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Abstract In this paper, we study the topology of four-
dimensional AdS black holes with nonlinear sources in the
framework of rainbow gravity. We apply the Duan’s ϕ-
mapping theory and the method of generalized free energy
to study the topological charges related to critical points
and the local and global topology at black hole thermody-
namic defects, respectively. By analyzing the critical points
of black holes in the canonical ensemble (CE) and the grand
canonical ensemble (GCE), we find the nonlinear parameter
p does not affect the total topological number of black holes,
which always remains +1, but there is one novel critical point
appearing in GCE. And we also find the topological number
of black hole is +1 in CE, while in GCE, the topological
number can be 0 or +1, depending on the system pressure
and the electric potential, respectively. Our results show that
the topological classification of AdS black holes depends sig-
nificantly on the ensemble selection, and the rainbow gravity
effect has no effect on its topological number.

1 Introduction

Black holes, mysterious entities at the intersection of gravity
and quantum mechanics, have captured the keen interest of
scientists since the early 20th century. Notably, in the early
1970s, Stephen Hawking et al. first proposed the concept
that black holes possess temperature and entropy. This revo-
lutionary discovery prompted a reexamination of the nature
of black holes within the scientific community [1–10]. The
laws of black hole mechanics, proposed by Bardeen et al.,
laid a solid foundation for the development of black hole
thermodynamics and resonated with the law of conservation
of energy in the second law of thermodynamics [11]. Black
hole thermodynamics has not only deepened the understand-
ing of black holes, but also facilitated the cross-disciplinary
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integration of general relativity, quantum mechanics and sta-
tistical physics, propelling the advancement of these fields. In
the context of Anti-de Sitter (AdS) spacetime, black holes are
of particular interest due to their critical role in the AdS/CFT
correspondence. This correspondence reveals a profound
duality between gravitational theories in AdS space and con-
formal field theories on its boundary [12]. Research into the
thermodynamic properties of AdS black holes has demon-
strated the existence of a phase transition between stable
large black holes in AdS spacetime, known as the Hawking-
Page phase transition [13], which can be interpreted as a
confinement/deconfinement phase transition in gauge theory
[14]. Additionally, for charged black holes, a first-order phase
transition similar to the liquid–gas phase transition in Van der
Waals fluids has been observed [15,16]. These findings not
only enrich our understanding of the thermodynamic prop-
erties of AdS black holes, but also provide a new perspective
for comprehending the connection between black holes and
quantum field theories. Within the framework of the extended
phase space, the thermodynamic phase transition properties
of AdS black holes have been extensively studied [17–29].
The cosmological constant is treated as a dynamic variable
and is endowed with the physical significance of pressure.
Concurrently, the mass of the black hole is no longer sim-
ply regarded as internal energy but is redefined as enthalpy.
This transformation of the theoretical framework enables the
observation of a richer array of phenomena, such as reen-
trant phase transitions, triple points, and polymer-like phase
transitions.

To address the discrepancies between the two fundamental
pillars of modern physics, General Relativity and Quantum
Mechanics, scientists have proposed several theoretical mod-
els: loop quantum gravity [30], string theory [31], and space-
time foam models [32]. In these models, the Planck length is
considered as the smallest observable length scale. The exis-
tence of this minimum observable length scale challenges
certain assumptions of Special Relativity [33–38]. Lorentz
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invariance is a fundamental requirement of both relativity
and quantum field theory, and is consistent with the continu-
ity of spacetime at any scale. Theoretically, the scale of any
object can be made infinitely small through Lorentz trans-
formations, which contradicts the concept of the minimum
length unit in quantum gravity. To resolve this contradiction,
scientists have proposed a theory that modifies the Lorentz
transformations, known as Doubly-Special Relativity (DSR)
[39–42]. The core idea of this theory is to introduce two nat-
ural constants, the Planck energy constant and the speed of
light, to replace a single constant, thereby maintaining the
consistency of the theory at high-energy limits [43]. Within
the framework of DSR, the dispersion relation is expressed
as E2 fε − p2gε = m2, where fε and gε are commonly
regarded as rainbow functions, motivated by phenomenolog-
ical considerations [44], and ε = E

Ep
, with Ep representing

the Planck energy and E denoting the energy of the parti-
cle. Next, Magueijo and Smolin proposed extending DSR to
curved spacetime [45], suggesting that the geometric shape
of spacetime depends on the energy of the probing particle,
the concept known as rainbow gravity, thereby introducing
a series of energy-dependent metrics, i.e. rainbow metrics
[46]. In this paper, we are interested in studying AdS black
holes with a nonlinear parameter in gravity’s rainbow.

In the study of black hole thermodynamics, attention has
been extended to the topological properties within the ther-
modynamic phase space of black holes. In Refs. [47,48],
two distinct methods for studying the topological thermody-
namics of black holes have been proposed by Wei et al.. The
first involves utilizing Duan’s topological current ϕ-mapping
theory [49,50] to ascertain the temperature function and to
formulate the potential function. The second method regards
the black hole solution as topological defects in the corre-
sponding thermodynamic space, and studies its solution and
the stability of the black hole through generalized free energy.
Wei’s research also indicates that first-order phase transitions
occur only at the conventional critical point (with topological
charge of −1), not at the novel critical point (with topologi-
cal charge of +1) [47]. Researchers have expanded the field
of black hole thermodynamic topology to encompass vari-
ous types of black holes and a range of gravitational models
[51–71].

The layout of this paper is as follows: we briefly review the
black hole topology in Sect. 2 and the thermodynamic prop-
erties of two types of four-dimensional AdS black holes with
nonlinear parameters in the context of gravitational rainbow
theory in Sect. 3. We explore the thermodynamic topology of
black holes in canonical ensemble in Sect. 4 and grand canon-
ical ensemble in Sect. 5. Finally, we summarize our results
in Sect. 6. (The units in this paper are c = G = h̄ = kB = 1)

2 Topology of Black Holes thermodynamics

In this section, we briefly review the method for studying
topology as presented in Refs. [47,48]. Starting from the
temperature function in the extended thermodynamic space,
it can be expressed as a function of entropy S, pressure P ,
and other parameters xi . Based on this method, the critical
points of the black hole can be derived from the subsequent
relationships

(∂ST )P,xi = 0,
(
∂S,ST

)
P,xi = 0. (1)

From Eq. (1), we obtain a new temperature function that
does not include the thermodynamic pressure term. Conse-
quently, the Duan’s potential function can be formulated as
follows [47]

� = 1

sin θ
T

(
S, xi

)
, (2)

where 1
sin θ

is an auxiliary factor, aiming to simplify the com-
plexity of topological studies.

We introduce a new vector field φ = (φS, φθ )

φS = (∂S�)θ,xi , φ
θ = (∂θ�)S,xi . (3)

The boundaries of the parameter space are defined by the
horizontal lines θ = 0 and θ = π , while the zero points
of the vector field are located at θ = π

2 . Within the frame-
work of Duan’s φ-mapping theory [49,50] the corresponding
topological current can be expressed in the following form

Jμ = 1

2π
εμνλεab∂νn

a∂λn
b, (4)

where ∂ν denotes the partial derivative of xν , and xν =
(t, r, θ). The normalized vector n is defined as na = φa

‖φ‖
(a = 1, 2), where φ1 = φS and φ2 = φθ . By combin-

ing the Jacobi tensor εab Jμ
(

φ
x

)
= εμνρ∂νφ

a∂ρφb and the

two-dimensional Laplacian Green function 
φa ln ||φ|| =
2πδ(φ), it can be concluded that topological current is non-
zero only at the zero point of the vector field. Therefore, the
topological charge corresponding to the parameter region can
be calculated as follows

Qt =
∫

∑ j0d2x =
N∑

i=1

wi , (5)

where j0 represents the density of the topological current,
while the parameter wi denotes the winding number associ-
ated with the i th zero of the vector field. The total topological
charge Qt can be obtained by summing the winding numbers
of each zero point. This method provides a comprehensive
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understanding of the topology of black holes by summarizing
the contributions of all individual critical points. The paper
[48] shows the expression for the generalized free energy of
any black hole as

F = E − S

τ
, (6)

where E and S represent the energy and entropy of a black
hole, respectively, and τ is a time scale parameter that can be
interpreted as the inverse of the equilibrium temperature of
the cavity surrounding the black hole, i.e. τ = 1

T . To utilize
the generalized free energy, the vector field φ can be defined
as follows

φ =
(

∂F
∂r+

,− cot � csc �

)
. (7)

At � = π
2 , the zero points of the vector field φ can be

identified, and the unit vector is defined by the following
equation

na = φa

‖φ‖ (a = 1, 2) and φ1 = φr+ , φ2 = φ�. (8)

From the topological perspective, each black hole solution
is endowed with a topological charge, which can be +1 or
−1. Consequently, the total topology number of a black hole
is obtained by aggregating the winding numbers of associated
with each branch. That is

W =
N∑

i=1

ωi . (9)

3 Thermodynamics of AdS Black Holes in rainbow
gravity with nonlinear source

Within the framework of a four-dimensional AdS space-time,
the action of nonlinear charged black holes in the context of
Einstein-� gravity is [72]

I = − 1

16π

∫ √−g[R − 2� + L(F)]d4x . (10)

where the parameters R and � represent the Ricci scalar
and the cosmological constant, respectively. The last term
is the electromagnetic Lagrangian density. In this context,
the power-law nonlinear electrodynamics form is L(F) =
(−F)p [73,74], which implies that the electromagnetic
Lagrangian density can be treated as a power function of
Maxwell’s invariant. The Maxwell invariant, denoted as
F = FμνFμν , with Fμν = ∂μAν − ∂ν Aμ, where Aμ is
the gauge potential. This invariant plays a central role in the
Lagrangian formulation of electromagnetic interactions.

By considering Eq. (10), the field equations related to
gravity and gauge are

Rμν − 1

2
Rgμν + �gμν = 1

2
gμν(−F)p

+ 2p (−F)p−1 FμαF
α
ν ,

∂μ

[√−gL′(F)Fμν
]

= 0.

(11)

In four-dimensional AdS spacetime, the line element for
a black hole in rainbow gravity is

ds2 = −V (r)

f 2
ε

dt2 + 1

g2
ε

[
dr2

V (r)
+ r2(dθ2 + sin2 θdϕ2)

]
.

(12)

Combining Eqs. (11) and (12), the different components
of the gravitational field equations can be expressed as

ett = err =
⎧
⎨

⎩

g2
ε

(
V ′′(r) + 2V ′(r)

r

)
+ 2� − 2

√
2 q3

ε

r3 = 0 for p = 3
2 ,

g2
ε

(
V ′′(r) + 2V ′(r)

r

)
+ 2� − 2pq2p

ε r− 4p
2p−1 = 0 for 1

2 < p < 3
2 ,

(13)

eθθ = eϕϕ =
⎧
⎨

⎩

2g2
ε

(
V ′(r)
r + V ′(r)−1

r2

)
+ 2� + 4

√
2 q3

ε

r3 = 0 for p = 3
2 ,

2g2
ε

(
V ′(r)
r + V ′(r)−1

r2

)
+ 2� + (2p − 1)2pq2p

ε r− 4p
2p−1 = 0 for 1

2 < p < 3
2 .

(14)

Therefore, the metric function in the above equation is

V (r) =
⎧
⎨

⎩

1 − m
r − �r2

3g2
ε

− 2
√

2q3
ε

rg2
ε

ln
( r

�

)
for p = 3

2 ,

1 − m
r − �r2

3g2
ε

− (2p−1)2(2)p−1q2p
ε

(2p−3)g2
ε

r
−2

2p−1 for 1
2 < p < 3

2 .

(15)

where m and qε are mass parameter and charge of black
hole. fε and gε are rainbow function parameters. The metric
function for the case p = 1 corresponds to the Reissner–
Nordström (R–N) AdS black hole in the context of gravity’s
rainbow [44].

In the expanded phase space, the expression for the cosmo-
logical constant and thermodynamic pressure is P = − �

8π
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[75–77]. Based on the above premises, the Hawking temper-
ature T , mass M , entropy S, and electric charge Q of a black
hole expressed in terms of the horizon radius r+ are given by

M = m

2 fεgε

= 1

2 fεgε
⎧
⎪⎨

⎪⎩

3g2
ε r++8Pπr3+−6

√
2q3

ε ln
( r+

�

)

3g2
ε

for p = 3
2 ,

r+ + 2p−1(2p−1)2q2p
ε r

1− 2
2p−1

+
g2
ε (2p−3)

− 8Pπr3+
3g2

ε
for 1

2 < p < 3
2 ,

(16)

T = κ

2π
= gε

4π fε

d

dr
V (r)|r=r+ = gε

4π fεr+⎧
⎪⎨

⎪⎩

1 + 8Pπr2+
g2
ε

− 2
√

2q3
ε

g2
ε r+

for p = 3
2 ,

1 + 8Pπr2+
g2
ε

− 2p−1
g2
ε

2p−1q2p
ε

r2p−1
+

for 1
2 < p < 3

2 ,
(17)

S = A

4
= πr2+

g2
ε

, (18)

Q =
⎧
⎨

⎩

3√
2g2

ε

q2
ε for p = 3

2 ,

p2p−1

g2
ε

q2p−1
ε for 1

2 < p < 3
2 .

(19)

The first law of thermodynamics of the AdS black hole is

dM = TdS +UdQ, (20)

where T = (
∂M
∂S

)
Q and U =

(
∂M
∂Q

)

S
.

4 AdS black holes in rainbow gravity with nonlinear
source in canonical ensemble

In this section, we mainly study the topology of AdS black
holes under the rainbow gravity in canonical ensemble and
for two cases in different region p.

4.1 Case 1: p = 3
2

According the method mentioned in Sect. 2, the Hawking
temperature is expressed as a function of charge through Eqs.
(1) and (17)

T = gε(−2 × 21/4
√

3gεQ3/2 + 3r+)

6 fεπr2+
. (21)

The potential function � under this condition is

� = gε(2 × 21/4
√

3gεQ3/2 − 3r+) csc θ

6 fεπr+2 . (22)

The vector field φ = (
φr+ , φθ

)
contains the following

components

φr+ = gε(4 × 21/4
√

3gεQ3/2 − 3r+) csc θ

6 fεπr3+
,

φθ = gε(2 × 21/4
√

3gεQ3/2 − 3r+) cot θ csc θ

6 fεπr2+
.

(23)

According to Eq. (23), we can obtain the normalized vec-

tor n = (
φr+
‖φ‖ ,

φθ

‖φ‖ ). In Fig. 1a, we identify the emergence
of a critical point CP1 (3.02099, π/2), which represents the
end point of the first-order phase transition.

From the topological standpoint, we can find that the topo-
logical charge is non-zero when a critical point is enclosed by
a contour. Conversely, the topological charge is zero. There-
fore, we can determine the value of topological charge cor-
responding to the critical point which is surrounded by the
contour C1 or C2. The contour can be parameterized as

{
r = a cos ϑ + r0,

θ = b sin ϑ + π
2 ,

(24)

where r0 represents an arbitrary length scale determined by
the size of the cavity surrounding the black hole. For the
contours C1 and C2, we set the values of the parameters as
(a, b, r0) = (0.5, 0.2, 3.02099) and (0.5, 0.3, 4.1), respec-
tively. Since the given parameters alone cannot directly deter-
mine the topological charge of the black hole, the physical
quantity of the deflection angle of the vector φ is introduced.
For deflection along the given contours are

�(ϑ) =
∫ ϑ

0
εabn

a∂ϑn
bdϑ. (25)

When ϑ = 2π , the topological charge of the correspond-
ing critical points can be obtained by Q = �(2π)

2π
. The topo-

logical charge is −1 for the the critical pointCP1 surrounded
byC1 with the red solid line in Fig. 1b. The topological charge
corresponding to the blue dashed line C2 is zero, as no criti-
cal points can be found in the range surrounded the contour.
Therefore, the topological charge QCP1 is −1. Furthermore,
based to equation of state (17), we can obtain the correspond-
ing critical point quantities as

rc = 4 × 21/4gε − Q3/2

√
3

; Pc = 1

128
√

2πQ3
; Tc

=
√

3

16 × 21/4 fεπQ3/2 . (26)

In the four-dimensional AdS space-time, we can know that
the critical point obtained from the thermodynamic topology
exactly corresponds to the critical radius from the Eq. (26).
Next, we plot the isobaric curves around the critical point
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Fig. 1 a Shows the normalized
vector field n in the r+ vs θ

plane and the critical point
indicated by a black dot in
canonical ensemble for p = 3

2 .
b Shows the deflection angle of
normalized vector field n in �

vs ϑ plane for the contour C1
and C2. (By fixed Q = 1,
fε = 1.1 and gε = 1.1)

Fig. 2 Isobaric curves of AdS black hole in canonical ensemble for
p = 3

2 . Black dot represents the critical point

CP1 to study the characteristics of the critical point. The
isobaric curves are shown in Fig. 2, where the black curve
represents P = Pc, and the red and green curves correspond
to the regions where P > Pc and P < Pc, respectively. The
unstable region for P < Pc can be categorized into small
and large black hole phases. Additionally, according to the
blue curve described by the Eq. (21), we can identify the
critical points. The phase of black hole always converges at
the critical point, so the critical point CP1 can be considered
as a phase annihilation point, which is of great significance
for understanding the phase transition and thermodynamic
stability of black holes.

On the other hand, we investigate the AdS black holes in
canonical ensemble as topology thermodynamic defects in
gravity’s rainbow (for p = 3

2 ). By substituting the mass (16)
and entropy (18) of the black hole into Eq. (6), the generalized

free energy is

F =
3g2

εr+ + 8Pπr3 − 4×21/4g3
ε Q

3/2 log[ r+
�

]√
3

6 fεg3
ε

− πr2+
g2
ε τ

. (27)

The components of the vector field φ by Eq. (7) are

φr+ =
3g2

ε − 4×21/4g3
ε Q

3/2√
3r+

+ 24Pπr2+
6 fεg3

ε

− 2πr+
g2
ε τ

,

φ� = − cot � csc �.

(28)

To further investigate the thermodynamic behavior of the
zero points, we obtain the expression for the corresponding
zero points of τ by setting φr+ = 0, as follows

τ = 36 fεgεπr2+
−4 × 21/4

√
3

3
εQ

3/2 + 9g2
εr+ + 72Pπr3+

. (29)

In Fig. 3a, we observe that there are three different types
of black holes, and each category of black hole corresponds
to different parameter space regions. We note that the branch
τ < τa corresponds to the small black hole region, and the
branch τ > τb corresponds to the large black hole region.
Through calculation, we find that the winding number of the
small and large black hole branches is ω = +1. The middle
black hole branch is located in the region of τa < τ < τb,
and for any zero points located on this branch, the number
of winding is ω = −1. Therefore, the total topology num-
ber is W = +1 + (−1) + 1 = +1. In addition, the large
and small branches of black holes with the winding num-
ber of +1 represent thermodynamic stability, while the mid-
dle black hole branch with a winding number of −1 repre-
sents thermodynamic instability. The stability characteristics
of black holes can also be analyzed from their positive and
negative heat capacities. We identify the generation point
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at τ/r0 = τa/r0 = 42.9946 and the annihilation point at
τ/r0 = τb/r0 = 47.8235.

To calculate the topological charge of the black hole for
the case p = 3

2 , we select choosing a random value of τ

to determine the zero point of the vector field (τ/r0 = 40)
in Fig. 3b, we observe one zero point Z P1(11.2188, π/2)

of the unit vector field. According to the topological theory
described in the preceding section, the winding number cor-
responding to this zero point is ω = +1. For τ/r0 = 45,
we can observe three critical points: Z P2(1.75418, π/2),
Z P3(3.29013, π/2), and Z P4(8.40013, π/2) in Fig. 3c, cor-
responding to the winding numbers of +1, −1, and +1,
respectively. At the ratio τ/r0 = 50 in Fig. 3d, the zero
point Z P5(1.50618, π/2) has a positive winding number of
+1.

For the pressure Pr2
0 = 0.1, which exceeds the critical

pressure Pc, there is only one single black hole branch in
Fig. 4a, which is different from Fig. 3d, and the winding
number of this branch is +1, so the topological number is
W = +1. Due to the monotonically decreasing curve of
τ , no generation or annihilation points don’t exist. By fixing
τ/r0 = 5, we have plotted the unit vector diagram associated
with the zero point on this branch in Fig. 4b. The zero point is
located at (1.15625, π/2), and its corresponding topological
number is +1. Furthermore, using the same the method, we
find that no matter how the rainbow function parameters ( fε
and gε) change, the topological number of the black hole
always remains at +1.

4.2 Case 2: 1
2 < p < 3

2

As above, we can obtain the temperature function for 1
2 <

p < 3
2 is

T = g2
ε − 2−p p( g

2
ε Q
p )

2p
2p−1 r

2
1−2p
+

2 fεgεπr+
. (30)

The potential function � and the components of vector
field φ are

� =
(g2

ε − 2−p p(
g2
ε Q
p )

2p
−1+2p r

2
1−2p
+ ) csc θ

2 fεgεπr+
, (31)

φr+ =
2−1−pgε(2p(2p − 1) + (1 + 2p)Q(

g2
ε Q
p )

1−1+2p r
2

1−2p
+ ) csc θ

(2p − 1) fεπr2+
,

φθ = −
(g2

ε − 2−p p(
g2
ε Q
p )

2p
−1+2p r

2
1−2p
+ ) cot θ csc θ

2 fεgεπr+
.

(32)

In Fig. 5a, the topological behavior exhibits a critical point
CP2 (1.73139, π/2), which is similar to the case of p = 3

2
in the canonical ensemble. When ϑ = 2π in Fig. 5b, the
deflection angle of the vector field is −2π , so the topological
charge of this critical point is −1, which is also a conventional
critical point. The critical point corresponding to equation of
state (17) is

rc =
(2

p
2 −2p2√

p
√

1 + 2p( g
2
ε Q
p

) p
2p−1

gε

√
2p − 1

)2p−1,

Pc = 1

16π

(2
−p
2 p

3
2
( g2

ε Q
p

) p
2p−1

gε

√
1 − 2

1+2p

)2−4p

×
(

2g2
ε − 2

3p
2 (1 + 2p)

(
g2
ε Q

p

) 2p
2p−1

(√
p

(
g2
ε Q
p

) p
2p−1

gε

√
1 − 2

1+2p

)−2)
,

Tc = 1

2 fεgεπ

(2
−p
2

√
p

(
g2
ε Q
p

) p
2p−1

gε

√
1 − 2

1+2p

)1−2p

×

⎛

⎜
⎜⎜
⎝

−2−p p

(
g2
ε Q

p

) 2p
2p−1 + g2

ε

(2
−p
2

√
p

(
g2
ε Q
p

) p
2p−1

gε

√
1 − 2

1+2p

)2

⎞

⎟
⎟⎟
⎠

.

(33)

Figure 5c shows the isobaric curves around the critical
point CP2 for the 1

2 < p < 3
2 , which is consistent with the

case of p = 3
2 . The critical point CP2 is the phase annihila-

tion point.
On the other way, we consider the black hole solution

as topological thermodynamic defects. The generalized free
energy is

F = −r+
2 fεgε

(2−1−p(1 − 2p)2
( g2

ε Q
p

) 2p
2p−1 r

2
1−2p
+

g2
ε (−3 + 2p)

− 8Pπr2+
3g2

ε

− 1

)

−πr2+
g2
ε τ

. (34)

The components of vector field φ are

φr+ =
−8 fεgεπr+ + (2g2

ε + 16Pπr2+ + 2−p(1 − 2p)

(
g2
ε Q
p

) 2p
2p−1

r
2

1−2p
+ )τ

4 fεg3
ε τ

,

φ� = − cot � csc �.

(35)
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Fig. 3 Plot of unit vector n and zero points of φr+ in canonical ensemble for P < Pc. a–c Unit vector n is shown in the r+ vs θ plane and the black
dots represent the zero points. d is the zero points of φr+ in τ/r0 vs r/r0 plane. (By fixed Pr2

0 = 0.001, Q/r0 = 1, fε/r0 = 1.1 and gε/r0 = 1.1)

Fig. 4 Plot of zero point of φr+

and unit vector n in canonical
ensemble for P > Pc. a is the
zero point of φr+ in τ/r0 vs r/r0
plane. b Unit vector n is shown
in the r+ vs θ plane and the zero
point is marked with a black dot.
(By fixed Pr2

0 = 0.1, Q/r0 = 1,
fε/r0 = 1.1 and gε/r0 = 1.1)

Fig. 5 a The normalized vector field n in the r+ vs θ plane with the
critical point CP2 indicated by a black dot in canonical ensemble for
1
2 < p < 3

2 . b The deflection angle of the normalized vector field n in

� vs ϑ plane for the contour C3 and C4. c Isobaric curves of AdS black
hole at the critical point. (By fixed Q = 1, fε = 1.1 and gε = 1.1)
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By solving Eq. (35) for φr+ = 0, the inverse of the equi-
librium temperature is

τ = 8 fεgεπr+

2g2
ε + 16Pπr2+ + 2−p(1 − 2p)

(
g2
ε Q
p

) 2p
2p−1

r
2

1−2p
+

.

(36)

We have plotted the τ/r0 vs r/r0 diagram for two pres-
sure cases, as shown in Fig. 6a and e. We can find that
two situations: one with three black hole branches and
another with black hole branch. The results are consis-
tent with the previous case p = 3

2 . There is one gener-
ation and one annihilation points for P < Pc, and the
generation/annihilation points don’t exist for P > Pc.
Each total topological number of black holes is +1. The
precise position of each zero point in the vector dia-
gram is as follows: Z P7(11.2436, π/2), Z P8(1.29884, π/2),
Z P9(2.05961, π/2), Z P10(4.6527, π/2), Z P11(1.25628,

π/2) and Z P12(1.26497, π/2), their winding numbers are
+1, +1, −1, +1, +1 and +1, respectively. We also find that
the topology of the black hole is not affected by the parame-
ters fε and gε for this case. The influence of charge value on
the topology of black holes is similar to the effect of pressure.

5 AdS black holes in rainbow gravity with nonlinear
source in grand canonical ensemble

In this section, we mainly explore the topology of AdS black
holes in rainbow gravity in grand canonical ensemble for two
different regions p. The invariant electric potential of black
hole can be expressed as

U =

⎧
⎪⎨

⎪⎩

− qε

fεgε
ln

( r+
�

)
for p = 3

2 ,

− qε

fεgε

(
2p−1
2p−3

)
(r+)

2p−3
2p−1 for 1

2 < p < 3
2 .

(37)

And the relevant thermodynamic quantities of AdS black
holes are

∗ ∗ T =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gε

4 fεπr+

(
1 + 8Pπr2+

g2
ε

−
2
√

2gε
f 3
ε U3

log[ r+
�

]3
r+

)
for p = 3

2 ,

g2
ε+8Pπr2++2

3p−1
1−2p (1−2p)r

2
1−2p
+

(
− fεgε(2p−3)r

3−2p
2p−1
+ U

2p−1

)2p

4 fεgεπr+ for 1
2 < p < 3

2 ,

(38)

M =

⎧
⎪⎪⎨

⎪⎪⎩

3g2
ε r++8Pπr3+−6

√
2g3

ε
f 3
ε U3

log[ r+
�

]2
6 fεg3

ε
for p = 3

2 ,

f racr+
(

1 + 8Pπr2+
3g2

ε
− 2

1−3p
2p−1 (3−2p)2p−1

g2
ε (1−2p)2p−2 r

2
1−2p
+ ( fεgεr

3−2p
2p−1
+ U )2p

)
2 fεgε for 1

2 < p < 3
2 .

(39)

5.1 Case 1: p = 3
2

The temperature function for p = 3
2 is

T = −
gε

(
3
√

2 f 3
ε gεU3 − r+log

[ r+
�

]4 + 3
√

2gε f 3
ε U

3log
[ r+

�

])

2 fεπr2+log
[ r+

�

]4 ,

(40)

and the potential function � = T
sin θ

is

� =
gε csc θ

(
−3

√
2 f 3

ε gεU3+r+log
[ r+

�

]4−3
√

2gε f 3
ε U

3log
[ r+

�

])

2 fεπr+2log
[ r+

�

]4 .

(41)

The vector components of φ = (
φr+ , φθ

)
are

φr+ =
gε csc θ

(
− r+ + 3

√
2gε

f 3
ε U3

log[ r+
�

]5 (4 + log[ r+
�

](5 + 2 log[ r+
�

]))
)

2 fεπr3+
,

φθ = gε cot θ csc θ(−3
√

2 f 3
ε gεU3 + r+log[ r+

�
]4 − 3

√
2gε f 3

ε U
3log[ r+

�
])

2 fεπr2+log[ r+
�

]4 .

(42)

On the following the procedure discussed in Sect. 4,
we plot the normalized vector n in r+ vs θ plane (see
Fig. 7). Different from the canonical ensemble, we find
that there are three critical points: CP3(0.00226461, π/2),
CP4(0.362146, π/2), and CP5(2.99109, π/2) in Fig. 7a.
And these critical points are enclosed within contoursC5,C6

and C7, respectively. The critical points CP3 and CP5 carry
a negative topological charge −1, signifying a conventional
critical point associated with a first-order phase transition. It
is worth noting that CP4 has a positive topological charge
+1.
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9

Fig. 6 Plot of zero points of φr+ in τ/r0 vs r/r0 plane and unit vector
n in the θ vs r+/r0 plane in canonical ensemble for two pressure values.
a and (e) are the zero points of φr+ in τ/r0 vs r/r0 plane. b–d and f

are unit vector graphs, and the black dots represent the zero points (by
fixed Q/r0 = 1, fε/r0 = 1.1 and gε/r0 = 1.1)

When electric potential of black hole U = 1.1, our result
shows that there is a critical point CP6 (conventional critical
point) with a topological charge of −1 which is consistent
with the canonical ensemble (see Fig. 7c, d).

We plot the isobaric curves near the conventional criti-
cal point CP5 and the novel critical point CP4 in Fig. 8. By
analyzing the critical topological structure of black holes,
we find that the critical point CP5 with negative topological
charge corresponds exactly to the maximum critical temper-
ature. We also observe the existence of an unstable region
near the conventional critical point CP5, which can be elim-
inated by Maxwell’s area law. However, the novel critical
point CP4 with positive topological charge corresponds to
the minimum critical temperature, and Maxwell’s equal area
law can not be applied near this point. Therefore, there is no
first-order phase transition occurring near the novel critical
point.

In the next step, we identify AdS black hole as topological
thermodynamic defects, and the generalized free energy is

F = E − S

τ
−UQ

= −πr2+
g2
ε τ

− 3 f 2
ε U

3

√
2 log[ r+

�
]2

+
3g2

εr+ + 8Pπr+3 − 6
√

2g3
ε

f 3
ε U

3

log[ r+
�

]2

6 fεg3
ε

. (43)

The components of vector field φ are

φr+ = g2
ε τ + 8Pπr+2τ − 4 fεgεπr+

2 fεg3
ε τ

+ 5
√

2 f 2
ε U

3

r+ log[ r+
�

]3
,

φ� = − cot � csc �.

(44)

By φr+ = 0, we can derive

τ = 4 fεgεπ r2+log[ r+� ]3

10
√

2 f 3
ε g

3
εU

3 + r+(g2
ε + 8Pπr+2)log[ r+

�
]3

. (45)

The relationship between τ/r0 and r+/r0 is shown in
Fig. 9a. The plot exhibits two black hole branches for the
region τ < τc and τ > τc, which is different from the
canonical ensemble. For the branch τ < τc (the red dashed
line) corresponds to the unstable region of the black hole
with winding number −1. For the branch τ > τc (the
black solid line) represents the stable black hole region with
winding number of +1. The annihilation point is situated at
τ/r0 = τc/r0 = 39.0111. And we find two zero points Z P13

and Z P14 with the winding number −1 and +1 in Fig. 9b. As
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Fig. 7 a and c the normalized
vector field n in the r+ vs θ

plane in grand canonical
ensemble and the black dots
represent the critical points for
two potential values. b and d �

vs ϑ plot for the contours C5,
C6, C7 and C8. (By fixed � = 1,
fε = 1.1 and gε = 1.1)

Fig. 8 The isobaric curves of
AdS black hole near the critical
points CP4 and CP5 in grand
canonical ensemble

a result, the topology number of black holes in grand canon-
ical ensemble is W = 0. It is worth noting that although the
total topological number W is usually non-zero in canonical
ensemble.

This result is inconsistent with the observed results in canon-
ical ensemble, which means that the ensemble has an impact
on the AdS black hole topology.
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Fig. 9 Plot of zero points of
φr+ and unit vector n in grand
canonical ensemble. a Unit
vector n is shown in the r+ vs θ

plane and the zero points are
marked with black dots. b The
zero points of φr+ in τ/r0 vs
r/r0 plane. (By fixed � = 1,
U/r0 = 0.4, fε/r0 = 1.1 and
gε/r0 = 1.1)

5.2 Case 2: 1
2 < p < 3

2

The expression for the temperature function is

T = 1

8 fεgεπr+

(
4g2

ε − (2p2 − p)r
2

1−2p
+ 2

p−1
2p−1

×
(

fεgε(3 − 2p)r
3−2p
2p−1
+ U

−1 + 2p

)2p)
. (46)

The potential function � is

� = csc θ

8 fεgεπr+

(
4g2

ε − (2p2 − p)r
2

1−2p
+ 2

p−1
2p−1

×
(

fεgε(3 − 2p)r
3−2p
2p−1
+ U

−1 + 2p

)2p)
, (47)

and the vector field φ = (
φr+ , φθ

)
with

φr+ = −1

4 fεgεπr2+

(
2g2

ε − 2
p−2p2

2p−1
p(3 − 2p)2p

(1 − 2p)2p−2 r
4p2−6p+2

1−2p
+

×( fεgεU )2p csc θ

)
,

φθ = − cot θ csc θ

8 fεgεπr+

(
4g2

ε − (2p2 − p)r
2

1−2p 2
p−1

2p−1

×
(

fεgε(3 − 2p)r
3−2p
2p−1
+ U

−1 + 2p

)2p)
. (48)

We have observed that there is a critical point CP6 (a
phase annihilation point) included in the contour C9, while
the contour C10 does not contain critical point.

Consequently, at ϑ = 2π , the total topological charge is −1

(see Fig. 10).
Furthermore, we can interpret the black hole solutions as

defects within the topological thermodynamics framework.
The generalized free energy can be expressed as

F = E − S

τ
−UQ

=
r+ + 8Pπr3+

3g2
ε

− 2
1−3p
2p−1 (3−2p)2p−1

g2
ε (1−2p)2p−2 r

3−2p
1−2p
+ (U fεgεr

3−2p
2p−1
+ )2p

2 fεgε

−πr2

g2
ε τ

− 2p−1 pU 2pr3−2p
+ (

fεgε(3−2p)
2p−1 )2p−1

g2
ε

, (49)

and the components of vector field φ are

φr+ = 1

2 fεgε

− 2πr+
g2
ε

+ 4Pπr2+
fεg3

ε

+2p( fεgε(3 − 2p)r
3−2p
2p−1
+ U )2p

4 fεg3
ε

r
2

1−2p
+

( −2p

(2p − 1)2p−1

+ 2
−2p2

2p−1

(2p − 1)2p−2

)
,

φ� = − cot � csc �.

(50)

By solving φr+ = 0, we derive

τ = 8 fεgεπr+

2g2
ε + 16πr2+ + 2pr

6p−4p2−2
2p−1

+ f 2p
ε g2p

ε U 2p(3 − 2p)2p

(
−2p

(2p−1)2p−1 + 2
−2p2
2p−1

(2p−1)2p−2

) . (51)
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Fig. 10 Left: the normalized
vector field n in the r+ vs θ

plane with a critical point
indicated by a black dot in grand
canonical ensemble. Right: plot
of � vs ϑ for the contours C9
and C10. (By fixed U = 1.5,
fε = 1.1 and gε = 1.1)

Fig. 11 a and c The zero points
of φr+ in τ/r0 vs r+/r0 for
black holes in grand canonical
ensemble for two potential
values. b and d The Unit vector
field n in the r+/r0 vs � plane
with zero points indicated by
black dots (By fixed
fε/r0 = 1.1, gε/r0 = 1.1 and
Pr2

0 = 0.001)
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Table 1 Topological number W , the number of generation and annihilation points of various black holes in the canonical ensemble and the grand
canonical ensemble

Ensembles Black holes Topological charge W Generation point Annihilation point

AdS BH with p = 3
2 in rainbow gravity +1 1 or 0 1 or 0

AdS BH with 1
2 < p < 3

2 in rainbow gravity +1 1 or 0 1 or 0

Phantom AdS BH in massive gravity [78] +1 1 or 0 1 or 0

CE 4D dyonic AdS BH [79] +1 1 or 0 1 or 0

4D Euler-Heisenberg-AdS BH [80] +1 or 0 0 or 1 1 or 0

charged dilatonic BH [81] +1 or 0 0 or 1 0

AdS BH with p = 3
2 in rainbow gravity 0 0 1

AdS BH with 1
2 < p < 3

2 in rainbow gravity +1 or 0 0 0 or 1

Phantom AdS BH in massive gravity [78] +1 or 0 0 or 1 0

GCE 4D dyonic AdS BH [79] +1 or 0 0 or 1 0

4D Euler–Heisenberg-AdS BH [80] 0 1 or 0 1 or 0

Charged dilatonic BH [81] +1 or 0 0 or 1 0 or 1

We obtain two black hole branches (stable and unstable)
with a total topological number −1 + (+1) = 0 as shown in
Fig. 11a. Additionally, there is one annihilation point located
at τ/r0 = τc/r0 = 342.008, which is consistent with the
description of the case of p = 3

2 in the grand canonical
ensemble. In Fig. 11b, we have identified two zero points
Z P15 and Z P16 with winding numbers of −1 and +1, respec-
tively. With increasing the electric potential to U = 1, there
is a single black hole branch with winding number of +1 at
(0.362146, π/2) (see Fig. 11c, d). Furthermore, we also find
that the pressure value has no effect on the topology of the
black hole in the grand canonical ensemble.

A comparison for different black hole cases in Table 1,
we have compared the topological charges and the number
of generation/annihilation points of the AdS black holes with
nonlinear parameter in rainbow gravity (p = 3

2 and 1
2 <

p < 3
2 ) with other black holes in the canonical ensemble

and the grand canonical ensemble. From the table, we can
see that the AdS black holes with nonlinear parameter in
rainbow gravity can be classified into the same topological
class as the phantom black hole under massive gravity and
the 4D dynamic AdS black hole in the canonical ensemble.
In the grand canonical ensemble, the AdS black hole with
p = 3

2 in rainbow gravity and 4D black holes have the same
topological charge W = 0. The AdS black hole with 1

2 <

p < 3
2 in rainbow gravity and charged expanding black holes,

phantom black holes under massive gravity, and 4D dynamic
AdS black holes have the same topological charge W = +1
or 0. However, the difference between the AdS black hole
under rainbow gravity and other black holes is that there is
no generation point in the τ vs r image of the black hole in
the grand canonical ensemble.

6 Conclusion

In this paper, we have delved into exploring the thermody-
namic topology of a four-dimensional AdS black hole with
nonlinear source in the canonical ensemble and the grand
canonical ensemble under the rainbow gravity framework.
We have observed that both types of black holes (p = 3

2
and 1

2 < p < 3
2 ) in the two ensembles have a topological

charge −1, but in grand canonical ensemble, for black holes
with p = 3

2 , a novel critical point appears beside the conven-
tional critical point. By calculating the winding number at
the defects, we have found that: in canonical ensemble, the
topological number of both types of black holes is +1, we
can observe one generation and one annihilation point or no
generation/annihilation for the specific pressure value. In the
grand canonical ensemble, the topological number of black
holes for p = 3

2 is 0 with one annihilation point. The topo-
logical number of black holes for 1

2 < p < 3
2 can be 0 and

+1, and there may be one annihilation point or absence of
generation/annihilation depending on the electric potential
value. Based on the above analysis, we have concluded that
these two types of black holes belong to the same topological
class in canonical ensemble, but belong to different topolog-
ical classes in grand canonical ensemble. In other words,
the topological classification of black holes is influenced by
the choice of ensemble, the system pressure and the elec-
tric potential. In addition, we have found that the topological
charge of black holes remains independent of the rainbow
function parameters fε and gε, which indicates that the rain-
bow gravitational effect alters the thermodynamic properties
of black holes, but does not impact on topological charges.
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