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Abstract

Contextuality is a striking feature of our nature predicted by quantum theory and tested by various
experiments. In a qubit system, testing contextuality requires scenarios distinct from traditional
ones for systems with dimension of three or greater. In this paper, we consider the noncontextuality
inequality developed by Liang-Spekkens-Wiseman and Yu-Oh, and investigate the set of three
qubit measurements that can be used to test and violate this inequality. Our numerical results show
that two of the three measurements can be almost arbitrary. Moreover, we have singled out several
extremely interesting sets of measurements, e.g. one measurements can be white noise while the
other two are arbitrarily close to white noise. These sets fulfill our knowledge about contextuality
in this minimum quantum system.

1. Introduction

Contextuality is a striking feature of our nature that was predicted by quantum theory [1-3] and have been
tested by various experiments [4—7]. It has also been recognized as a critical resource for many quantum
information processes [8—13]. An experiment provides a test of contextuality if its behavior contradicts with
the prediction of any theory that assumes noncontextuality (NC). Here, NC means outcomes of
measurements are predetermined by hidden variables and do not depend on whether it is measured together
with other jointly measurable ones. A typical form of such contradiction is the violation of NC inequality.
For systems with dimension of three or greater, there are many well-known NC inequalities [14—17] and
countless inequalities can be constructed using graph-theoretical approach [18-20]. These traditional
inequalities can be violated by sets of rank-1 projective measurements that includes both compatible and
incompatible measurements. For a qubit system, compatible rank-1 projective measurements are trivially
equivalent. Therefore, testing contextuality in a qubit system requires different scenarios [21-23]. In this
paper, we investigate the sets of qubit measurements for testing contextuality in Liang-Spekkens-Wiseman
(LSW) framework [23].

In LSW framework, there are three unsharp measurements, which correspond to positive
operator-valued measurements (POVM) with two rank-2 elements in a qubit system. It is interesting that
these three measurements are pairwise jointly measurable [23] and can even be triplewise jointly
measurable [17]. This is striking different from inequalities using rank-1 projective measurements, where it
is necessary that some measurements cannot be jointly measurable [24].

The original LSW inequality has been violated in a photonic qubit system with a very special setting of
measurements and state [25, 26]. In 2013, Yu and Oh (YO) have rigorously re-derived and generalized the
LSW inequality, which we termed as LSW-YO inequality [27]. The re-derived inequality is based rigorously
on the assumption of NC alone and allows the measurements have different sharpness. This generalized
inequality is much easier to be violated. Violations can be obtained even when the three measurements are
triple-wise jointly measurable, which has been considered a hallmark of contextuality.
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In this paper, we numerically analyze the sets of three qubit measurements that enable violations of
LSW-YO inequality. The sets are construct via properly choosing a measurement for two arbitrarily given
measurements. Among these sets, we single out several extremely interesting ones, which seem implausible to
test contextuality.

This paper is organized as Follows. In section 2, we briefly introduce the basical notions about
contextuality in qubit system. In section 3, we give our main result of testing contextuality with two
arbitrarily given measurements as well as some interesting observations of testing LSW-YO inequality. The
results are summarized and discussed in section 4.

2. Method: joint measurements and LSW-YO inequality

In this paper, we consider unbiased measurements M; with two outcomes 1. Two measurements M; and
M, are jointly measurable if there is a measurement G;; with four outcomes (1, v) for p,v = £1 whose
marginals reveal the statistics of these two measurements as P(u|M;) = > P(u,v|Gjj) and
P(v|M;) =", P(u,v|Gjj). Here, the measurement Gj; is called a joint measurement of M; and M;.

Given three pairwise jointly measurable qubit measurements, one can measure the anti-correlation
P(41, —11|Gi j) between each pair of measurements through implementing their joint measurement. The
LSW-YO inequality considers the average anti-correlation of these measurements as

Rz% >N Py, —plGiy). (1)

1<i<j<B pu==%

In a NC realistic model, measurement is a physical process that reveals realistic values predetermined by
hidden variables. The outcome of a sharp measurement is exactly a predetermined value. However, an
unsharp measurement may give a wrong response to the actual predetermined value. For a two-outcome
measurement, this wrong response directly leads to that the probability of each outcome cannot be exactly
one or zero for arbitrary state. By considering a general response function of joint measurement and
assuming NC, Yu and Oh have strictly rederived an NC inequality for the average anti-correlation as

NC
R<1—%’”, 2)

where 7, = max{n;,7,,75 } denotes the maximum sharpness [27].
In quantum theory, a generalized measurement M; of qubit is characterized by a POVM with two rank-2
elements as

—

L5\, (3)

=

Ef =

1

1+

| =
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where 1 is the identity operator, 0 < 7; < 1, & = (0x,0y,0;) are the Pauli matrices, Xi € R? and |X,| = 1. Two
extreme cases are sharp and purely noisy measurement, which correspond to the sharpness 7; = 1 and
n; = 0, respectively.

Two qubit measurements M; and M; are jointly measurable iff [28]

Hyj=1—n} = + (mmxi - N)? >0, (4)
or equivalently [29]
X + mAil + i — mpX] < 2. (5)

When both the two measurements are sharp ones as 7; = 7; = 1, these criteria degenerate to X o= in. Note
that two measurements are equivalent as M; = £ M; if n; = n; and X = :I:Xj, because they are either
identical or will be identical after relabeling the outcomes of a measurement.

For two jointly measurable qubit measurements, the most general form of their joint measurement G; ; is
given by a POVM with four elements [28]

(14 Zijpw) L+ (umi Ni + v — pvmiZy) - &
4

-
Gy =

(6)

for p,v = +, where Zj;, 7jj € R, Zjj € R?, and |Zj;| = 1. This joint measurement is not unique and can be
chosen with only the requirement of positivity for all elements, that is ij- ¥ > 0forall 4, v = . For
example, to obtain maximum anti-correlation between the two measurements, the optimal choice of joint
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measurement is that with parameters Z;; = ; T]in . Xj, Tij = /Hij» Zjj Xl- X Xj [27]. With this joint
measurement, the maximum anti-correlation (1 — n,-n]-Xi . X]— + +/Hij)/2 is obtained by measuring the state
(14 & - Z;)/2. Therefore, the the quantum average anti-correlation is

Ro= % Yo [(Gj* + G;*) p} : (7)

1<i<j<3

where p is the state being measured. This value is possible to violate LSW-YO inequality in equation (2).
3. Results

3.1. Contextuality for a given pair of measurements

The main question considered in this paper is: given a pair of jointly measurable qubit measurements M,

and M, is there a third measurement so that the whole triple can be used to violate LSW-YO inequality?
Without loss of generality, we consider that the given pair of measurements have vectors as

Xl = <—sin6,0,cose> , Xz = <sin9,07c059) , (8)
2 2 2 2

which lie in the ZX-plane with an angle 6 (seeing figure 1). Arbitrary two measurements can be transformed
into this form with a certain unitary operation.

Since measurements with same sharpness and opposite vectors are equivalent, a pair of measurements
with parameters (1, 7,,6) are equivalent to that with (1;,7,, ™ — @). Therefore, we only consider the angle
within the interval as

0€lr/2,n]. 9)
Moreover, according the criterion in equation (4), the two measurements are jointly measurable iff
—n?
nf < 17172% forbothi=1,j=2and i=2, j= 1. Without loss of generality, we assume 7, > 1,. Therefore,
J

the sharpnesses (7)1,7),) for the measurements being jointly measurable lie in the intervals as

m € [0,15(0)],m € [2,T1(0,m2)] - (10)

. 1—sin2 0’ . 1777/2
where T'y(0) = limg/ 9 \/ =557 and T'1(0,7) = limg: g 7 5, 1/ TC(Z)SZG"

The joint measurement is chosen with parameters Z;, = 1,7, cos, T, = v/Hiz, Z12 = (0, 1,0), which
yields maximum anti-correlation when measuring the state (1 + o) /2.

To test LSW-YO inequality requires a third measurement that is jointly measurable with both M; and
M. We choose the third measurement M3 with a vector Xa = (sin, 0, cos ¢) also lies in the ZX-plane.
With this choice, the maximum anti-correlations of joint measurements Gi3 and G,; are also obtained by
measuring the state (1 + 0,) /2. Thus, the quantum average anti-correlation in equation (7) is

1
Ro= 5 {3+VH12+VH13+\/H23—771772C059

—M17)3 COS <Z+¢> — 121)3 COS <z+¢>} . (11)

Hence, our question becomes a mathematical one: Given parameters (6,7;,7,) that satisfies Hj, > 0, are
there parameters ¢ and 13 so that H3,H,3 > 0and Rg > 1 — %

3.2. Contextuality with the optimal third measurement

We numerically address the question by sampling over all measurements M; and M,, which are
characterized by parameters (6,1,,1,). For each pair of measurements M; and M, the issue is to find a
measurement M3 characterized by ¢ and 73 so that the LSW-YO inequality is violated. We first address this
issue through the maximization problem as

maximize V=Rq— (1 — n—m) (12)
3,¢ 3
subject to His,Hy >0 (13)
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Figure 2. The maximal violation of LSW-YO inequality with an optimal third measurement for two given measurements
characterized by (6,71,7,). The two measurements are sampled over (a). (b) the whole interval and (c), (d) nearby area of
(0,m,m2) = (m,1,1) in (a), (c) quasi-uniform and (b), (d) random manner. The point is marked by a black dot when the
violation is zero.

Nm = Max{nNy,ns}. (14)

Note that we use 7, = max{n;, 73 } due to 7, > 7, assumed before.

We use two approaches to sample over the parametrics (6,7;,7,), that are quasi-uniform and random
sampling. In quasi-uniform sampling, we first uniformly choose values of 6 from the interval in
equation (9). Then, for each 6, we uniformly choose values of 7, from the interval of 1), in equation (10)
with a distance of T'; /[T, /A, ], where A, denotes the upper bound of distance. Finally, for each 6 and 7, we
uniformly choose values of 7; from the interval as equation (10) with a distance of 'y /[T'; /A This
quasi-uniform sampling ensures that the samples include parameters on the boundary of the interval. In
random sampling, we randomly generate values of (6, 7,,7,) and remove those outside the interval described
by equations (9) and (10).

We have generated 3362 samples of parameters (6,7;,7,). For all these samples, we solve the
maximization problem as equation (12). The results are shown in figure 2. Within these samples, these is
only one as (6,7;,1m2) = (m,1,1) that has no violation. We further sample over the parameters near this
special sample. With these additional 2394 samples, the special sample remains the only one that has no
violation. Note that the two measurements of this special sample are equivalent projective measurements.

These numerical results support that for almost all pairs of joint measurable measurements, there is a
third measurement so that these three measurements can rule out noncontextual realism. Moreover, these
results suggest a conjecture that a pair of equivalent projective measurements is the only case with which one
can neither observe uncertainty nor test contextuality in LSW framework.

3.3. Contextuality with a pretty good third measurements
The choice of the third measurement above requires optimization process. In this subsection, we introduce a
geometric choice of the measurement, and show it is pretty good for obtaining contextuality.

In the ZX- plane, the two vectors 7, A and i X; define a triangle OA; A, as shown in figure 1, where
OA1 =m /\1 and OAZ m /\2. We first show that a third measurement M3 is always jointly measurable with
jointly measurable measurements M, and M, if it is chosen as 13 Xg = 1% with B located in the edge A, A,.

4
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Figure 3. Violations of LSW-YO inequality with the pretty good third measurement for (a) quasi-uniform and (b) random
samples of measurements M, and M. (c) Second order deviation g—n\f for samples of (0,7 ), which are all less than 0 (denoted
by the yellow plane). (d) Plot of the violations V; (red) and V; (cyan).

According to the above choice of the third measurement, we have

Fial = 51+ 1351, (15)
where '7?; =N+ an]-. Moreover, applying the triangle relation to 7,5 = 73 + 755, one obtains
il < sl + 151, (16)
The equations (15) and (16) imply that
751+ il < 1751+ Tl < 2, (17)

where the second inequality is due to the criterion of joint measurability as equation (5) for measurements
M; and M,. Hence, measurements M; and M3 are jointly measurable. The joint measurability between
M, and M3 can also be proved is a similar way by switching the subscriptions 1 and 2.
As an example, we make the choice with OB being the altitude of the triangle, that is —m;73A; - A3 =
nyn; sin’ 0 for
nt+n3—21m11m2 cos O
1, # 0 and 13 = 0 for 1, = 0. With this specific choice, we calculate the violations of LSW-YO inequality for

samples of measurements M; and M. Here, we use a much larger number of samples since elimination of
maximization has greatly simplified the calculation.

The results are shown in figures 3(a) and (b). Among these samples, there are only 95 ones that have no
violations of LSW-YO inequality including the special point before. Therefore, we call this third
measurement a pretty good one. Moreover, these samples with no violations can be separated into three cases
(CO) (0,m1,m2) = (m,1,1), (C1) (m1,m2) = (0,0), and (C2) (n;,m2) = (1,0). We will show it later that the
two cases (C1) and (C2) can be violated with other specific choices of measurement M.

We now further investigate the violation with this pretty good third measurement. With this choice of
M, the violation V is a function of 6, 1),, and 7). For samples of (6,1,), we maximize the second order

. . 2 . . . .
deviation 27‘2’ over 7);. Note here the parameters (6,1),) are sampled over the whole interval with a restriction

—%Xz . X3 = n2. Therefore, the NC bound is 1 — % since 73 < 7, with values as 13 =

1 # 'z, since 71 has only one value as 1, = 1, when 1, = I';. As shown in figure 3(c), the second order
deviation is alway less than 0. Therefore, for certain (6,7, ), the minimum violation must be the smaller one
of V; with n; = 1, or V, with n; = I';. These two violations are positive except for the three cases (C0), (C1),
and (C2). Thus, pair of jointly measurable measurements other than these cases can be used in a test of
contextuality.

Let us now show that the two cases (C1) and (C2) can violate LSW-YO inequality with other two choices
of third measurements. For the case (C1), the two measurements are purely noisy ones that always gives
outcomes randomly. These measurements are jointly measurable with arbitrary measurement. With an
arbitrary M3, the quantum value the anti-correlation is

RQ=;(2+\/1—n§>, (18)
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Figure 4. Violations of LSW-YO inequality with (a) 773 = 0 and (b) M3 = —M. The samples of M and M, are union of
quasi-uniform and random samples used in figure 3.

and the corresponding NC bound is 1 — 773 /3. Therefore, the violation (Rg — (1 — 2)) = (/1 —n3+

13 — 1) is greater than 0 when choosing 0 < 773 < 1, which attains the maximum value 1(v/2 — 1) ~ 0.1381
For the cases (C2), the measurement M is a sharp one and M, is a purely noisy one. Therefore, the

choice of measurement M3 is only restricted by the joint measurability with M, which is

—n% +n2cos?( + ¢) > 0. Here, we choose ¢ = 7 — £ so that the quantum average anti-correlation is

1
RQ=6<3+773+\/1—77§), (19)

and the NC bound is 2/3. Therefore, the violation (Rg — %) = £ (1/1 — 0} + 13 — 1) is greater than 0 for
0 < 3 < 1, which attains the maximum value é(ﬂ —1) 2 0.0690 with n; = l/ﬁ

According to the pretty good choice and two specific choices of measurements, only the pair of
measurements in (C0) can not be used to test contextuality in LSW framework, which coincidence with our
conjecture in the previous subsection.

3.4. Interesting observations

3.4.1. Contextuality for a given measurement

It is natural to further ask if one can violate LSW-YO inequality with a given measurement. The numerical
results above suggest that for arbitrary measurement, one can find two measurements so that the three
measurements can violate LSW-YO inequality. We now prove this statement.

Given a measurement M, we choose the other two measurements in two cases. For 0 < 1, < 0, we
choose 7, = 73 = 0. In this case, the violation is Ro — (1 — &) = 3(\/1—nf +n1 — 1) > 0. For ; = 0,1, we
choose 0 < 77, < 1 and 73 = 0. In this case, the violation is either R — (1 — 2) = (/1 —n3 +m — 1) or
Rg — % = é(\/ 1 — 13 + 1, — 1), which both are greater than 0 for 0 < 7, < 1. Hence, the statement is proved.

3.4.2. Contextuality with interesting settings
In the analysis in section 3.1, some interesting settings of measurements to violate LSW-YO inequality
emerge.

Interesting setting 1: n3 = 0. The first interesting observation is that even purely noise measurement can
be used to test contextuality. Here, we further investigate this by consider the test of LSW-YO inequality with
two arbitrary jointly measurable measurements and a purely noisy measurement. With the purely noisy
measurement M3, 173 = 0, the quantum average anti-correlation is

1
RQ:g <3+1/1—nf—i—\/l—n%—mnzcosH—i—\/l—ng—nfﬁ—nfngcosZG), (20)

and the NC bound is Ryc = 1 — 4. We calculate this violation with the samples for pretty good
measurement. The results are shown in figure 4. It is interesting that even with a purely noisy measurement,
most pairs (except 240 of the 135 042 samples) of measurements M; and M, can be used to test
contextuality. When M, is also purely noisy, 7, = 0, the quantum average anti-correlation becomes
Ro=}(4+2+/1—n?) <1— ", thatis no violation can be obtained.

Interesting setting 2: Mz = —M . Another interesting thing is that two of the three measurements can be
equivalent, that is M3 = £ M, or M3 = £M,. It is easy to find that the case of M5 = —M is the best one

(seeing appendix), which has a quantum average anti-correlation as

1
RQ:3(2+\/1—nf—n§+nfn560529), (21)
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Figure 5. Violations of LSW inequality with noisy joint measurements for interesting settings: (a) M3 = —M; and ), =0,
(b) M; = M3 = —M3. Lines with different markers and colors represent different strengths of joint measurements.

and a NC bound as 1 — . With the samples for pretty good measurement, the violations in this case are
shown in figure 4(b). Within these samples, only 2249 of the 135 042 pairs of jointly measurable
measurements cannot test contextuality with themselves. When 7, = 0, the quantum average anti-correlation
becomes Rg = 3(2+ /1 —n}) > 1 — % for 0 < < 1. This is quite surprising that contextuality can be
tested with a purely noisy measurement and two others being arbitrary close to purely noisy ones.

Interesting setting 3: Contextuality with three equivalent measurements. We further investigate the situation
that the three measurements are equivalent. It is no loss of generality to consider 1, =1, =13 = n and
6 =0,and ¢ € {0,7}. In this case, the NC bound is 1 — % and the larger quantum anti-correlation is
obtained by ¢ = 7 as

Rq = %(37772)- (22)

Therefore, the quantum violation % (77 — 772) is greater than 0 for 0 < 1 < 1, that is the measurement is
neither a sharp nor a purely noise one. This means contextuality can be tested even with three measurements
being close to the purely noisy one.

4, Conclusion and discussion

In summary, we have numerically studied the sets of three qubit measurements that can be used to test and
violate LSW-YO inequality. Our numerical results show that two of the three measurements can be almost
arbitrary and provide strong evidence for that a pair of equivalent projective measurement is the only
exception. A strict proof of the conjecture is worth further investigation, for which choosing the third
measurement as the pretty good one in this paper might be a potential candidate.

Among the sets, we single out three interesting families of sets for testing contextuality in a qubit system.
These interesting cases show that at most one of the three measurements can be purely noisy, even when
other two are close to purely noisy ones. These observations seems to be physically impossible since purely
noisy measurement is believed to be classical. However, this is reasonable by recall that one requires specific
POVM as the joint measurement to observe the violation even when the measurement is purely noisy. This is
in accordance with the conclusion in [27] that the contextuality in LSW framework is due to the
incompatibility between joint measurements rather than that between original measurement.

It is simple to consider that experimental realization of each element Gf; " has a white noise, that is the
realized element becomes qGﬁ; " + (1 —q)1/4. In this case, the measured correlation becomes
qRo + (1 — q)/2, and the NC bound improves to 1 — gn/3. As shown in figure 5, noise in the joint
measurement would drown out violations of LSW inequalities.

In traditional NC inequalities that can be violated with projective measurements, it is necessary that
some measurements cannot be jointly measured [24]. It seems that uncertainty principle [30, 31], which
forbids certain pairs of observables from being jointly measurable, might be a crucial resource of
contextuality. However, the three measurements to violate LSW inequality can be even triple-wise jointly
measurable. The relation between uncertainty and contextuality worth further investigations. In addition,
our new findings call for experimental demonstrations [32].
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Appendix. The choice M3; = — M, is the best among M; = =M, and M; = + M,

Recall that we have assumed 7); > 17),. Therefore, the NC bound of average anti-correlation is 1 — ), /3 for all
these four choices. Thus, we only consider quantum anti-correlations of these cases.

In case of M3 = M, thatisn; =7, and ¢ = —g, the quantum anti-correlation is
RS = é (530 —2mm + Vi) - (A1)

In case of M3 = — M, thatisn; =mn and ¢ =7 — g, the quantum anti-correlation is
RS = é (5—n? +vHn). (A.2)

In case of M3 = M, thatis; =1, and ¢ = g, the quantum anti-correlation is

1
R§2+2) = R (3—17% —2771772c059+3\/H12). (A.3)
In case of M3 = —M,, thatisn; =m and ¢ =7+ g, the quantum anti-correlation is
_ 1
R, = ¢ 3+ +3VHR). (A4)

It is not difficult to obtain Rgl) - R(Q+1) = 1 (nf +mmnacosf) >0 and Rgz) — Rgrz) = 1(n3+
mmnycosf) > 0, that are Rgl) > RgH) and Rg—z) > Rg—z)' Moreover, the difference between Rgl) and
Rgz) is

—1 -2
RSV - RS = 2—77f—77§—2\/1—n%—n%Jrn%n%COSz@)

1
6
1
>~ (2(n%+n§)2\/1(nf+77%)+77%77%)

1 772 +772 2
>z 2(77%+77§)2\/1(77%+n§)+(1ﬂ
1 2 + 2
:6(2—(nf+n§)—2(1—(m2"2)>>:0. (A.5)
Hence, the choice of M3 = — M is the best one of these four cases.
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