is not well-
modeled by the simulation then even though there may be closure in the simulation
there may not be closure in the data, and this could introduce systematic uncertainties
in the final calibration. Third, there is a degradation of the resolution σ(x) due to the
spread of θ, which can cause the sensitivity of the final analysis selection to be worse
than with an undegraded resolution. These are the three metrics by which we judge
the performance of the GSC and of generalized numerical inversion in this Chapter.

However, this third point is more subtle than it naively appears. While it is true
that there is a degradation of the resolution due to the spread of θ, it is not the
case that the resolution always gets better when the dependence of the response on
an auxiliary variable is corrected. In particular, there exist certain situations where
correcting for the dependence of the response on an auxiliary variable can actually
make the resolution worse. This can occur, for example, if θ is correlated with ptrue

T

in such a way that removing the correlation between preco
T and θ also removes some of

the correlation between preco
T and ptrue

T . These situations are explored in more detail
in Appendix E.1.

It is important to note that this auxiliary information θ is available at the detector
or reconstructed level. Therefore, while fθ(x) is derived in simulation, for a given jet
at detector level θ is known and fθ(x) can be inverted as usual across its argument to
give the calibration function. For θ ∈ R, the correction is therefore given by preco

T 7→
p̂reco

T = f−1θ (preco
T ). In practice, the distribution of θ is binned and the numerical

inversion is performed for different functions in each bin of θ.
4Note that θ can be a single value or a vector with multiple features.
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When θ ∈ Rn, a sequential calibration like the GSC (for which n = 5) proceeds
with a sequential (as the name suggests) application of numerical inversion:

preco
T 7→ p̂reco

T = f−1θn
(
· · · f−1θ2

(
f−1θ1 (p

reco
T )

)
· · ·
)
. (9.1)

The sequential method removes all residual dependencies when fθi(x) is indepen-
dent of θj 6=i, i.e. when fθ(x) is entirely determined by one feature at time. If there are
such dependencies of fθ(x) on more than one feature θi, then there could be residual
dependencies on some combination of the θi after the full sequential correction.

9.4 Generalized Numerical Inversion

The idea of generalized numerical inversion is to simply replace the sequential ap-
proach in Equation 9.1 with a single inversion: preco

T 7→ p̂reco
T = f−1θ1,...,θn(p

reco
T ). Bin-

ning the response in n dimensions would require significant computing resources and
so is practically infeasible. An unbinned approach that can simultaneously capture
the dependence on many features is needed to exploit the potential correlations in
the response on the θi. One powerful tool for this purpose is a neural network. In
principle, neural networks can approximate any smooth function [415, 417, 418] and
have been shown to provide excellent performance for a wide variety of classification
and regression tasks with limited training data [391–396]. Inverting a neural network
can be non-trivial, so the procedure for generalized numerical inversion is adapted as
follows:

1. Learn a neural network approximation L(x, θ) to the function fθ(x) = 〈preco
T |ptrue

T =

x, θ〉.
Note that, if θ is a vector with n features, then L(x, θ) : Rn+1 → R.

2. Learn a neural network C(L(x, θ), θ) that tries to predict x given θ and L(x, θ).
This is an approximation to the family of functions f−1θ (x). Note that learning
the inverse this way is technically simple since L is single-valued.
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3. Calibrate with preco
T 7→ p̂reco

T = C(preco
T , θ). The calibration non-closure is defined

as usual as the deviation of 〈p̂reco
T /ptrue

T |ptrue
T = x, θ〉 from 1.

There are therefore two learning stages in this procedure. The first step learns a
neural network that predicts the average behavior of preco

T given ptrue
T and θ while the

second network tries to approximate a single-valued function. In principle, the above
procedure could be applied to the entire jet calibration procedure described in Sec-
tion 5.5.4.1, but the focus here is on the component addressing residual dependencies,
following the inclusive jet energy calibration.

A schematic of the generalized numerical inversion method is shown in Figure 9.1.

Figure 9.1: A schematic of the generalized numerical inversion method. First, a
neural network L is trained to learn preco

T from ptrue
T and θ, which is an approximation

to the functions fθ(x). Then, a second neural network C is trained to learn ptrue
T from

L(ptrue
T , θ) and θ, which is an approximation to the functions f−1θ (x). Finally, C is

used as the calibration function.

9.5 Results

To illustrate the potential of generalized numerical inversion, an example is provided
using jets from the ATLAS full detector simulation. Neural network training is per-
formed using scikit-learn [419] with a simple two-layer feed-forward neural network
that has 100 hidden nodes in each layer and a rectified linear unit activation function.
To lay the groundwork for application to the full GSC, two key jet features are stud-
ied: the number of tracks above 1 GeV associated to the jet (ntrack) and the average
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track radius5:

∆Rtrack,avg ≡

 1
ntrack+1

∑
tracks(pT,track/

∑
tracks’ pT,track’)× ∆Rtrack,jet if ntrack > 0

−1 if ntrack = 0

The average track radius is also sometimes denoted more explicitly as 〈pT,frac ×∆R〉.
As mentioned in Section 9.3, these observables account are correlated with the type
of parton that produced the jet (gluon or quark), and account for effects on the pT

response due to the non-linear calorimeter-cell response. The underlying distributions
of these two variables are given in Figure 9.2.
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Figure 9.2: The distributions of (a) ntrack and (b) ∆Rtrack,avg = 〈pT,frac × ∆R〉 in bins
of ptrue

T .

Figure 9.3 shows the dependence of the response (following the inclusive energy
calibration) on ntrack and ∆Rtrack,avg. The response depends strongly on these two
quantities, varying by about 10-20% across the accessible range. The trends are also
not uniform in jet pT - the response of lower pT jets shows a stronger dependence on
both ntrack and ∆Rtrack,avg.

5The GSC currently used in ATLAS uses instead the track width, which is the average track
radius multiplied by (ntrack + 1). The residual dependence of the ntrack-calibrated response on the
track width is negligible and is thus not useful for benchmarking generalized numerical inversion as
the sequential calibration is nearly the same as the simultaneous calibration.
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In order to understand the performance provided by a simultaneous instead of a se-
quential approach, approximations are derived for the calibration functions fntrack(x),
f∆Rtrack,avg(x), and fntrack,∆Rtrack,avg(x), and the sequential calibration f−1∆Rtrack,avg

(f−1ntrack
(preco

T ))

is compared with the simultaneous calibration f−1ntrack,∆Rtrack,avg
(preco

T ). The sequential
calibration presented here differs in some details with the standard GSC used in AT-
LAS; a major difference is that the calibration presented here does an unbinned fit to
preco

T and the feature θ while the GSC does a binned fit which is then smoothed. To
control for this ability of the neural network to operate unbinned, the generalized nu-
merical inversion approach is used for both the one- and two-feature cases in order to
study only the differences between the sequential and the simultaneous calibrations.
However, importantly the sequential approach demonstrated here does no worse than
the GSC in correcting for the residual dependence of the response.

The learned functions L in the sequential calibration are presented in Figures 9.4a
and 9.4d. As expected, Figure 9.4a looks similar to Figure 9.3a, as the neural net-
work has learned to approximate the shape of the response with respect to ntrack

(Figure 9.4d is not expected to look similar to Figure 9.3b, since the previously ap-
plied ntrack correction affects the dependence of the response on ∆Rtrack,avg). The ratio
of preco

T to L(ptrue
T ) (for the appropriate θ, at the appropriate step of the sequential

calibration) is shown in Figures 9.4b and 9.4d, and the ratio is very close to 1, indi-
cating the learning step is working properly. The closure of the calibrations at each
step of the sequence is shown in Figures 9.4c and 9.4f. In both cases, the calibration
closes, with an average calibrated response at unity, independent of the features.

Corresponding results for the network trained to simultaneously learn the depen-
dence on ntrack and ∆Rtrack,avg are shown in Figure 9.5. The network is able to learn the
dependence on either of the two features in one dimension and Figures 9.5c and 9.5f
also show that the calibration closes.

The advantage of the simultaneous method is highlighted in Figure 9.6. After the
calibration, in each step of the sequential method, there is still a residual dependence
of the calibrated response R̂ on ntrack in individual bins of ∆Rtrack,avg. This residual
dependence is monotonic, and so the single value dR̂/dntrack (obtained as the slope
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Figure 9.3: The dependence of the response on (a) ntrack and (b) ∆Rtrack,avg in several
bins of truth jet pT.

when fitting R̂ versus ntrack to a line in bins of ∆Rtrack,avg) parameterizes the remain-
ing residual dependence. The residual dependence on ntrack in bins of ∆Rtrack,avg is
nearly the same and clearly not zero at all values of ∆Rtrack,avg if the ntrack or sequen-
tial ntrack, ∆Rtrack,avg calibrations are applied. However, the residual dependence is
zero and independent of ∆Rtrack,avg when the simultaneous calibration is performed.
Similarly, there is still a residual dependence of dR̂/d∆Rtrack,avg on ntrack if the ntrack

or sequential ntrack, ∆Rtrack,avg calibrations are applied; this residual dependence goes
away with the simultaneous calibration.

For example, in the sequential calibration, dR̂/dntrack ≈ −0.02 for large ∆Rtrack,avg.
This means that two jets with values of ntrack differing by 5 (and the same large values
of ∆Rtrack,avg) will have a response difference of ∼ 0.1. Similarly, in the sequential
calibration, dR̂/d∆Rtrack,avg ≈ −4 for large ntrack. Two jets that differ in ∆Rtrack,avg

by 0.02 (both with large ntrack) will therefore have a response difference of ∼ 0.08.
Because of this residual dependence, there can be nonclosures in specific regions

of the parameter space, despite the calibration closing inclusively overall. Figure 9.6c
shows a selection on ntrack and ∆Rtrack,avg which is more efficient on gluons than on
quarks, and Figure 9.6d shows a selection which is more efficient on quarks than on
gluons. In the sequential calibration, large non-closures can be seen in some regions of
the parameter space, while the simultaneous calibration almost completely removes
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Figure 9.4: The dependence of the (a) learned response L(ptrue
T , θ)/ptrue

T , (b) ratio of
preco

T to learned approximation L(ptrue
T , θ), and (c) calibrated response C(preco

T , θ)/ptrue
T

on ntrack in several bins of truth jet pT for θ = {ntrack}. Also, the dependence of
the (d) learned response L(ptrue

T , θ)/ptrue
T , (e) ratio of preco

T to learned approximation
L(ptrue

T , θ), and (f) calibrated response C(preco
T , θ)/ptrue

T on ∆Rtrack,avg in several bins
of truth jet pT for θ = {∆Rtrack,avg} in sequence after the ntrack correction.

these nonclosures.
As observables correlated with the quark or gluon provenance of a jet, the correc-

tion for the dependence of the energy on ntrack and ∆Rtrack,avg can reduce the response
difference between jet types. Figure 9.7 shows the difference between the response
for quark and gluon jets as a function of the truth jet pT for different calibration
methods. Since gluon jets have a softer constituent pT spectrum, their response is
lower than for quark jets on average. The residual correction does reduce the response
difference; the simultaneous approach is slightly better than the sequential approach
at every value of truth jet pT.

The properties of quark and gluon jets can depend on the specific model of jet
fragmentation used; therefore, it is also important to check that the improvement in
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Figure 9.5: The dependence of the (a,d) learned response L(ptrue
T , θ)/ptrue

T , (b,e)
ratio of preco

T to learned approximation L(ptrue
T , θ), and (c,f) calibrated response

C(preco
T , θ)/ptrue

T on (a,b,c) ntrack and (d,e,f) ∆Rtrack,avg, respectively, in several bins of
truth jet pT for a simultaneous calibration with θ = {ntrack, ∆Rtrack,avg}.

the quark-gluon response difference is robust to these model differences. In addition
to showing the results for Pythia 8, Figure 9.7b also demonstrates that (without
retraining) there are also improvements for Herwig 7.

Another goal of the correction based on auxiliary variables is to reduce the sen-
sitivity of the jet energy to mismodeling of the underlying features. An important
consequence of such a reduction could be a smaller systematic uncertainty associ-
ated with jet fragmentation modeling. Figure 9.8 quantifies this effect by showing
the difference in the jet response between Pythia 8 and Herwig 7 for quarks and
gluons separately. It can be seen that the jet response difference between the genera-
tors is generally better in the simultaneous calibration method than in the sequential
method. In particular, in some bins of ptrue

T , the sequential method makes the differ-
ence between the generators worse than not including the second variable, while the
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simultaneous method retains or slightly improves the difference between the genera-
tors. This could happen if the correlation between the two features changes between
the generators in such a way that the sequential calibration effectively undoes the
correction of the first feature in the sample the network was not trained on. Another
possible effect is that the correlation between the two features stays the same be-
tween the generators, but the underlying distribution of one or both of the features
in the jets changes. In either case, since the simultaneous method conditions on both
features at once, this does not affect the final performance.

A final metric for studying the impact of generalized numerical inversion is the jet
energy resolution. One component of the jet energy resolution is due to the spread
in the jet energy response for various values of θ - in the extreme case that there is
no spread in preco

T given ptrue
T and θ, there will still be an effective resolution resulting

from the spread in values over the range of θ. However, as mentioned in Section 9.3
and expounded upon in Appendix E.1, the calibrated resolution does not necessarily
improve following the correction based on auxiliary variables. Figure 9.9 shows both
the inclusive (not differential in θ) closure as well as the inclusive resolution as a
function of the truth jet pT, for different calibration methods. All methods achieve
a similar inclusive closure and as desired, the residual calibration procedures reduce
the resolution. The overall resolution reduction is similar for the sequential and
simultaneous approaches, with the simultaneous slightly better at higher pT and the
sequential slightly better at low pT. The difference in the resolutions from the various
approaches is small compared to the gain over no residual calibration.
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Figure 9.6: The dependence of (a) dR̂
dntrack

on ∆Rtrack,avg and (b) dR̂
d∆Rtrack,avg

on ntrack for:
a calibration using a network with θ = {ntrack} (circles); a calibration using a network
with θ = {∆Rtrack,avg} employed sequentially after correcting for ntrack (squares); and
a simultaneous calibration using a network with θ = {ntrack, ∆Rtrack,avg} (diamonds).
Also, the closure as a function of ptrue

T , in (c) a selection intended to target gluon jets;
and (d) a selection intended to target quark jets.
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Figure 9.7: The difference between the response of quarks and gluons as a function of
ptrue

T for: before any ntrack or ∆Rtrack,avg correction (open circles); a calibration using a
network with θ = {ntrack} (circles); a calibration using a network with θ = {∆Rtrack,avg}

sequentially after correcting for ntrack (squares); and a simultaneous calibration using
a network with θ = {ntrack, ∆Rtrack,avg} (diamonds).
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Figure 9.8: The difference between the response of jets in Pythia8 and Herwig7 as
a function of ptrue

T in (a) gluon jets, and (b) quark jets, for: before any ntrack or
∆Rtrack,avg correction (open circles); a calibration using a network with θ = {ntrack}

(circles); a calibration using a network with θ = {∆Rtrack,avg} sequentially after cor-
recting for ntrack (squares); and a simultaneous calibration using a network with
θ = {ntrack, ∆Rtrack,avg} (diamonds).
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Figure 9.9: The (a) closure and (b) resolution as a function of ptrue
T for: before any

ntrack or ∆Rtrack,avg correction (open circles); a calibration using a network with θ =
{ntrack} (circles); a calibration using a network with θ = {∆Rtrack,avg} sequentially after
correcting for ntrack (squares); and a simultaneous calibration using a network with
θ = {ntrack, ∆Rtrack,avg} (diamonds). For the resolution, also shown is the (negative)
improvement in quadrature of the resolution for a given calibration with resolution
σ′ to the resolution before any correction σ.



CHAPTER 9. GENERALIZED NUMERICAL INVERSION 271

9.6 Discussion

The results presented in Section 9.5 demonstrate that the simultaneous neural network-
based method introduced in this Chapter improves the performance of the calibration
on a variety of metrics.

The search in Chapter 6 involves both quarks and gluons in the final state, and
tagging the jets [87–90] may help both with background reduction and with the
combinatorial problem of determining the jets decaying from the a particle and the
ones associated with the VBF production. Figures 9.6c and 9.6d show directly the
reductions of non-closures when using the simultaneous method in selections targeting
gluons and quarks, respectively. Any nonclosures can reduce the sensitivity of the
analysis, in particular in the gluon jets, as the resolution of the mjj derived from the
gluon jets is a major limitation in the analysis.

In addition, if there is a dependence of the energy response on the underlying fea-
tures then any mismodeling in the distribution of those features can affect the final
energy and introduce systematic uncertainties. The low-mass extension of this search
discussed in Appendix B.1 proposes in particular the use of small-R jet substructure
to tag the boosted low-mass decays, and so therefore reducing any uncertainties as-
sociated with that kind of selection can improve the optimality and sensitivity of the
analysis.

The search in Chapter 7 uses only large-R jets, which as mentioned in Section 9.3
do not have any GSC applied. However, large-R jets actually have two relevant pa-
rameters with dimensions of energy associated with them - their energy and their
mass. The large-R calibration calibrates the energy first and then the mass in se-
quence, taking into account the energy as a feature. Generalized numerical inversion
can apply directly to this second step of the large-R jet calibration in order to im-
prove the mass scale - as this search tags on the masses of the involved large-R jets,
any improvement on the mass scale directly improves the tagging capabilities and
performance of the search.

The technique outlined here does not address the question of how to simultane-
ously calibrate multiple features, e.g. the jet energy and mass at the same time.
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The Author has contributed to a project [292] in which an extension of generalized
numerical inversion is proposed that addresses exactly this question, and it is found
that it is possible to calibrate multiple variables simultaneously while taking into ac-
count multiple simultaneous auxiliary variables. In particular, this project answers
this question in the context of the large-R jet calibration, which could directly further
improve the sensitivity of the search in Chapter 7.

One point that is not addressed in the formulation of generalized numerical inver-
sion is the difference between the mean, median, and mode of the target distributions;
this difference was expounded on particularly thoroughly in the discussion of numer-
ical inversion itself in Chapter 8. The neural network L in generalized numerical
inversion learns whatever the loss function indicates it to learn; e.g., if the loss is a
mean squared loss then it learns the mean over the corresponding distribution. The
Author has contributed to a project [420] which discusses exactly how to learn the
mean, median, or mode of the corresponding distributions with neural networks. This
technique can be used to more closely align with the physics goals of the ATLAS jet
calibration.

9.7 Conclusion

This Chapter has presented a novel regression-based jet energy calibration procedure
implemented with neural networks, called generalized numerical inversion. Gener-
alized numerical inversion generalizes numerical inversion and in particular retains
the key property of being independent of the underlying spectrum (Chapter 8). The
new method is able to take into account multiple auxiliary jet features simultane-
ously, which is an improvement over the current sequential method - in particular,
correlations in the response between various jet features can be corrected for. The
new technique is shown to reduce the response difference between quark and gluon
jets by using features associated with the jet provenance, and furthermore is shown
to mitigate the effect of mismodeling of the underlying distribution of the features
themselves. The simultaneous calibration offers similar benefits to the sequential
calibration for the jet energy resolution and by construction has no impact on the
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inclusive closure of the jet calibration. These improvements and new extensions of
this technique can directly improve the performance of the searches presented in this
Thesis (Chapter 6 and Chapter 7) and of searches and measurements in ATLAS in
general.



Chapter 10

Conclusions

The unprecedented energies and luminosities provided by the LHC have allowed test-
ing our physical theories in never-before-seen regimes and with remarkable precision.
With data from collisions produced by the LHC gathered with the ATLAS detector1,
the final piece of the Standard Model, the Higgs boson, has been confirmed. The
Standard Model has therefore withstood all experimental tests of its predictions, and
there are no remaining undiscovered particles or forces predicted by the SM.

However, there are good motivations for believing the SM does not tell the full
story, and it is almost certain that the LHC will play a major role in uncovering the
next chapter. It is therefore vitally important to put the data provided by the LHC
to as best use as possible, in order to advance our understanding of nature and lead
to the next big discovery.

The use of jets in novel and interesting ways is one crucial way of making best use
of LHC data - it is again almost certain that the next big discovery will involve jets
in some way.

The original research efforts described in this Thesis contribute to providing means
by which this endeavor can be fulfilled. Chapter 6 describes a search with multiple jets
in the final state for new particles via their interactions with the Higgs boson. Tests
of the precise properties of the Higgs boson like these present a major remaining test
for the SM. The search in Chapter 7 uses the underlying features of jets in a novel way

1And CMS.
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to perform a generic search for new resonant particles. These innovations in analysis
techniques will enhance the potential of the LHC to be used to discover new unex-
pected physics phenomena. Finally, Chapters 8 and 9 present new understandings
and methods in the reconstruction of jets. These improvements in the performance
of jets enable their best use in measurements and searches with LHC data.

The search for new physics using jets continues, and the progress made in this
Thesis will contribute to these efforts now and in the future.



Appendix A

A Search for a

Beyond-the-Standard-Model Higgs

Decay: Appendix

A.1 Existing Limits

We would like to place a limit on BR(H→ aa→ γγjj) = 2BR(H→ aa)× BR(a→
γγ)BR(a→ jj), given limits on BR(H→ aa→ 2γ2γ) and BR(H→ aa).

For brevity, let B ≡ BR(H→ aa), x ≡ BR(a→ γγ), and y ≡ BR(a→ jj).

With these conventions, we have that B < 0.34 from [320]; we also have that Bx2 <
0.001 from [335]; and we would like to use this information to place a limit on 2Bxy.

We note first that y ≤ 1− x, with the inequality satisfied when the a particle decays
exclusively into photons and jets.

The following facts will be useful, which are true for any value of x.

First, for any s ≤ 1
2
, if x < s then x(1− x) < s(1− s).

Second, x(1− x) ≤ 1
4
.

We do not know the true value of B, so we consider two cases which cover all possi-
bilities: B < 0.004, and 0.004 ≤ B < 0.34.
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If B < 0.004, then:

2Bxy ≤ 2Bx(1− x)

< 2× 0.004× 1
4

= 0.002

If 0.004 ≤ B < 0.34, then:

Bx2 < 0.001

→ x <

√
0.001

B

≤ 1
2

→ x(1− x) <

√
0.001

B
×
(
1−

√
0.001

B

)

Then we have:

2Bxy ≤ 2Bx(1− x)

< 2× B×
√
0.001

B
×
(
1−

√
0.001

B

)

= 2(
√
0.001B− 0.001)

< 2(
√
0.001× 0.34− 0.001)

≈ 0.035

Thus no matter what B is, we have 2Bxy < 0.035.

A.2 Jet Kinematics

The distributions of mjj, |mjj −mγγ|, and |mγγjj are shown for ma = 20 GeV (Fig-
ure A.1); ma = 30 GeV (Figure A.2); ma = 40 GeV (Figure A.3); ma = 50 GeV
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(Figure A.4); and ma = 60 GeV (Figure A.5).



APPENDIX A. BSM HIGGS DECAY: APPENDIX 279

0 20 40 60 80 100 120
Mjj [GeV]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
a
ct

io
n
 o

f 
E
v
e
n
ts

 /
 5

 G
e
V

ATLAS

 = 13 TeV, 36.7 fb 1

VBF Signal MC
ggF Signal MC
Data

(a)

0 20 40 60 80 100 120

|Mjj M | [GeV]

0.00

0.05

0.10

0.15

Fr
a
ct

io
n
 o

f 
E
v
e
n
ts

 /
 4

 G
e
V

ATLAS

 = 13 TeV, 36.7 fb 1

VBF Signal MC
ggF Signal MC
Data

(b)

0 50 100 150 200 250
M jj [GeV]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
a
ct

io
n
 o

f 
E
v
e
n
ts

 /
 1

0
 G

e
V

ATLAS

 = 13 TeV, 36.7 fb 1

VBF Signal MC
ggF Signal MC
Data

(c)

0 50 100 150 200 250
M jj [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
a
ct

io
n
 o

f 
E
v
e
n
ts

 /
 1

0
 G

e
V

ATLAS

 = 13 TeV, 36.7 fb 1

VBF Signal MC
ggF Signal MC
Data

(d)

Figure A.1: Distributions of kinematic observables before the requirements on mVBF
jj ,

leading VBF jet pT, mγγjj and |mjj−mγγ| for: (a) mjj; (b) |mjj−mγγ|; (c) mγγjj; and
(d) mγγjj (with the additional requirement |mjj −mγγ| < xR that defines the signal-
enriched region). The quantities are shown separately for simulated signal events
(with ma = 20 GeV) produced in the VBF mode and compared with those produced
in the ggF mode and the observed data.
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Figure A.2: Distributions of kinematic observables before the requirements on mVBF
jj ,

leading VBF jet pT, mγγjj and |mjj−mγγ| for: (a) mjj; (b) |mjj−mγγ|; (c) mγγjj; and
(d) mγγjj (with the additional requirement |mjj −mγγ| < xR that defines the signal-
enriched region). The quantities are shown separately for simulated signal events
(with ma = 30 GeV) produced in the VBF mode and compared with those produced
in the ggF mode and the observed data.
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Figure A.3: Distributions of kinematic observables before the requirements on mVBF
jj ,

leading VBF jet pT, mγγjj and |mjj−mγγ| for: (a) mjj; (b) |mjj−mγγ|; (c) mγγjj; and
(d) mγγjj (with the additional requirement |mjj −mγγ| < xR that defines the signal-
enriched region). The quantities are shown separately for simulated signal events
(with ma = 40 GeV) produced in the VBF mode and compared with those produced
in the ggF mode and the observed data.
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Figure A.4: Distributions of kinematic observables before the requirements on mVBF
jj ,

leading VBF jet pT, mγγjj and |mjj−mγγ| for: (a) mjj; (b) |mjj−mγγ|; (c) mγγjj; and
(d) mγγjj (with the additional requirement |mjj −mγγ| < xR that defines the signal-
enriched region). The quantities are shown separately for simulated signal events
(with ma = 50 GeV) produced in the VBF mode and compared with those produced
in the ggF mode and the observed data.
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Figure A.5: Distributions of kinematic observables before the requirements on mVBF
jj ,

leading VBF jet pT, mγγjj and |mjj−mγγ| for: (a) mjj; (b) |mjj−mγγ|; (c) mγγjj; and
(d) mγγjj (with the additional requirement |mjj −mγγ| < xR that defines the signal-
enriched region). The quantities are shown separately for simulated signal events
(with ma = 60 GeV) produced in the VBF mode and compared with those produced
in the ggF mode and the observed data.



Appendix B

A Search for a

Beyond-the-Standard-Model Higgs

Decay: Low Mass Feasibility Study

B.1 Low-mass Diphoton Trigger Selection

A study was performed to understand the limitations of the diphoton selection for
low mass a particles, in particular ma ≤ 20 GeV which is the lowest ma the search
described in 6 has sensitivity to.

The reason the selection has low efficiency on these signals is because the a particle
is boosted, causing its decay products to be collimated.

Figure B.1 shows the pT of the leading and subleading a particles at truth level
for some signals in this low mass region. The pT of the a particle decreases slightly as
ma increases, because the energy from the Higgs decay is shared between the energy
and mass of the a particle. The more prevalent effect relates to the opening angle
of the decay products of the a. For a two-body decay from a particle with mass m
and transverse momentum pT, the opening angle of the decay products is generically
roughly ∆R ∼ 2m

pT
[185]. So as ma gets smaller, the ratio of ma to the pT of the

a particle, and therefore the opening angle between the decay products, decreases
sharply. The VBF events tend to have a broader distribution than the ggF events
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Figure B.1: Distributions of the pT of the (top) Higgs; (middle) leading a; and
(bottom) subleading a particle, at truth level. The quantities are shown for simulated
signal events with (first column) ma = 2 GeV; (second column) ma = 5 GeV; (third
column) ma = 10 GeV; and (fourth column) ma = 20 GeV. The distributions are
shown separately for events produced in the VBF mode and those produced in the
ggF mode.

simply because the kinematics of the mother Higgs particle are less constrained in
the VBF topology (top row of Figure B.1).

This boosting can be seen in Figure B.2 for the photon decay products of the a
and in Figure B.3 for the gluon decay products of the a. While the pT of the photons
and gluon decay products are relatively unaffected by the mass of the a, for low ma

the ∆R between the two decay products gets very small. This dependence of ∆R on
ma affects both the trigger efficiency (Section 6.3.1) and the offline diphoton selection
efficiency (Section 6.3.2).
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The value ∆R = 0.2 is the distance metric for the photon reconstruction at the
trigger level; below this value only one photon region of interest is identified [421,422].
For ma < 10 GeV it is clear that this effect ruins the trigger efficiency, since a large
fraction of the events have between the two photons ∆R < 0.2. For 10 < ma < 20GeV

the effect is a little more nuanced. Some fraction of the photons do have ∆R < 0.2
and therefore do not pass the trigger requirement. For the photons with ∆R > 0.2,
since the opening angle between the photons ∆R ∼ 2ma

pT
, the pT of the originating a

particle is ∼ 2ma
∆R

< 10ma. Assuming the pT of the two decay products are chosen
basically uniformly between 0 and the pT of the a particle, subject to conservation
of energy, the pT of the leading photon is expected to be on average twice the pT of
the subleading photon, and therefore the pT of the subleading photon is about 1

3
of

the pT of the a particle; this can be seen in Figure B.2 (and also in Figures B.3 for
the gluon decay products). Thus, e.g. for ma ∼ 10 GeV and ∆R = 0.2, the pT of
the subleading photon is on average (and therefore half the time less than) 33 GeV,
therefore not passing the HLT_g35_loose_g25_loose trigger. Of course, for larger
∆R at fixed ma this effect gets stronger.

In summary, there are two effects that cause the photon trigger efficiency to go
down for small ma. The first is simply that a larger fraction of events have the two
photon decay products with ∆R < 0.2. The second is that, for ∆R > 0.2, for fixed
ma as ∆R gets larger the pT of the a particle and therefore of the photons goes down
inversely, and around ma = 10 GeV the subleading photon is around the trigger
threshold, causing inefficiencies. The trigger therefore requires ma to be high enough
such that if the pT of the a particle is high enough for its decay products to pass the
trigger threshold, the ∆R between the two photon decay products is also large enough
to be reconstructed as two trigger-level photons.

At the offline level, ∆R = 0.4 is the distance metric for the photon isolation [283];
below this value the photons are not reconstructed as isolated (ruining the offline
selection efficiency). However, at offline level this isolation can be turned off, and
since the triggers used in this analysis have no isolation applied (though such an
isolation is possible [422]), the effects of the isolation at least are not limiting the
sensitivity of this analysis. Of course, the isolation on the offline photons was kept
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Figure B.2: Distributions of the pT of the (top) leading photon; (middle) subleading
photon; and (bottom) ∆R between the two photons, at truth level. The quantities are
shown for simulated signal events with (first column) ma = 2 GeV; (second column)
ma = 5 GeV; (third column) ma = 10 GeV; and (fourth column)ma = 20 GeV. The
distributions are shown separately for events produced in the VBF mode and those
produced in the ggF mode.

for this search; this is due to the trigger selection limiting the efficiency on the low
masses, and the higher masses tending to have ∆R > 0.4 so that the isolation has
high signal efficiency and contributes to the background rejection.

Finally, the value ∆R = 0.4 is the distance metric for the small-R jet algorithm;
below this value both the photons and gluons are reconstructed in a single jet (making
the offline selection significantly harder). An offline selection strategy taking advan-
tage of the fact that the decay products are reconstructed in a single jet is discussed
in Section B.2.
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Figure B.3: Distributions of the pT of the (top) leading signal gluon; (middle) sub-
leading signal gluon; and (bottom) ∆R between the two gluons, at truth level. The
quantities are shown for simulated signal events with (first column) ma = 2 GeV;
(second column) ma = 5 GeV; (third column) ma = 10 GeV; and (fourth column)
ma = 20 GeV. The distributions are shown separately for events produced in the
VBF mode and those produced in the ggF mode.

However, there is an existing trigger which can be sensitive to these boosted
topologies. This trigger is seeded off the L1 trigger that requires a single isolated
photon with ET > 22GeV. In the high-level trigger, there are three additional require-
ments: a photon with ET > 25 GeV; at least four jets with ET > 35 GeV and |η| < 4.9;
and at least one dijet pair with invariant mass greater than 1000 GeV. In ATLAS
nomenclature, this trigger is called HLT_g25_medium_4j35_0eta490_invm1000_L1_EM22VHI.
That this trigger has efficiency on our signals is an accident; it was originally intended
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for background studies for the VBF H → bb + photon analysis [423]. However, be-
cause of this other analysis need, this trigger was running unprescaled in 2015-2018
data-taking periods [263–266,424].

This trigger has potential to be efficient on our signals at low ma. First, the
photon isolation at L1 only goes out to ∆R = 0.2 [422]; and furthermore, no isolation
at all is applied if the pT of the photon is > 50 GeV. As argued above, for fixed
ma as ∆R between the photons gets smaller the pT of the leading photon gets larger,
so that these two effects can mostly cancel out and allow our signals to pass the L1
trigger. The top row of Figure B.4 shows the efficiency of this trigger as a function
of the leading offline photon pT; the efficiency goes to 100% for pT > 30 GeV for
ma ≥ 10 GeV, indicating that the leading photon is passing the trigger requirement.
For ma = 2 GeV, the efficiency only goes to 100% for pT > 50 GeV, in accord with
the isolation requirements mentioned above.

Second, for the VBF signals the decay products of each of the two a particles are
reconstructed as a single jet in the HLT (photons are reconstructed as jets both at
trigger level and offline); these two jets plus the two VBF jets reach the requirement
of 4 jets with pT > 35 GeV, and in particular the pT of each of the signal jets contains
the full pT of each of the a particles rather than just one of the decay products. The
middle row of Figure B.4 shows the efficiency of this trigger as a function of the
4th-leading offline jet pT (including jets overlapping photons); the efficiency goes to
100% for pT > 40 GeV, indicating that the photons are being picked up as jets in the
HLT.

Finally, the photon in the HLT requirement is met by the leading photon, since no
isolation is required at HLT; and the invariant mass requirement is of course met in
the VBF topology. The bottom row of Figure B.4 shows the efficiency of this trigger
as a function of the maximum dijet invariant mass; the efficiency goes to 100% for
invariant mass > 1100 GeV, indicating the level at which the turn-on occurs.

In summary, with an offline selection of at least one photon with pT > 30 GeV,
at least 4 jets (including any that overlap photons) with pT > 40 GeV, and a maxi-
mum invariant mass of > 1100 GeV, the HLT_g25_medium_4j35_0eta490_invm1000
trigger is fully efficiency. This offline selection is listed in Table B.1.
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Table B.1: Preselection for low ma analysis.

Selection

Trigger HLT_g25_medium_4j35_0eta490_invm1000

Photon Selection ≥ 1 photon with pT > 30 GeV

Jet Selection ≥ 4 jets (not overlap-removed) with pT > 40 GeV

Invariant Mass ≥ 1 pair of jets with invariant mass > 1100 GeV

The efficiency of this offline selection on some given values of ma are shown in
Table B.2. These efficiencies are pretty good, considering the very tight invariant

Table B.2: Efficiency of preselection for low ma analysis.

ma [GeV] Efficiency

2 0.022
10 0.045
20 0.041

mass cut. For comparison, for the highma analysis, the efficiency through the trigger
and VBF selection is roughly 0.02 (Figure 6.9).

B.2 Low-mass Diphoton Offline Selection

After the preselection detailed in Table B.1, there are additional selections offline
that can be made to further distinguish the low mass signal from the background. As
mentioned, no isolation should be required on the photons offline, in order to maintain
the efficiency on the diphotons with ∆R < 0.4; this increases the background presence,
in particular hadronically-produced neutral pions decaying to two photons. For this
separation, the decay products of the a particle end up in a single jet, so the signature
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of this signal would be 2 jets each with a substructure of two hard subprongs. The
photons-jet would look quite similar to the neutral pion decay mentioned above, but
the gluons-jet would not look like any SM background process.

Jet substructure has a long history in high energy physics [69, 86]; its use can
be traced back to LEP [188–191], Tevatron [192, 193], and HERA [194–196]. At the
LHC, jet substructure for small-R jets focuses on distinguishing quark-initiated from
gluon-initiated jets at ATLAS [87–90] and CMS [197–200]. Jets with two prongs are
a signature of W-jet decays, and so most work with this signature target large-R jets
intended to tag W decays at ATLAS [92, 94] and CMS [425]. There are no existing
taggers that target small-R jets with two hard prongs.

The Author has advised on a project intended to identify collimated photon decays
reconstructed in a single jet [426]. The tagging algorithm uses convolutional neural
networks [315–317] to tag jet images [407,408], which have been used in ATLAS before
for quark-gluon discrimination [90]. The tagging performance indicates a greatly
improved signal/background discrimination power, enabling the offline selection for
this analysis at low mass. These techniques could also be used to target the collimated
gluon decays.

One drawback of using the direct jet image-based approach outlined in that project
is the reliance on the simulation of the jet substructure in the signal and background
used for training. The weak supervision analysis technique used in Chapter 7 could
be useful as an alternative to this direct approach in order to derive a purely data-
driven tagger. In particular, the masses of the two small-R jets and their substructure
features can be used as features for tagging in the classification without labels, which
is particularly useful since the masses ma are unknown. The overall invariant mass
of the two collimated jets can be used as the binning and bump hunt variable, with
particular attention to the region around mH. Such an approach would not only
target these novel signatures but also both standard model processes like H → bb

(if necessary, an anti-b tag could be applied in order to remove this standard model
“background”) and more exotic processes where the X,mX 6= mH is the mother particle
of the two a particles.
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Figure B.4: Efficiency of the HLT_g25_medium_4j35_0eta490_invm1000 trigger on
VBF signal events with (left) ma = 2 GeV; (middle) ma = 10 GeV; and (right)
ma = 20 GeV. The efficiency is shown as a function of (top) the leading offline
photon pT; (middle) the 4th-leading offline jet including those overlapping photons;
and (bottom) maximum invariant mass between any pair of offline jets. For each
efficiency plot, all the other offline requirements shown in Table B.1 are included, so
that the efficiency reaches 100% for large values.



Appendix C

A Generic Data-Driven Resonance

Search with Weak Supervision:

Appendix

C.1 Trials Factors and CWoLa

The search presented in Chapter 7 uses Classification Without Labels (CWoLa) to
be generically sensitive to a broad class of signal models, meaning that it does not
specify a signal model ahead of time, but is able to tag signals based on features that
discriminate them from the background and therefore be sensitive to whatever signal
happens to be in the data1. In the context of the search presented in Chapter 7, the
features are the masses of the jets m1,m2

2; it should also be kept in mind that the
natural extension of this search would use a suite of jet substructure variables so that
the feature space is high-dimensional.

There are two other ways to be generically sensitive to a broad class of signal
models. The first approach is to not place any selections on the features at all - this
approach could be called the “Inclusive Search” approach. The analog of the Inclusive
Search in the context of the search in Chapter 7 would be the inclusive dijet search [19].

1Subject to the constraints of the method and setup, as discussed in Section 7.3.1.
2Here we are considering the search in a fixed mJJ bin.
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A second way to be generically sensitive is to have a dedicated search in every region
of the feature space - this could be referred to as the “Direct Scanning” approach. The
analog of the Direct Scanning approach would be a series of searches along the lines
of the all-hadronic diboson resonance search [20]3, which targets a region around
(m1,m2) = (80, 80) GeV - in addition to that search, there could be another one
targeting a region around (m1,m2) = (200, 200) GeV, (m1,m2) = (80, 400) GeV,
etc.

It is crucially important to point out that CWoLa hunting differs fundamentally
from these alternative approaches, in that it can be both more sensitive than the
Inclusive Search, and in that it avoids suffering from a trials factor, also known as
a look-elsewhere effect [12, 427–429], that the Direct Scanning approach would be
subject to. This effect accounts for the fact that, with many statistically independent
searches, there is a high probability of observing a large excess in at least one of the
searches in the background-only case. Therefore, the size of the excess needed to claim
a discovery in any one search needs to be increased in order to lower the probability
of a false discovery [430–432], ultimately reducing sensitivity to true signals. The goal
of this Section is to explain this effect in detail and how CWoLa hunting manages to
avoid this effect, while still improving sensitivity compared to an inclusive search.

Suppose we collect a sample of N data points x = {x1, ..., xN}, where each ob-
servation xi could be multi-dimensional corresponding to n ≥ 1 features in each
observation4. x can be considered to be a sample from the random variable X which
we observed by taking data. We construct a test statistic [107,433–438] Q(X) which
is some mapping from the data to a real number, with the property that larger values
of Q correspond to increasing tension with the null or background-only hypothesis
H0. The observed test statistic is q = Q(x), and we define the observed p-value

p ≡ Prob(Q ≥ q|H0). (C.1)

3In fact that search uses features other than just the jet mass to tag signals; including these
other features and varying them with independent direct searches would be the analog of the natural
extension of the search in Chapter 7 mentioned above.

4E.g., xi = (mi1,m
i
2) for the ith event, in which case n = 2.
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A small p-value therefore indicates incompatibility with the background-only hypoth-
esis, and a possible discovery of a new signal.

The discovery procedure is to specify a threshold value α such that, if the observed
p ≤ α, a discovery is claimed. If the p-value is defined correctly, it should be the case
that

Prob(p ≤ α|H0) = α, (C.2)

i.e. the probability of making a Type I error (incorrectly rejecting the null hypothesis)
is exactly α. If the probability is < α then the test is conservative, meaning that the
probability of a Type I error is lower than expected; but if the probability is > α then
the probability of a Type I error is higher than expected and the p-values should be
recalibrated to account for this.
α is often mapped to a significance Z = Φ−1(1 − α), where Φ is the cumulative

distribution function (CDF) of the normal distribution.
In particle physics, since the null hypothesis is the Standard Model, α is typically

set very low - the “5σ Standard” [439,440] corresponds to Z = 5, or α ∼ 3× 10−7, so
that the probability of falsely ruling out the SM is very low.

We set up a toy model to demonstrate the background-only p-values and signal
discovery potential using the various generic signal searches outlined above. In the
toy model, the observed data are one-dimensional, X ∈ [0, 1]5. Two samples will
be considered: a background-only case (B only) and a background plus signal case
(B+ S). In the background-only case, there are expected B background events6 with
values drawn from a uniform distribution, XB ∼ U(0, 1). In the background plus signal
case, there are in addition expected S signal events drawn from some very small but
unknown region in this space, XS ∼ N (yS, δ), with δ � 17. In these examples S has

5The toy methods outlined below will find small regions in this space of size ε, corresponding to
line segments [y − ε

2
, y+ ε

2
]. The multidimensional analog would be balls or hypercubes of volume

ε in a space where the n features have been mapped to [0, 1]n.
6I.e., the number of background events is Poisson-distributed with mean B.
7In n dimensions, the volume taken up by the signal in [0, 1]n space would decrease quickly

with n, so this assumption is realistic. Another way to say this is that, as the number of features
increases, a selection with fixed signal efficiency can have a background efficiency δ� 1.
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been set to
√
B, i.e. a 1σ excess over the background-only hypothesis overall.

The first approach is the Inclusive Search, in which the test statistic Q is the total
number of events observed. In the background-only hypothesis H0, Q ∼ Poiss(B),
with the p-values defined according to the Poisson CDF. Note that, in this case and
in all cases outlined below, B is estimated from some external information; e.g. in
the search in Chapter 7 B is estimated via the mJJ fit interpolated in the mJJ region
being studied. Figure C.1 shows the probability distributions of the p-values. The
background-only case has Prob(p ≤ α|H0) = α as expected, and the background
plus signal case has probability > α, indicating tension with the background-only
hypothesis. In particular, the probability of observing a Z = 1 significance is 50%,
which makes sense since the injected signal corresponds to a 1σ excess. As a point
of reference, the probability of observing a Z = 2 significance is ∼ 0.16 and the
probability of observing a Z = 3 significance is ∼ 0.02 with this amount of signal.
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Figure C.1: Probability distributions of p-values for the Inclusive Search in the (blue)
background-only and (red) background plus signal cases. The black dotted line in-
dicates the ideal background-only case of Prob(p ≤ α|H0) = α. Then green dashed
lines indicate the α thresholds corresponding to integer significances Z.

The second approach is the Direct Scanning method. In this approach, the [0, 1]

space is partitioned intom = 10 regions of size ε = 0.1: [0, ε, 2ε, ..., 1]. In each region
a signal discovery test is performed, corresponding to discrete searches covering all
signal model hypotheses, withQ the number of events in the region andQ ∼ Poiss(εB)
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the background-only hypothesis. The overall p-value (also known as the global p-
value) is taken as the minimum p-value over all the regions (i.e., p ≤ α means that
at least one of these searches claimed a discovery with significance Z(α)). Figure C.2
shows the probability distributions of the p-values. The background-only case has
Prob(p ≤ α|H0) > α, since there is a high probability that at least one of the tests
has a low p-value. This effect is exactly what is referred to as a trials factor or look-
elsewhere effect. In principle this global p-value can be corrected analytically if the
number of tests is fixed [430–432] or calibrated by simulating the entire procedure
in some sample intended to produce the background-only p-value distribution. In
this example, the analytic correction would require α → α̂ ≈ α

m
8 , for the same

significance level; in the simulation it can also be seen that Prob(p ≤ α̂|H0) ≈
α. However requiring this more stringent test reduces the signal sensitivity - for
example, the probability of observing a Z = 2 significance (α ≈ 0.02→ α̂ ≈ 0.002) is
approximately 0.6, as opposed to ∼ 0.9 as the naive p-values would indicate. This is
better than for the Inclusive Search, since the true signal does lie in one of the regions
and there is some chance that all the other regions have high p-values. However, we
will see the improvement is worse than the improvement that can be made with
CWoLa.

In any case, there are good reasons to avoid having to re-calibrate the background-
only p-values: most often the disparate searches will not be so clear-cut as to allow an
analytic correction; and a simulation of the background-only p-values is often hard to
come by. Because of this, it’s desirable to have a method where the background-only
p-values are defined correctly.

We turn now to the ideas that enable CWoLa to be more sensitive than the
Inclusive Search without biasing the background-only p-values. The first thing to
point out is that the trials factor can be removed by splitting the data randomly into
a train set comprising (1−f) of the data and a test set comprising f of the data. In the
train set the Direct Scanning method is performed to find the region with minimum
p-value, but the test statistic Q is then defined to be the number of events in the

8The more precise correction is actually α = 1− (1− α̂)m ≈ mα̂, which can easily be derived as
Prob(p ≤ α̂|H0) = 1−

⋃m
i=1 Prob(pi > α̂|H0) = 1− (1− α̂)m.
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Figure C.2: Probability distributions of p-values for the Direct Scanning approach in
the (blue) background-only and (red) background plus signal cases. The black dotted
line indicates the ideal background-only case of Prob(p ≤ α|H0) = α. Then green
dashed lines indicate the α thresholds corresponding to integer significances Z.

test set in the region indicated by the train set, which under the background-only
hypothesis should be distributed as Q ∼ Poiss(fεB). Since the train and tests sets are
statistically independent in the background-only case, just because there’s an excess
in the train set that does not imply that there will be an excess in the test set, and
the background-only p-values should be unbiased.

Figure C.3 shows the probability distributions of the p-values with a f = 1
2

train/test split. The background-only case has Prob(p ≤ α|H0) ≤ α9. The sig-
nal sensitivity is better than the Inclusive Search, with the probability of a Z = 2

excess about 0.4, and the probability of a Z = 3 excess about 0.15. However, there
are two factors which could be addressed to make the signal sensitivity better. First,
since (1− f) < 1, it is harder to find the region in which the signal lays than without
the train/test split. Second, since f < 1, even in cases where the correct region is
found, the significance of the excess in that region is reduced by a factor of ∼

√
f10.

Both of these factors can be addressed by having a k-fold cross-testing. In this
9There is a small effect that, given there is an excess in the train set in one of the regions, there

are fewer events to go around for all the other regions (train and test), so Q is actually biased low.
10The significance in the correct region is roughly S√

εB
. If both S and B are multiplied by a factor

of f < 1, the significance is multiplied by
√
f < 1.
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Figure C.3: Probability distributions of p-values for the Direct Scanning approach
with a f = 1

2
train/test split in the (blue) background-only and (red) background

plus signal cases. The black dotted line indicates the ideal background-only case of
Prob(p ≤ α|H0) = α. Then green dashed lines indicate the α thresholds correspond-
ing to integer significances Z.

method, the data are split randomly into k sets. One of the k sets is set as the test
set, comprising f = 1

k
of the data, and the remaining 1 − f = k−1

k
of the data is

set as the train set. The Direct Scanning method with the train/test split described
above is then performed. Then, the whole process is repeated with each of the k
sets designated as the test set in turn. The test statistic Q is the sum across the k
test sets of the number of events in the chosen region from the respective train set,
which in the background-only hypothesis is distributed as Q ∼ Poiss(εB). Both of
the factors mentioned above are addressed, as the train set comprises k−1

k
∼ 1 of the

data, and the sum of the test set sizes is not reduced by a factor of f.
Figure C.4 shows the probability distributions of the p-values with a k = 5 k-fold

cross-testing. Unfortunately, the background-only p-values are biased, with Prob(p ≤
α|H0) > α. This is due to the following effect. In cases where there is a large (fake)
excess in one of the regions, even when splitting into the k sets, there will still be
a large excess in each of the k train sets in that region. This means that each of
the k trainings will choose the same region to tag in the test set, which is the region
in which there is a large excess overall. Interestingly, this effect goes away when
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there are no large excesses in any of the regions, which can be seen in Figure C.4 as
Prob(p ≤ α|H0) ≤ α for α & 0.3. This effect is made more clear in the case that
k� 1 - in that case, the training is basically the same every time, so that the same
region is always chosen for the test set.
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Figure C.4: Probability distributions of p-values with a k = 5 k-fold cross-testing in
the (blue) background-only and (red) background plus signal cases. The black dotted
line indicates the ideal background-only case of Prob(p ≤ α|H0) = α. Then green
dashed lines indicate the α thresholds corresponding to integer significances Z.

CWoLa hunting makes use of the above ideas with k-fold cross-testing. However,
in addition, CWoLa uses a neural network (NN) to learn what region to tag in the
train set before tagging in the test set. The NN features a key difference to the Di-
rect Scanning method outlined above in that the NN score has certain regularization
requirements which lead to smoothness in the NN output [391–396]11. The NN at-
tempts to approximate the likelihood distribution of X [441] with a smooth function,
by finding small regions ε ′ < ε with overdensities, assuming that corresponds to a lo-
cal maximum of the probability distribution, and smoothly interpolating from there.
In the toy model, this behavior is encapsulated by finding the region with length
ε ′ = ε

10
= 0.01 that has the highest density in the train set, and then designating the

11In the search in Chapter 7, there is also a validation set which serves to prevent overtraining the
network, and the scores from multiple networks across different validation permutations are averaged
together, further smoothing the output.
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region of size ε with the overdensity at its center as the tagging region for the test
set.

To demonstrate the advantages of the NN over the Direct Scanning method, this
mock NN is demonstrated without k-fold cross-testing, but rather training and
testing on the same set. The test statistic Q is the number of events observed in
the tagging region, which in the background-only hypothesis should be distributed as
Q ∼ Poiss(εB).

The probability distributions of the p-values with this mock NN are shown in
Figure C.5. Despite training and testing on the same set, as in the original Direct
Scanning approach (Figure C.2), the background-only p-values already look better,
albeit still biased (since there is an overdensity in the tagged region). In addition,
the p-values in the background plus signal case are smaller (higher probability that
p ≤ α for fixed α) than in the Direct Scanning approach, indicating that if the
background-only p-values were calibrated, the signal sensitivity would be better.
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Figure C.5: Probability distributions of p-values with a mock NN with no k-fold cross-
testing in the (blue) background-only and (red) background plus signal cases. The
black dotted line indicates the ideal background-only case of Prob(p ≤ α|H0) = α.
Then green dashed lines indicate the α thresholds corresponding to integer signifi-
cances Z.

The CWoLa hunting method makes use of both a NN and a k-fold cross-testing
(k = 5), combining the advantages of both innovations over the Direct Scanning
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method. The test statistic Q is the number of events observed in the tagging region
summed across the test sets, which in the background-only hypothesis should be
distributed as Q ∼ Poiss(εB).

The probability distributions of the p-values can be seen in Figure C.6. It can be
seen that the background-only p-values are approximately unbiased, with Prob(p ≤
α|H0) ≈ α across the whole range12. In addition, the background plus signal p-values
are significantly smaller than in the Inclusive Search - the probability of a Z = 2 excess
is about 0.9, and the probability of a Z = 3 excess is greater than 50%. This indicates
that the signal sensitivity is significantly better than in the Inclusive Search, without
paying a penalty of higher Type I errors (or recalibrating the p-values in order to set
the rate of Type I errors correctly).
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Figure C.6: Probability distributions of p-values with a mock NN and with k = 5

k-fold cross-testing in the (blue) background-only and (red) background plus signal
cases. The black dotted line indicates the ideal background-only case of Prob(p ≤
α|H0) = α. Then green dashed lines indicate the α thresholds corresponding to
integer significances Z.

It should be emphasized that the location of the signal yS was never specified,
and so the NN is able to find the signal regardless of where it lies in the feature
space. Thus, the CWoLa hunting method is generically sensitive without paying a
large trials factor, as advertised.

12There is a small bias towards smaller p-values, but correcting for this would not significantly
change the signal sensitivity.
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In this toy model the size of the signal δ was set to be smaller than ε ′ in order to
demonstrate how CWoLa hunting can find signals without biasing the background-
only p-values. However, this is not necessary in general, as long as the presence of
the signal causes a significant overdensity in a small region, which the NN can tag
according to its regularization requirements.

In addition, the above discussion points out that the k-fold cross-testing is neces-
sary for the CWoLa hunting method to work as expected, but the use of a regularized
NN is equally important, which is maybe not as obvious. The various complicated
steps of the NN training (Section 7.4.4) serve not only to prevent overtraining the
network but also to smooth the NN output.

Finally, the above discussion is simply a toy model intended to demonstrate how
CWoLa hunting can work, but not necessarily that it does, which depends on the
NN architecture. Ultimately the background-only p-values have to be validated as
an empirical test of the setup. These tests are included in the various steps of the
validation (Sections 7.5 and 7.6).

C.2 Classification Without Labels Optimality Proof

The proceeding discussion and proof follows [1]. In a classification problem, there is
a sample of events from a signal process S and a sample of events from a background
process B, and the goal is to determine based on observable features which process a
given event comes from. Let x be a set of features which are useful for discriminating
signal and background, and let pS(x) and pB(x) be the probability distributions of
x for signal and background events, respectively. A classifier h : x → R is designed
to distinguish between signal and background events. For a given selection h > c,
the efficiency on the signal is εS =

∫
dxpS(x)Θ (h(x) − c), and the efficiency on the

background is εB =
∫
dxpB(x)Θ (h(x) − c), with Θ the Heaviside step function. It

is clear that a monotonic rescaling of h corresponds only to a monotonic rescaling
of the threshold c, and that the performance of the classifier is determined entirely
by the function εB(εS), also known as the receiver operating characteristic (ROC)
curve [442].
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A classifier h is considered to be optimal if for all other classifier h ′, εh ′B (εS) ≥
εhB(εS). By the Neyman-Pearson Lemma [441], an optimal classifer is the likelihood
ratio hoptimal = pS(x)/pB(x). The goal is therefore to derive a classifier that is the
likelihood ratio, up to monotonic rescalings.

In a fully supervised learning problem, the labels of data in the training set are
known, and a classifier is trained to distinguish between the signal and background
samples. With a suitable loss function, a flexible enough classifier architecture, and
enough training data, the derived classifier approximates the optimal likelihood ratio
classifier.

In Classification Without Labels (CWoLa), there are only two mixed samples,M1

and M2, with signal fractions f1 and f2 (f1 > f2), respectively, which are unknown.
The key insight of the CWoLa method is that the optimal classifier for distinguishing
M1 and M2 is the same as the optimal classifier for distinguishing S and B. That is
to say, training a classifier to distinguish M1 and M2 will, in the asymptotic limit,
result in an optimal classifier for distinguishing signal and background.

The proof is as follows. The likelihood distributions of the mixed samples are

pM1(x) = f1pS(x) + (1− f1)pB(x), (C.3)

pM2(x) = f2pS(x) + (1− f2)pB(x). (C.4)

The optimal classifier for distinguishing M1 and M2 is the likelihood ratio LM1/M2 =
pM1/pM2 , and the optimal classifier for distinguishing S and B is the likelihood ratio
LS/B = pS/pB.

We see that

LM1/M2 =
pM1
pM2

=
f1pS + (1− f1)pB
f2pS + (1− f2)pB

=
f1LS/B + (1− f1)

f2LS/B + (1− f2)
. (C.5)

Then, with f1 > f2, we have

∂

∂LS/B
LM1/M2 =

f1 − f2
(f2LS/B + (1− f2))2

> 0, (C.6)
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so that LM1/M2 is a monotonic rescaling of LS/B13. Therefore, LM1/M2 and LS/B define
the same optimal classifier. �

C.3 Alternate Ideas for Validation

Section 7.3.3 discusses the difficulties present in this analysis for constructing a val-
idation sample with low signal efficiency to test the analysis pipeline. The primary
validation sample used in this analysis is formed by inverting the delta rapidity cut.
Some other ideas for forming a validation sample are below, which could be useful for
a future analysis based on classification without labels, e.g. one that does not want
to impose a delta rapidity cut or one targeting a different topology entirely.

C.3.1 Swapped Dataset

One possibility for a validation sample which is derived from data, and still retains
the property that the signal contamination is low, is called the jet swapped dataset. In
this dataset, leading and subleading jets are swapped between random pairs of events.
It is expected that this sample has low signal contamination, because it is unlikely
that two random events chosen from the original sample will both be signal events.
In particular, suppose that there is some number of signal, S, and some number of
background, B, in the original sample with no cuts. We can suppose that the signal
fraction S

B
= p � 1, due to existing limits from the inclusive dijet search [19] (note

that the limits from previous searches set a stronger bound, that the significance
S√
B
= p
√
B . 1). Then the signal contamination in the swapped dataset is expected

to be on the order of p2 � p (and therefore with significance p2
√
B� 1).

The mJJ distribution in the swapped dataset is different than in the original sam-
ple, and some correlations between the ensemble of jet features and the mJJ value
will not be preserved. However, any correlations between the individual jet features
and the jet pT will be preserved, and thus some significant part of the correlations
between the individual jet features and the mJJ value. The swapped dataset therefore

13With f1 < f2, the classifier is simply reversed.
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serves as an entirely data-derived reasonable proxy for the background spectrum of
the features and of mJJ, and can be used as a validation region for testing the validity
of the background shape fit, for demonstrating that the learned features do not sculpt
the mJJ distribution and therefore violate Assumption 2, and for demonstrating the
sensitivity of the method to (unswapped) injected signal.

C.3.2 Anti-tagged Dataset

After learning the neural network scores to distinguish events in the signal region
from events in the sideband regions, cuts are placed at some efficiency ε < 1 in order
to find the most signal-like events. That is to say, every event i has a score 0 ≤ Si ≤ 1
based on the neural network output, with larger Si indicating an event more signal-
like, and moreover the scores are scaled such that a cut Si > 1 − ε has efficiency
exactly ε in the signal region bin.

There is a concept of anti-tagging in this framework: by applying a cut Si < ε, the
ε fraction of events that are the least signal-like are chosen. However, this anti-tagged
dataset may still be contaminated by signal, in particular if the true signal is actually
mostly in the sideband region rather than the signal region i.e. Case 4b; in this case
the scores Si are signal anti-taggers in the first place, and so the anti-tagged dataset
is in fact anti-anti-tagging signal, i.e. positively tagging signal.

C.3.3 Median Dataset

Another possibility is to consider the median dataset, where the cut that is placed
is |Si − 0.5| <

ε
2
. These are the set of events that the neural network has decided

it is agnostic about being in the signal region or the sideband regions; it is there-
fore expected that this dataset has little signal contamination, because regardless of
whether the true signal was in the signal or sideband regions, it would not end up
with this median score. It is not expected that the mJJ distribution will be exactly
the same in the median dataset as in the signal-tagged dataset, even in the case there
is no true signal, since there are some residual correlations between the features and
mJJ. However, the median dataset can be used to test the validity of the background
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shape fit, and for looking at jet kinematics in a blinded way.

C.4 Analysis Software

The mc16-xAOD-ntuple-maker (https://gitlab.cern.ch/acukierm/mc16-xAOD-ntuple-
maker) package is used to create ntuples used for the analysis. The machine learning
code can be found in the cwola-hunting-learning (https://gitlab.cern.ch/cwola-
hunting/cwola-hunting-learning) package.

C.5 Fitting Software

The statistical analysis uses the ResonanceFinder package from the DBL group. This
code is based on RooFit [443], RooStats [444], and HistFactory [445]. Significant mod-
ifications for the background fitting were made for this analysis, which can be found
in the dedicated branch (https://gitlab.cern.ch/cwola-hunting/fitting/tree/minimal).

C.6 Bin Offset Test

A study of the effect of the bin positioning relative to the signal center mA is shown
in Figure C.7. A fixed signal is injected with mA = 3000 GeV, so that the mJJ

distribution of the signal lies mostly in signal region 5. For this study only, the signal
region bins are shifted in units of 0.25 the current bin size, so that after 4 shifts
the bins are exactly the same as before with the numbering changed by 1. The NN
efficiency on the signal at ε = 0.1 is shown as a function of the center of signal region
5, when the signal region used for training is 4, 5, and 6. It can be seen that, regardless
of where the bin definitions are, there is some signal region for which the NN efficiency
is high (> 0.4). Importantly, the NN maintains very high signal efficiency (> 0.8) in
3 out of the 4 bin positions, and dips lower in only the final 1 out of 4 positions. This
indicates that if the signal mA lies in roughly 75% of the mJJ kinematic space, the
NN performance is unaffected, while in the remaining 25% of the space the NN can

https://gitlab.cern.ch/acukierm/mc16-xAOD-ntuple-maker
https://gitlab.cern.ch/acukierm/mc16-xAOD-ntuple-maker
https://gitlab.cern.ch/cwola-hunting/cwola-hunting-learning
https://gitlab.cern.ch/cwola-hunting/cwola-hunting-learning
https://gitlab.cern.ch/cwola-hunting/fitting/tree/minimal
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still learn to tag the signal albeit at lower efficiency; regardless, CWoLa is sensitive
to these new signals.
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Figure C.7: The efficiency of the NN on the signal (mA,mB,mC = (3000, 200, 200)
GeV) at cut ε = 0.1 at different values of the center of signal region 5. The efficiency
of the NN is shown when training on signal region 4 (in red); 5 (in blue); and 6 (in
green). The distribution of mJJ in the signal is also shown (in orange) for reference.

C.7 Validation Analysis: No Signal Fits

The fit on the validation data with no signal injected is shown for signal region 6
(Figure C.8); signal region 7 (Figure C.9); signal region 8 (Figure C.10); and signal
region 9 (Figure C.11). These fits generally indicate problems with the ε = 1.0 and
ε = 0.25 fits, especially at lower masses, which motivates the decision to limit the
analysis to only ε = 0.1 and ε = 0.01 for the full unblinded analysis.
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Figure C.8: The background fit when there is no injected signal, in signal region 6,
for various efficiency points ε. Note that these are data and not simulation, using the
inverted rapidity cut data selection.
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Figure C.9: The background fit when there is no injected signal, in signal region 7,
for various efficiency points ε. Note that these are data and not simulation, using the
inverted rapidity cut data selection.
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Figure C.10: The background fit when there is no injected signal, in signal region 8,
for various efficiency points ε. Note that these are data and not simulation, using the
inverted rapidity cut data selection.
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Figure C.11: The background fit when there is no injected signal, in signal region 9,
for various efficiency points ε. Note that these are data and not simulation, using the
inverted rapidity cut data selection.
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C.8 Unblinded Analysis: Signal Injection Tests

The effect of an injected signal on the fit is studied. Figure C.12 shows the dependence
of the maximum likelihood signal strength µ̂ on the injected signal strength µ = L×σ,
where L is the data luminosity and σ is the cross section for the production of the
given signal. Also indicated is the final 95% CL exclusion limit on the given signal.
It can be seen that the fitted signal strength is not consistent with the injected signal
strength for values below the 95% CL exclusion limit; above that value there is some
bias towards smaller values due to the fit process outlined in Section 7.7.4.
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Figure C.12: The dependence of the fitted signal strength µ̂ on the injected signal
strength µ with a NN cut at efficiency ε = 0.1 trained on (a,b,c) signal region 5
and (d,e,f) signal region 8 for a signal with mA,mB,mC equal to (a) (3000,200,200);
(b) (3000,400,200); (c) (3000,400,400); (d) (5000,200,200); (e) (5000,400,200); and (f)
(5000,400,400) GeV. Also shown is the 95% CL exclusion limit for the given signal.



APPENDIX C. A GENERIC RESONANCE SEARCH: APPENDIX 314

C.9 Unblinded Analysis: Neural Network Depen-

dence on µ

The NN efficiency on the given signals as a function of µ is given in Figure C.13 for
signals withmA = 3000 GeV and in Figure C.14 for signals withmA = 5000 GeV. The
NN output for each of the 5 different random samplings of the signal is included. The
NN with the median efficiency on the signal is also indicated; note that this does not
necessarily correspond to the NN that gives rise to the median expected limit, because
the shape of the background may change, and so this is only indicated as an aesthetic
choice. The envelope of the outputs across the different random samplings tends to
be small when the efficiency is very high or very low, while the envelope widens at
the µ values where the efficiency is middling; these are exactly the transition regions
where the NN can find the signal but does not always. The median NN tends to be
smoothly rising with µ, while single samplings from the envelope may not be; thus,
the choice to run the analysis with different random samplings serves as a smoothing
procedure. For mA = 5000 GeV, for the best-performing signals at high mB,mC, the
NN efficiency actually goes down with increasing µ. This is simply due to the fact
that at these values of µ the amount of signal is comparable to the 10% or 1% of the
signal plus background remaining after the NN tagging, so that it is mathematically
impossible to have a higher efficiency on the signal and retain the overall efficiency
on all the events in the signal region.
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Figure C.13: The efficiency of the NN as a function of µ on the injected signal at
mA = 3000, in signal region 5, for (a,c,e,g,i,k) ε = 0.1 and (b,d,f,h,j,l) ε = 0.01.
There are 5 lines corresponding to the 5 different random samplings of the signal in
the training of the NN; the network with the median efficiency is also marked. Each
signal is labeled by (mB,mC) in GeV. (a,b) (80,80); (c,d) (80,200); (e,f) (80,400);
(g,h) (200,200); (i,j) (200,400); (k,l) (400,400).
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Figure C.14: The efficiency of the NN as a function of µ on the injected signal at
mA = 5000, in signal region 8, for (a,c,e,g,i,k) ε = 0.1 and (b,d,f,h,j,l) ε = 0.01.
There are 5 lines corresponding to the 5 different random samplings of the signal in
the training of the NN; the network with the median efficiency is also marked. Each
signal is labeled by (mB,mC) in GeV. (a,b) (80,80); (c,d) (80,200); (e,f) (80,400);
(g,h) (200,200); (i,j) (200,400); (k,l) (400,400).
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C.10 Unblinded Analysis: Fit Correction

It is found that the distribution of significances of data with respect to the back-
ground fit both has a global (negative) offset and also has some dependence on mJJ.
This is verified in the validation (inverted rapidity cut) data, as can be seen in Fig-
ure C.15. Only bins with fit values greater than 10 are included, as the distribution
of significances is not expected to be Normal for bins with low counts; see [446]. The
effect is measured both when restricting the fit to just the nominal fit functions (1
and 2) and when restricting the fit to just the UA2 fit function (3).

Some key statistics of the distribution of significances when using the nominal fit
functions are given in Table C.1. The fit values are used to correct the background

Table C.1: Key statistics of distribution of significances in validation selection data.

Statistic Value
Mean -0.16

Std. Dev. 1.02
Mean Std. Err. 0.06
mJJ Fit Slope -0.20 TeV−1

mJJ Fit Slope Std. Err. 0.06 TeV−1

mJJ Fit Intercept 0.49

fit bin-by-bin given the mJJ value in that bin; i.e., the correction is exactly the green
dashed line in Figure C.15b. Since there is uncertainty on the estimate of the offset
and mean from the validation dataset, and in addition an uncertainty on whether
the fit derived in the validation dataset applies to the signal selection dataset, an
uncertainty is applied on the offset and the slope independently according to the
standard error of the estimate.

The question of how exactly to apply this correction is non-trivial. The correction
is derived on the significance of the data with respect to the background fit in the
validation selection data, but it would be improper in general to set the median
background fit value to the value that changes the significance by the correction
amount, since then this correction would depend on the observed data in each bin.
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Figure C.15: Distribution of significances in validation (inverted rapidity cut) data.
(a,c) Overall distribution. The green dashed line shows the mean significance and
the green dotted lines show the standard error on the estimate of the mean. The
t-stat of this estimate is shown on the plot as well. (b,d) Dependence on mJJ. The
dots show individual observations across the 6 signal region bins at each value of mJJ

included in the fits. The red points with error bars bin these values and show the
average in order to reduce the noise. The green dashed line shows the line of best fit,
and the green dotted lines show the standard error on the fit. The t-stat associated
with the estimate of the slope of the fit line is shown on the plot as well. (a,b) Using
the nominal fit function (1 and 2); (c,d) Using the UA2 fit function (3).

Instead, the correction is applied to change the (approximate) median of the expected
distribution of event counts under the Poisson hypothesis to have a significance of
the corrected value. In other words, given the background fit value Ei and correction
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value c, the new fit value E ′i is given by:

S(E ′i, bEi + 1c) = S(Ei, bEi + 1c) − c, (C.7)

where S(Ei, Oi) is the significance as defined in Equation 7.13. For the variations of
the offset and the slope according to their uncertainties, new values of E ′i are calculated
according to the up and down variations of each. The additional uncertainty on the
background fit value E ′i is given as the sum in quadrature of the differences due to
these new values.

After applying this correction, the distribution of significances in the validation
selection (inverted rapidity cut) data is shown in Figure C.16. After the correction,
the distribution of significances is consistent with mean 0 across the entire range,
indicating that the correction (Equation C.7) is working as intended.
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Figure C.16: Distribution of significances in validation (inverted rapidity cut) data
after applying the background fit correction. (a) Overall distribution, showing the
up and down variations of the offset term. The green solid line shows the nominal
mean significance and the green dashed/dotted lines show the down/up variations,
respectively. (b) Dependence on mJJ. The green solid line shows the line of best fit
to the nominal significances, and the green dashed/dotted lines show the down/up
variations on the slope term, respectively. The red points bin the individual nominal
values and show the average, while the error bars indicate the same for the down/up
variations of the slope term.

The correction is validated in the signal selection (no inverted rapidity cut) data
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in the sidebands of the fit, since after the NN selection it is expected there will not
be any significant signal presence in the sidebands, and the background fit should
describe the data there. This validation is shown in Figure C.17. It can be seen both
that before the correction, the distribution of significances and dependence on mJJ is
consistent with that observed in the validation (inverted rapidity cut) data. Some key
statistics of the distribution are shown in Table C.2. Both the mean significance and
the slope of the significances with respect to mJJ are slightly higher than the values
observed in the validation data.

Table C.2: Key statistics of distribution of significances in signal selection data.

Statistic Value
Mean -0.10

Std. Dev. 1.06
Mean Std. Err. 0.06
mJJ Fit Slope -0.09 TeV−1

mJJ Fit Slope Std. Err. 0.07 TeV−1

mJJ Fit Intercept 0.19

After the correction the distribution of significances is consistent with mean 0
across the entire range to within the uncertainties, again with the nominal slightly
higher since the correction is kept constant from the derivation in the validation
selection data. This indicates that the correction can also be applied to the bins in
the signal regions.
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Figure C.17: Distribution of significances in signal selection (no inverted rapidity
cut) data before (a,b) and after (c,d) applying the background fit correction. (a)
Overall distribution. The green dashed line shows the mean significance and the
green dotted lines show the standard error on the estimate of the mean. The t-stat
of this estimate is shown on the plot as well. (b) Dependence on mJJ. The dots show
individual observations across the 6 signal region bins at each value of mJJ included
in the fits. The red points with error bars bin these values and show the average
in order to reduce the noise. The green dashed line shows the line of best fit, and
the green dotted lines show the standard error on the fit. The t-stat associated with
the estimate of the slope of the fit line is shown on the plot as well. (c) Overall
distribution, showing the up and down variations of the offset term. The green solid
line shows the nominal mean significance and the green dashed/dotted lines show the
down/up variations, respectively. (d) Dependence on mJJ. The green solid line shows
the line of best fit to the nominal significances, and the green dashed/dotted lines
show the down/up variations on the slope term, respectively. The red points bin the
individual nominal values and show the average, while the error bars indicate the
same for the down/up variations of the slope term.
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C.11 Unblinded Analysis: Global Distribution of Sig-

nificances

The distribution of significances observed in the unblinded data in the given signal
regions with no signal injected (Figure 7.36 is studied under a toy Gaussian model. In
each bin, the significance Si that is being shown in the Figures is the same significance
that goes into the χ2 calculation (Equation 7.12):

Si =
Oi − Ei
Ei

(C.8)

Since the toy model being used is Gaussian, we only examine the significances in
bins in which the background prediction Ei > 5. The empirical CDF ΦO(x) of the
observed significances Si is formed as:

ΦO(x) =

N∑
i=1

1(x ≤ Si)
N

where 1 is the indicator function, and the sum goes over all N significances being
considered; in this case N = 53.

The toy model predictions are calculated by generating, in each toy, N = 53

samples from a standard normal distribution and calculating the empirical toy CDF
in the same way as for the observed. Ntoys = 20000 empirical toy CDFs are generated
in this way and quantiles across the toys are then calculated.

Figure C.18 shows the results of this test. The observed empirical CDF lies well
within the Gaussian expectation out to significance x < 2. For the most extreme
excess observed in the data, this value or larger is observed in the toys at around the
1.3-σ level, or ∼ 10% of the time.
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Figure C.18: The CDF at each value x for the observed data (orange) and for the toys
(median is bold green dashed line and the green dotted lines correspond to (1,2)-σ
quantiles, respectively; the blue shadings correspond to finer quantiles at the 0.25σ
level).

C.12 Unblinded Analysis: Fits with Injected Signal

The fit results for all the signals at the injected µ value that gives rise to the limits
given in Section 7.7.5 can be found in Figure C.19 for mA = 3000 GeV and in
Figure C.20 for mA=5000 GeV. For signals with no limit set (because the NN did
not find that signal at any value of µ), the fit at the maximum injected value ( 7.9)
is shown.
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Figure C.19: The fit with an injected signal at mA = 3000, in signal region 5, for
(a,c,e,g,i,k) ε = 0.1 and (b,d,f,h,j,l) ε = 0.01. The strength of the signal is the
injected µ value that gives rise to the limits given in Section 7.7.5, or the maximum
injected µ if no limits are set. Each signal is labeled by (mB,mC) in GeVand µ for
the two ε values. (a,b) (80,80), µ =(1250,1500); (c,d) (80,200), µ =(750,1250); (e,f)
(80,400), µ =(1000,850); (g,h) (200,200), µ =(350,225); (i,j) (200,400), µ =(600,600);
(k,l) (400,400), µ =(500,350). The red dashed lines indicate the fit uncertainty.
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Figure C.20: The fit with an injected signal at mA = 5000, in signal region 8, for
(a,c,e,g,i,k) ε = 0.1 and (b,d,f,h,j,l) ε = 0.01. The strength of the signal is the
injected µ value that gives rise to the limits given in Section 7.7.5, or the maximum
injected µ if no limits are set. Each signal is labeled by (mB,mC) in GeVand µ for
the two ε values. (a,b) (80,80), µ =(750,280); (c,d) (80,200), µ =(750,750); (e,f)
(80,400), µ =(1000,350); (g,h) (200,200), µ =(75,75); (i,j) (200,400), µ =(280,500);
(k,l) (400,400), µ =(50,50). The red dashed lines indicate the fit uncertainty.
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C.13 Unblinded Analysis: Dependence of Limits on

µ

The 95% CL exclusion limits on the given signals as a function of µ are given in
Figure C.21 for signals with mA = 3000 GeV and in Figure C.22 for signals with
mA = 5000 GeV. The limits for each of the 5 different random samplings of the
signal is included. The network that gives rise to the median limit on the signal is
also indicated, and the ±1σ and ±2σ bands and observed limit are indicated for this
network; this is the network that is used to derive the final limits. The envelope of
the outputs across the different random samplings tends to be small when the NN
efficiency is very high (when it is very low the limits are large and worse than existing
limits), while the envelope widens at the µ values where the efficiency is middling;
these are exactly the transition regions where the NN can find the signal but does not
always. The median limit tends to be smoothly falling with µ (before taking the max

with the dotted line µ), while single samplings from the envelope may not be; thus,
the choice to run the analysis with different random samplings serves as a smoothing
procedure. For mA = 5000 GeV, for the best-performing signals at high mB,mC, the
limits actually get worse with increasing µ; this is related to the fact that the NN
efficiency gets worse with increasing µ for these signals (Appendix C.9).
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Figure C.21: The limits µ95(µ) as a function of µ on the injected signal atmA = 3000,
in signal region 5, for (a,c,e,g,i,k) ε = 0.1 and (b,d,f,h,j,l) ε = 0.01. There are 5 lines
corresponding to the expected limit for the 5 different random samplings of the signal
in the training of the NN; the network with the median expected limit is also marked.
The ±1σ and ±2σ bands and the observed limit are given for the network that gives
rise to the median expected limit. The red stars indicate the expected, observed, and
bands of the limit after taking the max of the limit and µ. Each signal is labeled by
(mB,mC) in GeV. (a,b) (80,80); (c,d) (80,200); (e,f) (80,400); (g,h) (200,200); (i,j)
(200,400); (k,l) (400,400).
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Figure C.22: The limits µ95(µ) as a function of µ on the injected signal atmA = 5000,
in signal region 8, for (a,c,e,g,i,k) ε = 0.1 and (b,d,f,h,j,l) ε = 0.01. There are 5 lines
corresponding to the expected limit for the 5 different random samplings of the signal
in the training of the NN; the network with the median expected limit is also marked.
The ±1σ and ±2σ bands and the observed limit are given for the network that gives
rise to the median expected limit. The red stars indicate the expected, observed, and
bands of the limit after taking the max of the limit and µ. Each signal is labeled by
(mB,mC) in GeV. (a,b) (80,80); (c,d) (80,200); (e,f) (80,400); (g,h) (200,200); (i,j)
(200,400); (k,l) (400,400).
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C.14 Computing Resources

The time for training depends on the signal region. The initial factor of 3 networks
to find the one with the lowest validation loss is done sequentially in a single job,
but everything else is parallelized. For signal region 4 (the largest), a single training
takes O(hours), and decreases proportionally according to the number of events in
the signal region + sidebands. For a single mass point, µ value, and signal region,
there are 4× 5 = 20 such jobs. For the no-signal networks, there are therefore 20× 5
jobs, some of which run very quickly.

There are far more jobs with injected signal. We look at 12 signal mass points,
and O(10) µ values for each, and for a given signal hypothesis only in a single signal
region. For the full unblinded analysis each training is repeated 5 times with random
samplings of the signal. Therefore, for the full unblinded analysis, there are 4×5×12×
10 × 5 = 12000 jobs. The Author is especially grateful for the computing resources
at SLAC (https://atlas.slac.stanford.edu/using-the-slac-computing-resources), which
provide a batch CPU system on which a single user can reliably run about 400 jobs
simultaneously. Altogether it takes O(days-weeks) in compute time to reproduce all
the results in this analysis.

Each job stores O(100) MB of data in output, since there are tens of millions
of events for which a few key features have to be stored, e.g. the NN output and
the values of the features and mJJ. Probably wastefully, each step of the validation
combination process is stored as a new file, in order to reduce computation time,
increasing the amount of storage by a factor of ∼ 2. Therefore the whole analysis
uses a few TB in storage space, which again gratitude is due to the SLAC computing
facilities for providing and maintaining.

https://atlas.slac.stanford.edu/using-the-slac-computing-resources


Appendix D

Numerical Inversion for Jet

Calibrations: Appendix

D.1 Gaussian Invariance Lemma

Let X ∼ N (µ, σ) and f be some function such that f ′(x) > 0. Then, f(X) ∼ N (µ ′, σ ′)

if and only if f(x) is linear in x.

Proof. The converse is a well-known result, and can be obtained directly from
application of Equation 8.12.

Now suppose that f(X) ∼ N (µ ′, σ ′). Let Y = (X− µ)/σ and define

g(y) =
f(σy+ µ) − µ ′

σ ′
, (D.1)

so that Y and Z = g(Y) both have a standard normal distribution. Furthermore,

g ′(y) =
σ

σ ′
f ′(σy+ µ) > 0, (D.2)

so g is monotonic.

330
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We then can write for any c:

Φ(c) = Pr(Y < c) = Pr(g(Y) < g(c))

= Pr(Z < g(c))

= Φ(g(c)), (D.3)

Where Φ(x) is the normal distribution cumulative distribution function. Since Φ is
invertible, we then have that g(c) = c. Inserting the definition of g then gives us the
final result:

f(x) =
σ ′

σ
(x− µ) + µ ′. � (D.4)

D.2 Closure of the Mean

The closure of jets reconstructed from truth jets with ET = x and f(x) = fme(x) is
given to first order by C ≈ 1− 1

2

f ′′(x)
f ′(x)3

σ(x)2

x
.

Derivation. We begin by Taylor expanding f−1(y) about y = f(x):

f−1(y) =

∞∑
n=0

1

n!

(
f−1
)(n)

(f(x)) · (y− f(x))n

=

∞∑
n=0

1

n!
gn(x) · (y− f(x))n , (D.5)

where gn(x) ≡ (f−1)(n)(f(x)) means the nth derivative of f−1(y), evaluated at y =



APPENDIX D. NUMERICAL INVERSION: APPENDIX 332

f(x). Plugging this into Equation 8.13, we have

C(x) =
1

x

∫
dyρY|X(y|x)f

−1(y)

=

∞∑
n=0

1

n!

gn(x)

x

∫
dyρY|X(y|x) (y− f(x))n

=

∞∑
n=0

1

n!

gn(x)

x
µn(x), (D.6)

where µn(x) are the standard central moments µn(x) = E [(Y − E [Y])n|X = x], since
by definition f(x) = E[Y|X = x].

The first few central moments are independent of the distribution ρY|X. In partic-
ular, µ0 = 1 is the normalization, and µ1 = 0. Writing these terms out, we have

C(x) =
g0(x)

x
+

∞∑
n=2

1

n!

gn(x)

x
µn(x). (D.7)

Noting that g0(x) = f−1(f(x)) = x,

C(x) = 1+

∞∑
n=2

1

n!

gn(x)

x
µn(x). (D.8)

We see that, if f is linear, then so is f−1, and so gn = 0 for all n ≥ 2. Then
Equation D.8 reduces to C = 1, and numerical inversion closes, as was found in
Equation 8.14.

It will be instructive to expand out the first few terms of Equation D.8. We note
that, by definition, µ2(x) = σ(x)2 is the variance, and µ3(x) = σ(x)3γ1 defines the
skew γ1. Then we have

C(x) = 1+
1

2

g2(x)

x
σ(x)2 +

1

6

g3(x)

x
σ(x)3γ1 +

∞∑
n=4

1

n!

gn(x)

x
µn(x). (D.9)

Suppose we are given an arbitrary distribution specified by its moments µn(x).
Then the requirement that closure is satisfied in the form of the right hand side of
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Equation D.8 converging to 1 exactly imposes strict constraints on the function g(x),
so that only for a highly specific choice of g and therefore f is closure achieved. Thus
in general we do not expect closure to be satisfied for an arbitrary initial distribution
ρY|X.

We note that, since we expect the derivatives gn(x) and the moments µn(x) to
grow considerably slower than n! for functions f and distributions ρY|X encountered at
the LHC, we expect Equation D.8 to converge, and Equation D.9 gives the dominant
contributions to the non-closure, i.e.

C(x) ≈ 1+ 1

2

g2(x)

x
σ(x)2 +

1

6

g3(x)

x
σ(x)3γ1. (D.10)

If ρY|X is symmetric or near-symmetric, or if the third derivative of g is small, such
that g3(x)σ(x)γ1 � g2(x), then the dominant contribution to the non-closure is just

C(x) ≈ 1+ 1

2

g2(x)

x
σ(x)2. (D.11)

We further note that

g2(x) = (f−1)(2)(f(x)) = −
f ′′(x)

f ′(x)3

→ C(x) ≈ 1− 1

2

f ′′(x)

f ′(x)3
σ(x)2

x
. � (D.12)

D.3 Calibrated Resolution of the Mean

The calibrated resolution of jets reconstructed from truth jets with ET = x and f(x) =
fme(x) is given to first order by σ(x)

f ′(x)
.

Derivation. We note that, expanding f−1(y) about y = f(x) out to one derivative,
and using the definitions of gn(x) and µn(x) from the previous section,

(f−1(y))2 ≈ g0(x)2 + 2g0(x)g1(x)(y− f(x)) + g1(x)
2(y− f(x))2, (D.13)
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so that

E
[
Z2
∣∣X = x

]
=

∫
dyρY|X(y|x)(f

−1(y))2

≈
∫
dyρY|X(y|x)

(
g0(x)

2 + 2g0(x)g1(x)(y− f(x)) + g1(x)
2(y− f(x))2

)

= g0(x)
2µ0(x) + 2g0(x)g1(x)µ1(x) + g1(x)

2µ2(x)

= g0(x)
2 + g1(x)

2σ(x)2. (µ1 = 0 by construction) (D.14)

Out to one derivative we also have that (as derived in the previous section)

E [Z|X = x]2 ≈ g0(x)2→ σ [Z|X = x]2 = E
[
Z2
∣∣X = x

]
− E [Z|X = x]2

≈ g1(x)2σ(x)2. (D.15)

Then,

g1(x) = (f−1) ′(f(x)) =
1

f ′(x)

→ σ [Z|X = x]2 ≈ σ(x)2

f ′(x)2

→ σ̂(x) = σ [Z|X = x] ≈ σ(x)

f ′(x)
. � (D.16)

D.4 Closure of the Mode

The closure of jets reconstructed from truth jets with ET = x and f(x) = fmo(x) is
given to first order by C ≈ 1+ f ′′(x)

f ′(x)3
σ̃(x)2

x
.

Derivation. As a reminder for the reader, for brevity, we will let ρY(y) = ρY(y|x)

and ρZ(z) = ρZ(z|x), and let the parameter x be understood.
We begin by supposing that the closure is not much different than 1, so that we can

examine ρZ(z) in the vicinity of z = x to find the mode z∗. Expanding Equation 8.12
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about to second order in (z− x):

ρZ(z) = f
′(z)ρY(f(z))

≈
[
f ′(x) + (z− x)f ′′(x) +

(z− x)2

2
f ′′′(x)

]

×
[
ρY(f(x)) + (z− x)ρ ′Y(f(x))f

′(x) +
(z− x)2

2
ρ ′′Y (f(x))f

′(x)2
]
. (D.17)

We note from the condition Equation 8.23 that ρ ′Y(f(x)) = 0, so

ρZ(z) ≈
[
f ′(x) + (z− x)f ′′(x) +

(z− x)2

2
f ′′′(x)

]

×
[
ρY(f(x)) +

(z− x)2

2
ρ ′′Y (f(x))f

′(x)2
]

≈ f ′(x)ρY(f(x)) + (z− x)f ′′(x)ρY(f(x))

+
(z− x)2

2

[
f ′′′(x)ρY(f(x)) + f

′(x)3ρ ′′Y (f(x))
]
, (D.18)

so that

ρ ′Z(z) ≈ f ′′(x)ρY(f(x)) + (z− x)
[
f ′′′(x)ρY(f(x)) + f

′(x)3ρ ′′Y (f(x))
]
. (D.19)

Then the closure condition Equation 8.24 gives

ρ ′Z(z
∗) = 0

→ z∗ ≈ x− f ′′(x)ρY(f(x))

f ′′′(x)ρY(f(x)) + f ′(x)3ρ ′′Y (f(x))
, (D.20)
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i.e. the mode of ρZ(z) occurs at z = z∗. Then the closure is

C(x) =
z∗

x

≈ 1− 1

x

f ′′(x)ρY(f(x))

f ′′′(x)ρY(f(x)) + f ′(x)3ρ ′′Y (f(x))

= 1−
1

x

f ′′(x) ρY(f(x))
ρ ′′Y (f(x))

f ′′′(x) ρY(f(x))
ρ ′′Y (f(x))

+ f ′(x)3

= 1+
f ′′(x)

f ′(x)3 − σ̃(x)2f ′′′(x)

σ̃(x)2

x
. (D.21)

In practice we find that for typical response functions, higher derivatives of f tend
to vanish. A comparison between the two terms in the denominator of Equation D.21
can be found in Figure D.1 for the toy model considered in Appendix D.9; we find
that f ′(x)3 � σ̃(x)2f ′′′(x). Thus, in practice we recommend the approximation

C(x) ≈ 1+ f ′′(x)

f ′(x)3
σ̃(x)2

x
. � (D.22)

The agreement between the actual and estimated closure in Figure 8.4 also confirms
this approximation. Thus, in the body of this text Equation D.22 is presented as the
result, even though Equation D.21 is technically more precise.

D.5 Resolution of the Mode

The resolution of jets reconstructed from truth jets with ET = x and f(x) = fmo(x) is
given to first order by ^̃σ(x) ≈ σ̃(x)

f ′(x)
.

Derivation. From Equation D.19 we have

ρ ′′Z(z) ≈ f ′′′(x)ρY(f(x)) + f ′(x)3ρ ′′Y (f(x)). (D.23)
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Figure D.1: A comparison of derivative values using a toy model similar to conditions
in ATLAS or CMS. In blue, f ′(x)3. In red, σ̃(x)2f ′′′(x). For details of the model, see
Appendix D.9.
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Then the resolution is given as

^̃σ(x)2 = −
ρZ(z

∗)

ρ ′′Z(z
∗)

≈ −
f ′(x)ρY(f(x))

f ′′′(x)ρY(f(x)) + f ′(x)3ρ ′′Y (f(x))

=
f ′(x)σ̃(x)2

f ′(x)3 − f ′′′(x)σ̃(x)2
. (D.24)

Following the discussion in Appendix D.4, we simplify the denominator to get the
approximation

σ̃(x)2 ≈ σ̃(x)2

f ′(x)2

→ σ̃(x) ≈ σ̃(x)

f ′(x)
. � (D.25)

D.6 Iterated Numerical Inversion Calculation

The closure Cnew(x) after iterating numerical inversion is not necessarily closer to 1
than the closure C(x) after performing numerical inversion once.

Derivation. We limit ourselves to the case that we are using the modes of the
distributions Y|X = x and Z|X = x to calibrate, as in practice that is what is used at
ATLAS and CMS for numerical inversion.

We use the estimation of the closure of the mode Equation 8.28:

C(x) ≈ 1+ f ′′(x)

f ′(x)3
σ̃(x)2

x

→ |C(x) − 1| ≈
∣∣∣∣
f ′′(x)

f ′(x)3
σ̃(x)2

x

∣∣∣∣ . (D.26)
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We use the iterated numerical inversion response

fnew(x) = C(x)x

≈ x+ f ′′(x)

f ′(x)3
σ̃(x)2 (D.27)

→ f ′new(x) ≈ 1− 3
f ′′(x)2

f ′(x)4
σ̃(x)2 (D.28)

→ f ′′new(x) ≈ 12
f ′′(x)3

f ′(x)5
σ̃(x)2. (D.29)

Where we have ignored higher derivatives of f(x)1 and derivatives of σ(x)2. We also
have the estimation of the resolution of the calibrated distribution Equation 8.32

^̃σ(x) ≈ σ̃(x)

f ′(x)
, (D.30)

So that we can estimate the closure after iterating numerical inversion as

Cnew(x) ≈ 1+
f ′′new(x)

f ′new(x)
3

^̃σ(x)2

x

≈ 1+ 12f
′′(x)3

f ′(x)5
σ̃(x)2

σ̃(x)2

f ′(x)2
1

x

= 1+
12

x

f ′′(x)3

f ′(x)7
σ̃(x)4 (D.31)

→ |Cnew(x) − 1| ≈
∣∣∣∣
12

x

f ′′(x)3

f ′(x)7
σ̃(x)4

∣∣∣∣ (D.32)

→ |Cnew(x) − 1|

|C(x) − 1|
≈ 12f

′′(x)2σ̃(x)2

f ′(x)4
. (D.33)

If the ratio in Equation D.33 is greater than 1, then the closure gets worse after a
second iteration of numerical inversion. �

1See, e.g., Figure D.1.
2For this specific counterexample, we are examining the case that σ ′(x) = 0, which is realistic

for high pile-up conditions.
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D.7 Corrected Numerical Inversion Calculation

With Y 7→ Zcorr = g
−1(Y), we will get a corrected calibrated distribution ρZcorr|X(z|x).

For brevity, let ρZcorr(z) = ρZcorr|X(z|x), where it is understood we are examining the
distributions around a particular value of x. We will again require that g ′(x) > 0, so
that

ρZcorr(z) = g
′(z)ρY(g(z)). (D.34)

The closure condition is then equivalent to the condition

ρ ′Zcorr
(x) = 0, (D.35)

i.e., the mode of the distribution Zcorr|X = x occurs at x. We have that

ρ ′Zcorr
(z) = g ′′(z)ρY(g(z)) + g

′(z)2ρ ′Y(g(z)), (D.36)

so that the closure condition requires

0 = ρ ′Zcorr
(x)

= g ′′(x)ρY(g(x)) + g
′(x)2ρ ′Y(g(x))

→ 0 = g ′′(x) + g ′(x)2
ρ ′Y(g(x))

ρY(g(x))
. (D.37)

We suppose that g(x) is close to f(x), g(x) = f(x) + α(x), with |α(x)|� σ̃(x). Then
we have directly from the supposition that the distribution Y|X = x is approximately
Gaussian about its mode f(x) with width σ̃(x) that

ρ ′Y(g(x))

ρY(g(x))
= −

(g(x) − f(x))

σ̃(x)2
. (D.38)
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Then, the closure condition gives

0 = g ′′(x) + g ′(x)2
ρ ′Y(g(x))

ρY(g(x))

= g ′′(x) − g ′(x)2
g(x) − f(x)

σ̃(x)2
. (D.39)

D.8 Corrected Numerical Inversion Parameterization

We parameterize the corrected calibration function g(x) = g(x; f(x);a1, ..., an). For
the toy model used in this chapter, we use the parameterization

g(x) = f(x) +
a1

1+ exp(x−a2
a3

)
. (D.40)

In the model considered here, and for the response functions at the LHC, the
closure goes to 1 for large x and moves away from 1 for small x, a natural result of
Equation 8.28. Thus, the parameterization in Equation D.40 includes a “turn-off” to
recover g(x) = f(x) at large x (with a3 > 0).

In practice, there is some smallest value x = x ′ which is being studied, and which
per the discussion in the above paragraph tends to have the largest non-closure. The
value x ′ = 20 GeV is used in this chapter, which is the lowest calibrated ET at current
conditions at the LHC. For the corrected calibration curve shown in Figure 8.5, the
parameters a1, a2, a3 are scanned over to minimize the non-closure at this value x ′.
For the corrected calibration curve shown in Figure 8.5, the values a2 = a3 = x ′ = 20
GeV and a1 = 5 GeV were used.

D.9 Toy Model of the ATLAS/CMS Response Func-

tion

All the “Proofs” quoted in Chapter 8 are valid in general, regardless of the response
function R(x) and the underlying distributions Y|X = x (within the assumptions
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outlined in Section 8.2.3). We also expect that the “Derivations”, which are all ap-
proximate formulas, to apply in a wide variety of cases. In order to visualize some
of the results, and verify the approximations, a particular model was needed in order
to get numerical values. All figures made in this chapter were derived from a simple
model of the ATLAS or CMS jet ET response function3. After specifying f(x) and the
distributions Y|X = x, the calibrated distributions were constructed using the analytic
form of the calibrated distributions Equation 8.12. Then the various moments were
found numerically for the calibrated distribution at each value x.

The response function was guided both by physical intuition and by the in-
tention to reasonably simulate response functions published by ATLAS [81] and
CMS [410, 411]. When there is only a small amount of energy already in a detec-
tor cell, the detector only reconstructs a small fraction of the energy put into it,
because of noise thresholds and the non-compensating nature of the ATLAS and
CMS detectors. Whereas if there is already a lot of energy in a detector cell, the
detector reconstructs almost all of the energy put into it. Thus f ′(x) was designed
to be low at low values of x and then to rise steadily to 1 at high values of x. This
intuition does not directly apply to jets that directly use tracking information (e.g.
particle-flow jets in CMS), but for the sake of simplicity only one (calorimeter) jet
definition is used for illustration.
f ′(x) was then integrated to get f(x) and divided by x to get R(x). The resulting

R(x) function approximately corresponds to the R = 0.4 anti-kt [171] central jet
response at the EM scale available in Ref. [81] (e.g. Fig. 4a). The shapes of f ′(x)
and R(x) in this model can be seen in Figure D.2.

In this simplified model, the distributions Y|X = x ∼ N (f(x), σ(x)) were used.
In ATLAS and CMS, Y|X = x is approximately Gaussian. The constant value of
σ(x) = 7 GeV was used, corresponding to a calibrated resolution (Fig. 8.3) of about
50% at ET = 20 GeV. This is consistent with e.g. [85] and has the property that
σ ′(x) = 0, which should be the case if pile-up is the dominant contributor to the

3Energies are measured with calorimeters and momenta are measured with tracking detectors.
In-situ corrections using momentum balance techniques constrain the momentum. For small-radius
QCD jets, the ET and pT are nearly identical. Since the simulation-based correction of calorimeter
jets is used here as a model, the ET is used throughout.
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Figure D.2: The toy model used in this chapter to simulate conditions in ATLAS or
CMS. The left plot shows f ′(x) and the right plot shows R(x).

resolution of low ET jets.



Appendix E

Improving Jet Calibrations with

Machine Learning: Appendix

E.1 Correcting for Auxiliary Variables

In the following, note that the description of the jet energy correction applies both to
the currently used method of correction in the ATLAS GSC (Section 9.3) for a single
variable and to generalized numerical inversion (Section 9.4). The difference between
the two methods is only in the details of the derivation of fθ(x); the former does a
binned fit and is only used with a single variable at a time, while the latter does an
unbinned fit and allows for fitting multiple variables at once.

Following the notation of Chapter 8, let X be a random variable representing ptrue
T

and Y be a random variable representing preco
T . We also let θ represent some auxiliary

variable on which the jet energy depends. For demonstrative purposes suppose this
effect is linear,

fθ(x) = α(x)θ+ β(x). (E.1)

344
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We note that, using the law of total expectation,

f(x) = Eθ [fθ(x)] (E.2)

= α(x)µθ(x) + β(x) (E.3)

where µθ(x) ≡ E [θ|X = x]. Here we use the shorthand Eθ[·] = E[·|X = x] to indicate
the expectation taken over θ while keeping X fixed.

Assuming that after the inclusive correction the calibration closes overall (f(x) =
x) further imposes the form

fθ(x) = α(x)(θ− µθ(x)) + x. (E.4)

We now turn to the resolution of the jets before and after the correction. We
define

σ(x)2 ≡ E
[
(Y − f(x))2 |X = x

]
, (E.5)

σ(x, θ)2 ≡ E
[
(Y − fθ(x))

2
|X = x, θ

]
, (E.6)

σθ(x)
2 ≡ E

[
(θ− µθ(x))

2
|X = x

]
. (E.7)

I.e., σ(x)2 is the overall variance of Y given X = x, which is simply the (square of the)
resolution after the inclusive calibration but before the correction for the auxiliary
variable; σ(x, z)2 is the variance of Y given both X = x and θ; and σθ(x) is the
variance of θ itself given X = x.

Before the correction,

σ(x)2 = E
[
Y2|X = x

]
− f(x)2 (E.8)

= Eθ
[
E[Y2|X = x, θ]

]
− x2 (E.9)

= Eθ
[
σ(x, θ)2 + f(x, θ)2

]
− x2 (E.10)

= Eθ
[
σ(x, θ)2

]
+ Eθ

[
α(x)2(θ− µθ(x)

2
]

(E.11)

= Eθ
[
σ(x, θ)2

]
+ α(x)2σθ(x)

2 (E.12)
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The last term, including the variance of θ, comes from the fact that we have a
dependence on the external variable. This is exactly the term that gives rise to the
intuition that there is an increase in the spread of the jet energy due to the dependence
on θ and the spread of θ itself, and is the impetus for correcting this dependence.

For deriving the resolution after the correction, it will be important to understand
the derivative of fθ(x):

f ′θ(x) = 1+ α
′(x)(θ− µθ(x)) − α(x)µ

′
θ(x). (E.13)

The correction is Y 7→ Ŷ = f−1θ (Y), so that after the correction:

f̂θ(x) ≡ E
[
Ŷ|X = x, θ

]
(E.14)

≈ fθ(f−1θ (x)) = x, (E.15)

σ̂(x, θ)2 ≡ E
[(
Ŷ − f̂θ(x)

)2
|X = x, θ

]
(E.16)

≈ σ(x, θ)
2

f ′θ(x)
2
, (E.17)

where both approximations come from Chapter 8 (Equation 8.20 and Equation 8.22).
The response overall has closure:

f̂(x) ≡ E
[
Ŷ|X = x

]
(E.18)

= Eθ
[
f̂θ(x)

]
(E.19)

= x (E.20)
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And the resolution overall is

σ̂(x)2 ≡ E
[
(Ŷ − f̂(x))2|X = x

]
(E.21)

= Eθ
[
E
[
(Ŷ − f̂θ(x))

2|X = x, θ
]]

(E.22)

= Eθ
[
σ̂(x, θ)2

]
(E.23)

= Eθ
[
σ(x, θ)2

f ′(x, θ)2

]
(E.24)

= Eθ

[
σ(x, θ)2

(1+ α ′(x)(θ− µθ(x)) − α(x)µ ′θ(x))
2

]
(E.25)

The resolution without the correction is always worse than Eθ
[
σ(x, θ)2

]
, due to

the spread of the response due to θ, and this is the value we should compare the
corrected resolution to.

To gain intuition, we examine a few simple cases. α ′(x) captures whether the
dependence of the jet energy on θ changes with x, and µ ′θ(x) captures whether θ
itself is correlated with X rather than just the fluctuations in Y around X.

The first thing to note is that if both α ′(x) = 0 and µ ′θ(x) = 0, then the resolution
is exactly Eθ

[
σ(x, z)2

]
and so strictly gets better. However, in this case, numerical

inversion is unnecessary, as fθ(x) = α(θ − µθ) + x and so a simple correction Y 7→
Y − α(θ − µθ) is sufficient to remove this effect. In effect this is what is done in the
pile-up subtraction stage of the jet calibration (Section 5.5.4.1), which is a simple
offset and does not use numerical inversion.

Suppose then that µ ′θ(x) = 0 and α ′(x) 6= 0. If the spread of α ′(x)(θ − µθ) is
small, then Eθ

[
1

(1+α ′(x)(θ−µθ))2

]
≈ Eθ [1− 2α ′(x)(θ− µθ)] = 1 and the resolution is

exactly Eθ
[
σ(x, z)2

]
; so the resolution after correction is always better. However, the

resolution suffers depending on the support of θ. If there are even a few values of θ
for which α ′(x)(θ− µθ) is near −1, then the derivative goes to 0 at those values and
those values are calibrated to plus or minus infinity. Because of this, the calibrated
resolution blows up, even as the uncalibrated resolution is finite. Even when using
the trimmed Gaussian width instead of the standard deviation, if there is enough
support of θ at these extreme values then the resolution can blow up.
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As another case, suppose that α ′(x) = 0 but µ ′θ(x) 6= 0. Then the resolution
depends on the sign of αµ ′θ(x). Taking α > 0 for concreteness, this could either be
because θ gives information about the fluctuations in Y−X, in which case µ ′θ(x) < 0; or
it could be because θ contains information about X directly, in which case µ ′θ(x) > 0.
In the former case, αµ ′θ(x) < 0, and correcting for the dependence on θ makes the
resolution better, because these fluctuations are being accounted for. In the latter
case, αµ ′θ(x) > 0, and correcting for the dependence on θ makes the resolution worse,
because information about the correlation between Y and X is actually being removed
by the correction. The story is the same, mutatis mutandis, with α < 0.

As an extreme example of the degradation of the resolution if αµ ′θ(x) > 0, suppose
µθ(x) = x, so µ ′θ(x) = 1, and α = 1. Then fθ(x) = (θ−x)+x = θ. So after correcting
for the dependence of Y on θ, all the correlation between Y and X has been removed,
and the resolution of Y given X is therefore infinite. In fact, in this case it makes
more sense to simply use θ as the measurement of the jet energy and calibrate that
with respect to X, an idea which is beyond the scope of this Thesis.
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